1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13 * Copyright (c) 2013, 2014 The FreeBSD Foundation
14 *
15 * Portions of this software were developed by Konstantin Belousov
16 * under sponsorship from the FreeBSD Foundation.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 */
42
43 #include "opt_hwpmc_hooks.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/buf.h>
48 #include <sys/disk.h>
49 #include <sys/dirent.h>
50 #include <sys/fail.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/filio.h>
54 #include <sys/ktr.h>
55 #include <sys/ktrace.h>
56 #include <sys/limits.h>
57 #include <sys/lock.h>
58 #include <sys/mman.h>
59 #include <sys/mount.h>
60 #include <sys/mutex.h>
61 #include <sys/namei.h>
62 #include <sys/priv.h>
63 #include <sys/prng.h>
64 #include <sys/proc.h>
65 #include <sys/rwlock.h>
66 #include <sys/sleepqueue.h>
67 #include <sys/stat.h>
68 #include <sys/sysctl.h>
69 #include <sys/unistd.h>
70 #include <sys/user.h>
71 #include <sys/vnode.h>
72
73 #include <security/audit/audit.h>
74 #include <security/mac/mac_framework.h>
75
76 #include <vm/vm.h>
77 #include <vm/vm_extern.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vnode_pager.h>
84
85 #ifdef HWPMC_HOOKS
86 #include <sys/pmckern.h>
87 #endif
88
89 static fo_rdwr_t vn_read;
90 static fo_rdwr_t vn_write;
91 static fo_rdwr_t vn_io_fault;
92 static fo_truncate_t vn_truncate;
93 static fo_ioctl_t vn_ioctl;
94 static fo_poll_t vn_poll;
95 static fo_kqfilter_t vn_kqfilter;
96 static fo_close_t vn_closefile;
97 static fo_mmap_t vn_mmap;
98 static fo_fallocate_t vn_fallocate;
99 static fo_fspacectl_t vn_fspacectl;
100
101 const struct fileops vnops = {
102 .fo_read = vn_io_fault,
103 .fo_write = vn_io_fault,
104 .fo_truncate = vn_truncate,
105 .fo_ioctl = vn_ioctl,
106 .fo_poll = vn_poll,
107 .fo_kqfilter = vn_kqfilter,
108 .fo_stat = vn_statfile,
109 .fo_close = vn_closefile,
110 .fo_chmod = vn_chmod,
111 .fo_chown = vn_chown,
112 .fo_sendfile = vn_sendfile,
113 .fo_seek = vn_seek,
114 .fo_fill_kinfo = vn_fill_kinfo,
115 .fo_mmap = vn_mmap,
116 .fo_fallocate = vn_fallocate,
117 .fo_fspacectl = vn_fspacectl,
118 .fo_cmp = vn_cmp,
119 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
120 };
121
122 const u_int io_hold_cnt = 16;
123 static int vn_io_fault_enable = 1;
124 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
125 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
126 static int vn_io_fault_prefault = 0;
127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
128 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
129 static int vn_io_pgcache_read_enable = 1;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
131 &vn_io_pgcache_read_enable, 0,
132 "Enable copying from page cache for reads, avoiding fs");
133 static u_long vn_io_faults_cnt;
134 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
135 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
136
137 static int vfs_allow_read_dir = 0;
138 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
139 &vfs_allow_read_dir, 0,
140 "Enable read(2) of directory by root for filesystems that support it");
141
142 /*
143 * Returns true if vn_io_fault mode of handling the i/o request should
144 * be used.
145 */
146 static bool
do_vn_io_fault(struct vnode * vp,struct uio * uio)147 do_vn_io_fault(struct vnode *vp, struct uio *uio)
148 {
149 struct mount *mp;
150
151 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
152 (mp = vp->v_mount) != NULL &&
153 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
154 }
155
156 /*
157 * Structure used to pass arguments to vn_io_fault1(), to do either
158 * file- or vnode-based I/O calls.
159 */
160 struct vn_io_fault_args {
161 enum {
162 VN_IO_FAULT_FOP,
163 VN_IO_FAULT_VOP
164 } kind;
165 struct ucred *cred;
166 int flags;
167 union {
168 struct fop_args_tag {
169 struct file *fp;
170 fo_rdwr_t *doio;
171 } fop_args;
172 struct vop_args_tag {
173 struct vnode *vp;
174 } vop_args;
175 } args;
176 };
177
178 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
179 struct vn_io_fault_args *args, struct thread *td);
180
181 int
vn_open(struct nameidata * ndp,int * flagp,int cmode,struct file * fp)182 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
183 {
184 struct thread *td = curthread;
185
186 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
187 }
188
189 static uint64_t
open2nameif(int fmode,u_int vn_open_flags,uint64_t cn_flags)190 open2nameif(int fmode, u_int vn_open_flags, uint64_t cn_flags)
191 {
192 uint64_t res;
193
194 res = ISOPEN | LOCKLEAF | cn_flags;
195 if ((fmode & O_RESOLVE_BENEATH) != 0)
196 res |= RBENEATH;
197 if ((fmode & O_EMPTY_PATH) != 0)
198 res |= EMPTYPATH;
199 if ((fmode & FREAD) != 0)
200 res |= OPENREAD;
201 if ((fmode & FWRITE) != 0)
202 res |= OPENWRITE;
203 if ((fmode & O_NAMEDATTR) != 0)
204 res |= OPENNAMED | CREATENAMED;
205 if ((fmode & O_NOFOLLOW) != 0)
206 res &= ~FOLLOW;
207 if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
208 res |= AUDITVNODE1;
209 else
210 res &= ~AUDITVNODE1;
211 if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
212 res |= NOCAPCHECK;
213 if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
214 res |= WANTIOCTLCAPS;
215
216 return (res);
217 }
218
219 /*
220 * For the O_NAMEDATTR case, check for a valid use of it.
221 */
222 static int
vfs_check_namedattr(struct vnode * vp)223 vfs_check_namedattr(struct vnode *vp)
224 {
225 int error;
226 short irflag;
227
228 error = 0;
229 irflag = vn_irflag_read(vp);
230 if ((vp->v_mount->mnt_flag & MNT_NAMEDATTR) == 0 ||
231 ((irflag & VIRF_NAMEDATTR) != 0 && vp->v_type != VREG))
232 error = EINVAL;
233 else if ((irflag & (VIRF_NAMEDDIR | VIRF_NAMEDATTR)) == 0)
234 error = ENOATTR;
235 return (error);
236 }
237
238 /*
239 * Common code for vnode open operations via a name lookup.
240 * Lookup the vnode and invoke VOP_CREATE if needed.
241 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
242 *
243 * Note that this does NOT free nameidata for the successful case,
244 * due to the NDINIT being done elsewhere.
245 */
246 int
vn_open_cred(struct nameidata * ndp,int * flagp,int cmode,u_int vn_open_flags,struct ucred * cred,struct file * fp)247 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
248 struct ucred *cred, struct file *fp)
249 {
250 struct vnode *vp;
251 struct mount *mp;
252 struct vattr vat;
253 struct vattr *vap = &vat;
254 int fmode, error;
255 bool first_open;
256
257 restart:
258 first_open = false;
259 fmode = *flagp;
260 if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
261 O_EXCL | O_DIRECTORY) ||
262 (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
263 return (EINVAL);
264 else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
265 ndp->ni_cnd.cn_nameiop = CREATE;
266 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags,
267 ndp->ni_cnd.cn_flags);
268
269 /*
270 * Set NOCACHE to avoid flushing the cache when
271 * rolling in many files at once.
272 *
273 * Set NC_KEEPPOSENTRY to keep positive entries if they already
274 * exist despite NOCACHE.
275 */
276 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
277 if ((fmode & O_EXCL) != 0)
278 ndp->ni_cnd.cn_flags &= ~FOLLOW;
279 if ((vn_open_flags & VN_OPEN_INVFS) == 0)
280 bwillwrite();
281 if ((error = namei(ndp)) != 0)
282 return (error);
283 if (ndp->ni_vp == NULL) {
284 if ((fmode & O_NAMEDATTR) != 0 &&
285 (ndp->ni_dvp->v_mount->mnt_flag & MNT_NAMEDATTR) ==
286 0) {
287 error = EINVAL;
288 vp = ndp->ni_dvp;
289 ndp->ni_dvp = NULL;
290 goto bad;
291 }
292 VATTR_NULL(vap);
293 vap->va_type = VREG;
294 vap->va_mode = cmode;
295 if (fmode & O_EXCL)
296 vap->va_vaflags |= VA_EXCLUSIVE;
297 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
298 NDFREE_PNBUF(ndp);
299 vput(ndp->ni_dvp);
300 if ((error = vn_start_write(NULL, &mp,
301 V_XSLEEP | V_PCATCH)) != 0)
302 return (error);
303 NDREINIT(ndp);
304 goto restart;
305 }
306 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
307 ndp->ni_cnd.cn_flags |= MAKEENTRY;
308 #ifdef MAC
309 error = mac_vnode_check_create(cred, ndp->ni_dvp,
310 &ndp->ni_cnd, vap);
311 if (error == 0)
312 #endif
313 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
314 &ndp->ni_cnd, vap);
315 vp = ndp->ni_vp;
316 if (error == 0 && (fmode & O_EXCL) != 0 &&
317 (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
318 VI_LOCK(vp);
319 vp->v_iflag |= VI_FOPENING;
320 VI_UNLOCK(vp);
321 first_open = true;
322 }
323 VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
324 false);
325 vn_finished_write(mp);
326 if (error) {
327 NDFREE_PNBUF(ndp);
328 if (error == ERELOOKUP) {
329 NDREINIT(ndp);
330 goto restart;
331 }
332 return (error);
333 }
334 fmode &= ~O_TRUNC;
335 } else {
336 if (ndp->ni_dvp == ndp->ni_vp)
337 vrele(ndp->ni_dvp);
338 else
339 vput(ndp->ni_dvp);
340 ndp->ni_dvp = NULL;
341 vp = ndp->ni_vp;
342 if (fmode & O_EXCL) {
343 error = EEXIST;
344 goto bad;
345 }
346 if ((fmode & O_NAMEDATTR) != 0) {
347 error = vfs_check_namedattr(vp);
348 if (error != 0)
349 goto bad;
350 } else if (vp->v_type == VDIR) {
351 error = EISDIR;
352 goto bad;
353 }
354 fmode &= ~O_CREAT;
355 }
356 } else {
357 ndp->ni_cnd.cn_nameiop = LOOKUP;
358 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags,
359 ndp->ni_cnd.cn_flags);
360 if ((fmode & FWRITE) == 0)
361 ndp->ni_cnd.cn_flags |= LOCKSHARED;
362 if ((error = namei(ndp)) != 0)
363 return (error);
364 vp = ndp->ni_vp;
365 if ((fmode & O_NAMEDATTR) != 0) {
366 error = vfs_check_namedattr(vp);
367 if (error != 0)
368 goto bad;
369 }
370 }
371 error = vn_open_vnode(vp, fmode, cred, curthread, fp);
372 if (first_open) {
373 VI_LOCK(vp);
374 vp->v_iflag &= ~VI_FOPENING;
375 wakeup(vp);
376 VI_UNLOCK(vp);
377 }
378 if (error)
379 goto bad;
380 *flagp = fmode;
381 return (0);
382 bad:
383 NDFREE_PNBUF(ndp);
384 vput(vp);
385 *flagp = fmode;
386 ndp->ni_vp = NULL;
387 return (error);
388 }
389
390 static int
vn_open_vnode_advlock(struct vnode * vp,int fmode,struct file * fp)391 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
392 {
393 struct flock lf;
394 int error, lock_flags, type;
395
396 ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
397 if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
398 return (0);
399 KASSERT(fp != NULL, ("open with flock requires fp"));
400 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
401 return (EOPNOTSUPP);
402
403 lock_flags = VOP_ISLOCKED(vp);
404 VOP_UNLOCK(vp);
405
406 lf.l_whence = SEEK_SET;
407 lf.l_start = 0;
408 lf.l_len = 0;
409 lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
410 type = F_FLOCK;
411 if ((fmode & FNONBLOCK) == 0)
412 type |= F_WAIT;
413 if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
414 type |= F_FIRSTOPEN;
415 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
416 if (error == 0)
417 fp->f_flag |= FHASLOCK;
418
419 vn_lock(vp, lock_flags | LK_RETRY);
420 return (error);
421 }
422
423 /*
424 * Common code for vnode open operations once a vnode is located.
425 * Check permissions, and call the VOP_OPEN routine.
426 */
427 int
vn_open_vnode(struct vnode * vp,int fmode,struct ucred * cred,struct thread * td,struct file * fp)428 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
429 struct thread *td, struct file *fp)
430 {
431 accmode_t accmode;
432 int error;
433
434 KASSERT((fmode & O_PATH) == 0 || (fmode & O_ACCMODE) == 0,
435 ("%s: O_PATH and O_ACCMODE are mutually exclusive", __func__));
436
437 if (vp->v_type == VLNK) {
438 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
439 return (EMLINK);
440 }
441 if (vp->v_type != VDIR && fmode & O_DIRECTORY)
442 return (ENOTDIR);
443
444 accmode = 0;
445 if ((fmode & O_PATH) == 0) {
446 if (vp->v_type == VSOCK)
447 return (EOPNOTSUPP);
448 if ((fmode & (FWRITE | O_TRUNC)) != 0) {
449 if (vp->v_type == VDIR)
450 return (EISDIR);
451 accmode |= VWRITE;
452 }
453 if ((fmode & FREAD) != 0)
454 accmode |= VREAD;
455 if ((fmode & O_APPEND) && (fmode & FWRITE))
456 accmode |= VAPPEND;
457 #ifdef MAC
458 if ((fmode & O_CREAT) != 0)
459 accmode |= VCREAT;
460 #endif
461 }
462 if ((fmode & FEXEC) != 0)
463 accmode |= VEXEC;
464 #ifdef MAC
465 if ((fmode & O_VERIFY) != 0)
466 accmode |= VVERIFY;
467 error = mac_vnode_check_open(cred, vp, accmode);
468 if (error != 0)
469 return (error);
470
471 accmode &= ~(VCREAT | VVERIFY);
472 #endif
473 if ((fmode & O_CREAT) == 0 && accmode != 0) {
474 error = VOP_ACCESS(vp, accmode, cred, td);
475 if (error != 0)
476 return (error);
477 }
478 if ((fmode & O_PATH) != 0) {
479 if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
480 VOP_ACCESS(vp, VREAD, cred, td) == 0)
481 fp->f_flag |= FKQALLOWED;
482 return (0);
483 }
484
485 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
486 vn_lock(vp, LK_UPGRADE | LK_RETRY);
487 error = VOP_OPEN(vp, fmode, cred, td, fp);
488 if (error != 0)
489 return (error);
490
491 error = vn_open_vnode_advlock(vp, fmode, fp);
492 if (error == 0 && (fmode & FWRITE) != 0) {
493 error = VOP_ADD_WRITECOUNT(vp, 1);
494 if (error == 0) {
495 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
496 __func__, vp, vp->v_writecount);
497 }
498 }
499
500 /*
501 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
502 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
503 */
504 if (error != 0) {
505 if (fp != NULL) {
506 /*
507 * Arrange the call by having fdrop() to use
508 * vn_closefile(). This is to satisfy
509 * filesystems like devfs or tmpfs, which
510 * override fo_close().
511 */
512 fp->f_flag |= FOPENFAILED;
513 fp->f_vnode = vp;
514 if (fp->f_ops == &badfileops) {
515 fp->f_type = DTYPE_VNODE;
516 fp->f_ops = &vnops;
517 }
518 vref(vp);
519 } else {
520 /*
521 * If there is no fp, due to kernel-mode open,
522 * we can call VOP_CLOSE() now.
523 */
524 if ((vp->v_type == VFIFO ||
525 !MNT_EXTENDED_SHARED(vp->v_mount)) &&
526 VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
527 vn_lock(vp, LK_UPGRADE | LK_RETRY);
528 (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
529 cred, td);
530 }
531 }
532
533 ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
534 return (error);
535
536 }
537
538 /*
539 * Check for write permissions on the specified vnode.
540 * Prototype text segments cannot be written.
541 * It is racy.
542 */
543 int
vn_writechk(struct vnode * vp)544 vn_writechk(struct vnode *vp)
545 {
546
547 ASSERT_VOP_LOCKED(vp, "vn_writechk");
548 /*
549 * If there's shared text associated with
550 * the vnode, try to free it up once. If
551 * we fail, we can't allow writing.
552 */
553 if (VOP_IS_TEXT(vp))
554 return (ETXTBSY);
555
556 return (0);
557 }
558
559 /*
560 * Vnode close call
561 */
562 static int
vn_close1(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td,bool keep_ref)563 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
564 struct thread *td, bool keep_ref)
565 {
566 struct mount *mp;
567 int error, lock_flags;
568
569 lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
570 LK_SHARED : LK_EXCLUSIVE;
571
572 vn_start_write(vp, &mp, V_WAIT);
573 vn_lock(vp, lock_flags | LK_RETRY);
574 AUDIT_ARG_VNODE1(vp);
575 if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
576 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
577 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
578 __func__, vp, vp->v_writecount);
579 }
580 error = VOP_CLOSE(vp, flags, file_cred, td);
581 if (keep_ref)
582 VOP_UNLOCK(vp);
583 else
584 vput(vp);
585 vn_finished_write(mp);
586 return (error);
587 }
588
589 int
vn_close(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td)590 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
591 struct thread *td)
592 {
593
594 return (vn_close1(vp, flags, file_cred, td, false));
595 }
596
597 /*
598 * Heuristic to detect sequential operation.
