xref: /freebsd/sys/kern/vfs_subr.c (revision ef6ea91593ebff73e2fc201efd9f848b71c5a125)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include "opt_ddb.h"
42 #include "opt_watchdog.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/asan.h>
47 #include <sys/bio.h>
48 #include <sys/buf.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/counter.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/inotify.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/stdarg.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/user.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99 
100 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
101 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
102 #endif
103 
104 #ifdef DDB
105 #include <ddb/ddb.h>
106 #endif
107 
108 static void	delmntque(struct vnode *vp);
109 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
110 		    int slpflag, int slptimeo);
111 static void	syncer_shutdown(void *arg, int howto);
112 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
113 static void	v_init_counters(struct vnode *);
114 static void	vn_seqc_init(struct vnode *);
115 static void	vn_seqc_write_end_free(struct vnode *vp);
116 static void	vgonel(struct vnode *);
117 static bool	vhold_recycle_free(struct vnode *);
118 static void	vdropl_recycle(struct vnode *vp);
119 static void	vdrop_recycle(struct vnode *vp);
120 static void	vfs_knllock(void *arg);
121 static void	vfs_knlunlock(void *arg);
122 static void	vfs_knl_assert_lock(void *arg, int what);
123 static void	destroy_vpollinfo(struct vpollinfo *vi);
124 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
125 		    daddr_t startlbn, daddr_t endlbn);
126 static void	vnlru_recalc(void);
127 
128 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129     "vnode configuration and statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131     "vnode configuration");
132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133     "vnode statistics");
134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135     "vnode recycling");
136 
137 /*
138  * Number of vnodes in existence.  Increased whenever getnewvnode()
139  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140  */
141 static u_long __exclusive_cache_line numvnodes;
142 
143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144     "Number of vnodes in existence (legacy)");
145 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence");
147 
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150     "Number of vnodes created by getnewvnode (legacy)");
151 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
152     "Number of vnodes created by getnewvnode");
153 
154 /*
155  * Conversion tables for conversion from vnode types to inode formats
156  * and back.
157  */
158 __enum_uint8(vtype) iftovt_tab[16] = {
159 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161 };
162 int vttoif_tab[10] = {
163 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165 };
166 
167 /*
168  * List of allocates vnodes in the system.
169  */
170 static TAILQ_HEAD(freelst, vnode) vnode_list;
171 static struct vnode *vnode_list_free_marker;
172 static struct vnode *vnode_list_reclaim_marker;
173 
174 /*
175  * "Free" vnode target.  Free vnodes are rarely completely free, but are
176  * just ones that are cheap to recycle.  Usually they are for files which
177  * have been stat'd but not read; these usually have inode and namecache
178  * data attached to them.  This target is the preferred minimum size of a
179  * sub-cache consisting mostly of such files. The system balances the size
180  * of this sub-cache with its complement to try to prevent either from
181  * thrashing while the other is relatively inactive.  The targets express
182  * a preference for the best balance.
183  *
184  * "Above" this target there are 2 further targets (watermarks) related
185  * to recyling of free vnodes.  In the best-operating case, the cache is
186  * exactly full, the free list has size between vlowat and vhiwat above the
187  * free target, and recycling from it and normal use maintains this state.
188  * Sometimes the free list is below vlowat or even empty, but this state
189  * is even better for immediate use provided the cache is not full.
190  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191  * ones) to reach one of these states.  The watermarks are currently hard-
192  * coded as 4% and 9% of the available space higher.  These and the default
193  * of 25% for wantfreevnodes are too large if the memory size is large.
194  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195  * whenever vnlru_proc() becomes active.
196  */
197 static long wantfreevnodes;
198 static long __exclusive_cache_line freevnodes;
199 static long freevnodes_old;
200 
201 static u_long recycles_count;
202 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
203     "Number of vnodes recycled to meet vnode cache targets (legacy)");
204 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
205     &recycles_count, 0,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static u_long recycles_free_count;
209 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
210     &recycles_free_count, 0,
211     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
212 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
213     &recycles_free_count, 0,
214     "Number of free vnodes recycled to meet vnode cache targets");
215 
216 static counter_u64_t direct_recycles_free_count;
217 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
218     &direct_recycles_free_count,
219     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
220 
221 static counter_u64_t vnode_skipped_requeues;
222 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
223     "Number of times LRU requeue was skipped due to lock contention");
224 
225 static __read_mostly bool vnode_can_skip_requeue;
226 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
227     &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
228 
229 static u_long deferred_inact;
230 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
231     &deferred_inact, 0, "Number of times inactive processing was deferred");
232 
233 /* To keep more than one thread at a time from running vfs_getnewfsid */
234 static struct mtx mntid_mtx;
235 
236 /*
237  * Lock for any access to the following:
238  *	vnode_list
239  *	numvnodes
240  *	freevnodes
241  */
242 static struct mtx __exclusive_cache_line vnode_list_mtx;
243 
244 /* Publicly exported FS */
245 struct nfs_public nfs_pub;
246 
247 static uma_zone_t buf_trie_zone;
248 static smr_t buf_trie_smr;
249 
250 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
251 static uma_zone_t vnode_zone;
252 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
253 
254 __read_frequently smr_t vfs_smr;
255 
256 /*
257  * The workitem queue.
258  *
259  * It is useful to delay writes of file data and filesystem metadata
260  * for tens of seconds so that quickly created and deleted files need
261  * not waste disk bandwidth being created and removed. To realize this,
262  * we append vnodes to a "workitem" queue. When running with a soft
263  * updates implementation, most pending metadata dependencies should
264  * not wait for more than a few seconds. Thus, mounted on block devices
265  * are delayed only about a half the time that file data is delayed.
266  * Similarly, directory updates are more critical, so are only delayed
267  * about a third the time that file data is delayed. Thus, there are
268  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
269  * one each second (driven off the filesystem syncer process). The
270  * syncer_delayno variable indicates the next queue that is to be processed.
271  * Items that need to be processed soon are placed in this queue:
272  *
273  *	syncer_workitem_pending[syncer_delayno]
274  *
275  * A delay of fifteen seconds is done by placing the request fifteen
276  * entries later in the queue:
277  *
278  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
279  *
280  */
281 static int syncer_delayno;
282 static long syncer_mask;
283 LIST_HEAD(synclist, bufobj);
284 static struct synclist *syncer_workitem_pending;
285 /*
286  * The sync_mtx protects:
287  *	bo->bo_synclist
288  *	sync_vnode_count
289  *	syncer_delayno
290  *	syncer_state
291  *	syncer_workitem_pending
292  *	syncer_worklist_len
293  *	rushjob
294  */
295 static struct mtx sync_mtx;
296 static struct cv sync_wakeup;
297 
298 #define SYNCER_MAXDELAY		32
299 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
300 static int syncdelay = 30;		/* max time to delay syncing data */
301 static int filedelay = 30;		/* time to delay syncing files */
302 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
303     "Time to delay syncing files (in seconds)");
304 static int dirdelay = 29;		/* time to delay syncing directories */
305 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
306     "Time to delay syncing directories (in seconds)");
307 static int metadelay = 28;		/* time to delay syncing metadata */
308 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
309     "Time to delay syncing metadata (in seconds)");
310 static int rushjob;		/* number of slots to run ASAP */
311 static int stat_rush_requests;	/* number of times I/O speeded up */
312 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
313     "Number of times I/O speeded up (rush requests)");
314 
315 #define	VDBATCH_SIZE 8
316 struct vdbatch {
317 	u_int index;
318 	struct mtx lock;
319 	struct vnode *tab[VDBATCH_SIZE];
320 };
321 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
322 
323 static void	vdbatch_dequeue(struct vnode *vp);
324 
325 /*
326  * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
327  * we probably don't want to pause for the whole second each time.
328  */
329 #define SYNCER_SHUTDOWN_SPEEDUP		32
330 static int sync_vnode_count;
331 static int syncer_worklist_len;
332 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
333     syncer_state;
334 
335 /* Target for maximum number of vnodes. */
336 u_long desiredvnodes;
337 static u_long gapvnodes;		/* gap between wanted and desired */
338 static u_long vhiwat;		/* enough extras after expansion */
339 static u_long vlowat;		/* minimal extras before expansion */
340 static bool vstir;		/* nonzero to stir non-free vnodes */
341 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
342 
343 static u_long vnlru_read_freevnodes(void);
344 
345 /*
346  * Note that no attempt is made to sanitize these parameters.
347  */
348 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)349 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
350 {
351 	u_long val;
352 	int error;
353 
354 	val = desiredvnodes;
355 	error = sysctl_handle_long(oidp, &val, 0, req);
356 	if (error != 0 || req->newptr == NULL)
357 		return (error);
358 
359 	if (val == desiredvnodes)
360 		return (0);
361 	mtx_lock(&vnode_list_mtx);
362 	desiredvnodes = val;
363 	wantfreevnodes = desiredvnodes / 4;
364 	vnlru_recalc();
365 	mtx_unlock(&vnode_list_mtx);
366 	/*
367 	 * XXX There is no protection against multiple threads changing
368 	 * desiredvnodes at the same time. Locking above only helps vnlru and
369 	 * getnewvnode.
370 	 */
371 	vfs_hash_changesize(desiredvnodes);
372 	cache_changesize(desiredvnodes);
373 	return (0);
374 }
375 
376 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
377     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
378     "LU", "Target for maximum number of vnodes (legacy)");
379 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
380     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
381     "LU", "Target for maximum number of vnodes");
382 
383 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)384 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
385 {
386 	u_long rfreevnodes;
387 
388 	rfreevnodes = vnlru_read_freevnodes();
389 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
390 }
391 
392 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
393     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
394     "LU", "Number of \"free\" vnodes (legacy)");
395 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
396     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
397     "LU", "Number of \"free\" vnodes");
398 
399 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)400 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
401 {
402 	u_long val;
403 	int error;
404 
405 	val = wantfreevnodes;
406 	error = sysctl_handle_long(oidp, &val, 0, req);
407 	if (error != 0 || req->newptr == NULL)
408 		return (error);
409 
410 	if (val == wantfreevnodes)
411 		return (0);
412 	mtx_lock(&vnode_list_mtx);
413 	wantfreevnodes = val;
414 	vnlru_recalc();
415 	mtx_unlock(&vnode_list_mtx);
416 	return (0);
417 }
418 
419 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
420     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
421     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
422 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
423     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
424     "LU", "Target for minimum number of \"free\" vnodes");
425 
426 static int vnlru_nowhere;
427 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
428     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
429 
430 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)431 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
432 {
433 	struct vnode *vp;
434 	struct nameidata nd;
435 	char *buf;
436 	unsigned long ndflags;
437 	int error;
438 
439 	if (req->newptr == NULL)
440 		return (EINVAL);
441 	if (req->newlen >= PATH_MAX)
442 		return (E2BIG);
443 
444 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
445 	error = SYSCTL_IN(req, buf, req->newlen);
446 	if (error != 0)
447 		goto out;
448 
449 	buf[req->newlen] = '\0';
450 
451 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
452 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
453 	if ((error = namei(&nd)) != 0)
454 		goto out;
455 	vp = nd.ni_vp;
456 
457 	if (VN_IS_DOOMED(vp)) {
458 		/*
459 		 * This vnode is being recycled.  Return != 0 to let the caller
460 		 * know that the sysctl had no effect.  Return EAGAIN because a
461 		 * subsequent call will likely succeed (since namei will create
462 		 * a new vnode if necessary)
463 		 */
464 		error = EAGAIN;
465 		goto putvnode;
466 	}
467 
468 	vgone(vp);
469 putvnode:
470 	vput(vp);
471 	NDFREE_PNBUF(&nd);
472 out:
473 	free(buf, M_TEMP);
474 	return (error);
475 }
476 
477 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)478 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
479 {
480 	struct thread *td = curthread;
481 	struct vnode *vp;
482 	struct file *fp;
483 	int error;
484 	int fd;
485 
486 	if (req->newptr == NULL)
487 		return (EBADF);
488 
489         error = sysctl_handle_int(oidp, &fd, 0, req);
490         if (error != 0)
491                 return (error);
492 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
493 	if (error != 0)
494 		return (error);
495 	vp = fp->f_vnode;
496 
497 	error = vn_lock(vp, LK_EXCLUSIVE);
498 	if (error != 0)
499 		goto drop;
500 
501 	vgone(vp);
502 	VOP_UNLOCK(vp);
503 drop:
504 	fdrop(fp, td);
505 	return (error);
506 }
507 
508 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
509     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
510     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
511 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
512     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
513     sysctl_ftry_reclaim_vnode, "I",
514     "Try to reclaim a vnode by its file descriptor");
515 
516 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
517 #define vnsz2log 8
518 #ifndef DEBUG_LOCKS
519 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
520     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
521     "vnsz2log needs to be updated");
522 #endif
523 
524 /*
525  * Support for the bufobj clean & dirty pctrie.
526  */
527 static void *
buf_trie_alloc(struct pctrie * ptree)528 buf_trie_alloc(struct pctrie *ptree)
529 {
530 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
531 }
532 
533 static void
buf_trie_free(struct pctrie * ptree,void * node)534 buf_trie_free(struct pctrie *ptree, void *node)
535 {
536 	uma_zfree_smr(buf_trie_zone, node);
537 }
538 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
539     buf_trie_smr);
540 
541 /*
542  * Lookup the next element greater than or equal to lblkno, accounting for the
543  * fact that, for pctries, negative values are greater than nonnegative ones.
544  */
545 static struct buf *
buf_lookup_ge(struct bufv * bv,daddr_t lblkno)546 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
547 {
548 	struct buf *bp;
549 
550 	bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
551 	if (bp == NULL && lblkno < 0)
552 		bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
553 	if (bp != NULL && bp->b_lblkno < lblkno)
554 		bp = NULL;
555 	return (bp);
556 }
557 
558 /*
559  * Insert bp, and find the next element smaller than bp, accounting for the fact
560  * that, for pctries, negative values are greater than nonnegative ones.
561  */
562 static int
buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)563 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
564 {
565 	int error;
566 
567 	error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
568 	if (error != EEXIST) {
569 		if (*n == NULL && bp->b_lblkno >= 0)
570 			*n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
571 		if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
572 			*n = NULL;
573 	}
574 	return (error);
575 }
576 
577 /*
578  * Initialize the vnode management data structures.
579  *
580  * Reevaluate the following cap on the number of vnodes after the physical
581  * memory size exceeds 512GB.  In the limit, as the physical memory size
582  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
583  */
584 #ifndef	MAXVNODES_MAX
585 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
586 #endif
587 
588 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
589 
590 static struct vnode *
vn_alloc_marker(struct mount * mp)591 vn_alloc_marker(struct mount *mp)
592 {
593 	struct vnode *vp;
594 
595 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
596 	vp->v_type = VMARKER;
597 	vp->v_mount = mp;
598 
599 	return (vp);
600 }
601 
602 static void
vn_free_marker(struct vnode * vp)603 vn_free_marker(struct vnode *vp)
604 {
605 
606 	MPASS(vp->v_type == VMARKER);
607 	free(vp, M_VNODE_MARKER);
608 }
609 
610 #ifdef KASAN
611 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)612 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
613 {
614 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
615 	return (0);
616 }
617 
618 static void
vnode_dtor(void * mem,int size,void * arg __unused)619 vnode_dtor(void *mem, int size, void *arg __unused)
620 {
621 	size_t end1, end2, off1, off2;
622 
623 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
624 	    offsetof(struct vnode, v_dbatchcpu),
625 	    "KASAN marks require updating");
626 
627 	off1 = offsetof(struct vnode, v_vnodelist);
628 	off2 = offsetof(struct vnode, v_dbatchcpu);
629 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
630 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
631 
632 	/*
633 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
634 	 * after the vnode has been freed.  Try to get some KASAN coverage by
635 	 * marking everything except those two fields as invalid.  Because
636 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
637 	 * the same 8-byte aligned word must also be marked valid.
638 	 */
639 
640 	/* Handle the area from the start until v_vnodelist... */
641 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
642 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
643 
644 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
645 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
646 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
647 	if (off2 > off1)
648 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
649 		    off2 - off1, KASAN_UMA_FREED);
650 
651 	/* ... and finally the area from v_dbatchcpu to the end. */
652 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
653 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
654 	    KASAN_UMA_FREED);
655 }
656 #endif /* KASAN */
657 
658 /*
659  * Initialize a vnode as it first enters the zone.
660  */
661 static int
vnode_init(void * mem,int size,int flags)662 vnode_init(void *mem, int size, int flags)
663 {
664 	struct vnode *vp;
665 
666 	vp = mem;
667 	bzero(vp, size);
668 	/*
669 	 * Setup locks.
670 	 */
671 	vp->v_vnlock = &vp->v_lock;
672 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
673 	/*
674 	 * By default, don't allow shared locks unless filesystems opt-in.
675 	 */
676 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
677 	    LK_NOSHARE | LK_IS_VNODE);
678 	/*
679 	 * Initialize bufobj.
680 	 */
681 	bufobj_init(&vp->v_bufobj, vp);
682 	/*
683 	 * Initialize namecache.
684 	 */
685 	cache_vnode_init(vp);
686 	/*
687 	 * Initialize rangelocks.
688 	 */
689 	rangelock_init(&vp->v_rl);
690 
691 	vp->v_dbatchcpu = NOCPU;
692 
693 	vp->v_state = VSTATE_DEAD;
694 
695 	/*
696 	 * Check vhold_recycle_free for an explanation.
697 	 */
698 	vp->v_holdcnt = VHOLD_NO_SMR;
699 	vp->v_type = VNON;
700 	mtx_lock(&vnode_list_mtx);
701 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
702 	mtx_unlock(&vnode_list_mtx);
703 	return (0);
704 }
705 
706 /*
707  * Free a vnode when it is cleared from the zone.
708  */
709 static void
vnode_fini(void * mem,int size)710 vnode_fini(void *mem, int size)
711 {
712 	struct vnode *vp;
713 	struct bufobj *bo;
714 
715 	vp = mem;
716 	vdbatch_dequeue(vp);
717 	mtx_lock(&vnode_list_mtx);
718 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
719 	mtx_unlock(&vnode_list_mtx);
720 	rangelock_destroy(&vp->v_rl);
721 	lockdestroy(vp->v_vnlock);
722 	mtx_destroy(&vp->v_interlock);
723 	bo = &vp->v_bufobj;
724 	rw_destroy(BO_LOCKPTR(bo));
725 
726 	kasan_mark(mem, size, size, 0);
727 }
728 
729 /*
730  * Provide the size of NFS nclnode and NFS fh for calculation of the
731  * vnode memory consumption.  The size is specified directly to
732  * eliminate dependency on NFS-private header.
733  *
734  * Other filesystems may use bigger or smaller (like UFS and ZFS)
735  * private inode data, but the NFS-based estimation is ample enough.
736  * Still, we care about differences in the size between 64- and 32-bit
737  * platforms.
738  *
739  * Namecache structure size is heuristically
740  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
741  */
742 #ifdef _LP64
743 #define	NFS_NCLNODE_SZ	(528 + 64)
744 #define	NC_SZ		148
745 #else
746 #define	NFS_NCLNODE_SZ	(360 + 32)
747 #define	NC_SZ		92
748 #endif
749 
750 static void
vntblinit(void * dummy __unused)751 vntblinit(void *dummy __unused)
752 {
753 	struct vdbatch *vd;
754 	uma_ctor ctor;
755 	uma_dtor dtor;
756 	int cpu, physvnodes, virtvnodes;
757 
758 	/*
759 	 * 'desiredvnodes' is the minimum of a function of the physical memory
760 	 * size and another of the kernel heap size (UMA limit, a portion of the
761 	 * KVA).
762 	 *
763 	 * Currently, on 64-bit platforms, 'desiredvnodes' is set to
764 	 * 'virtvnodes' up to a physical memory cutoff of ~1722MB, after which
765 	 * 'physvnodes' applies instead.  With the current automatic tuning for
766 	 * 'maxfiles' (32 files/MB), 'desiredvnodes' is always greater than it.
767 	 */
768 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 32 +
769 	    min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 32;
770 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
771 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
772 	desiredvnodes = min(physvnodes, virtvnodes);
773 	if (desiredvnodes > MAXVNODES_MAX) {
774 		if (bootverbose)
775 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
776 			    desiredvnodes, MAXVNODES_MAX);
777 		desiredvnodes = MAXVNODES_MAX;
778 	}
779 	wantfreevnodes = desiredvnodes / 4;
780 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
781 	TAILQ_INIT(&vnode_list);
782 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
783 	/*
784 	 * The lock is taken to appease WITNESS.
785 	 */
786 	mtx_lock(&vnode_list_mtx);
787 	vnlru_recalc();
788 	mtx_unlock(&vnode_list_mtx);
789 	vnode_list_free_marker = vn_alloc_marker(NULL);
790 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
791 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
792 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
793 
794 #ifdef KASAN
795 	ctor = vnode_ctor;
796 	dtor = vnode_dtor;
797 #else
798 	ctor = NULL;
799 	dtor = NULL;
800 #endif
801 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
802 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
803 	uma_zone_set_smr(vnode_zone, vfs_smr);
804 
805 	/*
806 	 * Preallocate enough nodes to support one-per buf so that
807 	 * we can not fail an insert.  reassignbuf() callers can not
808 	 * tolerate the insertion failure.
809 	 */
810 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
811 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
812 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
813 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
814 	uma_prealloc(buf_trie_zone, nbuf);
815 
816 	vnodes_created = counter_u64_alloc(M_WAITOK);
817 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
818 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
819 
820 	/*
821 	 * Initialize the filesystem syncer.
822 	 */
823 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
824 	    &syncer_mask);
825 	syncer_maxdelay = syncer_mask + 1;
826 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
827 	cv_init(&sync_wakeup, "syncer");
828 
829 	CPU_FOREACH(cpu) {
830 		vd = DPCPU_ID_PTR((cpu), vd);
831 		bzero(vd, sizeof(*vd));
832 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
833 	}
834 }
835 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
836 
837 /*
838  * Mark a mount point as busy. Used to synchronize access and to delay
839  * unmounting. Eventually, mountlist_mtx is not released on failure.
840  *
841  * vfs_busy() is a custom lock, it can block the caller.
842  * vfs_busy() only sleeps if the unmount is active on the mount point.
843  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
844  * vnode belonging to mp.
845  *
846  * Lookup uses vfs_busy() to traverse mount points.
847  * root fs			var fs
848  * / vnode lock		A	/ vnode lock (/var)		D
849  * /var vnode lock	B	/log vnode lock(/var/log)	E
850  * vfs_busy lock	C	vfs_busy lock			F
851  *
852  * Within each file system, the lock order is C->A->B and F->D->E.
853  *
854  * When traversing across mounts, the system follows that lock order:
855  *
856  *        C->A->B
857  *              |
858  *              +->F->D->E
859  *
860  * The lookup() process for namei("/var") illustrates the process:
861  *  1. VOP_LOOKUP() obtains B while A is held
862  *  2. vfs_busy() obtains a shared lock on F while A and B are held
863  *  3. vput() releases lock on B
864  *  4. vput() releases lock on A
865  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
866  *  6. vfs_unbusy() releases shared lock on F
867  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
868  *     Attempt to lock A (instead of vp_crossmp) while D is held would
869  *     violate the global order, causing deadlocks.
870  *
871  * dounmount() locks B while F is drained.  Note that for stacked
872  * filesystems, D and B in the example above may be the same lock,
873  * which introdues potential lock order reversal deadlock between
874  * dounmount() and step 5 above.  These filesystems may avoid the LOR
875  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
876  * remain held until after step 5.
877  */
878 int
vfs_busy(struct mount * mp,int flags)879 vfs_busy(struct mount *mp, int flags)
880 {
881 	struct mount_pcpu *mpcpu;
882 
883 	MPASS((flags & ~MBF_MASK) == 0);
884 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
885 
886 	if (vfs_op_thread_enter(mp, mpcpu)) {
887 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
888 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
889 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
890 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
891 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
892 		vfs_op_thread_exit(mp, mpcpu);
893 		if (flags & MBF_MNTLSTLOCK)
894 			mtx_unlock(&mountlist_mtx);
895 		return (0);
896 	}
897 
898 	MNT_ILOCK(mp);
899 	vfs_assert_mount_counters(mp);
900 	MNT_REF(mp);
901 	/*
902 	 * If mount point is currently being unmounted, sleep until the
903 	 * mount point fate is decided.  If thread doing the unmounting fails,
904 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
905 	 * that this mount point has survived the unmount attempt and vfs_busy
906 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
907 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
908 	 * about to be really destroyed.  vfs_busy needs to release its
909 	 * reference on the mount point in this case and return with ENOENT,
910 	 * telling the caller the mount it tried to busy is no longer valid.
911 	 */
912 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
913 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
914 		    ("%s: non-empty upper mount list with pending unmount",
915 		    __func__));
916 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
917 			MNT_REL(mp);
918 			MNT_IUNLOCK(mp);
919 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
920 			    __func__);
921 			return (ENOENT);
922 		}
923 		if (flags & MBF_MNTLSTLOCK)
924 			mtx_unlock(&mountlist_mtx);
925 		mp->mnt_kern_flag |= MNTK_MWAIT;
926 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
927 		if (flags & MBF_MNTLSTLOCK)
928 			mtx_lock(&mountlist_mtx);
929 		MNT_ILOCK(mp);
930 	}
931 	if (flags & MBF_MNTLSTLOCK)
932 		mtx_unlock(&mountlist_mtx);
933 	mp->mnt_lockref++;
934 	MNT_IUNLOCK(mp);
935 	return (0);
936 }
937 
938 /*
939  * Free a busy filesystem.
940  */
941 void
vfs_unbusy(struct mount * mp)942 vfs_unbusy(struct mount *mp)
943 {
944 	struct mount_pcpu *mpcpu;
945 	int c;
946 
947 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
948 
949 	if (vfs_op_thread_enter(mp, mpcpu)) {
950 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
951 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
952 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
953 		vfs_op_thread_exit(mp, mpcpu);
954 		return;
955 	}
956 
957 	MNT_ILOCK(mp);
958 	vfs_assert_mount_counters(mp);
959 	MNT_REL(mp);
960 	c = --mp->mnt_lockref;
961 	if (mp->mnt_vfs_ops == 0) {
962 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
963 		MNT_IUNLOCK(mp);
964 		return;
965 	}
966 	if (c < 0)
967 		vfs_dump_mount_counters(mp);
968 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
969 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
970 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
971 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
972 		wakeup(&mp->mnt_lockref);
973 	}
974 	MNT_IUNLOCK(mp);
975 }
976 
977 /*
978  * Lookup a mount point by filesystem identifier.
979  */
980 struct mount *
vfs_getvfs(fsid_t * fsid)981 vfs_getvfs(fsid_t *fsid)
982 {
983 	struct mount *mp;
984 
985 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
986 	mtx_lock(&mountlist_mtx);
987 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
988 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
989 			vfs_ref(mp);
990 			mtx_unlock(&mountlist_mtx);
991 			return (mp);
992 		}
993 	}
994 	mtx_unlock(&mountlist_mtx);
995 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
996 	return ((struct mount *) 0);
997 }
998 
999 /*
1000  * Lookup a mount point by filesystem identifier, busying it before
1001  * returning.
1002  *
1003  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1004  * cache for popular filesystem identifiers.  The cache is lockess, using
1005  * the fact that struct mount's are never freed.  In worst case we may
1006  * get pointer to unmounted or even different filesystem, so we have to
1007  * check what we got, and go slow way if so.
1008  */
1009 struct mount *
vfs_busyfs(fsid_t * fsid)1010 vfs_busyfs(fsid_t *fsid)
1011 {
1012 #define	FSID_CACHE_SIZE	256
1013 	typedef struct mount * volatile vmp_t;
1014 	static vmp_t cache[FSID_CACHE_SIZE];
1015 	struct mount *mp;
1016 	int error;
1017 	uint32_t hash;
1018 
1019 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1020 	hash = fsid->val[0] ^ fsid->val[1];
1021 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1022 	mp = cache[hash];
1023 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1024 		goto slow;
1025 	if (vfs_busy(mp, 0) != 0) {
1026 		cache[hash] = NULL;
1027 		goto slow;
1028 	}
1029 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1030 		return (mp);
1031 	else
1032 	    vfs_unbusy(mp);
1033 
1034 slow:
1035 	mtx_lock(&mountlist_mtx);
1036 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1037 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1038 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
1039 			if (error) {
1040 				cache[hash] = NULL;
1041 				mtx_unlock(&mountlist_mtx);
1042 				return (NULL);
1043 			}
1044 			cache[hash] = mp;
1045 			return (mp);
1046 		}
1047 	}
1048 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1049 	mtx_unlock(&mountlist_mtx);
1050 	return ((struct mount *) 0);
1051 }
1052 
1053 /*
1054  * Check if a user can access privileged mount options.
