xref: /freebsd/sys/kern/vfs_cache.c (revision bde575b273eeb17abe878e43dd018e8373741298)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #include "opt_ddb.h"
37 #include "opt_ktrace.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/capsicum.h>
42 #include <sys/counter.h>
43 #include <sys/filedesc.h>
44 #include <sys/fnv_hash.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/fcntl.h>
50 #include <sys/jail.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/seqc.h>
55 #include <sys/sdt.h>
56 #include <sys/smr.h>
57 #include <sys/smp.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vnode.h>
62 #include <ck_queue.h>
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66 #ifdef INVARIANTS
67 #include <machine/_inttypes.h>
68 #endif
69 
70 #include <security/audit/audit.h>
71 #include <security/mac/mac_framework.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <vm/uma.h>
78 
79 /*
80  * High level overview of name caching in the VFS layer.
81  *
82  * Originally caching was implemented as part of UFS, later extracted to allow
83  * use by other filesystems. A decision was made to make it optional and
84  * completely detached from the rest of the kernel, which comes with limitations
85  * outlined near the end of this comment block.
86  *
87  * This fundamental choice needs to be revisited. In the meantime, the current
88  * state is described below. Significance of all notable routines is explained
89  * in comments placed above their implementation. Scattered thoroughout the
90  * file are TODO comments indicating shortcomings which can be fixed without
91  * reworking everything (most of the fixes will likely be reusable). Various
92  * details are omitted from this explanation to not clutter the overview, they
93  * have to be checked by reading the code and associated commentary.
94  *
95  * Keep in mind that it's individual path components which are cached, not full
96  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
97  * one for each name.
98  *
99  * I. Data organization
100  *
101  * Entries are described by "struct namecache" objects and stored in a hash
102  * table. See cache_get_hash for more information.
103  *
104  * "struct vnode" contains pointers to source entries (names which can be found
105  * when traversing through said vnode), destination entries (names of that
106  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
107  * the parent vnode.
108  *
109  * The (directory vnode; name) tuple reliably determines the target entry if
110  * it exists.
111  *
112  * Since there are no small locks at this time (all are 32 bytes in size on
113  * LP64), the code works around the problem by introducing lock arrays to
114  * protect hash buckets and vnode lists.
115  *
116  * II. Filesystem integration
117  *
118  * Filesystems participating in name caching do the following:
119  * - set vop_lookup routine to vfs_cache_lookup
120  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
121  * - if they support lockless lookup (see below), vop_fplookup_vexec and
122  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
123  *   mount point
124  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
125  *   applicable
126  * - call cache_enter to add entries depending on the MAKEENTRY flag
127  *
128  * With the above in mind, there are 2 entry points when doing lookups:
129  * - ... -> namei -> cache_fplookup -- this is the default
130  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
131  *   should the above fail
132  *
133  * Example code flow how an entry is added:
134  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
135  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
136  *
137  * III. Performance considerations
138  *
139  * For lockless case forward lookup avoids any writes to shared areas apart
140  * from the terminal path component. In other words non-modifying lookups of
141  * different files don't suffer any scalability problems in the namecache.
142  * Looking up the same file is limited by VFS and goes beyond the scope of this
143  * file.
144  *
145  * At least on amd64 the single-threaded bottleneck for long paths is hashing
146  * (see cache_get_hash). There are cases where the code issues acquire fence
147  * multiple times, they can be combined on architectures which suffer from it.
148  *
149  * For locked case each encountered vnode has to be referenced and locked in
150  * order to be handed out to the caller (normally that's namei). This
151  * introduces significant hit single-threaded and serialization multi-threaded.
152  *
153  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
154  * avoids any writes to shared areas to any components.
155  *
156  * Unrelated insertions are partially serialized on updating the global entry
157  * counter and possibly serialized on colliding bucket or vnode locks.
158  *
159  * IV. Observability
160  *
161  * Note not everything has an explicit dtrace probe nor it should have, thus
162  * some of the one-liners below depend on implementation details.
163  *
164  * Examples:
165  *
166  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
167  * # line number, column 2 is status code (see cache_fpl_status)
168  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
169  *
170  * # Lengths of names added by binary name
171  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
172  *
173  * # Same as above but only those which exceed 64 characters
174  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
175  *
176  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
177  * # path is it
178  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
179  *
180  * V. Limitations and implementation defects
181  *
182  * - since it is possible there is no entry for an open file, tools like
183  *   "procstat" may fail to resolve fd -> vnode -> path to anything
184  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
185  *   shortage) in which case the above problem applies
186  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
187  *   way, resolving a name may return a different path than the one used to
188  *   open it (even if said path is still valid)
189  * - by default entries are not added for newly created files
190  * - adding an entry may need to evict negative entry first, which happens in 2
191  *   distinct places (evicting on lookup, adding in a later VOP) making it
192  *   impossible to simply reuse it
193  * - there is a simple scheme to evict negative entries as the cache is approaching
194  *   its capacity, but it is very unclear if doing so is a good idea to begin with
195  * - vnodes are subject to being recycled even if target inode is left in memory,
196  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
197  *   names get duplicated -- kept by filesystem itself and namecache separately
198  * - struct namecache has a fixed size and comes in 2 variants, often wasting
199  *   space.  now hard to replace with malloc due to dependence on SMR, which
200  *   requires UMA zones to opt in
201  * - lack of better integration with the kernel also turns nullfs into a layered
202  *   filesystem instead of something which can take advantage of caching
203  *
204  * Appendix A: where is the time lost, expanding on paragraph III
205  *
206  * While some care went into optimizing lookups, there is still plenty of
207  * performance left on the table, most notably from single-threaded standpoint.
208  * Below is a woefully incomplete list of changes which can help.  Ideas are
209  * mostly sketched out, no claim is made all kinks or prerequisites are laid
210  * out.
211  *
212  * Note there is performance lost all over VFS.
213  *
214  * === SMR-only lookup
215  *
216  * For commonly used ops like stat(2), when the terminal vnode *is* cached,
217  * lockless lookup could refrain from refing/locking the found vnode and
218  * instead return while within the SMR section. Then a call to, say,
219  * vop_stat_smr could do the work (or fail with EAGAIN), finally the result
220  * would be validated with seqc not changing. This would be faster
221  * single-threaded as it dodges atomics and would provide full scalability for
222  * multicore uses. This would *not* work for open(2) or other calls which need
223  * the vnode to hang around for the long haul, but would work for aforementioned
224  * stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
225  *
226  * === hotpatching for sdt probes
227  *
228  * They result in *tons* of branches all over with rather regrettable codegen
229  * at times. Removing sdt probes altogether gives over 2% boost in lookup rate.
230  * Reworking the code to patch itself at runtime with asm goto would solve it.
231  * asm goto is fully supported by gcc and clang.
232  *
233  * === copyinstr
234  *
235  * On all architectures it operates one byte at a time, while it could be
236  * word-sized instead thanks to the Mycroft trick.
237  *
238  * API itself is rather pessimal for path lookup, accepting arbitrary sizes and
239  * *optionally* filling in the length parameter.
240  *
241  * Instead a new routine (copyinpath?) could be introduced, demanding a buffer
242  * size which is a multiply of the word (and never zero), with the length
243  * always returned. On top of it the routine could be allowed to transform the
244  * buffer in arbitrary ways, most notably writing past the found length (not to
245  * be confused with writing past buffer size) -- this would allow word-sized
246  * movs while checking for '\0' later.
247  *
248  * === detour through namei
249  *
250  * Currently one suffers being called from namei, which then has to check if
251  * things worked out locklessly. Instead the lockless lookup could be the
252  * actual entry point which calls what is currently namei as a fallback.
253  *
254  * === avoidable branches in cache_can_fplookup
255  *
256  * The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
257  * this is off, none of fplookup code should execute).
258  *
259  * Both audit and capsicum branches can be combined into one, but it requires
260  * paying off a lot of tech debt first.
261  *
262  * ni_startdir could be indicated with a flag in cn_flags, eliminating the
263  * branch.
264  *
265  * === mount stacks
266  *
267  * Crossing a mount requires checking if perhaps something is mounted on top.
268  * Instead, an additional entry could be added to struct mount with a pointer
269  * to the final mount on the stack. This would be recalculated on each
270  * mount/unmount.
271  *
272  * === root vnodes
273  *
274  * It could become part of the API contract to *always* have a rootvnode set in
275  * mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
276  * to be modified to always skip them.
277  *
278  * === inactive on v_usecount reaching 0
279  *
280  * VOP_NEED_INACTIVE should not exist. Filesystems would indicate need for such
281  * processing with a bit in usecount.
282  *
283  * === v_holdcnt
284  *
285  * Hold count should probably get eliminated, but one can argue it is a useful
286  * feature. Even if so, handling of v_usecount could be decoupled from it --
287  * vnlru et al would consider the vnode not-freeable if has either hold or
288  * usecount on it.
289  *
290  * This would eliminate 2 atomics.
291  */
292 
293 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
294     "Name cache");
295 
296 SDT_PROVIDER_DECLARE(vfs);
297 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
298     "struct vnode *");
299 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
300     "struct vnode *");
301 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
302     "char *");
303 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
304     "const char *");
305 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
306     "struct namecache *", "int", "int");
307 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
308 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
309     "char *", "struct vnode *");
310 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
311 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
312     "struct vnode *", "char *");
313 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
314     "struct vnode *");
315 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
316     "struct vnode *", "char *");
317 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
318     "char *");
319 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
320     "struct componentname *");
321 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
322     "struct componentname *");
323 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
324 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
325 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
326 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
327 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
328     "struct vnode *");
329 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
330     "char *");
331 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
332     "char *");
333 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
334 
335 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
336 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
337 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
338 
339 static char __read_frequently cache_fast_lookup_enabled = true;
340 
341 /*
342  * This structure describes the elements in the cache of recent
343  * names looked up by namei.
344  */
345 struct negstate {
346 	u_char neg_flag;
347 	u_char neg_hit;
348 };
349 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
350     "the state must fit in a union with a pointer without growing it");
351 
352 struct	namecache {
353 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
354 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
355 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
356 	struct	vnode *nc_dvp;		/* vnode of parent of name */
357 	union {
358 		struct	vnode *nu_vp;	/* vnode the name refers to */
359 		struct	negstate nu_neg;/* negative entry state */
360 	} n_un;
361 	u_char	nc_flag;		/* flag bits */
362 	u_char	nc_nlen;		/* length of name */
363 	char	nc_name[];		/* segment name + nul */
364 };
365 
366 /*
367  * struct namecache_ts repeats struct namecache layout up to the
368  * nc_nlen member.
369  * struct namecache_ts is used in place of struct namecache when time(s) need
370  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
371  * both a non-dotdot directory name plus dotdot for the directory's
372  * parent.
373  *
374  * See below for alignment requirement.
375  */
376 struct	namecache_ts {
377 	struct	timespec nc_time;	/* timespec provided by fs */
378 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
379 	int	nc_ticks;		/* ticks value when entry was added */
380 	int	nc_pad;
381 	struct namecache nc_nc;
382 };
383 
384 TAILQ_HEAD(cache_freebatch, namecache);
385 
386 /*
387  * At least mips n32 performs 64-bit accesses to timespec as found
388  * in namecache_ts and requires them to be aligned. Since others
389  * may be in the same spot suffer a little bit and enforce the
390  * alignment for everyone. Note this is a nop for 64-bit platforms.
391  */
392 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
393 
394 /*
395  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
396  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
397  * smaller and the value was bumped to retain the total size, but it
398  * was never re-evaluated for suitability. A simple test counting
399  * lengths during package building shows that the value of 45 covers
400  * about 86% of all added entries, reaching 99% at 65.
401  *
402  * Regardless of the above, use of dedicated zones instead of malloc may be
403  * inducing additional waste. This may be hard to address as said zones are
404  * tied to VFS SMR. Even if retaining them, the current split should be
405  * re-evaluated.
406  */
407 #ifdef __LP64__
408 #define	CACHE_PATH_CUTOFF	45
409 #define	CACHE_LARGE_PAD		6
410 #else
411 #define	CACHE_PATH_CUTOFF	41
412 #define	CACHE_LARGE_PAD		2
413 #endif
414 
415 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
416 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
417 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
418 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
419 
420 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
421 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
422 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
423 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
424 
425 #define	nc_vp		n_un.nu_vp
426 #define	nc_neg		n_un.nu_neg
427 
428 /*
429  * Flags in namecache.nc_flag
430  */
431 #define NCF_WHITE	0x01
432 #define NCF_ISDOTDOT	0x02
433 #define	NCF_TS		0x04
434 #define	NCF_DTS		0x08
435 #define	NCF_DVDROP	0x10
436 #define	NCF_NEGATIVE	0x20
437 #define	NCF_INVALID	0x40
438 #define	NCF_WIP		0x80
439 
440 /*
441  * Flags in negstate.neg_flag
442  */
443 #define NEG_HOT		0x01
444 
445 static bool	cache_neg_evict_cond(u_long lnumcache);
446 
447 /*
448  * Mark an entry as invalid.
449  *
450  * This is called before it starts getting deconstructed.
451  */
452 static void
cache_ncp_invalidate(struct namecache * ncp)453 cache_ncp_invalidate(struct namecache *ncp)
454 {
455 
456 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
457 	    ("%s: entry %p already invalid", __func__, ncp));
458 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
459 	atomic_thread_fence_rel();
460 }
461 
462 /*
463  * Check whether the entry can be safely used.
464  *
465  * All places which elide locks are supposed to call this after they are
466  * done with reading from an entry.
467  */
468 #define cache_ncp_canuse(ncp)	({					\
469 	struct namecache *_ncp = (ncp);					\
470 	u_char _nc_flag;						\
471 									\
472 	atomic_thread_fence_acq();					\
473 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
474 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
475 })
476 
477 /*
478  * Like the above but also checks NCF_WHITE.
479  */
480 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
481 	struct namecache *_ncp = (ncp);					\
482 	u_char _nc_flag;						\
483 									\
484 	atomic_thread_fence_acq();					\
485 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
486 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
487 })
488 
489 VFS_SMR_DECLARE;
490 
491 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
492     "Name cache parameters");
493 
494 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
495 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
496     "Total namecache capacity");
497 
498 u_int ncsizefactor = 2;
499 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
500     "Size factor for namecache");
501 
502 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
503 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
504     "Ratio of negative namecache entries");
505 
506 /*
507  * Negative entry % of namecache capacity above which automatic eviction is allowed.
508  *
509  * Check cache_neg_evict_cond for details.
510  */
511 static u_int ncnegminpct = 3;
512 
513 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
514 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
515     "Negative entry count above which automatic eviction is allowed");
516 
517 /*
518  * Structures associated with name caching.
519  */
520 #define NCHHASH(hash) \
521 	(&nchashtbl[(hash) & nchash])
522 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
523 static u_long __read_mostly	nchash;			/* size of hash table */
524 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
525     "Size of namecache hash table");
526 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
527 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
528 
529 struct nchstats	nchstats;		/* cache effectiveness statistics */
530 
531 static u_int __exclusive_cache_line neg_cycle;
532 
533 #define ncneghash	3
534 #define	numneglists	(ncneghash + 1)
535 
536 struct neglist {
537 	struct mtx		nl_evict_lock;
538 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
539 	TAILQ_HEAD(, namecache) nl_list;
540 	TAILQ_HEAD(, namecache) nl_hotlist;
541 	u_long			nl_hotnum;
542 } __aligned(CACHE_LINE_SIZE);
543 
544 static struct neglist neglists[numneglists];
545 
546 static inline struct neglist *
NCP2NEGLIST(struct namecache * ncp)547 NCP2NEGLIST(struct namecache *ncp)
548 {
549 
550 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
551 }
552 
553 static inline struct negstate *
NCP2NEGSTATE(struct namecache * ncp)554 NCP2NEGSTATE(struct namecache *ncp)
555 {
556 
557 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
558 	return (&ncp->nc_neg);
559 }
560 
561 #define	numbucketlocks (ncbuckethash + 1)
562 static u_int __read_mostly  ncbuckethash;
563 static struct mtx_padalign __read_mostly  *bucketlocks;
564 #define	HASH2BUCKETLOCK(hash) \
565 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
566 
567 #define	numvnodelocks (ncvnodehash + 1)
568 static u_int __read_mostly  ncvnodehash;
569 static struct mtx __read_mostly *vnodelocks;
570 static inline struct mtx *
VP2VNODELOCK(struct vnode * vp)571 VP2VNODELOCK(struct vnode *vp)
572 {
573 
574 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
575 }
576 
577 static void
cache_out_ts(struct namecache * ncp,struct timespec * tsp,int * ticksp)578 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
579 {
580 	struct namecache_ts *ncp_ts;
581 
582 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
583 	    (tsp == NULL && ticksp == NULL),
584 	    ("No NCF_TS"));
585 
586 	if (tsp == NULL)
587 		return;
588 
589 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
590 	*tsp = ncp_ts->nc_time;
591 	*ticksp = ncp_ts->nc_ticks;
592 }
593 
594 #ifdef DEBUG_CACHE
595 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
596 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
597     "VFS namecache enabled");
598 #endif
599 
600 /* Export size information to userland */
601 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
602     sizeof(struct namecache), "sizeof(struct namecache)");
603 
604 /*
605  * The new name cache statistics
606  */
607 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
608     "Name cache statistics");
609 
610 #define STATNODE_ULONG(name, varname, descr)					\
611 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
612 #define STATNODE_COUNTER(name, varname, descr)					\
613 	static COUNTER_U64_DEFINE_EARLY(varname);				\
614 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
615 	    descr);
616 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
617 STATNODE_ULONG(count, numcache, "Number of cache entries");
618 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
619 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
620 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
621 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
622 STATNODE_COUNTER(poszaps, numposzaps,
623     "Number of cache hits (positive) we do not want to cache");
624 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
625 STATNODE_COUNTER(negzaps, numnegzaps,
626     "Number of cache hits (negative) we do not want to cache");
627 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
628 /* These count for vn_getcwd(), too. */
629 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
630 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
631     "Number of fullpath search errors (VOP_VPTOCNP failures)");
632 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
633 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
634 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
635 
636 /*
637  * Debug or developer statistics.
638  */
639 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
640     "Name cache debugging");
641 #define DEBUGNODE_ULONG(name, varname, descr)					\
642 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
643 static u_long zap_bucket_relock_success;
644 DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
645     "Number of successful removals after relocking");
646 static u_long zap_bucket_fail;
647 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
648 static u_long zap_bucket_fail2;
649 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
650 static u_long cache_lock_vnodes_cel_3_failures;
651 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
652     "Number of times 3-way vnode locking failed");
653 
654 static void cache_zap_locked(struct namecache *ncp);
655 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
656     char **retbuf, size_t *buflen, size_t addend);
657 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
658     char **retbuf, size_t *buflen);
659 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
660     char **retbuf, size_t *len, size_t addend);
661 
662 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
663 
664 static inline void
cache_assert_vlp_locked(struct mtx * vlp)665 cache_assert_vlp_locked(struct mtx *vlp)
666 {
667 
668 	if (vlp != NULL)
669 		mtx_assert(vlp, MA_OWNED);
670 }
671 
672 static inline void
cache_assert_vnode_locked(struct vnode * vp)673 cache_assert_vnode_locked(struct vnode *vp)
674 {
675 	struct mtx *vlp;
676 
677 	vlp = VP2VNODELOCK(vp);
678 	cache_assert_vlp_locked(vlp);
679 }
680 
681 /*
682  * Directory vnodes with entries are held for two reasons:
683  * 1. make them less of a target for reclamation in vnlru
684  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
685  *
686  * It will be feasible to stop doing it altogether if all filesystems start
687  * supporting lockless lookup.
688  */
689 static void
cache_hold_vnode(struct vnode * vp)690 cache_hold_vnode(struct vnode *vp)
691 {
692 
693 	cache_assert_vnode_locked(vp);
694 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
695 	vhold(vp);
696 	counter_u64_add(numcachehv, 1);
697 }
698 
699 static void
cache_drop_vnode(struct vnode * vp)700 cache_drop_vnode(struct vnode *vp)
701 {
702 
703 	/*
704 	 * Called after all locks are dropped, meaning we can't assert
705 	 * on the state of v_cache_src.
706 	 */
707 	vdrop(vp);
708 	counter_u64_add(numcachehv, -1);
709 }
710 
711 /*
712  * UMA zones.
713  */
714 static uma_zone_t __read_mostly cache_zone_small;
715 static uma_zone_t __read_mostly cache_zone_small_ts;
716 static uma_zone_t __read_mostly cache_zone_large;
717 static uma_zone_t __read_mostly cache_zone_large_ts;
718 
719 char *
cache_symlink_alloc(size_t size,int flags)720 cache_symlink_alloc(size_t size, int flags)
721 {
722 
723 	if (size < CACHE_ZONE_SMALL_SIZE) {
724 		return (uma_zalloc_smr(cache_zone_small, flags));
725 	}
726 	if (size < CACHE_ZONE_LARGE_SIZE) {
727 		return (uma_zalloc_smr(cache_zone_large, flags));
728 	}
729 	counter_u64_add(symlinktoobig, 1);
730 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
731 	return (NULL);
732 }
733 
734 void
cache_symlink_free(char * string,size_t size)735 cache_symlink_free(char *string, size_t size)
736 {
737 
738 	MPASS(string != NULL);
739 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
740 	    ("%s: size %zu too big", __func__, size));
741 
742 	if (size < CACHE_ZONE_SMALL_SIZE) {
743 		uma_zfree_smr(cache_zone_small, string);
744 		return;
745 	}
746 	if (size < CACHE_ZONE_LARGE_SIZE) {
747 		uma_zfree_smr(cache_zone_large, string);
748 		return;
749 	}
750 	__assert_unreachable();
751 }
752 
753 static struct namecache *
cache_alloc_uma(int len,bool ts)754 cache_alloc_uma(int len, bool ts)
755 {
756 	struct namecache_ts *ncp_ts;
757 	struct namecache *ncp;
758 
759 	if (__predict_false(ts)) {
760 		if (len <= CACHE_PATH_CUTOFF)
761 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
762 		else
763 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
764 		ncp = &ncp_ts->nc_nc;
765 	} else {
766 		if (len <= CACHE_PATH_CUTOFF)
767 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
768 		else
769 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
770 	}
771 	return (ncp);
772 }
773 
774 static void
cache_free_uma(struct namecache * ncp)775 cache_free_uma(struct namecache *ncp)
776 {
777 	struct namecache_ts *ncp_ts;
778 
779 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
780 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
781 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
782 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
783 		else
784 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
785 	} else {
786 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
787 			uma_zfree_smr(cache_zone_small, ncp);
788 		else
789 			uma_zfree_smr(cache_zone_large, ncp);
790 	}
791 }
792 
793 static struct namecache *
cache_alloc(int len,bool ts)794 cache_alloc(int len, bool ts)
795 {
796 	u_long lnumcache;
797 
798 	/*
799 	 * Avoid blowout in namecache entries.
800 	 *
801 	 * Bugs:
802 	 * 1. filesystems may end up trying to add an already existing entry
803 	 * (for example this can happen after a cache miss during concurrent
804 	 * lookup), in which case we will call cache_neg_evict despite not
805 	 * adding anything.
806 	 * 2. the routine may fail to free anything and no provisions are made
807 	 * to make it try harder (see the inside for failure modes)
808 	 * 3. it only ever looks at negative entries.
809 	 */
810 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
811 	if (cache_neg_evict_cond(lnumcache)) {
812 		lnumcache = atomic_load_long(&numcache);
813 	}
814 	if (__predict_false(lnumcache >= ncsize)) {
815 		atomic_subtract_long(&numcache, 1);
816 		counter_u64_add(numdrops, 1);
817 		return (NULL);
818 	}
819 	return (cache_alloc_uma(len, ts));
820 }
821 
822 static void
cache_free(struct namecache * ncp)823 cache_free(struct namecache *ncp)
824 {
825 
826 	MPASS(ncp != NULL);
827 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
828 		cache_drop_vnode(ncp->nc_dvp);
829 	}
830 	cache_free_uma(ncp);
831 	atomic_subtract_long(&numcache, 1);
832 }
833 
834 static void
cache_free_batch(struct cache_freebatch * batch)835 cache_free_batch(struct cache_freebatch *batch)
836 {
837 	struct namecache *ncp, *nnp;
838 	int i;
839 
840 	i = 0;
841 	if (TAILQ_EMPTY(batch))
842 		goto out;
843 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
844 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
845 			cache_drop_vnode(ncp->nc_dvp);
846 		}
847 		cache_free_uma(ncp);
848 		i++;
849 	}
850 	atomic_subtract_long(&numcache, i);
851 out:
852 	SDT_PROBE1(vfs, namecache, purge, batch, i);
853 }
854 
855 /*
856  * Hashing.
857  *
858  * The code was made to use FNV in 2001 and this choice needs to be revisited.