599 */
600 static int
sequential_heuristic(struct uio * uio,struct file * fp)601 sequential_heuristic(struct uio *uio, struct file *fp)
602 {
603 enum uio_rw rw;
604
605 ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
606
607 rw = uio->uio_rw;
608 if (fp->f_flag & FRDAHEAD)
609 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
610
611 /*
612 * Offset 0 is handled specially. open() sets f_seqcount to 1 so
613 * that the first I/O is normally considered to be slightly
614 * sequential. Seeking to offset 0 doesn't change sequentiality
615 * unless previous seeks have reduced f_seqcount to 0, in which
616 * case offset 0 is not special.
617 */
618 if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
619 uio->uio_offset == fp->f_nextoff[rw]) {
620 /*
621 * f_seqcount is in units of fixed-size blocks so that it
622 * depends mainly on the amount of sequential I/O and not
623 * much on the number of sequential I/O's. The fixed size
624 * of 16384 is hard-coded here since it is (not quite) just
625 * a magic size that works well here. This size is more
626 * closely related to the best I/O size for real disks than
627 * to any block size used by software.
628 */
629 if (uio->uio_resid >= IO_SEQMAX * 16384)
630 fp->f_seqcount[rw] = IO_SEQMAX;
631 else {
632 fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
633 if (fp->f_seqcount[rw] > IO_SEQMAX)
634 fp->f_seqcount[rw] = IO_SEQMAX;
635 }
636 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
637 }
638
639 /* Not sequential. Quickly draw-down sequentiality. */
640 if (fp->f_seqcount[rw] > 1)
641 fp->f_seqcount[rw] = 1;
642 else
643 fp->f_seqcount[rw] = 0;
644 return (0);
645 }
646
647 /*
648 * Package up an I/O request on a vnode into a uio and do it.
649 */
650 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,void * base,int len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,ssize_t * aresid,struct thread * td)651 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
652 enum uio_seg segflg, int ioflg, struct ucred *active_cred,
653 struct ucred *file_cred, ssize_t *aresid, struct thread *td)
654 {
655 struct uio auio;
656 struct iovec aiov;
657 struct mount *mp;
658 struct ucred *cred;
659 void *rl_cookie;
660 struct vn_io_fault_args args;
661 int error, lock_flags;
662
663 if (offset < 0 && vp->v_type != VCHR)
664 return (EINVAL);
665 auio.uio_iov = &aiov;
666 auio.uio_iovcnt = 1;
667 aiov.iov_base = base;
668 aiov.iov_len = len;
669 auio.uio_resid = len;
670 auio.uio_offset = offset;
671 auio.uio_segflg = segflg;
672 auio.uio_rw = rw;
673 auio.uio_td = td;
674 error = 0;
675
676 if ((ioflg & IO_NODELOCKED) == 0) {
677 if ((ioflg & IO_RANGELOCKED) == 0) {
678 if (rw == UIO_READ) {
679 rl_cookie = vn_rangelock_rlock(vp, offset,
680 offset + len);
681 } else if ((ioflg & IO_APPEND) != 0) {
682 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
683 } else {
684 rl_cookie = vn_rangelock_wlock(vp, offset,
685 offset + len);
686 }
687 } else
688 rl_cookie = NULL;
689 mp = NULL;
690 if (rw == UIO_WRITE) {
691 if (vp->v_type != VCHR &&
692 (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
693 != 0)
694 goto out;
695 lock_flags = vn_lktype_write(mp, vp);
696 } else
697 lock_flags = LK_SHARED;
698 vn_lock(vp, lock_flags | LK_RETRY);
699 } else
700 rl_cookie = NULL;
701
702 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
703 #ifdef MAC
704 if ((ioflg & IO_NOMACCHECK) == 0) {
705 if (rw == UIO_READ)
706 error = mac_vnode_check_read(active_cred, file_cred,
707 vp);
708 else
709 error = mac_vnode_check_write(active_cred, file_cred,
710 vp);
711 }
712 #endif
713 if (error == 0) {
714 if (file_cred != NULL)
715 cred = file_cred;
716 else
717 cred = active_cred;
718 if (do_vn_io_fault(vp, &auio)) {
719 args.kind = VN_IO_FAULT_VOP;
720 args.cred = cred;
721 args.flags = ioflg;
722 args.args.vop_args.vp = vp;
723 error = vn_io_fault1(vp, &auio, &args, td);
724 } else if (rw == UIO_READ) {
725 error = VOP_READ(vp, &auio, ioflg, cred);
726 } else /* if (rw == UIO_WRITE) */ {
727 error = VOP_WRITE(vp, &auio, ioflg, cred);
728 }
729 }
730 if (aresid)
731 *aresid = auio.uio_resid;
732 else
733 if (auio.uio_resid && error == 0)
734 error = EIO;
735 if ((ioflg & IO_NODELOCKED) == 0) {
736 VOP_UNLOCK(vp);
737 if (mp != NULL)
738 vn_finished_write(mp);
739 }
740 out:
741 if (rl_cookie != NULL)
742 vn_rangelock_unlock(vp, rl_cookie);
743 return (error);
744 }
745
746 /*
747 * Package up an I/O request on a vnode into a uio and do it. The I/O
748 * request is split up into smaller chunks and we try to avoid saturating
749 * the buffer cache while potentially holding a vnode locked, so we
750 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield()
751 * to give other processes a chance to lock the vnode (either other processes
752 * core'ing the same binary, or unrelated processes scanning the directory).
753 */
754 int
vn_rdwr_inchunks(enum uio_rw rw,struct vnode * vp,void * base,size_t len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,size_t * aresid,struct thread * td)755 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
756 off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
757 struct ucred *file_cred, size_t *aresid, struct thread *td)
758 {
759 int error = 0;
760 ssize_t iaresid;
761
762 do {
763 int chunk;
764
765 /*
766 * Force `offset' to a multiple of MAXBSIZE except possibly
767 * for the first chunk, so that filesystems only need to
768 * write full blocks except possibly for the first and last
769 * chunks.
770 */
771 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
772
773 if (chunk > len)
774 chunk = len;
775 if (rw != UIO_READ && vp->v_type == VREG)
776 bwillwrite();
777 iaresid = 0;
778 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
779 ioflg, active_cred, file_cred, &iaresid, td);
780 len -= chunk; /* aresid calc already includes length */
781 if (error)
782 break;
783 offset += chunk;
784 base = (char *)base + chunk;
785 kern_yield(PRI_USER);
786 } while (len);
787 if (aresid)
788 *aresid = len + iaresid;
789 return (error);
790 }
791
792 #if OFF_MAX <= LONG_MAX
793 off_t
foffset_lock(struct file * fp,int flags)794 foffset_lock(struct file *fp, int flags)
795 {
796 volatile short *flagsp;
797 off_t res;
798 short state;
799
800 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
801
802 if ((flags & FOF_NOLOCK) != 0)
803 return (atomic_load_long(&fp->f_offset));
804
805 /*
806 * According to McKusick the vn lock was protecting f_offset here.
807 * It is now protected by the FOFFSET_LOCKED flag.
808 */
809 flagsp = &fp->f_vnread_flags;
810 if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
811 return (atomic_load_long(&fp->f_offset));
812
813 sleepq_lock(&fp->f_vnread_flags);
814 state = atomic_load_16(flagsp);
815 for (;;) {
816 if ((state & FOFFSET_LOCKED) == 0) {
817 if (!atomic_fcmpset_acq_16(flagsp, &state,
818 FOFFSET_LOCKED))
819 continue;
820 break;
821 }
822 if ((state & FOFFSET_LOCK_WAITING) == 0) {
823 if (!atomic_fcmpset_acq_16(flagsp, &state,
824 state | FOFFSET_LOCK_WAITING))
825 continue;
826 }
827 DROP_GIANT();
828 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
829 sleepq_wait(&fp->f_vnread_flags, PRI_MAX_KERN);
830 PICKUP_GIANT();
831 sleepq_lock(&fp->f_vnread_flags);
832 state = atomic_load_16(flagsp);
833 }
834 res = atomic_load_long(&fp->f_offset);
835 sleepq_release(&fp->f_vnread_flags);
836 return (res);
837 }
838
839 void
foffset_unlock(struct file * fp,off_t val,int flags)840 foffset_unlock(struct file *fp, off_t val, int flags)
841 {
842 volatile short *flagsp;
843 short state;
844
845 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
846
847 if ((flags & FOF_NOUPDATE) == 0)
848 atomic_store_long(&fp->f_offset, val);
849 if ((flags & FOF_NEXTOFF_R) != 0)
850 fp->f_nextoff[UIO_READ] = val;
851 if ((flags & FOF_NEXTOFF_W) != 0)
852 fp->f_nextoff[UIO_WRITE] = val;
853
854 if ((flags & FOF_NOLOCK) != 0)
855 return;
856
857 flagsp = &fp->f_vnread_flags;
858 state = atomic_load_16(flagsp);
859 if ((state & FOFFSET_LOCK_WAITING) == 0 &&
860 atomic_cmpset_rel_16(flagsp, state, 0))
861 return;
862
863 sleepq_lock(&fp->f_vnread_flags);
864 MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
865 MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
866 fp->f_vnread_flags = 0;
867 sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
868 sleepq_release(&fp->f_vnread_flags);
869 }
870
871 static off_t
foffset_read(struct file * fp)872 foffset_read(struct file *fp)
873 {
874
875 return (atomic_load_long(&fp->f_offset));
876 }
877 #else
878 off_t
foffset_lock(struct file * fp,int flags)879 foffset_lock(struct file *fp, int flags)
880 {
881 struct mtx *mtxp;
882 off_t res;
883
884 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
885
886 mtxp = mtx_pool_find(mtxpool_sleep, fp);
887 mtx_lock(mtxp);
888 if ((flags & FOF_NOLOCK) == 0) {
889 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
890 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
891 msleep(&fp->f_vnread_flags, mtxp, PRI_MAX_KERN,
892 "vofflock", 0);
893 }
894 fp->f_vnread_flags |= FOFFSET_LOCKED;
895 }
896 res = fp->f_offset;
897 mtx_unlock(mtxp);
898 return (res);
899 }
900
901 void
foffset_unlock(struct file * fp,off_t val,int flags)902 foffset_unlock(struct file *fp, off_t val, int flags)
903 {
904 struct mtx *mtxp;
905
906 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
907
908 mtxp = mtx_pool_find(mtxpool_sleep, fp);
909 mtx_lock(mtxp);
910 if ((flags & FOF_NOUPDATE) == 0)
911 fp->f_offset = val;
912 if ((flags & FOF_NEXTOFF_R) != 0)
913 fp->f_nextoff[UIO_READ] = val;
914 if ((flags & FOF_NEXTOFF_W) != 0)
915 fp->f_nextoff[UIO_WRITE] = val;
916 if ((flags & FOF_NOLOCK) == 0) {
917 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
918 ("Lost FOFFSET_LOCKED"));
919 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
920 wakeup(&fp->f_vnread_flags);
921 fp->f_vnread_flags = 0;
922 }
923 mtx_unlock(mtxp);
924 }
925
926 static off_t
foffset_read(struct file * fp)927 foffset_read(struct file *fp)
928 {
929
930 return (foffset_lock(fp, FOF_NOLOCK));
931 }
932 #endif
933
934 void
foffset_lock_pair(struct file * fp1,off_t * off1p,struct file * fp2,off_t * off2p,int flags)935 foffset_lock_pair(struct file *fp1, off_t *off1p, struct file *fp2, off_t *off2p,
936 int flags)
937 {
938 KASSERT(fp1 != fp2, ("foffset_lock_pair: fp1 == fp2"));
939
940 /* Lock in a consistent order to avoid deadlock. */
941 if ((uintptr_t)fp1 > (uintptr_t)fp2) {
942 struct file *tmpfp;
943 off_t *tmpoffp;
944
945 tmpfp = fp1, fp1 = fp2, fp2 = tmpfp;
946 tmpoffp = off1p, off1p = off2p, off2p = tmpoffp;
947 }
948 if (fp1 != NULL)
949 *off1p = foffset_lock(fp1, flags);
950 if (fp2 != NULL)
951 *off2p = foffset_lock(fp2, flags);
952 }
953
954 void
foffset_lock_uio(struct file * fp,struct uio * uio,int flags)955 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
956 {
957
958 if ((flags & FOF_OFFSET) == 0)
959 uio->uio_offset = foffset_lock(fp, flags);
960 }
961
962 void
foffset_unlock_uio(struct file * fp,struct uio * uio,int flags)963 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
964 {
965
966 if ((flags & FOF_OFFSET) == 0)
967 foffset_unlock(fp, uio->uio_offset, flags);
968 }
969
970 static int
get_advice(struct file * fp,struct uio * uio)971 get_advice(struct file *fp, struct uio *uio)
972 {
973 struct mtx *mtxp;
974 int ret;
975
976 ret = POSIX_FADV_NORMAL;
977 if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
978 return (ret);
979
980 mtxp = mtx_pool_find(mtxpool_sleep, fp);
981 mtx_lock(mtxp);
982 if (fp->f_advice != NULL &&
983 uio->uio_offset >= fp->f_advice->fa_start &&
984 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
985 ret = fp->f_advice->fa_advice;
986 mtx_unlock(mtxp);
987 return (ret);
988 }
989
990 static int
get_write_ioflag(struct file * fp)991 get_write_ioflag(struct file *fp)
992 {
993 int ioflag;
994 struct mount *mp;
995 struct vnode *vp;
996
997 ioflag = 0;
998 vp = fp->f_vnode;
999 mp = atomic_load_ptr(&vp->v_mount);
1000
1001 if ((fp->f_flag & O_DIRECT) != 0)
1002 ioflag |= IO_DIRECT;
1003
1004 if ((fp->f_flag & O_FSYNC) != 0 ||
1005 (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
1006 ioflag |= IO_SYNC;
1007
1008 /*
1009 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
1010 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
1011 * fall back to full O_SYNC behavior.
1012 */
1013 if ((fp->f_flag & O_DSYNC) != 0)
1014 ioflag |= IO_SYNC | IO_DATASYNC;
1015
1016 return (ioflag);
1017 }
1018
1019 int
vn_read_from_obj(struct vnode * vp,struct uio * uio)1020 vn_read_from_obj(struct vnode *vp, struct uio *uio)
1021 {
1022 vm_object_t obj;
1023 vm_page_t ma[io_hold_cnt + 2];
1024 off_t off, vsz;
1025 ssize_t resid;
1026 int error, i, j;
1027
1028 MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
1029 obj = atomic_load_ptr(&vp->v_object);
1030 if (obj == NULL)
1031 return (EJUSTRETURN);
1032
1033 /*
1034 * Depends on type stability of vm_objects.
1035 */
1036 vm_object_pip_add(obj, 1);
1037 if ((obj->flags & OBJ_DEAD) != 0) {
1038 /*
1039 * Note that object might be already reused from the
1040 * vnode, and the OBJ_DEAD flag cleared. This is fine,
1041 * we recheck for DOOMED vnode state after all pages
1042 * are busied, and retract then.
1043 *
1044 * But we check for OBJ_DEAD to ensure that we do not
1045 * busy pages while vm_object_terminate_pages()
1046 * processes the queue.
1047 */
1048 error = EJUSTRETURN;
1049 goto out_pip;
1050 }
1051
1052 resid = uio->uio_resid;
1053 off = uio->uio_offset;
1054 for (i = 0; resid > 0; i++) {
1055 MPASS(i < io_hold_cnt + 2);
1056 ma[i] = vm_page_grab_unlocked(obj, atop(off),
1057 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
1058 VM_ALLOC_NOWAIT);
1059 if (ma[i] == NULL)
1060 break;
1061
1062 /*
1063 * Skip invalid pages. Valid mask can be partial only
1064 * at EOF, and we clip later.
1065 */
1066 if (vm_page_none_valid(ma[i])) {
1067 vm_page_sunbusy(ma[i]);
1068 break;
1069 }
1070
1071 resid -= PAGE_SIZE;
1072 off += PAGE_SIZE;
1073 }
1074 if (i == 0) {
1075 error = EJUSTRETURN;
1076 goto out_pip;
1077 }
1078
1079 /*
1080 * Check VIRF_DOOMED after we busied our pages. Since
1081 * vgonel() terminates the vnode' vm_object, it cannot
1082 * process past pages busied by us.
1083 */
1084 if (VN_IS_DOOMED(vp)) {
1085 error = EJUSTRETURN;
1086 goto out;
1087 }
1088
1089 resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1090 if (resid > uio->uio_resid)
1091 resid = uio->uio_resid;
1092
1093 /*
1094 * Unlocked read of vnp_size is safe because truncation cannot
1095 * pass busied page. But we load vnp_size into a local
1096 * variable so that possible concurrent extension does not
1097 * break calculation.