1055  */
1056 int
vfs_suser(struct mount * mp,struct thread * td)1057 vfs_suser(struct mount *mp, struct thread *td)
1058 {
1059 	int error;
1060 
1061 	if (jailed(td->td_ucred)) {
1062 		/*
1063 		 * If the jail of the calling thread lacks permission for
1064 		 * this type of file system, deny immediately.
1065 		 */
1066 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1067 			return (EPERM);
1068 
1069 		/*
1070 		 * If the file system was mounted outside the jail of the
1071 		 * calling thread, deny immediately.
1072 		 */
1073 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1074 			return (EPERM);
1075 	}
1076 
1077 	/*
1078 	 * If file system supports delegated administration, we don't check
1079 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1080 	 * by the file system itself.
1081 	 * If this is not the user that did original mount, we check for
1082 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1083 	 */
1084 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1085 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1086 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1087 			return (error);
1088 	}
1089 	return (0);
1090 }
1091 
1092 /*
1093  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1094  * will be used to create fake device numbers for stat().  Also try (but
1095  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1096  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1097  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1098  *
1099  * Keep in mind that several mounts may be running in parallel.  Starting
1100  * the search one past where the previous search terminated is both a
1101  * micro-optimization and a defense against returning the same fsid to
1102  * different mounts.
1103  */
1104 void
vfs_getnewfsid(struct mount * mp)1105 vfs_getnewfsid(struct mount *mp)
1106 {
1107 	static uint16_t mntid_base;
1108 	struct mount *nmp;
1109 	fsid_t tfsid;
1110 	int mtype;
1111 
1112 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1113 	mtx_lock(&mntid_mtx);
1114 	mtype = mp->mnt_vfc->vfc_typenum;
1115 	tfsid.val[1] = mtype;
1116 	mtype = (mtype & 0xFF) << 24;
1117 	for (;;) {
1118 		tfsid.val[0] = makedev(255,
1119 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1120 		mntid_base++;
1121 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1122 			break;
1123 		vfs_rel(nmp);
1124 	}
1125 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1126 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1127 	mtx_unlock(&mntid_mtx);
1128 }
1129 
1130 /*
1131  * Knob to control the precision of file timestamps:
1132  *
1133  *   0 = seconds only; nanoseconds zeroed.
1134  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1135  *   2 = seconds and nanoseconds, truncated to microseconds.
1136  * >=3 = seconds and nanoseconds, maximum precision.
1137  */
1138 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1139 
1140 static int timestamp_precision = TSP_USEC;
1141 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1142     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1143     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1144     "3+: sec + ns (max. precision))");
1145 
1146 /*
1147  * Get a current timestamp.
1148  */
1149 void
vfs_timestamp(struct timespec * tsp)1150 vfs_timestamp(struct timespec *tsp)
1151 {
1152 	struct timeval tv;
1153 
1154 	switch (timestamp_precision) {
1155 	case TSP_SEC:
1156 		tsp->tv_sec = time_second;
1157 		tsp->tv_nsec = 0;
1158 		break;
1159 	case TSP_HZ:
1160 		getnanotime(tsp);
1161 		break;
1162 	case TSP_USEC:
1163 		microtime(&tv);
1164 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1165 		break;
1166 	case TSP_NSEC:
1167 	default:
1168 		nanotime(tsp);
1169 		break;
1170 	}
1171 }
1172 
1173 /*
1174  * Set vnode attributes to VNOVAL
1175  */
1176 void
vattr_null(struct vattr * vap)1177 vattr_null(struct vattr *vap)
1178 {
1179 
1180 	vap->va_type = VNON;
1181 	vap->va_size = VNOVAL;
1182 	vap->va_bytes = VNOVAL;
1183 	vap->va_mode = VNOVAL;
1184 	vap->va_nlink = VNOVAL;
1185 	vap->va_uid = VNOVAL;
1186 	vap->va_gid = VNOVAL;
1187 	vap->va_fsid = VNOVAL;
1188 	vap->va_fileid = VNOVAL;
1189 	vap->va_blocksize = VNOVAL;
1190 	vap->va_rdev = VNOVAL;
1191 	vap->va_atime.tv_sec = VNOVAL;
1192 	vap->va_atime.tv_nsec = VNOVAL;
1193 	vap->va_mtime.tv_sec = VNOVAL;
1194 	vap->va_mtime.tv_nsec = VNOVAL;
1195 	vap->va_ctime.tv_sec = VNOVAL;
1196 	vap->va_ctime.tv_nsec = VNOVAL;
1197 	vap->va_birthtime.tv_sec = VNOVAL;
1198 	vap->va_birthtime.tv_nsec = VNOVAL;
1199 	vap->va_flags = VNOVAL;
1200 	vap->va_gen = VNOVAL;
1201 	vap->va_vaflags = 0;
1202 	vap->va_filerev = VNOVAL;
1203 	vap->va_bsdflags = 0;
1204 }
1205 
1206 /*
1207  * Try to reduce the total number of vnodes.
1208  *
1209  * This routine (and its user) are buggy in at least the following ways:
1210  * - all parameters were picked years ago when RAM sizes were significantly
1211  *   smaller
1212  * - it can pick vnodes based on pages used by the vm object, but filesystems
1213  *   like ZFS don't use it making the pick broken
1214  * - since ZFS has its own aging policy it gets partially combated by this one
1215  * - a dedicated method should be provided for filesystems to let them decide
1216  *   whether the vnode should be recycled
1217  *
1218  * This routine is called when we have too many vnodes.  It attempts
1219  * to free <count> vnodes and will potentially free vnodes that still
1220  * have VM backing store (VM backing store is typically the cause
1221  * of a vnode blowout so we want to do this).  Therefore, this operation
1222  * is not considered cheap.
1223  *
1224  * A number of conditions may prevent a vnode from being reclaimed.
1225  * the buffer cache may have references on the vnode, a directory
1226  * vnode may still have references due to the namei cache representing
1227  * underlying files, or the vnode may be in active use.   It is not
1228  * desirable to reuse such vnodes.  These conditions may cause the
1229  * number of vnodes to reach some minimum value regardless of what
1230  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1231  *
1232  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1233  * 			 entries if this argument is strue
1234  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1235  *			 pages.
1236  * @param target	 How many vnodes to reclaim.
1237  * @return		 The number of vnodes that were reclaimed.
1238  */
1239 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1240 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1241 {
1242 	struct vnode *vp, *mvp;
1243 	struct mount *mp;
1244 	struct vm_object *object;
1245 	u_long done;
1246 	bool retried;
1247 
1248 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1249 
1250 	retried = false;
1251 	done = 0;
1252 
1253 	mvp = vnode_list_reclaim_marker;
1254 restart:
1255 	vp = mvp;
1256 	while (done < target) {
1257 		vp = TAILQ_NEXT(vp, v_vnodelist);
1258 		if (__predict_false(vp == NULL))
1259 			break;
1260 
1261 		if (__predict_false(vp->v_type == VMARKER))
1262 			continue;
1263 
1264 		/*
1265 		 * If it's been deconstructed already, it's still
1266 		 * referenced, or it exceeds the trigger, skip it.
1267 		 * Also skip free vnodes.  We are trying to make space
1268 		 * for more free vnodes, not reduce their count.
1269 		 */
1270 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1271 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1272 			goto next_iter;
1273 
1274 		if (vp->v_type == VBAD || vp->v_type == VNON)
1275 			goto next_iter;
1276 
1277 		object = atomic_load_ptr(&vp->v_object);
1278 		if (object == NULL || object->resident_page_count > trigger) {
1279 			goto next_iter;
1280 		}
1281 
1282 		/*
1283 		 * Handle races against vnode allocation. Filesystems lock the
1284 		 * vnode some time after it gets returned from getnewvnode,
1285 		 * despite type and hold count being manipulated earlier.
1286 		 * Resorting to checking v_mount restores guarantees present
1287 		 * before the global list was reworked to contain all vnodes.
1288 		 */
1289 		if (!VI_TRYLOCK(vp))
1290 			goto next_iter;
1291 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1292 			VI_UNLOCK(vp);
1293 			goto next_iter;
1294 		}
1295 		if (vp->v_mount == NULL) {
1296 			VI_UNLOCK(vp);
1297 			goto next_iter;
1298 		}
1299 		vholdl(vp);
1300 		VI_UNLOCK(vp);
1301 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1303 		mtx_unlock(&vnode_list_mtx);
1304 
1305 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1306 			vdrop_recycle(vp);
1307 			goto next_iter_unlocked;
1308 		}
1309 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1310 			vdrop_recycle(vp);
1311 			vn_finished_write(mp);
1312 			goto next_iter_unlocked;
1313 		}
1314 
1315 		VI_LOCK(vp);
1316 		if (vp->v_usecount > 0 ||
1317 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1318 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1319 		    vp->v_object->resident_page_count > trigger)) {
1320 			VOP_UNLOCK(vp);
1321 			vdropl_recycle(vp);
1322 			vn_finished_write(mp);
1323 			goto next_iter_unlocked;
1324 		}
1325 		recycles_count++;
1326 		vgonel(vp);
1327 		VOP_UNLOCK(vp);
1328 		vdropl_recycle(vp);
1329 		vn_finished_write(mp);
1330 		done++;
1331 next_iter_unlocked:
1332 		maybe_yield();
1333 		mtx_lock(&vnode_list_mtx);
1334 		goto restart;
1335 next_iter:
1336 		MPASS(vp->v_type != VMARKER);
1337 		if (!should_yield())
1338 			continue;
1339 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1340 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1341 		mtx_unlock(&vnode_list_mtx);
1342 		kern_yield(PRI_USER);
1343 		mtx_lock(&vnode_list_mtx);
1344 		goto restart;
1345 	}
1346 	if (done == 0 && !retried) {
1347 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1348 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1349 		retried = true;
1350 		goto restart;
1351 	}
1352 	return (done);
1353 }
1354 
1355 static int max_free_per_call = 10000;
1356 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1357     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1358 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1359     &max_free_per_call, 0,
1360     "limit on vnode free requests per call to the vnlru_free routine");
1361 
1362 /*
1363  * Attempt to recycle requested amount of free vnodes.
1364  */
1365 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1366 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1367 {
1368 	struct vnode *vp;
1369 	struct mount *mp;
1370 	int ocount;
1371 	bool retried;
1372 
1373 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1374 	if (count > max_free_per_call)
1375 		count = max_free_per_call;
1376 	if (count == 0) {
1377 		mtx_unlock(&vnode_list_mtx);
1378 		return (0);
1379 	}
1380 	ocount = count;
1381 	retried = false;
1382 	vp = mvp;
1383 	for (;;) {
1384 		vp = TAILQ_NEXT(vp, v_vnodelist);
1385 		if (__predict_false(vp == NULL)) {
1386 			/*
1387 			 * The free vnode marker can be past eligible vnodes:
1388 			 * 1. if vdbatch_process trylock failed
1389 			 * 2. if vtryrecycle failed
1390 			 *
1391 			 * If so, start the scan from scratch.
1392 			 */
1393 			if (!retried && vnlru_read_freevnodes() > 0) {
1394 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1395 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1396 				vp = mvp;
1397 				retried = true;
1398 				continue;
1399 			}
1400 
1401 			/*
1402 			 * Give up
1403 			 */
1404 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1405 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1406 			mtx_unlock(&vnode_list_mtx);
1407 			break;
1408 		}
1409 		if (__predict_false(vp->v_type == VMARKER))
1410 			continue;
1411 		if (vp->v_holdcnt > 0)
1412 			continue;
1413 		/*
1414 		 * Don't recycle if our vnode is from different type
1415 		 * of mount point.  Note that mp is type-safe, the
1416 		 * check does not reach unmapped address even if
1417 		 * vnode is reclaimed.
1418 		 */
1419 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1420 		    mp->mnt_op != mnt_op) {
1421 			continue;
1422 		}
1423 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1424 			continue;
1425 		}
1426 		if (!vhold_recycle_free(vp))
1427 			continue;
1428 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1429 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1430 		mtx_unlock(&vnode_list_mtx);
1431 		/*
1432 		 * FIXME: ignores the return value, meaning it may be nothing
1433 		 * got recycled but it claims otherwise to the caller.
1434 		 *
1435 		 * Originally the value started being ignored in 2005 with
1436 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1437 		 *
1438 		 * Respecting the value can run into significant stalls if most
1439 		 * vnodes belong to one file system and it has writes
1440 		 * suspended.  In presence of many threads and millions of
1441 		 * vnodes they keep contending on the vnode_list_mtx lock only
1442 		 * to find vnodes they can't recycle.
1443 		 *
1444 		 * The solution would be to pre-check if the vnode is likely to
1445 		 * be recycle-able, but it needs to happen with the
1446 		 * vnode_list_mtx lock held. This runs into a problem where
1447 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1448 		 * writes are frozen) can take locks which LOR against it.
1449 		 *
1450 		 * Check nullfs for one example (null_getwritemount).
1451 		 */
1452 		vtryrecycle(vp, isvnlru);
1453 		count--;
1454 		if (count == 0) {
1455 			break;
1456 		}
1457 		mtx_lock(&vnode_list_mtx);
1458 		vp = mvp;
1459 	}
1460 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1461 	return (ocount - count);
1462 }
1463 
1464 /*
1465  * XXX: returns without vnode_list_mtx locked!
1466  */
1467 static int
vnlru_free_locked_direct(int count)1468 vnlru_free_locked_direct(int count)
1469 {
1470 	int ret;
1471 
1472 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1473 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1474 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1475 	return (ret);
1476 }
1477 
1478 static int
vnlru_free_locked_vnlru(int count)1479 vnlru_free_locked_vnlru(int count)
1480 {
1481 	int ret;
1482 
1483 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1484 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1485 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1486 	return (ret);
1487 }
1488 
1489 static int
vnlru_free_vnlru(int count)1490 vnlru_free_vnlru(int count)
1491 {
1492 
1493 	mtx_lock(&vnode_list_mtx);
1494 	return (vnlru_free_locked_vnlru(count));
1495 }
1496 
1497 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1498 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1499 {
1500 
1501 	MPASS(mnt_op != NULL);
1502 	MPASS(mvp != NULL);
1503 	VNPASS(mvp->v_type == VMARKER, mvp);
1504 	mtx_lock(&vnode_list_mtx);
1505 	vnlru_free_impl(count, mnt_op, mvp, true);
1506 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1507 }
1508 
1509 struct vnode *
vnlru_alloc_marker(void)1510 vnlru_alloc_marker(void)
1511 {
1512 	struct vnode *mvp;
1513 
1514 	mvp = vn_alloc_marker(NULL);
1515 	mtx_lock(&vnode_list_mtx);
1516 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1517 	mtx_unlock(&vnode_list_mtx);
1518 	return (mvp);
1519 }
1520 
1521 void
vnlru_free_marker(struct vnode * mvp)1522 vnlru_free_marker(struct vnode *mvp)
1523 {
1524 	mtx_lock(&vnode_list_mtx);
1525 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1526 	mtx_unlock(&vnode_list_mtx);
1527 	vn_free_marker(mvp);
1528 }
1529 
1530 static void
vnlru_recalc(void)1531 vnlru_recalc(void)
1532 {
1533 
1534 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1535 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1536 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1537 	vlowat = vhiwat / 2;
1538 }
1539 
1540 /*
1541  * Attempt to recycle vnodes in a context that is always safe to block.
1542  * Calling vlrurecycle() from the bowels of filesystem code has some
1543  * interesting deadlock problems.
1544  */
1545 static struct proc *vnlruproc;
1546 static int vnlruproc_sig;
1547 static u_long vnlruproc_kicks;
1548 
1549 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1550     "Number of times vnlru awakened due to vnode shortage");
1551 
1552 #define VNLRU_COUNT_SLOP 100
1553 
1554 /*
1555  * The main freevnodes counter is only updated when a counter local to CPU
1556  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1557  * walked to compute a more accurate total.
1558  *
1559  * Note: the actual value at any given moment can still exceed slop, but it
1560  * should not be by significant margin in practice.
1561  */
1562 #define VNLRU_FREEVNODES_SLOP 126
1563 
1564 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1565 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1566 {
1567 
1568 	atomic_add_long(&freevnodes, *lfreevnodes);
1569 	*lfreevnodes = 0;
1570 	critical_exit();
1571 }
1572 
1573 static __inline void
vfs_freevnodes_inc(void)1574 vfs_freevnodes_inc(void)
1575 {
1576 	int8_t *lfreevnodes;
1577 
1578 	critical_enter();
1579 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1580 	(*lfreevnodes)++;
1581 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1582 		vfs_freevnodes_rollup(lfreevnodes);
1583 	else
1584 		critical_exit();
1585 }
1586 
1587 static __inline void
vfs_freevnodes_dec(void)1588 vfs_freevnodes_dec(void)
1589 {
1590 	int8_t *lfreevnodes;
1591 
1592 	critical_enter();
1593 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1594 	(*lfreevnodes)--;
1595 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1596 		vfs_freevnodes_rollup(lfreevnodes);
1597 	else
1598 		critical_exit();
1599 }
1600 
1601 static u_long
vnlru_read_freevnodes(void)1602 vnlru_read_freevnodes(void)
1603 {
1604 	long slop, rfreevnodes, rfreevnodes_old;
1605 	int cpu;
1606 
1607 	rfreevnodes = atomic_load_long(&freevnodes);
1608 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1609 
1610 	if (rfreevnodes > rfreevnodes_old)
1611 		slop = rfreevnodes - rfreevnodes_old;
1612 	else
1613 		slop = rfreevnodes_old - rfreevnodes;
1614 	if (slop < VNLRU_FREEVNODES_SLOP)
1615 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1616 	CPU_FOREACH(cpu) {
1617 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1618 	}
1619 	atomic_store_long(&freevnodes_old, rfreevnodes);
1620 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1621 }
1622 
1623 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1624 vnlru_under(u_long rnumvnodes, u_long limit)
1625 {
1626 	u_long rfreevnodes, space;
1627 
1628 	if (__predict_false(rnumvnodes > desiredvnodes))
1629 		return (true);
1630 
1631 	space = desiredvnodes - rnumvnodes;
1632 	if (space < limit) {
1633 		rfreevnodes = vnlru_read_freevnodes();
1634 		if (rfreevnodes > wantfreevnodes)
1635 			space += rfreevnodes - wantfreevnodes;
1636 	}
1637 	return (space < limit);
1638 }
1639 
1640 static void
vnlru_kick_locked(void)1641 vnlru_kick_locked(void)
1642 {
1643 
1644 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1645 	if (vnlruproc_sig == 0) {
1646 		vnlruproc_sig = 1;
1647 		vnlruproc_kicks++;
1648 		wakeup(vnlruproc);
1649 	}
1650 }
1651 
1652 static void
vnlru_kick_cond(void)1653 vnlru_kick_cond(void)
1654 {
1655 
1656 	if (vnlru_read_freevnodes() > wantfreevnodes)
1657 		return;
1658 
1659 	if (vnlruproc_sig)
1660 		return;
1661 	mtx_lock(&vnode_list_mtx);
1662 	vnlru_kick_locked();
1663 	mtx_unlock(&vnode_list_mtx);
1664 }
1665 
1666 static void
vnlru_proc_sleep(void)1667 vnlru_proc_sleep(void)
1668 {
1669 
1670 	if (vnlruproc_sig) {
1671 		vnlruproc_sig = 0;
1672 		wakeup(&vnlruproc_sig);
1673 	}
1674 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1675 }
1676 
1677 /*
1678  * A lighter version of the machinery below.
1679  *
1680  * Tries to reach goals only by recycling free vnodes and does not invoke
1681  * uma_reclaim(UMA_RECLAIM_DRAIN).
1682  *
1683  * This works around pathological behavior in vnlru in presence of tons of free
1684  * vnodes, but without having to rewrite the machinery at this time. Said
1685  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1686  * (cycling through all levels of "force") when the count is transiently above
1687  * limit. This happens a lot when all vnodes are used up and vn_alloc
1688  * speculatively increments the counter.
1689  *
1690  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1691  * 1 million files in total and 20 find(1) processes stating them in parallel
1692  * (one per each tree).
1693  *
1694  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1695  * seconds to execute (time varies *wildly* between runs). With the workaround
1696  * it consistently stays around 20 seconds [it got further down with later
1697  * changes].
1698  *
1699  * That is to say the entire thing needs a fundamental redesign (most notably
1700  * to accommodate faster recycling), the above only tries to get it ouf the way.
1701  *
1702  * Return values are:
1703  * -1 -- fallback to regular vnlru loop
1704  *  0 -- do nothing, go to sleep
1705  * >0 -- recycle this many vnodes
1706  */
1707 static long
vnlru_proc_light_pick(void)1708 vnlru_proc_light_pick(void)
1709 {
1710 	u_long rnumvnodes, rfreevnodes;
1711 
1712 	if (vstir || vnlruproc_sig == 1)
1713 		return (-1);
1714 
1715 	rnumvnodes = atomic_load_long(&numvnodes);
1716 	rfreevnodes = vnlru_read_freevnodes();
1717 
1718 	/*
1719 	 * vnode limit might have changed and now we may be at a significant
1720 	 * excess. Bail if we can't sort it out with free vnodes.
1721 	 *
1722 	 * Due to atomic updates the count can legitimately go above
1723 	 * the limit for a short period, don't bother doing anything in
1724 	 * that case.
1725 	 */
1726 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1727 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1728 		    rfreevnodes <= wantfreevnodes) {
1729 			return (-1);
1730 		}
1731 
1732 		return (rnumvnodes - desiredvnodes);
1733 	}
1734 
1735 	/*
1736 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1737 	 * to begin with.
1738 	 */
1739 	if (rnumvnodes < wantfreevnodes) {
1740 		return (0);
1741 	}
1742 
1743 	if (rfreevnodes < wantfreevnodes) {
1744 		return (-1);
1745 	}
1746 
1747 	return (0);
1748 }
1749 
1750 static bool
vnlru_proc_light(void)1751 vnlru_proc_light(void)
1752 {
1753 	long freecount;
1754 
1755 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1756 
1757 	freecount = vnlru_proc_light_pick();
1758 	if (freecount == -1)
1759 		return (false);
1760 
1761 	if (freecount != 0) {
1762 		vnlru_free_vnlru(freecount);
1763 	}
1764 
1765 	mtx_lock(&vnode_list_mtx);
1766 	vnlru_proc_sleep();
1767 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1768 	return (true);
1769 }
1770 
1771 static u_long uma_reclaim_calls;
1772 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1773     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1774 
1775 static void
vnlru_proc(void)1776 vnlru_proc(void)
1777 {
1778 	u_long rnumvnodes, rfreevnodes, target;
1779 	unsigned long onumvnodes;
1780 	int done, force, trigger, usevnodes;
1781 	bool reclaim_nc_src, want_reread;
1782 
1783 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1784 	    SHUTDOWN_PRI_FIRST);
1785 
1786 	force = 0;
1787 	want_reread = false;
1788 	for (;;) {
1789 		kproc_suspend_check(vnlruproc);
1790 
1791 		if (force == 0 && vnlru_proc_light())
1792 			continue;
1793 
1794 		mtx_lock(&vnode_list_mtx);
1795 		rnumvnodes = atomic_load_long(&numvnodes);
1796 
1797 		if (want_reread) {
1798 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1799 			want_reread = false;
1800 		}
1801 
1802 		/*
1803 		 * If numvnodes is too large (due to desiredvnodes being
1804 		 * adjusted using its sysctl, or emergency growth), first
1805 		 * try to reduce it by discarding free vnodes.
1806 		 */
1807 		if (rnumvnodes > desiredvnodes + 10) {
1808 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1809 			mtx_lock(&vnode_list_mtx);
1810 			rnumvnodes = atomic_load_long(&numvnodes);
1811 		}
1812 		/*
1813 		 * Sleep if the vnode cache is in a good state.  This is
1814 		 * when it is not over-full and has space for about a 4%
1815 		 * or 9% expansion (by growing its size or inexcessively
1816 		 * reducing free vnode count).  Otherwise, try to reclaim
1817 		 * space for a 10% expansion.
1818 		 */
1819 		if (vstir && force == 0) {
1820 			force = 1;
1821 			vstir = false;
1822 		}
1823 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1824 			vnlru_proc_sleep();
1825 			continue;
1826 		}
1827 		rfreevnodes = vnlru_read_freevnodes();
1828 
1829 		onumvnodes = rnumvnodes;
1830 		/*
1831 		 * Calculate parameters for recycling.  These are the same
1832 		 * throughout the loop to give some semblance of fairness.
1833 		 * The trigger point is to avoid recycling vnodes with lots
1834 		 * of resident pages.  We aren't trying to free memory; we
1835 		 * are trying to recycle or at least free vnodes.
1836 		 */
1837 		if (rnumvnodes <= desiredvnodes)
1838 			usevnodes = rnumvnodes - rfreevnodes;
1839 		else
1840 			usevnodes = rnumvnodes;
1841 		if (usevnodes <= 0)
1842 			usevnodes = 1;
1843 		/*
1844 		 * The trigger value is chosen to give a conservatively
1845 		 * large value to ensure that it alone doesn't prevent
1846 		 * making progress.  The value can easily be so large that
1847 		 * it is effectively infinite in some congested and
1848 		 * misconfigured cases, and this is necessary.  Normally
1849 		 * it is about 8 to 100 (pages), which is quite large.
1850 		 */
1851 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1852 		if (force < 2)
1853 			trigger = vsmalltrigger;
1854 		reclaim_nc_src = force >= 3;
1855 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1856 		target = target / 10 + 1;
1857 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1858 		mtx_unlock(&vnode_list_mtx);
1859 		/*
1860 		 * Total number of vnodes can transiently go slightly above the
1861 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1862 		 * this happens.
1863 		 */
1864 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1865 		    numvnodes <= desiredvnodes) {
1866 			uma_reclaim_calls++;
1867 			uma_reclaim(UMA_RECLAIM_DRAIN);
1868 		}
1869 		if (done == 0) {
1870 			if (force == 0 || force == 1) {
1871 				force = 2;
1872 				continue;
1873 			}
1874 			if (force == 2) {
1875 				force = 3;
1876 				continue;
1877 			}
1878 			want_reread = true;
1879 			force = 0;
1880 			vnlru_nowhere++;
1881 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1882 		} else {
1883 			want_reread = true;
1884 			kern_yield(PRI_USER);
1885 		}
1886 	}
1887 }
1888 
1889 static struct kproc_desc vnlru_kp = {
1890 	"vnlru",
1891 	vnlru_proc,
1892 	&vnlruproc
1893 };
1894 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1895     &vnlru_kp);
1896 
1897 /*
1898  * Routines having to do with the management of the vnode table.
1899  */
1900 
1901 /*
1902  * Try to recycle a freed vnode.
1903  */
1904 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1905 vtryrecycle(struct vnode *vp, bool isvnlru)
1906 {
1907 	struct mount *vnmp;
1908 
1909 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1910 	VNPASS(vp->v_holdcnt > 0, vp);
1911 	/*
1912 	 * This vnode may found and locked via some other list, if so we
1913 	 * can't recycle it yet.
1914 	 */
1915 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1916 		CTR2(KTR_VFS,
1917 		    "%s: impossible to recycle, vp %p lock is already held",
1918 		    __func__, vp);
1919 		vdrop_recycle(vp);
1920 		return (EWOULDBLOCK);
1921 	}
1922 	/*
1923 	 * Don't recycle if its filesystem is being suspended.
1924 	 */
1925 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1926 		VOP_UNLOCK(vp);
1927 		CTR2(KTR_VFS,
1928 		    "%s: impossible to recycle, cannot start the write for %p",
1929 		    __func__, vp);
1930 		vdrop_recycle(vp);
1931 		return (EBUSY);
1932 	}
1933 	/*
1934 	 * If we got this far, we need to acquire the interlock and see if
1935 	 * anyone picked up this vnode from another list.  If not, we will
1936 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1937 	 * will skip over it.
1938 	 */
1939 	VI_LOCK(vp);
1940 	if (vp->v_usecount) {
1941 		VOP_UNLOCK(vp);
1942 		vdropl_recycle(vp);
1943 		vn_finished_write(vnmp);
1944 		CTR2(KTR_VFS,
1945 		    "%s: impossible to recycle, %p is already referenced",
1946 		    __func__, vp);
1947 		return (EBUSY);
1948 	}
1949 	if (!VN_IS_DOOMED(vp)) {
1950 		if (isvnlru)
1951 			recycles_free_count++;
1952 		else
1953 			counter_u64_add(direct_recycles_free_count, 1);
1954 		vgonel(vp);
1955 	}
1956 	VOP_UNLOCK(vp);
1957 	vdropl_recycle(vp);
1958 	vn_finished_write(vnmp);
1959 	return (0);
1960 }
1961 
1962 /*
1963  * Allocate a new vnode.
