1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 */
26
27 #include <assert.h>
28 #include <fcntl.h>
29 #include <poll.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <zlib.h>
34 #include <libgen.h>
35 #include <sys/spa.h>
36 #include <sys/stat.h>
37 #include <sys/processor.h>
38 #include <sys/zfs_context.h>
39 #include <sys/rrwlock.h>
40 #include <sys/zmod.h>
41 #include <sys/utsname.h>
42 #include <sys/systeminfo.h>
43
44 /*
45 * Emulation of kernel services in userland.
46 */
47
48 int aok;
49 uint64_t physmem;
50 vnode_t *rootdir = (vnode_t *)0xabcd1234;
51 char hw_serial[HW_HOSTID_LEN];
52 kmutex_t cpu_lock;
53 vmem_t *zio_arena = NULL;
54
55 /* If set, all blocks read will be copied to the specified directory. */
56 char *vn_dumpdir = NULL;
57
58 struct utsname utsname = {
59 "userland", "libzpool", "1", "1", "na"
60 };
61
62 /* this only exists to have its address taken */
63 struct proc p0;
64
65 /*
66 * =========================================================================
67 * threads
68 * =========================================================================
69 */
70 /*ARGSUSED*/
71 kthread_t *
zk_thread_create(void (* func)(),void * arg)72 zk_thread_create(void (*func)(), void *arg)
73 {
74 thread_t tid;
75
76 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
77 &tid) == 0);
78
79 return ((void *)(uintptr_t)tid);
80 }
81
82 /*
83 * =========================================================================
84 * kstats
85 * =========================================================================
86 */
87 /*ARGSUSED*/
88 kstat_t *
kstat_create(const char * module,int instance,const char * name,const char * class,uchar_t type,ulong_t ndata,uchar_t ks_flag)89 kstat_create(const char *module, int instance, const char *name,
90 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
91 {
92 return (NULL);
93 }
94
95 /*ARGSUSED*/
96 void
kstat_install(kstat_t * ksp)97 kstat_install(kstat_t *ksp)
98 {}
99
100 /*ARGSUSED*/
101 void
kstat_delete(kstat_t * ksp)102 kstat_delete(kstat_t *ksp)
103 {}
104
105 /*ARGSUSED*/
106 void
kstat_waitq_enter(kstat_io_t * kiop)107 kstat_waitq_enter(kstat_io_t *kiop)
108 {}
109
110 /*ARGSUSED*/
111 void
kstat_waitq_exit(kstat_io_t * kiop)112 kstat_waitq_exit(kstat_io_t *kiop)
113 {}
114
115 /*ARGSUSED*/
116 void
kstat_runq_enter(kstat_io_t * kiop)117 kstat_runq_enter(kstat_io_t *kiop)
118 {}
119
120 /*ARGSUSED*/
121 void
kstat_runq_exit(kstat_io_t * kiop)122 kstat_runq_exit(kstat_io_t *kiop)
123 {}
124
125 /*ARGSUSED*/
126 void
kstat_waitq_to_runq(kstat_io_t * kiop)127 kstat_waitq_to_runq(kstat_io_t *kiop)
128 {}
129
130 /*ARGSUSED*/
131 void
kstat_runq_back_to_waitq(kstat_io_t * kiop)132 kstat_runq_back_to_waitq(kstat_io_t *kiop)
133 {}
134
135 /*
136 * =========================================================================
137 * mutexes
138 * =========================================================================
139 */
140 void
zmutex_init(kmutex_t * mp)141 zmutex_init(kmutex_t *mp)
142 {
143 mp->m_owner = NULL;
144 mp->initialized = B_TRUE;
145 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
146 }
147
148 void
zmutex_destroy(kmutex_t * mp)149 zmutex_destroy(kmutex_t *mp)
150 {
151 ASSERT(mp->initialized == B_TRUE);
152 ASSERT(mp->m_owner == NULL);
153 (void) _mutex_destroy(&(mp)->m_lock);