1098 */
1099 #if defined(__powerpc__) && !defined(__powerpc64__)
1100 vsz = obj->un_pager.vnp.vnp_size;
1101 #else
1102 vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1103 #endif
1104 if (uio->uio_offset >= vsz) {
1105 error = EJUSTRETURN;
1106 goto out;
1107 }
1108 if (uio->uio_offset + resid > vsz)
1109 resid = vsz - uio->uio_offset;
1110
1111 error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1112
1113 out:
1114 for (j = 0; j < i; j++) {
1115 if (error == 0)
1116 vm_page_reference(ma[j]);
1117 vm_page_sunbusy(ma[j]);
1118 }
1119 out_pip:
1120 vm_object_pip_wakeup(obj);
1121 if (error != 0)
1122 return (error);
1123 return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1124 }
1125
1126 /*
1127 * File table vnode read routine.
1128 */
1129 static int
vn_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1130 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1131 struct thread *td)
1132 {
1133 struct vnode *vp;
1134 off_t orig_offset;
1135 int error, ioflag;
1136 int advice;
1137
1138 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1139 uio->uio_td, td));
1140 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1141 vp = fp->f_vnode;
1142 ioflag = 0;
1143 if (fp->f_flag & FNONBLOCK)
1144 ioflag |= IO_NDELAY;
1145 if (fp->f_flag & O_DIRECT)
1146 ioflag |= IO_DIRECT;
1147
1148 /*
1149 * Try to read from page cache. VIRF_DOOMED check is racy but
1150 * allows us to avoid unneeded work outright.
1151 */
1152 if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1153 (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1154 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1155 if (error == 0) {
1156 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1157 return (0);
1158 }
1159 if (error != EJUSTRETURN)
1160 return (error);
1161 }
1162
1163 advice = get_advice(fp, uio);
1164 vn_lock(vp, LK_SHARED | LK_RETRY);
1165
1166 switch (advice) {
1167 case POSIX_FADV_NORMAL:
1168 case POSIX_FADV_SEQUENTIAL:
1169 case POSIX_FADV_NOREUSE:
1170 ioflag |= sequential_heuristic(uio, fp);
1171 break;
1172 case POSIX_FADV_RANDOM:
1173 /* Disable read-ahead for random I/O. */
1174 break;
1175 }
1176 orig_offset = uio->uio_offset;
1177
1178 #ifdef MAC
1179 error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1180 if (error == 0)
1181 #endif
1182 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1183 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1184 VOP_UNLOCK(vp);
1185 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1186 orig_offset != uio->uio_offset)
1187 /*
1188 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1189 * for the backing file after a POSIX_FADV_NOREUSE
1190 * read(2).
1191 */
1192 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1193 POSIX_FADV_DONTNEED);
1194 return (error);
1195 }
1196
1197 /*
1198 * File table vnode write routine.
1199 */
1200 static int
vn_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1201 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1202 struct thread *td)
1203 {
1204 struct vnode *vp;
1205 struct mount *mp;
1206 off_t orig_offset;
1207 int error, ioflag;
1208 int advice;
1209 bool need_finished_write;
1210
1211 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1212 uio->uio_td, td));
1213 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1214 vp = fp->f_vnode;
1215 if (vp->v_type == VREG)
1216 bwillwrite();
1217 ioflag = IO_UNIT;
1218 if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1219 ioflag |= IO_APPEND;
1220 if ((fp->f_flag & FNONBLOCK) != 0)
1221 ioflag |= IO_NDELAY;
1222 ioflag |= get_write_ioflag(fp);
1223
1224 mp = NULL;
1225 need_finished_write = false;
1226 if (vp->v_type != VCHR) {
1227 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1228 if (error != 0)
1229 goto unlock;
1230 need_finished_write = true;
1231 }
1232
1233 advice = get_advice(fp, uio);
1234
1235 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1236 switch (advice) {
1237 case POSIX_FADV_NORMAL:
1238 case POSIX_FADV_SEQUENTIAL:
1239 case POSIX_FADV_NOREUSE:
1240 ioflag |= sequential_heuristic(uio, fp);
1241 break;
1242 case POSIX_FADV_RANDOM:
1243 /* XXX: Is this correct? */
1244 break;
1245 }
1246 orig_offset = uio->uio_offset;
1247
1248 #ifdef MAC
1249 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1250 if (error == 0)
1251 #endif
1252 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1253 fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1254 VOP_UNLOCK(vp);
1255 if (need_finished_write)
1256 vn_finished_write(mp);
1257 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1258 orig_offset != uio->uio_offset)
1259 /*
1260 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1261 * for the backing file after a POSIX_FADV_NOREUSE
1262 * write(2).
1263 */
1264 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1265 POSIX_FADV_DONTNEED);
1266 unlock:
1267 return (error);
1268 }
1269
1270 /*
1271 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1272 * prevent the following deadlock:
1273 *
1274 * Assume that the thread A reads from the vnode vp1 into userspace
1275 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is
1276 * currently not resident, then system ends up with the call chain
1277 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1278 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1279 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1280 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1281 * backed by the pages of vnode vp1, and some page in buf2 is not
1282 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1283 *
1284 * To prevent the lock order reversal and deadlock, vn_io_fault() does
1285 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1286 * Instead, it first tries to do the whole range i/o with pagefaults
1287 * disabled. If all pages in the i/o buffer are resident and mapped,
1288 * VOP will succeed (ignoring the genuine filesystem errors).
1289 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1290 * i/o in chunks, with all pages in the chunk prefaulted and held
1291 * using vm_fault_quick_hold_pages().
1292 *
1293 * Filesystems using this deadlock avoidance scheme should use the
1294 * array of the held pages from uio, saved in the curthread->td_ma,
1295 * instead of doing uiomove(). A helper function
1296 * vn_io_fault_uiomove() converts uiomove request into
1297 * uiomove_fromphys() over td_ma array.
1298 *
1299 * Since vnode locks do not cover the whole i/o anymore, rangelocks
1300 * make the current i/o request atomic with respect to other i/os and
1301 * truncations.
1302 */
1303
1304 /*
1305 * Decode vn_io_fault_args and perform the corresponding i/o.
1306 */
1307 static int
vn_io_fault_doio(struct vn_io_fault_args * args,struct uio * uio,struct thread * td)1308 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1309 struct thread *td)
1310 {
1311 int error, save;
1312
1313 error = 0;
1314 save = vm_fault_disable_pagefaults();
1315 switch (args->kind) {
1316 case VN_IO_FAULT_FOP:
1317 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1318 uio, args->cred, args->flags, td);
1319 break;
1320 case VN_IO_FAULT_VOP:
1321 switch (uio->uio_rw) {
1322 case UIO_READ:
1323 error = VOP_READ(args->args.vop_args.vp, uio,
1324 args->flags, args->cred);
1325 break;
1326 case UIO_WRITE:
1327 error = VOP_WRITE(args->args.vop_args.vp, uio,
1328 args->flags, args->cred);
1329 break;
1330 }
1331 break;
1332 default:
1333 panic("vn_io_fault_doio: unknown kind of io %d %d",
1334 args->kind, uio->uio_rw);
1335 }
1336 vm_fault_enable_pagefaults(save);
1337 return (error);
1338 }
1339
1340 static int
vn_io_fault_touch(char * base,const struct uio * uio)1341 vn_io_fault_touch(char *base, const struct uio *uio)
1342 {
1343 int r;
1344
1345 r = fubyte(base);
1346 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1347 return (EFAULT);
1348 return (0);
1349 }
1350
1351 static int
vn_io_fault_prefault_user(const struct uio * uio)1352 vn_io_fault_prefault_user(const struct uio *uio)
1353 {
1354 char *base;
1355 const struct iovec *iov;
1356 size_t len;
1357 ssize_t resid;
1358 int error, i;
1359
1360 KASSERT(uio->uio_segflg == UIO_USERSPACE,
1361 ("vn_io_fault_prefault userspace"));
1362
1363 error = i = 0;
1364 iov = uio->uio_iov;
1365 resid = uio->uio_resid;
1366 base = iov->iov_base;
1367 len = iov->iov_len;
1368 while (resid > 0) {
1369 error = vn_io_fault_touch(base, uio);
1370 if (error != 0)
1371 break;
1372 if (len < PAGE_SIZE) {
1373 if (len != 0) {
1374 error = vn_io_fault_touch(base + len - 1, uio);
1375 if (error != 0)
1376 break;
1377 resid -= len;
1378 }
1379 if (++i >= uio->uio_iovcnt)
1380 break;
1381 iov = uio->uio_iov + i;
1382 base = iov->iov_base;
1383 len = iov->iov_len;
1384 } else {
1385 len -= PAGE_SIZE;
1386 base += PAGE_SIZE;
1387 resid -= PAGE_SIZE;
1388 }
1389 }
1390 return (error);
1391 }
1392
1393 /*
1394 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1395 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1396 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1397 * into args and call vn_io_fault1() to handle faults during the user
1398 * mode buffer accesses.
1399 */
1400 static int
vn_io_fault1(struct vnode * vp,struct uio * uio,struct vn_io_fault_args * args,struct thread * td)1401 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1402 struct thread *td)
1403 {
1404 vm_page_t ma[io_hold_cnt + 2];
1405 struct uio *uio_clone, short_uio;
1406 struct iovec short_iovec[1];
1407 vm_page_t *prev_td_ma;
1408 vm_prot_t prot;
1409 vm_offset_t addr, end;
1410 size_t len, resid;
1411 ssize_t adv;
1412 int error, cnt, saveheld, prev_td_ma_cnt;
1413
1414 if (vn_io_fault_prefault) {
1415 error = vn_io_fault_prefault_user(uio);
1416 if (error != 0)
1417 return (error); /* Or ignore ? */
1418 }
1419
1420 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1421
1422 /*
1423 * The UFS follows IO_UNIT directive and replays back both
1424 * uio_offset and uio_resid if an error is encountered during the
1425 * operation. But, since the iovec may be already advanced,
1426 * uio is still in an inconsistent state.
1427 *
1428 * Cache a copy of the original uio, which is advanced to the redo
1429 * point using UIO_NOCOPY below.
1430 */
1431 uio_clone = cloneuio(uio);
1432 resid = uio->uio_resid;
1433
1434 short_uio.uio_segflg = UIO_USERSPACE;
1435 short_uio.uio_rw = uio->uio_rw;
1436 short_uio.uio_td = uio->uio_td;
1437
1438 error = vn_io_fault_doio(args, uio, td);
1439 if (error != EFAULT)
1440 goto out;
1441
1442 atomic_add_long(&vn_io_faults_cnt, 1);
1443 uio_clone->uio_segflg = UIO_NOCOPY;
1444 uiomove(NULL, resid - uio->uio_resid, uio_clone);
1445 uio_clone->uio_segflg = uio->uio_segflg;
1446
1447 saveheld = curthread_pflags_set(TDP_UIOHELD);
1448 prev_td_ma = td->td_ma;
1449 prev_td_ma_cnt = td->td_ma_cnt;
1450
1451 while (uio_clone->uio_resid != 0) {
1452 len = uio_clone->uio_iov->iov_len;
1453 if (len == 0) {
1454 KASSERT(uio_clone->uio_iovcnt >= 1,
1455 ("iovcnt underflow"));
1456 uio_clone->uio_iov++;
1457 uio_clone->uio_iovcnt--;
1458 continue;
1459 }
1460 if (len > ptoa(io_hold_cnt))
1461 len = ptoa(io_hold_cnt);
1462 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1463 end = round_page(addr + len);
1464 if (end < addr) {
1465 error = EFAULT;
1466 break;
1467 }
1468 /*
1469 * A perfectly misaligned address and length could cause
1470 * both the start and the end of the chunk to use partial
1471 * page. +2 accounts for such a situation.
1472 */
1473 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1474 addr, len, prot, ma, io_hold_cnt + 2);
1475 if (cnt == -1) {
1476 error = EFAULT;
1477 break;
1478 }
1479 short_uio.uio_iov = &short_iovec[0];
1480 short_iovec[0].iov_base = (void *)addr;
1481 short_uio.uio_iovcnt = 1;
1482 short_uio.uio_resid = short_iovec[0].iov_len = len;
1483 short_uio.uio_offset = uio_clone->uio_offset;
1484 td->td_ma = ma;
1485 td->td_ma_cnt = cnt;
1486
1487 error = vn_io_fault_doio(args, &short_uio, td);
1488 vm_page_unhold_pages(ma, cnt);
1489 adv = len - short_uio.uio_resid;
1490
1491 uio_clone->uio_iov->iov_base =
1492 (char *)uio_clone->uio_iov->iov_base + adv;
1493 uio_clone->uio_iov->iov_len -= adv;
1494 uio_clone->uio_resid -= adv;
1495 uio_clone->uio_offset += adv;
1496
1497 uio->uio_resid -= adv;
1498 uio->uio_offset += adv;
1499
1500 if (error != 0 || adv == 0)
1501 break;
1502 }
1503 td->td_ma = prev_td_ma;
1504 td->td_ma_cnt = prev_td_ma_cnt;
1505 curthread_pflags_restore(saveheld);
1506 out:
1507 freeuio(uio_clone);
1508 return (error);
1509 }
1510
1511 static int
vn_io_fault(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1512 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1513 int flags, struct thread *td)
1514 {
1515 fo_rdwr_t *doio;
1516 struct vnode *vp;
1517 void *rl_cookie;
1518 struct vn_io_fault_args args;
1519 int error;
1520 bool do_io_fault, do_rangelock;
1521
1522 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1523 vp = fp->f_vnode;
1524
1525 /*
1526 * The ability to read(2) on a directory has historically been
1527 * allowed for all users, but this can and has been the source of
1528 * at least one security issue in the past. As such, it is now hidden
1529 * away behind a sysctl for those that actually need it to use it, and
1530 * restricted to root when it's turned on to make it relatively safe to
1531 * leave on for longer sessions of need.
1532 */
1533 if (vp->v_type == VDIR) {
1534 KASSERT(uio->uio_rw == UIO_READ,
1535 ("illegal write attempted on a directory"));
1536 if (!vfs_allow_read_dir)
1537 return (EISDIR);
1538 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1539 return (EISDIR);
1540 }
1541
1542 do_io_fault = do_vn_io_fault(vp, uio);
1543 do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0;
1544 foffset_lock_uio(fp, uio, flags);
1545 if (do_rangelock) {
1546 if (uio->uio_rw == UIO_READ) {
1547 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1548 uio->uio_offset + uio->uio_resid);
1549 } else if ((fp->f_flag & O_APPEND) != 0 ||
1550 (flags & FOF_OFFSET) == 0) {
1551 /* For appenders, punt and lock the whole range. */
1552 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1553 } else {
1554 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1555 uio->uio_offset + uio->uio_resid);
1556 }
1557 }
1558 if (do_io_fault) {
1559 args.kind = VN_IO_FAULT_FOP;
1560 args.args.fop_args.fp = fp;
1561 args.args.fop_args.doio = doio;
1562 args.cred = active_cred;
1563 args.flags = flags | FOF_OFFSET;
1564 error = vn_io_fault1(vp, uio, &args, td);
1565 } else {
1566 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1567 }
1568 if (do_rangelock)
1569 vn_rangelock_unlock(vp, rl_cookie);
1570 foffset_unlock_uio(fp, uio, flags);
1571 return (error);
1572 }
1573
1574 /*
1575 * Helper function to perform the requested uiomove operation using
1576 * the held pages for io->uio_iov[0].iov_base buffer instead of
1577 * copyin/copyout. Access to the pages with uiomove_fromphys()
1578 * instead of iov_base prevents page faults that could occur due to
1579 * pmap_collect() invalidating the mapping created by
1580 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1581 * object cleanup revoking the write access from page mappings.
1582 *
1583 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1584 * instead of plain uiomove().
1585 */
1586 int
vn_io_fault_uiomove(char * data,int xfersize,struct uio * uio)1587 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1588 {
1589 struct uio transp_uio;
1590 struct iovec transp_iov[1];
1591 struct thread *td;
1592 size_t adv;
1593 int error, pgadv;
1594
1595 td = curthread;
1596 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1597 uio->uio_segflg != UIO_USERSPACE)
1598 return (uiomove(data, xfersize, uio));
1599
1600 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1601 transp_iov[0].iov_base = data;
1602 transp_uio.uio_iov = &transp_iov[0];
1603 transp_uio.uio_iovcnt = 1;
1604 if (xfersize > uio->uio_resid)
1605 xfersize = uio->uio_resid;
1606 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1607 transp_uio.uio_offset = 0;
1608 transp_uio.uio_segflg = UIO_SYSSPACE;
1609 /*
1610 * Since transp_iov points to data, and td_ma page array
1611 * corresponds to original uio->uio_iov, we need to invert the
1612 * direction of the i/o operation as passed to
1613 * uiomove_fromphys().