1964  *
1965  * The operation never returns an error. Returning an error was disabled
1966  * in r145385 (dated 2005) with the following comment:
1967  *
1968  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1969  *
1970  * Given the age of this commit (almost 15 years at the time of writing this
1971  * comment) restoring the ability to fail requires a significant audit of
1972  * all codepaths.
1973  *
1974  * The routine can try to free a vnode or stall for up to 1 second waiting for
1975  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1976  */
1977 static u_long vn_alloc_cyclecount;
1978 static u_long vn_alloc_sleeps;
1979 
1980 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1981     "Number of times vnode allocation blocked waiting on vnlru");
1982 
1983 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1984 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1985 {
1986 	u_long rfreevnodes;
1987 
1988 	if (bumped) {
1989 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1990 			atomic_subtract_long(&numvnodes, 1);
1991 			bumped = false;
1992 		}
1993 	}
1994 
1995 	mtx_lock(&vnode_list_mtx);
1996 
1997 	/*
1998 	 * Reload 'numvnodes', as since we acquired the lock, it may have
1999 	 * changed significantly if we waited, and 'rnumvnodes' above was only
2000 	 * actually passed if 'bumped' is true (else it is 0).
2001 	 */
2002 	rnumvnodes = atomic_load_long(&numvnodes);
2003 	if (rnumvnodes + !bumped < desiredvnodes) {
2004 		vn_alloc_cyclecount = 0;
2005 		mtx_unlock(&vnode_list_mtx);
2006 		goto alloc;
2007 	}
2008 
2009 	rfreevnodes = vnlru_read_freevnodes();
2010 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
2011 		vn_alloc_cyclecount = 0;
2012 		vstir = true;
2013 	}
2014 
2015 	/*
2016 	 * Grow the vnode cache if it will not be above its target max after
2017 	 * growing.  Otherwise, if there is at least one free vnode, try to
2018 	 * reclaim 1 item from it before growing the cache (possibly above its
2019 	 * target max if the reclamation failed or is delayed).
2020 	 */
2021 	if (vnlru_free_locked_direct(1) > 0)
2022 		goto alloc;
2023 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2024 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2025 		/*
2026 		 * Wait for space for a new vnode.
2027 		 */
2028 		if (bumped) {
2029 			atomic_subtract_long(&numvnodes, 1);
2030 			bumped = false;
2031 		}
2032 		mtx_lock(&vnode_list_mtx);
2033 		vnlru_kick_locked();
2034 		vn_alloc_sleeps++;
2035 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2036 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2037 		    vnlru_read_freevnodes() > 1)
2038 			vnlru_free_locked_direct(1);
2039 		else
2040 			mtx_unlock(&vnode_list_mtx);
2041 	}
2042 alloc:
2043 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2044 	if (!bumped)
2045 		atomic_add_long(&numvnodes, 1);
2046 	vnlru_kick_cond();
2047 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2048 }
2049 
2050 static struct vnode *
vn_alloc(struct mount * mp)2051 vn_alloc(struct mount *mp)
2052 {
2053 	u_long rnumvnodes;
2054 
2055 	if (__predict_false(vn_alloc_cyclecount != 0))
2056 		return (vn_alloc_hard(mp, 0, false));
2057 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2058 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2059 		return (vn_alloc_hard(mp, rnumvnodes, true));
2060 	}
2061 
2062 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2063 }
2064 
2065 static void
vn_free(struct vnode * vp)2066 vn_free(struct vnode *vp)
2067 {
2068 
2069 	atomic_subtract_long(&numvnodes, 1);
2070 	uma_zfree_smr(vnode_zone, vp);
2071 }
2072 
2073 /*
2074  * Allocate a new vnode.
2075  */
2076 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2077 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2078     struct vnode **vpp)
2079 {
2080 	struct vnode *vp;
2081 	struct thread *td;
2082 	struct lock_object *lo;
2083 
2084 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2085 
2086 	KASSERT(vops->registered,
2087 	    ("%s: not registered vector op %p\n", __func__, vops));
2088 	cache_validate_vop_vector(mp, vops);
2089 
2090 	td = curthread;
2091 	if (td->td_vp_reserved != NULL) {
2092 		vp = td->td_vp_reserved;
2093 		td->td_vp_reserved = NULL;
2094 	} else {
2095 		vp = vn_alloc(mp);
2096 	}
2097 	counter_u64_add(vnodes_created, 1);
2098 
2099 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2100 
2101 	/*
2102 	 * Locks are given the generic name "vnode" when created.
2103 	 * Follow the historic practice of using the filesystem
2104 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2105 	 *
2106 	 * Locks live in a witness group keyed on their name. Thus,
2107 	 * when a lock is renamed, it must also move from the witness
2108 	 * group of its old name to the witness group of its new name.
2109 	 *
2110 	 * The change only needs to be made when the vnode moves
2111 	 * from one filesystem type to another. We ensure that each
2112 	 * filesystem use a single static name pointer for its tag so
2113 	 * that we can compare pointers rather than doing a strcmp().
2114 	 */
2115 	lo = &vp->v_vnlock->lock_object;
2116 #ifdef WITNESS
2117 	if (lo->lo_name != tag) {
2118 #endif
2119 		lo->lo_name = tag;
2120 #ifdef WITNESS
2121 		WITNESS_DESTROY(lo);
2122 		WITNESS_INIT(lo, tag);
2123 	}
2124 #endif
2125 	/*
2126 	 * By default, don't allow shared locks unless filesystems opt-in.
2127 	 */
2128 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2129 	/*
2130 	 * Finalize various vnode identity bits.
2131 	 */
2132 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2133 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2134 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2135 	vp->v_type = VNON;
2136 	vp->v_op = vops;
2137 	vp->v_irflag = 0;
2138 	v_init_counters(vp);
2139 	vn_seqc_init(vp);
2140 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2141 #ifdef DIAGNOSTIC
2142 	if (mp == NULL && vops != &dead_vnodeops)
2143 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2144 #endif
2145 #ifdef MAC
2146 	mac_vnode_init(vp);
2147 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2148 		mac_vnode_associate_singlelabel(mp, vp);
2149 #endif
2150 	if (mp != NULL) {
2151 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2152 	}
2153 
2154 	/*
2155 	 * For the filesystems which do not use vfs_hash_insert(),
2156 	 * still initialize v_hash to have vfs_hash_index() useful.
2157 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2158 	 * its own hashing.
2159 	 */
2160 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2161 
2162 	*vpp = vp;
2163 	return (0);
2164 }
2165 
2166 void
getnewvnode_reserve(void)2167 getnewvnode_reserve(void)
2168 {
2169 	struct thread *td;
2170 
2171 	td = curthread;
2172 	MPASS(td->td_vp_reserved == NULL);
2173 	td->td_vp_reserved = vn_alloc(NULL);
2174 }
2175 
2176 void
getnewvnode_drop_reserve(void)2177 getnewvnode_drop_reserve(void)
2178 {
2179 	struct thread *td;
2180 
2181 	td = curthread;
2182 	if (td->td_vp_reserved != NULL) {
2183 		vn_free(td->td_vp_reserved);
2184 		td->td_vp_reserved = NULL;
2185 	}
2186 }
2187 
2188 static void __noinline
freevnode(struct vnode * vp)2189 freevnode(struct vnode *vp)
2190 {
2191 	struct bufobj *bo;
2192 
2193 	/*
2194 	 * The vnode has been marked for destruction, so free it.
2195 	 *
2196 	 * The vnode will be returned to the zone where it will
2197 	 * normally remain until it is needed for another vnode. We
2198 	 * need to cleanup (or verify that the cleanup has already
2199 	 * been done) any residual data left from its current use
2200 	 * so as not to contaminate the freshly allocated vnode.
2201 	 */
2202 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2203 	/*
2204 	 * Paired with vgone.
2205 	 */
2206 	vn_seqc_write_end_free(vp);
2207 
2208 	bo = &vp->v_bufobj;
2209 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2210 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2211 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2212 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2213 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2214 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2215 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2216 	    ("clean blk trie not empty"));
2217 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2218 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2219 	    ("dirty blk trie not empty"));
2220 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2221 	    ("Leaked inactivation"));
2222 	VI_UNLOCK(vp);
2223 	cache_assert_no_entries(vp);
2224 
2225 #ifdef MAC
2226 	mac_vnode_destroy(vp);
2227 #endif
2228 	if (vp->v_pollinfo != NULL) {
2229 		/*
2230 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2231 		 * here while having another vnode locked when trying to
2232 		 * satisfy a lookup and needing to recycle.
2233 		 */
2234 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2235 		destroy_vpollinfo(vp->v_pollinfo);
2236 		VOP_UNLOCK(vp);
2237 		vp->v_pollinfo = NULL;
2238 	}
2239 	vp->v_mountedhere = NULL;
2240 	vp->v_unpcb = NULL;
2241 	vp->v_rdev = NULL;
2242 	vp->v_fifoinfo = NULL;
2243 	vp->v_iflag = 0;
2244 	vp->v_vflag = 0;
2245 	bo->bo_flag = 0;
2246 	vn_free(vp);
2247 }
2248 
2249 /*
2250  * Delete from old mount point vnode list, if on one.
2251  */
2252 static void
delmntque(struct vnode * vp)2253 delmntque(struct vnode *vp)
2254 {
2255 	struct mount *mp;
2256 
2257 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2258 
2259 	mp = vp->v_mount;
2260 	MNT_ILOCK(mp);
2261 	VI_LOCK(vp);
2262 	vp->v_mount = NULL;
2263 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2264 		("bad mount point vnode list size"));
2265 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2266 	mp->mnt_nvnodelistsize--;
2267 	MNT_REL(mp);
2268 	MNT_IUNLOCK(mp);
2269 	/*
2270 	 * The caller expects the interlock to be still held.
2271 	 */
2272 	ASSERT_VI_LOCKED(vp, __func__);
2273 }
2274 
2275 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2276 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2277 {
2278 
2279 	KASSERT(vp->v_mount == NULL,
2280 		("insmntque: vnode already on per mount vnode list"));
2281 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2282 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2283 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2284 	} else {
2285 		KASSERT(!dtr,
2286 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2287 		    __func__));
2288 	}
2289 
2290 	/*
2291 	 * We acquire the vnode interlock early to ensure that the
2292 	 * vnode cannot be recycled by another process releasing a
2293 	 * holdcnt on it before we get it on both the vnode list
2294 	 * and the active vnode list. The mount mutex protects only
2295 	 * manipulation of the vnode list and the vnode freelist
2296 	 * mutex protects only manipulation of the active vnode list.
2297 	 * Hence the need to hold the vnode interlock throughout.
2298 	 */
2299 	MNT_ILOCK(mp);
2300 	VI_LOCK(vp);
2301 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2302 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2303 	    mp->mnt_nvnodelistsize == 0)) &&
2304 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2305 		VI_UNLOCK(vp);
2306 		MNT_IUNLOCK(mp);
2307 		if (dtr) {
2308 			vp->v_data = NULL;
2309 			vp->v_op = &dead_vnodeops;
2310 			vgone(vp);
2311 			vput(vp);
2312 		}
2313 		return (EBUSY);
2314 	}
2315 	vp->v_mount = mp;
2316 	MNT_REF(mp);
2317 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2318 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2319 		("neg mount point vnode list size"));
2320 	mp->mnt_nvnodelistsize++;
2321 	VI_UNLOCK(vp);
2322 	MNT_IUNLOCK(mp);
2323 	return (0);
2324 }
2325 
2326 /*
2327  * Insert into list of vnodes for the new mount point, if available.
2328  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2329  * leaves handling of the vnode to the caller.
2330  */
2331 int
insmntque(struct vnode * vp,struct mount * mp)2332 insmntque(struct vnode *vp, struct mount *mp)
2333 {
2334 	return (insmntque1_int(vp, mp, true));
2335 }
2336 
2337 int
insmntque1(struct vnode * vp,struct mount * mp)2338 insmntque1(struct vnode *vp, struct mount *mp)
2339 {
2340 	return (insmntque1_int(vp, mp, false));
2341 }
2342 
2343 /*
2344  * Flush out and invalidate all buffers associated with a bufobj
2345  * Called with the underlying object locked.
2346  */
2347 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2348 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2349 {
2350 	int error;
2351 
2352 	BO_LOCK(bo);
2353 	if (flags & V_SAVE) {
2354 		error = bufobj_wwait(bo, slpflag, slptimeo);
2355 		if (error) {
2356 			BO_UNLOCK(bo);
2357 			return (error);
2358 		}
2359 		if (bo->bo_dirty.bv_cnt > 0) {
2360 			BO_UNLOCK(bo);
2361 			do {
2362 				error = BO_SYNC(bo, MNT_WAIT);
2363 			} while (error == ERELOOKUP);
2364 			if (error != 0)
2365 				return (error);
2366 			BO_LOCK(bo);
2367 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2368 				BO_UNLOCK(bo);
2369 				return (EBUSY);
2370 			}
2371 		}
2372 	}
2373 	/*
2374 	 * If you alter this loop please notice that interlock is dropped and
2375 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2376 	 * no race conditions occur from this.
2377 	 */
2378 	do {
2379 		error = flushbuflist(&bo->bo_clean,
2380 		    flags, bo, slpflag, slptimeo);
2381 		if (error == 0 && !(flags & V_CLEANONLY))
2382 			error = flushbuflist(&bo->bo_dirty,
2383 			    flags, bo, slpflag, slptimeo);
2384 		if (error != 0 && error != EAGAIN) {
2385 			BO_UNLOCK(bo);
2386 			return (error);
2387 		}
2388 	} while (error != 0);
2389 
2390 	/*
2391 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2392 	 * have write I/O in-progress but if there is a VM object then the
2393 	 * VM object can also have read-I/O in-progress.
2394 	 */
2395 	do {
2396 		bufobj_wwait(bo, 0, 0);
2397 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2398 			BO_UNLOCK(bo);
2399 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2400 			BO_LOCK(bo);
2401 		}
2402 	} while (bo->bo_numoutput > 0);
2403 	BO_UNLOCK(bo);
2404 
2405 	/*
2406 	 * Destroy the copy in the VM cache, too.
2407 	 */
2408 	if (bo->bo_object != NULL &&
2409 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2410 		VM_OBJECT_WLOCK(bo->bo_object);
2411 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2412 		    OBJPR_CLEANONLY : 0);
2413 		VM_OBJECT_WUNLOCK(bo->bo_object);
2414 	}
2415 
2416 #ifdef INVARIANTS
2417 	BO_LOCK(bo);
2418 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2419 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2420 	    bo->bo_clean.bv_cnt > 0))
2421 		panic("vinvalbuf: flush failed");
2422 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2423 	    bo->bo_dirty.bv_cnt > 0)
2424 		panic("vinvalbuf: flush dirty failed");
2425 	BO_UNLOCK(bo);
2426 #endif
2427 	return (0);
2428 }
2429 
2430 /*
2431  * Flush out and invalidate all buffers associated with a vnode.
2432  * Called with the underlying object locked.
2433  */
2434 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2435 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2436 {
2437 
2438 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2439 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2440 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2441 		return (0);
2442 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2443 }
2444 
2445 /*
2446  * Flush out buffers on the specified list.
2447  *
2448  */
2449 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2450 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2451     int slptimeo)
2452 {
2453 	struct buf *bp, *nbp;
2454 	int retval, error;
2455 	daddr_t lblkno;
2456 	b_xflags_t xflags;
2457 
2458 	ASSERT_BO_WLOCKED(bo);
2459 
2460 	retval = 0;
2461 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2462 		/*
2463 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2464 		 * do not skip any buffers. If we are flushing only V_NORMAL
2465 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2466 		 * flushing only V_ALT buffers then skip buffers not marked
2467 		 * as BX_ALTDATA.
2468 		 */
2469 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2470 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2471 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2472 			continue;
2473 		}
2474 		if (nbp != NULL) {
2475 			lblkno = nbp->b_lblkno;
2476 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2477 		}
2478 		retval = EAGAIN;
2479 		error = BUF_TIMELOCK(bp,
2480 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2481 		    "flushbuf", slpflag, slptimeo);
2482 		if (error) {
2483 			BO_LOCK(bo);
2484 			return (error != ENOLCK ? error : EAGAIN);
2485 		}
2486 		KASSERT(bp->b_bufobj == bo,
2487 		    ("bp %p wrong b_bufobj %p should be %p",
2488 		    bp, bp->b_bufobj, bo));
2489 		/*
2490 		 * XXX Since there are no node locks for NFS, I
2491 		 * believe there is a slight chance that a delayed
2492 		 * write will occur while sleeping just above, so
2493 		 * check for it.
2494 		 */
2495 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2496 		    (flags & V_SAVE)) {
2497 			bremfree(bp);
2498 			bp->b_flags |= B_ASYNC;
2499 			bwrite(bp);
2500 			BO_LOCK(bo);
2501 			return (EAGAIN);	/* XXX: why not loop ? */
2502 		}
2503 		bremfree(bp);
2504 		bp->b_flags |= (B_INVAL | B_RELBUF);
2505 		bp->b_flags &= ~B_ASYNC;
2506 		brelse(bp);
2507 		BO_LOCK(bo);
2508 		if (nbp == NULL)
2509 			break;
2510 		nbp = gbincore(bo, lblkno);
2511 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2512 		    != xflags)
2513 			break;			/* nbp invalid */
2514 	}
2515 	return (retval);
2516 }
2517 
2518 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2519 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2520 {
2521 	struct buf *bp;
2522 	int error;
2523 	daddr_t lblkno;
2524 
2525 	ASSERT_BO_LOCKED(bo);
2526 
2527 	for (lblkno = startn;;) {
2528 again:
2529 		bp = buf_lookup_ge(bufv, lblkno);
2530 		if (bp == NULL || bp->b_lblkno >= endn)
2531 			break;
2532 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2533 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2534 		if (error != 0) {
2535 			BO_RLOCK(bo);
2536 			if (error == ENOLCK)
2537 				goto again;
2538 			return (error);
2539 		}
2540 		KASSERT(bp->b_bufobj == bo,
2541 		    ("bp %p wrong b_bufobj %p should be %p",
2542 		    bp, bp->b_bufobj, bo));
2543 		lblkno = bp->b_lblkno + 1;
2544 		if ((bp->b_flags & B_MANAGED) == 0)
2545 			bremfree(bp);
2546 		bp->b_flags |= B_RELBUF;
2547 		/*
2548 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2549 		 * pages backing each buffer in the range are unlikely to be
2550 		 * reused.  Dirty buffers will have the hint applied once
2551 		 * they've been written.
2552 		 */
2553 		if ((bp->b_flags & B_VMIO) != 0)
2554 			bp->b_flags |= B_NOREUSE;
2555 		brelse(bp);
2556 		BO_RLOCK(bo);
2557 	}
2558 	return (0);
2559 }
2560 
2561 /*
2562  * Truncate a file's buffer and pages to a specified length.  This
2563  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2564  * sync activity.
2565  */
2566 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2567 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2568 {
2569 	struct buf *bp, *nbp;
2570 	struct bufobj *bo;
2571 	daddr_t startlbn;
2572 
2573 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2574 	    vp, blksize, (uintmax_t)length);
2575 
2576 	/*
2577 	 * Round up to the *next* lbn.
2578 	 */
2579 	startlbn = howmany(length, blksize);
2580 
2581 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2582 
2583 	bo = &vp->v_bufobj;
2584 restart_unlocked:
2585 	BO_LOCK(bo);
2586 
2587 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2588 		;
2589 
2590 	if (length > 0) {
2591 		/*
2592 		 * Write out vnode metadata, e.g. indirect blocks.
2593 		 */
2594 restartsync:
2595 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2596 			if (bp->b_lblkno >= 0)
2597 				continue;
2598 			/*
2599 			 * Since we hold the vnode lock this should only
2600 			 * fail if we're racing with the buf daemon.
2601 			 */
2602 			if (BUF_LOCK(bp,
2603 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2604 			    BO_LOCKPTR(bo)) == ENOLCK)
2605 				goto restart_unlocked;
2606 
2607 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2608 			    ("buf(%p) on dirty queue without DELWRI", bp));
2609 
2610 			bremfree(bp);
2611 			bawrite(bp);
2612 			BO_LOCK(bo);
2613 			goto restartsync;
2614 		}
2615 	}
2616 
2617 	bufobj_wwait(bo, 0, 0);
2618 	BO_UNLOCK(bo);
2619 	vnode_pager_setsize(vp, length);
2620 
2621 	return (0);
2622 }
2623 
2624 /*
2625  * Invalidate the cached pages of a file's buffer within the range of block
2626  * numbers [startlbn, endlbn).
2627  */
2628 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2629 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2630     int blksize)
2631 {
2632 	struct bufobj *bo;
2633 	off_t start, end;
2634 
2635 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2636 
2637 	start = blksize * startlbn;
2638 	end = blksize * endlbn;
2639 
2640 	bo = &vp->v_bufobj;
2641 	BO_LOCK(bo);
2642 	MPASS(blksize == bo->bo_bsize);
2643 
2644 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2645 		;
2646 
2647 	BO_UNLOCK(bo);
2648 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2649 }
2650 
2651 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2652 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2653     daddr_t startlbn, daddr_t endlbn)
2654 {
2655 	struct bufv *bv;
2656 	struct buf *bp, *nbp;
2657 	uint8_t anyfreed;
2658 	bool clean;
2659 
2660 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2661 	ASSERT_BO_LOCKED(bo);
2662 
2663 	anyfreed = 1;
2664 	clean = true;
2665 	do {
2666 		bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2667 		bp = buf_lookup_ge(bv, startlbn);
2668 		if (bp == NULL)
2669 			continue;
2670 		TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2671 			if (bp->b_lblkno >= endlbn)
2672 				break;
2673 			if (BUF_LOCK(bp,
2674 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2675 			    BO_LOCKPTR(bo)) == ENOLCK) {
2676 				BO_LOCK(bo);
2677 				return (EAGAIN);
2678 			}
2679 
2680 			bremfree(bp);
2681 			bp->b_flags |= B_INVAL | B_RELBUF;
2682 			bp->b_flags &= ~B_ASYNC;
2683 			brelse(bp);
2684 			anyfreed = 2;
2685 
2686 			BO_LOCK(bo);
2687 			if (nbp != NULL &&
2688 			    (((nbp->b_xflags &
2689 			    (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2690 			    nbp->b_vp != vp ||
2691 			    (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2692 				return (EAGAIN);
2693 		}
2694 	} while (clean = !clean, anyfreed-- > 0);
2695 	return (0);
2696 }
2697 
2698 static void
buf_vlist_remove(struct buf * bp)2699 buf_vlist_remove(struct buf *bp)
2700 {
2701 	struct bufv *bv;
2702 	b_xflags_t flags;
2703 
2704 	flags = bp->b_xflags;
2705 
2706 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2707 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2708 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2709 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2710 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2711 
2712 	if ((flags & BX_VNDIRTY) != 0)
2713 		bv = &bp->b_bufobj->bo_dirty;
2714 	else
2715 		bv = &bp->b_bufobj->bo_clean;
2716 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2717 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2718 	bv->bv_cnt--;
2719 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2720 }
2721 
2722 /*
2723  * Add the buffer to the sorted clean or dirty block list.  Return zero on
2724  * success, EEXIST if a buffer with this identity already exists, or another
2725  * error on allocation failure.
2726  */
2727 static inline int
buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2728 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2729 {
2730 	struct bufv *bv;
2731 	struct buf *n;
2732 	int error;
2733 
2734 	ASSERT_BO_WLOCKED(bo);
2735 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2736 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2737 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2738 	    ("dead bo %p", bo));
2739 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2740 	    ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2741 
2742 	if (xflags & BX_VNDIRTY)
2743 		bv = &bo->bo_dirty;
2744 	else
2745 		bv = &bo->bo_clean;
2746 
2747 	error = buf_insert_lookup_le(bv, bp, &n);
2748 	if (n == NULL) {
2749 		KASSERT(error != EEXIST,
2750 		    ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2751 		    bp));
2752 	} else {
2753 		KASSERT(n->b_lblkno <= bp->b_lblkno,
2754 		    ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2755 		    bp, n));
2756 		KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2757 		    ("buf_vlist_add: inconsistent result for existing buf: "
2758 		    "error %d bp %p n %p", error, bp, n));
2759 	}
2760 	if (error != 0)
2761 		return (error);
2762 
2763 	/* Keep the list ordered. */
2764 	if (n == NULL) {
2765 		KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2766 		    bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2767 		    ("buf_vlist_add: queue order: "
2768 		    "%p should be before first %p",
2769 		    bp, TAILQ_FIRST(&bv->bv_hd)));
2770 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2771 	} else {
2772 		KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2773 		    bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2774 		    ("buf_vlist_add: queue order: "
2775 		    "%p should be before next %p",
2776 		    bp, TAILQ_NEXT(n, b_bobufs)));
2777 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2778 	}
2779 
2780 	bv->bv_cnt++;
2781 	return (0);
2782 }
2783 
2784 /*
2785  * Add the buffer to the sorted clean or dirty block list.
2786  *
2787  * NOTE: xflags is passed as a constant, optimizing this inline function!
2788  */
2789 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2790 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2791 {
2792 	int error;
2793 
2794 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2795 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2796 	bp->b_xflags |= xflags;
2797 	error = buf_vlist_find_or_add(bp, bo, xflags);
2798 	if (error)
2799 		panic("buf_vlist_add: error=%d", error);
2800 }
2801 
2802 /*
2803  * Look up a buffer using the buffer tries.
2804  */
2805 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2806 gbincore(struct bufobj *bo, daddr_t lblkno)
2807 {
2808 	struct buf *bp;
2809 
2810 	ASSERT_BO_LOCKED(bo);
2811 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2812 	if (bp != NULL)
2813 		return (bp);
2814 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2815 }
2816 
2817 /*
2818  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2819  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2820  * stability of the result.  Like other lockless lookups, the found buf may
2821  * already be invalid by the time this function returns.
2822  */
2823 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2824 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2825 {
2826 	struct buf *bp;
2827 
2828 	ASSERT_BO_UNLOCKED(bo);
2829 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2830 	if (bp != NULL)
2831 		return (bp);
2832 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2833 }
2834 
2835 /*
2836  * Associate a buffer with a vnode.
2837  */
2838 int
bgetvp(struct vnode * vp,struct buf * bp)2839 bgetvp(struct vnode *vp, struct buf *bp)
2840 {
2841 	struct bufobj *bo;
2842 	int error;
2843 
2844 	bo = &vp->v_bufobj;
2845 	ASSERT_BO_UNLOCKED(bo);
2846 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2847 
2848 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2849 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2850 	    ("bgetvp: bp already attached! %p", bp));
2851 
2852 	/*
2853 	 * Add the buf to the vnode's clean list unless we lost a race and find
2854 	 * an existing buf in either dirty or clean.
2855 	 */
2856 	bp->b_vp = vp;
2857 	bp->b_bufobj = bo;
2858 	bp->b_xflags |= BX_VNCLEAN;
2859 	error = EEXIST;
2860 	BO_LOCK(bo);
2861 	if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2862 		error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2863 	BO_UNLOCK(bo);
2864 	if (__predict_true(error == 0)) {
2865 		vhold(vp);
2866 		return (0);
2867 	}
2868 	if (error != EEXIST)
2869 		panic("bgetvp: buf_vlist_add error: %d", error);
2870 	bp->b_vp = NULL;
2871 	bp->b_bufobj = NULL;
2872 	bp->b_xflags &= ~BX_VNCLEAN;
2873 	return (error);
2874 }
2875 
2876 /*
2877  * Disassociate a buffer from a vnode.
2878  */
2879 void
brelvp(struct buf * bp)2880 brelvp(struct buf *bp)
2881 {
2882 	struct bufobj *bo;
2883 	struct vnode *vp;
2884 
2885 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2886 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2887 
2888 	/*
2889 	 * Delete from old vnode list, if on one.
2890 	 */
2891 	vp = bp->b_vp;		/* XXX */
2892 	bo = bp->b_bufobj;
2893 	BO_LOCK(bo);
2894 	buf_vlist_remove(bp);
2895 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2896 		bo->bo_flag &= ~BO_ONWORKLST;
2897 		mtx_lock(&sync_mtx);
2898 		LIST_REMOVE(bo, bo_synclist);
2899 		syncer_worklist_len--;
2900 		mtx_unlock(&sync_mtx);
2901 	}
2902 	bp->b_vp = NULL;
2903 	bp->b_bufobj = NULL;
2904 	BO_UNLOCK(bo);
2905 	vdrop(vp);
2906 }
2907 
2908 /*
2909  * Add an item to the syncer work queue.
