xref: /freebsd/sys/kern/vfs_cache.c (revision f35525ff2053e026a423e852136d73ed93c95803)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "opt_ddb.h"
36 #include "opt_ktrace.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/capsicum.h>
41 #include <sys/counter.h>
42 #include <sys/filedesc.h>
43 #include <sys/fnv_hash.h>
44 #include <sys/kernel.h>
45 #include <sys/ktr.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/fcntl.h>
49 #include <sys/jail.h>
50 #include <sys/mount.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/seqc.h>
54 #include <sys/sdt.h>
55 #include <sys/smr.h>
56 #include <sys/smp.h>
57 #include <sys/syscallsubr.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vnode.h>
61 #include <ck_queue.h>
62 #ifdef KTRACE
63 #include <sys/ktrace.h>
64 #endif
65 #ifdef INVARIANTS
66 #include <machine/_inttypes.h>
67 #endif
68 
69 #include <security/audit/audit.h>
70 #include <security/mac/mac_framework.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 /*
79  * High level overview of name caching in the VFS layer.
80  *
81  * Originally caching was implemented as part of UFS, later extracted to allow
82  * use by other filesystems. A decision was made to make it optional and
83  * completely detached from the rest of the kernel, which comes with limitations
84  * outlined near the end of this comment block.
85  *
86  * This fundamental choice needs to be revisited. In the meantime, the current
87  * state is described below. Significance of all notable routines is explained
88  * in comments placed above their implementation. Scattered thoroughout the
89  * file are TODO comments indicating shortcomings which can be fixed without
90  * reworking everything (most of the fixes will likely be reusable). Various
91  * details are omitted from this explanation to not clutter the overview, they
92  * have to be checked by reading the code and associated commentary.
93  *
94  * Keep in mind that it's individual path components which are cached, not full
95  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
96  * one for each name.
97  *
98  * I. Data organization
99  *
100  * Entries are described by "struct namecache" objects and stored in a hash
101  * table. See cache_get_hash for more information.
102  *
103  * "struct vnode" contains pointers to source entries (names which can be found
104  * when traversing through said vnode), destination entries (names of that
105  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
106  * the parent vnode.
107  *
108  * The (directory vnode; name) tuple reliably determines the target entry if
109  * it exists.
110  *
111  * Since there are no small locks at this time (all are 32 bytes in size on
112  * LP64), the code works around the problem by introducing lock arrays to
113  * protect hash buckets and vnode lists.
114  *
115  * II. Filesystem integration
116  *
117  * Filesystems participating in name caching do the following:
118  * - set vop_lookup routine to vfs_cache_lookup
119  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
120  * - if they support lockless lookup (see below), vop_fplookup_vexec and
121  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
122  *   mount point
123  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
124  *   applicable
125  * - call cache_enter to add entries depending on the MAKEENTRY flag
126  *
127  * With the above in mind, there are 2 entry points when doing lookups:
128  * - ... -> namei -> cache_fplookup -- this is the default
129  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
130  *   should the above fail
131  *
132  * Example code flow how an entry is added:
133  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
134  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
135  *
136  * III. Performance considerations
137  *
138  * For lockless case forward lookup avoids any writes to shared areas apart
139  * from the terminal path component. In other words non-modifying lookups of
140  * different files don't suffer any scalability problems in the namecache.
141  * Looking up the same file is limited by VFS and goes beyond the scope of this
142  * file.
143  *
144  * At least on amd64 the single-threaded bottleneck for long paths is hashing
145  * (see cache_get_hash). There are cases where the code issues acquire fence
146  * multiple times, they can be combined on architectures which suffer from it.
147  *
148  * For locked case each encountered vnode has to be referenced and locked in
149  * order to be handed out to the caller (normally that's namei). This
150  * introduces significant hit single-threaded and serialization multi-threaded.
151  *
152  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
153  * avoids any writes to shared areas to any components.
154  *
155  * Unrelated insertions are partially serialized on updating the global entry
156  * counter and possibly serialized on colliding bucket or vnode locks.
157  *
158  * IV. Observability
159  *
160  * Note not everything has an explicit dtrace probe nor it should have, thus
161  * some of the one-liners below depend on implementation details.
162  *
163  * Examples:
164  *
165  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
166  * # line number, column 2 is status code (see cache_fpl_status)
167  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
168  *
169  * # Lengths of names added by binary name
170  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
171  *
172  * # Same as above but only those which exceed 64 characters
173  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
174  *
175  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
176  * # path is it
177  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
178  *
179  * V. Limitations and implementation defects
180  *
181  * - since it is possible there is no entry for an open file, tools like
182  *   "procstat" may fail to resolve fd -> vnode -> path to anything
183  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
184  *   shortage) in which case the above problem applies
185  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
186  *   way, resolving a name may return a different path than the one used to
187  *   open it (even if said path is still valid)
188  * - by default entries are not added for newly created files
189  * - adding an entry may need to evict negative entry first, which happens in 2
190  *   distinct places (evicting on lookup, adding in a later VOP) making it
191  *   impossible to simply reuse it
192  * - there is a simple scheme to evict negative entries as the cache is approaching
193  *   its capacity, but it is very unclear if doing so is a good idea to begin with
194  * - vnodes are subject to being recycled even if target inode is left in memory,
195  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
196  *   names get duplicated -- kept by filesystem itself and namecache separately
197  * - struct namecache has a fixed size and comes in 2 variants, often wasting
198  *   space.  now hard to replace with malloc due to dependence on SMR, which
199  *   requires UMA zones to opt in
200  * - lack of better integration with the kernel also turns nullfs into a layered
201  *   filesystem instead of something which can take advantage of caching
202  *
203  * Appendix A: where is the time lost, expanding on paragraph III
204  *
205  * While some care went into optimizing lookups, there is still plenty of
206  * performance left on the table, most notably from single-threaded standpoint.
207  * Below is a woefully incomplete list of changes which can help.  Ideas are
208  * mostly sketched out, no claim is made all kinks or prerequisites are laid
209  * out.
210  *
211  * Note there is performance lost all over VFS.
212  *
213  * === SMR-only lookup
214  *
215  * For commonly used ops like stat(2), when the terminal vnode *is* cached,
216  * lockless lookup could refrain from refing/locking the found vnode and
217  * instead return while within the SMR section. Then a call to, say,
218  * vop_stat_smr could do the work (or fail with EAGAIN), finally the result
219  * would be validated with seqc not changing. This would be faster
220  * single-threaded as it dodges atomics and would provide full scalability for
221  * multicore uses. This would *not* work for open(2) or other calls which need
222  * the vnode to hang around for the long haul, but would work for aforementioned
223  * stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
224  *
225  * === hotpatching for sdt probes
226  *
227  * They result in *tons* of branches all over with rather regrettable codegen
228  * at times. Removing sdt probes altogether gives over 2% boost in lookup rate.
229  * Reworking the code to patch itself at runtime with asm goto would solve it.
230  * asm goto is fully supported by gcc and clang.
231  *
232  * === copyinstr
233  *
234  * On all architectures it operates one byte at a time, while it could be
235  * word-sized instead thanks to the Mycroft trick.
236  *
237  * API itself is rather pessimal for path lookup, accepting arbitrary sizes and
238  * *optionally* filling in the length parameter.
239  *
240  * Instead a new routine (copyinpath?) could be introduced, demanding a buffer
241  * size which is a multiply of the word (and never zero), with the length
242  * always returned. On top of it the routine could be allowed to transform the
243  * buffer in arbitrary ways, most notably writing past the found length (not to
244  * be confused with writing past buffer size) -- this would allow word-sized
245  * movs while checking for '\0' later.
246  *
247  * === detour through namei
248  *
249  * Currently one suffers being called from namei, which then has to check if
250  * things worked out locklessly. Instead the lockless lookup could be the
251  * actual entry point which calls what is currently namei as a fallback.
252  *
253  * === avoidable branches in cache_can_fplookup
254  *
255  * The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
256  * this is off, none of fplookup code should execute).
257  *
258  * Both audit and capsicum branches can be combined into one, but it requires
259  * paying off a lot of tech debt first.
260  *
261  * ni_startdir could be indicated with a flag in cn_flags, eliminating the
262  * branch.
263  *
264  * === mount stacks
265  *
266  * Crossing a mount requires checking if perhaps something is mounted on top.
267  * Instead, an additional entry could be added to struct mount with a pointer
268  * to the final mount on the stack. This would be recalculated on each
269  * mount/unmount.
270  *
271  * === root vnodes
272  *
273  * It could become part of the API contract to *always* have a rootvnode set in
274  * mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
275  * to be modified to always skip them.
276  *
277  * === inactive on v_usecount reaching 0
278  *
279  * VOP_NEED_INACTIVE should not exist. Filesystems would indicate need for such
280  * processing with a bit in usecount.
281  *
282  * === v_holdcnt
283  *
284  * Hold count should probably get eliminated, but one can argue it is a useful
285  * feature. Even if so, handling of v_usecount could be decoupled from it --
286  * vnlru et al would consider the vnode not-freeable if has either hold or
287  * usecount on it.
288  *
289  * This would eliminate 2 atomics.
290  */
291 
292 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
293     "Name cache");
294 
295 SDT_PROVIDER_DECLARE(vfs);
296 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
297     "struct vnode *");
298 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
299     "struct vnode *");
300 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
301     "char *");
302 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
303     "const char *");
304 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
305     "struct namecache *", "int", "int");
306 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
307 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
308     "char *", "struct vnode *");
309 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
310 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
311     "struct vnode *", "char *");
312 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
313     "struct vnode *");
314 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
315     "struct vnode *", "char *");
316 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
317     "char *");
318 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
319     "struct componentname *");
320 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
321     "struct componentname *");
322 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
323 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
324 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
325 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
326 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
327     "struct vnode *");
328 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
329     "char *");
330 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
331     "char *");
332 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
333 
334 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
335 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
336 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
337 
338 static char __read_frequently cache_fast_lookup_enabled = true;
339 
340 /*
341  * This structure describes the elements in the cache of recent
342  * names looked up by namei.
343  */
344 struct negstate {
345 	u_char neg_flag;
346 	u_char neg_hit;
347 };
348 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
349     "the state must fit in a union with a pointer without growing it");
350 
351 struct	namecache {
352 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
353 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
354 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
355 	struct	vnode *nc_dvp;		/* vnode of parent of name */
356 	union {
357 		struct	vnode *nu_vp;	/* vnode the name refers to */
358 		struct	negstate nu_neg;/* negative entry state */
359 	} n_un;
360 	u_char	nc_flag;		/* flag bits */
361 	u_char	nc_nlen;		/* length of name */
362 	char	nc_name[];		/* segment name + nul */
363 };
364 
365 /*
366  * struct namecache_ts repeats struct namecache layout up to the
367  * nc_nlen member.
368  * struct namecache_ts is used in place of struct namecache when time(s) need
369  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
370  * both a non-dotdot directory name plus dotdot for the directory's
371  * parent.
372  *
373  * See below for alignment requirement.
374  */
375 struct	namecache_ts {
376 	struct	timespec nc_time;	/* timespec provided by fs */
377 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
378 	int	nc_ticks;		/* ticks value when entry was added */
379 	int	nc_pad;
380 	struct namecache nc_nc;
381 };
382 
383 TAILQ_HEAD(cache_freebatch, namecache);
384 
385 /*
386  * At least mips n32 performs 64-bit accesses to timespec as found
387  * in namecache_ts and requires them to be aligned. Since others
388  * may be in the same spot suffer a little bit and enforce the
389  * alignment for everyone. Note this is a nop for 64-bit platforms.
390  */
391 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
392 
393 /*
394  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
395  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
396  * smaller and the value was bumped to retain the total size, but it
397  * was never re-evaluated for suitability. A simple test counting
398  * lengths during package building shows that the value of 45 covers
399  * about 86% of all added entries, reaching 99% at 65.
400  *
401  * Regardless of the above, use of dedicated zones instead of malloc may be
402  * inducing additional waste. This may be hard to address as said zones are
403  * tied to VFS SMR. Even if retaining them, the current split should be
404  * re-evaluated.
405  */
406 #ifdef __LP64__
407 #define	CACHE_PATH_CUTOFF	45
408 #define	CACHE_LARGE_PAD		6
409 #else
410 #define	CACHE_PATH_CUTOFF	41
411 #define	CACHE_LARGE_PAD		2
412 #endif
413 
414 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
415 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
416 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
417 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
418 
419 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
420 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
421 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
422 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
423 
424 #define	nc_vp		n_un.nu_vp
425 #define	nc_neg		n_un.nu_neg
426 
427 /*
428  * Flags in namecache.nc_flag
429  */
430 #define NCF_WHITE	0x01
431 #define NCF_ISDOTDOT	0x02
432 #define	NCF_TS		0x04
433 #define	NCF_DTS		0x08
434 #define	NCF_DVDROP	0x10
435 #define	NCF_NEGATIVE	0x20
436 #define	NCF_INVALID	0x40
437 #define	NCF_WIP		0x80
438 
439 /*
440  * Flags in negstate.neg_flag
441  */
442 #define NEG_HOT		0x01
443 
444 static bool	cache_neg_evict_cond(u_long lnumcache);
445 
446 /*
447  * Mark an entry as invalid.
448  *
449  * This is called before it starts getting deconstructed.
450  */
451 static void
cache_ncp_invalidate(struct namecache * ncp)452 cache_ncp_invalidate(struct namecache *ncp)
453 {
454 
455 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
456 	    ("%s: entry %p already invalid", __func__, ncp));
457 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
458 	atomic_thread_fence_rel();
459 }
460 
461 /*
462  * Does this entry match the given directory and name?
463  */
464 static bool
cache_ncp_match(struct namecache * ncp,struct vnode * dvp,struct componentname * cnp)465 cache_ncp_match(struct namecache *ncp, struct vnode *dvp,
466     struct componentname *cnp)
467 {
468 	return (ncp->nc_dvp == dvp &&
469 	    ncp->nc_nlen == cnp->cn_namelen &&
470 	    bcmp(ncp->nc_name, cnp->cn_nameptr, cnp->cn_namelen) == 0);
471 }
472 
473 /*
474  * Check whether the entry can be safely used.
475  *
476  * All places which elide locks are supposed to call this after they are
477  * done with reading from an entry.
478  */
479 #define cache_ncp_canuse(ncp)	({					\
480 	struct namecache *_ncp = (ncp);					\
481 	u_char _nc_flag;						\
482 									\
483 	atomic_thread_fence_acq();					\
484 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
485 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
486 })
487 
488 /*
489  * Like the above but also checks NCF_WHITE.
490  */
491 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
492 	struct namecache *_ncp = (ncp);					\
493 	u_char _nc_flag;						\
494 									\
495 	atomic_thread_fence_acq();					\
496 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
497 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
498 })
499 
500 VFS_SMR_DECLARE;
501 
502 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
503     "Name cache parameters");
504 
505 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
506 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
507     "Total namecache capacity");
508 
509 u_int ncsizefactor = 2;
510 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
511     "Size factor for namecache");
512 
513 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
514 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
515     "Ratio of negative namecache entries");
516 
517 /*
518  * Negative entry % of namecache capacity above which automatic eviction is allowed.
519  *
520  * Check cache_neg_evict_cond for details.
521  */
522 static u_int ncnegminpct = 3;
523 
524 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
525 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
526     "Negative entry count above which automatic eviction is allowed");
527 
528 /*
529  * Structures associated with name caching.
530  */
531 #define NCHHASH(hash) \
532 	(&nchashtbl[(hash) & nchash])
533 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
534 static u_long __read_mostly	nchash;			/* size of hash table */
535 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
536     "Size of namecache hash table");
537 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
538 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
539 
540 struct nchstats	nchstats;		/* cache effectiveness statistics */
541 
542 static u_int __exclusive_cache_line neg_cycle;
543 
544 #define ncneghash	3
545 #define	numneglists	(ncneghash + 1)
546 
547 struct neglist {
548 	struct mtx		nl_evict_lock;
549 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
550 	TAILQ_HEAD(, namecache) nl_list;
551 	TAILQ_HEAD(, namecache) nl_hotlist;
552 	u_long			nl_hotnum;
553 } __aligned(CACHE_LINE_SIZE);
554 
555 static struct neglist neglists[numneglists];
556 
557 static inline struct neglist *
NCP2NEGLIST(struct namecache * ncp)558 NCP2NEGLIST(struct namecache *ncp)
559 {
560 
561 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
562 }
563 
564 static inline struct negstate *
NCP2NEGSTATE(struct namecache * ncp)565 NCP2NEGSTATE(struct namecache *ncp)
566 {
567 
568 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
569 	return (&ncp->nc_neg);
570 }
571 
572 #define	numbucketlocks (ncbuckethash + 1)
573 static u_int __read_mostly  ncbuckethash;
574 static struct mtx_padalign __read_mostly  *bucketlocks;
575 #define	HASH2BUCKETLOCK(hash) \
576 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
577 
578 #define	numvnodelocks (ncvnodehash + 1)
579 static u_int __read_mostly  ncvnodehash;
580 static struct mtx __read_mostly *vnodelocks;
581 static inline struct mtx *
VP2VNODELOCK(struct vnode * vp)582 VP2VNODELOCK(struct vnode *vp)
583 {
584 
585 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
586 }
587 
588 /*
589  * Search the hash table for a namecache entry.  Either the corresponding bucket
590  * must be locked, or the caller must be in an SMR read section.
591  */
592 static struct namecache *
cache_ncp_find(struct vnode * dvp,struct componentname * cnp,uint32_t hash)593 cache_ncp_find(struct vnode *dvp, struct componentname *cnp, uint32_t hash)
594 {
595 	struct namecache *ncp;
596 
597 	KASSERT(mtx_owned(HASH2BUCKETLOCK(hash)) || VFS_SMR_ENTERED(),
598 	    ("%s: hash %u not locked", __func__, hash));
599 	CK_SLIST_FOREACH(ncp, NCHHASH(hash), nc_hash) {
600 		if (cache_ncp_match(ncp, dvp, cnp))
601 			break;
602 	}
603 	return (ncp);
604 }
605 
606 static void
cache_out_ts(struct namecache * ncp,struct timespec * tsp,int * ticksp)607 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
608 {
609 	struct namecache_ts *ncp_ts;
610 
611 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
612 	    (tsp == NULL && ticksp == NULL),
613 	    ("No NCF_TS"));
614 
615 	if (tsp == NULL)
616 		return;
617 
618 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
619 	*tsp = ncp_ts->nc_time;
620 	*ticksp = ncp_ts->nc_ticks;
621 }
622 
623 #ifdef DEBUG_CACHE
624 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
625 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
626     "VFS namecache enabled");
627 #endif
628 
629 /* Export size information to userland */
630 SYSCTL_SIZEOF_STRUCT(namecache);
631 
632 /*
633  * The new name cache statistics
634  */
635 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
636     "Name cache statistics");
637 
638 #define STATNODE_ULONG(name, varname, descr)					\
639 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
640 #define STATNODE_COUNTER(name, varname, descr)					\
641 	static COUNTER_U64_DEFINE_EARLY(varname);				\
642 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
643 	    descr);
644 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
645 STATNODE_ULONG(count, numcache, "Number of cache entries");
646 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
647 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
648 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
649 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
650 STATNODE_COUNTER(poszaps, numposzaps,
651     "Number of cache hits (positive) we do not want to cache");
652 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
653 STATNODE_COUNTER(negzaps, numnegzaps,
654     "Number of cache hits (negative) we do not want to cache");
655 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
656 /* These count for vn_getcwd(), too. */
657 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
658 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
659     "Number of fullpath search errors (VOP_VPTOCNP failures)");
660 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
661 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
662 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
663 
664 /*
665  * Debug or developer statistics.
666  */
667 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
668     "Name cache debugging");
669 #define DEBUGNODE_ULONG(name, varname, descr)					\
670 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
671 static u_long zap_bucket_relock_success;
672 DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
673     "Number of successful removals after relocking");
674 static u_long zap_bucket_fail;
675 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
676 static u_long zap_bucket_fail2;
677 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
678 static u_long cache_lock_vnodes_cel_3_failures;
679 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
680     "Number of times 3-way vnode locking failed");
681 
682 static void cache_zap_locked(struct namecache *ncp);
683 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
684     char **retbuf, size_t *buflen, size_t addend);
685 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
686     char **retbuf, size_t *buflen);
687 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
688     char **retbuf, size_t *len, size_t addend);
689 
690 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
691 
692 static inline void
cache_assert_vlp_locked(struct mtx * vlp)693 cache_assert_vlp_locked(struct mtx *vlp)
694 {
695 
696 	if (vlp != NULL)
697 		mtx_assert(vlp, MA_OWNED);
698 }
699 
700 static inline void
cache_assert_vnode_locked(struct vnode * vp)701 cache_assert_vnode_locked(struct vnode *vp)
702 {
703 	struct mtx *vlp;
704 
705 	vlp = VP2VNODELOCK(vp);
706 	cache_assert_vlp_locked(vlp);
707 }
708 
709 /*
710  * Directory vnodes with entries are held for two reasons:
711  * 1. make them less of a target for reclamation in vnlru
712  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
713  *
714  * It will be feasible to stop doing it altogether if all filesystems start
715  * supporting lockless lookup.
716  */
717 static void
cache_hold_vnode(struct vnode * vp)718 cache_hold_vnode(struct vnode *vp)
719 {
720 
721 	cache_assert_vnode_locked(vp);
722 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
723 	vhold(vp);
724 	counter_u64_add(numcachehv, 1);
725 }
726 
727 static void
cache_drop_vnode(struct vnode * vp)728 cache_drop_vnode(struct vnode *vp)
729 {
730 
731 	/*
732 	 * Called after all locks are dropped, meaning we can't assert
733 	 * on the state of v_cache_src.
734 	 */
735 	vdrop(vp);
736 	counter_u64_add(numcachehv, -1);
737 }
738 
739 /*
740  * UMA zones.
741  */
742 static uma_zone_t __read_mostly cache_zone_small;
743 static uma_zone_t __read_mostly cache_zone_small_ts;
744 static uma_zone_t __read_mostly cache_zone_large;
745 static uma_zone_t __read_mostly cache_zone_large_ts;
746 
747 char *
cache_symlink_alloc(size_t size,int flags)748 cache_symlink_alloc(size_t size, int flags)
749 {
750 
751 	if (size < CACHE_ZONE_SMALL_SIZE) {
752 		return (uma_zalloc_smr(cache_zone_small, flags));
753 	}
754 	if (size < CACHE_ZONE_LARGE_SIZE) {
755 		return (uma_zalloc_smr(cache_zone_large, flags));
756 	}
757 	counter_u64_add(symlinktoobig, 1);
758 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
759 	return (NULL);
760 }
761 
762 void
cache_symlink_free(char * string,size_t size)763 cache_symlink_free(char *string, size_t size)
764 {
765 
766 	MPASS(string != NULL);
767 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
768 	    ("%s: size %zu too big", __func__, size));
769 
770 	if (size < CACHE_ZONE_SMALL_SIZE) {
771 		uma_zfree_smr(cache_zone_small, string);
772 		return;
773 	}
774 	if (size < CACHE_ZONE_LARGE_SIZE) {
775 		uma_zfree_smr(cache_zone_large, string);
776 		return;
777 	}
778 	__assert_unreachable();
779 }
780 
781 static struct namecache *
cache_alloc_uma(int len,bool ts)782 cache_alloc_uma(int len, bool ts)
783 {
784 	struct namecache_ts *ncp_ts;
785 	struct namecache *ncp;
786 
787 	if (__predict_false(ts)) {
788 		if (len <= CACHE_PATH_CUTOFF)
789 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
790 		else
791 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
792 		ncp = &ncp_ts->nc_nc;
793 	} else {
794 		if (len <= CACHE_PATH_CUTOFF)
795 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
796 		else
797 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
798 	}
799 	return (ncp);
800 }
801 
802 static void
cache_free_uma(struct namecache * ncp)803 cache_free_uma(struct namecache *ncp)
804 {
805 	struct namecache_ts *ncp_ts;
806 
807 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
808 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
809 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
810 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
811 		else
812 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
813 	} else {
814 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
815 			uma_zfree_smr(cache_zone_small, ncp);
816 		else
817 			uma_zfree_smr(cache_zone_large, ncp);
818 	}
819 }
820 
821 static struct namecache *
cache_alloc(int len,bool ts)822 cache_alloc(int len, bool ts)
823 {
824 	u_long lnumcache;
825 
826 	/*
827 	 * Avoid blowout in namecache entries.
828 	 *
829 	 * Bugs:
830 	 * 1. filesystems may end up trying to add an already existing entry
831 	 * (for example this can happen after a cache miss during concurrent
832 	 * lookup), in which case we will call cache_neg_evict despite not
833 	 * adding anything.
834 	 * 2. the routine may fail to free anything and no provisions are made
835 	 * to make it try harder (see the inside for failure modes)
836 	 * 3. it only ever looks at negative entries.