1614 */
1615 switch (uio->uio_rw) {
1616 case UIO_WRITE:
1617 transp_uio.uio_rw = UIO_READ;
1618 break;
1619 case UIO_READ:
1620 transp_uio.uio_rw = UIO_WRITE;
1621 break;
1622 }
1623 transp_uio.uio_td = uio->uio_td;
1624 error = uiomove_fromphys(td->td_ma,
1625 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1626 xfersize, &transp_uio);
1627 adv = xfersize - transp_uio.uio_resid;
1628 pgadv =
1629 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1630 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1631 td->td_ma += pgadv;
1632 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1633 pgadv));
1634 td->td_ma_cnt -= pgadv;
1635 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1636 uio->uio_iov->iov_len -= adv;
1637 uio->uio_resid -= adv;
1638 uio->uio_offset += adv;
1639 return (error);
1640 }
1641
1642 int
vn_io_fault_pgmove(vm_page_t ma[],vm_offset_t offset,int xfersize,struct uio * uio)1643 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1644 struct uio *uio)
1645 {
1646 struct thread *td;
1647 vm_offset_t iov_base;
1648 int cnt, pgadv;
1649
1650 td = curthread;
1651 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1652 uio->uio_segflg != UIO_USERSPACE)
1653 return (uiomove_fromphys(ma, offset, xfersize, uio));
1654
1655 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1656 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1657 iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1658 switch (uio->uio_rw) {
1659 case UIO_WRITE:
1660 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1661 offset, cnt);
1662 break;
1663 case UIO_READ:
1664 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1665 cnt);
1666 break;
1667 }
1668 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1669 td->td_ma += pgadv;
1670 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1671 pgadv));
1672 td->td_ma_cnt -= pgadv;
1673 uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1674 uio->uio_iov->iov_len -= cnt;
1675 uio->uio_resid -= cnt;
1676 uio->uio_offset += cnt;
1677 return (0);
1678 }
1679
1680 /*
1681 * File table truncate routine.
1682 */
1683 static int
vn_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1684 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1685 struct thread *td)
1686 {
1687 struct mount *mp;
1688 struct vnode *vp;
1689 void *rl_cookie;
1690 int error;
1691
1692 vp = fp->f_vnode;
1693
1694 retry:
1695 /*
1696 * Lock the whole range for truncation. Otherwise split i/o
1697 * might happen partly before and partly after the truncation.
1698 */
1699 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1700 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1701 if (error)
1702 goto out1;
1703 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1704 AUDIT_ARG_VNODE1(vp);
1705 if (vp->v_type == VDIR) {
1706 error = EISDIR;
1707 goto out;
1708 }
1709 #ifdef MAC
1710 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1711 if (error)
1712 goto out;
1713 #endif
1714 error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1715 fp->f_cred);
1716 out:
1717 VOP_UNLOCK(vp);
1718 vn_finished_write(mp);
1719 out1:
1720 vn_rangelock_unlock(vp, rl_cookie);
1721 if (error == ERELOOKUP)
1722 goto retry;
1723 return (error);
1724 }
1725
1726 /*
1727 * Truncate a file that is already locked.
1728 */
1729 int
vn_truncate_locked(struct vnode * vp,off_t length,bool sync,struct ucred * cred)1730 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1731 struct ucred *cred)
1732 {
1733 struct vattr vattr;
1734 int error;
1735
1736 error = VOP_ADD_WRITECOUNT(vp, 1);
1737 if (error == 0) {
1738 VATTR_NULL(&vattr);
1739 vattr.va_size = length;
1740 if (sync)
1741 vattr.va_vaflags |= VA_SYNC;
1742 error = VOP_SETATTR(vp, &vattr, cred);
1743 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1744 }
1745 return (error);
1746 }
1747
1748 /*
1749 * File table vnode stat routine.
1750 */
1751 int
vn_statfile(struct file * fp,struct stat * sb,struct ucred * active_cred)1752 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1753 {
1754 struct vnode *vp = fp->f_vnode;
1755 int error;
1756
1757 vn_lock(vp, LK_SHARED | LK_RETRY);
1758 error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1759 VOP_UNLOCK(vp);
1760
1761 return (error);
1762 }
1763
1764 /*
1765 * File table vnode ioctl routine.
1766 */
1767 static int
vn_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)1768 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1769 struct thread *td)
1770 {
1771 struct vnode *vp;
1772 struct fiobmap2_arg *bmarg;
1773 off_t size;
1774 int error;
1775
1776 vp = fp->f_vnode;
1777 switch (vp->v_type) {
1778 case VDIR:
1779 case VREG:
1780 switch (com) {
1781 case FIONREAD:
1782 error = vn_getsize(vp, &size, active_cred);
1783 if (error == 0)
1784 *(int *)data = size - fp->f_offset;
1785 return (error);
1786 case FIOBMAP2:
1787 bmarg = (struct fiobmap2_arg *)data;
1788 vn_lock(vp, LK_SHARED | LK_RETRY);
1789 #ifdef MAC
1790 error = mac_vnode_check_read(active_cred, fp->f_cred,
1791 vp);
1792 if (error == 0)
1793 #endif
1794 error = VOP_BMAP(vp, bmarg->bn, NULL,
1795 &bmarg->bn, &bmarg->runp, &bmarg->runb);
1796 VOP_UNLOCK(vp);
1797 return (error);
1798 case FIONBIO:
1799 case FIOASYNC:
1800 return (0);
1801 default:
1802 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1803 active_cred, td));
1804 }
1805 break;
1806 case VCHR:
1807 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1808 active_cred, td));
1809 default:
1810 return (ENOTTY);
1811 }
1812 }
1813
1814 /*
1815 * File table vnode poll routine.
1816 */
1817 static int
vn_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1818 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1819 struct thread *td)
1820 {
1821 struct vnode *vp;
1822 int error;
1823
1824 vp = fp->f_vnode;
1825 #if defined(MAC) || defined(AUDIT)
1826 if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1827 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1828 AUDIT_ARG_VNODE1(vp);
1829 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1830 VOP_UNLOCK(vp);
1831 if (error != 0)
1832 return (error);
1833 }
1834 #endif
1835 error = VOP_POLL(vp, events, fp->f_cred, td);
1836 return (error);
1837 }
1838
1839 /*
1840 * Acquire the requested lock and then check for validity. LK_RETRY
1841 * permits vn_lock to return doomed vnodes.
1842 */
1843 static int __noinline
_vn_lock_fallback(struct vnode * vp,int flags,const char * file,int line,int error)1844 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1845 int error)
1846 {
1847
1848 KASSERT((flags & LK_RETRY) == 0 || error == 0,
1849 ("vn_lock: error %d incompatible with flags %#x", error, flags));
1850
1851 if (error == 0)
1852 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1853
1854 if ((flags & LK_RETRY) == 0) {
1855 if (error == 0) {
1856 VOP_UNLOCK(vp);
1857 error = ENOENT;
1858 }
1859 return (error);
1860 }
1861
1862 /*
1863 * LK_RETRY case.
1864 *
1865 * Nothing to do if we got the lock.
1866 */
1867 if (error == 0)
1868 return (0);
1869
1870 /*
1871 * Interlock was dropped by the call in _vn_lock.
1872 */
1873 flags &= ~LK_INTERLOCK;
1874 do {
1875 error = VOP_LOCK1(vp, flags, file, line);
1876 } while (error != 0);
1877 return (0);
1878 }
1879
1880 int
_vn_lock(struct vnode * vp,int flags,const char * file,int line)1881 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1882 {
1883 int error;
1884
1885 VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1886 ("vn_lock: no locktype (%d passed)", flags));
1887 VNPASS(vp->v_holdcnt > 0, vp);
1888 error = VOP_LOCK1(vp, flags, file, line);
1889 if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1890 return (_vn_lock_fallback(vp, flags, file, line, error));
1891 return (0);
1892 }
1893
1894 /*
1895 * File table vnode close routine.
1896 */
1897 static int
vn_closefile(struct file * fp,struct thread * td)1898 vn_closefile(struct file *fp, struct thread *td)
1899 {
1900 struct vnode *vp;
1901 struct flock lf;
1902 int error;
1903 bool ref;
1904
1905 vp = fp->f_vnode;
1906 fp->f_ops = &badfileops;
1907 ref = (fp->f_flag & FHASLOCK) != 0;
1908
1909 error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1910
1911 if (__predict_false(ref)) {
1912 lf.l_whence = SEEK_SET;
1913 lf.l_start = 0;
1914 lf.l_len = 0;
1915 lf.l_type = F_UNLCK;
1916 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1917 vrele(vp);
1918 }
1919 return (error);
1920 }
1921
1922 /*
1923 * Preparing to start a filesystem write operation. If the operation is
1924 * permitted, then we bump the count of operations in progress and
1925 * proceed. If a suspend request is in progress, we wait until the
1926 * suspension is over, and then proceed.
1927 */
1928 static int
vn_start_write_refed(struct mount * mp,int flags,bool mplocked)1929 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1930 {
1931 struct mount_pcpu *mpcpu;
1932 int error, mflags;
1933
1934 if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1935 vfs_op_thread_enter(mp, mpcpu)) {
1936 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1937 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1938 vfs_op_thread_exit(mp, mpcpu);
1939 return (0);
1940 }
1941
1942 if (mplocked)
1943 mtx_assert(MNT_MTX(mp), MA_OWNED);
1944 else
1945 MNT_ILOCK(mp);
1946
1947 error = 0;
1948
1949 /*
1950 * Check on status of suspension.
1951 */
1952 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1953 mp->mnt_susp_owner != curthread) {
1954 mflags = 0;
1955 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
1956 if (flags & V_PCATCH)
1957 mflags |= PCATCH;
1958 }
1959 mflags |= PRI_MAX_KERN;
1960 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1961 if ((flags & V_NOWAIT) != 0) {
1962 error = EWOULDBLOCK;
1963 goto unlock;
1964 }
1965 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1966 "suspfs", 0);
1967 if (error != 0)
1968 goto unlock;
1969 }
1970 }
1971 if ((flags & V_XSLEEP) != 0)
1972 goto unlock;
1973 mp->mnt_writeopcount++;
1974 unlock:
1975 if (error != 0 || (flags & V_XSLEEP) != 0)
1976 MNT_REL(mp);
1977 MNT_IUNLOCK(mp);
1978 return (error);
1979 }
1980
1981 int
vn_start_write(struct vnode * vp,struct mount ** mpp,int flags)1982 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1983 {
1984 struct mount *mp;
1985 int error;
1986
1987 KASSERT((flags & ~V_VALID_FLAGS) == 0,
1988 ("%s: invalid flags passed %d\n", __func__, flags));
1989
1990 error = 0;
1991 /*
1992 * If a vnode is provided, get and return the mount point that
1993 * to which it will write.
1994 */
1995 if (vp != NULL) {
1996 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1997 *mpp = NULL;
1998 if (error != EOPNOTSUPP)
1999 return (error);
2000 return (0);
2001 }
2002 }
2003 if ((mp = *mpp) == NULL)
2004 return (0);
2005
2006 /*
2007 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
2008 * a vfs_ref().
2009 * As long as a vnode is not provided we need to acquire a
2010 * refcount for the provided mountpoint too, in order to
2011 * emulate a vfs_ref().
2012 */
2013 if (vp == NULL)
2014 vfs_ref(mp);
2015
2016 error = vn_start_write_refed(mp, flags, false);
2017 if (error != 0 && (flags & V_NOWAIT) == 0)
2018 *mpp = NULL;
2019 return (error);
2020 }
2021
2022 /*
2023 * Secondary suspension. Used by operations such as vop_inactive
2024 * routines that are needed by the higher level functions. These
2025 * are allowed to proceed until all the higher level functions have
2026 * completed (indicated by mnt_writeopcount dropping to zero). At that
2027 * time, these operations are halted until the suspension is over.
2028 */
2029 int
vn_start_secondary_write(struct vnode * vp,struct mount ** mpp,int flags)2030 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
2031 {
2032 struct mount *mp;
2033 int error, mflags;
2034
2035 KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
2036 ("%s: invalid flags passed %d\n", __func__, flags));
2037
2038 retry:
2039 if (vp != NULL) {
2040 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
2041 *mpp = NULL;
2042 if (error != EOPNOTSUPP)
2043 return (error);
2044 return (0);
2045 }
2046 }
2047 /*
2048 * If we are not suspended or have not yet reached suspended
2049 * mode, then let the operation proceed.
2050 */
2051 if ((mp = *mpp) == NULL)
2052 return (0);
2053
2054 /*
2055 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
2056 * a vfs_ref().
2057 * As long as a vnode is not provided we need to acquire a
2058 * refcount for the provided mountpoint too, in order to
2059 * emulate a vfs_ref().
2060 */
2061 MNT_ILOCK(mp);
2062 if (vp == NULL)
2063 MNT_REF(mp);
2064 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
2065 mp->mnt_secondary_writes++;
2066 mp->mnt_secondary_accwrites++;
2067 MNT_IUNLOCK(mp);
2068 return (0);
2069 }
2070 if ((flags & V_NOWAIT) != 0) {
2071 MNT_REL(mp);
2072 MNT_IUNLOCK(mp);
2073 *mpp = NULL;
2074 return (EWOULDBLOCK);
2075 }
2076 /*
2077 * Wait for the suspension to finish.
2078 */
2079 mflags = 0;
2080 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2081 if ((flags & V_PCATCH) != 0)
2082 mflags |= PCATCH;
2083 }
2084 mflags |= PRI_MAX_KERN | PDROP;
2085 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
2086 vfs_rel(mp);
2087 if (error == 0)
2088 goto retry;
2089 *mpp = NULL;
2090 return (error);
2091 }
2092
2093 /*
2094 * Filesystem write operation has completed. If we are suspending and this
2095 * operation is the last one, notify the suspender that the suspension is
2096 * now in effect.
2097 */
2098 void
vn_finished_write(struct mount * mp)2099 vn_finished_write(struct mount *mp)
2100 {
2101 struct mount_pcpu *mpcpu;
2102 int c;
2103
2104 if (mp == NULL)
2105 return;
2106
2107 if (vfs_op_thread_enter(mp, mpcpu)) {
2108 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2109 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2110 vfs_op_thread_exit(mp, mpcpu);
2111 return;
2112 }
2113
2114 MNT_ILOCK(mp);
2115 vfs_assert_mount_counters(mp);
2116 MNT_REL(mp);
2117 c = --mp->mnt_writeopcount;
2118 if (mp->mnt_vfs_ops == 0) {
2119 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2120 MNT_IUNLOCK(mp);
2121 return;
2122 }
2123 if (c < 0)
2124 vfs_dump_mount_counters(mp);
2125 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2126 wakeup(&mp->mnt_writeopcount);
2127 MNT_IUNLOCK(mp);
2128 }
2129
2130 /*
2131 * Filesystem secondary write operation has completed. If we are
2132 * suspending and this operation is the last one, notify the suspender
2133 * that the suspension is now in effect.
2134 */
2135 void
vn_finished_secondary_write(struct mount * mp)2136 vn_finished_secondary_write(struct mount *mp)
2137 {
2138 if (mp == NULL)
2139 return;
2140 MNT_ILOCK(mp);
2141 MNT_REL(mp);
2142 mp->mnt_secondary_writes--;
2143 if (mp->mnt_secondary_writes < 0)
2144 panic("vn_finished_secondary_write: neg cnt");
2145 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2146 mp->mnt_secondary_writes <= 0)
2147 wakeup(&mp->mnt_secondary_writes);
2148 MNT_IUNLOCK(mp);
2149 }
2150
2151 /*
2152 * Request a filesystem to suspend write operations.
2153 */
2154 int
vfs_write_suspend(struct mount * mp,int flags)2155 vfs_write_suspend(struct mount *mp, int flags)
2156 {
2157 int error;
2158
2159 vfs_op_enter(mp);
2160
2161 MNT_ILOCK(mp);
2162 vfs_assert_mount_counters(mp);
2163 if (mp->mnt_susp_owner == curthread) {
2164 vfs_op_exit_locked(mp);
2165 MNT_IUNLOCK(mp);
2166 return (EALREADY);
2167 }
2168 while (mp->mnt_kern_flag & MNTK_SUSPEND)
2169 msleep(&mp->mnt_flag, MNT_MTX(mp), PRI_MAX_KERN, "wsuspfs", 0);
2170
2171 /*
2172 * Unmount holds a write reference on the mount point. If we
2173 * own busy reference and drain for writers, we deadlock with
2174 * the reference draining in the unmount path. Callers of
2175 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2176 * vfs_busy() reference is owned and caller is not in the
2177 * unmount context.
2178 */
2179 if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2180 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2181 vfs_op_exit_locked(mp);
2182 MNT_IUNLOCK(mp);
2183 return (EBUSY);
2184 }
2185
2186 mp->mnt_kern_flag |= MNTK_SUSPEND;
2187 mp->mnt_susp_owner = curthread;
2188 if (mp->mnt_writeopcount > 0)
2189 (void) msleep(&mp->mnt_writeopcount,
2190 MNT_MTX(mp), PRI_MAX_KERN | PDROP, "suspwt", 0);
2191 else
2192 MNT_IUNLOCK(mp);
2193 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2194 vfs_write_resume(mp, 0);
2195 /* vfs_write_resume does vfs_op_exit() for us */
2196 }
2197 return (error);
2198 }
2199
2200 /*
2201 * Request a filesystem to resume write operations.