2910  */
2911 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2912 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2913 {
2914 	int slot;
2915 
2916 	ASSERT_BO_WLOCKED(bo);
2917 
2918 	mtx_lock(&sync_mtx);
2919 	if (bo->bo_flag & BO_ONWORKLST)
2920 		LIST_REMOVE(bo, bo_synclist);
2921 	else {
2922 		bo->bo_flag |= BO_ONWORKLST;
2923 		syncer_worklist_len++;
2924 	}
2925 
2926 	if (delay > syncer_maxdelay - 2)
2927 		delay = syncer_maxdelay - 2;
2928 	slot = (syncer_delayno + delay) & syncer_mask;
2929 
2930 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2931 	mtx_unlock(&sync_mtx);
2932 }
2933 
2934 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2935 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2936 {
2937 	int error, len;
2938 
2939 	mtx_lock(&sync_mtx);
2940 	len = syncer_worklist_len - sync_vnode_count;
2941 	mtx_unlock(&sync_mtx);
2942 	error = SYSCTL_OUT(req, &len, sizeof(len));
2943 	return (error);
2944 }
2945 
2946 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2947     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2948     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2949 
2950 static struct proc *updateproc;
2951 static void sched_sync(void);
2952 static struct kproc_desc up_kp = {
2953 	"syncer",
2954 	sched_sync,
2955 	&updateproc
2956 };
2957 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2958 
2959 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2960 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2961 {
2962 	struct vnode *vp;
2963 	struct mount *mp;
2964 
2965 	*bo = LIST_FIRST(slp);
2966 	if (*bo == NULL)
2967 		return (0);
2968 	vp = bo2vnode(*bo);
2969 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2970 		return (1);
2971 	/*
2972 	 * We use vhold in case the vnode does not
2973 	 * successfully sync.  vhold prevents the vnode from
2974 	 * going away when we unlock the sync_mtx so that
2975 	 * we can acquire the vnode interlock.
2976 	 */
2977 	vholdl(vp);
2978 	mtx_unlock(&sync_mtx);
2979 	VI_UNLOCK(vp);
2980 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2981 		vdrop(vp);
2982 		mtx_lock(&sync_mtx);
2983 		return (*bo == LIST_FIRST(slp));
2984 	}
2985 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2986 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2987 	    ("suspended mp syncing vp %p", vp));
2988 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2989 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2990 	VOP_UNLOCK(vp);
2991 	vn_finished_write(mp);
2992 	BO_LOCK(*bo);
2993 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2994 		/*
2995 		 * Put us back on the worklist.  The worklist
2996 		 * routine will remove us from our current
2997 		 * position and then add us back in at a later
2998 		 * position.
2999 		 */
3000 		vn_syncer_add_to_worklist(*bo, syncdelay);
3001 	}
3002 	BO_UNLOCK(*bo);
3003 	vdrop(vp);
3004 	mtx_lock(&sync_mtx);
3005 	return (0);
3006 }
3007 
3008 static int first_printf = 1;
3009 
3010 /*
3011  * System filesystem synchronizer daemon.
3012  */
3013 static void
sched_sync(void)3014 sched_sync(void)
3015 {
3016 	struct synclist *next, *slp;
3017 	struct bufobj *bo;
3018 	long starttime;
3019 	struct thread *td = curthread;
3020 	int last_work_seen;
3021 	int net_worklist_len;
3022 	int syncer_final_iter;
3023 	int error;
3024 
3025 	last_work_seen = 0;
3026 	syncer_final_iter = 0;
3027 	syncer_state = SYNCER_RUNNING;
3028 	starttime = time_uptime;
3029 	td->td_pflags |= TDP_NORUNNINGBUF;
3030 
3031 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3032 	    SHUTDOWN_PRI_LAST);
3033 
3034 	mtx_lock(&sync_mtx);
3035 	for (;;) {
3036 		if (syncer_state == SYNCER_FINAL_DELAY &&
3037 		    syncer_final_iter == 0) {
3038 			mtx_unlock(&sync_mtx);
3039 			kproc_suspend_check(td->td_proc);
3040 			mtx_lock(&sync_mtx);
3041 		}
3042 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
3043 		if (syncer_state != SYNCER_RUNNING &&
3044 		    starttime != time_uptime) {
3045 			if (first_printf) {
3046 				printf("\nSyncing disks, vnodes remaining... ");
3047 				first_printf = 0;
3048 			}
3049 			printf("%d ", net_worklist_len);
3050 		}
3051 		starttime = time_uptime;
3052 
3053 		/*
3054 		 * Push files whose dirty time has expired.  Be careful
3055 		 * of interrupt race on slp queue.
3056 		 *
3057 		 * Skip over empty worklist slots when shutting down.
3058 		 */
3059 		do {
3060 			slp = &syncer_workitem_pending[syncer_delayno];
3061 			syncer_delayno += 1;
3062 			if (syncer_delayno == syncer_maxdelay)
3063 				syncer_delayno = 0;
3064 			next = &syncer_workitem_pending[syncer_delayno];
3065 			/*
3066 			 * If the worklist has wrapped since the
3067 			 * it was emptied of all but syncer vnodes,
3068 			 * switch to the FINAL_DELAY state and run
3069 			 * for one more second.
3070 			 */
3071 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
3072 			    net_worklist_len == 0 &&
3073 			    last_work_seen == syncer_delayno) {
3074 				syncer_state = SYNCER_FINAL_DELAY;
3075 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3076 			}
3077 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3078 		    syncer_worklist_len > 0);
3079 
3080 		/*
3081 		 * Keep track of the last time there was anything
3082 		 * on the worklist other than syncer vnodes.
3083 		 * Return to the SHUTTING_DOWN state if any
3084 		 * new work appears.
3085 		 */
3086 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3087 			last_work_seen = syncer_delayno;
3088 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3089 			syncer_state = SYNCER_SHUTTING_DOWN;
3090 		while (!LIST_EMPTY(slp)) {
3091 			error = sync_vnode(slp, &bo, td);
3092 			if (error == 1) {
3093 				LIST_REMOVE(bo, bo_synclist);
3094 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3095 				continue;
3096 			}
3097 
3098 			if (first_printf == 0) {
3099 				/*
3100 				 * Drop the sync mutex, because some watchdog
3101 				 * drivers need to sleep while patting
3102 				 */
3103 				mtx_unlock(&sync_mtx);
3104 				wdog_kern_pat(WD_LASTVAL);
3105 				mtx_lock(&sync_mtx);
3106 			}
3107 		}
3108 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3109 			syncer_final_iter--;
3110 		/*
3111 		 * The variable rushjob allows the kernel to speed up the
3112 		 * processing of the filesystem syncer process. A rushjob
3113 		 * value of N tells the filesystem syncer to process the next
3114 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3115 		 * is used by the soft update code to speed up the filesystem
3116 		 * syncer process when the incore state is getting so far
3117 		 * ahead of the disk that the kernel memory pool is being
3118 		 * threatened with exhaustion.
3119 		 */
3120 		if (rushjob > 0) {
3121 			rushjob -= 1;
3122 			continue;
3123 		}
3124 		/*
3125 		 * Just sleep for a short period of time between
3126 		 * iterations when shutting down to allow some I/O
3127 		 * to happen.
3128 		 *
3129 		 * If it has taken us less than a second to process the
3130 		 * current work, then wait. Otherwise start right over
3131 		 * again. We can still lose time if any single round
3132 		 * takes more than two seconds, but it does not really
3133 		 * matter as we are just trying to generally pace the
3134 		 * filesystem activity.
3135 		 */
3136 		if (syncer_state != SYNCER_RUNNING ||
3137 		    time_uptime == starttime) {
3138 			thread_lock(td);
3139 			sched_prio(td, PPAUSE);
3140 			thread_unlock(td);
3141 		}
3142 		if (syncer_state != SYNCER_RUNNING)
3143 			cv_timedwait(&sync_wakeup, &sync_mtx,
3144 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3145 		else if (time_uptime == starttime)
3146 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3147 	}
3148 }
3149 
3150 /*
3151  * Request the syncer daemon to speed up its work.
3152  * We never push it to speed up more than half of its
3153  * normal turn time, otherwise it could take over the cpu.
3154  */
3155 int
speedup_syncer(void)3156 speedup_syncer(void)
3157 {
3158 	int ret = 0;
3159 
3160 	mtx_lock(&sync_mtx);
3161 	if (rushjob < syncdelay / 2) {
3162 		rushjob += 1;
3163 		stat_rush_requests += 1;
3164 		ret = 1;
3165 	}
3166 	mtx_unlock(&sync_mtx);
3167 	cv_broadcast(&sync_wakeup);
3168 	return (ret);
3169 }
3170 
3171 /*
3172  * Tell the syncer to speed up its work and run though its work
3173  * list several times, then tell it to shut down.
3174  */
3175 static void
syncer_shutdown(void * arg,int howto)3176 syncer_shutdown(void *arg, int howto)
3177 {
3178 
3179 	if (howto & RB_NOSYNC)
3180 		return;
3181 	mtx_lock(&sync_mtx);
3182 	syncer_state = SYNCER_SHUTTING_DOWN;
3183 	rushjob = 0;
3184 	mtx_unlock(&sync_mtx);
3185 	cv_broadcast(&sync_wakeup);
3186 	kproc_shutdown(arg, howto);
3187 }
3188 
3189 void
syncer_suspend(void)3190 syncer_suspend(void)
3191 {
3192 
3193 	syncer_shutdown(updateproc, 0);
3194 }
3195 
3196 void
syncer_resume(void)3197 syncer_resume(void)
3198 {
3199 
3200 	mtx_lock(&sync_mtx);
3201 	first_printf = 1;
3202 	syncer_state = SYNCER_RUNNING;
3203 	mtx_unlock(&sync_mtx);
3204 	cv_broadcast(&sync_wakeup);
3205 	kproc_resume(updateproc);
3206 }
3207 
3208 /*
3209  * Move the buffer between the clean and dirty lists of its vnode.
3210  */
3211 void
reassignbuf(struct buf * bp)3212 reassignbuf(struct buf *bp)
3213 {
3214 	struct vnode *vp;
3215 	struct bufobj *bo;
3216 	int delay;
3217 #ifdef INVARIANTS
3218 	struct bufv *bv;
3219 #endif
3220 
3221 	vp = bp->b_vp;
3222 	bo = bp->b_bufobj;
3223 
3224 	KASSERT((bp->b_flags & B_PAGING) == 0,
3225 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3226 
3227 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3228 	    bp, bp->b_vp, bp->b_flags);
3229 
3230 	BO_LOCK(bo);
3231 	if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3232 		/*
3233 		 * Coordinate with getblk's unlocked lookup.  Make
3234 		 * BO_NONSTERILE visible before the first reassignbuf produces
3235 		 * any side effect.  This could be outside the bo lock if we
3236 		 * used a separate atomic flag field.
3237 		 */
3238 		bo->bo_flag |= BO_NONSTERILE;
3239 		atomic_thread_fence_rel();
3240 	}
3241 	buf_vlist_remove(bp);
3242 
3243 	/*
3244 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3245 	 * of clean buffers.
3246 	 */
3247 	if (bp->b_flags & B_DELWRI) {
3248 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3249 			switch (vp->v_type) {
3250 			case VDIR:
3251 				delay = dirdelay;
3252 				break;
3253 			case VCHR:
3254 				delay = metadelay;
3255 				break;
3256 			default:
3257 				delay = filedelay;
3258 			}
3259 			vn_syncer_add_to_worklist(bo, delay);
3260 		}
3261 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3262 	} else {
3263 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3264 
3265 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3266 			mtx_lock(&sync_mtx);
3267 			LIST_REMOVE(bo, bo_synclist);
3268 			syncer_worklist_len--;
3269 			mtx_unlock(&sync_mtx);
3270 			bo->bo_flag &= ~BO_ONWORKLST;
3271 		}
3272 	}
3273 #ifdef INVARIANTS
3274 	bv = &bo->bo_clean;
3275 	bp = TAILQ_FIRST(&bv->bv_hd);
3276 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3277 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3278 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3279 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3280 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3281 	bv = &bo->bo_dirty;
3282 	bp = TAILQ_FIRST(&bv->bv_hd);
3283 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3284 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3285 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3286 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3287 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3288 #endif
3289 	BO_UNLOCK(bo);
3290 }
3291 
3292 static void
v_init_counters(struct vnode * vp)3293 v_init_counters(struct vnode *vp)
3294 {
3295 
3296 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3297 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3298 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3299 
3300 	refcount_init(&vp->v_holdcnt, 1);
3301 	refcount_init(&vp->v_usecount, 1);
3302 }
3303 
3304 /*
3305  * Get a usecount on a vnode.
3306  *
3307  * vget and vget_finish may fail to lock the vnode if they lose a race against
3308  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3309  *
3310  * Consumers which don't guarantee liveness of the vnode can use SMR to
3311  * try to get a reference. Note this operation can fail since the vnode
3312  * may be awaiting getting freed by the time they get to it.
3313  */
3314 enum vgetstate
vget_prep_smr(struct vnode * vp)3315 vget_prep_smr(struct vnode *vp)
3316 {
3317 	enum vgetstate vs;
3318 
3319 	VFS_SMR_ASSERT_ENTERED();
3320 
3321 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3322 		vs = VGET_USECOUNT;
3323 	} else {
3324 		if (vhold_smr(vp))
3325 			vs = VGET_HOLDCNT;
3326 		else
3327 			vs = VGET_NONE;
3328 	}
3329 	return (vs);
3330 }
3331 
3332 enum vgetstate
vget_prep(struct vnode * vp)3333 vget_prep(struct vnode *vp)
3334 {
3335 	enum vgetstate vs;
3336 
3337 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3338 		vs = VGET_USECOUNT;
3339 	} else {
3340 		vhold(vp);
3341 		vs = VGET_HOLDCNT;
3342 	}
3343 	return (vs);
3344 }
3345 
3346 void
vget_abort(struct vnode * vp,enum vgetstate vs)3347 vget_abort(struct vnode *vp, enum vgetstate vs)
3348 {
3349 
3350 	switch (vs) {
3351 	case VGET_USECOUNT:
3352 		vrele(vp);
3353 		break;
3354 	case VGET_HOLDCNT:
3355 		vdrop(vp);
3356 		break;
3357 	default:
3358 		__assert_unreachable();
3359 	}
3360 }
3361 
3362 int
vget(struct vnode * vp,int flags)3363 vget(struct vnode *vp, int flags)
3364 {
3365 	enum vgetstate vs;
3366 
3367 	vs = vget_prep(vp);
3368 	return (vget_finish(vp, flags, vs));
3369 }
3370 
3371 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3372 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3373 {
3374 	int error;
3375 
3376 	if ((flags & LK_INTERLOCK) != 0)
3377 		ASSERT_VI_LOCKED(vp, __func__);
3378 	else
3379 		ASSERT_VI_UNLOCKED(vp, __func__);
3380 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3381 	VNPASS(vp->v_holdcnt > 0, vp);
3382 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3383 
3384 	error = vn_lock(vp, flags);
3385 	if (__predict_false(error != 0)) {
3386 		vget_abort(vp, vs);
3387 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3388 		    vp);
3389 		return (error);
3390 	}
3391 
3392 	vget_finish_ref(vp, vs);
3393 	return (0);
3394 }
3395 
3396 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3397 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3398 {
3399 	int old;
3400 
3401 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3402 	VNPASS(vp->v_holdcnt > 0, vp);
3403 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3404 
3405 	if (vs == VGET_USECOUNT)
3406 		return;
3407 
3408 	/*
3409 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3410 	 * the vnode around. Otherwise someone else lended their hold count and
3411 	 * we have to drop ours.
3412 	 */
3413 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3414 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3415 	if (old != 0) {
3416 #ifdef INVARIANTS
3417 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3418 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3419 #else
3420 		refcount_release(&vp->v_holdcnt);
3421 #endif
3422 	}
3423 }
3424 
3425 void
vref(struct vnode * vp)3426 vref(struct vnode *vp)
3427 {
3428 	enum vgetstate vs;
3429 
3430 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3431 	vs = vget_prep(vp);
3432 	vget_finish_ref(vp, vs);
3433 }
3434 
3435 void
vrefact(struct vnode * vp)3436 vrefact(struct vnode *vp)
3437 {
3438 	int old __diagused;
3439 
3440 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3441 	old = refcount_acquire(&vp->v_usecount);
3442 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3443 }
3444 
3445 void
vlazy(struct vnode * vp)3446 vlazy(struct vnode *vp)
3447 {
3448 	struct mount *mp;
3449 
3450 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3451 
3452 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3453 		return;
3454 	/*
3455 	 * We may get here for inactive routines after the vnode got doomed.
3456 	 */
3457 	if (VN_IS_DOOMED(vp))
3458 		return;
3459 	mp = vp->v_mount;
3460 	mtx_lock(&mp->mnt_listmtx);
3461 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3462 		vp->v_mflag |= VMP_LAZYLIST;
3463 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3464 		mp->mnt_lazyvnodelistsize++;
3465 	}
3466 	mtx_unlock(&mp->mnt_listmtx);
3467 }
3468 
3469 static void
vunlazy(struct vnode * vp)3470 vunlazy(struct vnode *vp)
3471 {
3472 	struct mount *mp;
3473 
3474 	ASSERT_VI_LOCKED(vp, __func__);
3475 	VNPASS(!VN_IS_DOOMED(vp), vp);
3476 
3477 	mp = vp->v_mount;
3478 	mtx_lock(&mp->mnt_listmtx);
3479 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3480 	/*
3481 	 * Don't remove the vnode from the lazy list if another thread
3482 	 * has increased the hold count. It may have re-enqueued the
3483 	 * vnode to the lazy list and is now responsible for its
3484 	 * removal.
3485 	 */
3486 	if (vp->v_holdcnt == 0) {
3487 		vp->v_mflag &= ~VMP_LAZYLIST;
3488 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3489 		mp->mnt_lazyvnodelistsize--;
3490 	}
3491 	mtx_unlock(&mp->mnt_listmtx);
3492 }
3493 
3494 /*
3495  * This routine is only meant to be called from vgonel prior to dooming
3496  * the vnode.
3497  */
3498 static void
vunlazy_gone(struct vnode * vp)3499 vunlazy_gone(struct vnode *vp)
3500 {
3501 	struct mount *mp;
3502 
3503 	ASSERT_VOP_ELOCKED(vp, __func__);
3504 	ASSERT_VI_LOCKED(vp, __func__);
3505 	VNPASS(!VN_IS_DOOMED(vp), vp);
3506 
3507 	if (vp->v_mflag & VMP_LAZYLIST) {
3508 		mp = vp->v_mount;
3509 		mtx_lock(&mp->mnt_listmtx);
3510 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3511 		vp->v_mflag &= ~VMP_LAZYLIST;
3512 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3513 		mp->mnt_lazyvnodelistsize--;
3514 		mtx_unlock(&mp->mnt_listmtx);
3515 	}
3516 }
3517 
3518 static void
vdefer_inactive(struct vnode * vp)3519 vdefer_inactive(struct vnode *vp)
3520 {
3521 
3522 	ASSERT_VI_LOCKED(vp, __func__);
3523 	VNPASS(vp->v_holdcnt > 0, vp);
3524 	if (VN_IS_DOOMED(vp)) {
3525 		vdropl(vp);
3526 		return;
3527 	}
3528 	if (vp->v_iflag & VI_DEFINACT) {
3529 		VNPASS(vp->v_holdcnt > 1, vp);
3530 		vdropl(vp);
3531 		return;
3532 	}
3533 	if (vp->v_usecount > 0) {
3534 		vp->v_iflag &= ~VI_OWEINACT;
3535 		vdropl(vp);
3536 		return;
3537 	}
3538 	vlazy(vp);
3539 	vp->v_iflag |= VI_DEFINACT;
3540 	VI_UNLOCK(vp);
3541 	atomic_add_long(&deferred_inact, 1);
3542 }
3543 
3544 static void
vdefer_inactive_unlocked(struct vnode * vp)3545 vdefer_inactive_unlocked(struct vnode *vp)
3546 {
3547 
3548 	VI_LOCK(vp);
3549 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3550 		vdropl(vp);
3551 		return;
3552 	}
3553 	vdefer_inactive(vp);
3554 }
3555 
3556 enum vput_op { VRELE, VPUT, VUNREF };
3557 
3558 /*
3559  * Handle ->v_usecount transitioning to 0.
3560  *
3561  * By releasing the last usecount we take ownership of the hold count which
3562  * provides liveness of the vnode, meaning we have to vdrop.
3563  *
3564  * For all vnodes we may need to perform inactive processing. It requires an
3565  * exclusive lock on the vnode, while it is legal to call here with only a
3566  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3567  * inactive processing gets deferred to the syncer.
3568  *
3569  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3570  * on the lock being held all the way until VOP_INACTIVE. This in particular
3571  * happens with UFS which adds half-constructed vnodes to the hash, where they
3572  * can be found by other code.
3573  */
3574 static void
vput_final(struct vnode * vp,enum vput_op func)3575 vput_final(struct vnode *vp, enum vput_op func)
3576 {
3577 	int error;
3578 	bool want_unlock;
3579 
3580 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3581 	VNPASS(vp->v_holdcnt > 0, vp);
3582 
3583 	VI_LOCK(vp);
3584 
3585 	/*
3586 	 * By the time we got here someone else might have transitioned
3587 	 * the count back to > 0.
3588 	 */
3589 	if (vp->v_usecount > 0)
3590 		goto out;
3591 
3592 	/*
3593 	 * If the vnode is doomed vgone already performed inactive processing
3594 	 * (if needed).
3595 	 */
3596 	if (VN_IS_DOOMED(vp))
3597 		goto out;
3598 
3599 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3600 		goto out;
3601 
3602 	if (vp->v_iflag & VI_DOINGINACT)
3603 		goto out;
3604 
3605 	/*
3606 	 * Locking operations here will drop the interlock and possibly the
3607 	 * vnode lock, opening a window where the vnode can get doomed all the
3608 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3609 	 * perform inactive.
3610 	 */
3611 	vp->v_iflag |= VI_OWEINACT;
3612 	want_unlock = false;
3613 	error = 0;
3614 	switch (func) {
3615 	case VRELE:
3616 		switch (VOP_ISLOCKED(vp)) {
3617 		case LK_EXCLUSIVE:
3618 			break;
3619 		case LK_EXCLOTHER:
3620 		case 0:
3621 			want_unlock = true;
3622 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3623 			VI_LOCK(vp);
3624 			break;
3625 		default:
3626 			/*
3627 			 * The lock has at least one sharer, but we have no way
3628 			 * to conclude whether this is us. Play it safe and
3629 			 * defer processing.
3630 			 */
3631 			error = EAGAIN;
3632 			break;
3633 		}
3634 		break;
3635 	case VPUT:
3636 		want_unlock = true;
3637 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3638 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3639 			    LK_NOWAIT);
3640 			VI_LOCK(vp);
3641 		}
3642 		break;
3643 	case VUNREF:
3644 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3645 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3646 			VI_LOCK(vp);
3647 		}
3648 		break;
3649 	}
3650 	if (error == 0) {
3651 		if (func == VUNREF) {
3652 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3653 			    ("recursive vunref"));
3654 			vp->v_vflag |= VV_UNREF;
3655 		}
3656 		for (;;) {
3657 			error = vinactive(vp);
3658 			if (want_unlock)
3659 				VOP_UNLOCK(vp);
3660 			if (error != ERELOOKUP || !want_unlock)
3661 				break;
3662 			VOP_LOCK(vp, LK_EXCLUSIVE);
3663 		}
3664 		if (func == VUNREF)
3665 			vp->v_vflag &= ~VV_UNREF;
3666 		vdropl(vp);
3667 	} else {
3668 		vdefer_inactive(vp);
3669 	}
3670 	return;
3671 out:
3672 	if (func == VPUT)
3673 		VOP_UNLOCK(vp);
3674 	vdropl(vp);
3675 }
3676 
3677 /*
3678  * Decrement ->v_usecount for a vnode.
3679  *
3680  * Releasing the last use count requires additional processing, see vput_final
3681  * above for details.
3682  *
3683  * Comment above each variant denotes lock state on entry and exit.
3684  */
3685 
3686 /*
3687  * in: any
3688  * out: same as passed in
3689  */
3690 void
vrele(struct vnode * vp)3691 vrele(struct vnode *vp)
3692 {
3693 
3694 	ASSERT_VI_UNLOCKED(vp, __func__);
3695 	if (!refcount_release(&vp->v_usecount))
3696 		return;
3697 	vput_final(vp, VRELE);
3698 }
3699 
3700 /*
3701  * in: locked
3702  * out: unlocked
3703  */
3704 void
vput(struct vnode * vp)3705 vput(struct vnode *vp)
3706 {
3707 
3708 	ASSERT_VOP_LOCKED(vp, __func__);
3709 	ASSERT_VI_UNLOCKED(vp, __func__);
3710 	if (!refcount_release(&vp->v_usecount)) {
3711 		VOP_UNLOCK(vp);
3712 		return;
3713 	}
3714 	vput_final(vp, VPUT);
3715 }
3716 
3717 /*
3718  * in: locked
3719  * out: locked
3720  */
3721 void
vunref(struct vnode * vp)3722 vunref(struct vnode *vp)
3723 {
3724 
3725 	ASSERT_VOP_LOCKED(vp, __func__);
3726 	ASSERT_VI_UNLOCKED(vp, __func__);
3727 	if (!refcount_release(&vp->v_usecount))
3728 		return;
3729 	vput_final(vp, VUNREF);
3730 }
3731 
3732 void
vhold(struct vnode * vp)3733 vhold(struct vnode *vp)
3734 {
3735 	int old;
3736 
3737 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3738 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3739 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3740 	    ("%s: wrong hold count %d", __func__, old));
3741 	if (old == 0)
3742 		vfs_freevnodes_dec();
3743 }
3744 
3745 void
vholdnz(struct vnode * vp)3746 vholdnz(struct vnode *vp)
3747 {
3748 
3749 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3750 #ifdef INVARIANTS
3751 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3752 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3753 	    ("%s: wrong hold count %d", __func__, old));
3754 #else
3755 	atomic_add_int(&vp->v_holdcnt, 1);
3756 #endif
3757 }
3758 
3759 /*
3760  * Grab a hold count unless the vnode is freed.
3761  *
3762  * Only use this routine if vfs smr is the only protection you have against
3763  * freeing the vnode.
3764  *
3765  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3766  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3767  * the thread which managed to set the flag.
3768  *
3769  * It may be tempting to replace the loop with:
3770  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3771  * if (count & VHOLD_NO_SMR) {
3772  *     backpedal and error out;
3773  * }
3774  *
3775  * However, while this is more performant, it hinders debugging by eliminating
3776  * the previously mentioned invariant.
3777  */
3778 bool
vhold_smr(struct vnode * vp)3779 vhold_smr(struct vnode *vp)
3780 {
3781 	int count;
3782 
3783 	VFS_SMR_ASSERT_ENTERED();
3784 
3785 	count = atomic_load_int(&vp->v_holdcnt);
3786 	for (;;) {
3787 		if (count & VHOLD_NO_SMR) {
3788 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3789 			    ("non-zero hold count with flags %d\n", count));
3790 			return (false);
3791 		}
3792 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3793 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3794 			if (count == 0)
3795 				vfs_freevnodes_dec();
3796 			return (true);
3797 		}
3798 	}
3799 }
3800 
3801 /*
3802  * Hold a free vnode for recycling.
3803  *
3804  * Note: vnode_init references this comment.
3805  *
3806  * Attempts to recycle only need the global vnode list lock and have no use for
3807  * SMR.
3808  *
3809  * However, vnodes get inserted into the global list before they get fully
3810  * initialized and stay there until UMA decides to free the memory. This in
3811  * particular means the target can be found before it becomes usable and after
3812  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3813  * VHOLD_NO_SMR.
3814  *
3815  * Note: the vnode may gain more references after we transition the count 0->1.
3816  */
3817 static bool
vhold_recycle_free(struct vnode * vp)3818 vhold_recycle_free(struct vnode *vp)
3819 {
3820 	int count;
3821 
3822 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3823 
3824 	count = atomic_load_int(&vp->v_holdcnt);
3825 	for (;;) {
3826 		if (count & VHOLD_NO_SMR) {
3827 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3828 			    ("non-zero hold count with flags %d\n", count));
3829 			return (false);
3830 		}
3831 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3832 		if (count > 0) {
3833 			return (false);
3834 		}
3835 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3836 			vfs_freevnodes_dec();
3837 			return (true);
3838 		}
3839 	}
3840 }
3841 
3842 static void __noinline
vdbatch_process(struct vdbatch * vd)3843 vdbatch_process(struct vdbatch *vd)
3844 {
3845 	struct vnode *vp;
3846 	int i;
3847 
3848 	mtx_assert(&vd->lock, MA_OWNED);
3849 	MPASS(curthread->td_pinned > 0);
3850 	MPASS(vd->index == VDBATCH_SIZE);
3851 
3852 	/*
3853 	 * Attempt to requeue the passed batch, but give up easily.