837 	 */
838 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
839 	if (cache_neg_evict_cond(lnumcache)) {
840 		lnumcache = atomic_load_long(&numcache);
841 	}
842 	if (__predict_false(lnumcache >= ncsize)) {
843 		atomic_subtract_long(&numcache, 1);
844 		counter_u64_add(numdrops, 1);
845 		return (NULL);
846 	}
847 	return (cache_alloc_uma(len, ts));
848 }
849 
850 static void
cache_free(struct namecache * ncp)851 cache_free(struct namecache *ncp)
852 {
853 
854 	MPASS(ncp != NULL);
855 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
856 		cache_drop_vnode(ncp->nc_dvp);
857 	}
858 	cache_free_uma(ncp);
859 	atomic_subtract_long(&numcache, 1);
860 }
861 
862 static void
cache_free_batch(struct cache_freebatch * batch)863 cache_free_batch(struct cache_freebatch *batch)
864 {
865 	struct namecache *ncp, *nnp;
866 	int i;
867 
868 	i = 0;
869 	if (TAILQ_EMPTY(batch))
870 		goto out;
871 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
872 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
873 			cache_drop_vnode(ncp->nc_dvp);
874 		}
875 		cache_free_uma(ncp);
876 		i++;
877 	}
878 	atomic_subtract_long(&numcache, i);
879 out:
880 	SDT_PROBE1(vfs, namecache, purge, batch, i);
881 }
882 
883 /*
884  * Hashing.
885  *
886  * The code was made to use FNV in 2001 and this choice needs to be revisited.
887  *
888  * Short summary of the difficulty:
889  * The longest name which can be inserted is NAME_MAX characters in length (or
890  * 255 at the time of writing this comment), while majority of names used in
891  * practice are significantly shorter (mostly below 10). More importantly
892  * majority of lookups performed find names are even shorter than that.
893  *
894  * This poses a problem where hashes which do better than FNV past word size
895  * (or so) tend to come with additional overhead when finalizing the result,
896  * making them noticeably slower for the most commonly used range.
897  *
898  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
899  *
900  * When looking it up the most time consuming part by a large margin (at least
901  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
902  * input would make the slowest part stand out even more.
903  */
904 
905 /*
906  * TODO: With the value stored we can do better than computing the hash based
907  * on the address.
908  */
909 static void
cache_prehash(struct vnode * vp)910 cache_prehash(struct vnode *vp)
911 {
912 
913 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
914 }
915 
916 static uint32_t
cache_get_hash(char * name,u_char len,struct vnode * dvp)917 cache_get_hash(char *name, u_char len, struct vnode *dvp)
918 {
919 
920 	return (fnv_32_buf(name, len, dvp->v_nchash));
921 }
922 
923 static uint32_t
cache_get_hash_iter_start(struct vnode * dvp)924 cache_get_hash_iter_start(struct vnode *dvp)
925 {
926 
927 	return (dvp->v_nchash);
928 }
929 
930 static uint32_t
cache_get_hash_iter(char c,uint32_t hash)931 cache_get_hash_iter(char c, uint32_t hash)
932 {
933 
934 	return (fnv_32_buf(&c, 1, hash));
935 }
936 
937 static uint32_t
cache_get_hash_iter_finish(uint32_t hash)938 cache_get_hash_iter_finish(uint32_t hash)
939 {
940 
941 	return (hash);
942 }
943 
944 static inline struct nchashhead *
NCP2BUCKET(struct namecache * ncp)945 NCP2BUCKET(struct namecache *ncp)
946 {
947 	uint32_t hash;
948 
949 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
950 	return (NCHHASH(hash));
951 }
952 
953 static inline struct mtx *
NCP2BUCKETLOCK(struct namecache * ncp)954 NCP2BUCKETLOCK(struct namecache *ncp)
955 {
956 	uint32_t hash;
957 
958 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
959 	return (HASH2BUCKETLOCK(hash));
960 }
961 
962 #ifdef INVARIANTS
963 static void
cache_assert_bucket_locked(struct namecache * ncp)964 cache_assert_bucket_locked(struct namecache *ncp)
965 {
966 	struct mtx *blp;
967 
968 	blp = NCP2BUCKETLOCK(ncp);
969 	mtx_assert(blp, MA_OWNED);
970 }
971 
972 static void
cache_assert_bucket_unlocked(struct namecache * ncp)973 cache_assert_bucket_unlocked(struct namecache *ncp)
974 {
975 	struct mtx *blp;
976 
977 	blp = NCP2BUCKETLOCK(ncp);
978 	mtx_assert(blp, MA_NOTOWNED);
979 }
980 #else
981 #define cache_assert_bucket_locked(x) do { } while (0)
982 #define cache_assert_bucket_unlocked(x) do { } while (0)
983 #endif
984 
985 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
986 static void
_cache_sort_vnodes(void ** p1,void ** p2)987 _cache_sort_vnodes(void **p1, void **p2)
988 {
989 	void *tmp;
990 
991 	MPASS(*p1 != NULL || *p2 != NULL);
992 
993 	if (*p1 > *p2) {
994 		tmp = *p2;
995 		*p2 = *p1;
996 		*p1 = tmp;
997 	}
998 }
999 
1000 static void
cache_lock_all_buckets(void)1001 cache_lock_all_buckets(void)
1002 {
1003 	u_int i;
1004 
1005 	for (i = 0; i < numbucketlocks; i++)
1006 		mtx_lock(&bucketlocks[i]);
1007 }
1008 
1009 static void
cache_unlock_all_buckets(void)1010 cache_unlock_all_buckets(void)
1011 {
1012 	u_int i;
1013 
1014 	for (i = 0; i < numbucketlocks; i++)
1015 		mtx_unlock(&bucketlocks[i]);
1016 }
1017 
1018 static void
cache_lock_all_vnodes(void)1019 cache_lock_all_vnodes(void)
1020 {
1021 	u_int i;
1022 
1023 	for (i = 0; i < numvnodelocks; i++)
1024 		mtx_lock(&vnodelocks[i]);
1025 }
1026 
1027 static void
cache_unlock_all_vnodes(void)1028 cache_unlock_all_vnodes(void)
1029 {
1030 	u_int i;
1031 
1032 	for (i = 0; i < numvnodelocks; i++)
1033 		mtx_unlock(&vnodelocks[i]);
1034 }
1035 
1036 static int
cache_trylock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1037 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1038 {
1039 
1040 	cache_sort_vnodes(&vlp1, &vlp2);
1041 
1042 	if (vlp1 != NULL) {
1043 		if (!mtx_trylock(vlp1))
1044 			return (EAGAIN);
1045 	}
1046 	if (!mtx_trylock(vlp2)) {
1047 		if (vlp1 != NULL)
1048 			mtx_unlock(vlp1);
1049 		return (EAGAIN);
1050 	}
1051 
1052 	return (0);
1053 }
1054 
1055 static void
cache_lock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1056 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1057 {
1058 
1059 	MPASS(vlp1 != NULL || vlp2 != NULL);
1060 	MPASS(vlp1 <= vlp2);
1061 
1062 	if (vlp1 != NULL)
1063 		mtx_lock(vlp1);
1064 	if (vlp2 != NULL)
1065 		mtx_lock(vlp2);
1066 }
1067 
1068 static void
cache_unlock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1069 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1070 {
1071 
1072 	MPASS(vlp1 != NULL || vlp2 != NULL);
1073 
1074 	if (vlp1 != NULL)
1075 		mtx_unlock(vlp1);
1076 	if (vlp2 != NULL)
1077 		mtx_unlock(vlp2);
1078 }
1079 
1080 static int
sysctl_nchstats(SYSCTL_HANDLER_ARGS)1081 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
1082 {
1083 	struct nchstats snap;
1084 
1085 	if (req->oldptr == NULL)
1086 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
1087 
1088 	snap = nchstats;
1089 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
1090 	snap.ncs_neghits = counter_u64_fetch(numneghits);
1091 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
1092 	    counter_u64_fetch(numnegzaps);
1093 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
1094 	    counter_u64_fetch(nummiss);
1095 
1096 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
1097 }
1098 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
1099     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
1100     "VFS cache effectiveness statistics");
1101 
1102 static int
sysctl_hitpct(SYSCTL_HANDLER_ARGS)1103 sysctl_hitpct(SYSCTL_HANDLER_ARGS)
1104 {
1105 	long poshits, neghits, miss, total;
1106 	long pct;
1107 
1108 	poshits = counter_u64_fetch(numposhits);
1109 	neghits = counter_u64_fetch(numneghits);
1110 	miss = counter_u64_fetch(nummiss);
1111 	total = poshits + neghits + miss;
1112 
1113 	pct = 0;
1114 	if (total != 0)
1115 		pct = ((poshits + neghits) * 100) / total;
1116 	return (sysctl_handle_int(oidp, 0, pct, req));
1117 }
1118 SYSCTL_PROC(_vfs_cache_stats, OID_AUTO, hitpct,
1119     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_hitpct,
1120     "I", "Percentage of hits");
1121 
1122 static void
cache_recalc_neg_min(void)1123 cache_recalc_neg_min(void)
1124 {
1125 
1126 	neg_min = (ncsize * ncnegminpct) / 100;
1127 }
1128 
1129 static int
sysctl_negminpct(SYSCTL_HANDLER_ARGS)1130 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1131 {
1132 	u_int val;
1133 	int error;
1134 
1135 	val = ncnegminpct;
1136 	error = sysctl_handle_int(oidp, &val, 0, req);
1137 	if (error != 0 || req->newptr == NULL)
1138 		return (error);
1139 
1140 	if (val == ncnegminpct)
1141 		return (0);
1142 	if (val < 0 || val > 99)
1143 		return (EINVAL);
1144 	ncnegminpct = val;
1145 	cache_recalc_neg_min();
1146 	return (0);
1147 }
1148 
1149 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1150     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1151     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1152 
1153 #ifdef DEBUG_CACHE
1154 /*
1155  * Grab an atomic snapshot of the name cache hash chain lengths
1156  */
1157 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1158     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1159     "hash table stats");
1160 
1161 static int
sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)1162 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1163 {
1164 	struct nchashhead *ncpp;
1165 	struct namecache *ncp;
1166 	int i, error, n_nchash, *cntbuf;
1167 
1168 retry:
1169 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1170 	if (req->oldptr == NULL)
1171 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1172 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1173 	cache_lock_all_buckets();
1174 	if (n_nchash != nchash + 1) {
1175 		cache_unlock_all_buckets();
1176 		free(cntbuf, M_TEMP);
1177 		goto retry;
1178 	}
1179 	/* Scan hash tables counting entries */
1180 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1181 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1182 			cntbuf[i]++;
1183 	cache_unlock_all_buckets();
1184 	for (error = 0, i = 0; i < n_nchash; i++)
1185 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1186 			break;
1187 	free(cntbuf, M_TEMP);
1188 	return (error);
1189 }
1190 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1191     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1192     "nchash chain lengths");
1193 
1194 static int
sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)1195 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1196 {
1197 	int error;
1198 	struct nchashhead *ncpp;
1199 	struct namecache *ncp;
1200 	int n_nchash;
1201 	int count, maxlength, used, pct;
1202 
1203 	if (!req->oldptr)
1204 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1205 
1206 	cache_lock_all_buckets();
1207 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1208 	used = 0;
1209 	maxlength = 0;
1210 
1211 	/* Scan hash tables for applicable entries */
1212 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1213 		count = 0;
1214 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1215 			count++;
1216 		}
1217 		if (count)
1218 			used++;
1219 		if (maxlength < count)
1220 			maxlength = count;
1221 	}
1222 	n_nchash = nchash + 1;
1223 	cache_unlock_all_buckets();
1224 	pct = (used * 100) / (n_nchash / 100);
1225 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1226 	if (error)
1227 		return (error);
1228 	error = SYSCTL_OUT(req, &used, sizeof(used));
1229 	if (error)
1230 		return (error);
1231 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1232 	if (error)
1233 		return (error);
1234 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1235 	if (error)
1236 		return (error);
1237 	return (0);
1238 }
1239 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1240     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1241     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1242 #endif
1243 
1244 /*
1245  * Negative entries management
1246  *
1247  * Various workloads create plenty of negative entries and barely use them
1248  * afterwards. Moreover malicious users can keep performing bogus lookups
1249  * adding even more entries. For example "make tinderbox" as of writing this
1250  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1251  * negative.
1252  *
1253  * As such, a rather aggressive eviction method is needed. The currently
1254  * employed method is a placeholder.
1255  *
1256  * Entries are split over numneglists separate lists, each of which is further
1257  * split into hot and cold entries. Entries get promoted after getting a hit.
1258  * Eviction happens on addition of new entry.
1259  */
1260 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1261     "Name cache negative entry statistics");
1262 
1263 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1264     "Number of negative cache entries");
1265 
1266 static COUNTER_U64_DEFINE_EARLY(neg_created);
1267 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1268     "Number of created negative entries");
1269 
1270 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1271 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1272     "Number of evicted negative entries");
1273 
1274 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1275 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1276     &neg_evict_skipped_empty,
1277     "Number of times evicting failed due to lack of entries");
1278 
1279 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1280 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1281     &neg_evict_skipped_missed,
1282     "Number of times evicting failed due to target entry disappearing");
1283 
1284 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1285 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1286     &neg_evict_skipped_contended,
1287     "Number of times evicting failed due to contention");
1288 
1289 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1290     "Number of cache hits (negative)");
1291 
1292 static int
sysctl_neg_hot(SYSCTL_HANDLER_ARGS)1293 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1294 {
1295 	int i, out;
1296 
1297 	out = 0;
1298 	for (i = 0; i < numneglists; i++)
1299 		out += neglists[i].nl_hotnum;
1300 
1301 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1302 }
1303 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1304     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1305     "Number of hot negative entries");
1306 
1307 static void
cache_neg_init(struct namecache * ncp)1308 cache_neg_init(struct namecache *ncp)
1309 {
1310 	struct negstate *ns;
1311 
1312 	ncp->nc_flag |= NCF_NEGATIVE;
1313 	ns = NCP2NEGSTATE(ncp);
1314 	ns->neg_flag = 0;
1315 	ns->neg_hit = 0;
1316 	counter_u64_add(neg_created, 1);
1317 }
1318 
1319 #define CACHE_NEG_PROMOTION_THRESH 2
1320 
1321 static bool
cache_neg_hit_prep(struct namecache * ncp)1322 cache_neg_hit_prep(struct namecache *ncp)
1323 {
1324 	struct negstate *ns;
1325 	u_char n;
1326 
1327 	ns = NCP2NEGSTATE(ncp);
1328 	n = atomic_load_char(&ns->neg_hit);
1329 	for (;;) {
1330 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1331 			return (false);
1332 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1333 			break;
1334 	}
1335 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1336 }
1337 
1338 /*
1339  * Nothing to do here but it is provided for completeness as some
1340  * cache_neg_hit_prep callers may end up returning without even
1341  * trying to promote.
1342  */
1343 #define cache_neg_hit_abort(ncp)	do { } while (0)
1344 
1345 static void
cache_neg_hit_finish(struct namecache * ncp)1346 cache_neg_hit_finish(struct namecache *ncp)
1347 {
1348 
1349 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1350 	counter_u64_add(numneghits, 1);
1351 }
1352 
1353 /*
1354  * Move a negative entry to the hot list.
1355  */
1356 static void
cache_neg_promote_locked(struct namecache * ncp)1357 cache_neg_promote_locked(struct namecache *ncp)
1358 {
1359 	struct neglist *nl;
1360 	struct negstate *ns;
1361 
1362 	ns = NCP2NEGSTATE(ncp);
1363 	nl = NCP2NEGLIST(ncp);
1364 	mtx_assert(&nl->nl_lock, MA_OWNED);
1365 	if ((ns->neg_flag & NEG_HOT) == 0) {
1366 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1367 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1368 		nl->nl_hotnum++;
1369 		ns->neg_flag |= NEG_HOT;
1370 	}
1371 }
1372 
1373 /*
1374  * Move a hot negative entry to the cold list.
1375  */
1376 static void
cache_neg_demote_locked(struct namecache * ncp)1377 cache_neg_demote_locked(struct namecache *ncp)
1378 {
1379 	struct neglist *nl;
1380 	struct negstate *ns;
1381 
1382 	ns = NCP2NEGSTATE(ncp);
1383 	nl = NCP2NEGLIST(ncp);
1384 	mtx_assert(&nl->nl_lock, MA_OWNED);
1385 	MPASS(ns->neg_flag & NEG_HOT);
1386 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1387 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1388 	nl->nl_hotnum--;
1389 	ns->neg_flag &= ~NEG_HOT;
1390 	atomic_store_char(&ns->neg_hit, 0);
1391 }
1392 
1393 /*
1394  * Move a negative entry to the hot list if it matches the lookup.
1395  *
1396  * We have to take locks, but they may be contended and in the worst
1397  * case we may need to go off CPU. We don't want to spin within the
1398  * smr section and we can't block with it. Exiting the section means
1399  * the found entry could have been evicted. We are going to look it
1400  * up again.
1401  */
1402 static bool
cache_neg_promote_cond(struct vnode * dvp,struct componentname * cnp,struct namecache * oncp,uint32_t hash)1403 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1404     struct namecache *oncp, uint32_t hash)
1405 {
1406 	struct namecache *ncp;
1407 	struct neglist *nl;
1408 	u_char nc_flag;
1409 
1410 	nl = NCP2NEGLIST(oncp);
1411 
1412 	mtx_lock(&nl->nl_lock);
1413 	/*
1414 	 * For hash iteration.
1415 	 */
1416 	vfs_smr_enter();
1417 
1418 	/*
1419 	 * Avoid all surprises by only succeeding if we got the same entry and
1420 	 * bailing completely otherwise.
1421 	 * XXX There are no provisions to keep the vnode around, meaning we may
1422 	 * end up promoting a negative entry for a *new* vnode and returning
1423 	 * ENOENT on its account. This is the error we want to return anyway
1424 	 * and promotion is harmless.
1425 	 *
1426 	 * In particular at this point there can be a new ncp which matches the
1427 	 * search but hashes to a different neglist.
1428 	 */
1429 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1430 		if (ncp == oncp)
1431 			break;
1432 	}
1433 
1434 	/*
1435 	 * No match to begin with.
1436 	 */
1437 	if (__predict_false(ncp == NULL)) {
1438 		goto out_abort;
1439 	}
1440 
1441 	/*
1442 	 * The newly found entry may be something different...
1443 	 */
1444 	if (!cache_ncp_match(ncp, dvp, cnp)) {
1445 		goto out_abort;
1446 	}
1447 
1448 	/*
1449 	 * ... and not even negative.
1450 	 */
1451 	nc_flag = atomic_load_char(&ncp->nc_flag);
1452 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1453 		goto out_abort;
1454 	}
1455 
1456 	if (!cache_ncp_canuse(ncp)) {
1457 		goto out_abort;
1458 	}
1459 
1460 	cache_neg_promote_locked(ncp);
1461 	cache_neg_hit_finish(ncp);
1462 	vfs_smr_exit();
1463 	mtx_unlock(&nl->nl_lock);
1464 	return (true);
1465 out_abort:
1466 	vfs_smr_exit();
1467 	mtx_unlock(&nl->nl_lock);
1468 	return (false);
1469 }
1470 
1471 static void
cache_neg_promote(struct namecache * ncp)1472 cache_neg_promote(struct namecache *ncp)
1473 {
1474 	struct neglist *nl;
1475 
1476 	nl = NCP2NEGLIST(ncp);
1477 	mtx_lock(&nl->nl_lock);
1478 	cache_neg_promote_locked(ncp);
1479 	mtx_unlock(&nl->nl_lock);
1480 }
1481 
1482 static void
cache_neg_insert(struct namecache * ncp)1483 cache_neg_insert(struct namecache *ncp)
1484 {
1485 	struct neglist *nl;
1486 
1487 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1488 	cache_assert_bucket_locked(ncp);
1489 	nl = NCP2NEGLIST(ncp);
1490 	mtx_lock(&nl->nl_lock);
1491 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1492 	mtx_unlock(&nl->nl_lock);
1493 	atomic_add_long(&numneg, 1);
1494 }
1495 
1496 static void
cache_neg_remove(struct namecache * ncp)1497 cache_neg_remove(struct namecache *ncp)
1498 {
1499 	struct neglist *nl;
1500 	struct negstate *ns;
1501 
1502 	cache_assert_bucket_locked(ncp);
1503 	nl = NCP2NEGLIST(ncp);
1504 	ns = NCP2NEGSTATE(ncp);
1505 	mtx_lock(&nl->nl_lock);
1506 	if ((ns->neg_flag & NEG_HOT) != 0) {
1507 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1508 		nl->nl_hotnum--;
1509 	} else {
1510 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1511 	}
1512 	mtx_unlock(&nl->nl_lock);
1513 	atomic_subtract_long(&numneg, 1);
1514 }
1515 
1516 static struct neglist *
cache_neg_evict_select_list(void)1517 cache_neg_evict_select_list(void)
1518 {
1519 	struct neglist *nl;
1520 	u_int c;
1521 
1522 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1523 	nl = &neglists[c % numneglists];
1524 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1525 		counter_u64_add(neg_evict_skipped_contended, 1);
1526 		return (NULL);
1527 	}
1528 	return (nl);
1529 }
1530 
1531 static struct namecache *
cache_neg_evict_select_entry(struct neglist * nl)1532 cache_neg_evict_select_entry(struct neglist *nl)
1533 {
1534 	struct namecache *ncp, *lncp;
1535 	struct negstate *ns, *lns;
1536 	int i;
1537 
1538 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1539 	mtx_assert(&nl->nl_lock, MA_OWNED);
1540 	ncp = TAILQ_FIRST(&nl->nl_list);
1541 	if (ncp == NULL)
1542 		return (NULL);
1543 	lncp = ncp;
1544 	lns = NCP2NEGSTATE(lncp);
1545 	for (i = 1; i < 4; i++) {
1546 		ncp = TAILQ_NEXT(ncp, nc_dst);
1547 		if (ncp == NULL)
1548 			break;
1549 		ns = NCP2NEGSTATE(ncp);
1550 		if (ns->neg_hit < lns->neg_hit) {
1551 			lncp = ncp;
1552 			lns = ns;
1553 		}
1554 	}
1555 	return (lncp);
1556 }
1557 
1558 static bool
cache_neg_evict(void)1559 cache_neg_evict(void)
1560 {
1561 	struct namecache *ncp, *ncp2;
1562 	struct neglist *nl;
1563 	struct vnode *dvp;
1564 	struct mtx *dvlp;
1565 	struct mtx *blp;
1566 	uint32_t hash;
1567 	u_char nlen;
1568 	bool evicted;
1569 
1570 	nl = cache_neg_evict_select_list();
1571 	if (nl == NULL) {
1572 		return (false);
1573 	}
1574 
1575 	mtx_lock(&nl->nl_lock);
1576 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1577 	if (ncp != NULL) {
1578 		cache_neg_demote_locked(ncp);
1579 	}
1580 	ncp = cache_neg_evict_select_entry(nl);
1581 	if (ncp == NULL) {
1582 		counter_u64_add(neg_evict_skipped_empty, 1);
1583 		mtx_unlock(&nl->nl_lock);
1584 		mtx_unlock(&nl->nl_evict_lock);
1585 		return (false);
1586 	}
1587 	nlen = ncp->nc_nlen;
1588 	dvp = ncp->nc_dvp;
1589 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1590 	dvlp = VP2VNODELOCK(dvp);
1591 	blp = HASH2BUCKETLOCK(hash);
1592 	mtx_unlock(&nl->nl_lock);
1593 	mtx_unlock(&nl->nl_evict_lock);
1594 	mtx_lock(dvlp);
1595 	mtx_lock(blp);
1596 	/*
1597 	 * Note that since all locks were dropped above, the entry may be
1598 	 * gone or reallocated to be something else.
1599 	 */
1600 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1601 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1602 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1603 			break;
1604 	}
1605 	if (ncp2 == NULL) {
1606 		counter_u64_add(neg_evict_skipped_missed, 1);
1607 		ncp = NULL;
1608 		evicted = false;
1609 	} else {
1610 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1611 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1612 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1613 		    ncp->nc_name);
1614 		cache_zap_locked(ncp);
1615 		counter_u64_add(neg_evicted, 1);
1616 		evicted = true;
1617 	}
1618 	mtx_unlock(blp);
1619 	mtx_unlock(dvlp);
1620 	if (ncp != NULL)
1621 		cache_free(ncp);
1622 	return (evicted);
1623 }
1624 
1625 /*
1626  * Maybe evict a negative entry to create more room.
1627  *
1628  * The ncnegfactor parameter limits what fraction of the total count
1629  * can comprise of negative entries. However, if the cache is just
1630  * warming up this leads to excessive evictions.  As such, ncnegminpct
1631  * (recomputed to neg_min) dictates whether the above should be
1632  * applied.
1633  *
1634  * Try evicting if the cache is close to full capacity regardless of
1635  * other considerations.
1636  */
1637 static bool
cache_neg_evict_cond(u_long lnumcache)1638 cache_neg_evict_cond(u_long lnumcache)
1639 {
1640 	u_long lnumneg;
1641 
1642 	if (ncsize - 1000 < lnumcache)
1643 		goto out_evict;
1644 	lnumneg = atomic_load_long(&numneg);
1645 	if (lnumneg < neg_min)
1646 		return (false);
1647 	if (lnumneg * ncnegfactor < lnumcache)
1648 		return (false);
1649 out_evict:
1650 	return (cache_neg_evict());
1651 }
1652 
1653 /*
1654  * cache_zap_locked():
1655  *
1656  *   Removes a namecache entry from cache, whether it contains an actual
1657  *   pointer to a vnode or if it is just a negative cache entry.