2202 */
2203 void
vfs_write_resume(struct mount * mp,int flags)2204 vfs_write_resume(struct mount *mp, int flags)
2205 {
2206
2207 MNT_ILOCK(mp);
2208 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2209 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2210 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2211 MNTK_SUSPENDED);
2212 mp->mnt_susp_owner = NULL;
2213 wakeup(&mp->mnt_writeopcount);
2214 wakeup(&mp->mnt_flag);
2215 curthread->td_pflags &= ~TDP_IGNSUSP;
2216 if ((flags & VR_START_WRITE) != 0) {
2217 MNT_REF(mp);
2218 mp->mnt_writeopcount++;
2219 }
2220 MNT_IUNLOCK(mp);
2221 if ((flags & VR_NO_SUSPCLR) == 0)
2222 VFS_SUSP_CLEAN(mp);
2223 vfs_op_exit(mp);
2224 } else if ((flags & VR_START_WRITE) != 0) {
2225 MNT_REF(mp);
2226 vn_start_write_refed(mp, 0, true);
2227 } else {
2228 MNT_IUNLOCK(mp);
2229 }
2230 }
2231
2232 /*
2233 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2234 * methods.
2235 */
2236 int
vfs_write_suspend_umnt(struct mount * mp)2237 vfs_write_suspend_umnt(struct mount *mp)
2238 {
2239 int error;
2240
2241 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2242 ("vfs_write_suspend_umnt: recursed"));
2243
2244 /* dounmount() already called vn_start_write(). */
2245 for (;;) {
2246 vn_finished_write(mp);
2247 error = vfs_write_suspend(mp, 0);
2248 if (error != 0) {
2249 vn_start_write(NULL, &mp, V_WAIT);
2250 return (error);
2251 }
2252 MNT_ILOCK(mp);
2253 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2254 break;
2255 MNT_IUNLOCK(mp);
2256 vn_start_write(NULL, &mp, V_WAIT);
2257 }
2258 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2259 wakeup(&mp->mnt_flag);
2260 MNT_IUNLOCK(mp);
2261 curthread->td_pflags |= TDP_IGNSUSP;
2262 return (0);
2263 }
2264
2265 /*
2266 * Implement kqueues for files by translating it to vnode operation.
2267 */
2268 static int
vn_kqfilter(struct file * fp,struct knote * kn)2269 vn_kqfilter(struct file *fp, struct knote *kn)
2270 {
2271
2272 return (VOP_KQFILTER(fp->f_vnode, kn));
2273 }
2274
2275 int
vn_kqfilter_opath(struct file * fp,struct knote * kn)2276 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2277 {
2278 if ((fp->f_flag & FKQALLOWED) == 0)
2279 return (EBADF);
2280 return (vn_kqfilter(fp, kn));
2281 }
2282
2283 /*
2284 * Simplified in-kernel wrapper calls for extended attribute access.
2285 * Both calls pass in a NULL credential, authorizing as "kernel" access.
2286 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2287 */
2288 int
vn_extattr_get(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int * buflen,char * buf,struct thread * td)2289 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2290 const char *attrname, int *buflen, char *buf, struct thread *td)
2291 {
2292 struct uio auio;
2293 struct iovec iov;
2294 int error;
2295
2296 iov.iov_len = *buflen;
2297 iov.iov_base = buf;
2298
2299 auio.uio_iov = &iov;
2300 auio.uio_iovcnt = 1;
2301 auio.uio_rw = UIO_READ;
2302 auio.uio_segflg = UIO_SYSSPACE;
2303 auio.uio_td = td;
2304 auio.uio_offset = 0;
2305 auio.uio_resid = *buflen;
2306
2307 if ((ioflg & IO_NODELOCKED) == 0)
2308 vn_lock(vp, LK_SHARED | LK_RETRY);
2309
2310 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2311
2312 /* authorize attribute retrieval as kernel */
2313 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2314 td);
2315
2316 if ((ioflg & IO_NODELOCKED) == 0)
2317 VOP_UNLOCK(vp);
2318
2319 if (error == 0) {
2320 *buflen = *buflen - auio.uio_resid;
2321 }
2322
2323 return (error);
2324 }
2325
2326 /*
2327 * XXX failure mode if partially written?
2328 */
2329 int
vn_extattr_set(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int buflen,char * buf,struct thread * td)2330 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2331 const char *attrname, int buflen, char *buf, struct thread *td)
2332 {
2333 struct uio auio;
2334 struct iovec iov;
2335 struct mount *mp;
2336 int error;
2337
2338 iov.iov_len = buflen;
2339 iov.iov_base = buf;
2340
2341 auio.uio_iov = &iov;
2342 auio.uio_iovcnt = 1;
2343 auio.uio_rw = UIO_WRITE;
2344 auio.uio_segflg = UIO_SYSSPACE;
2345 auio.uio_td = td;
2346 auio.uio_offset = 0;
2347 auio.uio_resid = buflen;
2348
2349 if ((ioflg & IO_NODELOCKED) == 0) {
2350 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2351 return (error);
2352 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2353 }
2354
2355 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2356
2357 /* authorize attribute setting as kernel */
2358 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2359
2360 if ((ioflg & IO_NODELOCKED) == 0) {
2361 vn_finished_write(mp);
2362 VOP_UNLOCK(vp);
2363 }
2364
2365 return (error);
2366 }
2367
2368 int
vn_extattr_rm(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,struct thread * td)2369 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2370 const char *attrname, struct thread *td)
2371 {
2372 struct mount *mp;
2373 int error;
2374
2375 if ((ioflg & IO_NODELOCKED) == 0) {
2376 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2377 return (error);
2378 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2379 }
2380
2381 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2382
2383 /* authorize attribute removal as kernel */
2384 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2385 if (error == EOPNOTSUPP)
2386 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2387 NULL, td);
2388
2389 if ((ioflg & IO_NODELOCKED) == 0) {
2390 vn_finished_write(mp);
2391 VOP_UNLOCK(vp);
2392 }
2393
2394 return (error);
2395 }
2396
2397 static int
vn_get_ino_alloc_vget(struct mount * mp,void * arg,int lkflags,struct vnode ** rvp)2398 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2399 struct vnode **rvp)
2400 {
2401
2402 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2403 }
2404
2405 int
vn_vget_ino(struct vnode * vp,ino_t ino,int lkflags,struct vnode ** rvp)2406 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2407 {
2408
2409 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2410 lkflags, rvp));
2411 }
2412
2413 int
vn_vget_ino_gen(struct vnode * vp,vn_get_ino_t alloc,void * alloc_arg,int lkflags,struct vnode ** rvp)2414 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2415 int lkflags, struct vnode **rvp)
2416 {
2417 struct mount *mp;
2418 int ltype, error;
2419
2420 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2421 mp = vp->v_mount;
2422 ltype = VOP_ISLOCKED(vp);
2423 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2424 ("vn_vget_ino: vp not locked"));
2425 error = vfs_busy(mp, MBF_NOWAIT);
2426 if (error != 0) {
2427 vfs_ref(mp);
2428 VOP_UNLOCK(vp);
2429 error = vfs_busy(mp, 0);
2430 vn_lock(vp, ltype | LK_RETRY);
2431 vfs_rel(mp);
2432 if (error != 0)
2433 return (ENOENT);
2434 if (VN_IS_DOOMED(vp)) {
2435 vfs_unbusy(mp);
2436 return (ENOENT);
2437 }
2438 }
2439 VOP_UNLOCK(vp);
2440 error = alloc(mp, alloc_arg, lkflags, rvp);
2441 vfs_unbusy(mp);
2442 if (error != 0 || *rvp != vp)
2443 vn_lock(vp, ltype | LK_RETRY);
2444 if (VN_IS_DOOMED(vp)) {
2445 if (error == 0) {
2446 if (*rvp == vp)
2447 vunref(vp);
2448 else
2449 vput(*rvp);
2450 }
2451 error = ENOENT;
2452 }
2453 return (error);
2454 }
2455
2456 static void
vn_send_sigxfsz(struct proc * p)2457 vn_send_sigxfsz(struct proc *p)
2458 {
2459 PROC_LOCK(p);
2460 kern_psignal(p, SIGXFSZ);
2461 PROC_UNLOCK(p);
2462 }
2463
2464 int
vn_rlimit_trunc(u_quad_t size,struct thread * td)2465 vn_rlimit_trunc(u_quad_t size, struct thread *td)
2466 {
2467 if (size <= lim_cur(td, RLIMIT_FSIZE))
2468 return (0);
2469 vn_send_sigxfsz(td->td_proc);
2470 return (EFBIG);
2471 }
2472
2473 static int
vn_rlimit_fsizex1(const struct vnode * vp,struct uio * uio,off_t maxfsz,bool adj,struct thread * td)2474 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2475 bool adj, struct thread *td)
2476 {
2477 off_t lim;
2478 bool ktr_write;
2479
2480 if (vp->v_type != VREG)
2481 return (0);
2482
2483 /*
2484 * Handle file system maximum file size.
2485 */
2486 if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
2487 if (!adj || uio->uio_offset >= maxfsz)
2488 return (EFBIG);
2489 uio->uio_resid = maxfsz - uio->uio_offset;
2490 }
2491
2492 /*
2493 * This is kernel write (e.g. vnode_pager) or accounting
2494 * write, ignore limit.
2495 */
2496 if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
2497 return (0);
2498
2499 /*
2500 * Calculate file size limit.
2501 */
2502 ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2503 lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
2504 lim_cur(td, RLIMIT_FSIZE);
2505
2506 /*
2507 * Is the limit reached?
2508 */
2509 if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2510 return (0);
2511
2512 /*
2513 * Prepared filesystems can handle writes truncated to the
2514 * file size limit.
2515 */
2516 if (adj && (uoff_t)uio->uio_offset < lim) {
2517 uio->uio_resid = lim - (uoff_t)uio->uio_offset;
2518 return (0);
2519 }
2520
2521 if (!ktr_write || ktr_filesize_limit_signal)
2522 vn_send_sigxfsz(td->td_proc);
2523 return (EFBIG);
2524 }
2525
2526 /*
2527 * Helper for VOP_WRITE() implementations, the common code to
2528 * handle maximum supported file size on the filesystem, and
2529 * RLIMIT_FSIZE, except for special writes from accounting subsystem
2530 * and ktrace.
2531 *
2532 * For maximum file size (maxfsz argument):
2533 * - return EFBIG if uio_offset is beyond it
2534 * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
2535 *
2536 * For RLIMIT_FSIZE:
2537 * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
2538 * - otherwise, clamp uio_resid if write would extend file beyond limit.
2539 *
2540 * If clamping occured, the adjustment for uio_resid is stored in
2541 * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
2542 * from the VOP.
2543 */
2544 int
vn_rlimit_fsizex(const struct vnode * vp,struct uio * uio,off_t maxfsz,ssize_t * resid_adj,struct thread * td)2545 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2546 ssize_t *resid_adj, struct thread *td)
2547 {
2548 ssize_t resid_orig;
2549 int error;
2550 bool adj;
2551
2552 resid_orig = uio->uio_resid;
2553 adj = resid_adj != NULL;
2554 error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
2555 if (adj)
2556 *resid_adj = resid_orig - uio->uio_resid;
2557 return (error);
2558 }
2559
2560 void
vn_rlimit_fsizex_res(struct uio * uio,ssize_t resid_adj)2561 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
2562 {
2563 uio->uio_resid += resid_adj;
2564 }
2565
2566 int
vn_rlimit_fsize(const struct vnode * vp,const struct uio * uio,struct thread * td)2567 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2568 struct thread *td)
2569 {
2570 return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
2571 td));
2572 }
2573
2574 int
vn_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)2575 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2576 struct thread *td)
2577 {
2578 struct vnode *vp;
2579
2580 vp = fp->f_vnode;
2581 #ifdef AUDIT
2582 vn_lock(vp, LK_SHARED | LK_RETRY);
2583 AUDIT_ARG_VNODE1(vp);
2584 VOP_UNLOCK(vp);
2585 #endif
2586 return (setfmode(td, active_cred, vp, mode));
2587 }
2588
2589 int
vn_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)2590 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2591 struct thread *td)
2592 {
2593 struct vnode *vp;
2594
2595 vp = fp->f_vnode;
2596 #ifdef AUDIT
2597 vn_lock(vp, LK_SHARED | LK_RETRY);
2598 AUDIT_ARG_VNODE1(vp);
2599 VOP_UNLOCK(vp);
2600 #endif
2601 return (setfown(td, active_cred, vp, uid, gid));
2602 }
2603
2604 /*
2605 * Remove pages in the range ["start", "end") from the vnode's VM object. If
2606 * "end" is 0, then the range extends to the end of the object.
2607 */
2608 void
vn_pages_remove(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2609 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2610 {
2611 vm_object_t object;
2612
2613 if ((object = vp->v_object) == NULL)
2614 return;
2615 VM_OBJECT_WLOCK(object);
2616 vm_object_page_remove(object, start, end, 0);
2617 VM_OBJECT_WUNLOCK(object);
2618 }
2619
2620 /*
2621 * Like vn_pages_remove(), but skips invalid pages, which by definition are not
2622 * mapped into any process' address space. Filesystems may use this in
2623 * preference to vn_pages_remove() to avoid blocking on pages busied in
2624 * preparation for a VOP_GETPAGES.
2625 */
2626 void
vn_pages_remove_valid(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2627 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2628 {
2629 vm_object_t object;
2630
2631 if ((object = vp->v_object) == NULL)
2632 return;
2633 VM_OBJECT_WLOCK(object);
2634 vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
2635 VM_OBJECT_WUNLOCK(object);
2636 }
2637
2638 int
vn_bmap_seekhole_locked(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2639 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2640 struct ucred *cred)
2641 {
2642 off_t size;
2643 daddr_t bn, bnp;
2644 uint64_t bsize;
2645 off_t noff;
2646 int error;
2647
2648 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2649 ("%s: Wrong command %lu", __func__, cmd));
2650 ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
2651
2652 if (vp->v_type != VREG) {
2653 error = ENOTTY;
2654 goto out;
2655 }
2656 error = vn_getsize_locked(vp, &size, cred);
2657 if (error != 0)
2658 goto out;
2659 noff = *off;
2660 if (noff < 0 || noff >= size) {
2661 error = ENXIO;
2662 goto out;
2663 }
2664
2665 /* See the comment in ufs_bmap_seekdata(). */
2666 vnode_pager_clean_sync(vp);
2667
2668 bsize = vp->v_mount->mnt_stat.f_iosize;
2669 for (bn = noff / bsize; noff < size; bn++, noff += bsize -
2670 noff % bsize) {
2671 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2672 if (error == EOPNOTSUPP) {
2673 error = ENOTTY;
2674 goto out;
2675 }
2676 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2677 (bnp != -1 && cmd == FIOSEEKDATA)) {
2678 noff = bn * bsize;
2679 if (noff < *off)
2680 noff = *off;
2681 goto out;
2682 }
2683 }
2684 if (noff > size)
2685 noff = size;
2686 /* noff == size. There is an implicit hole at the end of file. */
2687 if (cmd == FIOSEEKDATA)
2688 error = ENXIO;
2689 out:
2690 if (error == 0)
2691 *off = noff;
2692 return (error);
2693 }
2694
2695 int
vn_bmap_seekhole(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2696 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2697 {
2698 int error;
2699
2700 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2701 ("%s: Wrong command %lu", __func__, cmd));
2702
2703 if (vn_lock(vp, LK_EXCLUSIVE) != 0)
2704 return (EBADF);
2705 error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2706 VOP_UNLOCK(vp);
2707 return (error);
2708 }
2709
2710 int
vn_seek(struct file * fp,off_t offset,int whence,struct thread * td)2711 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2712 {
2713 struct ucred *cred;
2714 struct vnode *vp;
2715 off_t foffset, fsize, size;
2716 int error, noneg;
2717
2718 cred = td->td_ucred;
2719 vp = fp->f_vnode;
2720 noneg = (vp->v_type != VCHR);
2721 /*
2722 * Try to dodge locking for common case of querying the offset.
2723 */
2724 if (whence == L_INCR && offset == 0) {
2725 foffset = foffset_read(fp);
2726 if (__predict_false(foffset < 0 && noneg)) {
2727 return (EOVERFLOW);
2728 }
2729 td->td_uretoff.tdu_off = foffset;
2730 return (0);
2731 }
2732 foffset = foffset_lock(fp, 0);
2733 error = 0;
2734 switch (whence) {
2735 case L_INCR:
2736 if (noneg &&
2737 (foffset < 0 ||
2738 (offset > 0 && foffset > OFF_MAX - offset))) {
2739 error = EOVERFLOW;
2740 break;
2741 }
2742 offset += foffset;
2743 break;
2744 case L_XTND:
2745 error = vn_getsize(vp, &fsize, cred);
2746 if (error != 0)
2747 break;
2748
2749 /*
2750 * If the file references a disk device, then fetch
2751 * the media size and use that to determine the ending
2752 * offset.