859  *
860  * Short summary of the difficulty:
861  * The longest name which can be inserted is NAME_MAX characters in length (or
862  * 255 at the time of writing this comment), while majority of names used in
863  * practice are significantly shorter (mostly below 10). More importantly
864  * majority of lookups performed find names are even shorter than that.
865  *
866  * This poses a problem where hashes which do better than FNV past word size
867  * (or so) tend to come with additional overhead when finalizing the result,
868  * making them noticeably slower for the most commonly used range.
869  *
870  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
871  *
872  * When looking it up the most time consuming part by a large margin (at least
873  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
874  * input would make the slowest part stand out even more.
875  */
876 
877 /*
878  * TODO: With the value stored we can do better than computing the hash based
879  * on the address.
880  */
881 static void
cache_prehash(struct vnode * vp)882 cache_prehash(struct vnode *vp)
883 {
884 
885 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
886 }
887 
888 static uint32_t
cache_get_hash(char * name,u_char len,struct vnode * dvp)889 cache_get_hash(char *name, u_char len, struct vnode *dvp)
890 {
891 
892 	return (fnv_32_buf(name, len, dvp->v_nchash));
893 }
894 
895 static uint32_t
cache_get_hash_iter_start(struct vnode * dvp)896 cache_get_hash_iter_start(struct vnode *dvp)
897 {
898 
899 	return (dvp->v_nchash);
900 }
901 
902 static uint32_t
cache_get_hash_iter(char c,uint32_t hash)903 cache_get_hash_iter(char c, uint32_t hash)
904 {
905 
906 	return (fnv_32_buf(&c, 1, hash));
907 }
908 
909 static uint32_t
cache_get_hash_iter_finish(uint32_t hash)910 cache_get_hash_iter_finish(uint32_t hash)
911 {
912 
913 	return (hash);
914 }
915 
916 static inline struct nchashhead *
NCP2BUCKET(struct namecache * ncp)917 NCP2BUCKET(struct namecache *ncp)
918 {
919 	uint32_t hash;
920 
921 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
922 	return (NCHHASH(hash));
923 }
924 
925 static inline struct mtx *
NCP2BUCKETLOCK(struct namecache * ncp)926 NCP2BUCKETLOCK(struct namecache *ncp)
927 {
928 	uint32_t hash;
929 
930 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
931 	return (HASH2BUCKETLOCK(hash));
932 }
933 
934 #ifdef INVARIANTS
935 static void
cache_assert_bucket_locked(struct namecache * ncp)936 cache_assert_bucket_locked(struct namecache *ncp)
937 {
938 	struct mtx *blp;
939 
940 	blp = NCP2BUCKETLOCK(ncp);
941 	mtx_assert(blp, MA_OWNED);
942 }
943 
944 static void
cache_assert_bucket_unlocked(struct namecache * ncp)945 cache_assert_bucket_unlocked(struct namecache *ncp)
946 {
947 	struct mtx *blp;
948 
949 	blp = NCP2BUCKETLOCK(ncp);
950 	mtx_assert(blp, MA_NOTOWNED);
951 }
952 #else
953 #define cache_assert_bucket_locked(x) do { } while (0)
954 #define cache_assert_bucket_unlocked(x) do { } while (0)
955 #endif
956 
957 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
958 static void
_cache_sort_vnodes(void ** p1,void ** p2)959 _cache_sort_vnodes(void **p1, void **p2)
960 {
961 	void *tmp;
962 
963 	MPASS(*p1 != NULL || *p2 != NULL);
964 
965 	if (*p1 > *p2) {
966 		tmp = *p2;
967 		*p2 = *p1;
968 		*p1 = tmp;
969 	}
970 }
971 
972 static void
cache_lock_all_buckets(void)973 cache_lock_all_buckets(void)
974 {
975 	u_int i;
976 
977 	for (i = 0; i < numbucketlocks; i++)
978 		mtx_lock(&bucketlocks[i]);
979 }
980 
981 static void
cache_unlock_all_buckets(void)982 cache_unlock_all_buckets(void)
983 {
984 	u_int i;
985 
986 	for (i = 0; i < numbucketlocks; i++)
987 		mtx_unlock(&bucketlocks[i]);
988 }
989 
990 static void
cache_lock_all_vnodes(void)991 cache_lock_all_vnodes(void)
992 {
993 	u_int i;
994 
995 	for (i = 0; i < numvnodelocks; i++)
996 		mtx_lock(&vnodelocks[i]);
997 }
998 
999 static void
cache_unlock_all_vnodes(void)1000 cache_unlock_all_vnodes(void)
1001 {
1002 	u_int i;
1003 
1004 	for (i = 0; i < numvnodelocks; i++)
1005 		mtx_unlock(&vnodelocks[i]);
1006 }
1007 
1008 static int
cache_trylock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1009 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1010 {
1011 
1012 	cache_sort_vnodes(&vlp1, &vlp2);
1013 
1014 	if (vlp1 != NULL) {
1015 		if (!mtx_trylock(vlp1))
1016 			return (EAGAIN);
1017 	}
1018 	if (!mtx_trylock(vlp2)) {
1019 		if (vlp1 != NULL)
1020 			mtx_unlock(vlp1);
1021 		return (EAGAIN);
1022 	}
1023 
1024 	return (0);
1025 }
1026 
1027 static void
cache_lock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1028 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1029 {
1030 
1031 	MPASS(vlp1 != NULL || vlp2 != NULL);
1032 	MPASS(vlp1 <= vlp2);
1033 
1034 	if (vlp1 != NULL)
1035 		mtx_lock(vlp1);
1036 	if (vlp2 != NULL)
1037 		mtx_lock(vlp2);
1038 }
1039 
1040 static void
cache_unlock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1041 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1042 {
1043 
1044 	MPASS(vlp1 != NULL || vlp2 != NULL);
1045 
1046 	if (vlp1 != NULL)
1047 		mtx_unlock(vlp1);
1048 	if (vlp2 != NULL)
1049 		mtx_unlock(vlp2);
1050 }
1051 
1052 static int
sysctl_nchstats(SYSCTL_HANDLER_ARGS)1053 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
1054 {
1055 	struct nchstats snap;
1056 
1057 	if (req->oldptr == NULL)
1058 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
1059 
1060 	snap = nchstats;
1061 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
1062 	snap.ncs_neghits = counter_u64_fetch(numneghits);
1063 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
1064 	    counter_u64_fetch(numnegzaps);
1065 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
1066 	    counter_u64_fetch(nummiss);
1067 
1068 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
1069 }
1070 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
1071     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
1072     "VFS cache effectiveness statistics");
1073 
1074 static int
sysctl_hitpct(SYSCTL_HANDLER_ARGS)1075 sysctl_hitpct(SYSCTL_HANDLER_ARGS)
1076 {
1077 	long poshits, neghits, miss, total;
1078 	long pct;
1079 
1080 	poshits = counter_u64_fetch(numposhits);
1081 	neghits = counter_u64_fetch(numneghits);
1082 	miss = counter_u64_fetch(nummiss);
1083 	total = poshits + neghits + miss;
1084 
1085 	pct = 0;
1086 	if (total != 0)
1087 		pct = ((poshits + neghits) * 100) / total;
1088 	return (sysctl_handle_int(oidp, 0, pct, req));
1089 }
1090 SYSCTL_PROC(_vfs_cache_stats, OID_AUTO, hitpct,
1091     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_hitpct,
1092     "I", "Percentage of hits");
1093 
1094 static void
cache_recalc_neg_min(void)1095 cache_recalc_neg_min(void)
1096 {
1097 
1098 	neg_min = (ncsize * ncnegminpct) / 100;
1099 }
1100 
1101 static int
sysctl_negminpct(SYSCTL_HANDLER_ARGS)1102 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1103 {
1104 	u_int val;
1105 	int error;
1106 
1107 	val = ncnegminpct;
1108 	error = sysctl_handle_int(oidp, &val, 0, req);
1109 	if (error != 0 || req->newptr == NULL)
1110 		return (error);
1111 
1112 	if (val == ncnegminpct)
1113 		return (0);
1114 	if (val < 0 || val > 99)
1115 		return (EINVAL);
1116 	ncnegminpct = val;
1117 	cache_recalc_neg_min();
1118 	return (0);
1119 }
1120 
1121 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1122     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1123     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1124 
1125 #ifdef DEBUG_CACHE
1126 /*
1127  * Grab an atomic snapshot of the name cache hash chain lengths
1128  */
1129 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1130     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1131     "hash table stats");
1132 
1133 static int
sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)1134 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1135 {
1136 	struct nchashhead *ncpp;
1137 	struct namecache *ncp;
1138 	int i, error, n_nchash, *cntbuf;
1139 
1140 retry:
1141 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1142 	if (req->oldptr == NULL)
1143 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1144 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1145 	cache_lock_all_buckets();
1146 	if (n_nchash != nchash + 1) {
1147 		cache_unlock_all_buckets();
1148 		free(cntbuf, M_TEMP);
1149 		goto retry;
1150 	}
1151 	/* Scan hash tables counting entries */
1152 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1153 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1154 			cntbuf[i]++;
1155 	cache_unlock_all_buckets();
1156 	for (error = 0, i = 0; i < n_nchash; i++)
1157 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1158 			break;
1159 	free(cntbuf, M_TEMP);
1160 	return (error);
1161 }
1162 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1163     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1164     "nchash chain lengths");
1165 
1166 static int
sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)1167 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1168 {
1169 	int error;
1170 	struct nchashhead *ncpp;
1171 	struct namecache *ncp;
1172 	int n_nchash;
1173 	int count, maxlength, used, pct;
1174 
1175 	if (!req->oldptr)
1176 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1177 
1178 	cache_lock_all_buckets();
1179 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1180 	used = 0;
1181 	maxlength = 0;
1182 
1183 	/* Scan hash tables for applicable entries */
1184 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1185 		count = 0;
1186 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1187 			count++;
1188 		}
1189 		if (count)
1190 			used++;
1191 		if (maxlength < count)
1192 			maxlength = count;
1193 	}
1194 	n_nchash = nchash + 1;
1195 	cache_unlock_all_buckets();
1196 	pct = (used * 100) / (n_nchash / 100);
1197 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1198 	if (error)
1199 		return (error);
1200 	error = SYSCTL_OUT(req, &used, sizeof(used));
1201 	if (error)
1202 		return (error);
1203 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1204 	if (error)
1205 		return (error);
1206 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1207 	if (error)
1208 		return (error);
1209 	return (0);
1210 }
1211 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1212     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1213     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1214 #endif
1215 
1216 /*
1217  * Negative entries management
1218  *
1219  * Various workloads create plenty of negative entries and barely use them
1220  * afterwards. Moreover malicious users can keep performing bogus lookups
1221  * adding even more entries. For example "make tinderbox" as of writing this
1222  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1223  * negative.
1224  *
1225  * As such, a rather aggressive eviction method is needed. The currently
1226  * employed method is a placeholder.
1227  *
1228  * Entries are split over numneglists separate lists, each of which is further
1229  * split into hot and cold entries. Entries get promoted after getting a hit.
1230  * Eviction happens on addition of new entry.
1231  */
1232 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1233     "Name cache negative entry statistics");
1234 
1235 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1236     "Number of negative cache entries");
1237 
1238 static COUNTER_U64_DEFINE_EARLY(neg_created);
1239 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1240     "Number of created negative entries");
1241 
1242 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1243 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1244     "Number of evicted negative entries");
1245 
1246 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1247 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1248     &neg_evict_skipped_empty,
1249     "Number of times evicting failed due to lack of entries");
1250 
1251 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1252 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1253     &neg_evict_skipped_missed,
1254     "Number of times evicting failed due to target entry disappearing");
1255 
1256 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1257 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1258     &neg_evict_skipped_contended,
1259     "Number of times evicting failed due to contention");
1260 
1261 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1262     "Number of cache hits (negative)");
1263 
1264 static int
sysctl_neg_hot(SYSCTL_HANDLER_ARGS)1265 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1266 {
1267 	int i, out;
1268 
1269 	out = 0;
1270 	for (i = 0; i < numneglists; i++)
1271 		out += neglists[i].nl_hotnum;
1272 
1273 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1274 }
1275 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1276     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1277     "Number of hot negative entries");
1278 
1279 static void
cache_neg_init(struct namecache * ncp)1280 cache_neg_init(struct namecache *ncp)
1281 {
1282 	struct negstate *ns;
1283 
1284 	ncp->nc_flag |= NCF_NEGATIVE;
1285 	ns = NCP2NEGSTATE(ncp);
1286 	ns->neg_flag = 0;
1287 	ns->neg_hit = 0;
1288 	counter_u64_add(neg_created, 1);
1289 }
1290 
1291 #define CACHE_NEG_PROMOTION_THRESH 2
1292 
1293 static bool
cache_neg_hit_prep(struct namecache * ncp)1294 cache_neg_hit_prep(struct namecache *ncp)
1295 {
1296 	struct negstate *ns;
1297 	u_char n;
1298 
1299 	ns = NCP2NEGSTATE(ncp);
1300 	n = atomic_load_char(&ns->neg_hit);
1301 	for (;;) {
1302 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1303 			return (false);
1304 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1305 			break;
1306 	}
1307 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1308 }
1309 
1310 /*
1311  * Nothing to do here but it is provided for completeness as some
1312  * cache_neg_hit_prep callers may end up returning without even
1313  * trying to promote.
1314  */
1315 #define cache_neg_hit_abort(ncp)	do { } while (0)
1316 
1317 static void
cache_neg_hit_finish(struct namecache * ncp)1318 cache_neg_hit_finish(struct namecache *ncp)
1319 {
1320 
1321 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1322 	counter_u64_add(numneghits, 1);
1323 }
1324 
1325 /*
1326  * Move a negative entry to the hot list.
1327  */
1328 static void
cache_neg_promote_locked(struct namecache * ncp)1329 cache_neg_promote_locked(struct namecache *ncp)
1330 {
1331 	struct neglist *nl;
1332 	struct negstate *ns;
1333 
1334 	ns = NCP2NEGSTATE(ncp);
1335 	nl = NCP2NEGLIST(ncp);
1336 	mtx_assert(&nl->nl_lock, MA_OWNED);
1337 	if ((ns->neg_flag & NEG_HOT) == 0) {
1338 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1339 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1340 		nl->nl_hotnum++;
1341 		ns->neg_flag |= NEG_HOT;
1342 	}
1343 }
1344 
1345 /*
1346  * Move a hot negative entry to the cold list.
1347  */
1348 static void
cache_neg_demote_locked(struct namecache * ncp)1349 cache_neg_demote_locked(struct namecache *ncp)
1350 {
1351 	struct neglist *nl;
1352 	struct negstate *ns;
1353 
1354 	ns = NCP2NEGSTATE(ncp);
1355 	nl = NCP2NEGLIST(ncp);
1356 	mtx_assert(&nl->nl_lock, MA_OWNED);
1357 	MPASS(ns->neg_flag & NEG_HOT);
1358 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1359 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1360 	nl->nl_hotnum--;
1361 	ns->neg_flag &= ~NEG_HOT;
1362 	atomic_store_char(&ns->neg_hit, 0);
1363 }
1364 
1365 /*
1366  * Move a negative entry to the hot list if it matches the lookup.
1367  *
1368  * We have to take locks, but they may be contended and in the worst
1369  * case we may need to go off CPU. We don't want to spin within the
1370  * smr section and we can't block with it. Exiting the section means
1371  * the found entry could have been evicted. We are going to look it
1372  * up again.
1373  */
1374 static bool
cache_neg_promote_cond(struct vnode * dvp,struct componentname * cnp,struct namecache * oncp,uint32_t hash)1375 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1376     struct namecache *oncp, uint32_t hash)
1377 {
1378 	struct namecache *ncp;
1379 	struct neglist *nl;
1380 	u_char nc_flag;
1381 
1382 	nl = NCP2NEGLIST(oncp);
1383 
1384 	mtx_lock(&nl->nl_lock);
1385 	/*
1386 	 * For hash iteration.
1387 	 */
1388 	vfs_smr_enter();
1389 
1390 	/*
1391 	 * Avoid all surprises by only succeeding if we got the same entry and
1392 	 * bailing completely otherwise.
1393 	 * XXX There are no provisions to keep the vnode around, meaning we may
1394 	 * end up promoting a negative entry for a *new* vnode and returning
1395 	 * ENOENT on its account. This is the error we want to return anyway
1396 	 * and promotion is harmless.
1397 	 *
1398 	 * In particular at this point there can be a new ncp which matches the
1399 	 * search but hashes to a different neglist.
1400 	 */
1401 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1402 		if (ncp == oncp)
1403 			break;
1404 	}
1405 
1406 	/*
1407 	 * No match to begin with.
1408 	 */
1409 	if (__predict_false(ncp == NULL)) {
1410 		goto out_abort;
1411 	}
1412 
1413 	/*
1414 	 * The newly found entry may be something different...
1415 	 */
1416 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1417 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1418 		goto out_abort;
1419 	}
1420 
1421 	/*
1422 	 * ... and not even negative.
1423 	 */
1424 	nc_flag = atomic_load_char(&ncp->nc_flag);
1425 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1426 		goto out_abort;
1427 	}
1428 
1429 	if (!cache_ncp_canuse(ncp)) {
1430 		goto out_abort;
1431 	}
1432 
1433 	cache_neg_promote_locked(ncp);
1434 	cache_neg_hit_finish(ncp);
1435 	vfs_smr_exit();
1436 	mtx_unlock(&nl->nl_lock);
1437 	return (true);
1438 out_abort:
1439 	vfs_smr_exit();
1440 	mtx_unlock(&nl->nl_lock);
1441 	return (false);
1442 }
1443 
1444 static void
cache_neg_promote(struct namecache * ncp)1445 cache_neg_promote(struct namecache *ncp)
1446 {
1447 	struct neglist *nl;
1448 
1449 	nl = NCP2NEGLIST(ncp);
1450 	mtx_lock(&nl->nl_lock);
1451 	cache_neg_promote_locked(ncp);
1452 	mtx_unlock(&nl->nl_lock);
1453 }
1454 
1455 static void
cache_neg_insert(struct namecache * ncp)1456 cache_neg_insert(struct namecache *ncp)
1457 {
1458 	struct neglist *nl;
1459 
1460 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1461 	cache_assert_bucket_locked(ncp);
1462 	nl = NCP2NEGLIST(ncp);
1463 	mtx_lock(&nl->nl_lock);
1464 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1465 	mtx_unlock(&nl->nl_lock);
1466 	atomic_add_long(&numneg, 1);
1467 }
1468 
1469 static void
cache_neg_remove(struct namecache * ncp)1470 cache_neg_remove(struct namecache *ncp)
1471 {
1472 	struct neglist *nl;
1473 	struct negstate *ns;
1474 
1475 	cache_assert_bucket_locked(ncp);
1476 	nl = NCP2NEGLIST(ncp);
1477 	ns = NCP2NEGSTATE(ncp);
1478 	mtx_lock(&nl->nl_lock);
1479 	if ((ns->neg_flag & NEG_HOT) != 0) {
1480 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1481 		nl->nl_hotnum--;
1482 	} else {
1483 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1484 	}
1485 	mtx_unlock(&nl->nl_lock);
1486 	atomic_subtract_long(&numneg, 1);
1487 }
1488 
1489 static struct neglist *
cache_neg_evict_select_list(void)1490 cache_neg_evict_select_list(void)
1491 {
1492 	struct neglist *nl;
1493 	u_int c;
1494 
1495 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1496 	nl = &neglists[c % numneglists];
1497 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1498 		counter_u64_add(neg_evict_skipped_contended, 1);
1499 		return (NULL);
1500 	}
1501 	return (nl);
1502 }
1503 
1504 static struct namecache *
cache_neg_evict_select_entry(struct neglist * nl)1505 cache_neg_evict_select_entry(struct neglist *nl)
1506 {
1507 	struct namecache *ncp, *lncp;
1508 	struct negstate *ns, *lns;
1509 	int i;
1510 
1511 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1512 	mtx_assert(&nl->nl_lock, MA_OWNED);
1513 	ncp = TAILQ_FIRST(&nl->nl_list);
1514 	if (ncp == NULL)
1515 		return (NULL);
1516 	lncp = ncp;
1517 	lns = NCP2NEGSTATE(lncp);
1518 	for (i = 1; i < 4; i++) {
1519 		ncp = TAILQ_NEXT(ncp, nc_dst);
1520 		if (ncp == NULL)
1521 			break;
1522 		ns = NCP2NEGSTATE(ncp);
1523 		if (ns->neg_hit < lns->neg_hit) {
1524 			lncp = ncp;
1525 			lns = ns;
1526 		}
1527 	}
1528 	return (lncp);
1529 }
1530 
1531 static bool
cache_neg_evict(void)1532 cache_neg_evict(void)
1533 {
1534 	struct namecache *ncp, *ncp2;
1535 	struct neglist *nl;
1536 	struct vnode *dvp;
1537 	struct mtx *dvlp;
1538 	struct mtx *blp;
1539 	uint32_t hash;
1540 	u_char nlen;
1541 	bool evicted;
1542 
1543 	nl = cache_neg_evict_select_list();
1544 	if (nl == NULL) {
1545 		return (false);
1546 	}
1547 
1548 	mtx_lock(&nl->nl_lock);
1549 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1550 	if (ncp != NULL) {
1551 		cache_neg_demote_locked(ncp);
1552 	}
1553 	ncp = cache_neg_evict_select_entry(nl);
1554 	if (ncp == NULL) {
1555 		counter_u64_add(neg_evict_skipped_empty, 1);
1556 		mtx_unlock(&nl->nl_lock);
1557 		mtx_unlock(&nl->nl_evict_lock);
1558 		return (false);
1559 	}
1560 	nlen = ncp->nc_nlen;
1561 	dvp = ncp->nc_dvp;
1562 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1563 	dvlp = VP2VNODELOCK(dvp);
1564 	blp = HASH2BUCKETLOCK(hash);
1565 	mtx_unlock(&nl->nl_lock);
1566 	mtx_unlock(&nl->nl_evict_lock);
1567 	mtx_lock(dvlp);
1568 	mtx_lock(blp);
1569 	/*
1570 	 * Note that since all locks were dropped above, the entry may be
1571 	 * gone or reallocated to be something else.
1572 	 */
1573 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1574 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1575 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1576 			break;
1577 	}
1578 	if (ncp2 == NULL) {
1579 		counter_u64_add(neg_evict_skipped_missed, 1);
1580 		ncp = NULL;
1581 		evicted = false;
1582 	} else {
1583 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1584 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1585 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1586 		    ncp->nc_name);
1587 		cache_zap_locked(ncp);
1588 		counter_u64_add(neg_evicted, 1);
1589 		evicted = true;
1590 	}
1591 	mtx_unlock(blp);
1592 	mtx_unlock(dvlp);
1593 	if (ncp != NULL)
1594 		cache_free(ncp);
1595 	return (evicted);
1596 }
1597 
1598 /*
1599  * Maybe evict a negative entry to create more room.
1600  *
1601  * The ncnegfactor parameter limits what fraction of the total count
1602  * can comprise of negative entries. However, if the cache is just
1603  * warming up this leads to excessive evictions.  As such, ncnegminpct
1604  * (recomputed to neg_min) dictates whether the above should be
1605  * applied.
1606  *
1607  * Try evicting if the cache is close to full capacity regardless of
1608  * other considerations.
1609  */
1610 static bool
cache_neg_evict_cond(u_long lnumcache)1611 cache_neg_evict_cond(u_long lnumcache)
1612 {
1613 	u_long lnumneg;
1614 
1615 	if (ncsize - 1000 < lnumcache)
1616 		goto out_evict;
1617 	lnumneg = atomic_load_long(&numneg);
1618 	if (lnumneg < neg_min)
1619 		return (false);
1620 	if (lnumneg * ncnegfactor < lnumcache)
1621 		return (false);
1622 out_evict:
1623 	return (cache_neg_evict());
1624 }
1625 
1626 /*
1627  * cache_zap_locked():
1628  *
1629  *   Removes a namecache entry from cache, whether it contains an actual
1630  *   pointer to a vnode or if it is just a negative cache entry.