3854 	 *
3855 	 * Despite batching the mechanism is prone to transient *significant*
3856 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3857 	 * if multiple CPUs get here (one real-world example is highly parallel
3858 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3859 	 * quasi-LRU (read: not that great even if fully honoured) provide an
3860 	 * option to just dodge the problem. Parties which don't like it are
3861 	 * welcome to implement something better.
3862 	 */
3863 	if (vnode_can_skip_requeue) {
3864 		if (!mtx_trylock(&vnode_list_mtx)) {
3865 			counter_u64_add(vnode_skipped_requeues, 1);
3866 			critical_enter();
3867 			for (i = 0; i < VDBATCH_SIZE; i++) {
3868 				vp = vd->tab[i];
3869 				vd->tab[i] = NULL;
3870 				MPASS(vp->v_dbatchcpu != NOCPU);
3871 				vp->v_dbatchcpu = NOCPU;
3872 			}
3873 			vd->index = 0;
3874 			critical_exit();
3875 			return;
3876 
3877 		}
3878 		/* fallthrough to locked processing */
3879 	} else {
3880 		mtx_lock(&vnode_list_mtx);
3881 	}
3882 
3883 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3884 	critical_enter();
3885 	for (i = 0; i < VDBATCH_SIZE; i++) {
3886 		vp = vd->tab[i];
3887 		vd->tab[i] = NULL;
3888 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3889 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3890 		MPASS(vp->v_dbatchcpu != NOCPU);
3891 		vp->v_dbatchcpu = NOCPU;
3892 	}
3893 	mtx_unlock(&vnode_list_mtx);
3894 	vd->index = 0;
3895 	critical_exit();
3896 }
3897 
3898 static void
vdbatch_enqueue(struct vnode * vp)3899 vdbatch_enqueue(struct vnode *vp)
3900 {
3901 	struct vdbatch *vd;
3902 
3903 	ASSERT_VI_LOCKED(vp, __func__);
3904 	VNPASS(!VN_IS_DOOMED(vp), vp);
3905 
3906 	if (vp->v_dbatchcpu != NOCPU) {
3907 		VI_UNLOCK(vp);
3908 		return;
3909 	}
3910 
3911 	sched_pin();
3912 	vd = DPCPU_PTR(vd);
3913 	mtx_lock(&vd->lock);
3914 	MPASS(vd->index < VDBATCH_SIZE);
3915 	MPASS(vd->tab[vd->index] == NULL);
3916 	/*
3917 	 * A hack: we depend on being pinned so that we know what to put in
3918 	 * ->v_dbatchcpu.
3919 	 */
3920 	vp->v_dbatchcpu = curcpu;
3921 	vd->tab[vd->index] = vp;
3922 	vd->index++;
3923 	VI_UNLOCK(vp);
3924 	if (vd->index == VDBATCH_SIZE)
3925 		vdbatch_process(vd);
3926 	mtx_unlock(&vd->lock);
3927 	sched_unpin();
3928 }
3929 
3930 /*
3931  * This routine must only be called for vnodes which are about to be
3932  * deallocated. Supporting dequeue for arbitrary vndoes would require
3933  * validating that the locked batch matches.
3934  */
3935 static void
vdbatch_dequeue(struct vnode * vp)3936 vdbatch_dequeue(struct vnode *vp)
3937 {
3938 	struct vdbatch *vd;
3939 	int i;
3940 	short cpu;
3941 
3942 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3943 
3944 	cpu = vp->v_dbatchcpu;
3945 	if (cpu == NOCPU)
3946 		return;
3947 
3948 	vd = DPCPU_ID_PTR(cpu, vd);
3949 	mtx_lock(&vd->lock);
3950 	for (i = 0; i < vd->index; i++) {
3951 		if (vd->tab[i] != vp)
3952 			continue;
3953 		vp->v_dbatchcpu = NOCPU;
3954 		vd->index--;
3955 		vd->tab[i] = vd->tab[vd->index];
3956 		vd->tab[vd->index] = NULL;
3957 		break;
3958 	}
3959 	mtx_unlock(&vd->lock);
3960 	/*
3961 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3962 	 */
3963 	MPASS(vp->v_dbatchcpu == NOCPU);
3964 }
3965 
3966 /*
3967  * Drop the hold count of the vnode.
3968  *
3969  * It will only get freed if this is the last hold *and* it has been vgone'd.
3970  *
3971  * Because the vnode vm object keeps a hold reference on the vnode if
3972  * there is at least one resident non-cached page, the vnode cannot
3973  * leave the active list without the page cleanup done.
3974  */
3975 static void __noinline
vdropl_final(struct vnode * vp)3976 vdropl_final(struct vnode *vp)
3977 {
3978 
3979 	ASSERT_VI_LOCKED(vp, __func__);
3980 	VNPASS(VN_IS_DOOMED(vp), vp);
3981 	/*
3982 	 * Set the VHOLD_NO_SMR flag.
3983 	 *
3984 	 * We may be racing against vhold_smr. If they win we can just pretend
3985 	 * we never got this far, they will vdrop later.
3986 	 */
3987 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3988 		vfs_freevnodes_inc();
3989 		VI_UNLOCK(vp);
3990 		/*
3991 		 * We lost the aforementioned race. Any subsequent access is
3992 		 * invalid as they might have managed to vdropl on their own.
3993 		 */
3994 		return;
3995 	}
3996 	/*
3997 	 * Don't bump freevnodes as this one is going away.
3998 	 */
3999 	freevnode(vp);
4000 }
4001 
4002 void
vdrop(struct vnode * vp)4003 vdrop(struct vnode *vp)
4004 {
4005 
4006 	ASSERT_VI_UNLOCKED(vp, __func__);
4007 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4008 	if (refcount_release_if_not_last(&vp->v_holdcnt))
4009 		return;
4010 	VI_LOCK(vp);
4011 	vdropl(vp);
4012 }
4013 
4014 static __always_inline void
vdropl_impl(struct vnode * vp,bool enqueue)4015 vdropl_impl(struct vnode *vp, bool enqueue)
4016 {
4017 
4018 	ASSERT_VI_LOCKED(vp, __func__);
4019 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4020 	if (!refcount_release(&vp->v_holdcnt)) {
4021 		VI_UNLOCK(vp);
4022 		return;
4023 	}
4024 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4025 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4026 	if (VN_IS_DOOMED(vp)) {
4027 		vdropl_final(vp);
4028 		return;
4029 	}
4030 
4031 	vfs_freevnodes_inc();
4032 	if (vp->v_mflag & VMP_LAZYLIST) {
4033 		vunlazy(vp);
4034 	}
4035 
4036 	if (!enqueue) {
4037 		VI_UNLOCK(vp);
4038 		return;
4039 	}
4040 
4041 	/*
4042 	 * Also unlocks the interlock. We can't assert on it as we
4043 	 * released our hold and by now the vnode might have been
4044 	 * freed.
4045 	 */
4046 	vdbatch_enqueue(vp);
4047 }
4048 
4049 void
vdropl(struct vnode * vp)4050 vdropl(struct vnode *vp)
4051 {
4052 
4053 	vdropl_impl(vp, true);
4054 }
4055 
4056 /*
4057  * vdrop a vnode when recycling
4058  *
4059  * This is a special case routine only to be used when recycling, differs from
4060  * regular vdrop by not requeieing the vnode on LRU.
4061  *
4062  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4063  * e.g., frozen writes on the filesystem), filling the batch and causing it to
4064  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4065  * loop which can last for as long as writes are frozen.
4066  */
4067 static void
vdropl_recycle(struct vnode * vp)4068 vdropl_recycle(struct vnode *vp)
4069 {
4070 
4071 	vdropl_impl(vp, false);
4072 }
4073 
4074 static void
vdrop_recycle(struct vnode * vp)4075 vdrop_recycle(struct vnode *vp)
4076 {
4077 
4078 	VI_LOCK(vp);
4079 	vdropl_recycle(vp);
4080 }
4081 
4082 /*
4083  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4084  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4085  */
4086 static int
vinactivef(struct vnode * vp)4087 vinactivef(struct vnode *vp)
4088 {
4089 	int error;
4090 
4091 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4092 	ASSERT_VI_LOCKED(vp, "vinactive");
4093 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4094 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4095 	vp->v_iflag |= VI_DOINGINACT;
4096 	vp->v_iflag &= ~VI_OWEINACT;
4097 	VI_UNLOCK(vp);
4098 
4099 	/*
4100 	 * Before moving off the active list, we must be sure that any
4101 	 * modified pages are converted into the vnode's dirty
4102 	 * buffers, since these will no longer be checked once the
4103 	 * vnode is on the inactive list.
4104 	 *
4105 	 * The write-out of the dirty pages is asynchronous.  At the
4106 	 * point that VOP_INACTIVE() is called, there could still be
4107 	 * pending I/O and dirty pages in the object.
4108 	 */
4109 	if ((vp->v_vflag & VV_NOSYNC) == 0)
4110 		vnode_pager_clean_async(vp);
4111 
4112 	error = VOP_INACTIVE(vp);
4113 	VI_LOCK(vp);
4114 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4115 	vp->v_iflag &= ~VI_DOINGINACT;
4116 	return (error);
4117 }
4118 
4119 int
vinactive(struct vnode * vp)4120 vinactive(struct vnode *vp)
4121 {
4122 
4123 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4124 	ASSERT_VI_LOCKED(vp, "vinactive");
4125 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4126 
4127 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4128 		return (0);
4129 	if (vp->v_iflag & VI_DOINGINACT)
4130 		return (0);
4131 	if (vp->v_usecount > 0) {
4132 		vp->v_iflag &= ~VI_OWEINACT;
4133 		return (0);
4134 	}
4135 	return (vinactivef(vp));
4136 }
4137 
4138 /*
4139  * Remove any vnodes in the vnode table belonging to mount point mp.
4140  *
4141  * If FORCECLOSE is not specified, there should not be any active ones,
4142  * return error if any are found (nb: this is a user error, not a
4143  * system error). If FORCECLOSE is specified, detach any active vnodes
4144  * that are found.
4145  *
4146  * If WRITECLOSE is set, only flush out regular file vnodes open for
4147  * writing.
4148  *
4149  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4150  *
4151  * `rootrefs' specifies the base reference count for the root vnode
4152  * of this filesystem. The root vnode is considered busy if its
4153  * v_usecount exceeds this value. On a successful return, vflush(, td)
4154  * will call vrele() on the root vnode exactly rootrefs times.
4155  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4156  * be zero.
4157  */
4158 #ifdef DIAGNOSTIC
4159 static int busyprt = 0;		/* print out busy vnodes */
4160 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4161 #endif
4162 
4163 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4164 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4165 {
4166 	struct vnode *vp, *mvp, *rootvp = NULL;
4167 	struct vattr vattr;
4168 	int busy = 0, error;
4169 
4170 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4171 	    rootrefs, flags);
4172 	if (rootrefs > 0) {
4173 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4174 		    ("vflush: bad args"));
4175 		/*
4176 		 * Get the filesystem root vnode. We can vput() it
4177 		 * immediately, since with rootrefs > 0, it won't go away.
4178 		 */
4179 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4180 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4181 			    __func__, error);
4182 			return (error);
4183 		}
4184 		vput(rootvp);
4185 	}
4186 loop:
4187 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4188 		vholdl(vp);
4189 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4190 		if (error) {
4191 			vdrop(vp);
4192 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4193 			goto loop;
4194 		}
4195 		/*
4196 		 * Skip over a vnodes marked VV_SYSTEM.
4197 		 */
4198 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4199 			VOP_UNLOCK(vp);
4200 			vdrop(vp);
4201 			continue;
4202 		}
4203 		/*
4204 		 * If WRITECLOSE is set, flush out unlinked but still open
4205 		 * files (even if open only for reading) and regular file
4206 		 * vnodes open for writing.
4207 		 */
4208 		if (flags & WRITECLOSE) {
4209 			vnode_pager_clean_async(vp);
4210 			do {
4211 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4212 			} while (error == ERELOOKUP);
4213 			if (error != 0) {
4214 				VOP_UNLOCK(vp);
4215 				vdrop(vp);
4216 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4217 				return (error);
4218 			}
4219 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4220 			VI_LOCK(vp);
4221 
4222 			if ((vp->v_type == VNON ||
4223 			    (error == 0 && vattr.va_nlink > 0)) &&
4224 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4225 				VOP_UNLOCK(vp);
4226 				vdropl(vp);
4227 				continue;
4228 			}
4229 		} else
4230 			VI_LOCK(vp);
4231 		/*
4232 		 * With v_usecount == 0, all we need to do is clear out the
4233 		 * vnode data structures and we are done.
4234 		 *
4235 		 * If FORCECLOSE is set, forcibly close the vnode.
4236 		 */
4237 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4238 			vgonel(vp);
4239 		} else {
4240 			busy++;
4241 #ifdef DIAGNOSTIC
4242 			if (busyprt)
4243 				vn_printf(vp, "vflush: busy vnode ");
4244 #endif
4245 		}
4246 		VOP_UNLOCK(vp);
4247 		vdropl(vp);
4248 	}
4249 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4250 		/*
4251 		 * If just the root vnode is busy, and if its refcount
4252 		 * is equal to `rootrefs', then go ahead and kill it.
4253 		 */
4254 		VI_LOCK(rootvp);
4255 		KASSERT(busy > 0, ("vflush: not busy"));
4256 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4257 		    ("vflush: usecount %d < rootrefs %d",
4258 		     rootvp->v_usecount, rootrefs));
4259 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4260 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4261 			vgone(rootvp);
4262 			VOP_UNLOCK(rootvp);
4263 			busy = 0;
4264 		} else
4265 			VI_UNLOCK(rootvp);
4266 	}
4267 	if (busy) {
4268 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4269 		    busy);
4270 		return (EBUSY);
4271 	}
4272 	for (; rootrefs > 0; rootrefs--)
4273 		vrele(rootvp);
4274 	return (0);
4275 }
4276 
4277 /*
4278  * Recycle an unused vnode.
4279  */
4280 int
vrecycle(struct vnode * vp)4281 vrecycle(struct vnode *vp)
4282 {
4283 	int recycled;
4284 
4285 	VI_LOCK(vp);
4286 	recycled = vrecyclel(vp);
4287 	VI_UNLOCK(vp);
4288 	return (recycled);
4289 }
4290 
4291 /*
4292  * vrecycle, with the vp interlock held.
4293  */
4294 int
vrecyclel(struct vnode * vp)4295 vrecyclel(struct vnode *vp)
4296 {
4297 	int recycled;
4298 
4299 	ASSERT_VOP_ELOCKED(vp, __func__);
4300 	ASSERT_VI_LOCKED(vp, __func__);
4301 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4302 	recycled = 0;
4303 	if (vp->v_usecount == 0) {
4304 		recycled = 1;
4305 		vgonel(vp);
4306 	}
4307 	return (recycled);
4308 }
4309 
4310 /*
4311  * Eliminate all activity associated with a vnode
4312  * in preparation for reuse.
4313  */
4314 void
vgone(struct vnode * vp)4315 vgone(struct vnode *vp)
4316 {
4317 	VI_LOCK(vp);
4318 	vgonel(vp);
4319 	VI_UNLOCK(vp);
4320 }
4321 
4322 /*
4323  * Notify upper mounts about reclaimed or unlinked vnode.
4324  */
4325 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4326 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4327 {
4328 	struct mount *mp;
4329 	struct mount_upper_node *ump;
4330 
4331 	mp = atomic_load_ptr(&vp->v_mount);
4332 	if (mp == NULL)
4333 		return;
4334 	if (TAILQ_EMPTY(&mp->mnt_notify))
4335 		return;
4336 
4337 	MNT_ILOCK(mp);
4338 	mp->mnt_upper_pending++;
4339 	KASSERT(mp->mnt_upper_pending > 0,
4340 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4341 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4342 		MNT_IUNLOCK(mp);
4343 		switch (event) {
4344 		case VFS_NOTIFY_UPPER_RECLAIM:
4345 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4346 			break;
4347 		case VFS_NOTIFY_UPPER_UNLINK:
4348 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4349 			break;
4350 		}
4351 		MNT_ILOCK(mp);
4352 	}
4353 	mp->mnt_upper_pending--;
4354 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4355 	    mp->mnt_upper_pending == 0) {
4356 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4357 		wakeup(&mp->mnt_uppers);
4358 	}
4359 	MNT_IUNLOCK(mp);
4360 }
4361 
4362 /*
4363  * vgone, with the vp interlock held.
4364  */
4365 static void
vgonel(struct vnode * vp)4366 vgonel(struct vnode *vp)
4367 {
4368 	struct thread *td;
4369 	struct mount *mp;
4370 	vm_object_t object;
4371 	bool active, doinginact, oweinact;
4372 
4373 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4374 	ASSERT_VI_LOCKED(vp, "vgonel");
4375 	VNASSERT(vp->v_holdcnt, vp,
4376 	    ("vgonel: vp %p has no reference.", vp));
4377 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4378 	td = curthread;
4379 
4380 	/*
4381 	 * Don't vgonel if we're already doomed.
4382 	 */
4383 	if (VN_IS_DOOMED(vp)) {
4384 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4385 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4386 		return;
4387 	}
4388 	/*
4389 	 * Paired with freevnode.
4390 	 */
4391 	vn_seqc_write_begin_locked(vp);
4392 	vunlazy_gone(vp);
4393 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4394 	vn_set_state(vp, VSTATE_DESTROYING);
4395 
4396 	/*
4397 	 * Check to see if the vnode is in use.  If so, we have to
4398 	 * call VOP_CLOSE() and VOP_INACTIVE().
4399 	 *
4400 	 * It could be that VOP_INACTIVE() requested reclamation, in
4401 	 * which case we should avoid recursion, so check
4402 	 * VI_DOINGINACT.  This is not precise but good enough.
4403 	 */
4404 	active = vp->v_usecount > 0;
4405 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4406 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4407 
4408 	/*
4409 	 * If we need to do inactive VI_OWEINACT will be set.
4410 	 */
4411 	if (vp->v_iflag & VI_DEFINACT) {
4412 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4413 		vp->v_iflag &= ~VI_DEFINACT;
4414 		vdropl(vp);
4415 	} else {
4416 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4417 		VI_UNLOCK(vp);
4418 	}
4419 	cache_purge_vgone(vp);
4420 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4421 
4422 	/*
4423 	 * If purging an active vnode, it must be closed and
4424 	 * deactivated before being reclaimed.
4425 	 */
4426 	if (active)
4427 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4428 	if (!doinginact) {
4429 		do {
4430 			if (oweinact || active) {
4431 				VI_LOCK(vp);
4432 				vinactivef(vp);
4433 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4434 				VI_UNLOCK(vp);
4435 			}
4436 		} while (oweinact);
4437 	}
4438 	if (vp->v_type == VSOCK)
4439 		vfs_unp_reclaim(vp);
4440 
4441 	/*
4442 	 * Clean out any buffers associated with the vnode.
4443 	 * If the flush fails, just toss the buffers.
4444 	 */
4445 	mp = NULL;
4446 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4447 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4448 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4449 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4450 			;
4451 	}
4452 
4453 	BO_LOCK(&vp->v_bufobj);
4454 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4455 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4456 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4457 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4458 	    ("vp %p bufobj not invalidated", vp));
4459 
4460 	/*
4461 	 * For VMIO bufobj, BO_DEAD is set later, or in
4462 	 * vm_object_terminate() after the object's page queue is
4463 	 * flushed.
4464 	 */
4465 	object = vp->v_bufobj.bo_object;
4466 	if (object == NULL)
4467 		vp->v_bufobj.bo_flag |= BO_DEAD;
4468 	BO_UNLOCK(&vp->v_bufobj);
4469 
4470 	/*
4471 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4472 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4473 	 * should not touch the object borrowed from the lower vnode
4474 	 * (the handle check).
4475 	 */
4476 	if (object != NULL && object->type == OBJT_VNODE &&
4477 	    object->handle == vp)
4478 		vnode_destroy_vobject(vp);
4479 
4480 	/*
4481 	 * Reclaim the vnode.
4482 	 */
4483 	if (VOP_RECLAIM(vp))
4484 		panic("vgone: cannot reclaim");
4485 	if (mp != NULL)
4486 		vn_finished_secondary_write(mp);
4487 	VNASSERT(vp->v_object == NULL, vp,
4488 	    ("vop_reclaim left v_object vp=%p", vp));
4489 	/*
4490 	 * Clear the advisory locks and wake up waiting threads.
4491 	 */
4492 	if (vp->v_lockf != NULL) {
4493 		(void)VOP_ADVLOCKPURGE(vp);
4494 		vp->v_lockf = NULL;
4495 	}
4496 	/*
4497 	 * Delete from old mount point vnode list.
4498 	 */
4499 	if (vp->v_mount == NULL) {
4500 		VI_LOCK(vp);
4501 	} else {
4502 		delmntque(vp);
4503 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4504 	}
4505 	/*
4506 	 * Done with purge, reset to the standard lock and invalidate
4507 	 * the vnode.
4508 	 */
4509 	vp->v_vnlock = &vp->v_lock;
4510 	vp->v_op = &dead_vnodeops;
4511 	vp->v_type = VBAD;
4512 	vn_set_state(vp, VSTATE_DEAD);
4513 }
4514 
4515 /*
4516  * Print out a description of a vnode.
4517  */
4518 static const char *const vtypename[] = {
4519 	[VNON] = "VNON",
4520 	[VREG] = "VREG",
4521 	[VDIR] = "VDIR",
4522 	[VBLK] = "VBLK",
4523 	[VCHR] = "VCHR",
4524 	[VLNK] = "VLNK",
4525 	[VSOCK] = "VSOCK",
4526 	[VFIFO] = "VFIFO",
4527 	[VBAD] = "VBAD",
4528 	[VMARKER] = "VMARKER",
4529 };
4530 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4531     "vnode type name not added to vtypename");
4532 
4533 static const char *const vstatename[] = {
4534 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4535 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4536 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4537 	[VSTATE_DEAD] = "VSTATE_DEAD",
4538 };
4539 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4540     "vnode state name not added to vstatename");
4541 
4542 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4543     "new hold count flag not added to vn_printf");
4544 
4545 void
vn_printf(struct vnode * vp,const char * fmt,...)4546 vn_printf(struct vnode *vp, const char *fmt, ...)
4547 {
4548 	va_list ap;
4549 	char buf[256], buf2[16];
4550 	u_long flags;
4551 	u_int holdcnt;
4552 	short irflag;
4553 
4554 	va_start(ap, fmt);
4555 	vprintf(fmt, ap);
4556 	va_end(ap);
4557 	printf("%p: ", (void *)vp);
4558 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4559 	    vstatename[vp->v_state], vp->v_op);
4560 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4561 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4562 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4563 	    vp->v_seqc_users);
4564 	switch (vp->v_type) {
4565 	case VDIR:
4566 		printf(" mountedhere %p\n", vp->v_mountedhere);
4567 		break;
4568 	case VCHR:
4569 		printf(" rdev %p\n", vp->v_rdev);
4570 		break;
4571 	case VSOCK:
4572 		printf(" socket %p\n", vp->v_unpcb);
4573 		break;
4574 	case VFIFO:
4575 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4576 		break;
4577 	default:
4578 		printf("\n");
4579 		break;
4580 	}
4581 	buf[0] = '\0';
4582 	buf[1] = '\0';
4583 	if (holdcnt & VHOLD_NO_SMR)
4584 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4585 	printf("    hold count flags (%s)\n", buf + 1);
4586 
4587 	buf[0] = '\0';
4588 	buf[1] = '\0';
4589 	irflag = vn_irflag_read(vp);
4590 	if (irflag & VIRF_DOOMED)
4591 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4592 	if (irflag & VIRF_PGREAD)
4593 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4594 	if (irflag & VIRF_MOUNTPOINT)
4595 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4596 	if (irflag & VIRF_TEXT_REF)
4597 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4598 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4599 	if (flags != 0) {
4600 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4601 		strlcat(buf, buf2, sizeof(buf));
4602 	}
4603 	if (vp->v_vflag & VV_ROOT)
4604 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4605 	if (vp->v_vflag & VV_ISTTY)
4606 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4607 	if (vp->v_vflag & VV_NOSYNC)
4608 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4609 	if (vp->v_vflag & VV_ETERNALDEV)
4610 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4611 	if (vp->v_vflag & VV_CACHEDLABEL)
4612 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4613 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4614 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4615 	if (vp->v_vflag & VV_COPYONWRITE)
4616 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4617 	if (vp->v_vflag & VV_SYSTEM)
4618 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4619 	if (vp->v_vflag & VV_PROCDEP)
4620 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4621 	if (vp->v_vflag & VV_DELETED)
4622 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4623 	if (vp->v_vflag & VV_MD)
4624 		strlcat(buf, "|VV_MD", sizeof(buf));
4625 	if (vp->v_vflag & VV_FORCEINSMQ)
4626 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4627 	if (vp->v_vflag & VV_READLINK)
4628 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4629 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4630 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4631 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4632 	if (flags != 0) {
4633 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4634 		strlcat(buf, buf2, sizeof(buf));
4635 	}
4636 	if (vp->v_iflag & VI_MOUNT)
4637 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4638 	if (vp->v_iflag & VI_DOINGINACT)
4639 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4640 	if (vp->v_iflag & VI_OWEINACT)
4641 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4642 	if (vp->v_iflag & VI_DEFINACT)
4643 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4644 	if (vp->v_iflag & VI_FOPENING)
4645 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4646 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4647 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4648 	if (flags != 0) {
4649 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4650 		strlcat(buf, buf2, sizeof(buf));
4651 	}
4652 	if (vp->v_mflag & VMP_LAZYLIST)
4653 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4654 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4655 	if (flags != 0) {
4656 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4657 		strlcat(buf, buf2, sizeof(buf));
4658 	}
4659 	printf("    flags (%s)", buf + 1);
4660 	if (mtx_owned(VI_MTX(vp)))
4661 		printf(" VI_LOCKed");
4662 	printf("\n");
4663 	if (vp->v_object != NULL)
4664 		printf("    v_object %p ref %d pages %d "
4665 		    "cleanbuf %d dirtybuf %d\n",
4666 		    vp->v_object, vp->v_object->ref_count,
4667 		    vp->v_object->resident_page_count,
4668 		    vp->v_bufobj.bo_clean.bv_cnt,
4669 		    vp->v_bufobj.bo_dirty.bv_cnt);
4670 	printf("    ");
4671 	lockmgr_printinfo(vp->v_vnlock);
4672 	if (vp->v_data != NULL)
4673 		VOP_PRINT(vp);
4674 }
4675 
4676 #ifdef DDB
4677 /*
4678  * List all of the locked vnodes in the system.
4679  * Called when debugging the kernel.
4680  */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4681 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4682 {
4683 	struct mount *mp;
4684 	struct vnode *vp;
4685 
4686 	/*
4687 	 * Note: because this is DDB, we can't obey the locking semantics
4688 	 * for these structures, which means we could catch an inconsistent
4689 	 * state and dereference a nasty pointer.  Not much to be done
4690 	 * about that.
4691 	 */
4692 	db_printf("Locked vnodes\n");
4693 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4694 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4695 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4696 				vn_printf(vp, "vnode ");
4697 		}
4698 	}
4699 }
4700 
4701 /*
4702  * Show details about the given vnode.
4703  */
DB_SHOW_COMMAND(vnode,db_show_vnode)4704 DB_SHOW_COMMAND(vnode, db_show_vnode)
4705 {
4706 	struct vnode *vp;
4707 
4708 	if (!have_addr)
4709 		return;
4710 	vp = (struct vnode *)addr;
4711 	vn_printf(vp, "vnode ");
4712 }
4713 
4714 /*
4715  * Show details about the given mount point.