2753 */
2754 if (fsize == 0 && vp->v_type == VCHR &&
2755 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2756 fsize = size;
2757 if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
2758 error = EOVERFLOW;
2759 break;
2760 }
2761 offset += fsize;
2762 break;
2763 case L_SET:
2764 break;
2765 case SEEK_DATA:
2766 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2767 if (error == ENOTTY)
2768 error = EINVAL;
2769 break;
2770 case SEEK_HOLE:
2771 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2772 if (error == ENOTTY)
2773 error = EINVAL;
2774 break;
2775 default:
2776 error = EINVAL;
2777 }
2778 if (error == 0 && noneg && offset < 0)
2779 error = EINVAL;
2780 if (error != 0)
2781 goto drop;
2782 VFS_KNOTE_UNLOCKED(vp, 0);
2783 td->td_uretoff.tdu_off = offset;
2784 drop:
2785 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2786 return (error);
2787 }
2788
2789 int
vn_utimes_perm(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2790 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2791 struct thread *td)
2792 {
2793 int error;
2794
2795 /*
2796 * Grant permission if the caller is the owner of the file, or
2797 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2798 * on the file. If the time pointer is null, then write
2799 * permission on the file is also sufficient.
2800 *
2801 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2802 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2803 * will be allowed to set the times [..] to the current
2804 * server time.
2805 */
2806 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2807 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2808 error = VOP_ACCESS(vp, VWRITE, cred, td);
2809 return (error);
2810 }
2811
2812 int
vn_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2813 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2814 {
2815 struct vnode *vp;
2816 int error;
2817
2818 if (fp->f_type == DTYPE_FIFO)
2819 kif->kf_type = KF_TYPE_FIFO;
2820 else
2821 kif->kf_type = KF_TYPE_VNODE;
2822 vp = fp->f_vnode;
2823 vref(vp);
2824 FILEDESC_SUNLOCK(fdp);
2825 error = vn_fill_kinfo_vnode(vp, kif);
2826 vrele(vp);
2827 FILEDESC_SLOCK(fdp);
2828 return (error);
2829 }
2830
2831 static inline void
vn_fill_junk(struct kinfo_file * kif)2832 vn_fill_junk(struct kinfo_file *kif)
2833 {
2834 size_t len, olen;
2835
2836 /*
2837 * Simulate vn_fullpath returning changing values for a given
2838 * vp during e.g. coredump.
2839 */
2840 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2841 olen = strlen(kif->kf_path);
2842 if (len < olen)
2843 strcpy(&kif->kf_path[len - 1], "$");
2844 else
2845 for (; olen < len; olen++)
2846 strcpy(&kif->kf_path[olen], "A");
2847 }
2848
2849 int
vn_fill_kinfo_vnode(struct vnode * vp,struct kinfo_file * kif)2850 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2851 {
2852 struct vattr va;
2853 char *fullpath, *freepath;
2854 int error;
2855
2856 kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2857 freepath = NULL;
2858 fullpath = "-";
2859 error = vn_fullpath(vp, &fullpath, &freepath);
2860 if (error == 0) {
2861 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2862 }
2863 if (freepath != NULL)
2864 free(freepath, M_TEMP);
2865
2866 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2867 vn_fill_junk(kif);
2868 );
2869
2870 /*
2871 * Retrieve vnode attributes.
2872 */
2873 va.va_fsid = VNOVAL;
2874 va.va_rdev = NODEV;
2875 vn_lock(vp, LK_SHARED | LK_RETRY);
2876 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2877 VOP_UNLOCK(vp);
2878 if (error != 0)
2879 return (error);
2880 if (va.va_fsid != VNOVAL)
2881 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2882 else
2883 kif->kf_un.kf_file.kf_file_fsid =
2884 vp->v_mount->mnt_stat.f_fsid.val[0];
2885 kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2886 kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2887 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2888 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2889 kif->kf_un.kf_file.kf_file_size = va.va_size;
2890 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2891 kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2892 kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2893 kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
2894 return (0);
2895 }
2896
2897 int
vn_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)2898 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2899 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2900 struct thread *td)
2901 {
2902 #ifdef HWPMC_HOOKS
2903 struct pmckern_map_in pkm;
2904 #endif
2905 struct mount *mp;
2906 struct vnode *vp;
2907 vm_object_t object;
2908 vm_prot_t maxprot;
2909 boolean_t writecounted;
2910 int error;
2911
2912 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2913 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2914 /*
2915 * POSIX shared-memory objects are defined to have
2916 * kernel persistence, and are not defined to support
2917 * read(2)/write(2) -- or even open(2). Thus, we can
2918 * use MAP_ASYNC to trade on-disk coherence for speed.
2919 * The shm_open(3) library routine turns on the FPOSIXSHM
2920 * flag to request this behavior.
2921 */
2922 if ((fp->f_flag & FPOSIXSHM) != 0)
2923 flags |= MAP_NOSYNC;
2924 #endif
2925 vp = fp->f_vnode;
2926
2927 /*
2928 * Ensure that file and memory protections are
2929 * compatible. Note that we only worry about
2930 * writability if mapping is shared; in this case,
2931 * current and max prot are dictated by the open file.
2932 * XXX use the vnode instead? Problem is: what
2933 * credentials do we use for determination? What if
2934 * proc does a setuid?
2935 */
2936 mp = vp->v_mount;
2937 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2938 maxprot = VM_PROT_NONE;
2939 if ((prot & VM_PROT_EXECUTE) != 0)
2940 return (EACCES);
2941 } else
2942 maxprot = VM_PROT_EXECUTE;
2943 if ((fp->f_flag & FREAD) != 0)
2944 maxprot |= VM_PROT_READ;
2945 else if ((prot & VM_PROT_READ) != 0)
2946 return (EACCES);
2947
2948 /*
2949 * If we are sharing potential changes via MAP_SHARED and we
2950 * are trying to get write permission although we opened it
2951 * without asking for it, bail out.
2952 */
2953 if ((flags & MAP_SHARED) != 0) {
2954 if ((fp->f_flag & FWRITE) != 0)
2955 maxprot |= VM_PROT_WRITE;
2956 else if ((prot & VM_PROT_WRITE) != 0)
2957 return (EACCES);
2958 } else {
2959 maxprot |= VM_PROT_WRITE;
2960 cap_maxprot |= VM_PROT_WRITE;
2961 }
2962 maxprot &= cap_maxprot;
2963
2964 /*
2965 * For regular files and shared memory, POSIX requires that
2966 * the value of foff be a legitimate offset within the data
2967 * object. In particular, negative offsets are invalid.
2968 * Blocking negative offsets and overflows here avoids
2969 * possible wraparound or user-level access into reserved
2970 * ranges of the data object later. In contrast, POSIX does
2971 * not dictate how offsets are used by device drivers, so in
2972 * the case of a device mapping a negative offset is passed
2973 * on.
2974 */
2975 if (
2976 #ifdef _LP64
2977 size > OFF_MAX ||
2978 #endif
2979 foff > OFF_MAX - size)
2980 return (EINVAL);
2981
2982 writecounted = FALSE;
2983 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2984 &foff, &object, &writecounted);
2985 if (error != 0)
2986 return (error);
2987 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2988 foff, writecounted, td);
2989 if (error != 0) {
2990 /*
2991 * If this mapping was accounted for in the vnode's
2992 * writecount, then undo that now.
2993 */
2994 if (writecounted)
2995 vm_pager_release_writecount(object, 0, size);
2996 vm_object_deallocate(object);
2997 }
2998 #ifdef HWPMC_HOOKS
2999 /* Inform hwpmc(4) if an executable is being mapped. */
3000 if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
3001 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
3002 pkm.pm_file = vp;
3003 pkm.pm_address = (uintptr_t) *addr;
3004 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
3005 }
3006 }
3007 #endif
3008 return (error);
3009 }
3010
3011 void
vn_fsid(struct vnode * vp,struct vattr * va)3012 vn_fsid(struct vnode *vp, struct vattr *va)
3013 {
3014 fsid_t *f;
3015
3016 f = &vp->v_mount->mnt_stat.f_fsid;
3017 va->va_fsid = (uint32_t)f->val[1];
3018 va->va_fsid <<= sizeof(f->val[1]) * NBBY;
3019 va->va_fsid += (uint32_t)f->val[0];
3020 }
3021
3022 int
vn_fsync_buf(struct vnode * vp,int waitfor)3023 vn_fsync_buf(struct vnode *vp, int waitfor)
3024 {
3025 struct buf *bp, *nbp;
3026 struct bufobj *bo;
3027 struct mount *mp;
3028 int error, maxretry;
3029
3030 error = 0;
3031 maxretry = 10000; /* large, arbitrarily chosen */
3032 mp = NULL;
3033 if (vp->v_type == VCHR) {
3034 VI_LOCK(vp);
3035 mp = vp->v_rdev->si_mountpt;
3036 VI_UNLOCK(vp);
3037 }
3038 bo = &vp->v_bufobj;
3039 BO_LOCK(bo);
3040 loop1:
3041 /*
3042 * MARK/SCAN initialization to avoid infinite loops.
3043 */
3044 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
3045 bp->b_vflags &= ~BV_SCANNED;
3046 bp->b_error = 0;
3047 }
3048
3049 /*
3050 * Flush all dirty buffers associated with a vnode.
3051 */
3052 loop2:
3053 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
3054 if ((bp->b_vflags & BV_SCANNED) != 0)
3055 continue;
3056 bp->b_vflags |= BV_SCANNED;
3057 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
3058 if (waitfor != MNT_WAIT)
3059 continue;
3060 if (BUF_LOCK(bp,
3061 LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
3062 BO_LOCKPTR(bo)) != 0) {
3063 BO_LOCK(bo);
3064 goto loop1;
3065 }
3066 BO_LOCK(bo);
3067 }
3068 BO_UNLOCK(bo);
3069 KASSERT(bp->b_bufobj == bo,
3070 ("bp %p wrong b_bufobj %p should be %p",
3071 bp, bp->b_bufobj, bo));
3072 if ((bp->b_flags & B_DELWRI) == 0)
3073 panic("fsync: not dirty");
3074 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
3075 vfs_bio_awrite(bp);
3076 } else {
3077 bremfree(bp);
3078 bawrite(bp);
3079 }
3080 if (maxretry < 1000)
3081 pause("dirty", hz < 1000 ? 1 : hz / 1000);
3082 BO_LOCK(bo);
3083 goto loop2;
3084 }
3085
3086 /*
3087 * If synchronous the caller expects us to completely resolve all
3088 * dirty buffers in the system. Wait for in-progress I/O to
3089 * complete (which could include background bitmap writes), then
3090 * retry if dirty blocks still exist.
3091 */
3092 if (waitfor == MNT_WAIT) {
3093 bufobj_wwait(bo, 0, 0);
3094 if (bo->bo_dirty.bv_cnt > 0) {
3095 /*
3096 * If we are unable to write any of these buffers
3097 * then we fail now rather than trying endlessly
3098 * to write them out.
3099 */
3100 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
3101 if ((error = bp->b_error) != 0)
3102 break;
3103 if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
3104 (error == 0 && --maxretry >= 0))
3105 goto loop1;
3106 if (error == 0)
3107 error = EAGAIN;
3108 }
3109 }
3110 BO_UNLOCK(bo);
3111 if (error != 0)
3112 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
3113
3114 return (error);
3115 }
3116
3117 /*
3118 * Copies a byte range from invp to outvp. Calls VOP_COPY_FILE_RANGE()
3119 * or vn_generic_copy_file_range() after rangelocking the byte ranges,
3120 * to do the actual copy.
3121 * vn_generic_copy_file_range() is factored out, so it can be called
3122 * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
3123 * different file systems.
3124 */
3125 int
vn_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3126 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
3127 off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
3128 struct ucred *outcred, struct thread *fsize_td)
3129 {
3130 struct mount *inmp, *outmp;
3131 struct vnode *invpl, *outvpl;
3132 int error;
3133 size_t len;
3134 uint64_t uval;
3135
3136 invpl = outvpl = NULL;
3137 len = *lenp;
3138 *lenp = 0; /* For error returns. */
3139 error = 0;
3140
3141 /* Do some sanity checks on the arguments. */
3142 if (invp->v_type == VDIR || outvp->v_type == VDIR)
3143 error = EISDIR;
3144 else if (*inoffp < 0 || *outoffp < 0 ||
3145 invp->v_type != VREG || outvp->v_type != VREG)
3146 error = EINVAL;
3147 if (error != 0)
3148 goto out;
3149
3150 /* Ensure offset + len does not wrap around. */
3151 uval = *inoffp;
3152 uval += len;
3153 if (uval > INT64_MAX)
3154 len = INT64_MAX - *inoffp;
3155 uval = *outoffp;
3156 uval += len;
3157 if (uval > INT64_MAX)
3158 len = INT64_MAX - *outoffp;
3159 if (len == 0)
3160 goto out;
3161
3162 error = VOP_GETLOWVNODE(invp, &invpl, FREAD);
3163 if (error != 0)
3164 goto out;
3165 error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE);
3166 if (error != 0)
3167 goto out1;
3168
3169 inmp = invpl->v_mount;
3170 outmp = outvpl->v_mount;
3171 if (inmp == NULL || outmp == NULL)
3172 goto out2;
3173
3174 for (;;) {
3175 error = vfs_busy(inmp, 0);
3176 if (error != 0)
3177 goto out2;
3178 if (inmp == outmp)
3179 break;
3180 error = vfs_busy(outmp, MBF_NOWAIT);
3181 if (error != 0) {
3182 vfs_unbusy(inmp);
3183 error = vfs_busy(outmp, 0);
3184 if (error == 0) {
3185 vfs_unbusy(outmp);
3186 continue;
3187 }
3188 goto out2;
3189 }
3190 break;
3191 }
3192
3193 /*
3194 * If the two vnodes are for the same file system type, call
3195 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
3196 * which can handle copies across multiple file system types.
3197 */
3198 *lenp = len;
3199 if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc)
3200 error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp,
3201 lenp, flags, incred, outcred, fsize_td);
3202 else
3203 error = ENOSYS;
3204 if (error == ENOSYS)
3205 error = vn_generic_copy_file_range(invpl, inoffp, outvpl,
3206 outoffp, lenp, flags, incred, outcred, fsize_td);
3207 vfs_unbusy(outmp);
3208 if (inmp != outmp)
3209 vfs_unbusy(inmp);
3210 out2:
3211 if (outvpl != NULL)
3212 vrele(outvpl);
3213 out1:
3214 if (invpl != NULL)
3215 vrele(invpl);
3216 out:
3217 return (error);
3218 }
3219
3220 /*
3221 * Test len bytes of data starting at dat for all bytes == 0.
3222 * Return true if all bytes are zero, false otherwise.
3223 * Expects dat to be well aligned.
3224 */
3225 static bool
mem_iszero(void * dat,int len)3226 mem_iszero(void *dat, int len)
3227 {
3228 int i;
3229 const u_int *p;
3230 const char *cp;
3231
3232 for (p = dat; len > 0; len -= sizeof(*p), p++) {
3233 if (len >= sizeof(*p)) {
3234 if (*p != 0)
3235 return (false);
3236 } else {
3237 cp = (const char *)p;
3238 for (i = 0; i < len; i++, cp++)
3239 if (*cp != '\0')
3240 return (false);
3241 }
3242 }
3243 return (true);
3244 }
3245
3246 /*
3247 * Look for a hole in the output file and, if found, adjust *outoffp
3248 * and *xferp to skip past the hole.
3249 * *xferp is the entire hole length to be written and xfer2 is how many bytes
3250 * to be written as 0's upon return.
3251 */
3252 static off_t
vn_skip_hole(struct vnode * outvp,off_t xfer2,off_t * outoffp,off_t * xferp,off_t * dataoffp,off_t * holeoffp,struct ucred * cred)3253 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3254 off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3255 {
3256 int error;
3257 off_t delta;
3258
3259 if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3260 *dataoffp = *outoffp;
3261 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3262 curthread);
3263 if (error == 0) {
3264 *holeoffp = *dataoffp;
3265 error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3266 curthread);
3267 }
3268 if (error != 0 || *holeoffp == *dataoffp) {
3269 /*
3270 * Since outvp is unlocked, it may be possible for
3271 * another thread to do a truncate(), lseek(), write()
3272 * creating a hole at startoff between the above
3273 * VOP_IOCTL() calls, if the other thread does not do
3274 * rangelocking.
3275 * If that happens, *holeoffp == *dataoffp and finding
3276 * the hole has failed, so disable vn_skip_hole().
3277 */
3278 *holeoffp = -1; /* Disable use of vn_skip_hole(). */
3279 return (xfer2);
3280 }
3281 KASSERT(*dataoffp >= *outoffp,
3282 ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3283 (intmax_t)*dataoffp, (intmax_t)*outoffp));
3284 KASSERT(*holeoffp > *dataoffp,
3285 ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3286 (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3287 }
3288
3289 /*
3290 * If there is a hole before the data starts, advance *outoffp and
3291 * *xferp past the hole.