1631  */
1632 static void
cache_zap_locked(struct namecache * ncp)1633 cache_zap_locked(struct namecache *ncp)
1634 {
1635 	struct nchashhead *ncpp;
1636 	struct vnode *dvp, *vp;
1637 
1638 	dvp = ncp->nc_dvp;
1639 	vp = ncp->nc_vp;
1640 
1641 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1642 		cache_assert_vnode_locked(vp);
1643 	cache_assert_vnode_locked(dvp);
1644 	cache_assert_bucket_locked(ncp);
1645 
1646 	cache_ncp_invalidate(ncp);
1647 
1648 	ncpp = NCP2BUCKET(ncp);
1649 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1650 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1651 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1652 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1653 		if (ncp == vp->v_cache_dd) {
1654 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1655 		}
1656 	} else {
1657 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1658 		cache_neg_remove(ncp);
1659 	}
1660 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1661 		if (ncp == dvp->v_cache_dd) {
1662 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1663 		}
1664 	} else {
1665 		LIST_REMOVE(ncp, nc_src);
1666 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1667 			ncp->nc_flag |= NCF_DVDROP;
1668 		}
1669 	}
1670 }
1671 
1672 static void
cache_zap_negative_locked_vnode_kl(struct namecache * ncp,struct vnode * vp)1673 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1674 {
1675 	struct mtx *blp;
1676 
1677 	MPASS(ncp->nc_dvp == vp);
1678 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1679 	cache_assert_vnode_locked(vp);
1680 
1681 	blp = NCP2BUCKETLOCK(ncp);
1682 	mtx_lock(blp);
1683 	cache_zap_locked(ncp);
1684 	mtx_unlock(blp);
1685 }
1686 
1687 static bool
cache_zap_locked_vnode_kl2(struct namecache * ncp,struct vnode * vp,struct mtx ** vlpp)1688 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1689     struct mtx **vlpp)
1690 {
1691 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1692 	struct mtx *blp;
1693 
1694 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1695 	cache_assert_vnode_locked(vp);
1696 
1697 	if (ncp->nc_flag & NCF_NEGATIVE) {
1698 		if (*vlpp != NULL) {
1699 			mtx_unlock(*vlpp);
1700 			*vlpp = NULL;
1701 		}
1702 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1703 		return (true);
1704 	}
1705 
1706 	pvlp = VP2VNODELOCK(vp);
1707 	blp = NCP2BUCKETLOCK(ncp);
1708 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1709 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1710 
1711 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1712 		to_unlock = *vlpp;
1713 		*vlpp = NULL;
1714 	} else {
1715 		if (*vlpp != NULL) {
1716 			mtx_unlock(*vlpp);
1717 			*vlpp = NULL;
1718 		}
1719 		cache_sort_vnodes(&vlp1, &vlp2);
1720 		if (vlp1 == pvlp) {
1721 			mtx_lock(vlp2);
1722 			to_unlock = vlp2;
1723 		} else {
1724 			if (!mtx_trylock(vlp1))
1725 				goto out_relock;
1726 			to_unlock = vlp1;
1727 		}
1728 	}
1729 	mtx_lock(blp);
1730 	cache_zap_locked(ncp);
1731 	mtx_unlock(blp);
1732 	if (to_unlock != NULL)
1733 		mtx_unlock(to_unlock);
1734 	return (true);
1735 
1736 out_relock:
1737 	mtx_unlock(vlp2);
1738 	mtx_lock(vlp1);
1739 	mtx_lock(vlp2);
1740 	MPASS(*vlpp == NULL);
1741 	*vlpp = vlp1;
1742 	return (false);
1743 }
1744 
1745 /*
1746  * If trylocking failed we can get here. We know enough to take all needed locks
1747  * in the right order and re-lookup the entry.
1748  */
1749 static int
cache_zap_unlocked_bucket(struct namecache * ncp,struct componentname * cnp,struct vnode * dvp,struct mtx * dvlp,struct mtx * vlp,uint32_t hash,struct mtx * blp)1750 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1751     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1752     struct mtx *blp)
1753 {
1754 	struct namecache *rncp;
1755 	struct mtx *rvlp;
1756 
1757 	cache_assert_bucket_unlocked(ncp);
1758 
1759 	cache_sort_vnodes(&dvlp, &vlp);
1760 	cache_lock_vnodes(dvlp, vlp);
1761 	mtx_lock(blp);
1762 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1763 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1764 		    rncp->nc_nlen == cnp->cn_namelen &&
1765 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1766 			break;
1767 	}
1768 
1769 	if (rncp == NULL)
1770 		goto out_mismatch;
1771 
1772 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1773 		rvlp = VP2VNODELOCK(rncp->nc_vp);
1774 	else
1775 		rvlp = NULL;
1776 	if (rvlp != vlp)
1777 		goto out_mismatch;
1778 
1779 	cache_zap_locked(rncp);
1780 	mtx_unlock(blp);
1781 	cache_unlock_vnodes(dvlp, vlp);
1782 	atomic_add_long(&zap_bucket_relock_success, 1);
1783 	return (0);
1784 
1785 out_mismatch:
1786 	mtx_unlock(blp);
1787 	cache_unlock_vnodes(dvlp, vlp);
1788 	return (EAGAIN);
1789 }
1790 
1791 static int __noinline
cache_zap_locked_bucket(struct namecache * ncp,struct componentname * cnp,uint32_t hash,struct mtx * blp)1792 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1793     uint32_t hash, struct mtx *blp)
1794 {
1795 	struct mtx *dvlp, *vlp;
1796 	struct vnode *dvp;
1797 
1798 	cache_assert_bucket_locked(ncp);
1799 
1800 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1801 	vlp = NULL;
1802 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1803 		vlp = VP2VNODELOCK(ncp->nc_vp);
1804 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1805 		cache_zap_locked(ncp);
1806 		mtx_unlock(blp);
1807 		cache_unlock_vnodes(dvlp, vlp);
1808 		return (0);
1809 	}
1810 
1811 	dvp = ncp->nc_dvp;
1812 	mtx_unlock(blp);
1813 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1814 }
1815 
1816 static __noinline int
cache_remove_cnp(struct vnode * dvp,struct componentname * cnp)1817 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1818 {
1819 	struct namecache *ncp;
1820 	struct mtx *blp;
1821 	struct mtx *dvlp, *dvlp2;
1822 	uint32_t hash;
1823 	int error;
1824 
1825 	if (cnp->cn_namelen == 2 &&
1826 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1827 		dvlp = VP2VNODELOCK(dvp);
1828 		dvlp2 = NULL;
1829 		mtx_lock(dvlp);
1830 retry_dotdot:
1831 		ncp = dvp->v_cache_dd;
1832 		if (ncp == NULL) {
1833 			mtx_unlock(dvlp);
1834 			if (dvlp2 != NULL)
1835 				mtx_unlock(dvlp2);
1836 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1837 			return (0);
1838 		}
1839 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1840 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1841 				goto retry_dotdot;
1842 			MPASS(dvp->v_cache_dd == NULL);
1843 			mtx_unlock(dvlp);
1844 			if (dvlp2 != NULL)
1845 				mtx_unlock(dvlp2);
1846 			cache_free(ncp);
1847 		} else {
1848 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1849 			mtx_unlock(dvlp);
1850 			if (dvlp2 != NULL)
1851 				mtx_unlock(dvlp2);
1852 		}
1853 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1854 		return (1);
1855 	}
1856 
1857 	/*
1858 	 * XXX note that access here is completely unlocked with no provisions
1859 	 * to keep the hash allocated. If one is sufficiently unlucky a
1860 	 * parallel cache resize can reallocate the hash, unmap backing pages
1861 	 * and cause the empty check below to fault.
1862 	 *
1863 	 * Fixing this has epsilon priority, but can be done with no overhead
1864 	 * for this codepath with sufficient effort.
1865 	 */
1866 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1867 	blp = HASH2BUCKETLOCK(hash);
1868 retry:
1869 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1870 		goto out_no_entry;
1871 
1872 	mtx_lock(blp);
1873 
1874 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1875 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1876 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1877 			break;
1878 	}
1879 
1880 	if (ncp == NULL) {
1881 		mtx_unlock(blp);
1882 		goto out_no_entry;
1883 	}
1884 
1885 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1886 	if (__predict_false(error != 0)) {
1887 		atomic_add_long(&zap_bucket_fail, 1);
1888 		goto retry;
1889 	}
1890 	counter_u64_add(numposzaps, 1);
1891 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1892 	cache_free(ncp);
1893 	return (1);
1894 out_no_entry:
1895 	counter_u64_add(nummisszap, 1);
1896 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1897 	return (0);
1898 }
1899 
1900 static int __noinline
cache_lookup_dot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1901 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1902     struct timespec *tsp, int *ticksp)
1903 {
1904 	int ltype;
1905 
1906 	*vpp = dvp;
1907 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1908 	if (tsp != NULL)
1909 		timespecclear(tsp);
1910 	if (ticksp != NULL)
1911 		*ticksp = ticks;
1912 	vrefact(*vpp);
1913 	/*
1914 	 * When we lookup "." we still can be asked to lock it
1915 	 * differently...
1916 	 */
1917 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1918 	if (ltype != VOP_ISLOCKED(*vpp)) {
1919 		if (ltype == LK_EXCLUSIVE) {
1920 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1921 			if (VN_IS_DOOMED((*vpp))) {
1922 				/* forced unmount */
1923 				vrele(*vpp);
1924 				*vpp = NULL;
1925 				return (ENOENT);
1926 			}
1927 		} else
1928 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1929 	}
1930 	return (-1);
1931 }
1932 
1933 static int __noinline
cache_lookup_dotdot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1934 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1935     struct timespec *tsp, int *ticksp)
1936 {
1937 	struct namecache_ts *ncp_ts;
1938 	struct namecache *ncp;
1939 	struct mtx *dvlp;
1940 	enum vgetstate vs;
1941 	int error, ltype;
1942 	bool whiteout;
1943 
1944 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1945 
1946 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1947 		cache_remove_cnp(dvp, cnp);
1948 		return (0);
1949 	}
1950 
1951 retry:
1952 	dvlp = VP2VNODELOCK(dvp);
1953 	mtx_lock(dvlp);
1954 	ncp = dvp->v_cache_dd;
1955 	if (ncp == NULL) {
1956 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1957 		mtx_unlock(dvlp);
1958 		return (0);
1959 	}
1960 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1961 		if (ncp->nc_flag & NCF_NEGATIVE)
1962 			*vpp = NULL;
1963 		else
1964 			*vpp = ncp->nc_vp;
1965 	} else
1966 		*vpp = ncp->nc_dvp;
1967 	if (*vpp == NULL)
1968 		goto negative_success;
1969 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1970 	cache_out_ts(ncp, tsp, ticksp);
1971 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1972 	    NCF_DTS && tsp != NULL) {
1973 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1974 		*tsp = ncp_ts->nc_dotdottime;
1975 	}
1976 
1977 	MPASS(dvp != *vpp);
1978 	ltype = VOP_ISLOCKED(dvp);
1979 	VOP_UNLOCK(dvp);
1980 	vs = vget_prep(*vpp);
1981 	mtx_unlock(dvlp);
1982 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1983 	vn_lock(dvp, ltype | LK_RETRY);
1984 	if (VN_IS_DOOMED(dvp)) {
1985 		if (error == 0)
1986 			vput(*vpp);
1987 		*vpp = NULL;
1988 		return (ENOENT);
1989 	}
1990 	if (error) {
1991 		*vpp = NULL;
1992 		goto retry;
1993 	}
1994 	return (-1);
1995 negative_success:
1996 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1997 		if (cnp->cn_flags & ISLASTCN) {
1998 			counter_u64_add(numnegzaps, 1);
1999 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
2000 			mtx_unlock(dvlp);
2001 			cache_free(ncp);
2002 			return (0);
2003 		}
2004 	}
2005 
2006 	whiteout = (ncp->nc_flag & NCF_WHITE);
2007 	cache_out_ts(ncp, tsp, ticksp);
2008 	if (cache_neg_hit_prep(ncp))
2009 		cache_neg_promote(ncp);
2010 	else
2011 		cache_neg_hit_finish(ncp);
2012 	mtx_unlock(dvlp);
2013 	if (whiteout)
2014 		cnp->cn_flags |= ISWHITEOUT;
2015 	return (ENOENT);
2016 }
2017 
2018 /**
2019  * Lookup a name in the name cache
2020  *
2021  * # Arguments
2022  *
2023  * - dvp:	Parent directory in which to search.
2024  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
2025  * - cnp:	Parameters of the name search.  The most interesting bits of
2026  *   		the cn_flags field have the following meanings:
2027  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
2028  *   			it up.
2029  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
2030  * - tsp:	Return storage for cache timestamp.  On a successful (positive
2031  *   		or negative) lookup, tsp will be filled with any timespec that
2032  *   		was stored when this cache entry was created.  However, it will
2033  *   		be clear for "." entries.
2034  * - ticks:	Return storage for alternate cache timestamp.  On a successful
2035  *   		(positive or negative) lookup, it will contain the ticks value
2036  *   		that was current when the cache entry was created, unless cnp
2037  *   		was ".".
2038  *
2039  * Either both tsp and ticks have to be provided or neither of them.
2040  *
2041  * # Returns
2042  *
2043  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
2044  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
2045  *		to a forced unmount.  vpp will not be modified.  If the entry
2046  *		is a whiteout, then the ISWHITEOUT flag will be set in
2047  *		cnp->cn_flags.
2048  * - 0:		A cache miss.  vpp will not be modified.
2049  *
2050  * # Locking
2051  *
2052  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
2053  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
2054  * lock is not recursively acquired.
2055  */
2056 static int __noinline
cache_lookup_fallback(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)2057 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2058     struct timespec *tsp, int *ticksp)
2059 {
2060 	struct namecache *ncp;
2061 	struct mtx *blp;
2062 	uint32_t hash;
2063 	enum vgetstate vs;
2064 	int error;
2065 	bool whiteout;
2066 
2067 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2068 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
2069 
2070 retry:
2071 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2072 	blp = HASH2BUCKETLOCK(hash);
2073 	mtx_lock(blp);
2074 
2075 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2076 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2077 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2078 			break;
2079 	}
2080 
2081 	if (__predict_false(ncp == NULL)) {
2082 		mtx_unlock(blp);
2083 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2084 		counter_u64_add(nummiss, 1);
2085 		return (0);
2086 	}
2087 
2088 	if (ncp->nc_flag & NCF_NEGATIVE)
2089 		goto negative_success;
2090 
2091 	counter_u64_add(numposhits, 1);
2092 	*vpp = ncp->nc_vp;
2093 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2094 	cache_out_ts(ncp, tsp, ticksp);
2095 	MPASS(dvp != *vpp);
2096 	vs = vget_prep(*vpp);
2097 	mtx_unlock(blp);
2098 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2099 	if (error) {
2100 		*vpp = NULL;
2101 		goto retry;
2102 	}
2103 	return (-1);
2104 negative_success:
2105 	/*
2106 	 * We don't get here with regular lookup apart from corner cases.
2107 	 */
2108 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
2109 		if (cnp->cn_flags & ISLASTCN) {
2110 			counter_u64_add(numnegzaps, 1);
2111 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2112 			if (__predict_false(error != 0)) {
2113 				atomic_add_long(&zap_bucket_fail2, 1);
2114 				goto retry;
2115 			}
2116 			cache_free(ncp);
2117 			return (0);
2118 		}
2119 	}
2120 
2121 	whiteout = (ncp->nc_flag & NCF_WHITE);
2122 	cache_out_ts(ncp, tsp, ticksp);
2123 	if (cache_neg_hit_prep(ncp))
2124 		cache_neg_promote(ncp);
2125 	else
2126 		cache_neg_hit_finish(ncp);
2127 	mtx_unlock(blp);
2128 	if (whiteout)
2129 		cnp->cn_flags |= ISWHITEOUT;
2130 	return (ENOENT);
2131 }
2132 
2133 int
cache_lookup(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)2134 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2135     struct timespec *tsp, int *ticksp)
2136 {
2137 	struct namecache *ncp;
2138 	uint32_t hash;
2139 	enum vgetstate vs;
2140 	int error;
2141 	bool whiteout, neg_promote;
2142 	u_short nc_flag;
2143 
2144 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2145 
2146 #ifdef DEBUG_CACHE
2147 	if (__predict_false(!doingcache)) {
2148 		cnp->cn_flags &= ~MAKEENTRY;
2149 		return (0);
2150 	}
2151 #endif
2152 
2153 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2154 		if (cnp->cn_namelen == 1)
2155 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2156 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2157 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2158 	}
2159 
2160 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2161 
2162 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2163 		cache_remove_cnp(dvp, cnp);
2164 		return (0);
2165 	}
2166 
2167 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2168 	vfs_smr_enter();
2169 
2170 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2171 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2172 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2173 			break;
2174 	}
2175 
2176 	if (__predict_false(ncp == NULL)) {
2177 		vfs_smr_exit();
2178 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2179 		counter_u64_add(nummiss, 1);
2180 		return (0);
2181 	}
2182 
2183 	nc_flag = atomic_load_char(&ncp->nc_flag);
2184 	if (nc_flag & NCF_NEGATIVE)
2185 		goto negative_success;
2186 
2187 	counter_u64_add(numposhits, 1);
2188 	*vpp = ncp->nc_vp;
2189 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2190 	cache_out_ts(ncp, tsp, ticksp);
2191 	MPASS(dvp != *vpp);
2192 	if (!cache_ncp_canuse(ncp)) {
2193 		vfs_smr_exit();
2194 		*vpp = NULL;
2195 		goto out_fallback;
2196 	}
2197 	vs = vget_prep_smr(*vpp);
2198 	vfs_smr_exit();
2199 	if (__predict_false(vs == VGET_NONE)) {
2200 		*vpp = NULL;
2201 		goto out_fallback;
2202 	}
2203 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2204 	if (error) {
2205 		*vpp = NULL;
2206 		goto out_fallback;
2207 	}
2208 	return (-1);
2209 negative_success:
2210 	if (cnp->cn_nameiop == CREATE) {
2211 		if (cnp->cn_flags & ISLASTCN) {
2212 			vfs_smr_exit();
2213 			goto out_fallback;
2214 		}
2215 	}
2216 
2217 	cache_out_ts(ncp, tsp, ticksp);
2218 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2219 	neg_promote = cache_neg_hit_prep(ncp);
2220 	if (!cache_ncp_canuse(ncp)) {
2221 		cache_neg_hit_abort(ncp);
2222 		vfs_smr_exit();
2223 		goto out_fallback;
2224 	}
2225 	if (neg_promote) {
2226 		vfs_smr_exit();
2227 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2228 			goto out_fallback;
2229 	} else {
2230 		cache_neg_hit_finish(ncp);
2231 		vfs_smr_exit();
2232 	}
2233 	if (whiteout)
2234 		cnp->cn_flags |= ISWHITEOUT;
2235 	return (ENOENT);
2236 out_fallback:
2237 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2238 }
2239 
2240 struct celockstate {
2241 	struct mtx *vlp[3];
2242 	struct mtx *blp[2];
2243 };
2244 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2245 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2246 
2247 static inline void
cache_celockstate_init(struct celockstate * cel)2248 cache_celockstate_init(struct celockstate *cel)
2249 {
2250 
2251 	bzero(cel, sizeof(*cel));
2252 }
2253 
2254 static void
cache_lock_vnodes_cel(struct celockstate * cel,struct vnode * vp,struct vnode * dvp)2255 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2256     struct vnode *dvp)
2257 {
2258 	struct mtx *vlp1, *vlp2;
2259 
2260 	MPASS(cel->vlp[0] == NULL);
2261 	MPASS(cel->vlp[1] == NULL);
2262 	MPASS(cel->vlp[2] == NULL);
2263 
2264 	MPASS(vp != NULL || dvp != NULL);
2265 
2266 	vlp1 = VP2VNODELOCK(vp);
2267 	vlp2 = VP2VNODELOCK(dvp);
2268 	cache_sort_vnodes(&vlp1, &vlp2);
2269 
2270 	if (vlp1 != NULL) {
2271 		mtx_lock(vlp1);
2272 		cel->vlp[0] = vlp1;
2273 	}
2274 	mtx_lock(vlp2);
2275 	cel->vlp[1] = vlp2;
2276 }
2277 
2278 static void
cache_unlock_vnodes_cel(struct celockstate * cel)2279 cache_unlock_vnodes_cel(struct celockstate *cel)
2280 {
2281 
2282 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2283 
2284 	if (cel->vlp[0] != NULL)
2285 		mtx_unlock(cel->vlp[0]);
2286 	if (cel->vlp[1] != NULL)
2287 		mtx_unlock(cel->vlp[1]);
2288 	if (cel->vlp[2] != NULL)
2289 		mtx_unlock(cel->vlp[2]);
2290 }
2291 
2292 static bool
cache_lock_vnodes_cel_3(struct celockstate * cel,struct vnode * vp)2293 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2294 {
2295 	struct mtx *vlp;
2296 	bool ret;
2297 
2298 	cache_assert_vlp_locked(cel->vlp[0]);
2299 	cache_assert_vlp_locked(cel->vlp[1]);
2300 	MPASS(cel->vlp[2] == NULL);
2301 
2302 	MPASS(vp != NULL);
2303 	vlp = VP2VNODELOCK(vp);
2304 
2305 	ret = true;
2306 	if (vlp >= cel->vlp[1]) {
2307 		mtx_lock(vlp);
2308 	} else {
2309 		if (mtx_trylock(vlp))
2310 			goto out;
2311 		cache_unlock_vnodes_cel(cel);
2312 		atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
2313 		if (vlp < cel->vlp[0]) {
2314 			mtx_lock(vlp);
2315 			mtx_lock(cel->vlp[0]);
2316 			mtx_lock(cel->vlp[1]);
2317 		} else {
2318 			if (cel->vlp[0] != NULL)
2319 				mtx_lock(cel->vlp[0]);
2320 			mtx_lock(vlp);
2321 			mtx_lock(cel->vlp[1]);
2322 		}
2323 		ret = false;
2324 	}
2325 out:
2326 	cel->vlp[2] = vlp;
2327 	return (ret);
2328 }
2329 
2330 static void
cache_lock_buckets_cel(struct celockstate * cel,struct mtx * blp1,struct mtx * blp2)2331 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2332     struct mtx *blp2)
2333 {
2334 
2335 	MPASS(cel->blp[0] == NULL);
2336 	MPASS(cel->blp[1] == NULL);
2337 
2338 	cache_sort_vnodes(&blp1, &blp2);
2339 
2340 	if (blp1 != NULL) {
2341 		mtx_lock(blp1);
2342 		cel->blp[0] = blp1;
2343 	}
2344 	mtx_lock(blp2);
2345 	cel->blp[1] = blp2;
2346 }
2347 
2348 static void
cache_unlock_buckets_cel(struct celockstate * cel)2349 cache_unlock_buckets_cel(struct celockstate *cel)
2350 {
2351 
2352 	if (cel->blp[0] != NULL)
2353 		mtx_unlock(cel->blp[0]);
2354 	mtx_unlock(cel->blp[1]);
2355 }
2356 
2357 /*
2358  * Lock part of the cache affected by the insertion.
2359  *
2360  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2361  * However, insertion can result in removal of an old entry. In this
2362  * case we have an additional vnode and bucketlock pair to lock.
2363  *
2364  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2365  * preserving the locking order (smaller address first).
2366  */
2367 static void
cache_enter_lock(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2368 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2369     uint32_t hash)
2370 {
2371 	struct namecache *ncp;
2372 	struct mtx *blps[2];
2373 	u_char nc_flag;
2374 
2375 	blps[0] = HASH2BUCKETLOCK(hash);
2376 	for (;;) {
2377 		blps[1] = NULL;
2378 		cache_lock_vnodes_cel(cel, dvp, vp);
2379 		if (vp == NULL || vp->v_type != VDIR)
2380 			break;
2381 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2382 		if (ncp == NULL)
2383 			break;
2384 		nc_flag = atomic_load_char(&ncp->nc_flag);
2385 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2386 			break;
2387 		MPASS(ncp->nc_dvp == vp);
2388 		blps[1] = NCP2BUCKETLOCK(ncp);
2389 		if ((nc_flag & NCF_NEGATIVE) != 0)
2390 			break;
2391 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2392 			break;
2393 		/*
2394 		 * All vnodes got re-locked. Re-validate the state and if
2395 		 * nothing changed we are done. Otherwise restart.
2396 		 */
2397 		if (ncp == vp->v_cache_dd &&
2398 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2399 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2400 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2401 			break;
2402 		cache_unlock_vnodes_cel(cel);
2403 		cel->vlp[0] = NULL;
2404 		cel->vlp[1] = NULL;
2405 		cel->vlp[2] = NULL;
2406 	}
2407 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2408 }
2409 
2410 static void
cache_enter_lock_dd(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2411 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2412     uint32_t hash)
2413 {
2414 	struct namecache *ncp;
2415 	struct mtx *blps[2];
2416 	u_char nc_flag;
2417 
2418 	blps[0] = HASH2BUCKETLOCK(hash);
2419 	for (;;) {
2420 		blps[1] = NULL;
2421 		cache_lock_vnodes_cel(cel, dvp, vp);
2422 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2423 		if (ncp == NULL)
2424 			break;
2425 		nc_flag = atomic_load_char(&ncp->nc_flag);
2426 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2427 			break;
2428 		MPASS(ncp->nc_dvp == dvp);
2429 		blps[1] = NCP2BUCKETLOCK(ncp);
2430 		if ((nc_flag & NCF_NEGATIVE) != 0)
2431 			break;
2432 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2433 			break;
2434 		if (ncp == dvp->v_cache_dd &&
2435 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2436 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2437 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2438 			break;
2439 		cache_unlock_vnodes_cel(cel);
2440 		cel->vlp[0] = NULL;
2441 		cel->vlp[1] = NULL;
2442 		cel->vlp[2] = NULL;
2443 	}
2444 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2445 }
2446 
2447 static void
cache_enter_unlock(struct celockstate * cel)2448 cache_enter_unlock(struct celockstate *cel)
2449 {
2450 
2451 	cache_unlock_buckets_cel(cel);
2452 	cache_unlock_vnodes_cel(cel);
2453 }
2454 
2455 static void __noinline
cache_enter_dotdot_prep(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)2456 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2457     struct componentname *cnp)
2458 {
2459 	struct celockstate cel;
2460 	struct namecache *ncp;
2461 	uint32_t hash;
2462 	int len;
2463 
2464 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2465 		return;
2466 	len = cnp->cn_namelen;
2467 	cache_celockstate_init(&cel);
2468 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2469 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2470 	ncp = dvp->v_cache_dd;
2471 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2472 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2473 		cache_zap_locked(ncp);
2474 	} else {
2475 		ncp = NULL;
2476 	}
2477 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2478 	cache_enter_unlock(&cel);
2479 	if (ncp != NULL)
2480 		cache_free(ncp);
2481 }
2482 
2483 /*
2484  * Add an entry to the cache.