1658  */
1659 static void
cache_zap_locked(struct namecache * ncp)1660 cache_zap_locked(struct namecache *ncp)
1661 {
1662 	struct nchashhead *ncpp;
1663 	struct vnode *dvp, *vp;
1664 
1665 	dvp = ncp->nc_dvp;
1666 	vp = ncp->nc_vp;
1667 
1668 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1669 		cache_assert_vnode_locked(vp);
1670 	cache_assert_vnode_locked(dvp);
1671 	cache_assert_bucket_locked(ncp);
1672 
1673 	cache_ncp_invalidate(ncp);
1674 
1675 	ncpp = NCP2BUCKET(ncp);
1676 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1677 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1678 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1679 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1680 		if (ncp == vp->v_cache_dd) {
1681 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1682 		}
1683 	} else {
1684 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1685 		cache_neg_remove(ncp);
1686 	}
1687 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1688 		if (ncp == dvp->v_cache_dd) {
1689 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1690 		}
1691 	} else {
1692 		LIST_REMOVE(ncp, nc_src);
1693 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1694 			ncp->nc_flag |= NCF_DVDROP;
1695 		}
1696 	}
1697 }
1698 
1699 static void
cache_zap_negative_locked_vnode_kl(struct namecache * ncp,struct vnode * vp)1700 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1701 {
1702 	struct mtx *blp;
1703 
1704 	MPASS(ncp->nc_dvp == vp);
1705 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1706 	cache_assert_vnode_locked(vp);
1707 
1708 	blp = NCP2BUCKETLOCK(ncp);
1709 	mtx_lock(blp);
1710 	cache_zap_locked(ncp);
1711 	mtx_unlock(blp);
1712 }
1713 
1714 static bool
cache_zap_locked_vnode_kl2(struct namecache * ncp,struct vnode * vp,struct mtx ** vlpp)1715 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1716     struct mtx **vlpp)
1717 {
1718 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1719 	struct mtx *blp;
1720 
1721 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1722 	cache_assert_vnode_locked(vp);
1723 
1724 	if (ncp->nc_flag & NCF_NEGATIVE) {
1725 		if (*vlpp != NULL) {
1726 			mtx_unlock(*vlpp);
1727 			*vlpp = NULL;
1728 		}
1729 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1730 		return (true);
1731 	}
1732 
1733 	pvlp = VP2VNODELOCK(vp);
1734 	blp = NCP2BUCKETLOCK(ncp);
1735 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1736 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1737 
1738 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1739 		to_unlock = *vlpp;
1740 		*vlpp = NULL;
1741 	} else {
1742 		if (*vlpp != NULL) {
1743 			mtx_unlock(*vlpp);
1744 			*vlpp = NULL;
1745 		}
1746 		cache_sort_vnodes(&vlp1, &vlp2);
1747 		if (vlp1 == pvlp) {
1748 			mtx_lock(vlp2);
1749 			to_unlock = vlp2;
1750 		} else {
1751 			if (!mtx_trylock(vlp1))
1752 				goto out_relock;
1753 			to_unlock = vlp1;
1754 		}
1755 	}
1756 	mtx_lock(blp);
1757 	cache_zap_locked(ncp);
1758 	mtx_unlock(blp);
1759 	if (to_unlock != NULL)
1760 		mtx_unlock(to_unlock);
1761 	return (true);
1762 
1763 out_relock:
1764 	mtx_unlock(vlp2);
1765 	mtx_lock(vlp1);
1766 	mtx_lock(vlp2);
1767 	MPASS(*vlpp == NULL);
1768 	*vlpp = vlp1;
1769 	return (false);
1770 }
1771 
1772 /*
1773  * If trylocking failed we can get here. We know enough to take all needed locks
1774  * in the right order and re-lookup the entry.
1775  */
1776 static int
cache_zap_unlocked_bucket(struct namecache * ncp,struct componentname * cnp,struct vnode * dvp,struct mtx * dvlp,struct mtx * vlp,uint32_t hash,struct mtx * blp)1777 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1778     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1779     struct mtx *blp)
1780 {
1781 	struct namecache *rncp;
1782 	struct mtx *rvlp;
1783 
1784 	cache_assert_bucket_unlocked(ncp);
1785 
1786 	cache_sort_vnodes(&dvlp, &vlp);
1787 	cache_lock_vnodes(dvlp, vlp);
1788 	mtx_lock(blp);
1789 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1790 		if (rncp == ncp && cache_ncp_match(rncp, dvp, cnp))
1791 			break;
1792 	}
1793 	if (rncp == NULL)
1794 		goto out_mismatch;
1795 
1796 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1797 		rvlp = VP2VNODELOCK(rncp->nc_vp);
1798 	else
1799 		rvlp = NULL;
1800 	if (rvlp != vlp)
1801 		goto out_mismatch;
1802 
1803 	cache_zap_locked(rncp);
1804 	mtx_unlock(blp);
1805 	cache_unlock_vnodes(dvlp, vlp);
1806 	atomic_add_long(&zap_bucket_relock_success, 1);
1807 	return (0);
1808 
1809 out_mismatch:
1810 	mtx_unlock(blp);
1811 	cache_unlock_vnodes(dvlp, vlp);
1812 	return (EAGAIN);
1813 }
1814 
1815 static int __noinline
cache_zap_locked_bucket(struct namecache * ncp,struct componentname * cnp,uint32_t hash,struct mtx * blp)1816 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1817     uint32_t hash, struct mtx *blp)
1818 {
1819 	struct mtx *dvlp, *vlp;
1820 	struct vnode *dvp;
1821 
1822 	cache_assert_bucket_locked(ncp);
1823 
1824 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1825 	vlp = NULL;
1826 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1827 		vlp = VP2VNODELOCK(ncp->nc_vp);
1828 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1829 		cache_zap_locked(ncp);
1830 		mtx_unlock(blp);
1831 		cache_unlock_vnodes(dvlp, vlp);
1832 		return (0);
1833 	}
1834 
1835 	dvp = ncp->nc_dvp;
1836 	mtx_unlock(blp);
1837 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1838 }
1839 
1840 static __noinline int
cache_remove_cnp(struct vnode * dvp,struct componentname * cnp)1841 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1842 {
1843 	struct namecache *ncp;
1844 	struct mtx *blp;
1845 	struct mtx *dvlp, *dvlp2;
1846 	uint32_t hash;
1847 	int error;
1848 
1849 	if (cnp->cn_namelen == 2 &&
1850 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1851 		dvlp = VP2VNODELOCK(dvp);
1852 		dvlp2 = NULL;
1853 		mtx_lock(dvlp);
1854 retry_dotdot:
1855 		ncp = dvp->v_cache_dd;
1856 		if (ncp == NULL) {
1857 			mtx_unlock(dvlp);
1858 			if (dvlp2 != NULL)
1859 				mtx_unlock(dvlp2);
1860 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1861 			return (0);
1862 		}
1863 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1864 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1865 				goto retry_dotdot;
1866 			MPASS(dvp->v_cache_dd == NULL);
1867 			mtx_unlock(dvlp);
1868 			if (dvlp2 != NULL)
1869 				mtx_unlock(dvlp2);
1870 			cache_free(ncp);
1871 		} else {
1872 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1873 			mtx_unlock(dvlp);
1874 			if (dvlp2 != NULL)
1875 				mtx_unlock(dvlp2);
1876 		}
1877 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1878 		return (1);
1879 	}
1880 
1881 	/*
1882 	 * XXX note that access here is completely unlocked with no provisions
1883 	 * to keep the hash allocated. If one is sufficiently unlucky a
1884 	 * parallel cache resize can reallocate the hash, unmap backing pages
1885 	 * and cause the empty check below to fault.
1886 	 *
1887 	 * Fixing this has epsilon priority, but can be done with no overhead
1888 	 * for this codepath with sufficient effort.
1889 	 */
1890 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1891 	blp = HASH2BUCKETLOCK(hash);
1892 retry:
1893 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1894 		goto out_no_entry;
1895 
1896 	mtx_lock(blp);
1897 	ncp = cache_ncp_find(dvp, cnp, hash);
1898 	if (ncp == NULL) {
1899 		mtx_unlock(blp);
1900 		goto out_no_entry;
1901 	}
1902 
1903 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1904 	if (__predict_false(error != 0)) {
1905 		atomic_add_long(&zap_bucket_fail, 1);
1906 		goto retry;
1907 	}
1908 	counter_u64_add(numposzaps, 1);
1909 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1910 	cache_free(ncp);
1911 	return (1);
1912 out_no_entry:
1913 	counter_u64_add(nummisszap, 1);
1914 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1915 	return (0);
1916 }
1917 
1918 static int __noinline
cache_lookup_dot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1919 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1920     struct timespec *tsp, int *ticksp)
1921 {
1922 	int ltype;
1923 
1924 	*vpp = dvp;
1925 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1926 	if (tsp != NULL)
1927 		timespecclear(tsp);
1928 	if (ticksp != NULL)
1929 		*ticksp = ticks;
1930 	vrefact(*vpp);
1931 	/*
1932 	 * When we lookup "." we still can be asked to lock it
1933 	 * differently...
1934 	 */
1935 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1936 	if (ltype != VOP_ISLOCKED(*vpp)) {
1937 		if (ltype == LK_EXCLUSIVE) {
1938 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1939 			if (VN_IS_DOOMED((*vpp))) {
1940 				/* forced unmount */
1941 				vrele(*vpp);
1942 				*vpp = NULL;
1943 				return (ENOENT);
1944 			}
1945 		} else
1946 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1947 	}
1948 	return (-1);
1949 }
1950 
1951 static int __noinline
cache_lookup_dotdot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1952 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1953     struct timespec *tsp, int *ticksp)
1954 {
1955 	struct namecache_ts *ncp_ts;
1956 	struct namecache *ncp;
1957 	struct mtx *dvlp;
1958 	enum vgetstate vs;
1959 	int error, ltype;
1960 	bool whiteout;
1961 
1962 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1963 
1964 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1965 		cache_remove_cnp(dvp, cnp);
1966 		return (0);
1967 	}
1968 
1969 retry:
1970 	dvlp = VP2VNODELOCK(dvp);
1971 	mtx_lock(dvlp);
1972 	ncp = dvp->v_cache_dd;
1973 	if (ncp == NULL) {
1974 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1975 		mtx_unlock(dvlp);
1976 		return (0);
1977 	}
1978 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1979 		if (ncp->nc_flag & NCF_NEGATIVE)
1980 			*vpp = NULL;
1981 		else
1982 			*vpp = ncp->nc_vp;
1983 	} else
1984 		*vpp = ncp->nc_dvp;
1985 	if (*vpp == NULL)
1986 		goto negative_success;
1987 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1988 	cache_out_ts(ncp, tsp, ticksp);
1989 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1990 	    NCF_DTS && tsp != NULL) {
1991 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1992 		*tsp = ncp_ts->nc_dotdottime;
1993 	}
1994 
1995 	MPASS(dvp != *vpp);
1996 	ltype = VOP_ISLOCKED(dvp);
1997 	VOP_UNLOCK(dvp);
1998 	vs = vget_prep(*vpp);
1999 	mtx_unlock(dvlp);
2000 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2001 	vn_lock(dvp, ltype | LK_RETRY);
2002 	if (VN_IS_DOOMED(dvp)) {
2003 		if (error == 0)
2004 			vput(*vpp);
2005 		*vpp = NULL;
2006 		return (ENOENT);
2007 	}
2008 	if (error) {
2009 		*vpp = NULL;
2010 		goto retry;
2011 	}
2012 	return (-1);
2013 negative_success:
2014 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
2015 		if (cnp->cn_flags & ISLASTCN) {
2016 			counter_u64_add(numnegzaps, 1);
2017 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
2018 			mtx_unlock(dvlp);
2019 			cache_free(ncp);
2020 			return (0);
2021 		}
2022 	}
2023 
2024 	whiteout = (ncp->nc_flag & NCF_WHITE);
2025 	cache_out_ts(ncp, tsp, ticksp);
2026 	if (cache_neg_hit_prep(ncp))
2027 		cache_neg_promote(ncp);
2028 	else
2029 		cache_neg_hit_finish(ncp);
2030 	mtx_unlock(dvlp);
2031 	if (whiteout)
2032 		cnp->cn_flags |= ISWHITEOUT;
2033 	return (ENOENT);
2034 }
2035 
2036 /**
2037  * Lookup a name in the name cache
2038  *
2039  * # Arguments
2040  *
2041  * - dvp:	Parent directory in which to search.
2042  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
2043  * - cnp:	Parameters of the name search.  The most interesting bits of
2044  *   		the cn_flags field have the following meanings:
2045  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
2046  *   			it up.
2047  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
2048  * - tsp:	Return storage for cache timestamp.  On a successful (positive
2049  *   		or negative) lookup, tsp will be filled with any timespec that
2050  *   		was stored when this cache entry was created.  However, it will
2051  *   		be clear for "." entries.
2052  * - ticks:	Return storage for alternate cache timestamp.  On a successful
2053  *   		(positive or negative) lookup, it will contain the ticks value
2054  *   		that was current when the cache entry was created, unless cnp
2055  *   		was ".".
2056  *
2057  * Either both tsp and ticks have to be provided or neither of them.
2058  *
2059  * # Returns
2060  *
2061  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
2062  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
2063  *		to a forced unmount.  vpp will not be modified.  If the entry
2064  *		is a whiteout, then the ISWHITEOUT flag will be set in
2065  *		cnp->cn_flags.
2066  * - 0:		A cache miss.  vpp will not be modified.
2067  *
2068  * # Locking
2069  *
2070  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
2071  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
2072  * lock is not recursively acquired.
2073  */
2074 static int __noinline
cache_lookup_fallback(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)2075 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2076     struct timespec *tsp, int *ticksp)
2077 {
2078 	struct namecache *ncp;
2079 	struct mtx *blp;
2080 	uint32_t hash;
2081 	enum vgetstate vs;
2082 	int error;
2083 	bool whiteout;
2084 
2085 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2086 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
2087 
2088 retry:
2089 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2090 	blp = HASH2BUCKETLOCK(hash);
2091 	mtx_lock(blp);
2092 
2093 	ncp = cache_ncp_find(dvp, cnp, hash);
2094 	if (__predict_false(ncp == NULL)) {
2095 		mtx_unlock(blp);
2096 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2097 		counter_u64_add(nummiss, 1);
2098 		return (0);
2099 	}
2100 
2101 	if (ncp->nc_flag & NCF_NEGATIVE)
2102 		goto negative_success;
2103 
2104 	counter_u64_add(numposhits, 1);
2105 	*vpp = ncp->nc_vp;
2106 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2107 	cache_out_ts(ncp, tsp, ticksp);
2108 	MPASS(dvp != *vpp);
2109 	vs = vget_prep(*vpp);
2110 	mtx_unlock(blp);
2111 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2112 	if (error) {
2113 		*vpp = NULL;
2114 		goto retry;
2115 	}
2116 	return (-1);
2117 negative_success:
2118 	/*
2119 	 * We don't get here with regular lookup apart from corner cases.
2120 	 */
2121 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
2122 		if (cnp->cn_flags & ISLASTCN) {
2123 			counter_u64_add(numnegzaps, 1);
2124 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2125 			if (__predict_false(error != 0)) {
2126 				atomic_add_long(&zap_bucket_fail2, 1);
2127 				goto retry;
2128 			}
2129 			cache_free(ncp);
2130 			return (0);
2131 		}
2132 	}
2133 
2134 	whiteout = (ncp->nc_flag & NCF_WHITE);
2135 	cache_out_ts(ncp, tsp, ticksp);
2136 	if (cache_neg_hit_prep(ncp))
2137 		cache_neg_promote(ncp);
2138 	else
2139 		cache_neg_hit_finish(ncp);
2140 	mtx_unlock(blp);
2141 	if (whiteout)
2142 		cnp->cn_flags |= ISWHITEOUT;
2143 	return (ENOENT);
2144 }
2145 
2146 int
cache_lookup(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)2147 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2148     struct timespec *tsp, int *ticksp)
2149 {
2150 	struct namecache *ncp;
2151 	uint32_t hash;
2152 	enum vgetstate vs;
2153 	int error;
2154 	bool whiteout, neg_promote;
2155 	u_short nc_flag;
2156 
2157 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2158 
2159 #ifdef DEBUG_CACHE
2160 	if (__predict_false(!doingcache)) {
2161 		cnp->cn_flags &= ~MAKEENTRY;
2162 		return (0);
2163 	}
2164 #endif
2165 
2166 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2167 		if (cnp->cn_namelen == 1)
2168 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2169 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2170 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2171 	}
2172 
2173 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2174 
2175 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2176 		cache_remove_cnp(dvp, cnp);
2177 		return (0);
2178 	}
2179 
2180 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2181 	vfs_smr_enter();
2182 
2183 	ncp = cache_ncp_find(dvp, cnp, hash);
2184 	if (__predict_false(ncp == NULL)) {
2185 		vfs_smr_exit();
2186 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2187 		counter_u64_add(nummiss, 1);
2188 		return (0);
2189 	}
2190 
2191 	nc_flag = atomic_load_char(&ncp->nc_flag);
2192 	if (nc_flag & NCF_NEGATIVE)
2193 		goto negative_success;
2194 
2195 	counter_u64_add(numposhits, 1);
2196 	*vpp = ncp->nc_vp;
2197 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2198 	cache_out_ts(ncp, tsp, ticksp);
2199 	MPASS(dvp != *vpp);
2200 	if (!cache_ncp_canuse(ncp)) {
2201 		vfs_smr_exit();
2202 		*vpp = NULL;
2203 		goto out_fallback;
2204 	}
2205 	vs = vget_prep_smr(*vpp);
2206 	vfs_smr_exit();
2207 	if (__predict_false(vs == VGET_NONE)) {
2208 		*vpp = NULL;
2209 		goto out_fallback;
2210 	}
2211 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2212 	if (error) {
2213 		*vpp = NULL;
2214 		goto out_fallback;
2215 	}
2216 	return (-1);
2217 negative_success:
2218 	if (cnp->cn_nameiop == CREATE) {
2219 		if (cnp->cn_flags & ISLASTCN) {
2220 			vfs_smr_exit();
2221 			goto out_fallback;
2222 		}
2223 	}
2224 
2225 	cache_out_ts(ncp, tsp, ticksp);
2226 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2227 	neg_promote = cache_neg_hit_prep(ncp);
2228 	if (!cache_ncp_canuse(ncp)) {
2229 		cache_neg_hit_abort(ncp);
2230 		vfs_smr_exit();
2231 		goto out_fallback;
2232 	}
2233 	if (neg_promote) {
2234 		vfs_smr_exit();
2235 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2236 			goto out_fallback;
2237 	} else {
2238 		cache_neg_hit_finish(ncp);
2239 		vfs_smr_exit();
2240 	}
2241 	if (whiteout)
2242 		cnp->cn_flags |= ISWHITEOUT;
2243 	return (ENOENT);
2244 out_fallback:
2245 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2246 }
2247 
2248 struct celockstate {
2249 	struct mtx *vlp[3];
2250 	struct mtx *blp[2];
2251 };
2252 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2253 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2254 
2255 static inline void
cache_celockstate_init(struct celockstate * cel)2256 cache_celockstate_init(struct celockstate *cel)
2257 {
2258 
2259 	bzero(cel, sizeof(*cel));
2260 }
2261 
2262 static void
cache_lock_vnodes_cel(struct celockstate * cel,struct vnode * vp,struct vnode * dvp)2263 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2264     struct vnode *dvp)
2265 {
2266 	struct mtx *vlp1, *vlp2;
2267 
2268 	MPASS(cel->vlp[0] == NULL);
2269 	MPASS(cel->vlp[1] == NULL);
2270 	MPASS(cel->vlp[2] == NULL);
2271 
2272 	MPASS(vp != NULL || dvp != NULL);
2273 
2274 	vlp1 = VP2VNODELOCK(vp);
2275 	vlp2 = VP2VNODELOCK(dvp);
2276 	cache_sort_vnodes(&vlp1, &vlp2);
2277 
2278 	if (vlp1 != NULL) {
2279 		mtx_lock(vlp1);
2280 		cel->vlp[0] = vlp1;
2281 	}
2282 	mtx_lock(vlp2);
2283 	cel->vlp[1] = vlp2;
2284 }
2285 
2286 static void
cache_unlock_vnodes_cel(struct celockstate * cel)2287 cache_unlock_vnodes_cel(struct celockstate *cel)
2288 {
2289 
2290 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2291 
2292 	if (cel->vlp[0] != NULL)
2293 		mtx_unlock(cel->vlp[0]);
2294 	if (cel->vlp[1] != NULL)
2295 		mtx_unlock(cel->vlp[1]);
2296 	if (cel->vlp[2] != NULL)
2297 		mtx_unlock(cel->vlp[2]);
2298 }
2299 
2300 static bool
cache_lock_vnodes_cel_3(struct celockstate * cel,struct vnode * vp)2301 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2302 {
2303 	struct mtx *vlp;
2304 	bool ret;
2305 
2306 	cache_assert_vlp_locked(cel->vlp[0]);
2307 	cache_assert_vlp_locked(cel->vlp[1]);
2308 	MPASS(cel->vlp[2] == NULL);
2309 
2310 	MPASS(vp != NULL);
2311 	vlp = VP2VNODELOCK(vp);
2312 
2313 	ret = true;
2314 	if (vlp >= cel->vlp[1]) {
2315 		mtx_lock(vlp);
2316 	} else {
2317 		if (mtx_trylock(vlp))
2318 			goto out;
2319 		cache_unlock_vnodes_cel(cel);
2320 		atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
2321 		if (vlp < cel->vlp[0]) {
2322 			mtx_lock(vlp);
2323 			mtx_lock(cel->vlp[0]);
2324 			mtx_lock(cel->vlp[1]);
2325 		} else {
2326 			if (cel->vlp[0] != NULL)
2327 				mtx_lock(cel->vlp[0]);
2328 			mtx_lock(vlp);
2329 			mtx_lock(cel->vlp[1]);
2330 		}
2331 		ret = false;
2332 	}
2333 out:
2334 	cel->vlp[2] = vlp;
2335 	return (ret);
2336 }
2337 
2338 static void
cache_lock_buckets_cel(struct celockstate * cel,struct mtx * blp1,struct mtx * blp2)2339 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2340     struct mtx *blp2)
2341 {
2342 
2343 	MPASS(cel->blp[0] == NULL);
2344 	MPASS(cel->blp[1] == NULL);
2345 
2346 	cache_sort_vnodes(&blp1, &blp2);
2347 
2348 	if (blp1 != NULL) {
2349 		mtx_lock(blp1);
2350 		cel->blp[0] = blp1;
2351 	}
2352 	mtx_lock(blp2);
2353 	cel->blp[1] = blp2;
2354 }
2355 
2356 static void
cache_unlock_buckets_cel(struct celockstate * cel)2357 cache_unlock_buckets_cel(struct celockstate *cel)
2358 {
2359 
2360 	if (cel->blp[0] != NULL)
2361 		mtx_unlock(cel->blp[0]);
2362 	mtx_unlock(cel->blp[1]);
2363 }
2364 
2365 /*
2366  * Lock part of the cache affected by the insertion.
2367  *
2368  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2369  * However, insertion can result in removal of an old entry. In this
2370  * case we have an additional vnode and bucketlock pair to lock.
2371  *
2372  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2373  * preserving the locking order (smaller address first).
2374  */
2375 static void
cache_enter_lock(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2376 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2377     uint32_t hash)
2378 {
2379 	struct namecache *ncp;
2380 	struct mtx *blps[2];
2381 	u_char nc_flag;
2382 
2383 	blps[0] = HASH2BUCKETLOCK(hash);
2384 	for (;;) {
2385 		blps[1] = NULL;
2386 		cache_lock_vnodes_cel(cel, dvp, vp);
2387 		if (vp == NULL || vp->v_type != VDIR)
2388 			break;
2389 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2390 		if (ncp == NULL)
2391 			break;
2392 		nc_flag = atomic_load_char(&ncp->nc_flag);
2393 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2394 			break;
2395 		MPASS(ncp->nc_dvp == vp);
2396 		blps[1] = NCP2BUCKETLOCK(ncp);
2397 		if ((nc_flag & NCF_NEGATIVE) != 0)
2398 			break;
2399 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2400 			break;
2401 		/*
2402 		 * All vnodes got re-locked. Re-validate the state and if
2403 		 * nothing changed we are done. Otherwise restart.