3292 */
3293 if (*dataoffp > *outoffp) {
3294 delta = *dataoffp - *outoffp;
3295 if (delta >= *xferp) {
3296 /* Entire *xferp is a hole. */
3297 *outoffp += *xferp;
3298 *xferp = 0;
3299 return (0);
3300 }
3301 *xferp -= delta;
3302 *outoffp += delta;
3303 xfer2 = MIN(xfer2, *xferp);
3304 }
3305
3306 /*
3307 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3308 * that the write ends at the start of the hole.
3309 * *holeoffp should always be greater than *outoffp, but for the
3310 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3311 * value.
3312 */
3313 if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3314 xfer2 = *holeoffp - *outoffp;
3315 return (xfer2);
3316 }
3317
3318 /*
3319 * Write an xfer sized chunk to outvp in blksize blocks from dat.
3320 * dat is a maximum of blksize in length and can be written repeatedly in
3321 * the chunk.
3322 * If growfile == true, just grow the file via vn_truncate_locked() instead
3323 * of doing actual writes.
3324 * If checkhole == true, a hole is being punched, so skip over any hole
3325 * already in the output file.
3326 */
3327 static int
vn_write_outvp(struct vnode * outvp,char * dat,off_t outoff,off_t xfer,u_long blksize,bool growfile,bool checkhole,struct ucred * cred)3328 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3329 u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3330 {
3331 struct mount *mp;
3332 off_t dataoff, holeoff, xfer2;
3333 int error;
3334
3335 /*
3336 * Loop around doing writes of blksize until write has been completed.
3337 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3338 * done for each iteration, since the xfer argument can be very
3339 * large if there is a large hole to punch in the output file.
3340 */
3341 error = 0;
3342 holeoff = 0;
3343 do {
3344 xfer2 = MIN(xfer, blksize);
3345 if (checkhole) {
3346 /*
3347 * Punching a hole. Skip writing if there is
3348 * already a hole in the output file.
3349 */
3350 xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3351 &dataoff, &holeoff, cred);
3352 if (xfer == 0)
3353 break;
3354 if (holeoff < 0)
3355 checkhole = false;
3356 KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3357 (intmax_t)xfer2));
3358 }
3359 bwillwrite();
3360 mp = NULL;
3361 error = vn_start_write(outvp, &mp, V_WAIT);
3362 if (error != 0)
3363 break;
3364 if (growfile) {
3365 error = vn_lock(outvp, LK_EXCLUSIVE);
3366 if (error == 0) {
3367 error = vn_truncate_locked(outvp, outoff + xfer,
3368 false, cred);
3369 VOP_UNLOCK(outvp);
3370 }
3371 } else {
3372 error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3373 if (error == 0) {
3374 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3375 outoff, UIO_SYSSPACE, IO_NODELOCKED,
3376 curthread->td_ucred, cred, NULL, curthread);
3377 outoff += xfer2;
3378 xfer -= xfer2;
3379 VOP_UNLOCK(outvp);
3380 }
3381 }
3382 if (mp != NULL)
3383 vn_finished_write(mp);
3384 } while (!growfile && xfer > 0 && error == 0);
3385 return (error);
3386 }
3387
3388 /*
3389 * Copy a byte range of one file to another. This function can handle the
3390 * case where invp and outvp are on different file systems.
3391 * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3392 * is no better file system specific way to do it.
3393 */
3394 int
vn_generic_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3395 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3396 struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3397 struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3398 {
3399 struct vattr inva;
3400 struct mount *mp;
3401 off_t startoff, endoff, xfer, xfer2;
3402 u_long blksize;
3403 int error, interrupted;
3404 bool cantseek, readzeros, eof, first, lastblock, holetoeof, sparse;
3405 ssize_t aresid, r = 0;
3406 size_t copylen, len, savlen;
3407 off_t outsize;
3408 char *dat;
3409 long holein, holeout;
3410 struct timespec curts, endts;
3411
3412 holein = holeout = 0;
3413 savlen = len = *lenp;
3414 error = 0;
3415 interrupted = 0;
3416 dat = NULL;
3417
3418 error = vn_lock(invp, LK_SHARED);
3419 if (error != 0)
3420 goto out;
3421 if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3422 holein = 0;
3423 error = VOP_GETATTR(invp, &inva, incred);
3424 if (error == 0 && inva.va_size > OFF_MAX)
3425 error = EFBIG;
3426 VOP_UNLOCK(invp);
3427 if (error != 0)
3428 goto out;
3429
3430 /*
3431 * Use va_bytes >= va_size as a hint that the file does not have
3432 * sufficient holes to justify the overhead of doing FIOSEEKHOLE.
3433 * This hint does not work well for file systems doing compression
3434 * and may fail when allocations for extended attributes increases
3435 * the value of va_bytes to >= va_size.
3436 */
3437 sparse = true;
3438 if (holein != 0 && inva.va_bytes >= inva.va_size) {
3439 holein = 0;
3440 sparse = false;
3441 }
3442
3443 mp = NULL;
3444 error = vn_start_write(outvp, &mp, V_WAIT);
3445 if (error == 0)
3446 error = vn_lock(outvp, LK_EXCLUSIVE);
3447 if (error == 0) {
3448 /*
3449 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
3450 * now that outvp is locked.
3451 */
3452 if (fsize_td != NULL) {
3453 struct uio io;
3454
3455 io.uio_offset = *outoffp;
3456 io.uio_resid = len;
3457 error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
3458 len = savlen = io.uio_resid;
3459 /*
3460 * No need to call vn_rlimit_fsizex_res before return,
3461 * since the uio is local.
3462 */
3463 }
3464 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3465 holeout = 0;
3466 /*
3467 * Holes that are past EOF do not need to be written as a block
3468 * of zero bytes. So, truncate the output file as far as
3469 * possible and then use size to decide if writing 0
3470 * bytes is necessary in the loop below.
3471 */
3472 if (error == 0)
3473 error = vn_getsize_locked(outvp, &outsize, outcred);
3474 if (error == 0 && outsize > *outoffp &&
3475 *outoffp <= OFF_MAX - len && outsize <= *outoffp + len &&
3476 *inoffp < inva.va_size &&
3477 *outoffp <= OFF_MAX - (inva.va_size - *inoffp) &&
3478 outsize <= *outoffp + (inva.va_size - *inoffp)) {
3479 #ifdef MAC
3480 error = mac_vnode_check_write(curthread->td_ucred,
3481 outcred, outvp);
3482 if (error == 0)
3483 #endif
3484 error = vn_truncate_locked(outvp, *outoffp,
3485 false, outcred);
3486 if (error == 0)
3487 outsize = *outoffp;
3488 }
3489 VOP_UNLOCK(outvp);
3490 }
3491 if (mp != NULL)
3492 vn_finished_write(mp);
3493 if (error != 0)
3494 goto out;
3495
3496 if (sparse && holein == 0 && holeout > 0) {
3497 /*
3498 * For this special case, the input data will be scanned
3499 * for blocks of all 0 bytes. For these blocks, the
3500 * write can be skipped for the output file to create
3501 * an unallocated region.
3502 * Therefore, use the appropriate size for the output file.
3503 */
3504 blksize = holeout;
3505 if (blksize <= 512) {
3506 /*
3507 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
3508 * of 512, although it actually only creates
3509 * unallocated regions for blocks >= f_iosize.
3510 */
3511 blksize = outvp->v_mount->mnt_stat.f_iosize;
3512 }
3513 } else {
3514 /*
3515 * Use the larger of the two f_iosize values. If they are
3516 * not the same size, one will normally be an exact multiple of
3517 * the other, since they are both likely to be a power of 2.
3518 */
3519 blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3520 outvp->v_mount->mnt_stat.f_iosize);
3521 }
3522
3523 /* Clip to sane limits. */
3524 if (blksize < 4096)
3525 blksize = 4096;
3526 else if (blksize > maxphys)
3527 blksize = maxphys;
3528 dat = malloc(blksize, M_TEMP, M_WAITOK);
3529
3530 /*
3531 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3532 * to find holes. Otherwise, just scan the read block for all 0s
3533 * in the inner loop where the data copying is done.
3534 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3535 * support holes on the server, but do not support FIOSEEKHOLE.
3536 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3537 * that this function should return after 1second with a partial
3538 * completion.
3539 */
3540 if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3541 getnanouptime(&endts);
3542 endts.tv_sec++;
3543 } else
3544 timespecclear(&endts);
3545 first = true;
3546 holetoeof = eof = false;
3547 while (len > 0 && error == 0 && !eof && interrupted == 0) {
3548 endoff = 0; /* To shut up compilers. */
3549 cantseek = true;
3550 startoff = *inoffp;
3551 copylen = len;
3552
3553 /*
3554 * Find the next data area. If there is just a hole to EOF,
3555 * FIOSEEKDATA should fail with ENXIO.
3556 * (I do not know if any file system will report a hole to
3557 * EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3558 * will fail for those file systems.)
3559 *
3560 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3561 * the code just falls through to the inner copy loop.
3562 */
3563 error = EINVAL;
3564 if (holein > 0) {
3565 error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3566 incred, curthread);
3567 if (error == ENXIO) {
3568 startoff = endoff = inva.va_size;
3569 eof = holetoeof = true;
3570 error = 0;
3571 }
3572 }
3573 if (error == 0 && !holetoeof) {
3574 endoff = startoff;
3575 error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3576 incred, curthread);
3577 /*
3578 * Since invp is unlocked, it may be possible for
3579 * another thread to do a truncate(), lseek(), write()
3580 * creating a hole at startoff between the above
3581 * VOP_IOCTL() calls, if the other thread does not do
3582 * rangelocking.
3583 * If that happens, startoff == endoff and finding
3584 * the hole has failed, so set an error.
3585 */
3586 if (error == 0 && startoff == endoff)
3587 error = EINVAL; /* Any error. Reset to 0. */
3588 }
3589 if (error == 0) {
3590 if (startoff > *inoffp) {
3591 /* Found hole before data block. */
3592 xfer = MIN(startoff - *inoffp, len);
3593 if (*outoffp < outsize) {
3594 /* Must write 0s to punch hole. */
3595 xfer2 = MIN(outsize - *outoffp,
3596 xfer);
3597 memset(dat, 0, MIN(xfer2, blksize));
3598 error = vn_write_outvp(outvp, dat,
3599 *outoffp, xfer2, blksize, false,
3600 holeout > 0, outcred);
3601 }
3602
3603 if (error == 0 && *outoffp + xfer >
3604 outsize && (xfer == len || holetoeof)) {
3605 /* Grow output file (hole at end). */
3606 error = vn_write_outvp(outvp, dat,
3607 *outoffp, xfer, blksize, true,
3608 false, outcred);
3609 }
3610 if (error == 0) {
3611 *inoffp += xfer;
3612 *outoffp += xfer;
3613 len -= xfer;
3614 if (len < savlen) {
3615 interrupted = sig_intr();
3616 if (timespecisset(&endts) &&
3617 interrupted == 0) {
3618 getnanouptime(&curts);
3619 if (timespeccmp(&curts,
3620 &endts, >=))
3621 interrupted =
3622 EINTR;
3623 }
3624 }
3625 }
3626 }
3627 copylen = MIN(len, endoff - startoff);
3628 cantseek = false;
3629 } else {
3630 cantseek = true;
3631 if (!sparse)
3632 cantseek = false;
3633 startoff = *inoffp;
3634 copylen = len;
3635 error = 0;
3636 }
3637
3638 xfer = blksize;
3639 if (cantseek) {
3640 /*
3641 * Set first xfer to end at a block boundary, so that
3642 * holes are more likely detected in the loop below via
3643 * the for all bytes 0 method.
3644 */
3645 xfer -= (*inoffp % blksize);
3646 }
3647
3648 /*
3649 * Loop copying the data block. If this was our first attempt
3650 * to copy anything, allow a zero-length block so that the VOPs
3651 * get a chance to update metadata, specifically the atime.
3652 */
3653 while (error == 0 && ((copylen > 0 && !eof) || first) &&
3654 interrupted == 0) {
3655 if (copylen < xfer)
3656 xfer = copylen;
3657 first = false;
3658 error = vn_lock(invp, LK_SHARED);
3659 if (error != 0)
3660 goto out;
3661 error = vn_rdwr(UIO_READ, invp, dat, xfer,
3662 startoff, UIO_SYSSPACE, IO_NODELOCKED,
3663 curthread->td_ucred, incred, &aresid,
3664 curthread);
3665 VOP_UNLOCK(invp);
3666 lastblock = false;
3667 if (error == 0 && (xfer == 0 || aresid > 0)) {
3668 /* Stop the copy at EOF on the input file. */
3669 xfer -= aresid;
3670 eof = true;
3671 lastblock = true;
3672 }
3673 if (error == 0) {
3674 /*
3675 * Skip the write for holes past the initial EOF
3676 * of the output file, unless this is the last
3677 * write of the output file at EOF.
3678 */
3679 readzeros = cantseek ? mem_iszero(dat, xfer) :
3680 false;
3681 if (xfer == len)
3682 lastblock = true;
3683 if (!cantseek || *outoffp < outsize ||
3684 lastblock || !readzeros)
3685 error = vn_write_outvp(outvp, dat,
3686 *outoffp, xfer, blksize,
3687 readzeros && lastblock &&
3688 *outoffp >= outsize, false,
3689 outcred);
3690 if (error == 0) {
3691 *inoffp += xfer;
3692 startoff += xfer;
3693 *outoffp += xfer;
3694 copylen -= xfer;
3695 len -= xfer;
3696 if (len < savlen) {
3697 interrupted = sig_intr();
3698 if (timespecisset(&endts) &&
3699 interrupted == 0) {
3700 getnanouptime(&curts);
3701 if (timespeccmp(&curts,
3702 &endts, >=))
3703 interrupted =
3704 EINTR;
3705 }
3706 }
3707 }
3708 }
3709 xfer = blksize;
3710 }
3711 }
3712 out:
3713 *lenp = savlen - len;
3714 free(dat, M_TEMP);
3715 return (error);
3716 }
3717
3718 static int
vn_fallocate(struct file * fp,off_t offset,off_t len,struct thread * td)3719 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3720 {
3721 struct mount *mp;
3722 struct vnode *vp;
3723 off_t olen, ooffset;
3724 int error;
3725 #ifdef AUDIT
3726 int audited_vnode1 = 0;
3727 #endif
3728
3729 vp = fp->f_vnode;
3730 if (vp->v_type != VREG)
3731 return (ENODEV);
3732
3733 /* Allocating blocks may take a long time, so iterate. */
3734 for (;;) {
3735 olen = len;
3736 ooffset = offset;
3737
3738 bwillwrite();
3739 mp = NULL;
3740 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
3741 if (error != 0)
3742 break;
3743 error = vn_lock(vp, LK_EXCLUSIVE);
3744 if (error != 0) {
3745 vn_finished_write(mp);
3746 break;
3747 }
3748 #ifdef AUDIT
3749 if (!audited_vnode1) {
3750 AUDIT_ARG_VNODE1(vp);
3751 audited_vnode1 = 1;
3752 }
3753 #endif
3754 #ifdef MAC
3755 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3756 if (error == 0)
3757 #endif
3758 error = VOP_ALLOCATE(vp, &offset, &len, 0,
3759 td->td_ucred);
3760 VOP_UNLOCK(vp);
3761 vn_finished_write(mp);
3762
3763 if (olen + ooffset != offset + len) {
3764 panic("offset + len changed from %jx/%jx to %jx/%jx",
3765 ooffset, olen, offset, len);
3766 }
3767 if (error != 0 || len == 0)
3768 break;
3769 KASSERT(olen > len, ("Iteration did not make progress?"));
3770 maybe_yield();
3771 }
3772
3773 return (error);
3774 }
3775
3776 static int
vn_deallocate_impl(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * cred,struct ucred * active_cred,struct ucred * file_cred)3777 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3778 int ioflag, struct ucred *cred, struct ucred *active_cred,
3779 struct ucred *file_cred)
3780 {
3781 struct mount *mp;
3782 void *rl_cookie;
3783 off_t off, len;
3784 int error;
3785 #ifdef AUDIT
3786 bool audited_vnode1 = false;
3787 #endif
3788
3789 rl_cookie = NULL;
3790 error = 0;
3791 mp = NULL;
3792 off = *offset;
3793 len = *length;
3794
3795 if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3796 rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3797 while (len > 0 && error == 0) {
3798 /*
3799 * Try to deallocate the longest range in one pass.
3800 * In case a pass takes too long to be executed, it returns
3801 * partial result. The residue will be proceeded in the next
3802 * pass.