154 mp->m_owner = (void *)-1UL;
155 mp->initialized = B_FALSE;
156 }
157
158 void
mutex_enter(kmutex_t * mp)159 mutex_enter(kmutex_t *mp)
160 {
161 ASSERT(mp->initialized == B_TRUE);
162 ASSERT(mp->m_owner != (void *)-1UL);
163 ASSERT(mp->m_owner != curthread);
164 VERIFY(mutex_lock(&mp->m_lock) == 0);
165 ASSERT(mp->m_owner == NULL);
166 mp->m_owner = curthread;
167 }
168
169 int
mutex_tryenter(kmutex_t * mp)170 mutex_tryenter(kmutex_t *mp)
171 {
172 ASSERT(mp->initialized == B_TRUE);
173 ASSERT(mp->m_owner != (void *)-1UL);
174 if (0 == mutex_trylock(&mp->m_lock)) {
175 ASSERT(mp->m_owner == NULL);
176 mp->m_owner = curthread;
177 return (1);
178 } else {
179 return (0);
180 }
181 }
182
183 void
mutex_exit(kmutex_t * mp)184 mutex_exit(kmutex_t *mp)
185 {
186 ASSERT(mp->initialized == B_TRUE);
187 ASSERT(mutex_owner(mp) == curthread);
188 mp->m_owner = NULL;
189 VERIFY(mutex_unlock(&mp->m_lock) == 0);
190 }
191
192 void *
mutex_owner(kmutex_t * mp)193 mutex_owner(kmutex_t *mp)
194 {
195 ASSERT(mp->initialized == B_TRUE);
196 return (mp->m_owner);
197 }
198
199 /*
200 * =========================================================================
201 * rwlocks
202 * =========================================================================
203 */
204 /*ARGSUSED*/
205 void
rw_init(krwlock_t * rwlp,char * name,int type,void * arg)206 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
207 {
208 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
209 rwlp->rw_owner = NULL;
210 rwlp->initialized = B_TRUE;
211 }
212
213 void
rw_destroy(krwlock_t * rwlp)214 rw_destroy(krwlock_t *rwlp)
215 {
216 rwlock_destroy(&rwlp->rw_lock);
217 rwlp->rw_owner = (void *)-1UL;
218 rwlp->initialized = B_FALSE;
219 }
220
221 void
rw_enter(krwlock_t * rwlp,krw_t rw)222 rw_enter(krwlock_t *rwlp, krw_t rw)
223 {
224 ASSERT(!RW_LOCK_HELD(rwlp));
225 ASSERT(rwlp->initialized == B_TRUE);
226 ASSERT(rwlp->rw_owner != (void *)-1UL);
227 ASSERT(rwlp->rw_owner != curthread);
228
229 if (rw == RW_WRITER)
230 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
231 else
232 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
233
234 rwlp->rw_owner = curthread;
235 }
236
237 void
rw_exit(krwlock_t * rwlp)238 rw_exit(krwlock_t *rwlp)
239 {
240 ASSERT(rwlp->initialized == B_TRUE);
241 ASSERT(rwlp->rw_owner != (void *)-1UL);
242
243 rwlp->rw_owner = NULL;
244 VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
245 }
246
247 int
rw_tryenter(krwlock_t * rwlp,krw_t rw)248 rw_tryenter(krwlock_t *rwlp, krw_t rw)
249 {
250 int rv;
251
252 ASSERT(rwlp->initialized == B_TRUE);
253 ASSERT(rwlp->rw_owner != (void *)-1UL);
254
255 if (rw == RW_WRITER)
256 rv = rw_trywrlock(&rwlp->rw_lock);
257 else
258 rv = rw_tryrdlock(&rwlp->rw_lock);
259
260 if (rv == 0) {
261 rwlp->rw_owner = curthread;
262 return (1);
263 }
264
265 return (0);
266 }
267
268 /*ARGSUSED*/
269 int
rw_tryupgrade(krwlock_t * rwlp)270 rw_tryupgrade(krwlock_t *rwlp)
271 {
272 ASSERT(rwlp->initialized == B_TRUE);
273 ASSERT(rwlp->rw_owner != (void *)-1UL);
274
275 return (0);
276 }
277
278 /*
279 * =========================================================================
280 * condition variables
281 * =========================================================================
282 */
283 /*ARGSUSED*/
284 void