2485  */
2486 void
cache_enter_time(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp)2487 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2488     struct timespec *tsp, struct timespec *dtsp)
2489 {
2490 	struct celockstate cel;
2491 	struct namecache *ncp, *n2, *ndd;
2492 	struct namecache_ts *ncp_ts;
2493 	struct nchashhead *ncpp;
2494 	uint32_t hash;
2495 	int flag;
2496 	int len;
2497 
2498 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2499 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2500 	    NAME_MAX));
2501 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2502 	VNPASS(dvp->v_type != VNON, dvp);
2503 	if (vp != NULL) {
2504 		VNPASS(!VN_IS_DOOMED(vp), vp);
2505 		VNPASS(vp->v_type != VNON, vp);
2506 	}
2507 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2508 		KASSERT(dvp == vp,
2509 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2510 		    dvp, vp));
2511 	} else {
2512 		KASSERT(dvp != vp,
2513 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2514 		    cnp->cn_nameptr, dvp));
2515 	}
2516 
2517 #ifdef DEBUG_CACHE
2518 	if (__predict_false(!doingcache))
2519 		return;
2520 #endif
2521 
2522 	flag = 0;
2523 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2524 		if (cnp->cn_namelen == 1)
2525 			return;
2526 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2527 			cache_enter_dotdot_prep(dvp, vp, cnp);
2528 			flag = NCF_ISDOTDOT;
2529 		}
2530 	}
2531 
2532 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2533 	if (ncp == NULL)
2534 		return;
2535 
2536 	cache_celockstate_init(&cel);
2537 	ndd = NULL;
2538 	ncp_ts = NULL;
2539 
2540 	/*
2541 	 * Calculate the hash key and setup as much of the new
2542 	 * namecache entry as possible before acquiring the lock.
2543 	 */
2544 	ncp->nc_flag = flag | NCF_WIP;
2545 	ncp->nc_vp = vp;
2546 	if (vp == NULL)
2547 		cache_neg_init(ncp);
2548 	ncp->nc_dvp = dvp;
2549 	if (tsp != NULL) {
2550 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2551 		ncp_ts->nc_time = *tsp;
2552 		ncp_ts->nc_ticks = ticks;
2553 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2554 		if (dtsp != NULL) {
2555 			ncp_ts->nc_dotdottime = *dtsp;
2556 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2557 		}
2558 	}
2559 	len = ncp->nc_nlen = cnp->cn_namelen;
2560 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2561 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2562 	ncp->nc_name[len] = '\0';
2563 	cache_enter_lock(&cel, dvp, vp, hash);
2564 
2565 	/*
2566 	 * See if this vnode or negative entry is already in the cache
2567 	 * with this name.  This can happen with concurrent lookups of
2568 	 * the same path name.
2569 	 */
2570 	ncpp = NCHHASH(hash);
2571 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2572 		if (n2->nc_dvp == dvp &&
2573 		    n2->nc_nlen == cnp->cn_namelen &&
2574 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2575 			MPASS(cache_ncp_canuse(n2));
2576 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2577 				KASSERT(vp == NULL,
2578 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2579 				    __func__, NULL, vp, cnp->cn_nameptr));
2580 			else
2581 				KASSERT(n2->nc_vp == vp,
2582 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2583 				    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2584 			/*
2585 			 * Entries are supposed to be immutable unless in the
2586 			 * process of getting destroyed. Accommodating for
2587 			 * changing timestamps is possible but not worth it.
2588 			 * This should be harmless in terms of correctness, in
2589 			 * the worst case resulting in an earlier expiration.
2590 			 * Alternatively, the found entry can be replaced
2591 			 * altogether.
2592 			 */
2593 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2594 #if 0
2595 			if (tsp != NULL) {
2596 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2597 				    ("no NCF_TS"));
2598 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2599 				n2_ts->nc_time = ncp_ts->nc_time;
2600 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2601 				if (dtsp != NULL) {
2602 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2603 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2604 				}
2605 			}
2606 #endif
2607 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2608 			    vp);
2609 			goto out_unlock_free;
2610 		}
2611 	}
2612 
2613 	if (flag == NCF_ISDOTDOT) {
2614 		/*
2615 		 * See if we are trying to add .. entry, but some other lookup
2616 		 * has populated v_cache_dd pointer already.
2617 		 */
2618 		if (dvp->v_cache_dd != NULL)
2619 			goto out_unlock_free;
2620 		KASSERT(vp == NULL || vp->v_type == VDIR,
2621 		    ("wrong vnode type %p", vp));
2622 		atomic_thread_fence_rel();
2623 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2624 	}
2625 
2626 	if (vp != NULL) {
2627 		if (flag != NCF_ISDOTDOT) {
2628 			/*
2629 			 * For this case, the cache entry maps both the
2630 			 * directory name in it and the name ".." for the
2631 			 * directory's parent.
2632 			 */
2633 			if ((ndd = vp->v_cache_dd) != NULL) {
2634 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2635 					cache_zap_locked(ndd);
2636 				else
2637 					ndd = NULL;
2638 			}
2639 			atomic_thread_fence_rel();
2640 			atomic_store_ptr(&vp->v_cache_dd, ncp);
2641 		} else if (vp->v_type != VDIR) {
2642 			if (vp->v_cache_dd != NULL) {
2643 				atomic_store_ptr(&vp->v_cache_dd, NULL);
2644 			}
2645 		}
2646 	}
2647 
2648 	if (flag != NCF_ISDOTDOT) {
2649 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2650 			cache_hold_vnode(dvp);
2651 		}
2652 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2653 	}
2654 
2655 	/*
2656 	 * If the entry is "negative", we place it into the
2657 	 * "negative" cache queue, otherwise, we place it into the
2658 	 * destination vnode's cache entries queue.
2659 	 */
2660 	if (vp != NULL) {
2661 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2662 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2663 		    vp);
2664 	} else {
2665 		if (cnp->cn_flags & ISWHITEOUT)
2666 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2667 		cache_neg_insert(ncp);
2668 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2669 		    ncp->nc_name);
2670 	}
2671 
2672 	/*
2673 	 * Insert the new namecache entry into the appropriate chain
2674 	 * within the cache entries table.
2675 	 */
2676 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2677 
2678 	atomic_thread_fence_rel();
2679 	/*
2680 	 * Mark the entry as fully constructed.
2681 	 * It is immutable past this point until its removal.
2682 	 */
2683 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2684 
2685 	cache_enter_unlock(&cel);
2686 	if (ndd != NULL)
2687 		cache_free(ndd);
2688 	return;
2689 out_unlock_free:
2690 	cache_enter_unlock(&cel);
2691 	cache_free(ncp);
2692 	return;
2693 }
2694 
2695 /*
2696  * A variant of the above accepting flags.
2697  *
2698  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2699  *
2700  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2701  * happens to match and it is doing it in an inefficient manner. It was added
2702  * to accommodate NFS which runs into a case where the target for a given name
2703  * may change from under it. Note this does nothing to solve the following
2704  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2705  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2706  */
2707 void
cache_enter_time_flags(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp,int flags)2708 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2709     struct timespec *tsp, struct timespec *dtsp, int flags)
2710 {
2711 
2712 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2713 
2714 	if (flags & VFS_CACHE_DROPOLD)
2715 		cache_remove_cnp(dvp, cnp);
2716 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2717 }
2718 
2719 static u_long
cache_roundup_2(u_long val)2720 cache_roundup_2(u_long val)
2721 {
2722 	u_long res;
2723 
2724 	for (res = 1; res <= val; res <<= 1)
2725 		continue;
2726 
2727 	return (res);
2728 }
2729 
2730 static struct nchashhead *
nchinittbl(u_long elements,u_long * hashmask)2731 nchinittbl(u_long elements, u_long *hashmask)
2732 {
2733 	struct nchashhead *hashtbl;
2734 	u_long hashsize, i;
2735 
2736 	hashsize = cache_roundup_2(elements) / 2;
2737 
2738 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2739 	for (i = 0; i < hashsize; i++)
2740 		CK_SLIST_INIT(&hashtbl[i]);
2741 	*hashmask = hashsize - 1;
2742 	return (hashtbl);
2743 }
2744 
2745 static void
ncfreetbl(struct nchashhead * hashtbl)2746 ncfreetbl(struct nchashhead *hashtbl)
2747 {
2748 
2749 	free(hashtbl, M_VFSCACHE);
2750 }
2751 
2752 /*
2753  * Name cache initialization, from vfs_init() when we are booting
2754  */
2755 static void
nchinit(void * dummy __unused)2756 nchinit(void *dummy __unused)
2757 {
2758 	u_int i;
2759 
2760 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2761 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2762 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2763 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2764 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2765 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2766 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2767 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2768 
2769 	VFS_SMR_ZONE_SET(cache_zone_small);
2770 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2771 	VFS_SMR_ZONE_SET(cache_zone_large);
2772 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2773 
2774 	ncsize = desiredvnodes * ncsizefactor;
2775 	cache_recalc_neg_min();
2776 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2777 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2778 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2779 		ncbuckethash = 7;
2780 	if (ncbuckethash > nchash)
2781 		ncbuckethash = nchash;
2782 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2783 	    M_WAITOK | M_ZERO);
2784 	for (i = 0; i < numbucketlocks; i++)
2785 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2786 	ncvnodehash = ncbuckethash;
2787 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2788 	    M_WAITOK | M_ZERO);
2789 	for (i = 0; i < numvnodelocks; i++)
2790 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2791 
2792 	for (i = 0; i < numneglists; i++) {
2793 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2794 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2795 		TAILQ_INIT(&neglists[i].nl_list);
2796 		TAILQ_INIT(&neglists[i].nl_hotlist);
2797 	}
2798 }
2799 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2800 
2801 void
cache_vnode_init(struct vnode * vp)2802 cache_vnode_init(struct vnode *vp)
2803 {
2804 
2805 	LIST_INIT(&vp->v_cache_src);
2806 	TAILQ_INIT(&vp->v_cache_dst);
2807 	vp->v_cache_dd = NULL;
2808 	cache_prehash(vp);
2809 }
2810 
2811 /*
2812  * Induce transient cache misses for lockless operation in cache_lookup() by
2813  * using a temporary hash table.
2814  *
2815  * This will force a fs lookup.
2816  *
2817  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2818  * to observe all CPUs not performing the lookup.
2819  */
2820 static void
cache_changesize_set_temp(struct nchashhead * temptbl,u_long temphash)2821 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2822 {
2823 
2824 	MPASS(temphash < nchash);
2825 	/*
2826 	 * Change the size. The new size is smaller and can safely be used
2827 	 * against the existing table. All lookups which now hash wrong will
2828 	 * result in a cache miss, which all callers are supposed to know how
2829 	 * to handle.
2830 	 */
2831 	atomic_store_long(&nchash, temphash);
2832 	atomic_thread_fence_rel();
2833 	vfs_smr_synchronize();
2834 	/*
2835 	 * At this point everyone sees the updated hash value, but they still
2836 	 * see the old table.
2837 	 */
2838 	atomic_store_ptr(&nchashtbl, temptbl);
2839 	atomic_thread_fence_rel();
2840 	vfs_smr_synchronize();
2841 	/*
2842 	 * At this point everyone sees the updated table pointer and size pair.
2843 	 */
2844 }
2845 
2846 /*
2847  * Set the new hash table.
2848  *
2849  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2850  * lockless operation in cache_lookup().
2851  */
2852 static void
cache_changesize_set_new(struct nchashhead * new_tbl,u_long new_hash)2853 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2854 {
2855 
2856 	MPASS(nchash < new_hash);
2857 	/*
2858 	 * Change the pointer first. This wont result in out of bounds access
2859 	 * since the temporary table is guaranteed to be smaller.
2860 	 */
2861 	atomic_store_ptr(&nchashtbl, new_tbl);
2862 	atomic_thread_fence_rel();
2863 	vfs_smr_synchronize();
2864 	/*
2865 	 * At this point everyone sees the updated pointer value, but they
2866 	 * still see the old size.
2867 	 */
2868 	atomic_store_long(&nchash, new_hash);
2869 	atomic_thread_fence_rel();
2870 	vfs_smr_synchronize();
2871 	/*
2872 	 * At this point everyone sees the updated table pointer and size pair.
2873 	 */
2874 }
2875 
2876 void
cache_changesize(u_long newmaxvnodes)2877 cache_changesize(u_long newmaxvnodes)
2878 {
2879 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2880 	u_long new_nchash, old_nchash, temphash;
2881 	struct namecache *ncp;
2882 	uint32_t hash;
2883 	u_long newncsize;
2884 	u_long i;
2885 
2886 	newncsize = newmaxvnodes * ncsizefactor;
2887 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2888 	if (newmaxvnodes < numbucketlocks)
2889 		newmaxvnodes = numbucketlocks;
2890 
2891 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2892 	/* If same hash table size, nothing to do */
2893 	if (nchash == new_nchash) {
2894 		ncfreetbl(new_nchashtbl);
2895 		return;
2896 	}
2897 
2898 	temptbl = nchinittbl(1, &temphash);
2899 
2900 	/*
2901 	 * Move everything from the old hash table to the new table.
2902 	 * None of the namecache entries in the table can be removed
2903 	 * because to do so, they have to be removed from the hash table.
2904 	 */
2905 	cache_lock_all_vnodes();
2906 	cache_lock_all_buckets();
2907 	old_nchashtbl = nchashtbl;
2908 	old_nchash = nchash;
2909 	cache_changesize_set_temp(temptbl, temphash);
2910 	for (i = 0; i <= old_nchash; i++) {
2911 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2912 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2913 			    ncp->nc_dvp);
2914 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2915 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2916 		}
2917 	}
2918 	ncsize = newncsize;
2919 	cache_recalc_neg_min();
2920 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2921 	cache_unlock_all_buckets();
2922 	cache_unlock_all_vnodes();
2923 	ncfreetbl(old_nchashtbl);
2924 	ncfreetbl(temptbl);
2925 }
2926 
2927 /*
2928  * Remove all entries from and to a particular vnode.
2929  */
2930 static void
cache_purge_impl(struct vnode * vp)2931 cache_purge_impl(struct vnode *vp)
2932 {
2933 	struct cache_freebatch batch;
2934 	struct namecache *ncp;
2935 	struct mtx *vlp, *vlp2;
2936 
2937 	TAILQ_INIT(&batch);
2938 	vlp = VP2VNODELOCK(vp);
2939 	vlp2 = NULL;
2940 	mtx_lock(vlp);
2941 retry:
2942 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2943 		ncp = LIST_FIRST(&vp->v_cache_src);
2944 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2945 			goto retry;
2946 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2947 	}
2948 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2949 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2950 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2951 			goto retry;
2952 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2953 	}
2954 	ncp = vp->v_cache_dd;
2955 	if (ncp != NULL) {
2956 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2957 		   ("lost dotdot link"));
2958 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2959 			goto retry;
2960 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2961 	}
2962 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2963 	mtx_unlock(vlp);
2964 	if (vlp2 != NULL)
2965 		mtx_unlock(vlp2);
2966 	cache_free_batch(&batch);
2967 }
2968 
2969 /*
2970  * Opportunistic check to see if there is anything to do.
2971  */
2972 static bool
cache_has_entries(struct vnode * vp)2973 cache_has_entries(struct vnode *vp)
2974 {
2975 
2976 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2977 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2978 		return (false);
2979 	return (true);
2980 }
2981 
2982 void
cache_purge(struct vnode * vp)2983 cache_purge(struct vnode *vp)
2984 {
2985 
2986 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2987 	if (!cache_has_entries(vp))
2988 		return;
2989 	cache_purge_impl(vp);
2990 }
2991 
2992 /*
2993  * Only to be used by vgone.
2994  */
2995 void
cache_purge_vgone(struct vnode * vp)2996 cache_purge_vgone(struct vnode *vp)
2997 {
2998 	struct mtx *vlp;
2999 
3000 	VNPASS(VN_IS_DOOMED(vp), vp);
3001 	if (cache_has_entries(vp)) {
3002 		cache_purge_impl(vp);
3003 		return;
3004 	}
3005 
3006 	/*
3007 	 * Serialize against a potential thread doing cache_purge.
3008 	 */
3009 	vlp = VP2VNODELOCK(vp);
3010 	mtx_wait_unlocked(vlp);
3011 	if (cache_has_entries(vp)) {
3012 		cache_purge_impl(vp);
3013 		return;
3014 	}
3015 	return;
3016 }
3017 
3018 /*
3019  * Remove all negative entries for a particular directory vnode.
3020  */
3021 void
cache_purge_negative(struct vnode * vp)3022 cache_purge_negative(struct vnode *vp)
3023 {
3024 	struct cache_freebatch batch;
3025 	struct namecache *ncp, *nnp;
3026 	struct mtx *vlp;
3027 
3028 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
3029 	if (LIST_EMPTY(&vp->v_cache_src))
3030 		return;
3031 	TAILQ_INIT(&batch);
3032 	vlp = VP2VNODELOCK(vp);
3033 	mtx_lock(vlp);
3034 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
3035 		if (!(ncp->nc_flag & NCF_NEGATIVE))
3036 			continue;
3037 		cache_zap_negative_locked_vnode_kl(ncp, vp);
3038 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
3039 	}
3040 	mtx_unlock(vlp);
3041 	cache_free_batch(&batch);
3042 }
3043 
3044 /*
3045  * Entry points for modifying VOP operations.
3046  */
3047 void
cache_vop_rename(struct vnode * fdvp,struct vnode * fvp,struct vnode * tdvp,struct vnode * tvp,struct componentname * fcnp,struct componentname * tcnp)3048 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
3049     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
3050 {
3051 
3052 	ASSERT_VOP_IN_SEQC(fdvp);
3053 	ASSERT_VOP_IN_SEQC(fvp);
3054 	ASSERT_VOP_IN_SEQC(tdvp);
3055 	if (tvp != NULL)
3056 		ASSERT_VOP_IN_SEQC(tvp);
3057 
3058 	cache_purge(fvp);
3059 	if (tvp != NULL) {
3060 		cache_purge(tvp);
3061 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
3062 		    ("%s: lingering negative entry", __func__));
3063 	} else {
3064 		cache_remove_cnp(tdvp, tcnp);
3065 	}
3066 
3067 	/*
3068 	 * TODO
3069 	 *
3070 	 * Historically renaming was always purging all revelang entries,
3071 	 * but that's quite wasteful. In particular turns out that in many cases
3072 	 * the target file is immediately accessed after rename, inducing a cache
3073 	 * miss.
3074 	 *
3075 	 * Recode this to reduce relocking and reuse the existing entry (if any)
3076 	 * instead of just removing it above and allocating a new one here.
3077 	 */
3078 	cache_enter(tdvp, fvp, tcnp);
3079 }
3080 
3081 void
cache_vop_rmdir(struct vnode * dvp,struct vnode * vp)3082 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
3083 {
3084 
3085 	ASSERT_VOP_IN_SEQC(dvp);
3086 	ASSERT_VOP_IN_SEQC(vp);
3087 	cache_purge(vp);
3088 }
3089 
3090 #ifdef INVARIANTS
3091 /*
3092  * Validate that if an entry exists it matches.
3093  */
3094 void
cache_validate(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)3095 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
3096 {
3097 	struct namecache *ncp;
3098 	struct mtx *blp;
3099 	uint32_t hash;
3100 
3101 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3102 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
3103 		return;
3104 	blp = HASH2BUCKETLOCK(hash);
3105 	mtx_lock(blp);
3106 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
3107 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
3108 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
3109 			if (ncp->nc_vp != vp)
3110 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3111 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3112 		}
3113 	}
3114 	mtx_unlock(blp);
3115 }
3116 
3117 void
cache_assert_no_entries(struct vnode * vp)3118 cache_assert_no_entries(struct vnode *vp)
3119 {
3120 
3121 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3122 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3123 	VNPASS(vp->v_cache_dd == NULL, vp);
3124 }
3125 #endif
3126 
3127 /*
3128  * Flush all entries referencing a particular filesystem.
3129  */
3130 void
cache_purgevfs(struct mount * mp)3131 cache_purgevfs(struct mount *mp)
3132 {
3133 	struct vnode *vp, *mvp;
3134 	size_t visited __sdt_used, purged __sdt_used;
3135 
3136 	visited = purged = 0;
3137 	/*
3138 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3139 	 * support filtering and avoid the interlock to begin with.
3140 	 */
3141 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3142 		visited++;
3143 		if (!cache_has_entries(vp)) {
3144 			VI_UNLOCK(vp);
3145 			continue;
3146 		}
3147 		vholdl(vp);
3148 		VI_UNLOCK(vp);
3149 		cache_purge(vp);
3150 		purged++;
3151 		vdrop(vp);
3152 	}
3153 
3154 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3155 }
3156 
3157 /*
3158  * Perform canonical checks and cache lookup and pass on to filesystem
3159  * through the vop_cachedlookup only if needed.
3160  */
3161 
3162 int
vfs_cache_lookup(struct vop_lookup_args * ap)3163 vfs_cache_lookup(struct vop_lookup_args *ap)
3164 {
3165 	struct vnode *dvp;
3166 	int error;
3167 	struct vnode **vpp = ap->a_vpp;
3168 	struct componentname *cnp = ap->a_cnp;
3169 	int flags = cnp->cn_flags;
3170 
3171 	*vpp = NULL;
3172 	dvp = ap->a_dvp;
3173 
3174 	if (dvp->v_type != VDIR)
3175 		return (ENOTDIR);
3176 
3177 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3178 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3179 		return (EROFS);
3180 
3181 	error = vn_dir_check_exec(dvp, cnp);
3182 	if (error != 0)
3183 		return (error);
3184 
3185 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3186 	if (error == 0)
3187 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3188 	if (error == -1)
3189 		return (0);
3190 	return (error);
3191 }
3192 
3193 /* Implementation of the getcwd syscall. */
3194 int
sys___getcwd(struct thread * td,struct __getcwd_args * uap)3195 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3196 {
3197 	char *buf, *retbuf;
3198 	size_t buflen;
3199 	int error;
3200 
3201 	buflen = uap->buflen;
3202 	if (__predict_false(buflen < 2))
3203 		return (EINVAL);
3204 	if (buflen > MAXPATHLEN)
3205 		buflen = MAXPATHLEN;
3206 
3207 	buf = uma_zalloc(namei_zone, M_WAITOK);
3208 	error = vn_getcwd(buf, &retbuf, &buflen);
3209 	if (error == 0)
3210 		error = copyout(retbuf, uap->buf, buflen);
3211 	uma_zfree(namei_zone, buf);
3212 	return (error);
3213 }
3214 
3215 int
vn_getcwd(char * buf,char ** retbuf,size_t * buflen)3216 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3217 {
3218 	struct pwd *pwd;
3219 	int error;
3220 
3221 	vfs_smr_enter();
3222 	pwd = pwd_get_smr();
3223 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3224 	    buflen, 0);
3225 	VFS_SMR_ASSERT_NOT_ENTERED();
3226 	if (error < 0) {
3227 		pwd = pwd_hold(curthread);
3228 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3229 		    retbuf, buflen);
3230 		pwd_drop(pwd);
3231 	}
3232 
3233 #ifdef KTRACE
3234 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3235 		ktrnamei(*retbuf);
3236 #endif
3237 	return (error);
3238 }
3239 
3240 /*
3241  * Canonicalize a path by walking it forward and back.
3242  *
3243  * BUGS:
3244  * - Nothing guarantees the integrity of the entire chain. Consider the case
3245  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3246  *   "foo" into "quux" during the backwards walk. The result will be
3247  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3248  *   walk in userspace. Moreover, the path we return is inaccessible if the
3249  *   calling thread lacks permission to traverse "quux".