2404 		 */
2405 		if (ncp == vp->v_cache_dd &&
2406 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2407 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2408 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2409 			break;
2410 		cache_unlock_vnodes_cel(cel);
2411 		cel->vlp[0] = NULL;
2412 		cel->vlp[1] = NULL;
2413 		cel->vlp[2] = NULL;
2414 	}
2415 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2416 }
2417 
2418 static void
cache_enter_lock_dd(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2419 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2420     uint32_t hash)
2421 {
2422 	struct namecache *ncp;
2423 	struct mtx *blps[2];
2424 	u_char nc_flag;
2425 
2426 	blps[0] = HASH2BUCKETLOCK(hash);
2427 	for (;;) {
2428 		blps[1] = NULL;
2429 		cache_lock_vnodes_cel(cel, dvp, vp);
2430 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2431 		if (ncp == NULL)
2432 			break;
2433 		nc_flag = atomic_load_char(&ncp->nc_flag);
2434 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2435 			break;
2436 		MPASS(ncp->nc_dvp == dvp);
2437 		blps[1] = NCP2BUCKETLOCK(ncp);
2438 		if ((nc_flag & NCF_NEGATIVE) != 0)
2439 			break;
2440 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2441 			break;
2442 		if (ncp == dvp->v_cache_dd &&
2443 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2444 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2445 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2446 			break;
2447 		cache_unlock_vnodes_cel(cel);
2448 		cel->vlp[0] = NULL;
2449 		cel->vlp[1] = NULL;
2450 		cel->vlp[2] = NULL;
2451 	}
2452 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2453 }
2454 
2455 static void
cache_enter_unlock(struct celockstate * cel)2456 cache_enter_unlock(struct celockstate *cel)
2457 {
2458 
2459 	cache_unlock_buckets_cel(cel);
2460 	cache_unlock_vnodes_cel(cel);
2461 }
2462 
2463 static void __noinline
cache_enter_dotdot_prep(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)2464 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2465     struct componentname *cnp)
2466 {
2467 	struct celockstate cel;
2468 	struct namecache *ncp;
2469 	uint32_t hash;
2470 	int len;
2471 
2472 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2473 		return;
2474 	len = cnp->cn_namelen;
2475 	cache_celockstate_init(&cel);
2476 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2477 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2478 	ncp = dvp->v_cache_dd;
2479 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2480 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2481 		cache_zap_locked(ncp);
2482 	} else {
2483 		ncp = NULL;
2484 	}
2485 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2486 	cache_enter_unlock(&cel);
2487 	if (ncp != NULL)
2488 		cache_free(ncp);
2489 }
2490 
2491 /*
2492  * Add an entry to the cache.
2493  */
2494 void
cache_enter_time(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp)2495 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2496     struct timespec *tsp, struct timespec *dtsp)
2497 {
2498 	struct celockstate cel;
2499 	struct namecache *ncp, *n2, *ndd;
2500 	struct namecache_ts *ncp_ts;
2501 	uint32_t hash;
2502 	int flag;
2503 	int len;
2504 
2505 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2506 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2507 	    NAME_MAX));
2508 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2509 	VNPASS(dvp->v_type != VNON, dvp);
2510 	if (vp != NULL) {
2511 		VNPASS(!VN_IS_DOOMED(vp), vp);
2512 		VNPASS(vp->v_type != VNON, vp);
2513 	}
2514 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2515 		KASSERT(dvp == vp,
2516 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2517 		    dvp, vp));
2518 	} else {
2519 		KASSERT(dvp != vp,
2520 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2521 		    cnp->cn_nameptr, dvp));
2522 	}
2523 
2524 #ifdef DEBUG_CACHE
2525 	if (__predict_false(!doingcache))
2526 		return;
2527 #endif
2528 
2529 	flag = 0;
2530 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2531 		if (cnp->cn_namelen == 1)
2532 			return;
2533 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2534 			cache_enter_dotdot_prep(dvp, vp, cnp);
2535 			flag = NCF_ISDOTDOT;
2536 		}
2537 	}
2538 
2539 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2540 	if (ncp == NULL)
2541 		return;
2542 
2543 	cache_celockstate_init(&cel);
2544 	ndd = NULL;
2545 	ncp_ts = NULL;
2546 
2547 	/*
2548 	 * Calculate the hash key and setup as much of the new
2549 	 * namecache entry as possible before acquiring the lock.
2550 	 */
2551 	ncp->nc_flag = flag | NCF_WIP;
2552 	ncp->nc_vp = vp;
2553 	if (vp == NULL)
2554 		cache_neg_init(ncp);
2555 	ncp->nc_dvp = dvp;
2556 	if (tsp != NULL) {
2557 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2558 		ncp_ts->nc_time = *tsp;
2559 		ncp_ts->nc_ticks = ticks;
2560 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2561 		if (dtsp != NULL) {
2562 			ncp_ts->nc_dotdottime = *dtsp;
2563 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2564 		}
2565 	}
2566 	len = ncp->nc_nlen = cnp->cn_namelen;
2567 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2568 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2569 	ncp->nc_name[len] = '\0';
2570 	cache_enter_lock(&cel, dvp, vp, hash);
2571 
2572 	/*
2573 	 * See if this vnode or negative entry is already in the cache
2574 	 * with this name.  This can happen with concurrent lookups of
2575 	 * the same path name.
2576 	 */
2577 	n2 = cache_ncp_find(dvp, cnp, hash);
2578 	if (n2 != NULL) {
2579 		MPASS(cache_ncp_canuse(n2));
2580 		if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2581 			KASSERT(vp == NULL,
2582 			    ("%s: found entry pointing to a different vnode "
2583 			    "(%p != %p); name [%s]",
2584 			    __func__, NULL, vp, cnp->cn_nameptr));
2585 		else
2586 			KASSERT(n2->nc_vp == vp,
2587 			    ("%s: found entry pointing to a different vnode "
2588 			    "(%p != %p); name [%s]",
2589 			    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2590 		/*
2591 		 * Entries are supposed to be immutable unless in the
2592 		 * process of getting destroyed. Accommodating for
2593 		 * changing timestamps is possible but not worth it.
2594 		 * This should be harmless in terms of correctness, in
2595 		 * the worst case resulting in an earlier expiration.
2596 		 * Alternatively, the found entry can be replaced
2597 		 * altogether.
2598 		 */
2599 		MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) ==
2600 		    (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2601 #if 0
2602 		if (tsp != NULL) {
2603 			KASSERT((n2->nc_flag & NCF_TS) != 0,
2604 			    ("no NCF_TS"));
2605 			n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2606 			n2_ts->nc_time = ncp_ts->nc_time;
2607 			n2_ts->nc_ticks = ncp_ts->nc_ticks;
2608 			if (dtsp != NULL) {
2609 				n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2610 				n2_ts->nc_nc.nc_flag |= NCF_DTS;
2611 			}
2612 		}
2613 #endif
2614 		SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2615 		    vp);
2616 		goto out_unlock_free;
2617 	}
2618 
2619 	if (flag == NCF_ISDOTDOT) {
2620 		/*
2621 		 * See if we are trying to add .. entry, but some other lookup
2622 		 * has populated v_cache_dd pointer already.
2623 		 */
2624 		if (dvp->v_cache_dd != NULL)
2625 			goto out_unlock_free;
2626 		KASSERT(vp == NULL || vp->v_type == VDIR,
2627 		    ("wrong vnode type %p", vp));
2628 		atomic_thread_fence_rel();
2629 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2630 	} else if (vp != NULL) {
2631 		/*
2632 		 * For this case, the cache entry maps both the
2633 		 * directory name in it and the name ".." for the
2634 		 * directory's parent.
2635 		 */
2636 		if ((ndd = vp->v_cache_dd) != NULL) {
2637 			if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2638 				cache_zap_locked(ndd);
2639 			else
2640 				ndd = NULL;
2641 		}
2642 		atomic_thread_fence_rel();
2643 		atomic_store_ptr(&vp->v_cache_dd, ncp);
2644 	}
2645 
2646 	if (flag != NCF_ISDOTDOT) {
2647 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2648 			cache_hold_vnode(dvp);
2649 		}
2650 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2651 	}
2652 
2653 	/*
2654 	 * If the entry is "negative", we place it into the
2655 	 * "negative" cache queue, otherwise, we place it into the
2656 	 * destination vnode's cache entries queue.
2657 	 */
2658 	if (vp != NULL) {
2659 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2660 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2661 		    vp);
2662 	} else {
2663 		if (cnp->cn_flags & ISWHITEOUT)
2664 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2665 		cache_neg_insert(ncp);
2666 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2667 		    ncp->nc_name);
2668 	}
2669 
2670 	/*
2671 	 * Insert the new namecache entry into the appropriate chain
2672 	 * within the cache entries table.
2673 	 */
2674 	CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2675 
2676 	atomic_thread_fence_rel();
2677 	/*
2678 	 * Mark the entry as fully constructed.
2679 	 * It is immutable past this point until its removal.
2680 	 */
2681 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2682 
2683 	cache_enter_unlock(&cel);
2684 	if (ndd != NULL)
2685 		cache_free(ndd);
2686 	return;
2687 out_unlock_free:
2688 	cache_enter_unlock(&cel);
2689 	cache_free(ncp);
2690 	return;
2691 }
2692 
2693 /*
2694  * A variant of the above accepting flags.
2695  *
2696  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2697  *
2698  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2699  * happens to match and it is doing it in an inefficient manner. It was added
2700  * to accommodate NFS which runs into a case where the target for a given name
2701  * may change from under it. Note this does nothing to solve the following
2702  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2703  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2704  */
2705 void
cache_enter_time_flags(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp,int flags)2706 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2707     struct timespec *tsp, struct timespec *dtsp, int flags)
2708 {
2709 
2710 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2711 
2712 	if (flags & VFS_CACHE_DROPOLD)
2713 		cache_remove_cnp(dvp, cnp);
2714 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2715 }
2716 
2717 static u_long
cache_roundup_2(u_long val)2718 cache_roundup_2(u_long val)
2719 {
2720 	u_long res;
2721 
2722 	for (res = 1; res <= val; res <<= 1)
2723 		continue;
2724 
2725 	return (res);
2726 }
2727 
2728 static struct nchashhead *
nchinittbl(u_long elements,u_long * hashmask)2729 nchinittbl(u_long elements, u_long *hashmask)
2730 {
2731 	struct nchashhead *hashtbl;
2732 	u_long hashsize, i;
2733 
2734 	hashsize = cache_roundup_2(elements) / 2;
2735 
2736 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2737 	for (i = 0; i < hashsize; i++)
2738 		CK_SLIST_INIT(&hashtbl[i]);
2739 	*hashmask = hashsize - 1;
2740 	return (hashtbl);
2741 }
2742 
2743 static void
ncfreetbl(struct nchashhead * hashtbl)2744 ncfreetbl(struct nchashhead *hashtbl)
2745 {
2746 
2747 	free(hashtbl, M_VFSCACHE);
2748 }
2749 
2750 /*
2751  * Name cache initialization, from vfs_init() when we are booting
2752  */
2753 static void
nchinit(void * dummy __unused)2754 nchinit(void *dummy __unused)
2755 {
2756 	u_int i;
2757 
2758 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2759 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2760 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2761 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2762 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2763 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2764 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2765 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2766 
2767 	VFS_SMR_ZONE_SET(cache_zone_small);
2768 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2769 	VFS_SMR_ZONE_SET(cache_zone_large);
2770 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2771 
2772 	ncsize = desiredvnodes * ncsizefactor;
2773 	cache_recalc_neg_min();
2774 	nchashtbl = nchinittbl(ncsize, &nchash);
2775 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2776 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2777 		ncbuckethash = 7;
2778 	if (ncbuckethash > nchash)
2779 		ncbuckethash = nchash;
2780 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2781 	    M_WAITOK | M_ZERO);
2782 	for (i = 0; i < numbucketlocks; i++)
2783 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2784 	ncvnodehash = ncbuckethash;
2785 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2786 	    M_WAITOK | M_ZERO);
2787 	for (i = 0; i < numvnodelocks; i++)
2788 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2789 
2790 	for (i = 0; i < numneglists; i++) {
2791 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2792 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2793 		TAILQ_INIT(&neglists[i].nl_list);
2794 		TAILQ_INIT(&neglists[i].nl_hotlist);
2795 	}
2796 }
2797 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2798 
2799 void
cache_vnode_init(struct vnode * vp)2800 cache_vnode_init(struct vnode *vp)
2801 {
2802 
2803 	LIST_INIT(&vp->v_cache_src);
2804 	TAILQ_INIT(&vp->v_cache_dst);
2805 	vp->v_cache_dd = NULL;
2806 	cache_prehash(vp);
2807 }
2808 
2809 /*
2810  * Induce transient cache misses for lockless operation in cache_lookup() by
2811  * using a temporary hash table.
2812  *
2813  * This will force a fs lookup.
2814  *
2815  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2816  * to observe all CPUs not performing the lookup.
2817  */
2818 static void
cache_changesize_set_temp(struct nchashhead * temptbl,u_long temphash)2819 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2820 {
2821 
2822 	MPASS(temphash < nchash);
2823 	/*
2824 	 * Change the size. The new size is smaller and can safely be used
2825 	 * against the existing table. All lookups which now hash wrong will
2826 	 * result in a cache miss, which all callers are supposed to know how
2827 	 * to handle.
2828 	 */
2829 	atomic_store_long(&nchash, temphash);
2830 	atomic_thread_fence_rel();
2831 	vfs_smr_synchronize();
2832 	/*
2833 	 * At this point everyone sees the updated hash value, but they still
2834 	 * see the old table.
2835 	 */
2836 	atomic_store_ptr(&nchashtbl, temptbl);
2837 	atomic_thread_fence_rel();
2838 	vfs_smr_synchronize();
2839 	/*
2840 	 * At this point everyone sees the updated table pointer and size pair.
2841 	 */
2842 }
2843 
2844 /*
2845  * Set the new hash table.
2846  *
2847  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2848  * lockless operation in cache_lookup().
2849  */
2850 static void
cache_changesize_set_new(struct nchashhead * new_tbl,u_long new_hash)2851 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2852 {
2853 
2854 	MPASS(nchash < new_hash);
2855 	/*
2856 	 * Change the pointer first. This wont result in out of bounds access
2857 	 * since the temporary table is guaranteed to be smaller.
2858 	 */
2859 	atomic_store_ptr(&nchashtbl, new_tbl);
2860 	atomic_thread_fence_rel();
2861 	vfs_smr_synchronize();
2862 	/*
2863 	 * At this point everyone sees the updated pointer value, but they
2864 	 * still see the old size.
2865 	 */
2866 	atomic_store_long(&nchash, new_hash);
2867 	atomic_thread_fence_rel();
2868 	vfs_smr_synchronize();
2869 	/*
2870 	 * At this point everyone sees the updated table pointer and size pair.
2871 	 */
2872 }
2873 
2874 void
cache_changesize(u_long newmaxvnodes)2875 cache_changesize(u_long newmaxvnodes)
2876 {
2877 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2878 	u_long new_nchash, old_nchash, temphash;
2879 	struct namecache *ncp;
2880 	uint32_t hash;
2881 	u_long newncsize;
2882 	u_long i;
2883 
2884 	newncsize = newmaxvnodes * ncsizefactor;
2885 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2886 	if (newmaxvnodes < numbucketlocks)
2887 		newmaxvnodes = numbucketlocks;
2888 
2889 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2890 	/* If same hash table size, nothing to do */
2891 	if (nchash == new_nchash) {
2892 		ncfreetbl(new_nchashtbl);
2893 		return;
2894 	}
2895 
2896 	temptbl = nchinittbl(1, &temphash);
2897 
2898 	/*
2899 	 * Move everything from the old hash table to the new table.
2900 	 * None of the namecache entries in the table can be removed
2901 	 * because to do so, they have to be removed from the hash table.
2902 	 */
2903 	cache_lock_all_vnodes();
2904 	cache_lock_all_buckets();
2905 	old_nchashtbl = nchashtbl;
2906 	old_nchash = nchash;
2907 	cache_changesize_set_temp(temptbl, temphash);
2908 	for (i = 0; i <= old_nchash; i++) {
2909 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2910 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2911 			    ncp->nc_dvp);
2912 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2913 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2914 		}
2915 	}
2916 	ncsize = newncsize;
2917 	cache_recalc_neg_min();
2918 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2919 	cache_unlock_all_buckets();
2920 	cache_unlock_all_vnodes();
2921 	ncfreetbl(old_nchashtbl);
2922 	ncfreetbl(temptbl);
2923 }
2924 
2925 /*
2926  * Remove all entries from and to a particular vnode.
2927  */
2928 static void
cache_purge_impl(struct vnode * vp)2929 cache_purge_impl(struct vnode *vp)
2930 {
2931 	struct cache_freebatch batch;
2932 	struct namecache *ncp;
2933 	struct mtx *vlp, *vlp2;
2934 
2935 	TAILQ_INIT(&batch);
2936 	vlp = VP2VNODELOCK(vp);
2937 	vlp2 = NULL;
2938 	mtx_lock(vlp);
2939 retry:
2940 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2941 		ncp = LIST_FIRST(&vp->v_cache_src);
2942 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2943 			goto retry;
2944 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2945 	}
2946 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2947 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2948 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2949 			goto retry;
2950 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2951 	}
2952 	ncp = vp->v_cache_dd;
2953 	if (ncp != NULL) {
2954 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2955 		   ("lost dotdot link"));
2956 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2957 			goto retry;
2958 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2959 	}
2960 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2961 	mtx_unlock(vlp);
2962 	if (vlp2 != NULL)
2963 		mtx_unlock(vlp2);
2964 	cache_free_batch(&batch);
2965 }
2966 
2967 /*
2968  * Opportunistic check to see if there is anything to do.
2969  */
2970 static bool
cache_has_entries(struct vnode * vp)2971 cache_has_entries(struct vnode *vp)
2972 {
2973 
2974 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2975 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2976 		return (false);
2977 	return (true);
2978 }
2979 
2980 void
cache_purge(struct vnode * vp)2981 cache_purge(struct vnode *vp)
2982 {
2983 
2984 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2985 	if (!cache_has_entries(vp))
2986 		return;
2987 	cache_purge_impl(vp);
2988 }
2989 
2990 /*
2991  * Only to be used by vgone.
2992  */
2993 void
cache_purge_vgone(struct vnode * vp)2994 cache_purge_vgone(struct vnode *vp)
2995 {
2996 	struct mtx *vlp;
2997 
2998 	VNPASS(VN_IS_DOOMED(vp), vp);
2999 	if (cache_has_entries(vp)) {
3000 		cache_purge_impl(vp);
3001 		return;
3002 	}
3003 
3004 	/*
3005 	 * Serialize against a potential thread doing cache_purge.
3006 	 */
3007 	vlp = VP2VNODELOCK(vp);
3008 	mtx_wait_unlocked(vlp);
3009 	if (cache_has_entries(vp)) {
3010 		cache_purge_impl(vp);
3011 		return;
3012 	}
3013 	return;
3014 }
3015 
3016 /*
3017  * Remove all negative entries for a particular directory vnode.
3018  */
3019 void
cache_purge_negative(struct vnode * vp)3020 cache_purge_negative(struct vnode *vp)
3021 {
3022 	struct cache_freebatch batch;
3023 	struct namecache *ncp, *nnp;
3024 	struct mtx *vlp;
3025 
3026 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
3027 	if (LIST_EMPTY(&vp->v_cache_src))
3028 		return;
3029 	TAILQ_INIT(&batch);
3030 	vlp = VP2VNODELOCK(vp);
3031 	mtx_lock(vlp);
3032 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
3033 		if (!(ncp->nc_flag & NCF_NEGATIVE))
3034 			continue;
3035 		cache_zap_negative_locked_vnode_kl(ncp, vp);
3036 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
3037 	}
3038 	mtx_unlock(vlp);
3039 	cache_free_batch(&batch);
3040 }
3041 
3042 /*
3043  * Entry points for modifying VOP operations.
3044  */
3045 void
cache_vop_rename(struct vnode * fdvp,struct vnode * fvp,struct vnode * tdvp,struct vnode * tvp,struct componentname * fcnp,struct componentname * tcnp)3046 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
3047     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
3048 {
3049 
3050 	ASSERT_VOP_IN_SEQC(fdvp);
3051 	ASSERT_VOP_IN_SEQC(fvp);
3052 	ASSERT_VOP_IN_SEQC(tdvp);
3053 	if (tvp != NULL)
3054 		ASSERT_VOP_IN_SEQC(tvp);
3055 
3056 	cache_purge(fvp);
3057 	if (tvp != NULL) {
3058 		cache_purge(tvp);
3059 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
3060 		    ("%s: lingering negative entry", __func__));
3061 	} else {
3062 		cache_remove_cnp(tdvp, tcnp);
3063 	}
3064 
3065 	/*
3066 	 * TODO
3067 	 *
3068 	 * Historically renaming was always purging all revelang entries,
3069 	 * but that's quite wasteful. In particular turns out that in many cases
3070 	 * the target file is immediately accessed after rename, inducing a cache
3071 	 * miss.
3072 	 *
3073 	 * Recode this to reduce relocking and reuse the existing entry (if any)
3074 	 * instead of just removing it above and allocating a new one here.
3075 	 */
3076 	cache_enter(tdvp, fvp, tcnp);
3077 }
3078 
3079 void
cache_vop_rmdir(struct vnode * dvp,struct vnode * vp)3080 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
3081 {
3082 
3083 	ASSERT_VOP_IN_SEQC(dvp);
3084 	ASSERT_VOP_IN_SEQC(vp);
3085 	cache_purge(vp);
3086 }
3087 
3088 #ifdef INVARIANTS
3089 /*
3090  * Validate that if an entry exists it matches.
3091  */
3092 void
cache_validate(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)3093 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
3094 {
3095 	struct namecache *ncp;
3096 	struct mtx *blp;
3097 	uint32_t hash;
3098 
3099 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3100 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
3101 		return;
3102 	blp = HASH2BUCKETLOCK(hash);
3103 	mtx_lock(blp);
3104 	ncp = cache_ncp_find(dvp, cnp, hash);
3105 	if (ncp != NULL && ncp->nc_vp != vp) {
3106 		panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3107 		    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3108 	}
3109 	mtx_unlock(blp);
3110 }
3111 
3112 void
cache_assert_no_entries(struct vnode * vp)3113 cache_assert_no_entries(struct vnode *vp)
3114 {
3115 
3116 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3117 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3118 	VNPASS(vp->v_cache_dd == NULL, vp);
3119 }
3120 #endif
3121 
3122 /*
3123  * Flush all entries referencing a particular filesystem.
3124  */
3125 void
cache_purgevfs(struct mount * mp)3126 cache_purgevfs(struct mount *mp)
3127 {
3128 	struct vnode *vp, *mvp;
3129 	size_t visited __sdt_used, purged __sdt_used;
3130 
3131 	visited = purged = 0;
3132 	/*
3133 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3134 	 * support filtering and avoid the interlock to begin with.
3135 	 */
3136 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3137 		visited++;
3138 		if (!cache_has_entries(vp)) {
3139 			VI_UNLOCK(vp);
3140 			continue;
3141 		}
3142 		vholdl(vp);
3143 		VI_UNLOCK(vp);
3144 		cache_purge(vp);
3145 		purged++;
3146 		vdrop(vp);
3147 	}
3148 
3149 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3150 }
3151 
3152 /*
3153  * Perform canonical checks and cache lookup and pass on to filesystem
3154  * through the vop_cachedlookup only if needed.
3155  */
3156 
3157 int
vfs_cache_lookup(struct vop_lookup_args * ap)3158 vfs_cache_lookup(struct vop_lookup_args *ap)
3159 {
3160 	struct vnode *dvp;
3161 	int error;
3162 	struct vnode **vpp = ap->a_vpp;
3163 	struct componentname *cnp = ap->a_cnp;
3164 	int flags = cnp->cn_flags;
3165 
3166 	*vpp = NULL;
3167 	dvp = ap->a_dvp;
3168 
3169 	if (dvp->v_type != VDIR)
3170 		return (ENOTDIR);
3171 
3172 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3173 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3174 		return (EROFS);
3175 
3176 	error = vn_dir_check_exec(dvp, cnp);
3177 	if (error != 0)
3178 		return (error);
3179 
3180 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3181 	if (error == 0)
3182 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3183 	if (error == -1)
3184 		return (0);
3185 	return (error);
3186 }
3187 
3188 /* Implementation of the getcwd syscall. */
3189 int
sys___getcwd(struct thread * td,struct __getcwd_args * uap)3190 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3191 {
3192 	char *buf, *retbuf;
3193 	size_t buflen;
3194 	int error;
3195 
3196 	buflen = uap->buflen;
3197 	if (__predict_false(buflen < 2))
3198 		return (EINVAL);
3199 	if (buflen > MAXPATHLEN)
3200 		buflen = MAXPATHLEN;
3201 
3202 	buf = uma_zalloc(namei_zone, M_WAITOK);
3203 	error = vn_getcwd(buf, &retbuf, &buflen);
3204 	if (error == 0)
3205 		error = copyout(retbuf, uap->buf, buflen);
3206 	uma_zfree(namei_zone, buf);
3207 	return (error);
3208 }
3209 
3210 int
vn_getcwd(char * buf,char ** retbuf,size_t * buflen)3211 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3212 {
3213 	struct pwd *pwd;
3214 	int error;
3215 
3216 	vfs_smr_enter();
3217 	pwd = pwd_get_smr();
3218 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3219 	    buflen, 0);
3220 	VFS_SMR_ASSERT_NOT_ENTERED();
3221 	if (error < 0) {
3222 		pwd = pwd_hold(curthread);
3223 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3224 		    retbuf, buflen);
3225 		pwd_drop(pwd);
3226 	}
3227 
3228 #ifdef KTRACE
3229 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3230 		ktrnamei(*retbuf);
3231 #endif
3232 	return (error);
3233 }
3234 
3235 /*
3236  * Canonicalize a path by walking it forward and back.