cv_init(kcondvar_t * cv,char * name,int type,void * arg)285 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
286 {
287 VERIFY(cond_init(cv, type, NULL) == 0);
288 }
289
290 void
cv_destroy(kcondvar_t * cv)291 cv_destroy(kcondvar_t *cv)
292 {
293 VERIFY(cond_destroy(cv) == 0);
294 }
295
296 void
cv_wait(kcondvar_t * cv,kmutex_t * mp)297 cv_wait(kcondvar_t *cv, kmutex_t *mp)
298 {
299 ASSERT(mutex_owner(mp) == curthread);
300 mp->m_owner = NULL;
301 int ret = cond_wait(cv, &mp->m_lock);
302 VERIFY(ret == 0 || ret == EINTR);
303 mp->m_owner = curthread;
304 }
305
306 clock_t
cv_timedwait(kcondvar_t * cv,kmutex_t * mp,clock_t abstime)307 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
308 {
309 int error;
310 timestruc_t ts;
311 clock_t delta;
312
313 top:
314 delta = abstime - ddi_get_lbolt();
315 if (delta <= 0)
316 return (-1);
317
318 ts.tv_sec = delta / hz;
319 ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
320
321 ASSERT(mutex_owner(mp) == curthread);
322 mp->m_owner = NULL;
323 error = cond_reltimedwait(cv, &mp->m_lock, &ts);
324 mp->m_owner = curthread;
325
326 if (error == ETIME)
327 return (-1);
328
329 if (error == EINTR)
330 goto top;
331
332 ASSERT(error == 0);
333
334 return (1);
335 }
336
337 /*ARGSUSED*/
338 clock_t
cv_timedwait_hires(kcondvar_t * cv,kmutex_t * mp,hrtime_t tim,hrtime_t res,int flag)339 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
340 int flag)
341 {
342 int error;
343 timestruc_t ts;
344 hrtime_t delta;
345
346 ASSERT(flag == 0);
347
348 top:
349 delta = tim - gethrtime();
350 if (delta <= 0)
351 return (-1);
352
353 ts.tv_sec = delta / NANOSEC;
354 ts.tv_nsec = delta % NANOSEC;
355
356 ASSERT(mutex_owner(mp) == curthread);
357 mp->m_owner = NULL;
358 error = cond_reltimedwait(cv, &mp->m_lock, &ts);
359 mp->m_owner = curthread;
360
361 if (error == ETIME)
362 return (-1);
363
364 if (error == EINTR)
365 goto top;
366
367 ASSERT(error == 0);
368
369 return (1);
370 }
371
372 void
cv_signal(kcondvar_t * cv)373 cv_signal(kcondvar_t *cv)
374 {
375 VERIFY(cond_signal(cv) == 0);
376 }
377
378 void
cv_broadcast(kcondvar_t * cv)379 cv_broadcast(kcondvar_t *cv)
380 {
381 VERIFY(cond_broadcast(cv) == 0);
382 }
383
384 /*
385 * =========================================================================
386 * vnode operations
387 * =========================================================================
388 */
389 /*
390 * Note: for the xxxat() versions of these functions, we assume that the
391 * starting vp is always rootdir (which is true for spa_directory.c, the only
392 * ZFS consumer of these interfaces). We assert this is true, and then emulate
393 * them by adding '/' in front of the path.
394 */
395
396 /*ARGSUSED*/
397 int
vn_open(char * path,int x1,int flags,int mode,vnode_t ** vpp,int x2,int x3)398 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
399 {
400 int fd;
401 int dump_fd;
402 vnode_t *vp;
403 int old_umask;
404 char realpath[MAXPATHLEN];
405 struct stat64 st;
406
407 /*
408 * If we're accessing a real disk from userland, we need to use
409 * the character interface to avoid caching. This is particularly
410 * important if we're trying to look at a real in-kernel storage
411 * pool from userland, e.g. via zdb, because otherwise we won't
412 * see the changes occurring under the segmap cache.