4716  */
DB_SHOW_COMMAND(mount,db_show_mount)4717 DB_SHOW_COMMAND(mount, db_show_mount)
4718 {
4719 	struct mount *mp;
4720 	struct vfsopt *opt;
4721 	struct statfs *sp;
4722 	struct vnode *vp;
4723 	char buf[512];
4724 	uint64_t mflags;
4725 	u_int flags;
4726 
4727 	if (!have_addr) {
4728 		/* No address given, print short info about all mount points. */
4729 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4730 			db_printf("%p %s on %s (%s)\n", mp,
4731 			    mp->mnt_stat.f_mntfromname,
4732 			    mp->mnt_stat.f_mntonname,
4733 			    mp->mnt_stat.f_fstypename);
4734 			if (db_pager_quit)
4735 				break;
4736 		}
4737 		db_printf("\nMore info: show mount <addr>\n");
4738 		return;
4739 	}
4740 
4741 	mp = (struct mount *)addr;
4742 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4743 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4744 
4745 	buf[0] = '\0';
4746 	mflags = mp->mnt_flag;
4747 #define	MNT_FLAG(flag)	do {						\
4748 	if (mflags & (flag)) {						\
4749 		if (buf[0] != '\0')					\
4750 			strlcat(buf, ", ", sizeof(buf));		\
4751 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4752 		mflags &= ~(flag);					\
4753 	}								\
4754 } while (0)
4755 	MNT_FLAG(MNT_RDONLY);
4756 	MNT_FLAG(MNT_SYNCHRONOUS);
4757 	MNT_FLAG(MNT_NOEXEC);
4758 	MNT_FLAG(MNT_NOSUID);
4759 	MNT_FLAG(MNT_NFS4ACLS);
4760 	MNT_FLAG(MNT_UNION);
4761 	MNT_FLAG(MNT_ASYNC);
4762 	MNT_FLAG(MNT_SUIDDIR);
4763 	MNT_FLAG(MNT_SOFTDEP);
4764 	MNT_FLAG(MNT_NOSYMFOLLOW);
4765 	MNT_FLAG(MNT_GJOURNAL);
4766 	MNT_FLAG(MNT_MULTILABEL);
4767 	MNT_FLAG(MNT_ACLS);
4768 	MNT_FLAG(MNT_NOATIME);
4769 	MNT_FLAG(MNT_NOCLUSTERR);
4770 	MNT_FLAG(MNT_NOCLUSTERW);
4771 	MNT_FLAG(MNT_SUJ);
4772 	MNT_FLAG(MNT_EXRDONLY);
4773 	MNT_FLAG(MNT_EXPORTED);
4774 	MNT_FLAG(MNT_DEFEXPORTED);
4775 	MNT_FLAG(MNT_EXPORTANON);
4776 	MNT_FLAG(MNT_EXKERB);
4777 	MNT_FLAG(MNT_EXPUBLIC);
4778 	MNT_FLAG(MNT_LOCAL);
4779 	MNT_FLAG(MNT_QUOTA);
4780 	MNT_FLAG(MNT_ROOTFS);
4781 	MNT_FLAG(MNT_USER);
4782 	MNT_FLAG(MNT_IGNORE);
4783 	MNT_FLAG(MNT_UPDATE);
4784 	MNT_FLAG(MNT_DELEXPORT);
4785 	MNT_FLAG(MNT_RELOAD);
4786 	MNT_FLAG(MNT_FORCE);
4787 	MNT_FLAG(MNT_SNAPSHOT);
4788 	MNT_FLAG(MNT_BYFSID);
4789 	MNT_FLAG(MNT_NAMEDATTR);
4790 #undef MNT_FLAG
4791 	if (mflags != 0) {
4792 		if (buf[0] != '\0')
4793 			strlcat(buf, ", ", sizeof(buf));
4794 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4795 		    "0x%016jx", mflags);
4796 	}
4797 	db_printf("    mnt_flag = %s\n", buf);
4798 
4799 	buf[0] = '\0';
4800 	flags = mp->mnt_kern_flag;
4801 #define	MNT_KERN_FLAG(flag)	do {					\
4802 	if (flags & (flag)) {						\
4803 		if (buf[0] != '\0')					\
4804 			strlcat(buf, ", ", sizeof(buf));		\
4805 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4806 		flags &= ~(flag);					\
4807 	}								\
4808 } while (0)
4809 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4810 	MNT_KERN_FLAG(MNTK_ASYNC);
4811 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4812 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4813 	MNT_KERN_FLAG(MNTK_DRAINING);
4814 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4815 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4816 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4817 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4818 	MNT_KERN_FLAG(MNTK_RECURSE);
4819 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4820 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4821 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4822 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4823 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4824 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4825 	MNT_KERN_FLAG(MNTK_NOASYNC);
4826 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4827 	MNT_KERN_FLAG(MNTK_MWAIT);
4828 	MNT_KERN_FLAG(MNTK_SUSPEND);
4829 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4830 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4831 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4832 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4833 #undef MNT_KERN_FLAG
4834 	if (flags != 0) {
4835 		if (buf[0] != '\0')
4836 			strlcat(buf, ", ", sizeof(buf));
4837 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4838 		    "0x%08x", flags);
4839 	}
4840 	db_printf("    mnt_kern_flag = %s\n", buf);
4841 
4842 	db_printf("    mnt_opt = ");
4843 	opt = TAILQ_FIRST(mp->mnt_opt);
4844 	if (opt != NULL) {
4845 		db_printf("%s", opt->name);
4846 		opt = TAILQ_NEXT(opt, link);
4847 		while (opt != NULL) {
4848 			db_printf(", %s", opt->name);
4849 			opt = TAILQ_NEXT(opt, link);
4850 		}
4851 	}
4852 	db_printf("\n");
4853 
4854 	sp = &mp->mnt_stat;
4855 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4856 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4857 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4858 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4859 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4860 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4861 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4862 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4863 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4864 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4865 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4866 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4867 
4868 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4869 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4870 	if (jailed(mp->mnt_cred))
4871 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4872 	db_printf(" }\n");
4873 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4874 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4875 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4876 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4877 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4878 	    mp->mnt_lazyvnodelistsize);
4879 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4880 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4881 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4882 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4883 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4884 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4885 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4886 	db_printf("    mnt_secondary_accwrites = %d\n",
4887 	    mp->mnt_secondary_accwrites);
4888 	db_printf("    mnt_gjprovider = %s\n",
4889 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4890 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4891 
4892 	db_printf("\n\nList of active vnodes\n");
4893 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4894 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4895 			vn_printf(vp, "vnode ");
4896 			if (db_pager_quit)
4897 				break;
4898 		}
4899 	}
4900 	db_printf("\n\nList of inactive vnodes\n");
4901 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4902 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4903 			vn_printf(vp, "vnode ");
4904 			if (db_pager_quit)
4905 				break;
4906 		}
4907 	}
4908 }
4909 #endif	/* DDB */
4910 
4911 /*
4912  * Fill in a struct xvfsconf based on a struct vfsconf.
4913  */
4914 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4915 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4916 {
4917 	struct xvfsconf xvfsp;
4918 
4919 	bzero(&xvfsp, sizeof(xvfsp));
4920 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4921 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4922 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4923 	xvfsp.vfc_flags = vfsp->vfc_flags;
4924 	/*
4925 	 * These are unused in userland, we keep them
4926 	 * to not break binary compatibility.
4927 	 */
4928 	xvfsp.vfc_vfsops = NULL;
4929 	xvfsp.vfc_next = NULL;
4930 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4931 }
4932 
4933 #ifdef COMPAT_FREEBSD32
4934 struct xvfsconf32 {
4935 	uint32_t	vfc_vfsops;
4936 	char		vfc_name[MFSNAMELEN];
4937 	int32_t		vfc_typenum;
4938 	int32_t		vfc_refcount;
4939 	int32_t		vfc_flags;
4940 	uint32_t	vfc_next;
4941 };
4942 
4943 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4944 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4945 {
4946 	struct xvfsconf32 xvfsp;
4947 
4948 	bzero(&xvfsp, sizeof(xvfsp));
4949 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4950 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4951 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4952 	xvfsp.vfc_flags = vfsp->vfc_flags;
4953 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4954 }
4955 #endif
4956 
4957 /*
4958  * Top level filesystem related information gathering.
4959  */
4960 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4961 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4962 {
4963 	struct vfsconf *vfsp;
4964 	int error;
4965 
4966 	error = 0;
4967 	vfsconf_slock();
4968 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4969 #ifdef COMPAT_FREEBSD32
4970 		if (req->flags & SCTL_MASK32)
4971 			error = vfsconf2x32(req, vfsp);
4972 		else
4973 #endif
4974 			error = vfsconf2x(req, vfsp);
4975 		if (error)
4976 			break;
4977 	}
4978 	vfsconf_sunlock();
4979 	return (error);
4980 }
4981 
4982 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4983     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4984     "S,xvfsconf", "List of all configured filesystems");
4985 
4986 #ifndef BURN_BRIDGES
4987 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4988 
4989 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4990 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4991 {
4992 	int *name = (int *)arg1 - 1;	/* XXX */
4993 	u_int namelen = arg2 + 1;	/* XXX */
4994 	struct vfsconf *vfsp;
4995 
4996 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4997 	    "please rebuild world\n");
4998 
4999 #if 1 || defined(COMPAT_PRELITE2)
5000 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
5001 	if (namelen == 1)
5002 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
5003 #endif
5004 
5005 	switch (name[1]) {
5006 	case VFS_MAXTYPENUM:
5007 		if (namelen != 2)
5008 			return (ENOTDIR);
5009 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
5010 	case VFS_CONF:
5011 		if (namelen != 3)
5012 			return (ENOTDIR);	/* overloaded */
5013 		vfsconf_slock();
5014 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5015 			if (vfsp->vfc_typenum == name[2])
5016 				break;
5017 		}
5018 		vfsconf_sunlock();
5019 		if (vfsp == NULL)
5020 			return (EOPNOTSUPP);
5021 #ifdef COMPAT_FREEBSD32
5022 		if (req->flags & SCTL_MASK32)
5023 			return (vfsconf2x32(req, vfsp));
5024 		else
5025 #endif
5026 			return (vfsconf2x(req, vfsp));
5027 	}
5028 	return (EOPNOTSUPP);
5029 }
5030 
5031 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5032     CTLFLAG_MPSAFE, vfs_sysctl,
5033     "Generic filesystem");
5034 
5035 #if 1 || defined(COMPAT_PRELITE2)
5036 
5037 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5038 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5039 {
5040 	int error;
5041 	struct vfsconf *vfsp;
5042 	struct ovfsconf ovfs;
5043 
5044 	vfsconf_slock();
5045 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5046 		bzero(&ovfs, sizeof(ovfs));
5047 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
5048 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
5049 		ovfs.vfc_index = vfsp->vfc_typenum;
5050 		ovfs.vfc_refcount = vfsp->vfc_refcount;
5051 		ovfs.vfc_flags = vfsp->vfc_flags;
5052 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5053 		if (error != 0) {
5054 			vfsconf_sunlock();
5055 			return (error);
5056 		}
5057 	}
5058 	vfsconf_sunlock();
5059 	return (0);
5060 }
5061 
5062 #endif /* 1 || COMPAT_PRELITE2 */
5063 #endif /* !BURN_BRIDGES */
5064 
5065 static void
unmount_or_warn(struct mount * mp)5066 unmount_or_warn(struct mount *mp)
5067 {
5068 	int error;
5069 
5070 	error = dounmount(mp, MNT_FORCE, curthread);
5071 	if (error != 0) {
5072 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5073 		if (error == EBUSY)
5074 			printf("BUSY)\n");
5075 		else
5076 			printf("%d)\n", error);
5077 	}
5078 }
5079 
5080 /*
5081  * Unmount all filesystems. The list is traversed in reverse order
5082  * of mounting to avoid dependencies.
5083  */
5084 void
vfs_unmountall(void)5085 vfs_unmountall(void)
5086 {
5087 	struct mount *mp, *tmp;
5088 
5089 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5090 
5091 	/*
5092 	 * Since this only runs when rebooting, it is not interlocked.
5093 	 */
5094 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5095 		vfs_ref(mp);
5096 
5097 		/*
5098 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5099 		 * unmount of the latter.
5100 		 */
5101 		if (mp == rootdevmp)
5102 			continue;
5103 
5104 		unmount_or_warn(mp);
5105 	}
5106 
5107 	if (rootdevmp != NULL)
5108 		unmount_or_warn(rootdevmp);
5109 }
5110 
5111 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5112 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5113 {
5114 
5115 	ASSERT_VI_LOCKED(vp, __func__);
5116 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5117 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5118 		vdropl(vp);
5119 		return;
5120 	}
5121 	if (vn_lock(vp, lkflags) == 0) {
5122 		VI_LOCK(vp);
5123 		vinactive(vp);
5124 		VOP_UNLOCK(vp);
5125 		vdropl(vp);
5126 		return;
5127 	}
5128 	vdefer_inactive_unlocked(vp);
5129 }
5130 
5131 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5132 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5133 {
5134 
5135 	return (vp->v_iflag & VI_DEFINACT);
5136 }
5137 
5138 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5139 vfs_periodic_inactive(struct mount *mp, int flags)
5140 {
5141 	struct vnode *vp, *mvp;
5142 	int lkflags;
5143 
5144 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5145 	if (flags != MNT_WAIT)
5146 		lkflags |= LK_NOWAIT;
5147 
5148 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5149 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5150 			VI_UNLOCK(vp);
5151 			continue;
5152 		}
5153 		vp->v_iflag &= ~VI_DEFINACT;
5154 		vfs_deferred_inactive(vp, lkflags);
5155 	}
5156 }
5157 
5158 static inline bool
vfs_want_msync(struct vnode * vp)5159 vfs_want_msync(struct vnode *vp)
5160 {
5161 	struct vm_object *obj;
5162 
5163 	/*
5164 	 * This test may be performed without any locks held.
5165 	 * We rely on vm_object's type stability.
5166 	 */
5167 	if (vp->v_vflag & VV_NOSYNC)
5168 		return (false);
5169 	obj = vp->v_object;
5170 	return (obj != NULL && vm_object_mightbedirty(obj));
5171 }
5172 
5173 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5174 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5175 {
5176 
5177 	if (vp->v_vflag & VV_NOSYNC)
5178 		return (false);
5179 	if (vp->v_iflag & VI_DEFINACT)
5180 		return (true);
5181 	return (vfs_want_msync(vp));
5182 }
5183 
5184 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5185 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5186 {
5187 	struct vnode *vp, *mvp;
5188 	int lkflags;
5189 	bool seen_defer;
5190 
5191 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5192 	if (flags != MNT_WAIT)
5193 		lkflags |= LK_NOWAIT;
5194 
5195 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5196 		seen_defer = false;
5197 		if (vp->v_iflag & VI_DEFINACT) {
5198 			vp->v_iflag &= ~VI_DEFINACT;
5199 			seen_defer = true;
5200 		}
5201 		if (!vfs_want_msync(vp)) {
5202 			if (seen_defer)
5203 				vfs_deferred_inactive(vp, lkflags);
5204 			else
5205 				VI_UNLOCK(vp);
5206 			continue;
5207 		}
5208 		if (vget(vp, lkflags) == 0) {
5209 			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5210 				if (flags == MNT_WAIT)
5211 					vnode_pager_clean_sync(vp);
5212 				else
5213 					vnode_pager_clean_async(vp);
5214 			}
5215 			vput(vp);
5216 			if (seen_defer)
5217 				vdrop(vp);
5218 		} else {
5219 			if (seen_defer)
5220 				vdefer_inactive_unlocked(vp);
5221 		}
5222 	}
5223 }
5224 
5225 void
vfs_periodic(struct mount * mp,int flags)5226 vfs_periodic(struct mount *mp, int flags)
5227 {
5228 
5229 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5230 
5231 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5232 		vfs_periodic_inactive(mp, flags);
5233 	else
5234 		vfs_periodic_msync_inactive(mp, flags);
5235 }
5236 
5237 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5238 destroy_vpollinfo_free(struct vpollinfo *vi)
5239 {
5240 
5241 	knlist_destroy(&vi->vpi_selinfo.si_note);
5242 	mtx_destroy(&vi->vpi_lock);
5243 	free(vi, M_VNODEPOLL);
5244 }
5245 
5246 static void
destroy_vpollinfo(struct vpollinfo * vi)5247 destroy_vpollinfo(struct vpollinfo *vi)
5248 {
5249 	KASSERT(TAILQ_EMPTY(&vi->vpi_inotify),
5250 	    ("%s: pollinfo %p has lingering watches", __func__, vi));
5251 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5252 	seldrain(&vi->vpi_selinfo);
5253 	destroy_vpollinfo_free(vi);
5254 }
5255 
5256 /*
5257  * Initialize per-vnode helper structure to hold poll-related state.
5258  */
5259 void
v_addpollinfo(struct vnode * vp)5260 v_addpollinfo(struct vnode *vp)
5261 {
5262 	struct vpollinfo *vi;
5263 
5264 	if (atomic_load_ptr(&vp->v_pollinfo) != NULL)
5265 		return;
5266 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5267 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5268 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5269 	    vfs_knlunlock, vfs_knl_assert_lock);
5270 	TAILQ_INIT(&vi->vpi_inotify);
5271 	VI_LOCK(vp);
5272 	if (vp->v_pollinfo != NULL) {
5273 		VI_UNLOCK(vp);
5274 		destroy_vpollinfo_free(vi);
5275 		return;
5276 	}
5277 	vp->v_pollinfo = vi;
5278 	VI_UNLOCK(vp);
5279 }
5280 
5281 /*
5282  * Record a process's interest in events which might happen to
5283  * a vnode.  Because poll uses the historic select-style interface
5284  * internally, this routine serves as both the ``check for any
5285  * pending events'' and the ``record my interest in future events''
5286  * functions.  (These are done together, while the lock is held,
5287  * to avoid race conditions.)
5288  */
5289 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5290 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5291 {
5292 
5293 	v_addpollinfo(vp);
5294 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5295 	if (vp->v_pollinfo->vpi_revents & events) {
5296 		/*
5297 		 * This leaves events we are not interested
5298 		 * in available for the other process which
5299 		 * which presumably had requested them
5300 		 * (otherwise they would never have been
5301 		 * recorded).
5302 		 */
5303 		events &= vp->v_pollinfo->vpi_revents;
5304 		vp->v_pollinfo->vpi_revents &= ~events;
5305 
5306 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5307 		return (events);
5308 	}
5309 	vp->v_pollinfo->vpi_events |= events;
5310 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5311 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5312 	return (0);
5313 }
5314 
5315 /*
5316  * Routine to create and manage a filesystem syncer vnode.
5317  */
5318 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5319 static int	sync_fsync(struct  vop_fsync_args *);
5320 static int	sync_inactive(struct  vop_inactive_args *);
5321 static int	sync_reclaim(struct  vop_reclaim_args *);
5322 
5323 static struct vop_vector sync_vnodeops = {
5324 	.vop_bypass =	VOP_EOPNOTSUPP,
5325 	.vop_close =	sync_close,
5326 	.vop_fsync =	sync_fsync,
5327 	.vop_getwritemount = vop_stdgetwritemount,
5328 	.vop_inactive =	sync_inactive,
5329 	.vop_need_inactive = vop_stdneed_inactive,
5330 	.vop_reclaim =	sync_reclaim,
5331 	.vop_lock1 =	vop_stdlock,
5332 	.vop_unlock =	vop_stdunlock,
5333 	.vop_islocked =	vop_stdislocked,
5334 	.vop_fplookup_vexec = VOP_EAGAIN,
5335 	.vop_fplookup_symlink = VOP_EAGAIN,
5336 };
5337 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5338 
5339 /*
5340  * Create a new filesystem syncer vnode for the specified mount point.
5341  */
5342 void
vfs_allocate_syncvnode(struct mount * mp)5343 vfs_allocate_syncvnode(struct mount *mp)
5344 {
5345 	struct vnode *vp;
5346 	struct bufobj *bo;
5347 	static long start, incr, next;
5348 	int error;
5349 
5350 	/* Allocate a new vnode */
5351 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5352 	if (error != 0)
5353 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5354 	vp->v_type = VNON;
5355 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5356 	vp->v_vflag |= VV_FORCEINSMQ;
5357 	error = insmntque1(vp, mp);
5358 	if (error != 0)
5359 		panic("vfs_allocate_syncvnode: insmntque() failed");
5360 	vp->v_vflag &= ~VV_FORCEINSMQ;
5361 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5362 	VOP_UNLOCK(vp);
5363 	/*
5364 	 * Place the vnode onto the syncer worklist. We attempt to
5365 	 * scatter them about on the list so that they will go off
5366 	 * at evenly distributed times even if all the filesystems
5367 	 * are mounted at once.
5368 	 */
5369 	next += incr;
5370 	if (next == 0 || next > syncer_maxdelay) {
5371 		start /= 2;
5372 		incr /= 2;
5373 		if (start == 0) {
5374 			start = syncer_maxdelay / 2;
5375 			incr = syncer_maxdelay;
5376 		}
5377 		next = start;
5378 	}
5379 	bo = &vp->v_bufobj;
5380 	BO_LOCK(bo);
5381 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5382 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5383 	mtx_lock(&sync_mtx);
5384 	sync_vnode_count++;
5385 	if (mp->mnt_syncer == NULL) {
5386 		mp->mnt_syncer = vp;
5387 		vp = NULL;
5388 	}
5389 	mtx_unlock(&sync_mtx);
5390 	BO_UNLOCK(bo);
5391 	if (vp != NULL) {
5392 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5393 		vgone(vp);
5394 		vput(vp);
5395 	}
5396 }
5397 
5398 void
vfs_deallocate_syncvnode(struct mount * mp)5399 vfs_deallocate_syncvnode(struct mount *mp)
5400 {
5401 	struct vnode *vp;
5402 
5403 	mtx_lock(&sync_mtx);
5404 	vp = mp->mnt_syncer;
5405 	if (vp != NULL)
5406 		mp->mnt_syncer = NULL;
5407 	mtx_unlock(&sync_mtx);
5408 	if (vp != NULL)
5409 		vrele(vp);
5410 }
5411 
5412 /*
5413  * Do a lazy sync of the filesystem.
5414  */
5415 static int
sync_fsync(struct vop_fsync_args * ap)5416 sync_fsync(struct vop_fsync_args *ap)
5417 {
5418 	struct vnode *syncvp = ap->a_vp;
5419 	struct mount *mp = syncvp->v_mount;
5420 	int error, save;
5421 	struct bufobj *bo;
5422 
5423 	/*
5424 	 * We only need to do something if this is a lazy evaluation.
5425 	 */
5426 	if (ap->a_waitfor != MNT_LAZY)
5427 		return (0);
5428 
5429 	/*
5430 	 * Move ourselves to the back of the sync list.
5431 	 */
5432 	bo = &syncvp->v_bufobj;
5433 	BO_LOCK(bo);
5434 	vn_syncer_add_to_worklist(bo, syncdelay);
5435 	BO_UNLOCK(bo);
5436 
5437 	/*
5438 	 * Walk the list of vnodes pushing all that are dirty and
5439 	 * not already on the sync list.
5440 	 */
5441 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5442 		return (0);
5443 	VOP_UNLOCK(syncvp);
5444 	save = curthread_pflags_set(TDP_SYNCIO);
5445 	/*
5446 	 * The filesystem at hand may be idle with free vnodes stored in the
5447 	 * batch.  Return them instead of letting them stay there indefinitely.
5448 	 */
5449 	vfs_periodic(mp, MNT_NOWAIT);
5450 	error = VFS_SYNC(mp, MNT_LAZY);
5451 	curthread_pflags_restore(save);
5452 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5453 	vfs_unbusy(mp);
5454 	return (error);
5455 }
5456 
5457 /*
5458  * The syncer vnode is no referenced.
5459  */
5460 static int
sync_inactive(struct vop_inactive_args * ap)5461 sync_inactive(struct vop_inactive_args *ap)
5462 {
5463 
5464 	vgone(ap->a_vp);
5465 	return (0);
5466 }
5467 
5468 /*
5469  * The syncer vnode is no longer needed and is being decommissioned.
5470  *
5471  * Modifications to the worklist must be protected by sync_mtx.
5472  */
5473 static int
sync_reclaim(struct vop_reclaim_args * ap)5474 sync_reclaim(struct vop_reclaim_args *ap)
5475 {
5476 	struct vnode *vp = ap->a_vp;
5477 	struct bufobj *bo;
5478 
5479 	bo = &vp->v_bufobj;
5480 	BO_LOCK(bo);
5481 	mtx_lock(&sync_mtx);
5482 	if (vp->v_mount->mnt_syncer == vp)
5483 		vp->v_mount->mnt_syncer = NULL;
5484 	if (bo->bo_flag & BO_ONWORKLST) {
5485 		LIST_REMOVE(bo, bo_synclist);
5486 		syncer_worklist_len--;
5487 		sync_vnode_count--;
5488 		bo->bo_flag &= ~BO_ONWORKLST;
5489 	}
5490 	mtx_unlock(&sync_mtx);
5491 	BO_UNLOCK(bo);
5492 
5493 	return (0);
5494 }
5495 
5496 int
vn_need_pageq_flush(struct vnode * vp)5497 vn_need_pageq_flush(struct vnode *vp)
5498 {
5499 	struct vm_object *obj;
5500 
5501 	obj = vp->v_object;
5502 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5503 	    vm_object_mightbedirty(obj));
5504 }
5505 
5506 /*
5507  * Check if vnode represents a disk device
5508  */
5509 bool
vn_isdisk_error(struct vnode * vp,int * errp)5510 vn_isdisk_error(struct vnode *vp, int *errp)
5511 {
5512 	int error;
5513 
5514 	if (vp->v_type != VCHR) {
5515 		error = ENOTBLK;
5516 		goto out;
5517 	}
5518 	error = 0;
5519 	dev_lock();
5520 	if (vp->v_rdev == NULL)
5521 		error = ENXIO;
5522 	else if (vp->v_rdev->si_devsw == NULL)
5523 		error = ENXIO;
5524 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5525 		error = ENOTBLK;
5526 	dev_unlock();
5527 out:
5528 	*errp = error;
5529 	return (error == 0);
5530 }
5531 
5532 bool
vn_isdisk(struct vnode * vp)5533 vn_isdisk(struct vnode *vp)
5534 {
5535 	int error;
5536 
5537 	return (vn_isdisk_error(vp, &error));
5538 }
5539 
5540 /*
5541  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5542  * the comment above cache_fplookup for details.
5543  */
5544 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5545 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5546 {
5547 	int error;
5548 
5549 	VFS_SMR_ASSERT_ENTERED();
5550 
5551 	/* Check the owner. */
5552 	if (cred->cr_uid == file_uid) {
5553 		if (file_mode & S_IXUSR)
5554 			return (0);
5555 		goto out_error;
5556 	}
5557 
5558 	/* Otherwise, check the groups (first match) */
5559 	if (groupmember(file_gid, cred)) {
5560 		if (file_mode & S_IXGRP)
5561 			return (0);
5562 		goto out_error;
5563 	}
5564 
5565 	/* Otherwise, check everyone else. */
5566 	if (file_mode & S_IXOTH)
5567 		return (0);
5568 out_error:
5569 	/*
5570 	 * Permission check failed, but it is possible denial will get overwritten
5571 	 * (e.g., when root is traversing through a 700 directory owned by someone
5572 	 * else).
5573 	 *
5574 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5575 	 * modules overriding this result. It's quite unclear what semantics
5576 	 * are allowed for them to operate, thus for safety we don't call them
5577 	 * from within the SMR section. This also means if any such modules
5578 	 * are present, we have to let the regular lookup decide.
5579 	 */
5580 	error = priv_check_cred_vfs_lookup_nomac(cred);
5581 	switch (error) {
5582 	case 0:
5583 		return (0);
5584 	case EAGAIN:
5585 		/*
5586 		 * MAC modules present.
5587 		 */
5588 		return (EAGAIN);
5589 	case EPERM:
5590 		return (EACCES);
5591 	default:
5592 		return (error);
5593 	}
5594 }
5595 
5596 /*
5597  * Common filesystem object access control check routine.  Accepts a
5598  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5599  * Returns 0 on success, or an errno on failure.
5600  */
5601 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5602 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5603     accmode_t accmode, struct ucred *cred)
5604 {
5605 	accmode_t dac_granted;
5606 	accmode_t priv_granted;
5607 
5608 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5609 	    ("invalid bit in accmode"));
5610 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5611 	    ("VAPPEND without VWRITE"));
5612 
5613 	/*
5614 	 * Look for a normal, non-privileged way to access the file/directory
5615 	 * as requested.  If it exists, go with that.
5616 	 */
5617 
5618 	dac_granted = 0;
5619 
5620 	/* Check the owner. */
5621 	if (cred->cr_uid == file_uid) {
5622 		dac_granted |= VADMIN;
5623 		if (file_mode & S_IXUSR)
5624 			dac_granted |= VEXEC;
5625 		if (file_mode & S_IRUSR)
5626 			dac_granted |= VREAD;
5627 		if (file_mode & S_IWUSR)
5628 			dac_granted |= (VWRITE | VAPPEND);
5629 
5630 		if ((accmode & dac_granted) == accmode)
5631 			return (0);
5632 
5633 		goto privcheck;
5634 	}
5635 
5636 	/* Otherwise, check the groups (first match) */
5637 	if (groupmember(file_gid, cred)) {
5638 		if (file_mode & S_IXGRP)
5639 			dac_granted |= VEXEC;
5640 		if (file_mode & S_IRGRP)
5641 			dac_granted |= VREAD;
5642 		if (file_mode & S_IWGRP)
5643 			dac_granted |= (VWRITE | VAPPEND);
5644 
5645 		if ((accmode & dac_granted) == accmode)
5646 			return (0);
5647 
5648 		goto privcheck;
5649 	}
5650 
5651 	/* Otherwise, check everyone else. */
5652 	if (file_mode & S_IXOTH)
5653 		dac_granted |= VEXEC;
5654 	if (file_mode & S_IROTH)
5655 		dac_granted |= VREAD;
5656 	if (file_mode & S_IWOTH)
5657 		dac_granted |= (VWRITE | VAPPEND);
5658 	if ((accmode & dac_granted) == accmode)
5659 		return (0);
5660 
5661 privcheck:
5662 	/*
5663 	 * Build a privilege mask to determine if the set of privileges
5664 	 * satisfies the requirements when combined with the granted mask
5665 	 * from above.  For each privilege, if the privilege is required,
5666 	 * bitwise or the request type onto the priv_granted mask.