3803 */
3804
3805 if ((ioflag & IO_NODELOCKED) == 0) {
3806 bwillwrite();
3807 if ((error = vn_start_write(vp, &mp,
3808 V_WAIT | V_PCATCH)) != 0)
3809 goto out;
3810 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3811 }
3812 #ifdef AUDIT
3813 if (!audited_vnode1) {
3814 AUDIT_ARG_VNODE1(vp);
3815 audited_vnode1 = true;
3816 }
3817 #endif
3818
3819 #ifdef MAC
3820 if ((ioflag & IO_NOMACCHECK) == 0)
3821 error = mac_vnode_check_write(active_cred, file_cred,
3822 vp);
3823 #endif
3824 if (error == 0)
3825 error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3826 cred);
3827
3828 if ((ioflag & IO_NODELOCKED) == 0) {
3829 VOP_UNLOCK(vp);
3830 if (mp != NULL) {
3831 vn_finished_write(mp);
3832 mp = NULL;
3833 }
3834 }
3835 if (error == 0 && len != 0)
3836 maybe_yield();
3837 }
3838 out:
3839 if (rl_cookie != NULL)
3840 vn_rangelock_unlock(vp, rl_cookie);
3841 *offset = off;
3842 *length = len;
3843 return (error);
3844 }
3845
3846 /*
3847 * This function is supposed to be used in the situations where the deallocation
3848 * is not triggered by a user request.
3849 */
3850 int
vn_deallocate(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * active_cred,struct ucred * file_cred)3851 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3852 int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3853 {
3854 struct ucred *cred;
3855
3856 if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3857 flags != 0)
3858 return (EINVAL);
3859 if (vp->v_type != VREG)
3860 return (ENODEV);
3861
3862 cred = file_cred != NOCRED ? file_cred : active_cred;
3863 return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3864 active_cred, file_cred));
3865 }
3866
3867 static int
vn_fspacectl(struct file * fp,int cmd,off_t * offset,off_t * length,int flags,struct ucred * active_cred,struct thread * td)3868 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3869 struct ucred *active_cred, struct thread *td)
3870 {
3871 int error;
3872 struct vnode *vp;
3873 int ioflag;
3874
3875 KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
3876 KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
3877 ("vn_fspacectl: non-zero flags"));
3878 KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
3879 ("vn_fspacectl: offset/length overflow or underflow"));
3880 vp = fp->f_vnode;
3881
3882 if (vp->v_type != VREG)
3883 return (ENODEV);
3884
3885 ioflag = get_write_ioflag(fp);
3886
3887 switch (cmd) {
3888 case SPACECTL_DEALLOC:
3889 error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3890 active_cred, active_cred, fp->f_cred);
3891 break;
3892 default:
3893 panic("vn_fspacectl: unknown cmd %d", cmd);
3894 }
3895
3896 return (error);
3897 }
3898
3899 /*
3900 * Keep this assert as long as sizeof(struct dirent) is used as the maximum
3901 * entry size.
3902 */
3903 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent),
3904 "'struct dirent' size must be a multiple of its alignment "
3905 "(see _GENERIC_DIRLEN())");
3906
3907 /*
3908 * Returns successive directory entries through some caller's provided buffer.
3909 *
3910 * This function automatically refills the provided buffer with calls to
3911 * VOP_READDIR() (after MAC permission checks).
3912 *
3913 * 'td' is used for credentials and passed to uiomove(). 'dirbuf' is the
3914 * caller's buffer to fill and 'dirbuflen' its allocated size. 'dirbuf' must
3915 * be properly aligned to access 'struct dirent' structures and 'dirbuflen'
3916 * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning
3917 * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always
3918 * be returned if this requirement is not verified). '*dpp' points to the
3919 * current directory entry in the buffer and '*len' contains the remaining
3920 * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry).
3921 *
3922 * At first call (or when restarting the read), '*len' must have been set to 0,
3923 * '*off' to 0 (or any valid start offset) and '*eofflag' to 0. There are no
3924 * more entries as soon as '*len' is 0 after a call that returned 0. Calling
3925 * again this function after such a condition is considered an error and EINVAL
3926 * will be returned. Other possible error codes are those of VOP_READDIR(),
3927 * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL
3928 * (bad call). All errors are unrecoverable, i.e., the state ('*len', '*off'
3929 * and '*eofflag') must be re-initialized before a subsequent call. On error
3930 * or at end of directory, '*dpp' is reset to NULL.
3931 *
3932 * '*len', '*off' and '*eofflag' are internal state the caller should not
3933 * tamper with except as explained above. '*off' is the next directory offset
3934 * to read from to refill the buffer. '*eofflag' is set to 0 or 1 by the last
3935 * internal call to VOP_READDIR() that returned without error, indicating
3936 * whether it reached the end of the directory, and to 2 by this function after
3937 * all entries have been read.
3938 */
3939 int
vn_dir_next_dirent(struct vnode * vp,struct thread * td,char * dirbuf,size_t dirbuflen,struct dirent ** dpp,size_t * len,off_t * off,int * eofflag)3940 vn_dir_next_dirent(struct vnode *vp, struct thread *td,
3941 char *dirbuf, size_t dirbuflen,
3942 struct dirent **dpp, size_t *len, off_t *off, int *eofflag)
3943 {
3944 struct dirent *dp = NULL;
3945 int reclen;
3946 int error;
3947 struct uio uio;
3948 struct iovec iov;
3949
3950 ASSERT_VOP_LOCKED(vp, "vnode not locked");
3951 VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory"));
3952 MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen,
3953 "Address space overflow");
3954
3955 if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) {
3956 /* Don't take any chances in this case */
3957 error = EINVAL;
3958 goto out;
3959 }
3960
3961 if (*len != 0) {
3962 dp = *dpp;
3963
3964 /*
3965 * The caller continued to call us after an error (we set dp to
3966 * NULL in a previous iteration). Bail out right now.
3967 */
3968 if (__predict_false(dp == NULL))
3969 return (EINVAL);
3970
3971 MPASS(*len <= dirbuflen);
3972 MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp &&
3973 (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen,
3974 "Filled range not inside buffer");
3975
3976 reclen = dp->d_reclen;
3977 if (reclen >= *len) {
3978 /* End of buffer reached */
3979 *len = 0;
3980 } else {
3981 dp = (struct dirent *)((char *)dp + reclen);
3982 *len -= reclen;
3983 }
3984 }
3985
3986 if (*len == 0) {
3987 dp = NULL;
3988
3989 /* Have to refill. */
3990 switch (*eofflag) {
3991 case 0:
3992 break;
3993
3994 case 1:
3995 /* Nothing more to read. */
3996 *eofflag = 2; /* Remember the caller reached EOF. */
3997 goto success;
3998
3999 default:
4000 /* The caller didn't test for EOF. */
4001 error = EINVAL;
4002 goto out;
4003 }
4004
4005 iov.iov_base = dirbuf;
4006 iov.iov_len = dirbuflen;
4007
4008 uio.uio_iov = &iov;
4009 uio.uio_iovcnt = 1;
4010 uio.uio_offset = *off;
4011 uio.uio_resid = dirbuflen;
4012 uio.uio_segflg = UIO_SYSSPACE;
4013 uio.uio_rw = UIO_READ;
4014 uio.uio_td = td;
4015
4016 #ifdef MAC
4017 error = mac_vnode_check_readdir(td->td_ucred, vp);
4018 if (error == 0)
4019 #endif
4020 error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag,
4021 NULL, NULL);
4022 if (error != 0)
4023 goto out;
4024
4025 *len = dirbuflen - uio.uio_resid;
4026 *off = uio.uio_offset;
4027
4028 if (*len == 0) {
4029 /* Sanity check on INVARIANTS. */
4030 MPASS(*eofflag != 0);
4031 *eofflag = 1;
4032 goto success;
4033 }
4034
4035 /*
4036 * Normalize the flag returned by VOP_READDIR(), since we use 2
4037 * as a sentinel value.
4038 */
4039 if (*eofflag != 0)
4040 *eofflag = 1;
4041
4042 dp = (struct dirent *)dirbuf;
4043 }
4044
4045 if (__predict_false(*len < GENERIC_MINDIRSIZ ||
4046 dp->d_reclen < GENERIC_MINDIRSIZ)) {
4047 error = EINTEGRITY;
4048 dp = NULL;
4049 goto out;
4050 }
4051
4052 success:
4053 error = 0;
4054 out:
4055 *dpp = dp;
4056 return (error);
4057 }
4058
4059 /*
4060 * Checks whether a directory is empty or not.
4061 *
4062 * If the directory is empty, returns 0, and if it is not, ENOTEMPTY. Other
4063 * values are genuine errors preventing the check.
4064 */
4065 int
vn_dir_check_empty(struct vnode * vp)4066 vn_dir_check_empty(struct vnode *vp)
4067 {
4068 struct thread *const td = curthread;
4069 char *dirbuf;
4070 size_t dirbuflen, len;
4071 off_t off;
4072 int eofflag, error;
4073 struct dirent *dp;
4074 struct vattr va;
4075
4076 ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
4077 VNPASS(vp->v_type == VDIR, vp);
4078
4079 error = VOP_GETATTR(vp, &va, td->td_ucred);
4080 if (error != 0)
4081 return (error);
4082
4083 dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
4084 if (dirbuflen < va.va_blocksize)
4085 dirbuflen = va.va_blocksize;
4086 dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
4087
4088 len = 0;
4089 off = 0;
4090 eofflag = 0;
4091
4092 for (;;) {
4093 error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen,
4094 &dp, &len, &off, &eofflag);
4095 if (error != 0)
4096 goto end;
4097
4098 if (len == 0) {
4099 /* EOF */
4100 error = 0;
4101 goto end;
4102 }
4103
4104 /*
4105 * Skip whiteouts. Unionfs operates on filesystems only and
4106 * not on hierarchies, so these whiteouts would be shadowed on
4107 * the system hierarchy but not for a union using the
4108 * filesystem of their directories as the upper layer.
4109 * Additionally, unionfs currently transparently exposes
4110 * union-specific metadata of its upper layer, meaning that
4111 * whiteouts can be seen through the union view in empty
4112 * directories. Taking into account these whiteouts would then
4113 * prevent mounting another filesystem on such effectively
4114 * empty directories.
4115 */
4116 if (dp->d_type == DT_WHT)
4117 continue;
4118
4119 /*
4120 * Any file in the directory which is not '.' or '..' indicates
4121 * the directory is not empty.
4122 */
4123 switch (dp->d_namlen) {
4124 case 2:
4125 if (dp->d_name[1] != '.') {
4126 /* Can't be '..' (nor '.') */
4127 error = ENOTEMPTY;
4128 goto end;
4129 }
4130 /* FALLTHROUGH */
4131 case 1:
4132 if (dp->d_name[0] != '.') {
4133 /* Can't be '..' nor '.' */
4134 error = ENOTEMPTY;
4135 goto end;
4136 }
4137 break;
4138
4139 default:
4140 error = ENOTEMPTY;
4141 goto end;
4142 }
4143 }
4144
4145 end:
4146 free(dirbuf, M_TEMP);
4147 return (error);
4148 }
4149
4150
4151 static u_long vn_lock_pair_pause_cnt;
4152 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
4153 &vn_lock_pair_pause_cnt, 0,
4154 "Count of vn_lock_pair deadlocks");
4155
4156 u_int vn_lock_pair_pause_max;
4157 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
4158 &vn_lock_pair_pause_max, 0,
4159 "Max ticks for vn_lock_pair deadlock avoidance sleep");
4160
4161 static void
vn_lock_pair_pause(const char * wmesg)4162 vn_lock_pair_pause(const char *wmesg)
4163 {
4164 atomic_add_long(&vn_lock_pair_pause_cnt, 1);
4165 pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
4166 }
4167
4168 /*
4169 * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order
4170 * reversal. vp1_locked indicates whether vp1 is locked; if not, vp1
4171 * must be unlocked. Same for vp2 and vp2_locked. One of the vnodes
4172 * can be NULL.
4173 *
4174 * The function returns with both vnodes exclusively or shared locked,
4175 * according to corresponding lkflags, and guarantees that it does not
4176 * create lock order reversal with other threads during its execution.
4177 * Both vnodes could be unlocked temporary (and reclaimed).
4178 *
4179 * If requesting shared locking, locked vnode lock must not be recursed.
4180 *
4181 * Only one of LK_SHARED and LK_EXCLUSIVE must be specified.
4182 * LK_NODDLKTREAT can be optionally passed.
4183 *
4184 * If vp1 == vp2, only one, most exclusive, lock is obtained on it.
4185 */
4186 void
vn_lock_pair(struct vnode * vp1,bool vp1_locked,int lkflags1,struct vnode * vp2,bool vp2_locked,int lkflags2)4187 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
4188 struct vnode *vp2, bool vp2_locked, int lkflags2)
4189 {
4190 int error, locked1;
4191
4192 MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) ||
4193 (vp1 == NULL && lkflags1 == 0));
4194 MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4195 MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) ||
4196 (vp2 == NULL && lkflags2 == 0));
4197 MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4198
4199 if (vp1 == NULL && vp2 == NULL)
4200 return;
4201
4202 if (vp1 == vp2) {
4203 MPASS(vp1_locked == vp2_locked);
4204
4205 /* Select the most exclusive mode for lock. */
4206 if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK))
4207 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4208
4209 if (vp1_locked) {
4210 ASSERT_VOP_LOCKED(vp1, "vp1");
4211
4212 /* No need to relock if any lock is exclusive. */
4213 if ((vp1->v_vnlock->lock_object.lo_flags &
4214 LK_NOSHARE) != 0)
4215 return;
4216
4217 locked1 = VOP_ISLOCKED(vp1);
4218 if (((lkflags1 & LK_SHARED) != 0 &&
4219 locked1 != LK_EXCLUSIVE) ||
4220 ((lkflags1 & LK_EXCLUSIVE) != 0 &&
4221 locked1 == LK_EXCLUSIVE))
4222 return;
4223 VOP_UNLOCK(vp1);
4224 }
4225
4226 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4227 vn_lock(vp1, lkflags1 | LK_RETRY);
4228 return;
4229 }
4230
4231 if (vp1 != NULL) {
4232 if ((lkflags1 & LK_SHARED) != 0 &&
4233 (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4234 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4235 if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
4236 ASSERT_VOP_LOCKED(vp1, "vp1");
4237 if ((lkflags1 & LK_EXCLUSIVE) != 0) {
4238 VOP_UNLOCK(vp1);
4239 ASSERT_VOP_UNLOCKED(vp1,
4240 "vp1 shared recursed");
4241 vp1_locked = false;
4242 }
4243 } else if (!vp1_locked)
4244 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4245 } else {
4246 vp1_locked = true;
4247 }
4248
4249 if (vp2 != NULL) {
4250 if ((lkflags2 & LK_SHARED) != 0 &&
4251 (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4252 lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE;
4253 if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
4254 ASSERT_VOP_LOCKED(vp2, "vp2");
4255 if ((lkflags2 & LK_EXCLUSIVE) != 0) {
4256 VOP_UNLOCK(vp2);
4257 ASSERT_VOP_UNLOCKED(vp2,
4258 "vp2 shared recursed");
4259 vp2_locked = false;
4260 }
4261 } else if (!vp2_locked)
4262 ASSERT_VOP_UNLOCKED(vp2, "vp2");
4263 } else {
4264 vp2_locked = true;
4265 }
4266
4267 if (!vp1_locked && !vp2_locked) {
4268 vn_lock(vp1, lkflags1 | LK_RETRY);
4269 vp1_locked = true;
4270 }
4271
4272 while (!vp1_locked || !vp2_locked) {
4273 if (vp1_locked && vp2 != NULL) {
4274 if (vp1 != NULL) {
4275 error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
4276 __FILE__, __LINE__);
4277 if (error == 0)
4278 break;
4279 VOP_UNLOCK(vp1);
4280 vp1_locked = false;
4281 vn_lock_pair_pause("vlp1");
4282 }
4283 vn_lock(vp2, lkflags2 | LK_RETRY);
4284 vp2_locked = true;
4285 }
4286 if (vp2_locked && vp1 != NULL) {
4287 if (vp2 != NULL) {
4288 error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
4289 __FILE__, __LINE__);
4290 if (error == 0)
4291 break;
4292 VOP_UNLOCK(vp2);
4293 vp2_locked = false;
4294 vn_lock_pair_pause("vlp2");
4295 }
4296 vn_lock(vp1, lkflags1 | LK_RETRY);
4297 vp1_locked = true;
4298 }
4299 }
4300 if (vp1 != NULL) {
4301 if (lkflags1 == LK_EXCLUSIVE)
4302 ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
4303 else
4304 ASSERT_VOP_LOCKED(vp1, "vp1 ret");
4305 }
4306 if (vp2 != NULL) {
4307 if (lkflags2 == LK_EXCLUSIVE)
4308 ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
4309 else
4310 ASSERT_VOP_LOCKED(vp2, "vp2 ret");
4311 }
4312 }
4313
4314 int
vn_lktype_write(struct mount * mp,struct vnode * vp)4315 vn_lktype_write(struct mount *mp, struct vnode *vp)
4316 {
4317 if (MNT_SHARED_WRITES(mp) ||
4318 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
4319 return (LK_SHARED);
4320 return (LK_EXCLUSIVE);
4321 }
4322
4323 int
vn_cmp(struct file * fp1,struct file * fp2,struct thread * td)4324 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td)
4325 {
4326 if (fp2->f_type != DTYPE_VNODE)
4327 return (3);
4328 return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode));
4329 }
4330