3250  */
3251 static int
kern___realpathat(struct thread * td,int fd,const char * path,char * buf,size_t size,int flags,enum uio_seg pathseg)3252 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3253     size_t size, int flags, enum uio_seg pathseg)
3254 {
3255 	struct nameidata nd;
3256 	char *retbuf, *freebuf;
3257 	int error;
3258 
3259 	if (flags != 0)
3260 		return (EINVAL);
3261 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3262 	    pathseg, path, fd, &cap_fstat_rights);
3263 	if ((error = namei(&nd)) != 0)
3264 		return (error);
3265 
3266 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3267 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3268 		struct vnode *covered_vp;
3269 
3270 		/*
3271 		 * This happens if vp is a file mount. The call to
3272 		 * vn_fullpath_hardlink can panic if path resolution can't be
3273 		 * handled without the directory.
3274 		 *
3275 		 * To resolve this, we find the vnode which was mounted on -
3276 		 * this should have a unique global path since we disallow
3277 		 * mounting on linked files.
3278 		 */
3279 		error = vn_lock(nd.ni_vp, LK_SHARED);
3280 		if (error != 0)
3281 			goto out;
3282 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3283 		vref(covered_vp);
3284 		VOP_UNLOCK(nd.ni_vp);
3285 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3286 		vrele(covered_vp);
3287 	} else {
3288 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp,
3289 		    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen, &retbuf,
3290 		    &freebuf, &size);
3291 	}
3292 	if (error == 0) {
3293 		size_t len;
3294 
3295 		len = strlen(retbuf) + 1;
3296 		if (size < len)
3297 			error = ENAMETOOLONG;
3298 		else if (pathseg == UIO_USERSPACE)
3299 			error = copyout(retbuf, buf, len);
3300 		else
3301 			memcpy(buf, retbuf, len);
3302 		free(freebuf, M_TEMP);
3303 	}
3304 out:
3305 	vrele(nd.ni_vp);
3306 	vrele(nd.ni_dvp);
3307 	NDFREE_PNBUF(&nd);
3308 	return (error);
3309 }
3310 
3311 int
sys___realpathat(struct thread * td,struct __realpathat_args * uap)3312 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3313 {
3314 
3315 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3316 	    uap->flags, UIO_USERSPACE));
3317 }
3318 
3319 /*
3320  * Retrieve the full filesystem path that correspond to a vnode from the name
3321  * cache (if available)
3322  */
3323 int
vn_fullpath(struct vnode * vp,char ** retbuf,char ** freebuf)3324 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3325 {
3326 	struct pwd *pwd;
3327 	char *buf;
3328 	size_t buflen;
3329 	int error;
3330 
3331 	if (__predict_false(vp == NULL))
3332 		return (EINVAL);
3333 
3334 	buflen = MAXPATHLEN;
3335 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3336 	vfs_smr_enter();
3337 	pwd = pwd_get_smr();
3338 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3339 	VFS_SMR_ASSERT_NOT_ENTERED();
3340 	if (error < 0) {
3341 		pwd = pwd_hold(curthread);
3342 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3343 		pwd_drop(pwd);
3344 	}
3345 	if (error == 0)
3346 		*freebuf = buf;
3347 	else
3348 		free(buf, M_TEMP);
3349 	return (error);
3350 }
3351 
3352 /*
3353  * This function is similar to vn_fullpath, but it attempts to lookup the
3354  * pathname relative to the global root mount point.  This is required for the
3355  * auditing sub-system, as audited pathnames must be absolute, relative to the
3356  * global root mount point.
3357  */
3358 int
vn_fullpath_global(struct vnode * vp,char ** retbuf,char ** freebuf)3359 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3360 {
3361 	char *buf;
3362 	size_t buflen;
3363 	int error;
3364 
3365 	if (__predict_false(vp == NULL))
3366 		return (EINVAL);
3367 	buflen = MAXPATHLEN;
3368 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3369 	vfs_smr_enter();
3370 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3371 	VFS_SMR_ASSERT_NOT_ENTERED();
3372 	if (error < 0) {
3373 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3374 	}
3375 	if (error == 0)
3376 		*freebuf = buf;
3377 	else
3378 		free(buf, M_TEMP);
3379 	return (error);
3380 }
3381 
3382 static struct namecache *
vn_dd_from_dst(struct vnode * vp)3383 vn_dd_from_dst(struct vnode *vp)
3384 {
3385 	struct namecache *ncp;
3386 
3387 	cache_assert_vnode_locked(vp);
3388 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3389 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3390 			return (ncp);
3391 	}
3392 	return (NULL);
3393 }
3394 
3395 int
vn_vptocnp(struct vnode ** vp,char * buf,size_t * buflen)3396 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3397 {
3398 	struct vnode *dvp;
3399 	struct namecache *ncp;
3400 	struct mtx *vlp;
3401 	int error;
3402 
3403 	vlp = VP2VNODELOCK(*vp);
3404 	mtx_lock(vlp);
3405 	ncp = (*vp)->v_cache_dd;
3406 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3407 		KASSERT(ncp == vn_dd_from_dst(*vp),
3408 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3409 		    ncp, vn_dd_from_dst(*vp)));
3410 	} else {
3411 		ncp = vn_dd_from_dst(*vp);
3412 	}
3413 	if (ncp != NULL) {
3414 		if (*buflen < ncp->nc_nlen) {
3415 			mtx_unlock(vlp);
3416 			vrele(*vp);
3417 			counter_u64_add(numfullpathfail4, 1);
3418 			error = ENOMEM;
3419 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3420 			    vp, NULL);
3421 			return (error);
3422 		}
3423 		*buflen -= ncp->nc_nlen;
3424 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3425 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3426 		    ncp->nc_name, vp);
3427 		dvp = *vp;
3428 		*vp = ncp->nc_dvp;
3429 		vref(*vp);
3430 		mtx_unlock(vlp);
3431 		vrele(dvp);
3432 		return (0);
3433 	}
3434 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3435 
3436 	mtx_unlock(vlp);
3437 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3438 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3439 	vput(*vp);
3440 	if (error) {
3441 		counter_u64_add(numfullpathfail2, 1);
3442 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3443 		return (error);
3444 	}
3445 
3446 	*vp = dvp;
3447 	if (VN_IS_DOOMED(dvp)) {
3448 		/* forced unmount */
3449 		vrele(dvp);
3450 		error = ENOENT;
3451 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3452 		return (error);
3453 	}
3454 	/*
3455 	 * *vp has its use count incremented still.
3456 	 */
3457 
3458 	return (0);
3459 }
3460 
3461 /*
3462  * Resolve a directory to a pathname.
3463  *
3464  * The name of the directory can always be found in the namecache or fetched
3465  * from the filesystem. There is also guaranteed to be only one parent, meaning
3466  * we can just follow vnodes up until we find the root.
3467  *
3468  * The vnode must be referenced.
3469  */
3470 static int
vn_fullpath_dir(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * len,size_t addend)3471 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3472     size_t *len, size_t addend)
3473 {
3474 #ifdef KDTRACE_HOOKS
3475 	struct vnode *startvp = vp;
3476 #endif
3477 	struct vnode *vp1;
3478 	size_t buflen;
3479 	int error;
3480 	bool slash_prefixed;
3481 
3482 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3483 	VNPASS(vp->v_usecount > 0, vp);
3484 
3485 	buflen = *len;
3486 
3487 	slash_prefixed = true;
3488 	if (addend == 0) {
3489 		MPASS(*len >= 2);
3490 		buflen--;
3491 		buf[buflen] = '\0';
3492 		slash_prefixed = false;
3493 	}
3494 
3495 	error = 0;
3496 
3497 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3498 	counter_u64_add(numfullpathcalls, 1);
3499 	while (vp != rdir && vp != rootvnode) {
3500 		/*
3501 		 * The vp vnode must be already fully constructed,
3502 		 * since it is either found in namecache or obtained
3503 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3504 		 * without obtaining the vnode lock.
3505 		 */
3506 		if ((vp->v_vflag & VV_ROOT) != 0) {
3507 			vn_lock(vp, LK_RETRY | LK_SHARED);
3508 
3509 			/*
3510 			 * With the vnode locked, check for races with
3511 			 * unmount, forced or not.  Note that we
3512 			 * already verified that vp is not equal to
3513 			 * the root vnode, which means that
3514 			 * mnt_vnodecovered can be NULL only for the
3515 			 * case of unmount.
3516 			 */
3517 			if (VN_IS_DOOMED(vp) ||
3518 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3519 			    vp1->v_mountedhere != vp->v_mount) {
3520 				vput(vp);
3521 				error = ENOENT;
3522 				SDT_PROBE3(vfs, namecache, fullpath, return,
3523 				    error, vp, NULL);
3524 				break;
3525 			}
3526 
3527 			vref(vp1);
3528 			vput(vp);
3529 			vp = vp1;
3530 			continue;
3531 		}
3532 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3533 		error = vn_vptocnp(&vp, buf, &buflen);
3534 		if (error)
3535 			break;
3536 		if (buflen == 0) {
3537 			vrele(vp);
3538 			error = ENOMEM;
3539 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3540 			    startvp, NULL);
3541 			break;
3542 		}
3543 		buf[--buflen] = '/';
3544 		slash_prefixed = true;
3545 	}
3546 	if (error)
3547 		return (error);
3548 	if (!slash_prefixed) {
3549 		if (buflen == 0) {
3550 			vrele(vp);
3551 			counter_u64_add(numfullpathfail4, 1);
3552 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3553 			    startvp, NULL);
3554 			return (ENOMEM);
3555 		}
3556 		buf[--buflen] = '/';
3557 	}
3558 	counter_u64_add(numfullpathfound, 1);
3559 	vrele(vp);
3560 
3561 	*retbuf = buf + buflen;
3562 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3563 	*len -= buflen;
3564 	*len += addend;
3565 	return (0);
3566 }
3567 
3568 /*
3569  * Resolve an arbitrary vnode to a pathname.
3570  *
3571  * Note 2 caveats:
3572  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3573  *   resolve to a different path than the one used to find it
3574  * - namecache is not mandatory, meaning names are not guaranteed to be added
3575  *   (in which case resolving fails)
3576  */
3577 static void __inline
cache_rev_failed_impl(int * reason,int line)3578 cache_rev_failed_impl(int *reason, int line)
3579 {
3580 
3581 	*reason = line;
3582 }
3583 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3584 
3585 static int
vn_fullpath_any_smr(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen,size_t addend)3586 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3587     char **retbuf, size_t *buflen, size_t addend)
3588 {
3589 #ifdef KDTRACE_HOOKS
3590 	struct vnode *startvp = vp;
3591 #endif
3592 	struct vnode *tvp;
3593 	struct mount *mp;
3594 	struct namecache *ncp;
3595 	size_t orig_buflen;
3596 	int reason;
3597 	int error;
3598 #ifdef KDTRACE_HOOKS
3599 	int i;
3600 #endif
3601 	seqc_t vp_seqc, tvp_seqc;
3602 	u_char nc_flag;
3603 
3604 	VFS_SMR_ASSERT_ENTERED();
3605 
3606 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3607 		vfs_smr_exit();
3608 		return (-1);
3609 	}
3610 
3611 	orig_buflen = *buflen;
3612 
3613 	if (addend == 0) {
3614 		MPASS(*buflen >= 2);
3615 		*buflen -= 1;
3616 		buf[*buflen] = '\0';
3617 	}
3618 
3619 	if (vp == rdir || vp == rootvnode) {
3620 		if (addend == 0) {
3621 			*buflen -= 1;
3622 			buf[*buflen] = '/';
3623 		}
3624 		goto out_ok;
3625 	}
3626 
3627 #ifdef KDTRACE_HOOKS
3628 	i = 0;
3629 #endif
3630 	error = -1;
3631 	ncp = NULL; /* for sdt probe down below */
3632 	vp_seqc = vn_seqc_read_any(vp);
3633 	if (seqc_in_modify(vp_seqc)) {
3634 		cache_rev_failed(&reason);
3635 		goto out_abort;
3636 	}
3637 
3638 	for (;;) {
3639 #ifdef KDTRACE_HOOKS
3640 		i++;
3641 #endif
3642 		if ((vp->v_vflag & VV_ROOT) != 0) {
3643 			mp = atomic_load_ptr(&vp->v_mount);
3644 			if (mp == NULL) {
3645 				cache_rev_failed(&reason);
3646 				goto out_abort;
3647 			}
3648 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3649 			tvp_seqc = vn_seqc_read_any(tvp);
3650 			if (seqc_in_modify(tvp_seqc)) {
3651 				cache_rev_failed(&reason);
3652 				goto out_abort;
3653 			}
3654 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3655 				cache_rev_failed(&reason);
3656 				goto out_abort;
3657 			}
3658 			vp = tvp;
3659 			vp_seqc = tvp_seqc;
3660 			continue;
3661 		}
3662 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3663 		if (ncp == NULL) {
3664 			cache_rev_failed(&reason);
3665 			goto out_abort;
3666 		}
3667 		nc_flag = atomic_load_char(&ncp->nc_flag);
3668 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3669 			cache_rev_failed(&reason);
3670 			goto out_abort;
3671 		}
3672 		if (ncp->nc_nlen >= *buflen) {
3673 			cache_rev_failed(&reason);
3674 			error = ENOMEM;
3675 			goto out_abort;
3676 		}
3677 		*buflen -= ncp->nc_nlen;
3678 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3679 		*buflen -= 1;
3680 		buf[*buflen] = '/';
3681 		tvp = ncp->nc_dvp;
3682 		tvp_seqc = vn_seqc_read_any(tvp);
3683 		if (seqc_in_modify(tvp_seqc)) {
3684 			cache_rev_failed(&reason);
3685 			goto out_abort;
3686 		}
3687 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3688 			cache_rev_failed(&reason);
3689 			goto out_abort;
3690 		}
3691 		/*
3692 		 * Acquire fence provided by vn_seqc_read_any above.
3693 		 */
3694 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3695 			cache_rev_failed(&reason);
3696 			goto out_abort;
3697 		}
3698 		if (!cache_ncp_canuse(ncp)) {
3699 			cache_rev_failed(&reason);
3700 			goto out_abort;
3701 		}
3702 		vp = tvp;
3703 		vp_seqc = tvp_seqc;
3704 		if (vp == rdir || vp == rootvnode)
3705 			break;
3706 	}
3707 out_ok:
3708 	vfs_smr_exit();
3709 	*retbuf = buf + *buflen;
3710 	*buflen = orig_buflen - *buflen + addend;
3711 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3712 	return (0);
3713 
3714 out_abort:
3715 	*buflen = orig_buflen;
3716 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3717 	vfs_smr_exit();
3718 	return (error);
3719 }
3720 
3721 static int
vn_fullpath_any(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen)3722 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3723     size_t *buflen)
3724 {
3725 	size_t orig_buflen, addend;
3726 	int error;
3727 
3728 	if (*buflen < 2)
3729 		return (EINVAL);
3730 
3731 	orig_buflen = *buflen;
3732 
3733 	vref(vp);
3734 	addend = 0;
3735 	if (vp->v_type != VDIR) {
3736 		*buflen -= 1;
3737 		buf[*buflen] = '\0';
3738 		error = vn_vptocnp(&vp, buf, buflen);
3739 		if (error)
3740 			return (error);
3741 		if (*buflen == 0) {
3742 			vrele(vp);
3743 			return (ENOMEM);
3744 		}
3745 		*buflen -= 1;
3746 		buf[*buflen] = '/';
3747 		addend = orig_buflen - *buflen;
3748 	}
3749 
3750 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3751 }
3752 
3753 /*
3754  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3755  *
3756  * Since the namecache does not track hardlinks, the caller is expected to
3757  * first look up the target vnode with WANTPARENT flag passed to namei to get
3758  * dvp and vp.
3759  *
3760  * Then we have 2 cases:
3761  * - if the found vnode is a directory, the path can be constructed just by
3762  *   following names up the chain
3763  * - otherwise we populate the buffer with the saved name and start resolving
3764  *   from the parent
3765  */
3766 int
vn_fullpath_hardlink(struct vnode * vp,struct vnode * dvp,const char * hrdl_name,size_t hrdl_name_length,char ** retbuf,char ** freebuf,size_t * buflen)3767 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3768     const char *hrdl_name, size_t hrdl_name_length,
3769     char **retbuf, char **freebuf, size_t *buflen)
3770 {
3771 	char *buf, *tmpbuf;
3772 	struct pwd *pwd;
3773 	size_t addend;
3774 	int error;
3775 	__enum_uint8(vtype) type;
3776 
3777 	if (*buflen < 2)
3778 		return (EINVAL);
3779 	if (*buflen > MAXPATHLEN)
3780 		*buflen = MAXPATHLEN;
3781 
3782 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3783 
3784 	addend = 0;
3785 
3786 	/*
3787 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3788 	 *
3789 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3790 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3791 	 * If the type is VDIR (like in this very case) we can skip looking
3792 	 * at ni_dvp in the first place. However, since vnodes get passed here
3793 	 * unlocked the target may transition to doomed state (type == VBAD)
3794 	 * before we get to evaluate the condition. If this happens, we will
3795 	 * populate part of the buffer and descend to vn_fullpath_dir with
3796 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3797 	 */
3798 	type = atomic_load_8(&vp->v_type);
3799 	if (type == VBAD) {
3800 		error = ENOENT;
3801 		goto out_bad;
3802 	}
3803 	if (type != VDIR) {
3804 		addend = hrdl_name_length + 2;
3805 		if (*buflen < addend) {
3806 			error = ENOMEM;
3807 			goto out_bad;
3808 		}
3809 		*buflen -= addend;
3810 		tmpbuf = buf + *buflen;
3811 		tmpbuf[0] = '/';
3812 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3813 		tmpbuf[addend - 1] = '\0';
3814 		vp = dvp;
3815 	}
3816 
3817 	vfs_smr_enter();
3818 	pwd = pwd_get_smr();
3819 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3820 	    addend);
3821 	VFS_SMR_ASSERT_NOT_ENTERED();
3822 	if (error < 0) {
3823 		pwd = pwd_hold(curthread);
3824 		vref(vp);
3825 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3826 		    addend);
3827 		pwd_drop(pwd);
3828 	}
3829 	if (error != 0)
3830 		goto out_bad;
3831 
3832 	*freebuf = buf;
3833 
3834 	return (0);
3835 out_bad:
3836 	free(buf, M_TEMP);
3837 	return (error);
3838 }
3839 
3840 struct vnode *
vn_dir_dd_ino(struct vnode * vp)3841 vn_dir_dd_ino(struct vnode *vp)
3842 {
3843 	struct namecache *ncp;
3844 	struct vnode *ddvp;
3845 	struct mtx *vlp;
3846 	enum vgetstate vs;
3847 
3848 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3849 	vlp = VP2VNODELOCK(vp);
3850 	mtx_lock(vlp);
3851 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3852 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3853 			continue;
3854 		ddvp = ncp->nc_dvp;
3855 		vs = vget_prep(ddvp);
3856 		mtx_unlock(vlp);
3857 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3858 			return (NULL);
3859 		return (ddvp);
3860 	}
3861 	mtx_unlock(vlp);
3862 	return (NULL);
3863 }
3864 
3865 int
vn_commname(struct vnode * vp,char * buf,u_int buflen)3866 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3867 {
3868 	struct namecache *ncp;
3869 	struct mtx *vlp;
3870 	int l;
3871 
3872 	vlp = VP2VNODELOCK(vp);
3873 	mtx_lock(vlp);
3874 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3875 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3876 			break;
3877 	if (ncp == NULL) {
3878 		mtx_unlock(vlp);
3879 		return (ENOENT);
3880 	}
3881 	l = min(ncp->nc_nlen, buflen - 1);
3882 	memcpy(buf, ncp->nc_name, l);
3883 	mtx_unlock(vlp);
3884 	buf[l] = '\0';
3885 	return (0);
3886 }
3887 
3888 /*
3889  * This function updates path string to vnode's full global path
3890  * and checks the size of the new path string against the pathlen argument.
3891  *
3892  * Requires a locked, referenced vnode.
3893  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3894  *
3895  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3896  * because it falls back to the ".." lookup if the namecache lookup fails.
3897  */
3898 int
vn_path_to_global_path(struct thread * td,struct vnode * vp,char * path,u_int pathlen)3899 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3900     u_int pathlen)
3901 {
3902 	struct nameidata nd;
3903 	struct vnode *vp1;
3904 	char *rpath, *fbuf;
3905 	int error;
3906 
3907 	ASSERT_VOP_ELOCKED(vp, __func__);
3908 
3909 	/* Construct global filesystem path from vp. */
3910 	VOP_UNLOCK(vp);
3911 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3912 
3913 	if (error != 0) {
3914 		vrele(vp);
3915 		return (error);
3916 	}
3917 
3918 	if (strlen(rpath) >= pathlen) {
3919 		vrele(vp);
3920 		error = ENAMETOOLONG;
3921 		goto out;
3922 	}
3923 
3924 	/*
3925 	 * Re-lookup the vnode by path to detect a possible rename.
3926 	 * As a side effect, the vnode is relocked.
3927 	 * If vnode was renamed, return ENOENT.
3928 	 */
3929 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3930 	error = namei(&nd);
3931 	if (error != 0) {
3932 		vrele(vp);
3933 		goto out;
3934 	}
3935 	NDFREE_PNBUF(&nd);
3936 	vp1 = nd.ni_vp;
3937 	vrele(vp);
3938 	if (vp1 == vp)
3939 		strcpy(path, rpath);
3940 	else {
3941 		vput(vp1);
3942 		error = ENOENT;
3943 	}
3944 
3945 out:
3946 	free(fbuf, M_TEMP);
3947 	return (error);
3948 }
3949 
3950 /*
3951  * This is similar to vn_path_to_global_path but allows for regular
3952  * files which may not be present in the cache.
3953  *
3954  * Requires a locked, referenced vnode.
3955  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3956  */
3957 int
vn_path_to_global_path_hardlink(struct thread * td,struct vnode * vp,struct vnode * dvp,char * path,u_int pathlen,const char * leaf_name,size_t leaf_length)3958 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3959     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3960     size_t leaf_length)
3961 {
3962 	struct nameidata nd;
3963 	struct vnode *vp1;
3964 	char *rpath, *fbuf;
3965 	size_t len;
3966 	int error;
3967 
3968 	ASSERT_VOP_ELOCKED(vp, __func__);
3969 
3970 	/*
3971 	 * Construct global filesystem path from dvp, vp and leaf
3972 	 * name.
3973 	 */
3974 	VOP_UNLOCK(vp);
3975 	len = pathlen;
3976 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3977 	    &rpath, &fbuf, &len);
3978 
3979 	if (error != 0) {
3980 		vrele(vp);
3981 		return (error);
3982 	}
3983 
3984 	if (strlen(rpath) >= pathlen) {
3985 		vrele(vp);
3986 		error = ENAMETOOLONG;
3987 		goto out;
3988 	}
3989 
3990 	/*
3991 	 * Re-lookup the vnode by path to detect a possible rename.
3992 	 * As a side effect, the vnode is relocked.
3993 	 * If vnode was renamed, return ENOENT.