413 * On the other hand, the stupid character device returns zero
414 * for its size. So -- gag -- we open the block device to get
415 * its size, and remember it for subsequent VOP_GETATTR().
416 */
417 if (strncmp(path, "/dev/", 5) == 0) {
418 char *dsk;
419 fd = open64(path, O_RDONLY);
420 if (fd == -1)
421 return (errno);
422 if (fstat64(fd, &st) == -1) {
423 close(fd);
424 return (errno);
425 }
426 close(fd);
427 (void) sprintf(realpath, "%s", path);
428 dsk = strstr(path, "/dsk/");
429 if (dsk != NULL)
430 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
431 dsk + 1);
432 } else {
433 (void) sprintf(realpath, "%s", path);
434 if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
435 return (errno);
436 }
437
438 if (flags & FCREAT)
439 old_umask = umask(0);
440
441 /*
442 * The construct 'flags - FREAD' conveniently maps combinations of
443 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
444 */
445 fd = open64(realpath, flags - FREAD, mode);
446
447 if (flags & FCREAT)
448 (void) umask(old_umask);
449
450 if (vn_dumpdir != NULL) {
451 char dumppath[MAXPATHLEN];
452 (void) snprintf(dumppath, sizeof (dumppath),
453 "%s/%s", vn_dumpdir, basename(realpath));
454 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
455 if (dump_fd == -1)
456 return (errno);
457 } else {
458 dump_fd = -1;
459 }
460
461 if (fd == -1)
462 return (errno);
463
464 if (fstat64(fd, &st) == -1) {
465 close(fd);
466 return (errno);
467 }
468
469 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
470
471 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
472
473 vp->v_fd = fd;
474 vp->v_size = st.st_size;
475 vp->v_path = spa_strdup(path);
476 vp->v_dump_fd = dump_fd;
477
478 return (0);
479 }
480
481 /*ARGSUSED*/
482 int
vn_openat(char * path,int x1,int flags,int mode,vnode_t ** vpp,int x2,int x3,vnode_t * startvp,int fd)483 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
484 int x3, vnode_t *startvp, int fd)
485 {
486 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
487 int ret;
488
489 ASSERT(startvp == rootdir);
490 (void) sprintf(realpath, "/%s", path);
491
492 /* fd ignored for now, need if want to simulate nbmand support */
493 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
494
495 umem_free(realpath, strlen(path) + 2);
496
497 return (ret);
498 }
499
500 /*ARGSUSED*/
501 int
vn_rdwr(int uio,vnode_t * vp,void * addr,ssize_t len,offset_t offset,int x1,int x2,rlim64_t x3,void * x4,ssize_t * residp)502 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
503 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
504 {
505 ssize_t iolen, split;
506
507 if (uio == UIO_READ) {
508 iolen = pread64(vp->v_fd, addr, len, offset);
509 if (vp->v_dump_fd != -1) {
510 int status =
511 pwrite64(vp->v_dump_fd, addr, iolen, offset);
512 ASSERT(status != -1);
513 }
514 } else {
515 /*
516 * To simulate partial disk writes, we split writes into two
517 * system calls so that the process can be killed in between.
518 */
519 int sectors = len >> SPA_MINBLOCKSHIFT;
520 split = (sectors > 0 ? rand() % sectors : 0) <<
521 SPA_MINBLOCKSHIFT;
522 iolen = pwrite64(vp->v_fd, addr, split, offset);
523 iolen += pwrite64(vp->v_fd, (char *)addr + split,
524 len - split, offset + split);
525 }
526
527 if (iolen == -1)
528 return (errno);
529 if (residp)
530 *residp = len - iolen;
531 else if (iolen != len)
532 return (EIO);
533 return (0);
534 }
535
536 void
vn_close(vnode_t * vp)537 vn_close(vnode_t *vp)
538 {
539 close(vp->v_fd);
540 if (vp->v_dump_fd != -1)
541 close(vp->v_dump_fd);
542 spa_strfree(vp->v_path);
543 umem_free(vp, sizeof (vnode_t));
544 }
545
546 /*
547 * At a minimum we need to update the size since vdev_reopen()
548 * will no longer call vn_openat().