5667 	 */
5668 	priv_granted = 0;
5669 
5670 	if (type == VDIR) {
5671 		/*
5672 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5673 		 * requests, instead of PRIV_VFS_EXEC.
5674 		 */
5675 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5676 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5677 			priv_granted |= VEXEC;
5678 	} else {
5679 		/*
5680 		 * Ensure that at least one execute bit is on. Otherwise,
5681 		 * a privileged user will always succeed, and we don't want
5682 		 * this to happen unless the file really is executable.
5683 		 */
5684 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5685 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5686 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5687 			priv_granted |= VEXEC;
5688 	}
5689 
5690 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5691 	    !priv_check_cred(cred, PRIV_VFS_READ))
5692 		priv_granted |= VREAD;
5693 
5694 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5695 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5696 		priv_granted |= (VWRITE | VAPPEND);
5697 
5698 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5699 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5700 		priv_granted |= VADMIN;
5701 
5702 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5703 		return (0);
5704 	}
5705 
5706 	return ((accmode & VADMIN) ? EPERM : EACCES);
5707 }
5708 
5709 /*
5710  * Credential check based on process requesting service, and per-attribute
5711  * permissions.
5712  */
5713 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5714 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5715     struct thread *td, accmode_t accmode)
5716 {
5717 
5718 	/*
5719 	 * Kernel-invoked always succeeds.
5720 	 */
5721 	if (cred == NOCRED)
5722 		return (0);
5723 
5724 	/*
5725 	 * Do not allow privileged processes in jail to directly manipulate
5726 	 * system attributes.
5727 	 */
5728 	switch (attrnamespace) {
5729 	case EXTATTR_NAMESPACE_SYSTEM:
5730 		/* Potentially should be: return (EPERM); */
5731 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5732 	case EXTATTR_NAMESPACE_USER:
5733 		return (VOP_ACCESS(vp, accmode, cred, td));
5734 	default:
5735 		return (EPERM);
5736 	}
5737 }
5738 
5739 #ifdef DEBUG_VFS_LOCKS
5740 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5741 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5742     "Drop into debugger on lock violation");
5743 
5744 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5745 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5746     0, "Check for interlock across VOPs");
5747 
5748 int vfs_badlock_print = 1;	/* Print lock violations. */
5749 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5750     0, "Print lock violations");
5751 
5752 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5753 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5754     0, "Print vnode details on lock violations");
5755 
5756 #ifdef KDB
5757 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5758 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5759     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5760 #endif
5761 
5762 static void
vfs_badlock(const char * msg,const char * str,struct vnode * vp)5763 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5764 {
5765 
5766 #ifdef KDB
5767 	if (vfs_badlock_backtrace)
5768 		kdb_backtrace();
5769 #endif
5770 	if (vfs_badlock_vnode)
5771 		vn_printf(vp, "vnode ");
5772 	if (vfs_badlock_print)
5773 		printf("%s: %p %s\n", str, (void *)vp, msg);
5774 	if (vfs_badlock_ddb)
5775 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5776 }
5777 
5778 void
assert_vi_locked(struct vnode * vp,const char * str)5779 assert_vi_locked(struct vnode *vp, const char *str)
5780 {
5781 
5782 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5783 		vfs_badlock("interlock is not locked but should be", str, vp);
5784 }
5785 
5786 void
assert_vi_unlocked(struct vnode * vp,const char * str)5787 assert_vi_unlocked(struct vnode *vp, const char *str)
5788 {
5789 
5790 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5791 		vfs_badlock("interlock is locked but should not be", str, vp);
5792 }
5793 
5794 void
assert_vop_locked(struct vnode * vp,const char * str)5795 assert_vop_locked(struct vnode *vp, const char *str)
5796 {
5797 	if (KERNEL_PANICKED() || vp == NULL)
5798 		return;
5799 
5800 #ifdef WITNESS
5801 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5802 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5803 #else
5804 	int locked = VOP_ISLOCKED(vp);
5805 	if (locked == 0 || locked == LK_EXCLOTHER)
5806 #endif
5807 		vfs_badlock("is not locked but should be", str, vp);
5808 }
5809 
5810 void
assert_vop_unlocked(struct vnode * vp,const char * str)5811 assert_vop_unlocked(struct vnode *vp, const char *str)
5812 {
5813 	if (KERNEL_PANICKED() || vp == NULL)
5814 		return;
5815 
5816 #ifdef WITNESS
5817 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5818 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5819 #else
5820 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5821 #endif
5822 		vfs_badlock("is locked but should not be", str, vp);
5823 }
5824 
5825 void
assert_vop_elocked(struct vnode * vp,const char * str)5826 assert_vop_elocked(struct vnode *vp, const char *str)
5827 {
5828 	if (KERNEL_PANICKED() || vp == NULL)
5829 		return;
5830 
5831 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5832 		vfs_badlock("is not exclusive locked but should be", str, vp);
5833 }
5834 #endif /* DEBUG_VFS_LOCKS */
5835 
5836 void
vop_rename_fail(struct vop_rename_args * ap)5837 vop_rename_fail(struct vop_rename_args *ap)
5838 {
5839 
5840 	if (ap->a_tvp != NULL)
5841 		vput(ap->a_tvp);
5842 	if (ap->a_tdvp == ap->a_tvp)
5843 		vrele(ap->a_tdvp);
5844 	else
5845 		vput(ap->a_tdvp);
5846 	vrele(ap->a_fdvp);
5847 	vrele(ap->a_fvp);
5848 }
5849 
5850 void
vop_rename_pre(void * ap)5851 vop_rename_pre(void *ap)
5852 {
5853 	struct vop_rename_args *a = ap;
5854 
5855 #ifdef DEBUG_VFS_LOCKS
5856 	struct mount *tmp;
5857 
5858 	if (a->a_tvp)
5859 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5860 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5861 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5862 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5863 
5864 	/* Check the source (from). */
5865 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5866 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5867 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5868 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5869 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5870 
5871 	/* Check the target. */
5872 	if (a->a_tvp)
5873 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5874 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5875 
5876 	tmp = NULL;
5877 	VOP_GETWRITEMOUNT(a->a_tdvp, &tmp);
5878 	lockmgr_assert(&tmp->mnt_renamelock, KA_XLOCKED);
5879 	vfs_rel(tmp);
5880 #endif
5881 	/*
5882 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5883 	 * in vop_rename_post but that's not going to work out since some
5884 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5885 	 *
5886 	 * For now filesystems are expected to do the relevant calls after they
5887 	 * decide what vnodes to operate on.
5888 	 */
5889 	if (a->a_tdvp != a->a_fdvp)
5890 		vhold(a->a_fdvp);
5891 	if (a->a_tvp != a->a_fvp)
5892 		vhold(a->a_fvp);
5893 	vhold(a->a_tdvp);
5894 	if (a->a_tvp)
5895 		vhold(a->a_tvp);
5896 }
5897 
5898 #ifdef DEBUG_VFS_LOCKS
5899 void
vop_fplookup_vexec_debugpre(void * ap __unused)5900 vop_fplookup_vexec_debugpre(void *ap __unused)
5901 {
5902 
5903 	VFS_SMR_ASSERT_ENTERED();
5904 }
5905 
5906 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5907 vop_fplookup_vexec_debugpost(void *ap, int rc)
5908 {
5909 	struct vop_fplookup_vexec_args *a;
5910 	struct vnode *vp;
5911 
5912 	a = ap;
5913 	vp = a->a_vp;
5914 
5915 	VFS_SMR_ASSERT_ENTERED();
5916 	if (rc == EOPNOTSUPP)
5917 		VNPASS(VN_IS_DOOMED(vp), vp);
5918 }
5919 
5920 void
vop_fplookup_symlink_debugpre(void * ap __unused)5921 vop_fplookup_symlink_debugpre(void *ap __unused)
5922 {
5923 
5924 	VFS_SMR_ASSERT_ENTERED();
5925 }
5926 
5927 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5928 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5929 {
5930 
5931 	VFS_SMR_ASSERT_ENTERED();
5932 }
5933 
5934 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5935 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5936 {
5937 	if (vp->v_type == VCHR)
5938 		;
5939 	/*
5940 	 * The shared vs. exclusive locking policy for fsync()
5941 	 * is actually determined by vp's write mount as indicated
5942 	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5943 	 * may not be the same as vp->v_mount.  However, if the
5944 	 * underlying filesystem which really handles the fsync()
5945 	 * supports shared locking, the stacked filesystem must also
5946 	 * be prepared for its VOP_FSYNC() operation to be called
5947 	 * with only a shared lock.  On the other hand, if the
5948 	 * stacked filesystem claims support for shared write
5949 	 * locking but the underlying filesystem does not, and the
5950 	 * caller incorrectly uses a shared lock, this condition
5951 	 * should still be caught when the stacked filesystem
5952 	 * invokes VOP_FSYNC() on the underlying filesystem.
5953 	 */
5954 	else if (MNT_SHARED_WRITES(vp->v_mount))
5955 		ASSERT_VOP_LOCKED(vp, name);
5956 	else
5957 		ASSERT_VOP_ELOCKED(vp, name);
5958 }
5959 
5960 void
vop_fsync_debugpre(void * a)5961 vop_fsync_debugpre(void *a)
5962 {
5963 	struct vop_fsync_args *ap;
5964 
5965 	ap = a;
5966 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5967 }
5968 
5969 void
vop_fsync_debugpost(void * a,int rc __unused)5970 vop_fsync_debugpost(void *a, int rc __unused)
5971 {
5972 	struct vop_fsync_args *ap;
5973 
5974 	ap = a;
5975 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5976 }
5977 
5978 void
vop_fdatasync_debugpre(void * a)5979 vop_fdatasync_debugpre(void *a)
5980 {
5981 	struct vop_fdatasync_args *ap;
5982 
5983 	ap = a;
5984 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5985 }
5986 
5987 void
vop_fdatasync_debugpost(void * a,int rc __unused)5988 vop_fdatasync_debugpost(void *a, int rc __unused)
5989 {
5990 	struct vop_fdatasync_args *ap;
5991 
5992 	ap = a;
5993 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5994 }
5995 
5996 void
vop_strategy_debugpre(void * ap)5997 vop_strategy_debugpre(void *ap)
5998 {
5999 	struct vop_strategy_args *a;
6000 	struct buf *bp;
6001 
6002 	a = ap;
6003 	bp = a->a_bp;
6004 
6005 	/*
6006 	 * Cluster ops lock their component buffers but not the IO container.
6007 	 */
6008 	if ((bp->b_flags & B_CLUSTER) != 0)
6009 		return;
6010 
6011 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
6012 		if (vfs_badlock_print)
6013 			printf(
6014 			    "VOP_STRATEGY: bp is not locked but should be\n");
6015 		if (vfs_badlock_ddb)
6016 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
6017 	}
6018 }
6019 
6020 void
vop_lock_debugpre(void * ap)6021 vop_lock_debugpre(void *ap)
6022 {
6023 	struct vop_lock1_args *a = ap;
6024 
6025 	if ((a->a_flags & LK_INTERLOCK) == 0)
6026 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6027 	else
6028 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6029 }
6030 
6031 void
vop_lock_debugpost(void * ap,int rc)6032 vop_lock_debugpost(void *ap, int rc)
6033 {
6034 	struct vop_lock1_args *a = ap;
6035 
6036 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6037 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6038 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6039 }
6040 
6041 void
vop_unlock_debugpre(void * ap)6042 vop_unlock_debugpre(void *ap)
6043 {
6044 	struct vop_unlock_args *a = ap;
6045 	struct vnode *vp = a->a_vp;
6046 
6047 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6048 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6049 }
6050 
6051 void
vop_need_inactive_debugpre(void * ap)6052 vop_need_inactive_debugpre(void *ap)
6053 {
6054 	struct vop_need_inactive_args *a = ap;
6055 
6056 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6057 }
6058 
6059 void
vop_need_inactive_debugpost(void * ap,int rc)6060 vop_need_inactive_debugpost(void *ap, int rc)
6061 {
6062 	struct vop_need_inactive_args *a = ap;
6063 
6064 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6065 }
6066 #endif
6067 
6068 void
vop_allocate_post(void * ap,int rc)6069 vop_allocate_post(void *ap, int rc)
6070 {
6071 	struct vop_allocate_args *a;
6072 
6073 	a = ap;
6074 	if (rc == 0)
6075 		INOTIFY(a->a_vp, IN_MODIFY);
6076 }
6077 
6078 void
vop_copy_file_range_post(void * ap,int rc)6079 vop_copy_file_range_post(void *ap, int rc)
6080 {
6081 	struct vop_copy_file_range_args *a;
6082 
6083 	a = ap;
6084 	if (rc == 0) {
6085 		INOTIFY(a->a_invp, IN_ACCESS);
6086 		INOTIFY(a->a_outvp, IN_MODIFY);
6087 	}
6088 }
6089 
6090 void
vop_create_pre(void * ap)6091 vop_create_pre(void *ap)
6092 {
6093 	struct vop_create_args *a;
6094 	struct vnode *dvp;
6095 
6096 	a = ap;
6097 	dvp = a->a_dvp;
6098 	vn_seqc_write_begin(dvp);
6099 }
6100 
6101 void
vop_create_post(void * ap,int rc)6102 vop_create_post(void *ap, int rc)
6103 {
6104 	struct vop_create_args *a;
6105 	struct vnode *dvp;
6106 
6107 	a = ap;
6108 	dvp = a->a_dvp;
6109 	vn_seqc_write_end(dvp);
6110 	if (!rc) {
6111 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6112 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6113 	}
6114 }
6115 
6116 void
vop_deallocate_post(void * ap,int rc)6117 vop_deallocate_post(void *ap, int rc)
6118 {
6119 	struct vop_deallocate_args *a;
6120 
6121 	a = ap;
6122 	if (rc == 0)
6123 		INOTIFY(a->a_vp, IN_MODIFY);
6124 }
6125 
6126 void
vop_whiteout_pre(void * ap)6127 vop_whiteout_pre(void *ap)
6128 {
6129 	struct vop_whiteout_args *a;
6130 	struct vnode *dvp;
6131 
6132 	a = ap;
6133 	dvp = a->a_dvp;
6134 	vn_seqc_write_begin(dvp);
6135 }
6136 
6137 void
vop_whiteout_post(void * ap,int rc)6138 vop_whiteout_post(void *ap, int rc)
6139 {
6140 	struct vop_whiteout_args *a;
6141 	struct vnode *dvp;
6142 
6143 	a = ap;
6144 	dvp = a->a_dvp;
6145 	vn_seqc_write_end(dvp);
6146 }
6147 
6148 void
vop_deleteextattr_pre(void * ap)6149 vop_deleteextattr_pre(void *ap)
6150 {
6151 	struct vop_deleteextattr_args *a;
6152 	struct vnode *vp;
6153 
6154 	a = ap;
6155 	vp = a->a_vp;
6156 	vn_seqc_write_begin(vp);
6157 }
6158 
6159 void
vop_deleteextattr_post(void * ap,int rc)6160 vop_deleteextattr_post(void *ap, int rc)
6161 {
6162 	struct vop_deleteextattr_args *a;
6163 	struct vnode *vp;
6164 
6165 	a = ap;
6166 	vp = a->a_vp;
6167 	vn_seqc_write_end(vp);
6168 	if (!rc) {
6169 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6170 		INOTIFY(vp, IN_ATTRIB);
6171 	}
6172 }
6173 
6174 void
vop_link_pre(void * ap)6175 vop_link_pre(void *ap)
6176 {
6177 	struct vop_link_args *a;
6178 	struct vnode *vp, *tdvp;
6179 
6180 	a = ap;
6181 	vp = a->a_vp;
6182 	tdvp = a->a_tdvp;
6183 	vn_seqc_write_begin(vp);
6184 	vn_seqc_write_begin(tdvp);
6185 }
6186 
6187 void
vop_link_post(void * ap,int rc)6188 vop_link_post(void *ap, int rc)
6189 {
6190 	struct vop_link_args *a;
6191 	struct vnode *vp, *tdvp;
6192 
6193 	a = ap;
6194 	vp = a->a_vp;
6195 	tdvp = a->a_tdvp;
6196 	vn_seqc_write_end(vp);
6197 	vn_seqc_write_end(tdvp);
6198 	if (!rc) {
6199 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6200 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6201 		INOTIFY_NAME(vp, tdvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6202 		INOTIFY_NAME(vp, tdvp, a->a_cnp, IN_CREATE);
6203 	}
6204 }
6205 
6206 void
vop_mkdir_pre(void * ap)6207 vop_mkdir_pre(void *ap)
6208 {
6209 	struct vop_mkdir_args *a;
6210 	struct vnode *dvp;
6211 
6212 	a = ap;
6213 	dvp = a->a_dvp;
6214 	vn_seqc_write_begin(dvp);
6215 }
6216 
6217 void
vop_mkdir_post(void * ap,int rc)6218 vop_mkdir_post(void *ap, int rc)
6219 {
6220 	struct vop_mkdir_args *a;
6221 	struct vnode *dvp;
6222 
6223 	a = ap;
6224 	dvp = a->a_dvp;
6225 	vn_seqc_write_end(dvp);
6226 	if (!rc) {
6227 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6228 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6229 	}
6230 }
6231 
6232 #ifdef DEBUG_VFS_LOCKS
6233 void
vop_mkdir_debugpost(void * ap,int rc)6234 vop_mkdir_debugpost(void *ap, int rc)
6235 {
6236 	struct vop_mkdir_args *a;
6237 
6238 	a = ap;
6239 	if (!rc)
6240 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6241 }
6242 #endif
6243 
6244 void
vop_mknod_pre(void * ap)6245 vop_mknod_pre(void *ap)
6246 {
6247 	struct vop_mknod_args *a;
6248 	struct vnode *dvp;
6249 
6250 	a = ap;
6251 	dvp = a->a_dvp;
6252 	vn_seqc_write_begin(dvp);
6253 }
6254 
6255 void
vop_mknod_post(void * ap,int rc)6256 vop_mknod_post(void *ap, int rc)
6257 {
6258 	struct vop_mknod_args *a;
6259 	struct vnode *dvp;
6260 
6261 	a = ap;
6262 	dvp = a->a_dvp;
6263 	vn_seqc_write_end(dvp);
6264 	if (!rc) {
6265 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6266 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6267 	}
6268 }
6269 
6270 void
vop_reclaim_post(void * ap,int rc)6271 vop_reclaim_post(void *ap, int rc)
6272 {
6273 	struct vop_reclaim_args *a;
6274 	struct vnode *vp;
6275 
6276 	a = ap;
6277 	vp = a->a_vp;
6278 	ASSERT_VOP_IN_SEQC(vp);
6279 	if (!rc) {
6280 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6281 		INOTIFY_REVOKE(vp);
6282 	}
6283 }
6284 
6285 void
vop_remove_pre(void * ap)6286 vop_remove_pre(void *ap)
6287 {
6288 	struct vop_remove_args *a;
6289 	struct vnode *dvp, *vp;
6290 
6291 	a = ap;
6292 	dvp = a->a_dvp;
6293 	vp = a->a_vp;
6294 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6295 	vn_seqc_write_begin(dvp);
6296 	vn_seqc_write_begin(vp);
6297 }
6298 
6299 void
vop_remove_post(void * ap,int rc)6300 vop_remove_post(void *ap, int rc)
6301 {
6302 	struct vop_remove_args *a;
6303 	struct vnode *dvp, *vp;
6304 
6305 	a = ap;
6306 	dvp = a->a_dvp;
6307 	vp = a->a_vp;
6308 	vn_seqc_write_end(dvp);
6309 	vn_seqc_write_end(vp);
6310 	if (!rc) {
6311 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6312 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6313 		INOTIFY_NAME(vp, dvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6314 		INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6315 	}
6316 }
6317 
6318 void
vop_rename_post(void * ap,int rc)6319 vop_rename_post(void *ap, int rc)
6320 {
6321 	struct vop_rename_args *a = ap;
6322 	long hint;
6323 
6324 	if (!rc) {
6325 		hint = NOTE_WRITE;
6326 		if (a->a_fdvp == a->a_tdvp) {
6327 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6328 				hint |= NOTE_LINK;
6329 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6330 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6331 		} else {
6332 			hint |= NOTE_EXTEND;
6333 			if (a->a_fvp->v_type == VDIR)
6334 				hint |= NOTE_LINK;
6335 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6336 
6337 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6338 			    a->a_tvp->v_type == VDIR)
6339 				hint &= ~NOTE_LINK;
6340 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6341 		}
6342 
6343 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6344 		if (a->a_tvp)
6345 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6346 		INOTIFY_MOVE(a->a_fvp, a->a_fdvp, a->a_fcnp, a->a_tvp,
6347 		    a->a_tdvp, a->a_tcnp);
6348 	}
6349 	if (a->a_tdvp != a->a_fdvp)
6350 		vdrop(a->a_fdvp);
6351 	if (a->a_tvp != a->a_fvp)
6352 		vdrop(a->a_fvp);
6353 	vdrop(a->a_tdvp);
6354 	if (a->a_tvp)
6355 		vdrop(a->a_tvp);
6356 }
6357 
6358 void
vop_rmdir_pre(void * ap)6359 vop_rmdir_pre(void *ap)
6360 {
6361 	struct vop_rmdir_args *a;
6362 	struct vnode *dvp, *vp;
6363 
6364 	a = ap;
6365 	dvp = a->a_dvp;
6366 	vp = a->a_vp;
6367 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6368 	vn_seqc_write_begin(dvp);
6369 	vn_seqc_write_begin(vp);
6370 }
6371 
6372 void
vop_rmdir_post(void * ap,int rc)6373 vop_rmdir_post(void *ap, int rc)
6374 {
6375 	struct vop_rmdir_args *a;
6376 	struct vnode *dvp, *vp;
6377 
6378 	a = ap;
6379 	dvp = a->a_dvp;
6380 	vp = a->a_vp;
6381 	vn_seqc_write_end(dvp);
6382 	vn_seqc_write_end(vp);
6383 	if (!rc) {
6384 		vp->v_vflag |= VV_UNLINKED;
6385 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6386 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6387 		INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6388 	}
6389 }
6390 
6391 void
vop_setattr_pre(void * ap)6392 vop_setattr_pre(void *ap)
6393 {
6394 	struct vop_setattr_args *a;
6395 	struct vnode *vp;
6396 
6397 	a = ap;
6398 	vp = a->a_vp;
6399 	vn_seqc_write_begin(vp);
6400 }
6401 
6402 void
vop_setattr_post(void * ap,int rc)6403 vop_setattr_post(void *ap, int rc)
6404 {
6405 	struct vop_setattr_args *a;
6406 	struct vnode *vp;
6407 
6408 	a = ap;
6409 	vp = a->a_vp;
6410 	vn_seqc_write_end(vp);
6411 	if (!rc) {
6412 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6413 		INOTIFY(vp, IN_ATTRIB);
6414 	}
6415 }
6416 
6417 void
vop_setacl_pre(void * ap)6418 vop_setacl_pre(void *ap)
6419 {
6420 	struct vop_setacl_args *a;
6421 	struct vnode *vp;
6422 
6423 	a = ap;
6424 	vp = a->a_vp;
6425 	vn_seqc_write_begin(vp);
6426 }
6427 
6428 void
vop_setacl_post(void * ap,int rc __unused)6429 vop_setacl_post(void *ap, int rc __unused)
6430 {
6431 	struct vop_setacl_args *a;
6432 	struct vnode *vp;
6433 
6434 	a = ap;
6435 	vp = a->a_vp;
6436 	vn_seqc_write_end(vp);
6437 }
6438 
6439 void
vop_setextattr_pre(void * ap)6440 vop_setextattr_pre(void *ap)
6441 {
6442 	struct vop_setextattr_args *a;
6443 	struct vnode *vp;
6444 
6445 	a = ap;
6446 	vp = a->a_vp;
6447 	vn_seqc_write_begin(vp);
6448 }
6449 
6450 void
vop_setextattr_post(void * ap,int rc)6451 vop_setextattr_post(void *ap, int rc)
6452 {
6453 	struct vop_setextattr_args *a;
6454 	struct vnode *vp;
6455 
6456 	a = ap;
6457 	vp = a->a_vp;
6458 	vn_seqc_write_end(vp);
6459 	if (!rc) {
6460 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6461 		INOTIFY(vp, IN_ATTRIB);
6462 	}
6463 }
6464 
6465 void
vop_symlink_pre(void * ap)6466 vop_symlink_pre(void *ap)
6467 {
6468 	struct vop_symlink_args *a;
6469 	struct vnode *dvp;
6470 
6471 	a = ap;
6472 	dvp = a->a_dvp;
6473 	vn_seqc_write_begin(dvp);
6474 }
6475 
6476 void
vop_symlink_post(void * ap,int rc)6477 vop_symlink_post(void *ap, int rc)
6478 {
6479 	struct vop_symlink_args *a;
6480 	struct vnode *dvp;
6481 
6482 	a = ap;
6483 	dvp = a->a_dvp;
6484 	vn_seqc_write_end(dvp);
6485 	if (!rc) {
6486 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6487 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6488 	}
6489 }
6490 
6491 void
vop_open_post(void * ap,int rc)6492 vop_open_post(void *ap, int rc)
6493 {
6494 	struct vop_open_args *a = ap;
6495 
6496 	if (!rc) {
6497 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6498 		INOTIFY(a->a_vp, IN_OPEN);
6499 	}
6500 }
6501 
6502 void
vop_close_post(void * ap,int rc)6503 vop_close_post(void *ap, int rc)
6504 {
6505 	struct vop_close_args *a = ap;
6506 
6507 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6508 	    !VN_IS_DOOMED(a->a_vp))) {
6509 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6510 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6511 		INOTIFY(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6512 		    IN_CLOSE_WRITE : IN_CLOSE_NOWRITE);
6513 	}
6514 }
6515 
6516 void
vop_read_post(void * ap,int rc)6517 vop_read_post(void *ap, int rc)
6518 {
6519 	struct vop_read_args *a = ap;
6520 
6521 	if (!rc) {
6522 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6523 		INOTIFY(a->a_vp, IN_ACCESS);
6524 	}
6525 }
6526 
6527 void
vop_read_pgcache_post(void * ap,int rc)6528 vop_read_pgcache_post(void *ap, int rc)
6529 {
6530 	struct vop_read_pgcache_args *a = ap;
6531 
6532 	if (!rc)
6533 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6534 }
6535 
6536 void
vop_readdir_post(void * ap,int rc)6537 vop_readdir_post(void *ap, int rc)
6538 {
6539 	struct vop_readdir_args *a = ap;
6540 
6541 	if (!rc) {
6542 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6543 		INOTIFY(a->a_vp, IN_ACCESS);
6544 	}
6545 }
6546 
6547 static struct knlist fs_knlist;
6548 
6549 static void
vfs_event_init(void * arg)6550 vfs_event_init(void *arg)
6551 {
6552 	knlist_init_mtx(&fs_knlist, NULL);
6553 }
6554 /* XXX - correct order? */
6555 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6556 
6557 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6558 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6559 {
6560 
6561 	KNOTE_UNLOCKED(&fs_knlist, event);
6562 }
6563 
6564 static int	filt_fsattach(struct knote *kn);
6565 static void	filt_fsdetach(struct knote *kn);
6566 static int	filt_fsevent(struct knote *kn, long hint);
6567 
6568 const struct filterops fs_filtops = {
6569 	.f_isfd = 0,
6570 	.f_attach = filt_fsattach,
6571 	.f_detach = filt_fsdetach,
6572 	.f_event = filt_fsevent,
6573 };
6574 
6575 static int
filt_fsattach(struct knote * kn)6576 filt_fsattach(struct knote *kn)
6577 {
6578 
6579 	kn->kn_flags |= EV_CLEAR;
6580 	knlist_add(&fs_knlist, kn, 0);
6581 	return (0);
6582 }
6583 
6584 static void
filt_fsdetach(struct knote * kn)6585 filt_fsdetach(struct knote *kn)
6586 {
6587 
6588 	knlist_remove(&fs_knlist, kn, 0);
6589 }
6590 
6591 static int
filt_fsevent(struct knote * kn,long hint)6592 filt_fsevent(struct knote *kn, long hint)
6593 {
6594 
6595 	kn->kn_fflags |= kn->kn_sfflags & hint;
6596 
6597 	return (kn->kn_fflags != 0);
6598 }
6599 
6600 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6601 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6602 {
6603 	struct vfsidctl vc;
6604 	int error;
6605 	struct mount *mp;
6606 
6607 	if (req->newptr == NULL)
6608 		return (EINVAL);
6609 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6610 	if (error)
6611 		return (error);
6612 	if (vc.vc_vers != VFS_CTL_VERS1)
6613 		return (EINVAL);
6614 	mp = vfs_getvfs(&vc.vc_fsid);
6615 	if (mp == NULL)
6616 		return (ENOENT);
6617 	/* ensure that a specific sysctl goes to the right filesystem. */
6618 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6619 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6620 		vfs_rel(mp);
6621 		return (EINVAL);
6622 	}
6623 	VCTLTOREQ(&vc, req);
6624 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6625 	vfs_rel(mp);
6626 	return (error);
6627 }
6628 
6629 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6630     NULL, 0, sysctl_vfs_ctl, "",
6631     "Sysctl by fsid");
6632 
6633 /*
6634  * Function to initialize a va_filerev field sensibly.