3994 	 */
3995 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3996 	error = namei(&nd);
3997 	if (error != 0) {
3998 		vrele(vp);
3999 		goto out;
4000 	}
4001 	NDFREE_PNBUF(&nd);
4002 	vp1 = nd.ni_vp;
4003 	vrele(vp);
4004 	if (vp1 == vp)
4005 		strcpy(path, rpath);
4006 	else {
4007 		vput(vp1);
4008 		error = ENOENT;
4009 	}
4010 
4011 out:
4012 	free(fbuf, M_TEMP);
4013 	return (error);
4014 }
4015 
4016 #ifdef DDB
4017 static void
db_print_vpath(struct vnode * vp)4018 db_print_vpath(struct vnode *vp)
4019 {
4020 
4021 	while (vp != NULL) {
4022 		db_printf("%p: ", vp);
4023 		if (vp == rootvnode) {
4024 			db_printf("/");
4025 			vp = NULL;
4026 		} else {
4027 			if (vp->v_vflag & VV_ROOT) {
4028 				db_printf("<mount point>");
4029 				vp = vp->v_mount->mnt_vnodecovered;
4030 			} else {
4031 				struct namecache *ncp;
4032 				char *ncn;
4033 				int i;
4034 
4035 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
4036 				if (ncp != NULL) {
4037 					ncn = ncp->nc_name;
4038 					for (i = 0; i < ncp->nc_nlen; i++)
4039 						db_printf("%c", *ncn++);
4040 					vp = ncp->nc_dvp;
4041 				} else {
4042 					vp = NULL;
4043 				}
4044 			}
4045 		}
4046 		db_printf("\n");
4047 	}
4048 
4049 	return;
4050 }
4051 
DB_SHOW_COMMAND(vpath,db_show_vpath)4052 DB_SHOW_COMMAND(vpath, db_show_vpath)
4053 {
4054 	struct vnode *vp;
4055 
4056 	if (!have_addr) {
4057 		db_printf("usage: show vpath <struct vnode *>\n");
4058 		return;
4059 	}
4060 
4061 	vp = (struct vnode *)addr;
4062 	db_print_vpath(vp);
4063 }
4064 
4065 #endif
4066 
4067 static int cache_fast_lookup = 1;
4068 
4069 #define CACHE_FPL_FAILED	-2020
4070 
4071 static int
cache_vop_bad_vexec(struct vop_fplookup_vexec_args * v)4072 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
4073 {
4074 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
4075 	panic("no proper vop_fplookup_vexec");
4076 }
4077 
4078 static int
cache_vop_bad_symlink(struct vop_fplookup_symlink_args * v)4079 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
4080 {
4081 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
4082 	panic("no proper vop_fplookup_symlink");
4083 }
4084 
4085 void
cache_vop_vector_register(struct vop_vector * v)4086 cache_vop_vector_register(struct vop_vector *v)
4087 {
4088 	size_t ops;
4089 
4090 	ops = 0;
4091 	if (v->vop_fplookup_vexec != NULL) {
4092 		ops++;
4093 	}
4094 	if (v->vop_fplookup_symlink != NULL) {
4095 		ops++;
4096 	}
4097 
4098 	if (ops == 2) {
4099 		return;
4100 	}
4101 
4102 	if (ops == 0) {
4103 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
4104 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
4105 		return;
4106 	}
4107 
4108 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
4109 	    "need to be provided",  __func__, v);
4110 	if (v->vop_fplookup_vexec == NULL) {
4111 		printf("%s: missing vop_fplookup_vexec\n", __func__);
4112 	}
4113 	if (v->vop_fplookup_symlink == NULL) {
4114 		printf("%s: missing vop_fplookup_symlink\n", __func__);
4115 	}
4116 	panic("bad vop vector %p", v);
4117 }
4118 
4119 #ifdef INVARIANTS
4120 void
cache_validate_vop_vector(struct mount * mp,struct vop_vector * vops)4121 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4122 {
4123 	if (mp == NULL)
4124 		return;
4125 
4126 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4127 		return;
4128 
4129 	if (vops->vop_fplookup_vexec == NULL ||
4130 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4131 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4132 		    vops, mp->mnt_vfc->vfc_name);
4133 
4134 	if (vops->vop_fplookup_symlink == NULL ||
4135 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4136 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4137 		    vops, mp->mnt_vfc->vfc_name);
4138 }
4139 #endif
4140 
4141 void
cache_fast_lookup_enabled_recalc(void)4142 cache_fast_lookup_enabled_recalc(void)
4143 {
4144 	int lookup_flag;
4145 	int mac_on;
4146 
4147 #ifdef MAC
4148 	mac_on = mac_vnode_check_lookup_enabled();
4149 	mac_on |= mac_vnode_check_readlink_enabled();
4150 #else
4151 	mac_on = 0;
4152 #endif
4153 
4154 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4155 	if (lookup_flag && !mac_on) {
4156 		atomic_store_char(&cache_fast_lookup_enabled, true);
4157 	} else {
4158 		atomic_store_char(&cache_fast_lookup_enabled, false);
4159 	}
4160 }
4161 
4162 static int
syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)4163 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4164 {
4165 	int error, old;
4166 
4167 	old = atomic_load_int(&cache_fast_lookup);
4168 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4169 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4170 		cache_fast_lookup_enabled_recalc();
4171 	return (error);
4172 }
4173 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4174     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4175 
4176 /*
4177  * Components of nameidata (or objects it can point to) which may
4178  * need restoring in case fast path lookup fails.
4179  */
4180 struct nameidata_outer {
4181 	size_t ni_pathlen;
4182 	int cn_flags;
4183 };
4184 
4185 struct nameidata_saved {
4186 #ifdef INVARIANTS
4187 	char *cn_nameptr;
4188 	size_t ni_pathlen;
4189 #endif
4190 };
4191 
4192 #ifdef INVARIANTS
4193 struct cache_fpl_debug {
4194 	size_t ni_pathlen;
4195 };
4196 #endif
4197 
4198 struct cache_fpl {
4199 	struct nameidata *ndp;
4200 	struct componentname *cnp;
4201 	char *nulchar;
4202 	struct vnode *dvp;
4203 	struct vnode *tvp;
4204 	seqc_t dvp_seqc;
4205 	seqc_t tvp_seqc;
4206 	uint32_t hash;
4207 	struct nameidata_saved snd;
4208 	struct nameidata_outer snd_outer;
4209 	int line;
4210 	enum cache_fpl_status status:8;
4211 	bool in_smr;
4212 	bool fsearch;
4213 	struct pwd **pwd;
4214 #ifdef INVARIANTS
4215 	struct cache_fpl_debug debug;
4216 #endif
4217 };
4218 
4219 static bool cache_fplookup_mp_supported(struct mount *mp);
4220 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4221 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4222 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4223 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4224 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4225 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4226 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4227 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4228 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4229 
4230 static void
cache_fpl_cleanup_cnp(struct componentname * cnp)4231 cache_fpl_cleanup_cnp(struct componentname *cnp)
4232 {
4233 
4234 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4235 	cnp->cn_pnbuf = NULL;
4236 	cnp->cn_nameptr = NULL;
4237 }
4238 
4239 static struct vnode *
cache_fpl_handle_root(struct cache_fpl * fpl)4240 cache_fpl_handle_root(struct cache_fpl *fpl)
4241 {
4242 	struct nameidata *ndp;
4243 	struct componentname *cnp;
4244 
4245 	ndp = fpl->ndp;
4246 	cnp = fpl->cnp;
4247 
4248 	MPASS(*(cnp->cn_nameptr) == '/');
4249 	cnp->cn_nameptr++;
4250 	cache_fpl_pathlen_dec(fpl);
4251 
4252 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4253 		do {
4254 			cnp->cn_nameptr++;
4255 			cache_fpl_pathlen_dec(fpl);
4256 		} while (*(cnp->cn_nameptr) == '/');
4257 	}
4258 
4259 	return (ndp->ni_rootdir);
4260 }
4261 
4262 static void
cache_fpl_checkpoint_outer(struct cache_fpl * fpl)4263 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4264 {
4265 
4266 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4267 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4268 }
4269 
4270 static void
cache_fpl_checkpoint(struct cache_fpl * fpl)4271 cache_fpl_checkpoint(struct cache_fpl *fpl)
4272 {
4273 
4274 #ifdef INVARIANTS
4275 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4276 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4277 #endif
4278 }
4279 
4280 static void
cache_fpl_restore_partial(struct cache_fpl * fpl)4281 cache_fpl_restore_partial(struct cache_fpl *fpl)
4282 {
4283 
4284 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4285 #ifdef INVARIANTS
4286 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4287 #endif
4288 }
4289 
4290 static void
cache_fpl_restore_abort(struct cache_fpl * fpl)4291 cache_fpl_restore_abort(struct cache_fpl *fpl)
4292 {
4293 
4294 	cache_fpl_restore_partial(fpl);
4295 	/*
4296 	 * It is 0 on entry by API contract.
4297 	 */
4298 	fpl->ndp->ni_resflags = 0;
4299 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4300 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4301 }
4302 
4303 #ifdef INVARIANTS
4304 #define cache_fpl_smr_assert_entered(fpl) ({			\
4305 	struct cache_fpl *_fpl = (fpl);				\
4306 	MPASS(_fpl->in_smr == true);				\
4307 	VFS_SMR_ASSERT_ENTERED();				\
4308 })
4309 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4310 	struct cache_fpl *_fpl = (fpl);				\
4311 	MPASS(_fpl->in_smr == false);				\
4312 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4313 })
4314 static void
cache_fpl_assert_status(struct cache_fpl * fpl)4315 cache_fpl_assert_status(struct cache_fpl *fpl)
4316 {
4317 
4318 	switch (fpl->status) {
4319 	case CACHE_FPL_STATUS_UNSET:
4320 		__assert_unreachable();
4321 		break;
4322 	case CACHE_FPL_STATUS_DESTROYED:
4323 	case CACHE_FPL_STATUS_ABORTED:
4324 	case CACHE_FPL_STATUS_PARTIAL:
4325 	case CACHE_FPL_STATUS_HANDLED:
4326 		break;
4327 	}
4328 }
4329 #else
4330 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4331 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4332 #define cache_fpl_assert_status(fpl) do { } while (0)
4333 #endif
4334 
4335 #define cache_fpl_smr_enter_initial(fpl) ({			\
4336 	struct cache_fpl *_fpl = (fpl);				\
4337 	vfs_smr_enter();					\
4338 	_fpl->in_smr = true;					\
4339 })
4340 
4341 #define cache_fpl_smr_enter(fpl) ({				\
4342 	struct cache_fpl *_fpl = (fpl);				\
4343 	MPASS(_fpl->in_smr == false);				\
4344 	vfs_smr_enter();					\
4345 	_fpl->in_smr = true;					\
4346 })
4347 
4348 #define cache_fpl_smr_exit(fpl) ({				\
4349 	struct cache_fpl *_fpl = (fpl);				\
4350 	MPASS(_fpl->in_smr == true);				\
4351 	vfs_smr_exit();						\
4352 	_fpl->in_smr = false;					\
4353 })
4354 
4355 static int
cache_fpl_aborted_early_impl(struct cache_fpl * fpl,int line)4356 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4357 {
4358 
4359 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4360 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4361 		    ("%s: converting to abort from %d at %d, set at %d\n",
4362 		    __func__, fpl->status, line, fpl->line));
4363 	}
4364 	cache_fpl_smr_assert_not_entered(fpl);
4365 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4366 	fpl->line = line;
4367 	return (CACHE_FPL_FAILED);
4368 }
4369 
4370 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4371 
4372 static int __noinline
cache_fpl_aborted_impl(struct cache_fpl * fpl,int line)4373 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4374 {
4375 	struct nameidata *ndp;
4376 	struct componentname *cnp;
4377 
4378 	ndp = fpl->ndp;
4379 	cnp = fpl->cnp;
4380 
4381 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4382 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4383 		    ("%s: converting to abort from %d at %d, set at %d\n",
4384 		    __func__, fpl->status, line, fpl->line));
4385 	}
4386 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4387 	fpl->line = line;
4388 	if (fpl->in_smr)
4389 		cache_fpl_smr_exit(fpl);
4390 	cache_fpl_restore_abort(fpl);
4391 	/*
4392 	 * Resolving symlinks overwrites data passed by the caller.
4393 	 * Let namei know.
4394 	 */
4395 	if (ndp->ni_loopcnt > 0) {
4396 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4397 		cache_fpl_cleanup_cnp(cnp);
4398 	}
4399 	return (CACHE_FPL_FAILED);
4400 }
4401 
4402 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4403 
4404 static int __noinline
cache_fpl_partial_impl(struct cache_fpl * fpl,int line)4405 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4406 {
4407 
4408 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4409 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4410 	    __func__, line, fpl->status, fpl->line));
4411 	cache_fpl_smr_assert_entered(fpl);
4412 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4413 	fpl->line = line;
4414 	return (cache_fplookup_partial_setup(fpl));
4415 }
4416 
4417 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4418 
4419 static int
cache_fpl_handled_impl(struct cache_fpl * fpl,int line)4420 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4421 {
4422 
4423 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4424 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4425 	    __func__, line, fpl->status, fpl->line));
4426 	cache_fpl_smr_assert_not_entered(fpl);
4427 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4428 	fpl->line = line;
4429 	return (0);
4430 }
4431 
4432 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4433 
4434 static int
cache_fpl_handled_error_impl(struct cache_fpl * fpl,int error,int line)4435 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4436 {
4437 
4438 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4439 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4440 	    __func__, line, fpl->status, fpl->line));
4441 	MPASS(error != 0);
4442 	MPASS(error != CACHE_FPL_FAILED);
4443 	cache_fpl_smr_assert_not_entered(fpl);
4444 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4445 	fpl->line = line;
4446 	fpl->dvp = NULL;
4447 	fpl->tvp = NULL;
4448 	return (error);
4449 }
4450 
4451 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4452 
4453 static bool
cache_fpl_terminated(struct cache_fpl * fpl)4454 cache_fpl_terminated(struct cache_fpl *fpl)
4455 {
4456 
4457 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4458 }
4459 
4460 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4461 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4462 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4463 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4464 	 OPENWRITE | WANTIOCTLCAPS)
4465 
4466 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4467 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4468 
4469 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4470     "supported and internal flags overlap");
4471 
4472 static bool
cache_fpl_islastcn(struct nameidata * ndp)4473 cache_fpl_islastcn(struct nameidata *ndp)
4474 {
4475 
4476 	return (*ndp->ni_next == 0);
4477 }
4478 
4479 static bool
cache_fpl_istrailingslash(struct cache_fpl * fpl)4480 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4481 {
4482 
4483 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4484 	return (*(fpl->nulchar - 1) == '/');
4485 }
4486 
4487 static bool
cache_fpl_isdotdot(struct componentname * cnp)4488 cache_fpl_isdotdot(struct componentname *cnp)
4489 {
4490 
4491 	if (cnp->cn_namelen == 2 &&
4492 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4493 		return (true);
4494 	return (false);
4495 }
4496 
4497 static bool
cache_can_fplookup(struct cache_fpl * fpl)4498 cache_can_fplookup(struct cache_fpl *fpl)
4499 {
4500 	struct nameidata *ndp;
4501 	struct componentname *cnp;
4502 	struct thread *td;
4503 
4504 	ndp = fpl->ndp;
4505 	cnp = fpl->cnp;
4506 	td = curthread;
4507 
4508 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4509 		cache_fpl_aborted_early(fpl);
4510 		return (false);
4511 	}
4512 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4513 		cache_fpl_aborted_early(fpl);
4514 		return (false);
4515 	}
4516 	if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
4517 		cache_fpl_aborted_early(fpl);
4518 		return (false);
4519 	}
4520 	if (AUDITING_TD(td)) {
4521 		cache_fpl_aborted_early(fpl);
4522 		return (false);
4523 	}
4524 	if (ndp->ni_startdir != NULL) {
4525 		cache_fpl_aborted_early(fpl);
4526 		return (false);
4527 	}
4528 	return (true);
4529 }
4530 
4531 static int __noinline
cache_fplookup_dirfd(struct cache_fpl * fpl,struct vnode ** vpp)4532 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4533 {
4534 	struct nameidata *ndp;
4535 	struct componentname *cnp;
4536 	int error;
4537 	bool fsearch;
4538 
4539 	ndp = fpl->ndp;
4540 	cnp = fpl->cnp;
4541 
4542 	error = fgetvp_lookup_smr(ndp, vpp, &fsearch);
4543 	if (__predict_false(error != 0)) {
4544 		return (cache_fpl_aborted(fpl));
4545 	}
4546 	fpl->fsearch = fsearch;
4547 	if ((*vpp)->v_type != VDIR) {
4548 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4549 			cache_fpl_smr_exit(fpl);
4550 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4551 		}
4552 	}
4553 	return (0);
4554 }
4555 
4556 static int __noinline
cache_fplookup_negative_promote(struct cache_fpl * fpl,struct namecache * oncp,uint32_t hash)4557 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4558     uint32_t hash)
4559 {
4560 	struct componentname *cnp;
4561 	struct vnode *dvp;
4562 
4563 	cnp = fpl->cnp;
4564 	dvp = fpl->dvp;
4565 
4566 	cache_fpl_smr_exit(fpl);
4567 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4568 		return (cache_fpl_handled_error(fpl, ENOENT));
4569 	else
4570 		return (cache_fpl_aborted(fpl));
4571 }
4572 
4573 /*
4574  * The target vnode is not supported, prepare for the slow path to take over.
4575  */
4576 static int __noinline
cache_fplookup_partial_setup(struct cache_fpl * fpl)4577 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4578 {
4579 	struct nameidata *ndp;
4580 	struct componentname *cnp;
4581 	enum vgetstate dvs;
4582 	struct vnode *dvp;
4583 	struct pwd *pwd;
4584 	seqc_t dvp_seqc;
4585 
4586 	ndp = fpl->ndp;
4587 	cnp = fpl->cnp;
4588 	pwd = *(fpl->pwd);
4589 	dvp = fpl->dvp;
4590 	dvp_seqc = fpl->dvp_seqc;
4591 
4592 	if (!pwd_hold_smr(pwd)) {
4593 		return (cache_fpl_aborted(fpl));
4594 	}
4595 
4596 	/*
4597 	 * Note that seqc is checked before the vnode is locked, so by
4598 	 * the time regular lookup gets to it it may have moved.
4599 	 *
4600 	 * Ultimately this does not affect correctness, any lookup errors
4601 	 * are userspace racing with itself. It is guaranteed that any
4602 	 * path which ultimately gets found could also have been found
4603 	 * by regular lookup going all the way in absence of concurrent
4604 	 * modifications.
4605 	 */
4606 	dvs = vget_prep_smr(dvp);
4607 	cache_fpl_smr_exit(fpl);
4608 	if (__predict_false(dvs == VGET_NONE)) {
4609 		pwd_drop(pwd);
4610 		return (cache_fpl_aborted(fpl));
4611 	}
4612 
4613 	vget_finish_ref(dvp, dvs);
4614 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4615 		vrele(dvp);
4616 		pwd_drop(pwd);
4617 		return (cache_fpl_aborted(fpl));
4618 	}
4619 
4620 	cache_fpl_restore_partial(fpl);
4621 #ifdef INVARIANTS
4622 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4623 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4624 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4625 	}
4626 #endif
4627 
4628 	ndp->ni_startdir = dvp;
4629 	cnp->cn_flags |= MAKEENTRY;
4630 	if (cache_fpl_islastcn(ndp))
4631 		cnp->cn_flags |= ISLASTCN;
4632 	if (cache_fpl_isdotdot(cnp))
4633 		cnp->cn_flags |= ISDOTDOT;
4634 
4635 	/*
4636 	 * Skip potential extra slashes parsing did not take care of.
4637 	 * cache_fplookup_skip_slashes explains the mechanism.
4638 	 */
4639 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4640 		do {
4641 			cnp->cn_nameptr++;
4642 			cache_fpl_pathlen_dec(fpl);
4643 		} while (*(cnp->cn_nameptr) == '/');
4644 	}
4645 
4646 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4647 #ifdef INVARIANTS
4648 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4649 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4650 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4651 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4652 	}
4653 #endif
4654 	return (0);
4655 }
4656 
4657 static int
cache_fplookup_final_child(struct cache_fpl * fpl,enum vgetstate tvs)4658 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4659 {
4660 	struct componentname *cnp;
4661 	struct vnode *tvp;
4662 	seqc_t tvp_seqc;
4663 	int error, lkflags;
4664 
4665 	cnp = fpl->cnp;
4666 	tvp = fpl->tvp;
4667 	tvp_seqc = fpl->tvp_seqc;
4668 
4669 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4670 		lkflags = LK_SHARED;
4671 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4672 			lkflags = LK_EXCLUSIVE;
4673 		error = vget_finish(tvp, lkflags, tvs);
4674 		if (__predict_false(error != 0)) {
4675 			return (cache_fpl_aborted(fpl));
4676 		}
4677 	} else {
4678 		vget_finish_ref(tvp, tvs);
4679 	}
4680 
4681 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4682 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4683 			vput(tvp);
4684 		else
4685 			vrele(tvp);
4686 		return (cache_fpl_aborted(fpl));
4687 	}
4688 
4689 	return (cache_fpl_handled(fpl));
4690 }
4691 
4692 /*
4693  * They want to possibly modify the state of the namecache.
4694  */
4695 static int __noinline
cache_fplookup_final_modifying(struct cache_fpl * fpl)4696 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4697 {
4698 	struct nameidata *ndp __diagused;
4699 	struct componentname *cnp;
4700 	enum vgetstate dvs;
4701 	struct vnode *dvp, *tvp;
4702 	struct mount *mp;
4703 	seqc_t dvp_seqc;
4704 	int error;
4705 	bool docache;
4706 
4707 	ndp = fpl->ndp;
4708 	cnp = fpl->cnp;
4709 	dvp = fpl->dvp;
4710 	dvp_seqc = fpl->dvp_seqc;
4711 
4712 	MPASS(*(cnp->cn_nameptr) != '/');
4713 	MPASS(cache_fpl_islastcn(ndp));
4714 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4715 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4716 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4717 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4718 	    cnp->cn_nameiop == RENAME);
4719 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4720 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4721 
4722 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4723 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4724 		docache = false;
4725 
4726 	/*
4727 	 * Regular lookup nulifies the slash, which we don't do here.
4728 	 * Don't take chances with filesystem routines seeing it for
4729 	 * the last entry.
4730 	 */
4731 	if (cache_fpl_istrailingslash(fpl)) {
4732 		return (cache_fpl_partial(fpl));
4733 	}
4734 
4735 	mp = atomic_load_ptr(&dvp->v_mount);
4736 	if (__predict_false(mp == NULL)) {
4737 		return (cache_fpl_aborted(fpl));
4738 	}
4739 
4740 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4741 		cache_fpl_smr_exit(fpl);
4742 		/*
4743 		 * Original code keeps not checking for CREATE which
4744 		 * might be a bug. For now let the old lookup decide.
4745 		 */
4746 		if (cnp->cn_nameiop == CREATE) {
4747 			return (cache_fpl_aborted(fpl));
4748 		}
4749 		return (cache_fpl_handled_error(fpl, EROFS));
4750 	}
4751 
4752 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4753 		cache_fpl_smr_exit(fpl);
4754 		return (cache_fpl_handled_error(fpl, EEXIST));
4755 	}
4756 
4757 	/*
4758 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4759 	 * reasoning.
4760 	 *
4761 	 * XXX At least UFS requires its lookup routine to be called for
4762 	 * the last path component, which leads to some level of complication
4763 	 * and inefficiency:
4764 	 * - the target routine always locks the target vnode, but our caller
4765 	 *   may not need it locked
4766 	 * - some of the VOP machinery asserts that the parent is locked, which
4767 	 *   once more may be not required
4768 	 *
4769 	 * TODO: add a flag for filesystems which don't need this.
4770 	 */
4771 	dvs = vget_prep_smr(dvp);
4772 	cache_fpl_smr_exit(fpl);
4773 	if (__predict_false(dvs == VGET_NONE)) {
4774 		return (cache_fpl_aborted(fpl));
4775 	}
4776 
4777 	vget_finish_ref(dvp, dvs);
4778 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4779 		vrele(dvp);
4780 		return (cache_fpl_aborted(fpl));
4781 	}
4782 
4783 	error = vn_lock(dvp, LK_EXCLUSIVE);
4784 	if (__predict_false(error != 0)) {
4785 		vrele(dvp);
4786 		return (cache_fpl_aborted(fpl));
4787 	}
4788 
4789 	tvp = NULL;
4790 	cnp->cn_flags |= ISLASTCN;
4791 	if (docache)
4792 		cnp->cn_flags |= MAKEENTRY;
4793 	if (cache_fpl_isdotdot(cnp))
4794 		cnp->cn_flags |= ISDOTDOT;
4795 	cnp->cn_lkflags = LK_EXCLUSIVE;
4796 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4797 	switch (error) {
4798 	case EJUSTRETURN:
4799 	case 0:
4800 		break;
4801 	case ENOTDIR:
4802 	case ENOENT:
4803 		vput(dvp);
4804 		return (cache_fpl_handled_error(fpl, error));
4805 	default:
4806 		vput(dvp);
4807 		return (cache_fpl_aborted(fpl));
4808 	}
4809 
4810 	fpl->tvp = tvp;
4811 
4812 	if (tvp == NULL) {
4813 		MPASS(error == EJUSTRETURN);
4814 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4815 			VOP_UNLOCK(dvp);
4816 		}
4817 		return (cache_fpl_handled(fpl));
4818 	}
4819 
4820 	/*
4821 	 * There are very hairy corner cases concerning various flag combinations
4822 	 * and locking state. In particular here we only hold one lock instead of
4823 	 * two.
4824 	 *
4825 	 * Skip the complexity as it is of no significance for normal workloads.
4826 	 */
4827 	if (__predict_false(tvp == dvp)) {
4828 		vput(dvp);
4829 		vrele(tvp);
4830 		return (cache_fpl_aborted(fpl));
4831 	}
4832 
4833 	/*
4834 	 * If they want the symlink itself we are fine, but if they want to
4835 	 * follow it regular lookup has to be engaged.
4836 	 */
4837 	if (tvp->v_type == VLNK) {
4838 		if ((cnp->cn_flags & FOLLOW) != 0) {
4839 			vput(dvp);
4840 			vput(tvp);
4841 			return (cache_fpl_aborted(fpl));
4842 		}
4843 	}
4844 
4845 	/*
4846 	 * Since we expect this to be the terminal vnode it should almost never
4847 	 * be a mount point.