549 */
550 int
fop_getattr(vnode_t * vp,vattr_t * vap)551 fop_getattr(vnode_t *vp, vattr_t *vap)
552 {
553 struct stat64 st;
554
555 if (fstat64(vp->v_fd, &st) == -1) {
556 close(vp->v_fd);
557 return (errno);
558 }
559
560 vap->va_size = st.st_size;
561 return (0);
562 }
563
564 #ifdef ZFS_DEBUG
565
566 /*
567 * =========================================================================
568 * Figure out which debugging statements to print
569 * =========================================================================
570 */
571
572 static char *dprintf_string;
573 static int dprintf_print_all;
574
575 int
dprintf_find_string(const char * string)576 dprintf_find_string(const char *string)
577 {
578 char *tmp_str = dprintf_string;
579 int len = strlen(string);
580
581 /*
582 * Find out if this is a string we want to print.
583 * String format: file1.c,function_name1,file2.c,file3.c
584 */
585
586 while (tmp_str != NULL) {
587 if (strncmp(tmp_str, string, len) == 0 &&
588 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
589 return (1);
590 tmp_str = strchr(tmp_str, ',');
591 if (tmp_str != NULL)
592 tmp_str++; /* Get rid of , */
593 }
594 return (0);
595 }
596
597 void
dprintf_setup(int * argc,char ** argv)598 dprintf_setup(int *argc, char **argv)
599 {
600 int i, j;
601
602 /*
603 * Debugging can be specified two ways: by setting the
604 * environment variable ZFS_DEBUG, or by including a
605 * "debug=..." argument on the command line. The command
606 * line setting overrides the environment variable.
607 */
608
609 for (i = 1; i < *argc; i++) {
610 int len = strlen("debug=");
611 /* First look for a command line argument */
612 if (strncmp("debug=", argv[i], len) == 0) {
613 dprintf_string = argv[i] + len;
614 /* Remove from args */
615 for (j = i; j < *argc; j++)
616 argv[j] = argv[j+1];
617 argv[j] = NULL;
618 (*argc)--;
619 }
620 }
621
622 if (dprintf_string == NULL) {
623 /* Look for ZFS_DEBUG environment variable */
624 dprintf_string = getenv("ZFS_DEBUG");
625 }
626
627 /*
628 * Are we just turning on all debugging?
629 */
630 if (dprintf_find_string("on"))
631 dprintf_print_all = 1;
632
633 if (dprintf_string != NULL)
634 zfs_flags |= ZFS_DEBUG_DPRINTF;
635 }
636
637 /*
638 * =========================================================================
639 * debug printfs
640 * =========================================================================
641 */
642 void
__dprintf(const char * file,const char * func,int line,const char * fmt,...)643 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
644 {
645 const char *newfile;
646 va_list adx;
647
648 /*
649 * Get rid of annoying "../common/" prefix to filename.
650 */
651 newfile = strrchr(file, '/');
652 if (newfile != NULL) {
653 newfile = newfile + 1; /* Get rid of leading / */
654 } else {
655 newfile = file;
656 }
657
658 if (dprintf_print_all ||
659 dprintf_find_string(newfile) ||
660 dprintf_find_string(func)) {
661 /* Print out just the function name if requested */
662 flockfile(stdout);
663 if (dprintf_find_string("pid"))
664 (void) printf("%d ", getpid());
665 if (dprintf_find_string("tid"))
666 (void) printf("%u ", thr_self());
667 if (dprintf_find_string("cpu"))
668 (void) printf("%u ", getcpuid());
669 if (dprintf_find_string("time"))
670 (void) printf("%llu ", gethrtime());
671 if (dprintf_find_string("long"))
672 (void) printf("%s, line %d: ", newfile, line);
673 (void) printf("%s: ", func);
674 va_start(adx, fmt);
675 (void) vprintf(fmt, adx);
676 va_end(adx);
677 funlockfile(stdout);
678 }
679 }
680
681 #endif /* ZFS_DEBUG */
682
683 /*
684 * =========================================================================
685 * cmn_err() and panic()
686 * =========================================================================
687 */
688 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
689 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
690
691 void
vpanic(const char * fmt,va_list adx)692 vpanic(const char *fmt, va_list adx)
693 {
694 char buf[512];
695 (void) vsnprintf(buf, 512, fmt, adx);
696 assfail(buf, NULL, 0);
697 }
698
699 void
panic(const char * fmt,...)700 panic(const char *fmt, ...)