6635  * XXX: Wouldn't a random number make a lot more sense ??
6636  */
6637 u_quad_t
init_va_filerev(void)6638 init_va_filerev(void)
6639 {
6640 	struct bintime bt;
6641 
6642 	getbinuptime(&bt);
6643 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6644 }
6645 
6646 static int	filt_vfsread(struct knote *kn, long hint);
6647 static int	filt_vfswrite(struct knote *kn, long hint);
6648 static int	filt_vfsvnode(struct knote *kn, long hint);
6649 static void	filt_vfsdetach(struct knote *kn);
6650 static int	filt_vfsdump(struct proc *p, struct knote *kn,
6651 		    struct kinfo_knote *kin);
6652 
6653 static const struct filterops vfsread_filtops = {
6654 	.f_isfd = 1,
6655 	.f_detach = filt_vfsdetach,
6656 	.f_event = filt_vfsread,
6657 	.f_userdump = filt_vfsdump,
6658 };
6659 static const struct filterops vfswrite_filtops = {
6660 	.f_isfd = 1,
6661 	.f_detach = filt_vfsdetach,
6662 	.f_event = filt_vfswrite,
6663 	.f_userdump = filt_vfsdump,
6664 };
6665 static const struct filterops vfsvnode_filtops = {
6666 	.f_isfd = 1,
6667 	.f_detach = filt_vfsdetach,
6668 	.f_event = filt_vfsvnode,
6669 	.f_userdump = filt_vfsdump,
6670 };
6671 
6672 static void
vfs_knllock(void * arg)6673 vfs_knllock(void *arg)
6674 {
6675 	struct vnode *vp = arg;
6676 
6677 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6678 }
6679 
6680 static void
vfs_knlunlock(void * arg)6681 vfs_knlunlock(void *arg)
6682 {
6683 	struct vnode *vp = arg;
6684 
6685 	VOP_UNLOCK(vp);
6686 }
6687 
6688 static void
vfs_knl_assert_lock(void * arg,int what)6689 vfs_knl_assert_lock(void *arg, int what)
6690 {
6691 #ifdef DEBUG_VFS_LOCKS
6692 	struct vnode *vp = arg;
6693 
6694 	if (what == LA_LOCKED)
6695 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6696 	else
6697 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6698 #endif
6699 }
6700 
6701 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6702 vfs_kqfilter(struct vop_kqfilter_args *ap)
6703 {
6704 	struct vnode *vp = ap->a_vp;
6705 	struct knote *kn = ap->a_kn;
6706 	struct knlist *knl;
6707 
6708 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6709 	    kn->kn_filter != EVFILT_WRITE),
6710 	    ("READ/WRITE filter on a FIFO leaked through"));
6711 	switch (kn->kn_filter) {
6712 	case EVFILT_READ:
6713 		kn->kn_fop = &vfsread_filtops;
6714 		break;
6715 	case EVFILT_WRITE:
6716 		kn->kn_fop = &vfswrite_filtops;
6717 		break;
6718 	case EVFILT_VNODE:
6719 		kn->kn_fop = &vfsvnode_filtops;
6720 		break;
6721 	default:
6722 		return (EINVAL);
6723 	}
6724 
6725 	kn->kn_hook = (caddr_t)vp;
6726 
6727 	v_addpollinfo(vp);
6728 	if (vp->v_pollinfo == NULL)
6729 		return (ENOMEM);
6730 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6731 	vhold(vp);
6732 	knlist_add(knl, kn, 0);
6733 
6734 	return (0);
6735 }
6736 
6737 /*
6738  * Detach knote from vnode
6739  */
6740 static void
filt_vfsdetach(struct knote * kn)6741 filt_vfsdetach(struct knote *kn)
6742 {
6743 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6744 
6745 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6746 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6747 	vdrop(vp);
6748 }
6749 
6750 /*ARGSUSED*/
6751 static int
filt_vfsread(struct knote * kn,long hint)6752 filt_vfsread(struct knote *kn, long hint)
6753 {
6754 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6755 	off_t size;
6756 	int res;
6757 
6758 	/*
6759 	 * filesystem is gone, so set the EOF flag and schedule
6760 	 * the knote for deletion.
6761 	 */
6762 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6763 		VI_LOCK(vp);
6764 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6765 		VI_UNLOCK(vp);
6766 		return (1);
6767 	}
6768 
6769 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6770 		return (0);
6771 
6772 	VI_LOCK(vp);
6773 	kn->kn_data = size - kn->kn_fp->f_offset;
6774 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6775 	VI_UNLOCK(vp);
6776 	return (res);
6777 }
6778 
6779 /*ARGSUSED*/
6780 static int
filt_vfswrite(struct knote * kn,long hint)6781 filt_vfswrite(struct knote *kn, long hint)
6782 {
6783 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6784 
6785 	VI_LOCK(vp);
6786 
6787 	/*
6788 	 * filesystem is gone, so set the EOF flag and schedule
6789 	 * the knote for deletion.
6790 	 */
6791 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6792 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6793 
6794 	kn->kn_data = 0;
6795 	VI_UNLOCK(vp);
6796 	return (1);
6797 }
6798 
6799 static int
filt_vfsvnode(struct knote * kn,long hint)6800 filt_vfsvnode(struct knote *kn, long hint)
6801 {
6802 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6803 	int res;
6804 
6805 	VI_LOCK(vp);
6806 	if (kn->kn_sfflags & hint)
6807 		kn->kn_fflags |= hint;
6808 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6809 		kn->kn_flags |= EV_EOF;
6810 		VI_UNLOCK(vp);
6811 		return (1);
6812 	}
6813 	res = (kn->kn_fflags != 0);
6814 	VI_UNLOCK(vp);
6815 	return (res);
6816 }
6817 
6818 static int
filt_vfsdump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)6819 filt_vfsdump(struct proc *p, struct knote *kn, struct kinfo_knote *kin)
6820 {
6821 	struct vattr va;
6822 	struct vnode *vp;
6823 	char *fullpath, *freepath;
6824 	int error;
6825 
6826 	kin->knt_extdata = KNOTE_EXTDATA_VNODE;
6827 
6828 	vp = kn->kn_fp->f_vnode;
6829 	kin->knt_vnode.knt_vnode_type = vntype_to_kinfo(vp->v_type);
6830 
6831 	va.va_fsid = VNOVAL;
6832 	vn_lock(vp, LK_SHARED | LK_RETRY);
6833 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
6834 	VOP_UNLOCK(vp);
6835 	if (error != 0)
6836 		return (error);
6837 	kin->knt_vnode.knt_vnode_fsid = va.va_fsid;
6838 	kin->knt_vnode.knt_vnode_fileid = va.va_fileid;
6839 
6840 	freepath = NULL;
6841 	fullpath = "-";
6842 	error = vn_fullpath(vp, &fullpath, &freepath);
6843 	if (error == 0) {
6844 		strlcpy(kin->knt_vnode.knt_vnode_fullpath, fullpath,
6845 		    sizeof(kin->knt_vnode.knt_vnode_fullpath));
6846 	}
6847 	if (freepath != NULL)
6848 		free(freepath, M_TEMP);
6849 
6850 	return (0);
6851 }
6852 
6853 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6854 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6855 {
6856 	int error;
6857 
6858 	if (dp->d_reclen > ap->a_uio->uio_resid)
6859 		return (ENAMETOOLONG);
6860 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6861 	if (error) {
6862 		if (ap->a_ncookies != NULL) {
6863 			if (ap->a_cookies != NULL)
6864 				free(ap->a_cookies, M_TEMP);
6865 			ap->a_cookies = NULL;
6866 			*ap->a_ncookies = 0;
6867 		}
6868 		return (error);
6869 	}
6870 	if (ap->a_ncookies == NULL)
6871 		return (0);
6872 
6873 	KASSERT(ap->a_cookies,
6874 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6875 
6876 	*ap->a_cookies = realloc(*ap->a_cookies,
6877 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6878 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6879 	*ap->a_ncookies += 1;
6880 	return (0);
6881 }
6882 
6883 /*
6884  * The purpose of this routine is to remove granularity from accmode_t,
6885  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6886  * VADMIN and VAPPEND.
6887  *
6888  * If it returns 0, the caller is supposed to continue with the usual
6889  * access checks using 'accmode' as modified by this routine.  If it
6890  * returns nonzero value, the caller is supposed to return that value
6891  * as errno.
6892  *
6893  * Note that after this routine runs, accmode may be zero.
6894  */
6895 int
vfs_unixify_accmode(accmode_t * accmode)6896 vfs_unixify_accmode(accmode_t *accmode)
6897 {
6898 	/*
6899 	 * There is no way to specify explicit "deny" rule using
6900 	 * file mode or POSIX.1e ACLs.
6901 	 */
6902 	if (*accmode & VEXPLICIT_DENY) {
6903 		*accmode = 0;
6904 		return (0);
6905 	}
6906 
6907 	/*
6908 	 * None of these can be translated into usual access bits.
6909 	 * Also, the common case for NFSv4 ACLs is to not contain
6910 	 * either of these bits. Caller should check for VWRITE
6911 	 * on the containing directory instead.
6912 	 */
6913 	if (*accmode & (VDELETE_CHILD | VDELETE))
6914 		return (EPERM);
6915 
6916 	if (*accmode & VADMIN_PERMS) {
6917 		*accmode &= ~VADMIN_PERMS;
6918 		*accmode |= VADMIN;
6919 	}
6920 
6921 	/*
6922 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6923 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6924 	 */
6925 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6926 
6927 	return (0);
6928 }
6929 
6930 /*
6931  * Clear out a doomed vnode (if any) and replace it with a new one as long
6932  * as the fs is not being unmounted. Return the root vnode to the caller.
6933  */
6934 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6935 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6936 {
6937 	struct vnode *vp;
6938 	int error;
6939 
6940 restart:
6941 	if (mp->mnt_rootvnode != NULL) {
6942 		MNT_ILOCK(mp);
6943 		vp = mp->mnt_rootvnode;
6944 		if (vp != NULL) {
6945 			if (!VN_IS_DOOMED(vp)) {
6946 				vrefact(vp);
6947 				MNT_IUNLOCK(mp);
6948 				error = vn_lock(vp, flags);
6949 				if (error == 0) {
6950 					*vpp = vp;
6951 					return (0);
6952 				}
6953 				vrele(vp);
6954 				goto restart;
6955 			}
6956 			/*
6957 			 * Clear the old one.
6958 			 */
6959 			mp->mnt_rootvnode = NULL;
6960 		}
6961 		MNT_IUNLOCK(mp);
6962 		if (vp != NULL) {
6963 			vfs_op_barrier_wait(mp);
6964 			vrele(vp);
6965 		}
6966 	}
6967 	error = VFS_CACHEDROOT(mp, flags, vpp);
6968 	if (error != 0)
6969 		return (error);
6970 	if (mp->mnt_vfs_ops == 0) {
6971 		MNT_ILOCK(mp);
6972 		if (mp->mnt_vfs_ops != 0) {
6973 			MNT_IUNLOCK(mp);
6974 			return (0);
6975 		}
6976 		if (mp->mnt_rootvnode == NULL) {
6977 			vrefact(*vpp);
6978 			mp->mnt_rootvnode = *vpp;
6979 		} else {
6980 			if (mp->mnt_rootvnode != *vpp) {
6981 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6982 					panic("%s: mismatch between vnode returned "
6983 					    " by VFS_CACHEDROOT and the one cached "
6984 					    " (%p != %p)",
6985 					    __func__, *vpp, mp->mnt_rootvnode);
6986 				}
6987 			}
6988 		}
6989 		MNT_IUNLOCK(mp);
6990 	}
6991 	return (0);
6992 }
6993 
6994 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6995 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6996 {
6997 	struct mount_pcpu *mpcpu;
6998 	struct vnode *vp;
6999 	int error;
7000 
7001 	if (!vfs_op_thread_enter(mp, mpcpu))
7002 		return (vfs_cache_root_fallback(mp, flags, vpp));
7003 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
7004 	if (vp == NULL || VN_IS_DOOMED(vp)) {
7005 		vfs_op_thread_exit(mp, mpcpu);
7006 		return (vfs_cache_root_fallback(mp, flags, vpp));
7007 	}
7008 	vrefact(vp);
7009 	vfs_op_thread_exit(mp, mpcpu);
7010 	error = vn_lock(vp, flags);
7011 	if (error != 0) {
7012 		vrele(vp);
7013 		return (vfs_cache_root_fallback(mp, flags, vpp));
7014 	}
7015 	*vpp = vp;
7016 	return (0);
7017 }
7018 
7019 struct vnode *
vfs_cache_root_clear(struct mount * mp)7020 vfs_cache_root_clear(struct mount *mp)
7021 {
7022 	struct vnode *vp;
7023 
7024 	/*
7025 	 * ops > 0 guarantees there is nobody who can see this vnode
7026 	 */
7027 	MPASS(mp->mnt_vfs_ops > 0);
7028 	vp = mp->mnt_rootvnode;
7029 	if (vp != NULL)
7030 		vn_seqc_write_begin(vp);
7031 	mp->mnt_rootvnode = NULL;
7032 	return (vp);
7033 }
7034 
7035 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)7036 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
7037 {
7038 
7039 	MPASS(mp->mnt_vfs_ops > 0);
7040 	vrefact(vp);
7041 	mp->mnt_rootvnode = vp;
7042 }
7043 
7044 /*
7045  * These are helper functions for filesystems to traverse all
7046  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
7047  *
7048  * This interface replaces MNT_VNODE_FOREACH.
7049  */
7050 
7051 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)7052 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
7053 {
7054 	struct vnode *vp;
7055 
7056 	maybe_yield();
7057 	MNT_ILOCK(mp);
7058 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7059 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
7060 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
7061 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7062 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7063 			continue;
7064 		VI_LOCK(vp);
7065 		if (VN_IS_DOOMED(vp)) {
7066 			VI_UNLOCK(vp);
7067 			continue;
7068 		}
7069 		break;
7070 	}
7071 	if (vp == NULL) {
7072 		__mnt_vnode_markerfree_all(mvp, mp);
7073 		/* MNT_IUNLOCK(mp); -- done in above function */
7074 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
7075 		return (NULL);
7076 	}
7077 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7078 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7079 	MNT_IUNLOCK(mp);
7080 	return (vp);
7081 }
7082 
7083 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)7084 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
7085 {
7086 	struct vnode *vp;
7087 
7088 	*mvp = vn_alloc_marker(mp);
7089 	MNT_ILOCK(mp);
7090 	MNT_REF(mp);
7091 
7092 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
7093 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7094 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7095 			continue;
7096 		VI_LOCK(vp);
7097 		if (VN_IS_DOOMED(vp)) {
7098 			VI_UNLOCK(vp);
7099 			continue;
7100 		}
7101 		break;
7102 	}
7103 	if (vp == NULL) {
7104 		MNT_REL(mp);
7105 		MNT_IUNLOCK(mp);
7106 		vn_free_marker(*mvp);
7107 		*mvp = NULL;
7108 		return (NULL);
7109 	}
7110 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7111 	MNT_IUNLOCK(mp);
7112 	return (vp);
7113 }
7114 
7115 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)7116 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
7117 {
7118 
7119 	if (*mvp == NULL) {
7120 		MNT_IUNLOCK(mp);
7121 		return;
7122 	}
7123 
7124 	mtx_assert(MNT_MTX(mp), MA_OWNED);
7125 
7126 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7127 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7128 	MNT_REL(mp);
7129 	MNT_IUNLOCK(mp);
7130 	vn_free_marker(*mvp);
7131 	*mvp = NULL;
7132 }
7133 
7134 /*
7135  * These are helper functions for filesystems to traverse their
7136  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7137  */
7138 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7139 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7140 {
7141 
7142 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7143 
7144 	MNT_ILOCK(mp);
7145 	MNT_REL(mp);
7146 	MNT_IUNLOCK(mp);
7147 	vn_free_marker(*mvp);
7148 	*mvp = NULL;
7149 }
7150 
7151 /*
7152  * Relock the mp mount vnode list lock with the vp vnode interlock in the
7153  * conventional lock order during mnt_vnode_next_lazy iteration.
7154  *
7155  * On entry, the mount vnode list lock is held and the vnode interlock is not.
7156  * The list lock is dropped and reacquired.  On success, both locks are held.
7157  * On failure, the mount vnode list lock is held but the vnode interlock is
7158  * not, and the procedure may have yielded.
7159  */
7160 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7161 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7162     struct vnode *vp)
7163 {
7164 
7165 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7166 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7167 	    ("%s: bad marker", __func__));
7168 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7169 	    ("%s: inappropriate vnode", __func__));
7170 	ASSERT_VI_UNLOCKED(vp, __func__);
7171 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7172 
7173 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7174 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7175 
7176 	/*
7177 	 * Note we may be racing against vdrop which transitioned the hold
7178 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7179 	 * if we are the only user after we get the interlock we will just
7180 	 * vdrop.
7181 	 */
7182 	vhold(vp);
7183 	mtx_unlock(&mp->mnt_listmtx);
7184 	VI_LOCK(vp);
7185 	if (VN_IS_DOOMED(vp)) {
7186 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7187 		goto out_lost;
7188 	}
7189 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7190 	/*
7191 	 * There is nothing to do if we are the last user.
7192 	 */
7193 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
7194 		goto out_lost;
7195 	mtx_lock(&mp->mnt_listmtx);
7196 	return (true);
7197 out_lost:
7198 	vdropl(vp);
7199 	maybe_yield();
7200 	mtx_lock(&mp->mnt_listmtx);
7201 	return (false);
7202 }
7203 
7204 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7205 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7206     void *cbarg)
7207 {
7208 	struct vnode *vp;
7209 
7210 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7211 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7212 restart:
7213 	vp = TAILQ_NEXT(*mvp, v_lazylist);
7214 	while (vp != NULL) {
7215 		if (vp->v_type == VMARKER) {
7216 			vp = TAILQ_NEXT(vp, v_lazylist);
7217 			continue;
7218 		}
7219 		/*
7220 		 * See if we want to process the vnode. Note we may encounter a
7221 		 * long string of vnodes we don't care about and hog the list
7222 		 * as a result. Check for it and requeue the marker.
7223 		 */
7224 		VNPASS(!VN_IS_DOOMED(vp), vp);
7225 		if (!cb(vp, cbarg)) {
7226 			if (!should_yield()) {
7227 				vp = TAILQ_NEXT(vp, v_lazylist);
7228 				continue;
7229 			}
7230 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7231 			    v_lazylist);
7232 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7233 			    v_lazylist);
7234 			mtx_unlock(&mp->mnt_listmtx);
7235 			kern_yield(PRI_USER);
7236 			mtx_lock(&mp->mnt_listmtx);
7237 			goto restart;
7238 		}
7239 		/*
7240 		 * Try-lock because this is the wrong lock order.
7241 		 */
7242 		if (!VI_TRYLOCK(vp) &&
7243 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7244 			goto restart;
7245 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7246 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7247 		    ("alien vnode on the lazy list %p %p", vp, mp));
7248 		VNPASS(vp->v_mount == mp, vp);
7249 		VNPASS(!VN_IS_DOOMED(vp), vp);
7250 		break;
7251 	}
7252 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7253 
7254 	/* Check if we are done */
7255 	if (vp == NULL) {
7256 		mtx_unlock(&mp->mnt_listmtx);
7257 		mnt_vnode_markerfree_lazy(mvp, mp);
7258 		return (NULL);
7259 	}
7260 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7261 	mtx_unlock(&mp->mnt_listmtx);
7262 	ASSERT_VI_LOCKED(vp, "lazy iter");
7263 	return (vp);
7264 }
7265 
7266 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7267 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7268     void *cbarg)
7269 {
7270 
7271 	maybe_yield();
7272 	mtx_lock(&mp->mnt_listmtx);
7273 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7274 }
7275 
7276 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7277 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7278     void *cbarg)
7279 {
7280 	struct vnode *vp;
7281 
7282 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7283 		return (NULL);
7284 
7285 	*mvp = vn_alloc_marker(mp);
7286 	MNT_ILOCK(mp);
7287 	MNT_REF(mp);
7288 	MNT_IUNLOCK(mp);
7289 
7290 	mtx_lock(&mp->mnt_listmtx);
7291 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7292 	if (vp == NULL) {
7293 		mtx_unlock(&mp->mnt_listmtx);
7294 		mnt_vnode_markerfree_lazy(mvp, mp);
7295 		return (NULL);
7296 	}
7297 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7298 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7299 }
7300 
7301 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7302 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7303 {
7304 
7305 	if (*mvp == NULL)
7306 		return;
7307 
7308 	mtx_lock(&mp->mnt_listmtx);
7309 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7310 	mtx_unlock(&mp->mnt_listmtx);
7311 	mnt_vnode_markerfree_lazy(mvp, mp);
7312 }
7313 
7314 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7315 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7316 {
7317 
7318 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7319 		cnp->cn_flags &= ~NOEXECCHECK;
7320 		return (0);
7321 	}
7322 
7323 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7324 }
7325 
7326 /*
7327  * Do not use this variant unless you have means other than the hold count
7328  * to prevent the vnode from getting freed.
7329  */
7330 void
vn_seqc_write_begin_locked(struct vnode * vp)7331 vn_seqc_write_begin_locked(struct vnode *vp)
7332 {
7333 
7334 	ASSERT_VI_LOCKED(vp, __func__);
7335 	VNPASS(vp->v_holdcnt > 0, vp);
7336 	VNPASS(vp->v_seqc_users >= 0, vp);
7337 	vp->v_seqc_users++;
7338 	if (vp->v_seqc_users == 1)
7339 		seqc_sleepable_write_begin(&vp->v_seqc);
7340 }
7341 
7342 void
vn_seqc_write_begin(struct vnode * vp)7343 vn_seqc_write_begin(struct vnode *vp)
7344 {
7345 
7346 	VI_LOCK(vp);
7347 	vn_seqc_write_begin_locked(vp);
7348 	VI_UNLOCK(vp);
7349 }
7350 
7351 void
vn_seqc_write_end_locked(struct vnode * vp)7352 vn_seqc_write_end_locked(struct vnode *vp)
7353 {
7354 
7355 	ASSERT_VI_LOCKED(vp, __func__);
7356 	VNPASS(vp->v_seqc_users > 0, vp);
7357 	vp->v_seqc_users--;
7358 	if (vp->v_seqc_users == 0)
7359 		seqc_sleepable_write_end(&vp->v_seqc);
7360 }
7361 
7362 void
vn_seqc_write_end(struct vnode * vp)7363 vn_seqc_write_end(struct vnode *vp)
7364 {
7365 
7366 	VI_LOCK(vp);
7367 	vn_seqc_write_end_locked(vp);
7368 	VI_UNLOCK(vp);
7369 }
7370 
7371 /*
7372  * Special case handling for allocating and freeing vnodes.
7373  *
7374  * The counter remains unchanged on free so that a doomed vnode will
7375  * keep testing as in modify as long as it is accessible with SMR.
7376  */
7377 static void
vn_seqc_init(struct vnode * vp)7378 vn_seqc_init(struct vnode *vp)
7379 {
7380 
7381 	vp->v_seqc = 0;
7382 	vp->v_seqc_users = 0;
7383 }
7384 
7385 static void
vn_seqc_write_end_free(struct vnode * vp)7386 vn_seqc_write_end_free(struct vnode *vp)
7387 {
7388 
7389 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7390 	VNPASS(vp->v_seqc_users == 1, vp);
7391 }
7392 
7393 void
vn_irflag_set_locked(struct vnode * vp,short toset)7394 vn_irflag_set_locked(struct vnode *vp, short toset)
7395 {
7396 	short flags;
7397 
7398 	ASSERT_VI_LOCKED(vp, __func__);
7399 	flags = vn_irflag_read(vp);
7400 	VNASSERT((flags & toset) == 0, vp,
7401 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7402 	    __func__, flags, toset));
7403 	atomic_store_short(&vp->v_irflag, flags | toset);
7404 }
7405 
7406 void
vn_irflag_set(struct vnode * vp,short toset)7407 vn_irflag_set(struct vnode *vp, short toset)
7408 {
7409 
7410 	VI_LOCK(vp);
7411 	vn_irflag_set_locked(vp, toset);
7412 	VI_UNLOCK(vp);
7413 }
7414 
7415 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7416 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7417 {
7418 	short flags;
7419 
7420 	ASSERT_VI_LOCKED(vp, __func__);
7421 	flags = vn_irflag_read(vp);
7422 	atomic_store_short(&vp->v_irflag, flags | toset);
7423 }
7424 
7425 void
vn_irflag_set_cond(struct vnode * vp,short toset)7426 vn_irflag_set_cond(struct vnode *vp, short toset)
7427 {
7428 
7429 	VI_LOCK(vp);
7430 	vn_irflag_set_cond_locked(vp, toset);
7431 	VI_UNLOCK(vp);
7432 }
7433 
7434 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7435 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7436 {
7437 	short flags;
7438 
7439 	ASSERT_VI_LOCKED(vp, __func__);
7440 	flags = vn_irflag_read(vp);
7441 	VNASSERT((flags & tounset) == tounset, vp,
7442 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7443 	    __func__, flags, tounset));
7444 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7445 }
7446 
7447 void
vn_irflag_unset(struct vnode * vp,short tounset)7448 vn_irflag_unset(struct vnode *vp, short tounset)
7449 {
7450 
7451 	VI_LOCK(vp);
7452 	vn_irflag_unset_locked(vp, tounset);
7453 	VI_UNLOCK(vp);
7454 }
7455 
7456 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7457 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7458 {
7459 	struct vattr vattr;
7460 	int error;
7461 
7462 	ASSERT_VOP_LOCKED(vp, __func__);
7463 	error = VOP_GETATTR(vp, &vattr, cred);
7464 	if (__predict_true(error == 0)) {
7465 		if (vattr.va_size <= OFF_MAX)
7466 			*size = vattr.va_size;
7467 		else
7468 			error = EFBIG;
7469 	}
7470 	return (error);
7471 }
7472 
7473 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7474 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7475 {
7476 	int error;
7477 
7478 	VOP_LOCK(vp, LK_SHARED);
7479 	error = vn_getsize_locked(vp, size, cred);
7480 	VOP_UNLOCK(vp);
7481 	return (error);
7482 }
7483 
7484 #ifdef INVARIANTS
7485 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7486 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7487 {
7488 
7489 	switch (vp->v_state) {
7490 	case VSTATE_UNINITIALIZED:
7491 		switch (state) {
7492 		case VSTATE_CONSTRUCTED:
7493 		case VSTATE_DESTROYING:
7494 			return;
7495 		default:
7496 			break;
7497 		}
7498 		break;
7499 	case VSTATE_CONSTRUCTED:
7500 		ASSERT_VOP_ELOCKED(vp, __func__);
7501 		switch (state) {
7502 		case VSTATE_DESTROYING:
7503 			return;
7504 		default:
7505 			break;
7506 		}
7507 		break;
7508 	case VSTATE_DESTROYING:
7509 		ASSERT_VOP_ELOCKED(vp, __func__);
7510 		switch (state) {
7511 		case VSTATE_DEAD:
7512 			return;
7513 		default:
7514 			break;
7515 		}
7516 		break;
7517 	case VSTATE_DEAD:
7518 		switch (state) {
7519 		case VSTATE_UNINITIALIZED:
7520 			return;
7521 		default:
7522 			break;
7523 		}
7524 		break;
7525 	}
7526 
7527 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7528 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7529 }
7530 #endif
7531