4848 	 */
4849 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4850 		vput(dvp);
4851 		vput(tvp);
4852 		return (cache_fpl_aborted(fpl));
4853 	}
4854 
4855 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4856 		vput(dvp);
4857 		vput(tvp);
4858 		return (cache_fpl_handled_error(fpl, EEXIST));
4859 	}
4860 
4861 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4862 		VOP_UNLOCK(tvp);
4863 	}
4864 
4865 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4866 		VOP_UNLOCK(dvp);
4867 	}
4868 
4869 	return (cache_fpl_handled(fpl));
4870 }
4871 
4872 static int __noinline
cache_fplookup_modifying(struct cache_fpl * fpl)4873 cache_fplookup_modifying(struct cache_fpl *fpl)
4874 {
4875 	struct nameidata *ndp;
4876 
4877 	ndp = fpl->ndp;
4878 
4879 	if (!cache_fpl_islastcn(ndp)) {
4880 		return (cache_fpl_partial(fpl));
4881 	}
4882 	return (cache_fplookup_final_modifying(fpl));
4883 }
4884 
4885 static int __noinline
cache_fplookup_final_withparent(struct cache_fpl * fpl)4886 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4887 {
4888 	struct componentname *cnp;
4889 	enum vgetstate dvs, tvs;
4890 	struct vnode *dvp, *tvp;
4891 	seqc_t dvp_seqc;
4892 	int error;
4893 
4894 	cnp = fpl->cnp;
4895 	dvp = fpl->dvp;
4896 	dvp_seqc = fpl->dvp_seqc;
4897 	tvp = fpl->tvp;
4898 
4899 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4900 
4901 	/*
4902 	 * This is less efficient than it can be for simplicity.
4903 	 */
4904 	dvs = vget_prep_smr(dvp);
4905 	if (__predict_false(dvs == VGET_NONE)) {
4906 		return (cache_fpl_aborted(fpl));
4907 	}
4908 	tvs = vget_prep_smr(tvp);
4909 	if (__predict_false(tvs == VGET_NONE)) {
4910 		cache_fpl_smr_exit(fpl);
4911 		vget_abort(dvp, dvs);
4912 		return (cache_fpl_aborted(fpl));
4913 	}
4914 
4915 	cache_fpl_smr_exit(fpl);
4916 
4917 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4918 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4919 		if (__predict_false(error != 0)) {
4920 			vget_abort(tvp, tvs);
4921 			return (cache_fpl_aborted(fpl));
4922 		}
4923 	} else {
4924 		vget_finish_ref(dvp, dvs);
4925 	}
4926 
4927 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4928 		vget_abort(tvp, tvs);
4929 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4930 			vput(dvp);
4931 		else
4932 			vrele(dvp);
4933 		return (cache_fpl_aborted(fpl));
4934 	}
4935 
4936 	error = cache_fplookup_final_child(fpl, tvs);
4937 	if (__predict_false(error != 0)) {
4938 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4939 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4940 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4941 			vput(dvp);
4942 		else
4943 			vrele(dvp);
4944 		return (error);
4945 	}
4946 
4947 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4948 	return (0);
4949 }
4950 
4951 static int
cache_fplookup_final(struct cache_fpl * fpl)4952 cache_fplookup_final(struct cache_fpl *fpl)
4953 {
4954 	struct componentname *cnp;
4955 	enum vgetstate tvs;
4956 	struct vnode *dvp, *tvp;
4957 	seqc_t dvp_seqc;
4958 
4959 	cnp = fpl->cnp;
4960 	dvp = fpl->dvp;
4961 	dvp_seqc = fpl->dvp_seqc;
4962 	tvp = fpl->tvp;
4963 
4964 	MPASS(*(cnp->cn_nameptr) != '/');
4965 
4966 	if (cnp->cn_nameiop != LOOKUP) {
4967 		return (cache_fplookup_final_modifying(fpl));
4968 	}
4969 
4970 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4971 		return (cache_fplookup_final_withparent(fpl));
4972 
4973 	tvs = vget_prep_smr(tvp);
4974 	if (__predict_false(tvs == VGET_NONE)) {
4975 		return (cache_fpl_partial(fpl));
4976 	}
4977 
4978 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4979 		cache_fpl_smr_exit(fpl);
4980 		vget_abort(tvp, tvs);
4981 		return (cache_fpl_aborted(fpl));
4982 	}
4983 
4984 	cache_fpl_smr_exit(fpl);
4985 	return (cache_fplookup_final_child(fpl, tvs));
4986 }
4987 
4988 /*
4989  * Comment from locked lookup:
4990  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4991  * directory, e.g. like "/." or ".".
4992  */
4993 static int __noinline
cache_fplookup_degenerate(struct cache_fpl * fpl)4994 cache_fplookup_degenerate(struct cache_fpl *fpl)
4995 {
4996 	struct componentname *cnp;
4997 	struct vnode *dvp;
4998 	enum vgetstate dvs;
4999 	int error, lkflags;
5000 #ifdef INVARIANTS
5001 	char *cp;
5002 #endif
5003 
5004 	fpl->tvp = fpl->dvp;
5005 	fpl->tvp_seqc = fpl->dvp_seqc;
5006 
5007 	cnp = fpl->cnp;
5008 	dvp = fpl->dvp;
5009 
5010 #ifdef INVARIANTS
5011 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
5012 		KASSERT(*cp == '/',
5013 		    ("%s: encountered non-slash; string [%s]\n", __func__,
5014 		    cnp->cn_pnbuf));
5015 	}
5016 #endif
5017 
5018 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
5019 		cache_fpl_smr_exit(fpl);
5020 		return (cache_fpl_handled_error(fpl, EISDIR));
5021 	}
5022 
5023 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
5024 		return (cache_fplookup_final_withparent(fpl));
5025 	}
5026 
5027 	dvs = vget_prep_smr(dvp);
5028 	cache_fpl_smr_exit(fpl);
5029 	if (__predict_false(dvs == VGET_NONE)) {
5030 		return (cache_fpl_aborted(fpl));
5031 	}
5032 
5033 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5034 		lkflags = LK_SHARED;
5035 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5036 			lkflags = LK_EXCLUSIVE;
5037 		error = vget_finish(dvp, lkflags, dvs);
5038 		if (__predict_false(error != 0)) {
5039 			return (cache_fpl_aborted(fpl));
5040 		}
5041 	} else {
5042 		vget_finish_ref(dvp, dvs);
5043 	}
5044 	return (cache_fpl_handled(fpl));
5045 }
5046 
5047 static int __noinline
cache_fplookup_emptypath(struct cache_fpl * fpl)5048 cache_fplookup_emptypath(struct cache_fpl *fpl)
5049 {
5050 	struct nameidata *ndp;
5051 	struct componentname *cnp;
5052 	enum vgetstate tvs;
5053 	struct vnode *tvp;
5054 	int error, lkflags;
5055 
5056 	fpl->tvp = fpl->dvp;
5057 	fpl->tvp_seqc = fpl->dvp_seqc;
5058 
5059 	ndp = fpl->ndp;
5060 	cnp = fpl->cnp;
5061 	tvp = fpl->tvp;
5062 
5063 	MPASS(*cnp->cn_pnbuf == '\0');
5064 
5065 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
5066 		cache_fpl_smr_exit(fpl);
5067 		return (cache_fpl_handled_error(fpl, ENOENT));
5068 	}
5069 
5070 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
5071 
5072 	tvs = vget_prep_smr(tvp);
5073 	cache_fpl_smr_exit(fpl);
5074 	if (__predict_false(tvs == VGET_NONE)) {
5075 		return (cache_fpl_aborted(fpl));
5076 	}
5077 
5078 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5079 		lkflags = LK_SHARED;
5080 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5081 			lkflags = LK_EXCLUSIVE;
5082 		error = vget_finish(tvp, lkflags, tvs);
5083 		if (__predict_false(error != 0)) {
5084 			return (cache_fpl_aborted(fpl));
5085 		}
5086 	} else {
5087 		vget_finish_ref(tvp, tvs);
5088 	}
5089 
5090 	ndp->ni_resflags |= NIRES_EMPTYPATH;
5091 	return (cache_fpl_handled(fpl));
5092 }
5093 
5094 static int __noinline
cache_fplookup_noentry(struct cache_fpl * fpl)5095 cache_fplookup_noentry(struct cache_fpl *fpl)
5096 {
5097 	struct nameidata *ndp;
5098 	struct componentname *cnp;
5099 	enum vgetstate dvs;
5100 	struct vnode *dvp, *tvp;
5101 	seqc_t dvp_seqc;
5102 	int error;
5103 
5104 	ndp = fpl->ndp;
5105 	cnp = fpl->cnp;
5106 	dvp = fpl->dvp;
5107 	dvp_seqc = fpl->dvp_seqc;
5108 
5109 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
5110 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
5111 	if (cnp->cn_nameiop == LOOKUP)
5112 		MPASS((cnp->cn_flags & NOCACHE) == 0);
5113 	MPASS(!cache_fpl_isdotdot(cnp));
5114 
5115 	/*
5116 	 * Hack: delayed name len checking.
5117 	 */
5118 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5119 		cache_fpl_smr_exit(fpl);
5120 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5121 	}
5122 
5123 	if (cnp->cn_nameptr[0] == '/') {
5124 		return (cache_fplookup_skip_slashes(fpl));
5125 	}
5126 
5127 	if (cnp->cn_pnbuf[0] == '\0') {
5128 		return (cache_fplookup_emptypath(fpl));
5129 	}
5130 
5131 	if (cnp->cn_nameptr[0] == '\0') {
5132 		if (fpl->tvp == NULL) {
5133 			return (cache_fplookup_degenerate(fpl));
5134 		}
5135 		return (cache_fplookup_trailingslash(fpl));
5136 	}
5137 
5138 	if (cnp->cn_nameiop != LOOKUP) {
5139 		fpl->tvp = NULL;
5140 		return (cache_fplookup_modifying(fpl));
5141 	}
5142 
5143 	/*
5144 	 * Only try to fill in the component if it is the last one,
5145 	 * otherwise not only there may be several to handle but the
5146 	 * walk may be complicated.
5147 	 */
5148 	if (!cache_fpl_islastcn(ndp)) {
5149 		return (cache_fpl_partial(fpl));
5150 	}
5151 
5152 	/*
5153 	 * Regular lookup nulifies the slash, which we don't do here.
5154 	 * Don't take chances with filesystem routines seeing it for
5155 	 * the last entry.
5156 	 */
5157 	if (cache_fpl_istrailingslash(fpl)) {
5158 		return (cache_fpl_partial(fpl));
5159 	}
5160 
5161 	/*
5162 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5163 	 * reasoning.
5164 	 */
5165 	dvs = vget_prep_smr(dvp);
5166 	cache_fpl_smr_exit(fpl);
5167 	if (__predict_false(dvs == VGET_NONE)) {
5168 		return (cache_fpl_aborted(fpl));
5169 	}
5170 
5171 	vget_finish_ref(dvp, dvs);
5172 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5173 		vrele(dvp);
5174 		return (cache_fpl_aborted(fpl));
5175 	}
5176 
5177 	error = vn_lock(dvp, LK_SHARED);
5178 	if (__predict_false(error != 0)) {
5179 		vrele(dvp);
5180 		return (cache_fpl_aborted(fpl));
5181 	}
5182 
5183 	tvp = NULL;
5184 	/*
5185 	 * TODO: provide variants which don't require locking either vnode.
5186 	 */
5187 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5188 	cnp->cn_lkflags = LK_SHARED;
5189 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5190 		cnp->cn_lkflags = LK_EXCLUSIVE;
5191 	}
5192 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5193 	switch (error) {
5194 	case EJUSTRETURN:
5195 	case 0:
5196 		break;
5197 	case ENOTDIR:
5198 	case ENOENT:
5199 		vput(dvp);
5200 		return (cache_fpl_handled_error(fpl, error));
5201 	default:
5202 		vput(dvp);
5203 		return (cache_fpl_aborted(fpl));
5204 	}
5205 
5206 	fpl->tvp = tvp;
5207 
5208 	if (tvp == NULL) {
5209 		MPASS(error == EJUSTRETURN);
5210 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5211 			vput(dvp);
5212 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5213 			VOP_UNLOCK(dvp);
5214 		}
5215 		return (cache_fpl_handled(fpl));
5216 	}
5217 
5218 	if (tvp->v_type == VLNK) {
5219 		if ((cnp->cn_flags & FOLLOW) != 0) {
5220 			vput(dvp);
5221 			vput(tvp);
5222 			return (cache_fpl_aborted(fpl));
5223 		}
5224 	}
5225 
5226 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5227 		vput(dvp);
5228 		vput(tvp);
5229 		return (cache_fpl_aborted(fpl));
5230 	}
5231 
5232 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5233 		VOP_UNLOCK(tvp);
5234 	}
5235 
5236 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5237 		vput(dvp);
5238 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5239 		VOP_UNLOCK(dvp);
5240 	}
5241 	return (cache_fpl_handled(fpl));
5242 }
5243 
5244 static int __noinline
cache_fplookup_dot(struct cache_fpl * fpl)5245 cache_fplookup_dot(struct cache_fpl *fpl)
5246 {
5247 	int error;
5248 
5249 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5250 
5251 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5252 		cache_fpl_smr_exit(fpl);
5253 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5254 	}
5255 
5256 	/*
5257 	 * Just re-assign the value. seqc will be checked later for the first
5258 	 * non-dot path component in line and/or before deciding to return the
5259 	 * vnode.
5260 	 */
5261 	fpl->tvp = fpl->dvp;
5262 	fpl->tvp_seqc = fpl->dvp_seqc;
5263 
5264 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5265 
5266 	error = 0;
5267 	if (cache_fplookup_is_mp(fpl)) {
5268 		error = cache_fplookup_cross_mount(fpl);
5269 	}
5270 	return (error);
5271 }
5272 
5273 static int __noinline
cache_fplookup_dotdot(struct cache_fpl * fpl)5274 cache_fplookup_dotdot(struct cache_fpl *fpl)
5275 {
5276 	struct nameidata *ndp;
5277 	struct componentname *cnp;
5278 	struct namecache *ncp;
5279 	struct vnode *dvp;
5280 	struct prison *pr;
5281 	u_char nc_flag;
5282 
5283 	ndp = fpl->ndp;
5284 	cnp = fpl->cnp;
5285 	dvp = fpl->dvp;
5286 
5287 	MPASS(cache_fpl_isdotdot(cnp));
5288 
5289 	/*
5290 	 * XXX this is racy the same way regular lookup is
5291 	 */
5292 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5293 	    pr = pr->pr_parent)
5294 		if (dvp == pr->pr_root)
5295 			break;
5296 
5297 	if (dvp == ndp->ni_rootdir ||
5298 	    dvp == ndp->ni_topdir ||
5299 	    dvp == rootvnode ||
5300 	    pr != NULL) {
5301 		fpl->tvp = dvp;
5302 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5303 		if (seqc_in_modify(fpl->tvp_seqc)) {
5304 			return (cache_fpl_aborted(fpl));
5305 		}
5306 		return (0);
5307 	}
5308 
5309 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5310 		/*
5311 		 * TODO
5312 		 * The opposite of climb mount is needed here.
5313 		 */
5314 		return (cache_fpl_partial(fpl));
5315 	}
5316 
5317 	if (__predict_false(dvp->v_type != VDIR)) {
5318 		cache_fpl_smr_exit(fpl);
5319 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5320 	}
5321 
5322 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5323 	if (ncp == NULL) {
5324 		return (cache_fpl_aborted(fpl));
5325 	}
5326 
5327 	nc_flag = atomic_load_char(&ncp->nc_flag);
5328 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5329 		if ((nc_flag & NCF_NEGATIVE) != 0)
5330 			return (cache_fpl_aborted(fpl));
5331 		fpl->tvp = ncp->nc_vp;
5332 	} else {
5333 		fpl->tvp = ncp->nc_dvp;
5334 	}
5335 
5336 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5337 	if (seqc_in_modify(fpl->tvp_seqc)) {
5338 		return (cache_fpl_partial(fpl));
5339 	}
5340 
5341 	/*
5342 	 * Acquire fence provided by vn_seqc_read_any above.
5343 	 */
5344 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5345 		return (cache_fpl_aborted(fpl));
5346 	}
5347 
5348 	if (!cache_ncp_canuse(ncp)) {
5349 		return (cache_fpl_aborted(fpl));
5350 	}
5351 
5352 	return (0);
5353 }
5354 
5355 static int __noinline
cache_fplookup_neg(struct cache_fpl * fpl,struct namecache * ncp,uint32_t hash)5356 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5357 {
5358 	u_char nc_flag __diagused;
5359 	bool neg_promote;
5360 
5361 #ifdef INVARIANTS
5362 	nc_flag = atomic_load_char(&ncp->nc_flag);
5363 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5364 #endif
5365 	/*
5366 	 * If they want to create an entry we need to replace this one.
5367 	 */
5368 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5369 		fpl->tvp = NULL;
5370 		return (cache_fplookup_modifying(fpl));
5371 	}
5372 	neg_promote = cache_neg_hit_prep(ncp);
5373 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5374 		cache_neg_hit_abort(ncp);
5375 		return (cache_fpl_partial(fpl));
5376 	}
5377 	if (neg_promote) {
5378 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5379 	}
5380 	cache_neg_hit_finish(ncp);
5381 	cache_fpl_smr_exit(fpl);
5382 	return (cache_fpl_handled_error(fpl, ENOENT));
5383 }
5384 
5385 /*
5386  * Resolve a symlink. Called by filesystem-specific routines.
5387  *
5388  * Code flow is:
5389  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5390  */
5391 int
cache_symlink_resolve(struct cache_fpl * fpl,const char * string,size_t len)5392 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5393 {
5394 	struct nameidata *ndp;
5395 	struct componentname *cnp;
5396 	size_t adjust;
5397 
5398 	ndp = fpl->ndp;
5399 	cnp = fpl->cnp;
5400 
5401 	if (__predict_false(len == 0)) {
5402 		return (ENOENT);
5403 	}
5404 
5405 	if (__predict_false(len > MAXPATHLEN - 2)) {
5406 		if (cache_fpl_istrailingslash(fpl)) {
5407 			return (EAGAIN);
5408 		}
5409 	}
5410 
5411 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5412 #ifdef INVARIANTS
5413 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5414 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5415 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5416 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5417 	}
5418 #endif
5419 
5420 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5421 		return (ENAMETOOLONG);
5422 	}
5423 
5424 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5425 		return (ELOOP);
5426 	}
5427 
5428 	adjust = len;
5429 	if (ndp->ni_pathlen > 1) {
5430 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5431 	} else {
5432 		if (cache_fpl_istrailingslash(fpl)) {
5433 			adjust = len + 1;
5434 			cnp->cn_pnbuf[len] = '/';
5435 			cnp->cn_pnbuf[len + 1] = '\0';
5436 		} else {
5437 			cnp->cn_pnbuf[len] = '\0';
5438 		}
5439 	}
5440 	bcopy(string, cnp->cn_pnbuf, len);
5441 
5442 	ndp->ni_pathlen += adjust;
5443 	cache_fpl_pathlen_add(fpl, adjust);
5444 	cnp->cn_nameptr = cnp->cn_pnbuf;
5445 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5446 	fpl->tvp = NULL;
5447 	return (0);
5448 }
5449 
5450 static int __noinline
cache_fplookup_symlink(struct cache_fpl * fpl)5451 cache_fplookup_symlink(struct cache_fpl *fpl)
5452 {
5453 	struct mount *mp;
5454 	struct nameidata *ndp;
5455 	struct componentname *cnp;
5456 	struct vnode *dvp, *tvp;
5457 	struct pwd *pwd;
5458 	int error;
5459 
5460 	ndp = fpl->ndp;
5461 	cnp = fpl->cnp;
5462 	dvp = fpl->dvp;
5463 	tvp = fpl->tvp;
5464 	pwd = *(fpl->pwd);
5465 
5466 	if (cache_fpl_islastcn(ndp)) {
5467 		if ((cnp->cn_flags & FOLLOW) == 0) {
5468 			return (cache_fplookup_final(fpl));
5469 		}
5470 	}
5471 
5472 	mp = atomic_load_ptr(&dvp->v_mount);
5473 	if (__predict_false(mp == NULL)) {
5474 		return (cache_fpl_aborted(fpl));
5475 	}
5476 
5477 	/*
5478 	 * Note this check races against setting the flag just like regular
5479 	 * lookup.
5480 	 */
5481 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5482 		cache_fpl_smr_exit(fpl);
5483 		return (cache_fpl_handled_error(fpl, EACCES));
5484 	}
5485 
5486 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5487 	if (__predict_false(error != 0)) {
5488 		switch (error) {
5489 		case EAGAIN:
5490 			return (cache_fpl_partial(fpl));
5491 		case ENOENT:
5492 		case ENAMETOOLONG:
5493 		case ELOOP:
5494 			cache_fpl_smr_exit(fpl);
5495 			return (cache_fpl_handled_error(fpl, error));
5496 		default:
5497 			return (cache_fpl_aborted(fpl));
5498 		}
5499 	}
5500 
5501 	if (*(cnp->cn_nameptr) == '/') {
5502 		fpl->dvp = cache_fpl_handle_root(fpl);
5503 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5504 		if (seqc_in_modify(fpl->dvp_seqc)) {
5505 			return (cache_fpl_aborted(fpl));
5506 		}
5507 		/*
5508 		 * The main loop assumes that ->dvp points to a vnode belonging
5509 		 * to a filesystem which can do lockless lookup, but the absolute
5510 		 * symlink can be wandering off to one which does not.
5511 		 */
5512 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5513 		if (__predict_false(mp == NULL)) {
5514 			return (cache_fpl_aborted(fpl));
5515 		}
5516 		if (!cache_fplookup_mp_supported(mp)) {
5517 			cache_fpl_checkpoint(fpl);
5518 			return (cache_fpl_partial(fpl));
5519 		}
5520 		if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
5521 			return (cache_fpl_aborted(fpl));
5522 		}
5523 	}
5524 	return (0);
5525 }
5526 
5527 static int
cache_fplookup_next(struct cache_fpl * fpl)5528 cache_fplookup_next(struct cache_fpl *fpl)
5529 {
5530 	struct componentname *cnp;
5531 	struct namecache *ncp;
5532 	struct vnode *dvp, *tvp;
5533 	u_char nc_flag;
5534 	uint32_t hash;
5535 	int error;
5536 
5537 	cnp = fpl->cnp;
5538 	dvp = fpl->dvp;
5539 	hash = fpl->hash;
5540 
5541 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5542 		if (cnp->cn_namelen == 1) {
5543 			return (cache_fplookup_dot(fpl));
5544 		}
5545 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5546 			return (cache_fplookup_dotdot(fpl));
5547 		}
5548 	}
5549 
5550 	MPASS(!cache_fpl_isdotdot(cnp));
5551 
5552 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
5553 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
5554 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
5555 			break;
5556 	}
5557 
5558 	if (__predict_false(ncp == NULL)) {
5559 		return (cache_fplookup_noentry(fpl));
5560 	}
5561 
5562 	tvp = atomic_load_ptr(&ncp->nc_vp);
5563 	nc_flag = atomic_load_char(&ncp->nc_flag);
5564 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5565 		return (cache_fplookup_neg(fpl, ncp, hash));
5566 	}
5567 
5568 	if (!cache_ncp_canuse(ncp)) {
5569 		return (cache_fpl_partial(fpl));
5570 	}
5571 
5572 	fpl->tvp = tvp;
5573 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5574 	if (seqc_in_modify(fpl->tvp_seqc)) {
5575 		return (cache_fpl_partial(fpl));
5576 	}
5577 
5578 	counter_u64_add(numposhits, 1);
5579 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5580 
5581 	error = 0;
5582 	if (cache_fplookup_is_mp(fpl)) {
5583 		error = cache_fplookup_cross_mount(fpl);
5584 	}
5585 	return (error);
5586 }
5587 
5588 static bool
cache_fplookup_mp_supported(struct mount * mp)5589 cache_fplookup_mp_supported(struct mount *mp)
5590 {
5591 
5592 	MPASS(mp != NULL);
5593 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5594 		return (false);
5595 	return (true);
5596 }
5597 
5598 /*
5599  * Walk up the mount stack (if any).
5600  *
5601  * Correctness is provided in the following ways:
5602  * - all vnodes are protected from freeing with SMR
5603  * - struct mount objects are type stable making them always safe to access
5604  * - stability of the particular mount is provided by busying it
5605  * - relationship between the vnode which is mounted on and the mount is
5606  *   verified with the vnode sequence counter after busying
5607  * - association between root vnode of the mount and the mount is protected
5608  *   by busy
5609  *
5610  * From that point on we can read the sequence counter of the root vnode
5611  * and get the next mount on the stack (if any) using the same protection.
5612  *
5613  * By the end of successful walk we are guaranteed the reached state was
5614  * indeed present at least at some point which matches the regular lookup.