701 {
702 va_list adx;
703
704 va_start(adx, fmt);
705 vpanic(fmt, adx);
706 va_end(adx);
707 }
708
709 void
vcmn_err(int ce,const char * fmt,va_list adx)710 vcmn_err(int ce, const char *fmt, va_list adx)
711 {
712 if (ce == CE_PANIC)
713 vpanic(fmt, adx);
714 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
715 (void) fprintf(stderr, "%s", ce_prefix[ce]);
716 (void) vfprintf(stderr, fmt, adx);
717 (void) fprintf(stderr, "%s", ce_suffix[ce]);
718 }
719 }
720
721 /*PRINTFLIKE2*/
722 void
cmn_err(int ce,const char * fmt,...)723 cmn_err(int ce, const char *fmt, ...)
724 {
725 va_list adx;
726
727 va_start(adx, fmt);
728 vcmn_err(ce, fmt, adx);
729 va_end(adx);
730 }
731
732 /*
733 * =========================================================================
734 * kobj interfaces
735 * =========================================================================
736 */
737 struct _buf *
kobj_open_file(char * name)738 kobj_open_file(char *name)
739 {
740 struct _buf *file;
741 vnode_t *vp;
742
743 /* set vp as the _fd field of the file */
744 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
745 -1) != 0)
746 return ((void *)-1UL);
747
748 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
749 file->_fd = (intptr_t)vp;
750 return (file);
751 }
752
753 int
kobj_read_file(struct _buf * file,char * buf,unsigned size,unsigned off)754 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
755 {
756 ssize_t resid;
757
758 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
759 UIO_SYSSPACE, 0, 0, 0, &resid);
760
761 return (size - resid);
762 }
763
764 void
kobj_close_file(struct _buf * file)765 kobj_close_file(struct _buf *file)
766 {
767 vn_close((vnode_t *)file->_fd);
768 umem_free(file, sizeof (struct _buf));
769 }
770
771 int
kobj_get_filesize(struct _buf * file,uint64_t * size)772 kobj_get_filesize(struct _buf *file, uint64_t *size)
773 {
774 struct stat64 st;
775 vnode_t *vp = (vnode_t *)file->_fd;
776
777 if (fstat64(vp->v_fd, &st) == -1) {
778 vn_close(vp);
779 return (errno);
780 }
781 *size = st.st_size;
782 return (0);
783 }
784
785 /*
786 * =========================================================================
787 * misc routines
788 * =========================================================================
789 */
790
791 void
delay(clock_t ticks)792 delay(clock_t ticks)
793 {
794 poll(0, 0, ticks * (1000 / hz));
795 }
796
797 /*
798 * Find highest one bit set.