3237  *
3238  * BUGS:
3239  * - Nothing guarantees the integrity of the entire chain. Consider the case
3240  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3241  *   "foo" into "quux" during the backwards walk. The result will be
3242  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3243  *   walk in userspace. Moreover, the path we return is inaccessible if the
3244  *   calling thread lacks permission to traverse "quux".
3245  */
3246 static int
kern___realpathat(struct thread * td,int fd,const char * path,char * buf,size_t size,int flags,enum uio_seg pathseg)3247 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3248     size_t size, int flags, enum uio_seg pathseg)
3249 {
3250 	struct nameidata nd;
3251 	char *retbuf, *freebuf;
3252 	int error;
3253 
3254 	if (flags != 0)
3255 		return (EINVAL);
3256 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3257 	    pathseg, path, fd, &cap_fstat_rights);
3258 	if ((error = namei(&nd)) != 0)
3259 		return (error);
3260 
3261 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3262 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3263 		struct vnode *covered_vp;
3264 
3265 		/*
3266 		 * This happens if vp is a file mount. The call to
3267 		 * vn_fullpath_hardlink can panic if path resolution can't be
3268 		 * handled without the directory.
3269 		 *
3270 		 * To resolve this, we find the vnode which was mounted on -
3271 		 * this should have a unique global path since we disallow
3272 		 * mounting on linked files.
3273 		 */
3274 		error = vn_lock(nd.ni_vp, LK_SHARED);
3275 		if (error != 0)
3276 			goto out;
3277 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3278 		vref(covered_vp);
3279 		VOP_UNLOCK(nd.ni_vp);
3280 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3281 		vrele(covered_vp);
3282 	} else {
3283 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp,
3284 		    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen, &retbuf,
3285 		    &freebuf, &size);
3286 	}
3287 	if (error == 0) {
3288 		size_t len;
3289 
3290 		len = strlen(retbuf) + 1;
3291 		if (size < len)
3292 			error = ENAMETOOLONG;
3293 		else if (pathseg == UIO_USERSPACE)
3294 			error = copyout(retbuf, buf, len);
3295 		else
3296 			memcpy(buf, retbuf, len);
3297 		free(freebuf, M_TEMP);
3298 	}
3299 out:
3300 	vrele(nd.ni_vp);
3301 	vrele(nd.ni_dvp);
3302 	NDFREE_PNBUF(&nd);
3303 	return (error);
3304 }
3305 
3306 int
sys___realpathat(struct thread * td,struct __realpathat_args * uap)3307 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3308 {
3309 
3310 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3311 	    uap->flags, UIO_USERSPACE));
3312 }
3313 
3314 /*
3315  * Retrieve the full filesystem path that correspond to a vnode from the name
3316  * cache (if available)
3317  */
3318 int
vn_fullpath(struct vnode * vp,char ** retbuf,char ** freebuf)3319 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3320 {
3321 	struct pwd *pwd;
3322 	char *buf;
3323 	size_t buflen;
3324 	int error;
3325 
3326 	if (__predict_false(vp == NULL))
3327 		return (EINVAL);
3328 
3329 	buflen = MAXPATHLEN;
3330 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3331 	vfs_smr_enter();
3332 	pwd = pwd_get_smr();
3333 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3334 	VFS_SMR_ASSERT_NOT_ENTERED();
3335 	if (error < 0) {
3336 		pwd = pwd_hold(curthread);
3337 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3338 		pwd_drop(pwd);
3339 	}
3340 	if (error == 0)
3341 		*freebuf = buf;
3342 	else
3343 		free(buf, M_TEMP);
3344 	return (error);
3345 }
3346 
3347 /*
3348  * This function is similar to vn_fullpath, but it attempts to lookup the
3349  * pathname relative to the global root mount point.  This is required for the
3350  * auditing sub-system, as audited pathnames must be absolute, relative to the
3351  * global root mount point.
3352  */
3353 int
vn_fullpath_global(struct vnode * vp,char ** retbuf,char ** freebuf)3354 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3355 {
3356 	char *buf;
3357 	size_t buflen;
3358 	int error;
3359 
3360 	if (__predict_false(vp == NULL))
3361 		return (EINVAL);
3362 	buflen = MAXPATHLEN;
3363 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3364 	vfs_smr_enter();
3365 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3366 	VFS_SMR_ASSERT_NOT_ENTERED();
3367 	if (error < 0) {
3368 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3369 	}
3370 	if (error == 0)
3371 		*freebuf = buf;
3372 	else
3373 		free(buf, M_TEMP);
3374 	return (error);
3375 }
3376 
3377 static struct namecache *
vn_dd_from_dst(struct vnode * vp)3378 vn_dd_from_dst(struct vnode *vp)
3379 {
3380 	struct namecache *ncp;
3381 
3382 	cache_assert_vnode_locked(vp);
3383 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3384 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3385 			return (ncp);
3386 	}
3387 	return (NULL);
3388 }
3389 
3390 int
vn_vptocnp(struct vnode ** vp,char * buf,size_t * buflen)3391 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3392 {
3393 	struct vnode *dvp;
3394 	struct namecache *ncp;
3395 	struct mtx *vlp;
3396 	int error;
3397 
3398 	vlp = VP2VNODELOCK(*vp);
3399 	mtx_lock(vlp);
3400 	ncp = (*vp)->v_cache_dd;
3401 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3402 		KASSERT(ncp == vn_dd_from_dst(*vp),
3403 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3404 		    ncp, vn_dd_from_dst(*vp)));
3405 	} else {
3406 		ncp = vn_dd_from_dst(*vp);
3407 	}
3408 	if (ncp != NULL) {
3409 		if (*buflen < ncp->nc_nlen) {
3410 			mtx_unlock(vlp);
3411 			vrele(*vp);
3412 			counter_u64_add(numfullpathfail4, 1);
3413 			error = ENOMEM;
3414 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3415 			    vp, NULL);
3416 			return (error);
3417 		}
3418 		*buflen -= ncp->nc_nlen;
3419 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3420 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3421 		    ncp->nc_name, vp);
3422 		dvp = *vp;
3423 		*vp = ncp->nc_dvp;
3424 		vref(*vp);
3425 		mtx_unlock(vlp);
3426 		vrele(dvp);
3427 		return (0);
3428 	}
3429 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3430 
3431 	mtx_unlock(vlp);
3432 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3433 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3434 	vput(*vp);
3435 	if (error) {
3436 		counter_u64_add(numfullpathfail2, 1);
3437 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3438 		return (error);
3439 	}
3440 
3441 	*vp = dvp;
3442 	if (VN_IS_DOOMED(dvp)) {
3443 		/* forced unmount */
3444 		vrele(dvp);
3445 		error = ENOENT;
3446 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3447 		return (error);
3448 	}
3449 	/*
3450 	 * *vp has its use count incremented still.
3451 	 */
3452 
3453 	return (0);
3454 }
3455 
3456 /*
3457  * Resolve a directory to a pathname.
3458  *
3459  * The name of the directory can always be found in the namecache or fetched
3460  * from the filesystem. There is also guaranteed to be only one parent, meaning
3461  * we can just follow vnodes up until we find the root.
3462  *
3463  * The vnode must be referenced.
3464  */
3465 static int
vn_fullpath_dir(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * len,size_t addend)3466 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3467     size_t *len, size_t addend)
3468 {
3469 #ifdef KDTRACE_HOOKS
3470 	struct vnode *startvp = vp;
3471 #endif
3472 	struct vnode *vp1;
3473 	size_t buflen;
3474 	int error;
3475 	bool slash_prefixed;
3476 
3477 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3478 	VNPASS(vp->v_usecount > 0, vp);
3479 
3480 	buflen = *len;
3481 
3482 	slash_prefixed = true;
3483 	if (addend == 0) {
3484 		MPASS(*len >= 2);
3485 		buflen--;
3486 		buf[buflen] = '\0';
3487 		slash_prefixed = false;
3488 	}
3489 
3490 	error = 0;
3491 
3492 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3493 	counter_u64_add(numfullpathcalls, 1);
3494 	while (vp != rdir && vp != rootvnode) {
3495 		/*
3496 		 * The vp vnode must be already fully constructed,
3497 		 * since it is either found in namecache or obtained
3498 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3499 		 * without obtaining the vnode lock.
3500 		 */
3501 		if ((vp->v_vflag & VV_ROOT) != 0) {
3502 			vn_lock(vp, LK_RETRY | LK_SHARED);
3503 
3504 			/*
3505 			 * With the vnode locked, check for races with
3506 			 * unmount, forced or not.  Note that we
3507 			 * already verified that vp is not equal to
3508 			 * the root vnode, which means that
3509 			 * mnt_vnodecovered can be NULL only for the
3510 			 * case of unmount.
3511 			 */
3512 			if (VN_IS_DOOMED(vp) ||
3513 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3514 			    vp1->v_mountedhere != vp->v_mount) {
3515 				vput(vp);
3516 				error = ENOENT;
3517 				SDT_PROBE3(vfs, namecache, fullpath, return,
3518 				    error, vp, NULL);
3519 				break;
3520 			}
3521 
3522 			vref(vp1);
3523 			vput(vp);
3524 			vp = vp1;
3525 			continue;
3526 		}
3527 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3528 		error = vn_vptocnp(&vp, buf, &buflen);
3529 		if (error)
3530 			break;
3531 		if (buflen == 0) {
3532 			vrele(vp);
3533 			error = ENOMEM;
3534 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3535 			    startvp, NULL);
3536 			break;
3537 		}
3538 		buf[--buflen] = '/';
3539 		slash_prefixed = true;
3540 	}
3541 	if (error)
3542 		return (error);
3543 	if (!slash_prefixed) {
3544 		if (buflen == 0) {
3545 			vrele(vp);
3546 			counter_u64_add(numfullpathfail4, 1);
3547 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3548 			    startvp, NULL);
3549 			return (ENOMEM);
3550 		}
3551 		buf[--buflen] = '/';
3552 	}
3553 	counter_u64_add(numfullpathfound, 1);
3554 	vrele(vp);
3555 
3556 	*retbuf = buf + buflen;
3557 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3558 	*len -= buflen;
3559 	*len += addend;
3560 	return (0);
3561 }
3562 
3563 /*
3564  * Resolve an arbitrary vnode to a pathname.
3565  *
3566  * Note 2 caveats:
3567  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3568  *   resolve to a different path than the one used to find it
3569  * - namecache is not mandatory, meaning names are not guaranteed to be added
3570  *   (in which case resolving fails)
3571  */
3572 static void __inline
cache_rev_failed_impl(int * reason,int line)3573 cache_rev_failed_impl(int *reason, int line)
3574 {
3575 
3576 	*reason = line;
3577 }
3578 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3579 
3580 static int
vn_fullpath_any_smr(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen,size_t addend)3581 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3582     char **retbuf, size_t *buflen, size_t addend)
3583 {
3584 #ifdef KDTRACE_HOOKS
3585 	struct vnode *startvp = vp;
3586 #endif
3587 	struct vnode *tvp;
3588 	struct mount *mp;
3589 	struct namecache *ncp;
3590 	size_t orig_buflen;
3591 	int reason;
3592 	int error;
3593 #ifdef KDTRACE_HOOKS
3594 	int i;
3595 #endif
3596 	seqc_t vp_seqc, tvp_seqc;
3597 	u_char nc_flag;
3598 
3599 	VFS_SMR_ASSERT_ENTERED();
3600 
3601 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3602 		vfs_smr_exit();
3603 		return (-1);
3604 	}
3605 
3606 	orig_buflen = *buflen;
3607 
3608 	if (addend == 0) {
3609 		MPASS(*buflen >= 2);
3610 		*buflen -= 1;
3611 		buf[*buflen] = '\0';
3612 	}
3613 
3614 	if (vp == rdir || vp == rootvnode) {
3615 		if (addend == 0) {
3616 			*buflen -= 1;
3617 			buf[*buflen] = '/';
3618 		}
3619 		goto out_ok;
3620 	}
3621 
3622 #ifdef KDTRACE_HOOKS
3623 	i = 0;
3624 #endif
3625 	error = -1;
3626 	ncp = NULL; /* for sdt probe down below */
3627 	vp_seqc = vn_seqc_read_any(vp);
3628 	if (seqc_in_modify(vp_seqc)) {
3629 		cache_rev_failed(&reason);
3630 		goto out_abort;
3631 	}
3632 
3633 	for (;;) {
3634 #ifdef KDTRACE_HOOKS
3635 		i++;
3636 #endif
3637 		if ((vp->v_vflag & VV_ROOT) != 0) {
3638 			mp = atomic_load_ptr(&vp->v_mount);
3639 			if (mp == NULL) {
3640 				cache_rev_failed(&reason);
3641 				goto out_abort;
3642 			}
3643 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3644 			tvp_seqc = vn_seqc_read_any(tvp);
3645 			if (seqc_in_modify(tvp_seqc)) {
3646 				cache_rev_failed(&reason);
3647 				goto out_abort;
3648 			}
3649 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3650 				cache_rev_failed(&reason);
3651 				goto out_abort;
3652 			}
3653 			vp = tvp;
3654 			vp_seqc = tvp_seqc;
3655 			continue;
3656 		}
3657 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3658 		if (ncp == NULL) {
3659 			cache_rev_failed(&reason);
3660 			goto out_abort;
3661 		}
3662 		nc_flag = atomic_load_char(&ncp->nc_flag);
3663 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3664 			cache_rev_failed(&reason);
3665 			goto out_abort;
3666 		}
3667 		if (ncp->nc_nlen >= *buflen) {
3668 			cache_rev_failed(&reason);
3669 			error = ENOMEM;
3670 			goto out_abort;
3671 		}
3672 		*buflen -= ncp->nc_nlen;
3673 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3674 		*buflen -= 1;
3675 		buf[*buflen] = '/';
3676 		tvp = ncp->nc_dvp;
3677 		tvp_seqc = vn_seqc_read_any(tvp);
3678 		if (seqc_in_modify(tvp_seqc)) {
3679 			cache_rev_failed(&reason);
3680 			goto out_abort;
3681 		}
3682 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3683 			cache_rev_failed(&reason);
3684 			goto out_abort;
3685 		}
3686 		/*
3687 		 * Acquire fence provided by vn_seqc_read_any above.
3688 		 */
3689 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3690 			cache_rev_failed(&reason);
3691 			goto out_abort;
3692 		}
3693 		if (!cache_ncp_canuse(ncp)) {
3694 			cache_rev_failed(&reason);
3695 			goto out_abort;
3696 		}
3697 		vp = tvp;
3698 		vp_seqc = tvp_seqc;
3699 		if (vp == rdir || vp == rootvnode)
3700 			break;
3701 	}
3702 out_ok:
3703 	vfs_smr_exit();
3704 	*retbuf = buf + *buflen;
3705 	*buflen = orig_buflen - *buflen + addend;
3706 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3707 	return (0);
3708 
3709 out_abort:
3710 	*buflen = orig_buflen;
3711 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3712 	vfs_smr_exit();
3713 	return (error);
3714 }
3715 
3716 static int
vn_fullpath_any(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen)3717 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3718     size_t *buflen)
3719 {
3720 	size_t orig_buflen, addend;
3721 	int error;
3722 
3723 	if (*buflen < 2)
3724 		return (EINVAL);
3725 
3726 	orig_buflen = *buflen;
3727 
3728 	vref(vp);
3729 	addend = 0;
3730 	if (vp->v_type != VDIR) {
3731 		*buflen -= 1;
3732 		buf[*buflen] = '\0';
3733 		error = vn_vptocnp(&vp, buf, buflen);
3734 		if (error)
3735 			return (error);
3736 		if (*buflen == 0) {
3737 			vrele(vp);
3738 			return (ENOMEM);
3739 		}
3740 		*buflen -= 1;
3741 		buf[*buflen] = '/';
3742 		addend = orig_buflen - *buflen;
3743 	}
3744 
3745 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3746 }
3747 
3748 /*
3749  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3750  *
3751  * Since the namecache does not track hardlinks, the caller is expected to
3752  * first look up the target vnode with WANTPARENT flag passed to namei to get
3753  * dvp and vp.
3754  *
3755  * Then we have 2 cases:
3756  * - if the found vnode is a directory, the path can be constructed just by
3757  *   following names up the chain
3758  * - otherwise we populate the buffer with the saved name and start resolving
3759  *   from the parent
3760  */
3761 int
vn_fullpath_hardlink(struct vnode * vp,struct vnode * dvp,const char * hrdl_name,size_t hrdl_name_length,char ** retbuf,char ** freebuf,size_t * buflen)3762 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3763     const char *hrdl_name, size_t hrdl_name_length,
3764     char **retbuf, char **freebuf, size_t *buflen)
3765 {
3766 	char *buf, *tmpbuf;
3767 	struct pwd *pwd;
3768 	size_t addend;
3769 	int error;
3770 	__enum_uint8(vtype) type;
3771 
3772 	if (*buflen < 2)
3773 		return (EINVAL);
3774 	if (*buflen > MAXPATHLEN)
3775 		*buflen = MAXPATHLEN;
3776 
3777 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3778 
3779 	addend = 0;
3780 
3781 	/*
3782 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3783 	 *
3784 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3785 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3786 	 * If the type is VDIR (like in this very case) we can skip looking
3787 	 * at ni_dvp in the first place. However, since vnodes get passed here
3788 	 * unlocked the target may transition to doomed state (type == VBAD)
3789 	 * before we get to evaluate the condition. If this happens, we will
3790 	 * populate part of the buffer and descend to vn_fullpath_dir with
3791 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3792 	 */
3793 	type = atomic_load_8(&vp->v_type);
3794 	if (type == VBAD) {
3795 		error = ENOENT;
3796 		goto out_bad;
3797 	}
3798 	if (type != VDIR) {
3799 		addend = hrdl_name_length + 2;
3800 		if (*buflen < addend) {
3801 			error = ENOMEM;
3802 			goto out_bad;
3803 		}
3804 		*buflen -= addend;
3805 		tmpbuf = buf + *buflen;
3806 		tmpbuf[0] = '/';
3807 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3808 		tmpbuf[addend - 1] = '\0';
3809 		vp = dvp;
3810 	}
3811 
3812 	vfs_smr_enter();
3813 	pwd = pwd_get_smr();
3814 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3815 	    addend);
3816 	VFS_SMR_ASSERT_NOT_ENTERED();
3817 	if (error < 0) {
3818 		pwd = pwd_hold(curthread);
3819 		vref(vp);
3820 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3821 		    addend);
3822 		pwd_drop(pwd);
3823 	}
3824 	if (error != 0)
3825 		goto out_bad;
3826 
3827 	*freebuf = buf;
3828 
3829 	return (0);
3830 out_bad:
3831 	free(buf, M_TEMP);
3832 	return (error);
3833 }
3834 
3835 struct vnode *
vn_dir_dd_ino(struct vnode * vp)3836 vn_dir_dd_ino(struct vnode *vp)
3837 {
3838 	struct namecache *ncp;
3839 	struct vnode *ddvp;
3840 	struct mtx *vlp;
3841 	enum vgetstate vs;
3842 
3843 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3844 	vlp = VP2VNODELOCK(vp);
3845 	mtx_lock(vlp);
3846 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3847 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3848 			continue;
3849 		ddvp = ncp->nc_dvp;
3850 		vs = vget_prep(ddvp);
3851 		mtx_unlock(vlp);
3852 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3853 			return (NULL);
3854 		return (ddvp);
3855 	}
3856 	mtx_unlock(vlp);
3857 	return (NULL);
3858 }
3859 
3860 int
vn_commname(struct vnode * vp,char * buf,u_int buflen)3861 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3862 {
3863 	struct namecache *ncp;
3864 	struct mtx *vlp;
3865 	int l;
3866 
3867 	vlp = VP2VNODELOCK(vp);
3868 	mtx_lock(vlp);
3869 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3870 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3871 			break;
3872 	if (ncp == NULL) {
3873 		mtx_unlock(vlp);
3874 		return (ENOENT);
3875 	}
3876 	l = min(ncp->nc_nlen, buflen - 1);
3877 	memcpy(buf, ncp->nc_name, l);
3878 	mtx_unlock(vlp);
3879 	buf[l] = '\0';
3880 	return (0);
3881 }
3882 
3883 /*
3884  * This function updates path string to vnode's full global path
3885  * and checks the size of the new path string against the pathlen argument.
3886  *
3887  * Requires a locked, referenced vnode.
3888  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3889  *
3890  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3891  * because it falls back to the ".." lookup if the namecache lookup fails.
3892  */
3893 int
vn_path_to_global_path(struct thread * td,struct vnode * vp,char * path,u_int pathlen)3894 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3895     u_int pathlen)
3896 {
3897 	struct nameidata nd;
3898 	struct vnode *vp1;
3899 	char *rpath, *fbuf;
3900 	int error;
3901 
3902 	ASSERT_VOP_ELOCKED(vp, __func__);
3903 
3904 	/* Construct global filesystem path from vp. */
3905 	VOP_UNLOCK(vp);
3906 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3907 
3908 	if (error != 0) {
3909 		vrele(vp);
3910 		return (error);
3911 	}
3912 
3913 	if (strlen(rpath) >= pathlen) {
3914 		vrele(vp);
3915 		error = ENAMETOOLONG;
3916 		goto out;
3917 	}
3918 
3919 	/*
3920 	 * Re-lookup the vnode by path to detect a possible rename.
3921 	 * As a side effect, the vnode is relocked.
3922 	 * If vnode was renamed, return ENOENT.
3923 	 */
3924 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3925 	error = namei(&nd);
3926 	if (error != 0) {
3927 		vrele(vp);
3928 		goto out;
3929 	}
3930 	NDFREE_PNBUF(&nd);
3931 	vp1 = nd.ni_vp;
3932 	vrele(vp);
3933 	if (vp1 == vp)
3934 		strcpy(path, rpath);
3935 	else {
3936 		vput(vp1);
3937 		error = ENOENT;
3938 	}
3939 
3940 out:
3941 	free(fbuf, M_TEMP);
3942 	return (error);
3943 }
3944 
3945 /*
3946  * This is similar to vn_path_to_global_path but allows for regular
3947  * files which may not be present in the cache.
3948  *
3949  * Requires a locked, referenced vnode.
3950  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3951  */
3952 int
vn_path_to_global_path_hardlink(struct thread * td,struct vnode * vp,struct vnode * dvp,char * path,u_int pathlen,const char * leaf_name,size_t leaf_length)3953 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3954     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3955     size_t leaf_length)
3956 {
3957 	struct nameidata nd;
3958 	struct vnode *vp1;
3959 	char *rpath, *fbuf;
3960 	size_t len;
3961 	int error;
3962 
3963 	ASSERT_VOP_ELOCKED(vp, __func__);
3964 
3965 	/*
3966 	 * Construct global filesystem path from dvp, vp and leaf
3967 	 * name.
3968 	 */
3969 	VOP_UNLOCK(vp);
3970 	len = pathlen;
3971 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3972 	    &rpath, &fbuf, &len);
3973 
3974 	if (error != 0) {
3975 		vrele(vp);
3976 		return (error);
3977 	}
3978 
3979 	if (strlen(rpath) >= pathlen) {
3980 		vrele(vp);
3981 		error = ENAMETOOLONG;
3982 		goto out;
3983 	}
3984 
3985 	/*
3986 	 * Re-lookup the vnode by path to detect a possible rename.
3987 	 * As a side effect, the vnode is relocked.
3988 	 * If vnode was renamed, return ENOENT.