5615  */
5616 static int __noinline
cache_fplookup_climb_mount(struct cache_fpl * fpl)5617 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5618 {
5619 	struct mount *mp, *prev_mp;
5620 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5621 	struct vnode *vp;
5622 	seqc_t vp_seqc;
5623 
5624 	vp = fpl->tvp;
5625 	vp_seqc = fpl->tvp_seqc;
5626 
5627 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5628 	mp = atomic_load_ptr(&vp->v_mountedhere);
5629 	if (__predict_false(mp == NULL)) {
5630 		return (0);
5631 	}
5632 
5633 	prev_mp = NULL;
5634 	for (;;) {
5635 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5636 			if (prev_mp != NULL)
5637 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5638 			return (cache_fpl_partial(fpl));
5639 		}
5640 		if (prev_mp != NULL)
5641 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5642 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5643 			vfs_op_thread_exit_crit(mp, mpcpu);
5644 			return (cache_fpl_partial(fpl));
5645 		}
5646 		if (!cache_fplookup_mp_supported(mp)) {
5647 			vfs_op_thread_exit_crit(mp, mpcpu);
5648 			return (cache_fpl_partial(fpl));
5649 		}
5650 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5651 		if (vp == NULL) {
5652 			vfs_op_thread_exit_crit(mp, mpcpu);
5653 			return (cache_fpl_partial(fpl));
5654 		}
5655 		vp_seqc = vn_seqc_read_any(vp);
5656 		if (seqc_in_modify(vp_seqc)) {
5657 			vfs_op_thread_exit_crit(mp, mpcpu);
5658 			return (cache_fpl_partial(fpl));
5659 		}
5660 		prev_mp = mp;
5661 		prev_mpcpu = mpcpu;
5662 		mp = atomic_load_ptr(&vp->v_mountedhere);
5663 		if (mp == NULL)
5664 			break;
5665 	}
5666 
5667 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5668 	fpl->tvp = vp;
5669 	fpl->tvp_seqc = vp_seqc;
5670 	return (0);
5671 }
5672 
5673 static int __noinline
cache_fplookup_cross_mount(struct cache_fpl * fpl)5674 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5675 {
5676 	struct mount *mp;
5677 	struct mount_pcpu *mpcpu;
5678 	struct vnode *vp;
5679 	seqc_t vp_seqc;
5680 
5681 	vp = fpl->tvp;
5682 	vp_seqc = fpl->tvp_seqc;
5683 
5684 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5685 	mp = atomic_load_ptr(&vp->v_mountedhere);
5686 	if (__predict_false(mp == NULL)) {
5687 		return (0);
5688 	}
5689 
5690 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5691 		return (cache_fpl_partial(fpl));
5692 	}
5693 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5694 		vfs_op_thread_exit_crit(mp, mpcpu);
5695 		return (cache_fpl_partial(fpl));
5696 	}
5697 	if (!cache_fplookup_mp_supported(mp)) {
5698 		vfs_op_thread_exit_crit(mp, mpcpu);
5699 		return (cache_fpl_partial(fpl));
5700 	}
5701 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5702 	if (__predict_false(vp == NULL)) {
5703 		vfs_op_thread_exit_crit(mp, mpcpu);
5704 		return (cache_fpl_partial(fpl));
5705 	}
5706 	vp_seqc = vn_seqc_read_any(vp);
5707 	vfs_op_thread_exit_crit(mp, mpcpu);
5708 	if (seqc_in_modify(vp_seqc)) {
5709 		return (cache_fpl_partial(fpl));
5710 	}
5711 	mp = atomic_load_ptr(&vp->v_mountedhere);
5712 	if (__predict_false(mp != NULL)) {
5713 		/*
5714 		 * There are possibly more mount points on top.
5715 		 * Normally this does not happen so for simplicity just start
5716 		 * over.
5717 		 */
5718 		return (cache_fplookup_climb_mount(fpl));
5719 	}
5720 
5721 	fpl->tvp = vp;
5722 	fpl->tvp_seqc = vp_seqc;
5723 	return (0);
5724 }
5725 
5726 /*
5727  * Check if a vnode is mounted on.
5728  */
5729 static bool
cache_fplookup_is_mp(struct cache_fpl * fpl)5730 cache_fplookup_is_mp(struct cache_fpl *fpl)
5731 {
5732 	struct vnode *vp;
5733 
5734 	vp = fpl->tvp;
5735 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5736 }
5737 
5738 /*
5739  * Parse the path.
5740  *
5741  * The code was originally copy-pasted from regular lookup and despite
5742  * clean ups leaves performance on the table. Any modifications here
5743  * must take into account that in case off fallback the resulting
5744  * nameidata state has to be compatible with the original.
5745  */
5746 
5747 /*
5748  * Debug ni_pathlen tracking.
5749  */
5750 #ifdef INVARIANTS
5751 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5752 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5753 {
5754 
5755 	fpl->debug.ni_pathlen += n;
5756 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5757 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5758 }
5759 
5760 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5761 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5762 {
5763 
5764 	fpl->debug.ni_pathlen -= n;
5765 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5766 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5767 }
5768 
5769 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5770 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5771 {
5772 
5773 	cache_fpl_pathlen_add(fpl, 1);
5774 }
5775 
5776 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5777 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5778 {
5779 
5780 	cache_fpl_pathlen_sub(fpl, 1);
5781 }
5782 #else
5783 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5784 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5785 {
5786 }
5787 
5788 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5789 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5790 {
5791 }
5792 
5793 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5794 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5795 {
5796 }
5797 
5798 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5799 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5800 {
5801 }
5802 #endif
5803 
5804 static void
cache_fplookup_parse(struct cache_fpl * fpl)5805 cache_fplookup_parse(struct cache_fpl *fpl)
5806 {
5807 	struct nameidata *ndp;
5808 	struct componentname *cnp;
5809 	struct vnode *dvp;
5810 	char *cp;
5811 	uint32_t hash;
5812 
5813 	ndp = fpl->ndp;
5814 	cnp = fpl->cnp;
5815 	dvp = fpl->dvp;
5816 
5817 	/*
5818 	 * Find the end of this path component, it is either / or nul.
5819 	 *
5820 	 * Store / as a temporary sentinel so that we only have one character
5821 	 * to test for. Pathnames tend to be short so this should not be
5822 	 * resulting in cache misses.
5823 	 *
5824 	 * TODO: fix this to be word-sized.
5825 	 */
5826 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5827 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5828 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5829 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5830 	    fpl->nulchar, cnp->cn_pnbuf));
5831 	KASSERT(*fpl->nulchar == '\0',
5832 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5833 	    cnp->cn_pnbuf));
5834 	hash = cache_get_hash_iter_start(dvp);
5835 	*fpl->nulchar = '/';
5836 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5837 		KASSERT(*cp != '\0',
5838 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5839 		    cnp->cn_nameptr));
5840 		hash = cache_get_hash_iter(*cp, hash);
5841 		continue;
5842 	}
5843 	*fpl->nulchar = '\0';
5844 	fpl->hash = cache_get_hash_iter_finish(hash);
5845 
5846 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5847 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5848 
5849 #ifdef INVARIANTS
5850 	/*
5851 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5852 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5853 	 */
5854 	if (cnp->cn_namelen <= NAME_MAX) {
5855 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5856 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5857 			    cnp->cn_nameptr, cnp->cn_namelen);
5858 		}
5859 	}
5860 #endif
5861 
5862 	/*
5863 	 * Hack: we have to check if the found path component's length exceeds
5864 	 * NAME_MAX. However, the condition is very rarely true and check can
5865 	 * be elided in the common case -- if an entry was found in the cache,
5866 	 * then it could not have been too long to begin with.
5867 	 */
5868 	ndp->ni_next = cp;
5869 }
5870 
5871 static void
cache_fplookup_parse_advance(struct cache_fpl * fpl)5872 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5873 {
5874 	struct nameidata *ndp;
5875 	struct componentname *cnp;
5876 
5877 	ndp = fpl->ndp;
5878 	cnp = fpl->cnp;
5879 
5880 	cnp->cn_nameptr = ndp->ni_next;
5881 	KASSERT(*(cnp->cn_nameptr) == '/',
5882 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5883 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5884 	cnp->cn_nameptr++;
5885 	cache_fpl_pathlen_dec(fpl);
5886 }
5887 
5888 /*
5889  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5890  *
5891  * Lockless lookup tries to elide checking for spurious slashes and should they
5892  * be present is guaranteed to fail to find an entry. In this case the caller
5893  * must check if the name starts with a slash and call this routine.  It is
5894  * going to fast forward across the spurious slashes and set the state up for
5895  * retry.
5896  */
5897 static int __noinline
cache_fplookup_skip_slashes(struct cache_fpl * fpl)5898 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5899 {
5900 	struct nameidata *ndp;
5901 	struct componentname *cnp;
5902 
5903 	ndp = fpl->ndp;
5904 	cnp = fpl->cnp;
5905 
5906 	MPASS(*(cnp->cn_nameptr) == '/');
5907 	do {
5908 		cnp->cn_nameptr++;
5909 		cache_fpl_pathlen_dec(fpl);
5910 	} while (*(cnp->cn_nameptr) == '/');
5911 
5912 	/*
5913 	 * Go back to one slash so that cache_fplookup_parse_advance has
5914 	 * something to skip.
5915 	 */
5916 	cnp->cn_nameptr--;
5917 	cache_fpl_pathlen_inc(fpl);
5918 
5919 	/*
5920 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5921 	 */
5922 	ndp->ni_next = cnp->cn_nameptr;
5923 
5924 	/*
5925 	 * See cache_fplookup_dot.
5926 	 */
5927 	fpl->tvp = fpl->dvp;
5928 	fpl->tvp_seqc = fpl->dvp_seqc;
5929 
5930 	return (0);
5931 }
5932 
5933 /*
5934  * Handle trailing slashes (e.g., "foo/").
5935  *
5936  * If a trailing slash is found the terminal vnode must be a directory.
5937  * Regular lookup shortens the path by nulifying the first trailing slash and
5938  * sets the TRAILINGSLASH flag to denote this took place. There are several
5939  * checks on it performed later.
5940  *
5941  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5942  * manner relying on an invariant that a non-directory vnode will get a miss.
5943  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5944  *
5945  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5946  * and denotes this is the last path component, which avoids looping back.
5947  *
5948  * Only plain lookups are supported for now to restrict corner cases to handle.
5949  */
5950 static int __noinline
cache_fplookup_trailingslash(struct cache_fpl * fpl)5951 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5952 {
5953 #ifdef INVARIANTS
5954 	size_t ni_pathlen;
5955 #endif
5956 	struct nameidata *ndp;
5957 	struct componentname *cnp;
5958 	struct namecache *ncp;
5959 	struct vnode *tvp;
5960 	char *cn_nameptr_orig, *cn_nameptr_slash;
5961 	seqc_t tvp_seqc;
5962 	u_char nc_flag;
5963 
5964 	ndp = fpl->ndp;
5965 	cnp = fpl->cnp;
5966 	tvp = fpl->tvp;
5967 	tvp_seqc = fpl->tvp_seqc;
5968 
5969 	MPASS(fpl->dvp == fpl->tvp);
5970 	KASSERT(cache_fpl_istrailingslash(fpl),
5971 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5972 	    cnp->cn_pnbuf));
5973 	KASSERT(cnp->cn_nameptr[0] == '\0',
5974 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5975 	    cnp->cn_pnbuf));
5976 	KASSERT(cnp->cn_namelen == 0,
5977 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5978 	    cnp->cn_pnbuf));
5979 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5980 
5981 	if (cnp->cn_nameiop != LOOKUP) {
5982 		return (cache_fpl_aborted(fpl));
5983 	}
5984 
5985 	if (__predict_false(tvp->v_type != VDIR)) {
5986 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5987 			return (cache_fpl_aborted(fpl));
5988 		}
5989 		cache_fpl_smr_exit(fpl);
5990 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5991 	}
5992 
5993 	/*
5994 	 * Denote the last component.
5995 	 */
5996 	ndp->ni_next = &cnp->cn_nameptr[0];
5997 	MPASS(cache_fpl_islastcn(ndp));
5998 
5999 	/*
6000 	 * Unwind trailing slashes.
6001 	 */
6002 	cn_nameptr_orig = cnp->cn_nameptr;
6003 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
6004 		cnp->cn_nameptr--;
6005 		if (cnp->cn_nameptr[0] != '/') {
6006 			break;
6007 		}
6008 	}
6009 
6010 	/*
6011 	 * Unwind to the beginning of the path component.
6012 	 *
6013 	 * Note the path may or may not have started with a slash.
6014 	 */
6015 	cn_nameptr_slash = cnp->cn_nameptr;
6016 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
6017 		cnp->cn_nameptr--;
6018 		if (cnp->cn_nameptr[0] == '/') {
6019 			break;
6020 		}
6021 	}
6022 	if (cnp->cn_nameptr[0] == '/') {
6023 		cnp->cn_nameptr++;
6024 	}
6025 
6026 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
6027 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
6028 	cache_fpl_checkpoint(fpl);
6029 
6030 #ifdef INVARIANTS
6031 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
6032 	if (ni_pathlen != fpl->debug.ni_pathlen) {
6033 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
6034 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
6035 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
6036 	}
6037 #endif
6038 
6039 	/*
6040 	 * If this was a "./" lookup the parent directory is already correct.
6041 	 */
6042 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
6043 		return (0);
6044 	}
6045 
6046 	/*
6047 	 * Otherwise we need to look it up.
6048 	 */
6049 	tvp = fpl->tvp;
6050 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
6051 	if (__predict_false(ncp == NULL)) {
6052 		return (cache_fpl_aborted(fpl));
6053 	}
6054 	nc_flag = atomic_load_char(&ncp->nc_flag);
6055 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
6056 		return (cache_fpl_aborted(fpl));
6057 	}
6058 	fpl->dvp = ncp->nc_dvp;
6059 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
6060 	if (seqc_in_modify(fpl->dvp_seqc)) {
6061 		return (cache_fpl_aborted(fpl));
6062 	}
6063 	return (0);
6064 }
6065 
6066 /*
6067  * See the API contract for VOP_FPLOOKUP_VEXEC.
6068  */
6069 static int __noinline
cache_fplookup_failed_vexec(struct cache_fpl * fpl,int error)6070 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
6071 {
6072 	struct componentname *cnp;
6073 	struct vnode *dvp;
6074 	seqc_t dvp_seqc;
6075 
6076 	cnp = fpl->cnp;
6077 	dvp = fpl->dvp;
6078 	dvp_seqc = fpl->dvp_seqc;
6079 
6080 	/*
6081 	 * Hack: delayed empty path checking.
6082 	 */
6083 	if (cnp->cn_pnbuf[0] == '\0') {
6084 		return (cache_fplookup_emptypath(fpl));
6085 	}
6086 
6087 	/*
6088 	 * TODO: Due to ignoring trailing slashes lookup will perform a
6089 	 * permission check on the last dir when it should not be doing it.  It
6090 	 * may fail, but said failure should be ignored. It is possible to fix
6091 	 * it up fully without resorting to regular lookup, but for now just
6092 	 * abort.
6093 	 */
6094 	if (cache_fpl_istrailingslash(fpl)) {
6095 		return (cache_fpl_aborted(fpl));
6096 	}
6097 
6098 	/*
6099 	 * Hack: delayed degenerate path checking.
6100 	 */
6101 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
6102 		return (cache_fplookup_degenerate(fpl));
6103 	}
6104 
6105 	/*
6106 	 * Hack: delayed name len checking.
6107 	 */
6108 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
6109 		cache_fpl_smr_exit(fpl);
6110 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
6111 	}
6112 
6113 	/*
6114 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
6115 	 * In such a case we need to return ENOTDIR, but we may happen to get
6116 	 * here with a different error.
6117 	 */
6118 	if (dvp->v_type != VDIR) {
6119 		error = ENOTDIR;
6120 	}
6121 
6122 	/*
6123 	 * Hack: handle O_SEARCH.
6124 	 *
6125 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6126 	 * <quote>
6127 	 * If the access mode of the open file description associated with the
6128 	 * file descriptor is not O_SEARCH, the function shall check whether
6129 	 * directory searches are permitted using the current permissions of
6130 	 * the directory underlying the file descriptor. If the access mode is
6131 	 * O_SEARCH, the function shall not perform the check.
6132 	 * </quote>
6133 	 *
6134 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6135 	 * component to decide whether to do the permission check. However,
6136 	 * since most lookups never have the flag (and when they do it is only
6137 	 * present for the first path component), lockless lookup only acts on
6138 	 * it if there is a permission problem. Here the flag is represented
6139 	 * with a boolean so that we don't have to clear it on the way out.
6140 	 *
6141 	 * For simplicity this always aborts.
6142 	 * TODO: check if this is the first lookup and ignore the permission
6143 	 * problem. Note the flag has to survive fallback (if it happens to be
6144 	 * performed).
6145 	 */
6146 	if (fpl->fsearch) {
6147 		return (cache_fpl_aborted(fpl));
6148 	}
6149 
6150 	switch (error) {
6151 	case EAGAIN:
6152 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6153 			error = cache_fpl_aborted(fpl);
6154 		} else {
6155 			cache_fpl_partial(fpl);
6156 		}
6157 		break;
6158 	default:
6159 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6160 			error = cache_fpl_aborted(fpl);
6161 		} else {
6162 			cache_fpl_smr_exit(fpl);
6163 			cache_fpl_handled_error(fpl, error);
6164 		}
6165 		break;
6166 	}
6167 	return (error);
6168 }
6169 
6170 static int
cache_fplookup_impl(struct vnode * dvp,struct cache_fpl * fpl)6171 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6172 {
6173 	struct nameidata *ndp;
6174 	struct componentname *cnp;
6175 	struct mount *mp;
6176 	int error;
6177 
6178 	ndp = fpl->ndp;
6179 	cnp = fpl->cnp;
6180 
6181 	cache_fpl_checkpoint(fpl);
6182 
6183 	/*
6184 	 * The vnode at hand is almost always stable, skip checking for it.
6185 	 * Worst case this postpones the check towards the end of the iteration
6186 	 * of the main loop.
6187 	 */
6188 	fpl->dvp = dvp;
6189 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6190 
6191 	mp = atomic_load_ptr(&dvp->v_mount);
6192 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6193 		return (cache_fpl_aborted(fpl));
6194 	}
6195 
6196 	MPASS(fpl->tvp == NULL);
6197 
6198 	for (;;) {
6199 		cache_fplookup_parse(fpl);
6200 
6201 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6202 		if (__predict_false(error != 0)) {
6203 			error = cache_fplookup_failed_vexec(fpl, error);
6204 			break;
6205 		}
6206 
6207 		error = cache_fplookup_next(fpl);
6208 		if (__predict_false(cache_fpl_terminated(fpl))) {
6209 			break;
6210 		}
6211 
6212 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6213 
6214 		if (fpl->tvp->v_type == VLNK) {
6215 			error = cache_fplookup_symlink(fpl);
6216 			if (cache_fpl_terminated(fpl)) {
6217 				break;
6218 			}
6219 		} else {
6220 			if (cache_fpl_islastcn(ndp)) {
6221 				error = cache_fplookup_final(fpl);
6222 				break;
6223 			}
6224 
6225 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6226 				error = cache_fpl_aborted(fpl);
6227 				break;
6228 			}
6229 
6230 			fpl->dvp = fpl->tvp;
6231 			fpl->dvp_seqc = fpl->tvp_seqc;
6232 			cache_fplookup_parse_advance(fpl);
6233 		}
6234 
6235 		cache_fpl_checkpoint(fpl);
6236 	}
6237 
6238 	return (error);
6239 }
6240 
6241 /*
6242  * Fast path lookup protected with SMR and sequence counters.
6243  *
6244  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6245  *
6246  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6247  * outlined below.
6248  *
6249  * Traditional vnode lookup conceptually looks like this:
6250  *
6251  * vn_lock(current);
6252  * for (;;) {
6253  *	next = find();
6254  *	vn_lock(next);
6255  *	vn_unlock(current);
6256  *	current = next;
6257  *	if (last)
6258  *	    break;
6259  * }
6260  * return (current);
6261  *
6262  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6263  * any modifications thanks to holding respective locks.
6264  *
6265  * The same guarantee can be provided with a combination of safe memory
6266  * reclamation and sequence counters instead. If all operations which affect
6267  * the relationship between the current vnode and the one we are looking for
6268  * also modify the counter, we can verify whether all the conditions held as
6269  * we made the jump. This includes things like permissions, mount points etc.
6270  * Counter modification is provided by enclosing relevant places in
6271  * vn_seqc_write_begin()/end() calls.
6272  *
6273  * Thus this translates to:
6274  *
6275  * vfs_smr_enter();
6276  * dvp_seqc = seqc_read_any(dvp);
6277  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6278  *     abort();
6279  * for (;;) {
6280  * 	tvp = find();
6281  * 	tvp_seqc = seqc_read_any(tvp);
6282  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6283  * 	    abort();
6284  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6285  * 	    abort();
6286  * 	dvp = tvp; // we know nothing of importance has changed
6287  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6288  * 	if (last)
6289  * 	    break;
6290  * }
6291  * vget(); // secure the vnode
6292  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6293  * 	    abort();
6294  * // at this point we know nothing has changed for any parent<->child pair
6295  * // as they were crossed during the lookup, meaning we matched the guarantee
6296  * // of the locked variant
6297  * return (tvp);
6298  *
6299  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6300  * - they are called while within vfs_smr protection which they must never exit
6301  * - EAGAIN can be returned to denote checking could not be performed, it is
6302  *   always valid to return it
6303  * - if the sequence counter has not changed the result must be valid
6304  * - if the sequence counter has changed both false positives and false negatives
6305  *   are permitted (since the result will be rejected later)
6306  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6307  *
6308  * Caveats to watch out for:
6309  * - vnodes are passed unlocked and unreferenced with nothing stopping
6310  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6311  *   to use atomic_load_ptr to fetch it.
6312  * - the aforementioned object can also get freed, meaning absent other means it
6313  *   should be protected with vfs_smr
6314  * - either safely checking permissions as they are modified or guaranteeing
6315  *   their stability is left to the routine
6316  */
6317 int
cache_fplookup(struct nameidata * ndp,enum cache_fpl_status * status,struct pwd ** pwdp)6318 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6319     struct pwd **pwdp)
6320 {
6321 	struct cache_fpl fpl;
6322 	struct pwd *pwd;
6323 	struct vnode *dvp;
6324 	struct componentname *cnp;
6325 	int error;
6326 
6327 	fpl.status = CACHE_FPL_STATUS_UNSET;
6328 	fpl.in_smr = false;
6329 	fpl.ndp = ndp;
6330 	fpl.cnp = cnp = &ndp->ni_cnd;
6331 	MPASS(ndp->ni_lcf == 0);
6332 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6333 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6334 	    cnp->cn_flags));
6335 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6336 	MPASS(ndp->ni_resflags == 0);
6337 
6338 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6339 		*status = fpl.status;
6340 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6341 		return (EOPNOTSUPP);
6342 	}
6343 
6344 	cache_fpl_checkpoint_outer(&fpl);
6345 
6346 	cache_fpl_smr_enter_initial(&fpl);
6347 #ifdef INVARIANTS
6348 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6349 #endif
6350 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6351 	fpl.fsearch = false;
6352 	fpl.tvp = NULL; /* for degenerate path handling */
6353 	fpl.pwd = pwdp;
6354 	pwd = pwd_get_smr();
6355 	*(fpl.pwd) = pwd;
6356 	namei_setup_rootdir(ndp, cnp, pwd);
6357 	ndp->ni_topdir = pwd->pwd_jdir;
6358 
6359 	if (cnp->cn_pnbuf[0] == '/') {
6360 		dvp = cache_fpl_handle_root(&fpl);
6361 		ndp->ni_resflags = NIRES_ABS;
6362 	} else {
6363 		if (ndp->ni_dirfd == AT_FDCWD) {
6364 			dvp = pwd->pwd_cdir;
6365 		} else {
6366 			error = cache_fplookup_dirfd(&fpl, &dvp);
6367 			if (__predict_false(error != 0)) {
6368 				goto out;
6369 			}
6370 		}
6371 	}
6372 
6373 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6374 	error = cache_fplookup_impl(dvp, &fpl);
6375 out:
6376 	cache_fpl_smr_assert_not_entered(&fpl);
6377 	cache_fpl_assert_status(&fpl);
6378 	*status = fpl.status;
6379 	if (SDT_PROBES_ENABLED()) {
6380 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6381 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6382 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6383 			    ndp);
6384 	}
6385 
6386 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6387 		MPASS(error != CACHE_FPL_FAILED);
6388 		if (error != 0) {
6389 			cache_fpl_cleanup_cnp(fpl.cnp);
6390 			MPASS(fpl.dvp == NULL);
6391 			MPASS(fpl.tvp == NULL);
6392 		}
6393 		ndp->ni_dvp = fpl.dvp;
6394 		ndp->ni_vp = fpl.tvp;
6395 	}
6396 	return (error);
6397 }
6398