799 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
800 */
801 int
highbit64(uint64_t i)802 highbit64(uint64_t i)
803 {
804 int h = 1;
805
806 if (i == 0)
807 return (0);
808 if (i & 0xffffffff00000000ULL) {
809 h += 32; i >>= 32;
810 }
811 if (i & 0xffff0000) {
812 h += 16; i >>= 16;
813 }
814 if (i & 0xff00) {
815 h += 8; i >>= 8;
816 }
817 if (i & 0xf0) {
818 h += 4; i >>= 4;
819 }
820 if (i & 0xc) {
821 h += 2; i >>= 2;
822 }
823 if (i & 0x2) {
824 h += 1;
825 }
826 return (h);
827 }
828
829 static int random_fd = -1, urandom_fd = -1;
830
831 static int
random_get_bytes_common(uint8_t * ptr,size_t len,int fd)832 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
833 {
834 size_t resid = len;
835 ssize_t bytes;
836
837 ASSERT(fd != -1);
838
839 while (resid != 0) {
840 bytes = read(fd, ptr, resid);
841 ASSERT3S(bytes, >=, 0);
842 ptr += bytes;
843 resid -= bytes;
844 }
845
846 return (0);
847 }
848
849 int
random_get_bytes(uint8_t * ptr,size_t len)850 random_get_bytes(uint8_t *ptr, size_t len)
851 {
852 return (random_get_bytes_common(ptr, len, random_fd));
853 }
854
855 int
random_get_pseudo_bytes(uint8_t * ptr,size_t len)856 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
857 {
858 return (random_get_bytes_common(ptr, len, urandom_fd));
859 }
860
861 int
ddi_strtoul(const char * hw_serial,char ** nptr,int base,unsigned long * result)862 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
863 {
864 char *end;
865
866 *result = strtoul(hw_serial, &end, base);
867 if (*result == 0)
868 return (errno);
869 return (0);
870 }
871
872 int
ddi_strtoull(const char * str,char ** nptr,int base,u_longlong_t * result)873 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
874 {
875 char *end;
876
877 *result = strtoull(str, &end, base);
878 if (*result == 0)
879 return (errno);
880 return (0);
881 }
882
883 /* ARGSUSED */
884 cyclic_id_t
cyclic_add(cyc_handler_t * hdlr,cyc_time_t * when)885 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
886 {
887 return (1);
888 }
889
890 /* ARGSUSED */
891 void
cyclic_remove(cyclic_id_t id)892 cyclic_remove(cyclic_id_t id)
893 {
894 }
895
896 /* ARGSUSED */
897 int
cyclic_reprogram(cyclic_id_t id,hrtime_t expiration)898 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
899 {
900 return (1);
901 }
902
903 /*
904 * =========================================================================
905 * kernel emulation setup & teardown
906 * =========================================================================
907 */
908 static int
umem_out_of_memory(void)909 umem_out_of_memory(void)
910 {
911 char errmsg[] = "out of memory -- generating core dump\n";
912
913 write(fileno(stderr), errmsg, sizeof (errmsg));
914 abort();
915 return (0);
916 }
917
918 void
kernel_init(int mode)919 kernel_init(int mode)
920 {
921 extern uint_t rrw_tsd_key;
922
923 umem_nofail_callback(umem_out_of_memory);
924
925 physmem = sysconf(_SC_PHYS_PAGES);
926
927 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
928 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
929
930 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
931 (mode & FWRITE) ? gethostid() : 0);
932
933 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
934 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
935
936 system_taskq_init();
937
938 mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL);
939
940 spa_init(mode);
941
942 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
943 }
944
945 void
kernel_fini(void)946 kernel_fini(void)
947 {
948 spa_fini();
949
950 system_taskq_fini();
951
952 close(random_fd);
953 close(urandom_fd);
954
955 random_fd = -1;
956 urandom_fd = -1;
957 }
958
959 int
z_uncompress(void * dst,size_t * dstlen,const void * src,size_t srclen)960 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
961 {
962 int ret;
963 uLongf len = *dstlen;
964
965 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
966 *dstlen = (size_t)len;
967
968 return (ret);
969 }
970
971 int
z_compress_level(void * dst,size_t * dstlen,const void * src,size_t srclen,int level)972 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
973 int level)
974 {
975 int ret;
976 uLongf len = *dstlen;
977
978 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
979 *dstlen = (size_t)len;
980
981 return (ret);
982 }
983
984 uid_t
crgetuid(cred_t * cr)985 crgetuid(cred_t *cr)
986 {
987 return (0);
988 }
989
990 uid_t
crgetruid(cred_t * cr)991 crgetruid(cred_t *cr)
992 {
993 return (0);
994 }
995
996 gid_t
crgetgid(cred_t * cr)997 crgetgid(cred_t *cr)
998 {
999 return (0);
1000 }
1001
1002 int
crgetngroups(cred_t * cr)1003 crgetngroups(cred_t *cr)
1004 {
1005 return (0);
1006 }
1007
1008 gid_t *
crgetgroups(cred_t * cr)1009 crgetgroups(cred_t *cr)
1010 {
1011 return (NULL);
1012 }
1013
1014 int
zfs_secpolicy_snapshot_perms(const char * name,cred_t * cr)1015 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1016 {
1017 return (0);
1018 }
1019
1020 int
zfs_secpolicy_rename_perms(const char * from,const char * to,cred_t * cr)1021 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1022 {
1023 return (0);
1024 }
1025
1026 int
zfs_secpolicy_destroy_perms(const char * name,cred_t * cr)1027 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1028 {
1029 return (0);
1030 }
1031
1032 ksiddomain_t *
ksid_lookupdomain(const char * dom)1033 ksid_lookupdomain(const char *dom)
1034 {
1035 ksiddomain_t *kd;
1036
1037 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1038 kd->kd_name = spa_strdup(dom);
1039 return (kd);
1040 }
1041
1042 void
ksiddomain_rele(ksiddomain_t * ksid)1043 ksiddomain_rele(ksiddomain_t *ksid)
1044 {
1045 spa_strfree(ksid->kd_name);
1046 umem_free(ksid, sizeof (ksiddomain_t));
1047 }
1048
1049 /*
1050 * Do not change the length of the returned string; it must be freed
1051 * with strfree().