3989 	 */
3990 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3991 	error = namei(&nd);
3992 	if (error != 0) {
3993 		vrele(vp);
3994 		goto out;
3995 	}
3996 	NDFREE_PNBUF(&nd);
3997 	vp1 = nd.ni_vp;
3998 	vrele(vp);
3999 	if (vp1 == vp)
4000 		strcpy(path, rpath);
4001 	else {
4002 		vput(vp1);
4003 		error = ENOENT;
4004 	}
4005 
4006 out:
4007 	free(fbuf, M_TEMP);
4008 	return (error);
4009 }
4010 
4011 #ifdef DDB
4012 static void
db_print_vpath(struct vnode * vp)4013 db_print_vpath(struct vnode *vp)
4014 {
4015 
4016 	while (vp != NULL) {
4017 		db_printf("%p: ", vp);
4018 		if (vp == rootvnode) {
4019 			db_printf("/");
4020 			vp = NULL;
4021 		} else {
4022 			if (vp->v_vflag & VV_ROOT) {
4023 				db_printf("<mount point>");
4024 				vp = vp->v_mount->mnt_vnodecovered;
4025 			} else {
4026 				struct namecache *ncp;
4027 				char *ncn;
4028 				int i;
4029 
4030 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
4031 				if (ncp != NULL) {
4032 					ncn = ncp->nc_name;
4033 					for (i = 0; i < ncp->nc_nlen; i++)
4034 						db_printf("%c", *ncn++);
4035 					vp = ncp->nc_dvp;
4036 				} else {
4037 					vp = NULL;
4038 				}
4039 			}
4040 		}
4041 		db_printf("\n");
4042 	}
4043 
4044 	return;
4045 }
4046 
DB_SHOW_COMMAND(vpath,db_show_vpath)4047 DB_SHOW_COMMAND(vpath, db_show_vpath)
4048 {
4049 	struct vnode *vp;
4050 
4051 	if (!have_addr) {
4052 		db_printf("usage: show vpath <struct vnode *>\n");
4053 		return;
4054 	}
4055 
4056 	vp = (struct vnode *)addr;
4057 	db_print_vpath(vp);
4058 }
4059 
4060 #endif
4061 
4062 static int cache_fast_lookup = 1;
4063 
4064 #define CACHE_FPL_FAILED	-2020
4065 
4066 static int
cache_vop_bad_vexec(struct vop_fplookup_vexec_args * v)4067 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
4068 {
4069 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
4070 	panic("no proper vop_fplookup_vexec");
4071 }
4072 
4073 static int
cache_vop_bad_symlink(struct vop_fplookup_symlink_args * v)4074 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
4075 {
4076 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
4077 	panic("no proper vop_fplookup_symlink");
4078 }
4079 
4080 void
cache_vop_vector_register(struct vop_vector * v)4081 cache_vop_vector_register(struct vop_vector *v)
4082 {
4083 	size_t ops;
4084 
4085 	ops = 0;
4086 	if (v->vop_fplookup_vexec != NULL) {
4087 		ops++;
4088 	}
4089 	if (v->vop_fplookup_symlink != NULL) {
4090 		ops++;
4091 	}
4092 
4093 	if (ops == 2) {
4094 		return;
4095 	}
4096 
4097 	if (ops == 0) {
4098 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
4099 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
4100 		return;
4101 	}
4102 
4103 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
4104 	    "need to be provided",  __func__, v);
4105 	if (v->vop_fplookup_vexec == NULL) {
4106 		printf("%s: missing vop_fplookup_vexec\n", __func__);
4107 	}
4108 	if (v->vop_fplookup_symlink == NULL) {
4109 		printf("%s: missing vop_fplookup_symlink\n", __func__);
4110 	}
4111 	panic("bad vop vector %p", v);
4112 }
4113 
4114 #ifdef INVARIANTS
4115 void
cache_validate_vop_vector(struct mount * mp,struct vop_vector * vops)4116 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4117 {
4118 	if (mp == NULL)
4119 		return;
4120 
4121 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4122 		return;
4123 
4124 	if (vops->vop_fplookup_vexec == NULL ||
4125 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4126 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4127 		    vops, mp->mnt_vfc->vfc_name);
4128 
4129 	if (vops->vop_fplookup_symlink == NULL ||
4130 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4131 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4132 		    vops, mp->mnt_vfc->vfc_name);
4133 }
4134 #endif
4135 
4136 void
cache_fast_lookup_enabled_recalc(void)4137 cache_fast_lookup_enabled_recalc(void)
4138 {
4139 	int lookup_flag;
4140 	int mac_on;
4141 
4142 #ifdef MAC
4143 	mac_on = mac_vnode_check_lookup_enabled();
4144 	mac_on |= mac_vnode_check_readlink_enabled();
4145 #else
4146 	mac_on = 0;
4147 #endif
4148 
4149 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4150 	if (lookup_flag && !mac_on) {
4151 		atomic_store_char(&cache_fast_lookup_enabled, true);
4152 	} else {
4153 		atomic_store_char(&cache_fast_lookup_enabled, false);
4154 	}
4155 }
4156 
4157 static int
syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)4158 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4159 {
4160 	int error, old;
4161 
4162 	old = atomic_load_int(&cache_fast_lookup);
4163 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4164 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4165 		cache_fast_lookup_enabled_recalc();
4166 	return (error);
4167 }
4168 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4169     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4170 
4171 /*
4172  * Components of nameidata (or objects it can point to) which may
4173  * need restoring in case fast path lookup fails.
4174  */
4175 struct nameidata_outer {
4176 	size_t ni_pathlen;
4177 	uint64_t cn_flags;
4178 };
4179 
4180 struct nameidata_saved {
4181 #ifdef INVARIANTS
4182 	char *cn_nameptr;
4183 	size_t ni_pathlen;
4184 #endif
4185 };
4186 
4187 #ifdef INVARIANTS
4188 struct cache_fpl_debug {
4189 	size_t ni_pathlen;
4190 };
4191 #endif
4192 
4193 struct cache_fpl {
4194 	struct nameidata *ndp;
4195 	struct componentname *cnp;
4196 	char *nulchar;
4197 	struct vnode *dvp;
4198 	struct vnode *tvp;
4199 	seqc_t dvp_seqc;
4200 	seqc_t tvp_seqc;
4201 	uint32_t hash;
4202 	struct nameidata_saved snd;
4203 	struct nameidata_outer snd_outer;
4204 	int line;
4205 	enum cache_fpl_status status:8;
4206 	bool in_smr;
4207 	bool fsearch;
4208 	struct pwd **pwd;
4209 #ifdef INVARIANTS
4210 	struct cache_fpl_debug debug;
4211 #endif
4212 };
4213 
4214 static bool cache_fplookup_mp_supported(struct mount *mp);
4215 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4216 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4217 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4218 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4219 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4220 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4221 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4222 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4223 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4224 
4225 static void
cache_fpl_cleanup_cnp(struct componentname * cnp)4226 cache_fpl_cleanup_cnp(struct componentname *cnp)
4227 {
4228 
4229 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4230 	cnp->cn_pnbuf = NULL;
4231 	cnp->cn_nameptr = NULL;
4232 }
4233 
4234 static struct vnode *
cache_fpl_handle_root(struct cache_fpl * fpl)4235 cache_fpl_handle_root(struct cache_fpl *fpl)
4236 {
4237 	struct nameidata *ndp;
4238 	struct componentname *cnp;
4239 
4240 	ndp = fpl->ndp;
4241 	cnp = fpl->cnp;
4242 
4243 	MPASS(*(cnp->cn_nameptr) == '/');
4244 	cnp->cn_nameptr++;
4245 	cache_fpl_pathlen_dec(fpl);
4246 
4247 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4248 		do {
4249 			cnp->cn_nameptr++;
4250 			cache_fpl_pathlen_dec(fpl);
4251 		} while (*(cnp->cn_nameptr) == '/');
4252 	}
4253 
4254 	return (ndp->ni_rootdir);
4255 }
4256 
4257 static void
cache_fpl_checkpoint_outer(struct cache_fpl * fpl)4258 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4259 {
4260 
4261 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4262 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4263 }
4264 
4265 static void
cache_fpl_checkpoint(struct cache_fpl * fpl)4266 cache_fpl_checkpoint(struct cache_fpl *fpl)
4267 {
4268 
4269 #ifdef INVARIANTS
4270 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4271 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4272 #endif
4273 }
4274 
4275 static void
cache_fpl_restore_partial(struct cache_fpl * fpl)4276 cache_fpl_restore_partial(struct cache_fpl *fpl)
4277 {
4278 
4279 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4280 #ifdef INVARIANTS
4281 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4282 #endif
4283 }
4284 
4285 static void
cache_fpl_restore_abort(struct cache_fpl * fpl)4286 cache_fpl_restore_abort(struct cache_fpl *fpl)
4287 {
4288 
4289 	cache_fpl_restore_partial(fpl);
4290 	/*
4291 	 * It is 0 on entry by API contract.
4292 	 */
4293 	fpl->ndp->ni_resflags = 0;
4294 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4295 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4296 }
4297 
4298 #ifdef INVARIANTS
4299 #define cache_fpl_smr_assert_entered(fpl) ({			\
4300 	struct cache_fpl *_fpl = (fpl);				\
4301 	MPASS(_fpl->in_smr == true);				\
4302 	VFS_SMR_ASSERT_ENTERED();				\
4303 })
4304 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4305 	struct cache_fpl *_fpl = (fpl);				\
4306 	MPASS(_fpl->in_smr == false);				\
4307 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4308 })
4309 static void
cache_fpl_assert_status(struct cache_fpl * fpl)4310 cache_fpl_assert_status(struct cache_fpl *fpl)
4311 {
4312 
4313 	switch (fpl->status) {
4314 	case CACHE_FPL_STATUS_UNSET:
4315 		__assert_unreachable();
4316 		break;
4317 	case CACHE_FPL_STATUS_DESTROYED:
4318 	case CACHE_FPL_STATUS_ABORTED:
4319 	case CACHE_FPL_STATUS_PARTIAL:
4320 	case CACHE_FPL_STATUS_HANDLED:
4321 		break;
4322 	}
4323 }
4324 #else
4325 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4326 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4327 #define cache_fpl_assert_status(fpl) do { } while (0)
4328 #endif
4329 
4330 #define cache_fpl_smr_enter_initial(fpl) ({			\
4331 	struct cache_fpl *_fpl = (fpl);				\
4332 	vfs_smr_enter();					\
4333 	_fpl->in_smr = true;					\
4334 })
4335 
4336 #define cache_fpl_smr_enter(fpl) ({				\
4337 	struct cache_fpl *_fpl = (fpl);				\
4338 	MPASS(_fpl->in_smr == false);				\
4339 	vfs_smr_enter();					\
4340 	_fpl->in_smr = true;					\
4341 })
4342 
4343 #define cache_fpl_smr_exit(fpl) ({				\
4344 	struct cache_fpl *_fpl = (fpl);				\
4345 	MPASS(_fpl->in_smr == true);				\
4346 	vfs_smr_exit();						\
4347 	_fpl->in_smr = false;					\
4348 })
4349 
4350 static int
cache_fpl_aborted_early_impl(struct cache_fpl * fpl,int line)4351 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4352 {
4353 
4354 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4355 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4356 		    ("%s: converting to abort from %d at %d, set at %d\n",
4357 		    __func__, fpl->status, line, fpl->line));
4358 	}
4359 	cache_fpl_smr_assert_not_entered(fpl);
4360 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4361 	fpl->line = line;
4362 	return (CACHE_FPL_FAILED);
4363 }
4364 
4365 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4366 
4367 static int __noinline
cache_fpl_aborted_impl(struct cache_fpl * fpl,int line)4368 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4369 {
4370 	struct nameidata *ndp;
4371 	struct componentname *cnp;
4372 
4373 	ndp = fpl->ndp;
4374 	cnp = fpl->cnp;
4375 
4376 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4377 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4378 		    ("%s: converting to abort from %d at %d, set at %d\n",
4379 		    __func__, fpl->status, line, fpl->line));
4380 	}
4381 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4382 	fpl->line = line;
4383 	if (fpl->in_smr)
4384 		cache_fpl_smr_exit(fpl);
4385 	cache_fpl_restore_abort(fpl);
4386 	/*
4387 	 * Resolving symlinks overwrites data passed by the caller.
4388 	 * Let namei know.
4389 	 */
4390 	if (ndp->ni_loopcnt > 0) {
4391 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4392 		cache_fpl_cleanup_cnp(cnp);
4393 	}
4394 	return (CACHE_FPL_FAILED);
4395 }
4396 
4397 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4398 
4399 static int __noinline
cache_fpl_partial_impl(struct cache_fpl * fpl,int line)4400 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4401 {
4402 
4403 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4404 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4405 	    __func__, line, fpl->status, fpl->line));
4406 	cache_fpl_smr_assert_entered(fpl);
4407 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4408 	fpl->line = line;
4409 	return (cache_fplookup_partial_setup(fpl));
4410 }
4411 
4412 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4413 
4414 static int
cache_fpl_handled_impl(struct cache_fpl * fpl,int line)4415 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4416 {
4417 
4418 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4419 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4420 	    __func__, line, fpl->status, fpl->line));
4421 	cache_fpl_smr_assert_not_entered(fpl);
4422 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4423 	fpl->line = line;
4424 	return (0);
4425 }
4426 
4427 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4428 
4429 static int
cache_fpl_handled_error_impl(struct cache_fpl * fpl,int error,int line)4430 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4431 {
4432 
4433 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4434 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4435 	    __func__, line, fpl->status, fpl->line));
4436 	MPASS(error != 0);
4437 	MPASS(error != CACHE_FPL_FAILED);
4438 	cache_fpl_smr_assert_not_entered(fpl);
4439 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4440 	fpl->line = line;
4441 	fpl->dvp = NULL;
4442 	fpl->tvp = NULL;
4443 	return (error);
4444 }
4445 
4446 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4447 
4448 static bool
cache_fpl_terminated(struct cache_fpl * fpl)4449 cache_fpl_terminated(struct cache_fpl *fpl)
4450 {
4451 
4452 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4453 }
4454 
4455 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4456 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4457 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4458 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4459 	 OPENWRITE | WANTIOCTLCAPS | NAMEILOOKUP)
4460 
4461 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4462 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4463 
4464 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4465     "supported and internal flags overlap");
4466 
4467 static bool
cache_fpl_islastcn(struct nameidata * ndp)4468 cache_fpl_islastcn(struct nameidata *ndp)
4469 {
4470 
4471 	return (*ndp->ni_next == 0);
4472 }
4473 
4474 static bool
cache_fpl_istrailingslash(struct cache_fpl * fpl)4475 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4476 {
4477 
4478 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4479 	return (*(fpl->nulchar - 1) == '/');
4480 }
4481 
4482 static bool
cache_fpl_isdotdot(struct componentname * cnp)4483 cache_fpl_isdotdot(struct componentname *cnp)
4484 {
4485 
4486 	if (cnp->cn_namelen == 2 &&
4487 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4488 		return (true);
4489 	return (false);
4490 }
4491 
4492 static bool
cache_can_fplookup(struct cache_fpl * fpl)4493 cache_can_fplookup(struct cache_fpl *fpl)
4494 {
4495 	struct nameidata *ndp;
4496 	struct componentname *cnp;
4497 	struct thread *td;
4498 
4499 	ndp = fpl->ndp;
4500 	cnp = fpl->cnp;
4501 	td = curthread;
4502 
4503 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4504 		cache_fpl_aborted_early(fpl);
4505 		return (false);
4506 	}
4507 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4508 		cache_fpl_aborted_early(fpl);
4509 		return (false);
4510 	}
4511 	if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
4512 		cache_fpl_aborted_early(fpl);
4513 		return (false);
4514 	}
4515 	if (AUDITING_TD(td)) {
4516 		cache_fpl_aborted_early(fpl);
4517 		return (false);
4518 	}
4519 	if (ndp->ni_startdir != NULL) {
4520 		cache_fpl_aborted_early(fpl);
4521 		return (false);
4522 	}
4523 	return (true);
4524 }
4525 
4526 static int __noinline
cache_fplookup_dirfd(struct cache_fpl * fpl,struct vnode ** vpp)4527 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4528 {
4529 	struct nameidata *ndp;
4530 	struct componentname *cnp;
4531 	int error, flags;
4532 
4533 	ndp = fpl->ndp;
4534 	cnp = fpl->cnp;
4535 
4536 	error = fgetvp_lookup_smr(ndp, vpp, &flags);
4537 	if (__predict_false(error != 0)) {
4538 		return (cache_fpl_aborted(fpl));
4539 	}
4540 	if (__predict_false((flags & O_RESOLVE_BENEATH) != 0)) {
4541 		_Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & RBENEATH) == 0,
4542 		    "RBENEATH supported by fplookup");
4543 		cache_fpl_smr_exit(fpl);
4544 		cache_fpl_aborted(fpl);
4545 		return (EOPNOTSUPP);
4546 	}
4547 	fpl->fsearch = (flags & FSEARCH) != 0;
4548 	if ((*vpp)->v_type != VDIR) {
4549 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4550 			cache_fpl_smr_exit(fpl);
4551 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4552 		}
4553 	}
4554 	return (0);
4555 }
4556 
4557 static int __noinline
cache_fplookup_negative_promote(struct cache_fpl * fpl,struct namecache * oncp,uint32_t hash)4558 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4559     uint32_t hash)
4560 {
4561 	struct componentname *cnp;
4562 	struct vnode *dvp;
4563 
4564 	cnp = fpl->cnp;
4565 	dvp = fpl->dvp;
4566 
4567 	cache_fpl_smr_exit(fpl);
4568 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4569 		return (cache_fpl_handled_error(fpl, ENOENT));
4570 	else
4571 		return (cache_fpl_aborted(fpl));
4572 }
4573 
4574 /*
4575  * The target vnode is not supported, prepare for the slow path to take over.
4576  */
4577 static int __noinline
cache_fplookup_partial_setup(struct cache_fpl * fpl)4578 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4579 {
4580 	struct nameidata *ndp;
4581 	struct componentname *cnp;
4582 	enum vgetstate dvs;
4583 	struct vnode *dvp;
4584 	struct pwd *pwd;
4585 	seqc_t dvp_seqc;
4586 
4587 	ndp = fpl->ndp;
4588 	cnp = fpl->cnp;
4589 	pwd = *(fpl->pwd);
4590 	dvp = fpl->dvp;
4591 	dvp_seqc = fpl->dvp_seqc;
4592 
4593 	if (!pwd_hold_smr(pwd)) {
4594 		return (cache_fpl_aborted(fpl));
4595 	}
4596 
4597 	/*
4598 	 * Note that seqc is checked before the vnode is locked, so by
4599 	 * the time regular lookup gets to it it may have moved.
4600 	 *
4601 	 * Ultimately this does not affect correctness, any lookup errors
4602 	 * are userspace racing with itself. It is guaranteed that any
4603 	 * path which ultimately gets found could also have been found
4604 	 * by regular lookup going all the way in absence of concurrent
4605 	 * modifications.
4606 	 */
4607 	dvs = vget_prep_smr(dvp);
4608 	cache_fpl_smr_exit(fpl);
4609 	if (__predict_false(dvs == VGET_NONE)) {
4610 		pwd_drop(pwd);
4611 		return (cache_fpl_aborted(fpl));
4612 	}
4613 
4614 	vget_finish_ref(dvp, dvs);
4615 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4616 		vrele(dvp);
4617 		pwd_drop(pwd);
4618 		return (cache_fpl_aborted(fpl));
4619 	}
4620 
4621 	cache_fpl_restore_partial(fpl);
4622 #ifdef INVARIANTS
4623 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4624 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4625 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4626 	}
4627 #endif
4628 
4629 	ndp->ni_startdir = dvp;
4630 	cnp->cn_flags |= MAKEENTRY;
4631 	if (cache_fpl_islastcn(ndp))
4632 		cnp->cn_flags |= ISLASTCN;
4633 	if (cache_fpl_isdotdot(cnp))
4634 		cnp->cn_flags |= ISDOTDOT;
4635 
4636 	/*
4637 	 * Skip potential extra slashes parsing did not take care of.
4638 	 * cache_fplookup_skip_slashes explains the mechanism.
4639 	 */
4640 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4641 		do {
4642 			cnp->cn_nameptr++;
4643 			cache_fpl_pathlen_dec(fpl);
4644 		} while (*(cnp->cn_nameptr) == '/');
4645 	}
4646 
4647 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4648 #ifdef INVARIANTS
4649 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4650 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4651 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4652 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4653 	}
4654 #endif
4655 	return (0);
4656 }
4657 
4658 static int
cache_fplookup_final_child(struct cache_fpl * fpl,enum vgetstate tvs)4659 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4660 {
4661 	struct componentname *cnp;
4662 	struct vnode *tvp;
4663 	seqc_t tvp_seqc;
4664 	int error, lkflags;
4665 
4666 	cnp = fpl->cnp;
4667 	tvp = fpl->tvp;
4668 	tvp_seqc = fpl->tvp_seqc;
4669 
4670 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4671 		lkflags = LK_SHARED;
4672 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4673 			lkflags = LK_EXCLUSIVE;
4674 		error = vget_finish(tvp, lkflags, tvs);
4675 		if (__predict_false(error != 0)) {
4676 			return (cache_fpl_aborted(fpl));
4677 		}
4678 	} else {
4679 		vget_finish_ref(tvp, tvs);
4680 	}
4681 
4682 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4683 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4684 			vput(tvp);
4685 		else
4686 			vrele(tvp);
4687 		return (cache_fpl_aborted(fpl));
4688 	}
4689 
4690 	return (cache_fpl_handled(fpl));
4691 }
4692 
4693 /*
4694  * They want to possibly modify the state of the namecache.
4695  */
4696 static int __noinline
cache_fplookup_final_modifying(struct cache_fpl * fpl)4697 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4698 {
4699 	struct nameidata *ndp __diagused;
4700 	struct componentname *cnp;
4701 	enum vgetstate dvs;
4702 	struct vnode *dvp, *tvp;
4703 	struct mount *mp;
4704 	seqc_t dvp_seqc;
4705 	int error;
4706 	bool docache;
4707 
4708 	ndp = fpl->ndp;
4709 	cnp = fpl->cnp;
4710 	dvp = fpl->dvp;
4711 	dvp_seqc = fpl->dvp_seqc;
4712 
4713 	MPASS(*(cnp->cn_nameptr) != '/');
4714 	MPASS(cache_fpl_islastcn(ndp));
4715 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4716 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4717 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4718 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4719 	    cnp->cn_nameiop == RENAME);
4720 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4721 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4722 
4723 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4724 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4725 		docache = false;
4726 
4727 	/*
4728 	 * Regular lookup nulifies the slash, which we don't do here.
4729 	 * Don't take chances with filesystem routines seeing it for
4730 	 * the last entry.
4731 	 */
4732 	if (cache_fpl_istrailingslash(fpl)) {
4733 		return (cache_fpl_partial(fpl));
4734 	}
4735 
4736 	mp = atomic_load_ptr(&dvp->v_mount);
4737 	if (__predict_false(mp == NULL)) {
4738 		return (cache_fpl_aborted(fpl));
4739 	}
4740 
4741 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4742 		cache_fpl_smr_exit(fpl);
4743 		/*
4744 		 * Original code keeps not checking for CREATE which
4745 		 * might be a bug. For now let the old lookup decide.
4746 		 */
4747 		if (cnp->cn_nameiop == CREATE) {
4748 			return (cache_fpl_aborted(fpl));
4749 		}
4750 		return (cache_fpl_handled_error(fpl, EROFS));
4751 	}
4752 
4753 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4754 		cache_fpl_smr_exit(fpl);
4755 		return (cache_fpl_handled_error(fpl, EEXIST));
4756 	}
4757 
4758 	/*
4759 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4760 	 * reasoning.
4761 	 *
4762 	 * XXX At least UFS requires its lookup routine to be called for
4763 	 * the last path component, which leads to some level of complication
4764 	 * and inefficiency:
4765 	 * - the target routine always locks the target vnode, but our caller
4766 	 *   may not need it locked
4767 	 * - some of the VOP machinery asserts that the parent is locked, which
4768 	 *   once more may be not required
4769 	 *
4770 	 * TODO: add a flag for filesystems which don't need this.
4771 	 */
4772 	dvs = vget_prep_smr(dvp);
4773 	cache_fpl_smr_exit(fpl);
4774 	if (__predict_false(dvs == VGET_NONE)) {
4775 		return (cache_fpl_aborted(fpl));
4776 	}
4777 
4778 	vget_finish_ref(dvp, dvs);
4779 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4780 		vrele(dvp);
4781 		return (cache_fpl_aborted(fpl));
4782 	}
4783 
4784 	error = vn_lock(dvp, LK_EXCLUSIVE);
4785 	if (__predict_false(error != 0)) {
4786 		vrele(dvp);
4787 		return (cache_fpl_aborted(fpl));
4788 	}
4789 
4790 	tvp = NULL;
4791 	cnp->cn_flags |= ISLASTCN;
4792 	if (docache)
4793 		cnp->cn_flags |= MAKEENTRY;
4794 	if (cache_fpl_isdotdot(cnp))
4795 		cnp->cn_flags |= ISDOTDOT;
4796 	cnp->cn_lkflags = LK_EXCLUSIVE;
4797 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4798 	switch (error) {
4799 	case EJUSTRETURN:
4800 	case 0:
4801 		break;
4802 	case ENOTDIR:
4803 	case ENOENT:
4804 		vput(dvp);
4805 		return (cache_fpl_handled_error(fpl, error));
4806 	default:
4807 		vput(dvp);
4808 		return (cache_fpl_aborted(fpl));
4809 	}
4810 
4811 	fpl->tvp = tvp;
4812 
4813 	if (tvp == NULL) {
4814 		MPASS(error == EJUSTRETURN);
4815 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4816 			VOP_UNLOCK(dvp);
4817 		}
4818 		return (cache_fpl_handled(fpl));
4819 	}
4820 
4821 	/*
4822 	 * There are very hairy corner cases concerning various flag combinations
4823 	 * and locking state. In particular here we only hold one lock instead of
4824 	 * two.
4825 	 *
4826 	 * Skip the complexity as it is of no significance for normal workloads.
4827 	 */
4828 	if (__predict_false(tvp == dvp)) {
4829 		vput(dvp);
4830 		vrele(tvp);
4831 		return (cache_fpl_aborted(fpl));
4832 	}
4833 
4834 	/*
4835 	 * If they want the symlink itself we are fine, but if they want to
4836 	 * follow it regular lookup has to be engaged.
4837 	 */
4838 	if (tvp->v_type == VLNK) {
4839 		if ((cnp->cn_flags & FOLLOW) != 0) {
4840 			vput(dvp);
4841 			vput(tvp);
4842 			return (cache_fpl_aborted(fpl));
4843 		}
4844 	}
4845 
4846 	/*
4847 	 * Since we expect this to be the terminal vnode it should almost never
4848 	 * be a mount point.
4849 	 */
4850 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4851 		vput(dvp);
4852 		vput(tvp);
4853 		return (cache_fpl_aborted(fpl));
4854 	}
4855 
4856 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4857 		vput(dvp);
4858 		vput(tvp);
4859 		return (cache_fpl_handled_error(fpl, EEXIST));
4860 	}
4861 
4862 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4863 		VOP_UNLOCK(tvp);
4864 	}
4865 
4866 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4867 		VOP_UNLOCK(dvp);
4868 	}
4869 
4870 	return (cache_fpl_handled(fpl));
4871 }
4872 
4873 static int __noinline
cache_fplookup_modifying(struct cache_fpl * fpl)4874 cache_fplookup_modifying(struct cache_fpl *fpl)
4875 {
4876 	struct nameidata *ndp;
4877 
4878 	ndp = fpl->ndp;
4879 
4880 	if (!cache_fpl_islastcn(ndp)) {
4881 		return (cache_fpl_partial(fpl));
4882 	}
4883 	return (cache_fplookup_final_modifying(fpl));
4884 }
4885 
4886 static int __noinline
cache_fplookup_final_withparent(struct cache_fpl * fpl)4887 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4888 {
4889 	struct componentname *cnp;
4890 	enum vgetstate dvs, tvs;
4891 	struct vnode *dvp, *tvp;
4892 	seqc_t dvp_seqc;
4893 	int error;
4894 
4895 	cnp = fpl->cnp;
4896 	dvp = fpl->dvp;
4897 	dvp_seqc = fpl->dvp_seqc;
4898 	tvp = fpl->tvp;
4899 
4900 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4901 
4902 	/*
4903 	 * This is less efficient than it can be for simplicity.
4904 	 */
4905 	dvs = vget_prep_smr(dvp);
4906 	if (__predict_false(dvs == VGET_NONE)) {
4907 		return (cache_fpl_aborted(fpl));
4908 	}
4909 	tvs = vget_prep_smr(tvp);
4910 	if (__predict_false(tvs == VGET_NONE)) {
4911 		cache_fpl_smr_exit(fpl);
4912 		vget_abort(dvp, dvs);
4913 		return (cache_fpl_aborted(fpl));
4914 	}
4915 
4916 	cache_fpl_smr_exit(fpl);
4917 
4918 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4919 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4920 		if (__predict_false(error != 0)) {
4921 			vget_abort(tvp, tvs);
4922 			return (cache_fpl_aborted(fpl));
4923 		}
4924 	} else {
4925 		vget_finish_ref(dvp, dvs);
4926 	}
4927 
4928 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4929 		vget_abort(tvp, tvs);
4930 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4931 			vput(dvp);
4932 		else
4933 			vrele(dvp);
4934 		return (cache_fpl_aborted(fpl));
4935 	}
4936 
4937 	error = cache_fplookup_final_child(fpl, tvs);
4938 	if (__predict_false(error != 0)) {
4939 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4940 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4941 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4942 			vput(dvp);
4943 		else
4944 			vrele(dvp);
4945 		return (error);
4946 	}
4947 
4948 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4949 	return (0);
4950 }
4951 
4952 static int
cache_fplookup_final(struct cache_fpl * fpl)4953 cache_fplookup_final(struct cache_fpl *fpl)
4954 {
4955 	struct componentname *cnp;
4956 	enum vgetstate tvs;
4957 	struct vnode *dvp, *tvp;
4958 	seqc_t dvp_seqc;
4959 
4960 	cnp = fpl->cnp;
4961 	dvp = fpl->dvp;
4962 	dvp_seqc = fpl->dvp_seqc;
4963 	tvp = fpl->tvp;
4964 
4965 	MPASS(*(cnp->cn_nameptr) != '/');
4966 
4967 	if (cnp->cn_nameiop != LOOKUP) {
4968 		return (cache_fplookup_final_modifying(fpl));
4969 	}
4970 
4971 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4972 		return (cache_fplookup_final_withparent(fpl));
4973 
4974 	tvs = vget_prep_smr(tvp);
4975 	if (__predict_false(tvs == VGET_NONE)) {
4976 		return (cache_fpl_partial(fpl));
4977 	}
4978 
4979 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4980 		cache_fpl_smr_exit(fpl);
4981 		vget_abort(tvp, tvs);
4982 		return (cache_fpl_aborted(fpl));
4983 	}
4984 
4985 	cache_fpl_smr_exit(fpl);
4986 	return (cache_fplookup_final_child(fpl, tvs));
4987 }
4988 
4989 /*
4990  * Comment from locked lookup:
4991  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4992  * directory, e.g. like "/." or ".".
4993  */
4994 static int __noinline
cache_fplookup_degenerate(struct cache_fpl * fpl)4995 cache_fplookup_degenerate(struct cache_fpl *fpl)
4996 {
4997 	struct componentname *cnp;
4998 	struct vnode *dvp;
4999 	enum vgetstate dvs;
5000 	int error, lkflags;
5001 #ifdef INVARIANTS
5002 	char *cp;
5003 #endif
5004 
5005 	fpl->tvp = fpl->dvp;
5006 	fpl->tvp_seqc = fpl->dvp_seqc;
5007 
5008 	cnp = fpl->cnp;
5009 	dvp = fpl->dvp;
5010 
5011 #ifdef INVARIANTS
5012 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
5013 		KASSERT(*cp == '/',
5014 		    ("%s: encountered non-slash; string [%s]\n", __func__,
5015 		    cnp->cn_pnbuf));
5016 	}
5017 #endif
5018 
5019 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
5020 		cache_fpl_smr_exit(fpl);
5021 		return (cache_fpl_handled_error(fpl, EISDIR));
5022 	}
5023 
5024 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
5025 		return (cache_fplookup_final_withparent(fpl));
5026 	}
5027 
5028 	dvs = vget_prep_smr(dvp);
5029 	cache_fpl_smr_exit(fpl);
5030 	if (__predict_false(dvs == VGET_NONE)) {
5031 		return (cache_fpl_aborted(fpl));
5032 	}
5033 
5034 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5035 		lkflags = LK_SHARED;
5036 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5037 			lkflags = LK_EXCLUSIVE;
5038 		error = vget_finish(dvp, lkflags, dvs);
5039 		if (__predict_false(error != 0)) {
5040 			return (cache_fpl_aborted(fpl));
5041 		}
5042 	} else {
5043 		vget_finish_ref(dvp, dvs);
5044 	}
5045 	return (cache_fpl_handled(fpl));
5046 }
5047 
5048 static int __noinline
cache_fplookup_emptypath(struct cache_fpl * fpl)5049 cache_fplookup_emptypath(struct cache_fpl *fpl)
5050 {
5051 	struct nameidata *ndp;
5052 	struct componentname *cnp;
5053 	enum vgetstate tvs;
5054 	struct vnode *tvp;
5055 	int error, lkflags;
5056 
5057 	fpl->tvp = fpl->dvp;
5058 	fpl->tvp_seqc = fpl->dvp_seqc;
5059 
5060 	ndp = fpl->ndp;
5061 	cnp = fpl->cnp;
5062 	tvp = fpl->tvp;
5063 
5064 	MPASS(*cnp->cn_pnbuf == '\0');
5065 
5066 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
5067 		cache_fpl_smr_exit(fpl);
5068 		return (cache_fpl_handled_error(fpl, ENOENT));
5069 	}
5070 
5071 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
5072 
5073 	tvs = vget_prep_smr(tvp);
5074 	cache_fpl_smr_exit(fpl);
5075 	if (__predict_false(tvs == VGET_NONE)) {
5076 		return (cache_fpl_aborted(fpl));
5077 	}
5078 
5079 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5080 		lkflags = LK_SHARED;
5081 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5082 			lkflags = LK_EXCLUSIVE;
5083 		error = vget_finish(tvp, lkflags, tvs);
5084 		if (__predict_false(error != 0)) {
5085 			return (cache_fpl_aborted(fpl));
5086 		}
5087 	} else {
5088 		vget_finish_ref(tvp, tvs);
5089 	}
5090 
5091 	ndp->ni_resflags |= NIRES_EMPTYPATH;
5092 	return (cache_fpl_handled(fpl));
5093 }
5094 
5095 static int __noinline
cache_fplookup_noentry(struct cache_fpl * fpl)5096 cache_fplookup_noentry(struct cache_fpl *fpl)
5097 {
5098 	struct nameidata *ndp;
5099 	struct componentname *cnp;
5100 	enum vgetstate dvs;
5101 	struct vnode *dvp, *tvp;
5102 	seqc_t dvp_seqc;
5103 	int error;
5104 
5105 	ndp = fpl->ndp;
5106 	cnp = fpl->cnp;
5107 	dvp = fpl->dvp;
5108 	dvp_seqc = fpl->dvp_seqc;
5109 
5110 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
5111 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
5112 	if (cnp->cn_nameiop == LOOKUP)
5113 		MPASS((cnp->cn_flags & NOCACHE) == 0);
5114 	MPASS(!cache_fpl_isdotdot(cnp));
5115 
5116 	/*
5117 	 * Hack: delayed name len checking.
5118 	 */
5119 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5120 		cache_fpl_smr_exit(fpl);
5121 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5122 	}
5123 
5124 	if (cnp->cn_nameptr[0] == '/') {
5125 		return (cache_fplookup_skip_slashes(fpl));
5126 	}
5127 
5128 	if (cnp->cn_pnbuf[0] == '\0') {
5129 		return (cache_fplookup_emptypath(fpl));
5130 	}
5131 
5132 	if (cnp->cn_nameptr[0] == '\0') {
5133 		if (fpl->tvp == NULL) {
5134 			return (cache_fplookup_degenerate(fpl));
5135 		}
5136 		return (cache_fplookup_trailingslash(fpl));
5137 	}
5138 
5139 	if (cnp->cn_nameiop != LOOKUP) {
5140 		fpl->tvp = NULL;
5141 		return (cache_fplookup_modifying(fpl));
5142 	}
5143 
5144 	/*
5145 	 * Only try to fill in the component if it is the last one,
5146 	 * otherwise not only there may be several to handle but the
5147 	 * walk may be complicated.
5148 	 */
5149 	if (!cache_fpl_islastcn(ndp)) {
5150 		return (cache_fpl_partial(fpl));
5151 	}
5152 
5153 	/*
5154 	 * Regular lookup nulifies the slash, which we don't do here.
5155 	 * Don't take chances with filesystem routines seeing it for
5156 	 * the last entry.
5157 	 */
5158 	if (cache_fpl_istrailingslash(fpl)) {
5159 		return (cache_fpl_partial(fpl));
5160 	}
5161 
5162 	/*
5163 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5164 	 * reasoning.
5165 	 */
5166 	dvs = vget_prep_smr(dvp);
5167 	cache_fpl_smr_exit(fpl);
5168 	if (__predict_false(dvs == VGET_NONE)) {
5169 		return (cache_fpl_aborted(fpl));
5170 	}
5171 
5172 	vget_finish_ref(dvp, dvs);
5173 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5174 		vrele(dvp);
5175 		return (cache_fpl_aborted(fpl));
5176 	}
5177 
5178 	error = vn_lock(dvp, LK_SHARED);
5179 	if (__predict_false(error != 0)) {
5180 		vrele(dvp);
5181 		return (cache_fpl_aborted(fpl));
5182 	}
5183 
5184 	tvp = NULL;
5185 	/*
5186 	 * TODO: provide variants which don't require locking either vnode.
5187 	 */
5188 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5189 	cnp->cn_lkflags = LK_SHARED;
5190 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5191 		cnp->cn_lkflags = LK_EXCLUSIVE;
5192 	}
5193 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5194 	switch (error) {
5195 	case EJUSTRETURN:
5196 	case 0:
5197 		break;
5198 	case ENOTDIR:
5199 	case ENOENT:
5200 		vput(dvp);
5201 		return (cache_fpl_handled_error(fpl, error));
5202 	default:
5203 		vput(dvp);
5204 		return (cache_fpl_aborted(fpl));
5205 	}
5206 
5207 	fpl->tvp = tvp;
5208 
5209 	if (tvp == NULL) {
5210 		MPASS(error == EJUSTRETURN);
5211 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5212 			vput(dvp);
5213 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5214 			VOP_UNLOCK(dvp);
5215 		}
5216 		return (cache_fpl_handled(fpl));
5217 	}
5218 
5219 	if (tvp->v_type == VLNK) {
5220 		if ((cnp->cn_flags & FOLLOW) != 0) {
5221 			vput(dvp);
5222 			vput(tvp);
5223 			return (cache_fpl_aborted(fpl));
5224 		}
5225 	}
5226 
5227 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5228 		vput(dvp);
5229 		vput(tvp);
5230 		return (cache_fpl_aborted(fpl));
5231 	}
5232 
5233 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5234 		VOP_UNLOCK(tvp);
5235 	}
5236 
5237 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5238 		vput(dvp);
5239 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5240 		VOP_UNLOCK(dvp);
5241 	}
5242 	return (cache_fpl_handled(fpl));
5243 }
5244 
5245 static int __noinline
cache_fplookup_dot(struct cache_fpl * fpl)5246 cache_fplookup_dot(struct cache_fpl *fpl)
5247 {
5248 	int error;
5249 
5250 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5251 
5252 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5253 		cache_fpl_smr_exit(fpl);
5254 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5255 	}
5256 
5257 	/*
5258 	 * Just re-assign the value. seqc will be checked later for the first
5259 	 * non-dot path component in line and/or before deciding to return the
5260 	 * vnode.
5261 	 */
5262 	fpl->tvp = fpl->dvp;
5263 	fpl->tvp_seqc = fpl->dvp_seqc;
5264 
5265 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5266 
5267 	error = 0;
5268 	if (cache_fplookup_is_mp(fpl)) {
5269 		error = cache_fplookup_cross_mount(fpl);
5270 	}
5271 	return (error);
5272 }
5273 
5274 static int __noinline
cache_fplookup_dotdot(struct cache_fpl * fpl)5275 cache_fplookup_dotdot(struct cache_fpl *fpl)
5276 {
5277 	struct nameidata *ndp;
5278 	struct namecache *ncp;
5279 	struct vnode *dvp;
5280 	u_char nc_flag;
5281 
5282 	ndp = fpl->ndp;
5283 	dvp = fpl->dvp;
5284 
5285 	MPASS(cache_fpl_isdotdot(fpl->cnp));
5286 
5287 	/*
5288 	 * XXX this is racy the same way regular lookup is
5289 	 */
5290 	if (vfs_lookup_isroot(ndp, dvp)) {
5291 		fpl->tvp = dvp;
5292 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5293 		if (seqc_in_modify(fpl->tvp_seqc)) {
5294 			return (cache_fpl_aborted(fpl));
5295 		}
5296 		return (0);
5297 	}
5298 
5299 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5300 		/*
5301 		 * TODO
5302 		 * The opposite of climb mount is needed here.
5303 		 */
5304 		return (cache_fpl_partial(fpl));
5305 	}
5306 
5307 	if (__predict_false(dvp->v_type != VDIR)) {
5308 		cache_fpl_smr_exit(fpl);
5309 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5310 	}
5311 
5312 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5313 	if (ncp == NULL) {
5314 		return (cache_fpl_aborted(fpl));
5315 	}
5316 
5317 	nc_flag = atomic_load_char(&ncp->nc_flag);
5318 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5319 		if ((nc_flag & NCF_NEGATIVE) != 0)
5320 			return (cache_fpl_aborted(fpl));
5321 		fpl->tvp = ncp->nc_vp;
5322 	} else {
5323 		fpl->tvp = ncp->nc_dvp;
5324 	}
5325 
5326 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5327 	if (seqc_in_modify(fpl->tvp_seqc)) {
5328 		return (cache_fpl_partial(fpl));
5329 	}
5330 
5331 	/*
5332 	 * Acquire fence provided by vn_seqc_read_any above.
5333 	 */
5334 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5335 		return (cache_fpl_aborted(fpl));
5336 	}
5337 
5338 	if (!cache_ncp_canuse(ncp)) {
5339 		return (cache_fpl_aborted(fpl));
5340 	}
5341 
5342 	return (0);
5343 }
5344 
5345 static int __noinline
cache_fplookup_neg(struct cache_fpl * fpl,struct namecache * ncp,uint32_t hash)5346 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5347 {
5348 	u_char nc_flag __diagused;
5349 	bool neg_promote;
5350 
5351 #ifdef INVARIANTS
5352 	nc_flag = atomic_load_char(&ncp->nc_flag);
5353 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5354 #endif
5355 	/*
5356 	 * If they want to create an entry we need to replace this one.
5357 	 */
5358 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5359 		fpl->tvp = NULL;
5360 		return (cache_fplookup_modifying(fpl));
5361 	}
5362 	neg_promote = cache_neg_hit_prep(ncp);
5363 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5364 		cache_neg_hit_abort(ncp);
5365 		return (cache_fpl_partial(fpl));
5366 	}
5367 	if (neg_promote) {
5368 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5369 	}
5370 	cache_neg_hit_finish(ncp);
5371 	cache_fpl_smr_exit(fpl);
5372 	return (cache_fpl_handled_error(fpl, ENOENT));
5373 }
5374 
5375 /*
5376  * Resolve a symlink. Called by filesystem-specific routines.
5377  *
5378  * Code flow is:
5379  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5380  */
5381 int
cache_symlink_resolve(struct cache_fpl * fpl,const char * string,size_t len)5382 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5383 {
5384 	struct nameidata *ndp;
5385 	struct componentname *cnp;
5386 	size_t adjust;
5387 
5388 	ndp = fpl->ndp;
5389 	cnp = fpl->cnp;
5390 
5391 	if (__predict_false(len == 0)) {
5392 		return (ENOENT);
5393 	}
5394 
5395 	if (__predict_false(len > MAXPATHLEN - 2)) {
5396 		if (cache_fpl_istrailingslash(fpl)) {
5397 			return (EAGAIN);
5398 		}
5399 	}
5400 
5401 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5402 #ifdef INVARIANTS
5403 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5404 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5405 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5406 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5407 	}
5408 #endif
5409 
5410 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5411 		return (ENAMETOOLONG);
5412 	}
5413 
5414 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5415 		return (ELOOP);
5416 	}
5417 
5418 	adjust = len;
5419 	if (ndp->ni_pathlen > 1) {
5420 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5421 	} else {
5422 		if (cache_fpl_istrailingslash(fpl)) {
5423 			adjust = len + 1;
5424 			cnp->cn_pnbuf[len] = '/';
5425 			cnp->cn_pnbuf[len + 1] = '\0';
5426 		} else {
5427 			cnp->cn_pnbuf[len] = '\0';
5428 		}
5429 	}
5430 	bcopy(string, cnp->cn_pnbuf, len);
5431 
5432 	ndp->ni_pathlen += adjust;
5433 	cache_fpl_pathlen_add(fpl, adjust);
5434 	cnp->cn_nameptr = cnp->cn_pnbuf;
5435 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5436 	fpl->tvp = NULL;
5437 	return (0);
5438 }
5439 
5440 static int __noinline
cache_fplookup_symlink(struct cache_fpl * fpl)5441 cache_fplookup_symlink(struct cache_fpl *fpl)
5442 {
5443 	struct mount *mp;
5444 	struct nameidata *ndp;
5445 	struct componentname *cnp;
5446 	struct vnode *dvp, *tvp;
5447 	struct pwd *pwd;
5448 	int error;
5449 
5450 	ndp = fpl->ndp;
5451 	cnp = fpl->cnp;
5452 	dvp = fpl->dvp;
5453 	tvp = fpl->tvp;
5454 	pwd = *(fpl->pwd);
5455 
5456 	if (cache_fpl_islastcn(ndp)) {
5457 		if ((cnp->cn_flags & FOLLOW) == 0) {
5458 			return (cache_fplookup_final(fpl));
5459 		}
5460 	}
5461 
5462 	mp = atomic_load_ptr(&dvp->v_mount);
5463 	if (__predict_false(mp == NULL)) {
5464 		return (cache_fpl_aborted(fpl));
5465 	}
5466 
5467 	/*
5468 	 * Note this check races against setting the flag just like regular
5469 	 * lookup.
5470 	 */
5471 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5472 		cache_fpl_smr_exit(fpl);
5473 		return (cache_fpl_handled_error(fpl, EACCES));
5474 	}
5475 
5476 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5477 	if (__predict_false(error != 0)) {
5478 		switch (error) {
5479 		case EAGAIN:
5480 			return (cache_fpl_partial(fpl));
5481 		case ENOENT:
5482 		case ENAMETOOLONG:
5483 		case ELOOP:
5484 			cache_fpl_smr_exit(fpl);
5485 			return (cache_fpl_handled_error(fpl, error));
5486 		default:
5487 			return (cache_fpl_aborted(fpl));
5488 		}
5489 	}
5490 
5491 	if (*(cnp->cn_nameptr) == '/') {
5492 		fpl->dvp = cache_fpl_handle_root(fpl);
5493 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5494 		if (seqc_in_modify(fpl->dvp_seqc)) {
5495 			return (cache_fpl_aborted(fpl));
5496 		}
5497 		/*
5498 		 * The main loop assumes that ->dvp points to a vnode belonging
5499 		 * to a filesystem which can do lockless lookup, but the absolute
5500 		 * symlink can be wandering off to one which does not.
5501 		 */
5502 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5503 		if (__predict_false(mp == NULL)) {
5504 			return (cache_fpl_aborted(fpl));
5505 		}
5506 		if (!cache_fplookup_mp_supported(mp)) {
5507 			cache_fpl_checkpoint(fpl);
5508 			return (cache_fpl_partial(fpl));
5509 		}
5510 		if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
5511 			return (cache_fpl_aborted(fpl));
5512 		}
5513 	}
5514 	return (0);
5515 }
5516 
5517 static int
cache_fplookup_next(struct cache_fpl * fpl)5518 cache_fplookup_next(struct cache_fpl *fpl)
5519 {
5520 	struct componentname *cnp;
5521 	struct namecache *ncp;
5522 	struct vnode *dvp, *tvp;
5523 	u_char nc_flag;
5524 	uint32_t hash;
5525 	int error;
5526 
5527 	cnp = fpl->cnp;
5528 	dvp = fpl->dvp;
5529 	hash = fpl->hash;
5530 
5531 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5532 		if (cnp->cn_namelen == 1) {
5533 			return (cache_fplookup_dot(fpl));
5534 		}
5535 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5536 			return (cache_fplookup_dotdot(fpl));
5537 		}
5538 	}
5539 
5540 	MPASS(!cache_fpl_isdotdot(cnp));
5541 
5542 	ncp = cache_ncp_find(dvp, cnp, hash);
5543 	if (__predict_false(ncp == NULL)) {
5544 		return (cache_fplookup_noentry(fpl));
5545 	}
5546 
5547 	tvp = atomic_load_ptr(&ncp->nc_vp);
5548 	nc_flag = atomic_load_char(&ncp->nc_flag);
5549 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5550 		return (cache_fplookup_neg(fpl, ncp, hash));
5551 	}
5552 
5553 	if (!cache_ncp_canuse(ncp)) {
5554 		return (cache_fpl_partial(fpl));
5555 	}
5556 
5557 	fpl->tvp = tvp;
5558 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5559 	if (seqc_in_modify(fpl->tvp_seqc)) {
5560 		return (cache_fpl_partial(fpl));
5561 	}
5562 
5563 	counter_u64_add(numposhits, 1);
5564 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5565 
5566 	error = 0;
5567 	if (cache_fplookup_is_mp(fpl)) {
5568 		error = cache_fplookup_cross_mount(fpl);
5569 	}
5570 	return (error);
5571 }
5572 
5573 static bool
cache_fplookup_mp_supported(struct mount * mp)5574 cache_fplookup_mp_supported(struct mount *mp)
5575 {
5576 
5577 	MPASS(mp != NULL);
5578 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5579 		return (false);
5580 	return (true);
5581 }
5582 
5583 /*
5584  * Walk up the mount stack (if any).
5585  *
5586  * Correctness is provided in the following ways:
5587  * - all vnodes are protected from freeing with SMR
5588  * - struct mount objects are type stable making them always safe to access
5589  * - stability of the particular mount is provided by busying it
5590  * - relationship between the vnode which is mounted on and the mount is
5591  *   verified with the vnode sequence counter after busying
5592  * - association between root vnode of the mount and the mount is protected
5593  *   by busy
5594  *
5595  * From that point on we can read the sequence counter of the root vnode
5596  * and get the next mount on the stack (if any) using the same protection.