1052 */
1053 char *
kmem_asprintf(const char * fmt,...)1054 kmem_asprintf(const char *fmt, ...)
1055 {
1056 int size;
1057 va_list adx;
1058 char *buf;
1059
1060 va_start(adx, fmt);
1061 size = vsnprintf(NULL, 0, fmt, adx) + 1;
1062 va_end(adx);
1063
1064 buf = kmem_alloc(size, KM_SLEEP);
1065
1066 va_start(adx, fmt);
1067 size = vsnprintf(buf, size, fmt, adx);
1068 va_end(adx);
1069
1070 return (buf);
1071 }
1072
1073 /* ARGSUSED */
1074 int
zfs_onexit_fd_hold(int fd,minor_t * minorp)1075 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1076 {
1077 *minorp = 0;
1078 return (0);
1079 }
1080
1081 /* ARGSUSED */
1082 void
zfs_onexit_fd_rele(int fd)1083 zfs_onexit_fd_rele(int fd)
1084 {
1085 }
1086
1087 /* ARGSUSED */
1088 int
zfs_onexit_add_cb(minor_t minor,void (* func)(void *),void * data,uint64_t * action_handle)1089 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1090 uint64_t *action_handle)
1091 {
1092 return (0);
1093 }
1094
1095 /* ARGSUSED */
1096 int
zfs_onexit_del_cb(minor_t minor,uint64_t action_handle,boolean_t fire)1097 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1098 {
1099 return (0);
1100 }
1101
1102 /* ARGSUSED */
1103 int
zfs_onexit_cb_data(minor_t minor,uint64_t action_handle,void ** data)1104 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1105 {
1106 return (0);
1107 }
1108
1109 void
bioinit(buf_t * bp)1110 bioinit(buf_t *bp)
1111 {
1112 bzero(bp, sizeof (buf_t));
1113 }
1114
1115 void
biodone(buf_t * bp)1116 biodone(buf_t *bp)
1117 {
1118 if (bp->b_iodone != NULL) {
1119 (*(bp->b_iodone))(bp);
1120 return;
1121 }
1122 ASSERT((bp->b_flags & B_DONE) == 0);
1123 bp->b_flags |= B_DONE;
1124 }
1125
1126 void
bioerror(buf_t * bp,int error)1127 bioerror(buf_t *bp, int error)
1128 {
1129 ASSERT(bp != NULL);
1130 ASSERT(error >= 0);
1131
1132 if (error != 0) {
1133 bp->b_flags |= B_ERROR;
1134 } else {
1135 bp->b_flags &= ~B_ERROR;
1136 }
1137 bp->b_error = error;
1138 }
1139
1140
1141 int
geterror(struct buf * bp)1142 geterror(struct buf *bp)
1143 {
1144 int error = 0;
1145
1146 if (bp->b_flags & B_ERROR) {
1147 error = bp->b_error;
1148 if (!error)
1149 error = EIO;
1150 }
1151 return (error);
1152 }
1153