5597  *
5598  * By the end of successful walk we are guaranteed the reached state was
5599  * indeed present at least at some point which matches the regular lookup.
5600  */
5601 static int __noinline
cache_fplookup_climb_mount(struct cache_fpl * fpl)5602 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5603 {
5604 	struct mount *mp, *prev_mp;
5605 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5606 	struct vnode *vp;
5607 	seqc_t vp_seqc;
5608 
5609 	vp = fpl->tvp;
5610 	vp_seqc = fpl->tvp_seqc;
5611 
5612 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5613 	mp = atomic_load_ptr(&vp->v_mountedhere);
5614 	if (__predict_false(mp == NULL)) {
5615 		return (0);
5616 	}
5617 
5618 	prev_mp = NULL;
5619 	for (;;) {
5620 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5621 			if (prev_mp != NULL)
5622 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5623 			return (cache_fpl_partial(fpl));
5624 		}
5625 		if (prev_mp != NULL)
5626 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5627 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5628 			vfs_op_thread_exit_crit(mp, mpcpu);
5629 			return (cache_fpl_partial(fpl));
5630 		}
5631 		if (!cache_fplookup_mp_supported(mp)) {
5632 			vfs_op_thread_exit_crit(mp, mpcpu);
5633 			return (cache_fpl_partial(fpl));
5634 		}
5635 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5636 		if (vp == NULL) {
5637 			vfs_op_thread_exit_crit(mp, mpcpu);
5638 			return (cache_fpl_partial(fpl));
5639 		}
5640 		vp_seqc = vn_seqc_read_any(vp);
5641 		if (seqc_in_modify(vp_seqc)) {
5642 			vfs_op_thread_exit_crit(mp, mpcpu);
5643 			return (cache_fpl_partial(fpl));
5644 		}
5645 		prev_mp = mp;
5646 		prev_mpcpu = mpcpu;
5647 		mp = atomic_load_ptr(&vp->v_mountedhere);
5648 		if (mp == NULL)
5649 			break;
5650 	}
5651 
5652 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5653 	fpl->tvp = vp;
5654 	fpl->tvp_seqc = vp_seqc;
5655 	return (0);
5656 }
5657 
5658 static int __noinline
cache_fplookup_cross_mount(struct cache_fpl * fpl)5659 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5660 {
5661 	struct mount *mp;
5662 	struct mount_pcpu *mpcpu;
5663 	struct vnode *vp;
5664 	seqc_t vp_seqc;
5665 
5666 	vp = fpl->tvp;
5667 	vp_seqc = fpl->tvp_seqc;
5668 
5669 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5670 	mp = atomic_load_ptr(&vp->v_mountedhere);
5671 	if (__predict_false(mp == NULL)) {
5672 		return (0);
5673 	}
5674 
5675 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5676 		return (cache_fpl_partial(fpl));
5677 	}
5678 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5679 		vfs_op_thread_exit_crit(mp, mpcpu);
5680 		return (cache_fpl_partial(fpl));
5681 	}
5682 	if (!cache_fplookup_mp_supported(mp)) {
5683 		vfs_op_thread_exit_crit(mp, mpcpu);
5684 		return (cache_fpl_partial(fpl));
5685 	}
5686 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5687 	if (__predict_false(vp == NULL)) {
5688 		vfs_op_thread_exit_crit(mp, mpcpu);
5689 		return (cache_fpl_partial(fpl));
5690 	}
5691 	vp_seqc = vn_seqc_read_any(vp);
5692 	vfs_op_thread_exit_crit(mp, mpcpu);
5693 	if (seqc_in_modify(vp_seqc)) {
5694 		return (cache_fpl_partial(fpl));
5695 	}
5696 	mp = atomic_load_ptr(&vp->v_mountedhere);
5697 	if (__predict_false(mp != NULL)) {
5698 		/*
5699 		 * There are possibly more mount points on top.
5700 		 * Normally this does not happen so for simplicity just start
5701 		 * over.
5702 		 */
5703 		return (cache_fplookup_climb_mount(fpl));
5704 	}
5705 
5706 	fpl->tvp = vp;
5707 	fpl->tvp_seqc = vp_seqc;
5708 	return (0);
5709 }
5710 
5711 /*
5712  * Check if a vnode is mounted on.
5713  */
5714 static bool
cache_fplookup_is_mp(struct cache_fpl * fpl)5715 cache_fplookup_is_mp(struct cache_fpl *fpl)
5716 {
5717 	struct vnode *vp;
5718 
5719 	vp = fpl->tvp;
5720 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5721 }
5722 
5723 /*
5724  * Parse the path.
5725  *
5726  * The code was originally copy-pasted from regular lookup and despite
5727  * clean ups leaves performance on the table. Any modifications here
5728  * must take into account that in case off fallback the resulting
5729  * nameidata state has to be compatible with the original.
5730  */
5731 
5732 /*
5733  * Debug ni_pathlen tracking.
5734  */
5735 #ifdef INVARIANTS
5736 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5737 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5738 {
5739 
5740 	fpl->debug.ni_pathlen += n;
5741 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5742 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5743 }
5744 
5745 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5746 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5747 {
5748 
5749 	fpl->debug.ni_pathlen -= n;
5750 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5751 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5752 }
5753 
5754 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5755 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5756 {
5757 
5758 	cache_fpl_pathlen_add(fpl, 1);
5759 }
5760 
5761 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5762 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5763 {
5764 
5765 	cache_fpl_pathlen_sub(fpl, 1);
5766 }
5767 #else
5768 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5769 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5770 {
5771 }
5772 
5773 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5774 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5775 {
5776 }
5777 
5778 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5779 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5780 {
5781 }
5782 
5783 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5784 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5785 {
5786 }
5787 #endif
5788 
5789 static void
cache_fplookup_parse(struct cache_fpl * fpl)5790 cache_fplookup_parse(struct cache_fpl *fpl)
5791 {
5792 	struct nameidata *ndp;
5793 	struct componentname *cnp;
5794 	struct vnode *dvp;
5795 	char *cp;
5796 	uint32_t hash;
5797 
5798 	ndp = fpl->ndp;
5799 	cnp = fpl->cnp;
5800 	dvp = fpl->dvp;
5801 
5802 	/*
5803 	 * Find the end of this path component, it is either / or nul.
5804 	 *
5805 	 * Store / as a temporary sentinel so that we only have one character
5806 	 * to test for. Pathnames tend to be short so this should not be
5807 	 * resulting in cache misses.
5808 	 *
5809 	 * TODO: fix this to be word-sized.
5810 	 */
5811 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5812 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5813 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5814 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5815 	    fpl->nulchar, cnp->cn_pnbuf));
5816 	KASSERT(*fpl->nulchar == '\0',
5817 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5818 	    cnp->cn_pnbuf));
5819 	hash = cache_get_hash_iter_start(dvp);
5820 	*fpl->nulchar = '/';
5821 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5822 		KASSERT(*cp != '\0',
5823 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5824 		    cnp->cn_nameptr));
5825 		hash = cache_get_hash_iter(*cp, hash);
5826 		continue;
5827 	}
5828 	*fpl->nulchar = '\0';
5829 	fpl->hash = cache_get_hash_iter_finish(hash);
5830 
5831 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5832 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5833 
5834 #ifdef INVARIANTS
5835 	/*
5836 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5837 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5838 	 */
5839 	if (cnp->cn_namelen <= NAME_MAX) {
5840 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5841 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5842 			    cnp->cn_nameptr, cnp->cn_namelen);
5843 		}
5844 	}
5845 #endif
5846 
5847 	/*
5848 	 * Hack: we have to check if the found path component's length exceeds
5849 	 * NAME_MAX. However, the condition is very rarely true and check can
5850 	 * be elided in the common case -- if an entry was found in the cache,
5851 	 * then it could not have been too long to begin with.
5852 	 */
5853 	ndp->ni_next = cp;
5854 }
5855 
5856 static void
cache_fplookup_parse_advance(struct cache_fpl * fpl)5857 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5858 {
5859 	struct nameidata *ndp;
5860 	struct componentname *cnp;
5861 
5862 	ndp = fpl->ndp;
5863 	cnp = fpl->cnp;
5864 
5865 	cnp->cn_nameptr = ndp->ni_next;
5866 	KASSERT(*(cnp->cn_nameptr) == '/',
5867 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5868 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5869 	cnp->cn_nameptr++;
5870 	cache_fpl_pathlen_dec(fpl);
5871 }
5872 
5873 /*
5874  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5875  *
5876  * Lockless lookup tries to elide checking for spurious slashes and should they
5877  * be present is guaranteed to fail to find an entry. In this case the caller
5878  * must check if the name starts with a slash and call this routine.  It is
5879  * going to fast forward across the spurious slashes and set the state up for
5880  * retry.
5881  */
5882 static int __noinline
cache_fplookup_skip_slashes(struct cache_fpl * fpl)5883 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5884 {
5885 	struct nameidata *ndp;
5886 	struct componentname *cnp;
5887 
5888 	ndp = fpl->ndp;
5889 	cnp = fpl->cnp;
5890 
5891 	MPASS(*(cnp->cn_nameptr) == '/');
5892 	do {
5893 		cnp->cn_nameptr++;
5894 		cache_fpl_pathlen_dec(fpl);
5895 	} while (*(cnp->cn_nameptr) == '/');
5896 
5897 	/*
5898 	 * Go back to one slash so that cache_fplookup_parse_advance has
5899 	 * something to skip.
5900 	 */
5901 	cnp->cn_nameptr--;
5902 	cache_fpl_pathlen_inc(fpl);
5903 
5904 	/*
5905 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5906 	 */
5907 	ndp->ni_next = cnp->cn_nameptr;
5908 
5909 	/*
5910 	 * See cache_fplookup_dot.
5911 	 */
5912 	fpl->tvp = fpl->dvp;
5913 	fpl->tvp_seqc = fpl->dvp_seqc;
5914 
5915 	return (0);
5916 }
5917 
5918 /*
5919  * Handle trailing slashes (e.g., "foo/").
5920  *
5921  * If a trailing slash is found the terminal vnode must be a directory.
5922  * Regular lookup shortens the path by nulifying the first trailing slash and
5923  * sets the TRAILINGSLASH flag to denote this took place. There are several
5924  * checks on it performed later.
5925  *
5926  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5927  * manner relying on an invariant that a non-directory vnode will get a miss.
5928  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5929  *
5930  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5931  * and denotes this is the last path component, which avoids looping back.
5932  *
5933  * Only plain lookups are supported for now to restrict corner cases to handle.
5934  */
5935 static int __noinline
cache_fplookup_trailingslash(struct cache_fpl * fpl)5936 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5937 {
5938 #ifdef INVARIANTS
5939 	size_t ni_pathlen;
5940 #endif
5941 	struct nameidata *ndp;
5942 	struct componentname *cnp;
5943 	struct namecache *ncp;
5944 	struct vnode *tvp;
5945 	char *cn_nameptr_orig, *cn_nameptr_slash;
5946 	seqc_t tvp_seqc;
5947 	u_char nc_flag;
5948 
5949 	ndp = fpl->ndp;
5950 	cnp = fpl->cnp;
5951 	tvp = fpl->tvp;
5952 	tvp_seqc = fpl->tvp_seqc;
5953 
5954 	MPASS(fpl->dvp == fpl->tvp);
5955 	KASSERT(cache_fpl_istrailingslash(fpl),
5956 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5957 	    cnp->cn_pnbuf));
5958 	KASSERT(cnp->cn_nameptr[0] == '\0',
5959 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5960 	    cnp->cn_pnbuf));
5961 	KASSERT(cnp->cn_namelen == 0,
5962 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5963 	    cnp->cn_pnbuf));
5964 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5965 
5966 	if (cnp->cn_nameiop != LOOKUP) {
5967 		return (cache_fpl_aborted(fpl));
5968 	}
5969 
5970 	if (__predict_false(tvp->v_type != VDIR)) {
5971 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5972 			return (cache_fpl_aborted(fpl));
5973 		}
5974 		cache_fpl_smr_exit(fpl);
5975 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5976 	}
5977 
5978 	/*
5979 	 * Denote the last component.
5980 	 */
5981 	ndp->ni_next = &cnp->cn_nameptr[0];
5982 	MPASS(cache_fpl_islastcn(ndp));
5983 
5984 	/*
5985 	 * Unwind trailing slashes.
5986 	 */
5987 	cn_nameptr_orig = cnp->cn_nameptr;
5988 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5989 		cnp->cn_nameptr--;
5990 		if (cnp->cn_nameptr[0] != '/') {
5991 			break;
5992 		}
5993 	}
5994 
5995 	/*
5996 	 * Unwind to the beginning of the path component.
5997 	 *
5998 	 * Note the path may or may not have started with a slash.
5999 	 */
6000 	cn_nameptr_slash = cnp->cn_nameptr;
6001 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
6002 		cnp->cn_nameptr--;
6003 		if (cnp->cn_nameptr[0] == '/') {
6004 			break;
6005 		}
6006 	}
6007 	if (cnp->cn_nameptr[0] == '/') {
6008 		cnp->cn_nameptr++;
6009 	}
6010 
6011 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
6012 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
6013 	cache_fpl_checkpoint(fpl);
6014 
6015 #ifdef INVARIANTS
6016 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
6017 	if (ni_pathlen != fpl->debug.ni_pathlen) {
6018 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
6019 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
6020 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
6021 	}
6022 #endif
6023 
6024 	/*
6025 	 * If this was a "./" lookup the parent directory is already correct.
6026 	 */
6027 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
6028 		return (0);
6029 	}
6030 
6031 	/*
6032 	 * Otherwise we need to look it up.
6033 	 */
6034 	tvp = fpl->tvp;
6035 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
6036 	if (__predict_false(ncp == NULL)) {
6037 		return (cache_fpl_aborted(fpl));
6038 	}
6039 	nc_flag = atomic_load_char(&ncp->nc_flag);
6040 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
6041 		return (cache_fpl_aborted(fpl));
6042 	}
6043 	fpl->dvp = ncp->nc_dvp;
6044 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
6045 	if (seqc_in_modify(fpl->dvp_seqc)) {
6046 		return (cache_fpl_aborted(fpl));
6047 	}
6048 	return (0);
6049 }
6050 
6051 /*
6052  * See the API contract for VOP_FPLOOKUP_VEXEC.
6053  */
6054 static int __noinline
cache_fplookup_failed_vexec(struct cache_fpl * fpl,int error)6055 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
6056 {
6057 	struct componentname *cnp;
6058 	struct vnode *dvp;
6059 	seqc_t dvp_seqc;
6060 
6061 	cnp = fpl->cnp;
6062 	dvp = fpl->dvp;
6063 	dvp_seqc = fpl->dvp_seqc;
6064 
6065 	/*
6066 	 * Hack: delayed empty path checking.
6067 	 */
6068 	if (cnp->cn_pnbuf[0] == '\0') {
6069 		return (cache_fplookup_emptypath(fpl));
6070 	}
6071 
6072 	/*
6073 	 * TODO: Due to ignoring trailing slashes lookup will perform a
6074 	 * permission check on the last dir when it should not be doing it.  It
6075 	 * may fail, but said failure should be ignored. It is possible to fix
6076 	 * it up fully without resorting to regular lookup, but for now just
6077 	 * abort.
6078 	 */
6079 	if (cache_fpl_istrailingslash(fpl)) {
6080 		return (cache_fpl_aborted(fpl));
6081 	}
6082 
6083 	/*
6084 	 * Hack: delayed degenerate path checking.
6085 	 */
6086 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
6087 		return (cache_fplookup_degenerate(fpl));
6088 	}
6089 
6090 	/*
6091 	 * Hack: delayed name len checking.
6092 	 */
6093 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
6094 		cache_fpl_smr_exit(fpl);
6095 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
6096 	}
6097 
6098 	/*
6099 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
6100 	 * In such a case we need to return ENOTDIR, but we may happen to get
6101 	 * here with a different error.
6102 	 */
6103 	if (dvp->v_type != VDIR) {
6104 		error = ENOTDIR;
6105 	}
6106 
6107 	/*
6108 	 * Hack: handle O_SEARCH.
6109 	 *
6110 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6111 	 * <quote>
6112 	 * If the access mode of the open file description associated with the
6113 	 * file descriptor is not O_SEARCH, the function shall check whether
6114 	 * directory searches are permitted using the current permissions of
6115 	 * the directory underlying the file descriptor. If the access mode is
6116 	 * O_SEARCH, the function shall not perform the check.
6117 	 * </quote>
6118 	 *
6119 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6120 	 * component to decide whether to do the permission check. However,
6121 	 * since most lookups never have the flag (and when they do it is only
6122 	 * present for the first path component), lockless lookup only acts on
6123 	 * it if there is a permission problem. Here the flag is represented
6124 	 * with a boolean so that we don't have to clear it on the way out.
6125 	 *
6126 	 * For simplicity this always aborts.
6127 	 * TODO: check if this is the first lookup and ignore the permission
6128 	 * problem. Note the flag has to survive fallback (if it happens to be
6129 	 * performed).
6130 	 */
6131 	if (fpl->fsearch) {
6132 		return (cache_fpl_aborted(fpl));
6133 	}
6134 
6135 	switch (error) {
6136 	case EAGAIN:
6137 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6138 			error = cache_fpl_aborted(fpl);
6139 		} else {
6140 			cache_fpl_partial(fpl);
6141 		}
6142 		break;
6143 	default:
6144 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6145 			error = cache_fpl_aborted(fpl);
6146 		} else {
6147 			cache_fpl_smr_exit(fpl);
6148 			cache_fpl_handled_error(fpl, error);
6149 		}
6150 		break;
6151 	}
6152 	return (error);
6153 }
6154 
6155 static int
cache_fplookup_impl(struct vnode * dvp,struct cache_fpl * fpl)6156 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6157 {
6158 	struct nameidata *ndp;
6159 	struct componentname *cnp;
6160 	struct mount *mp;
6161 	int error;
6162 
6163 	ndp = fpl->ndp;
6164 	cnp = fpl->cnp;
6165 
6166 	cache_fpl_checkpoint(fpl);
6167 
6168 	/*
6169 	 * The vnode at hand is almost always stable, skip checking for it.
6170 	 * Worst case this postpones the check towards the end of the iteration
6171 	 * of the main loop.
6172 	 */
6173 	fpl->dvp = dvp;
6174 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6175 
6176 	mp = atomic_load_ptr(&dvp->v_mount);
6177 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6178 		return (cache_fpl_aborted(fpl));
6179 	}
6180 
6181 	MPASS(fpl->tvp == NULL);
6182 
6183 	for (;;) {
6184 		cache_fplookup_parse(fpl);
6185 
6186 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6187 		if (__predict_false(error != 0)) {
6188 			error = cache_fplookup_failed_vexec(fpl, error);
6189 			break;
6190 		}
6191 
6192 		error = cache_fplookup_next(fpl);
6193 		if (__predict_false(cache_fpl_terminated(fpl))) {
6194 			break;
6195 		}
6196 
6197 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6198 
6199 		if (fpl->tvp->v_type == VLNK) {
6200 			error = cache_fplookup_symlink(fpl);
6201 			if (cache_fpl_terminated(fpl)) {
6202 				break;
6203 			}
6204 		} else {
6205 			if (cache_fpl_islastcn(ndp)) {
6206 				error = cache_fplookup_final(fpl);
6207 				break;
6208 			}
6209 
6210 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6211 				error = cache_fpl_aborted(fpl);
6212 				break;
6213 			}
6214 
6215 			fpl->dvp = fpl->tvp;
6216 			fpl->dvp_seqc = fpl->tvp_seqc;
6217 			cache_fplookup_parse_advance(fpl);
6218 		}
6219 
6220 		cache_fpl_checkpoint(fpl);
6221 	}
6222 
6223 	return (error);
6224 }
6225 
6226 /*
6227  * Fast path lookup protected with SMR and sequence counters.
6228  *
6229  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6230  *
6231  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6232  * outlined below.
6233  *
6234  * Traditional vnode lookup conceptually looks like this:
6235  *
6236  * vn_lock(current);
6237  * for (;;) {
6238  *	next = find();
6239  *	vn_lock(next);
6240  *	vn_unlock(current);
6241  *	current = next;
6242  *	if (last)
6243  *	    break;
6244  * }
6245  * return (current);
6246  *
6247  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6248  * any modifications thanks to holding respective locks.
6249  *
6250  * The same guarantee can be provided with a combination of safe memory
6251  * reclamation and sequence counters instead. If all operations which affect
6252  * the relationship between the current vnode and the one we are looking for
6253  * also modify the counter, we can verify whether all the conditions held as
6254  * we made the jump. This includes things like permissions, mount points etc.
6255  * Counter modification is provided by enclosing relevant places in
6256  * vn_seqc_write_begin()/end() calls.
6257  *
6258  * Thus this translates to:
6259  *
6260  * vfs_smr_enter();
6261  * dvp_seqc = seqc_read_any(dvp);
6262  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6263  *     abort();
6264  * for (;;) {
6265  * 	tvp = find();
6266  * 	tvp_seqc = seqc_read_any(tvp);
6267  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6268  * 	    abort();
6269  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6270  * 	    abort();
6271  * 	dvp = tvp; // we know nothing of importance has changed
6272  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6273  * 	if (last)
6274  * 	    break;
6275  * }
6276  * vget(); // secure the vnode
6277  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6278  * 	    abort();
6279  * // at this point we know nothing has changed for any parent<->child pair
6280  * // as they were crossed during the lookup, meaning we matched the guarantee
6281  * // of the locked variant
6282  * return (tvp);
6283  *
6284  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6285  * - they are called while within vfs_smr protection which they must never exit
6286  * - EAGAIN can be returned to denote checking could not be performed, it is
6287  *   always valid to return it
6288  * - if the sequence counter has not changed the result must be valid
6289  * - if the sequence counter has changed both false positives and false negatives
6290  *   are permitted (since the result will be rejected later)
6291  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6292  *
6293  * Caveats to watch out for:
6294  * - vnodes are passed unlocked and unreferenced with nothing stopping
6295  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6296  *   to use atomic_load_ptr to fetch it.
6297  * - the aforementioned object can also get freed, meaning absent other means it
6298  *   should be protected with vfs_smr
6299  * - either safely checking permissions as they are modified or guaranteeing
6300  *   their stability is left to the routine
6301  */
6302 int
cache_fplookup(struct nameidata * ndp,enum cache_fpl_status * status,struct pwd ** pwdp)6303 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6304     struct pwd **pwdp)
6305 {
6306 	struct cache_fpl fpl;
6307 	struct pwd *pwd;
6308 	struct vnode *dvp;
6309 	struct componentname *cnp;
6310 	int error;
6311 
6312 	fpl.status = CACHE_FPL_STATUS_UNSET;
6313 	fpl.in_smr = false;
6314 	fpl.ndp = ndp;
6315 	fpl.cnp = cnp = &ndp->ni_cnd;
6316 	MPASS(ndp->ni_lcf == 0);
6317 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6318 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6319 	    cnp->cn_flags));
6320 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6321 	MPASS(ndp->ni_resflags == 0);
6322 
6323 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6324 		*status = fpl.status;
6325 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6326 		return (EOPNOTSUPP);
6327 	}
6328 
6329 	cache_fpl_checkpoint_outer(&fpl);
6330 
6331 	cache_fpl_smr_enter_initial(&fpl);
6332 #ifdef INVARIANTS
6333 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6334 #endif
6335 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6336 	fpl.fsearch = false;
6337 	fpl.tvp = NULL; /* for degenerate path handling */
6338 	fpl.pwd = pwdp;
6339 	pwd = pwd_get_smr();
6340 	*(fpl.pwd) = pwd;
6341 	namei_setup_rootdir(ndp, cnp, pwd);
6342 	ndp->ni_topdir = pwd->pwd_jdir;
6343 
6344 	if (cnp->cn_pnbuf[0] == '/') {
6345 		dvp = cache_fpl_handle_root(&fpl);
6346 		ndp->ni_resflags = NIRES_ABS;
6347 	} else {
6348 		if (ndp->ni_dirfd == AT_FDCWD) {
6349 			dvp = pwd->pwd_cdir;
6350 		} else {
6351 			error = cache_fplookup_dirfd(&fpl, &dvp);
6352 			if (__predict_false(error != 0)) {
6353 				goto out;
6354 			}
6355 		}
6356 	}
6357 
6358 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6359 	error = cache_fplookup_impl(dvp, &fpl);
6360 out:
6361 	cache_fpl_smr_assert_not_entered(&fpl);
6362 	cache_fpl_assert_status(&fpl);
6363 	*status = fpl.status;
6364 	if (SDT_PROBES_ENABLED()) {
6365 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6366 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6367 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6368 			    ndp);
6369 	}
6370 
6371 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6372 		MPASS(error != CACHE_FPL_FAILED);
6373 		if (error != 0) {
6374 			cache_fpl_cleanup_cnp(fpl.cnp);
6375 			MPASS(fpl.dvp == NULL);
6376 			MPASS(fpl.tvp == NULL);
6377 		}
6378 		ndp->ni_dvp = fpl.dvp;
6379 		ndp->ni_vp = fpl.tvp;
6380 	}
6381 	return (error);
6382 }
6383