1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2015 Mihai Carabas <mihai.carabas@gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/cpuset.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/mutex.h>
38 #include <sys/pcpu.h>
39 #include <sys/proc.h>
40 #include <sys/queue.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sysctl.h>
45
46 #include <vm/vm.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_page.h>
49 #include <vm/pmap.h>
50 #include <vm/vm_map.h>
51 #include <vm/vm_extern.h>
52 #include <vm/vm_param.h>
53
54 #include <machine/armreg.h>
55 #include <machine/cpu.h>
56 #include <machine/fpu.h>
57 #include <machine/machdep.h>
58 #include <machine/pcb.h>
59 #include <machine/smp.h>
60 #include <machine/vm.h>
61 #include <machine/vmparam.h>
62 #include <machine/vmm.h>
63 #include <machine/vmm_instruction_emul.h>
64
65 #include <dev/pci/pcireg.h>
66 #include <dev/vmm/vmm_dev.h>
67 #include <dev/vmm/vmm_ktr.h>
68 #include <dev/vmm/vmm_mem.h>
69 #include <dev/vmm/vmm_stat.h>
70
71 #include "arm64.h"
72 #include "mmu.h"
73
74 #include "io/vgic.h"
75 #include "io/vtimer.h"
76
77 struct vcpu {
78 int flags;
79 enum vcpu_state state;
80 struct mtx mtx;
81 int hostcpu; /* host cpuid this vcpu last ran on */
82 int vcpuid;
83 void *stats;
84 struct vm_exit exitinfo;
85 uint64_t nextpc; /* (x) next instruction to execute */
86 struct vm *vm; /* (o) */
87 void *cookie; /* (i) cpu-specific data */
88 struct vfpstate *guestfpu; /* (a,i) guest fpu state */
89 };
90
91 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
92 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
93 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
94 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
95 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
96 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
97
98 struct vmm_mmio_region {
99 uint64_t start;
100 uint64_t end;
101 mem_region_read_t read;
102 mem_region_write_t write;
103 };
104 #define VM_MAX_MMIO_REGIONS 4
105
106 struct vmm_special_reg {
107 uint32_t esr_iss;
108 uint32_t esr_mask;
109 reg_read_t reg_read;
110 reg_write_t reg_write;
111 void *arg;
112 };
113 #define VM_MAX_SPECIAL_REGS 16
114
115 /*
116 * Initialization:
117 * (o) initialized the first time the VM is created
118 * (i) initialized when VM is created and when it is reinitialized
119 * (x) initialized before use
120 */
121 struct vm {
122 void *cookie; /* (i) cpu-specific data */
123 volatile cpuset_t active_cpus; /* (i) active vcpus */
124 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
125 int suspend; /* (i) stop VM execution */
126 bool dying; /* (o) is dying */
127 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
128 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
129 struct vmspace *vmspace; /* (o) guest's address space */
130 struct vm_mem mem; /* (i) guest memory */
131 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */
132 struct vcpu **vcpu; /* (i) guest vcpus */
133 struct vmm_mmio_region mmio_region[VM_MAX_MMIO_REGIONS];
134 /* (o) guest MMIO regions */
135 struct vmm_special_reg special_reg[VM_MAX_SPECIAL_REGS];
136 /* The following describe the vm cpu topology */
137 uint16_t sockets; /* (o) num of sockets */
138 uint16_t cores; /* (o) num of cores/socket */
139 uint16_t threads; /* (o) num of threads/core */
140 uint16_t maxcpus; /* (o) max pluggable cpus */
141 struct sx vcpus_init_lock; /* (o) */
142 };
143
144 static bool vmm_initialized = false;
145
146 static int vm_handle_wfi(struct vcpu *vcpu,
147 struct vm_exit *vme, bool *retu);
148
149 static MALLOC_DEFINE(M_VMM, "vmm", "vmm");
150
151 /* statistics */
152 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
153
154 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
155
156 static int vmm_ipinum;
157 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
158 "IPI vector used for vcpu notifications");
159
160 struct vmm_regs {
161 uint64_t id_aa64afr0;
162 uint64_t id_aa64afr1;
163 uint64_t id_aa64dfr0;
164 uint64_t id_aa64dfr1;
165 uint64_t id_aa64isar0;
166 uint64_t id_aa64isar1;
167 uint64_t id_aa64isar2;
168 uint64_t id_aa64mmfr0;
169 uint64_t id_aa64mmfr1;
170 uint64_t id_aa64mmfr2;
171 uint64_t id_aa64pfr0;
172 uint64_t id_aa64pfr1;
173 };
174
175 static const struct vmm_regs vmm_arch_regs_masks = {
176 .id_aa64dfr0 =
177 ID_AA64DFR0_CTX_CMPs_MASK |
178 ID_AA64DFR0_WRPs_MASK |
179 ID_AA64DFR0_BRPs_MASK |
180 ID_AA64DFR0_PMUVer_3 |
181 ID_AA64DFR0_DebugVer_8,
182 .id_aa64isar0 =
183 ID_AA64ISAR0_TLB_TLBIOSR |
184 ID_AA64ISAR0_SHA3_IMPL |
185 ID_AA64ISAR0_RDM_IMPL |
186 ID_AA64ISAR0_Atomic_IMPL |
187 ID_AA64ISAR0_CRC32_BASE |
188 ID_AA64ISAR0_SHA2_512 |
189 ID_AA64ISAR0_SHA1_BASE |
190 ID_AA64ISAR0_AES_PMULL,
191 .id_aa64mmfr0 =
192 ID_AA64MMFR0_TGran4_IMPL |
193 ID_AA64MMFR0_TGran64_IMPL |
194 ID_AA64MMFR0_TGran16_IMPL |
195 ID_AA64MMFR0_ASIDBits_16 |
196 ID_AA64MMFR0_PARange_4P,
197 .id_aa64mmfr1 =
198 ID_AA64MMFR1_SpecSEI_IMPL |
199 ID_AA64MMFR1_PAN_ATS1E1 |
200 ID_AA64MMFR1_HAFDBS_AF,
201 .id_aa64pfr0 =
202 ID_AA64PFR0_GIC_CPUIF_NONE |
203 ID_AA64PFR0_AdvSIMD_HP |
204 ID_AA64PFR0_FP_HP |
205 ID_AA64PFR0_EL3_64 |
206 ID_AA64PFR0_EL2_64 |
207 ID_AA64PFR0_EL1_64 |
208 ID_AA64PFR0_EL0_64,
209 };
210
211 /* Host registers masked by vmm_arch_regs_masks. */
212 static struct vmm_regs vmm_arch_regs;
213
214 u_int vm_maxcpu;
215 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
216 &vm_maxcpu, 0, "Maximum number of vCPUs");
217
218 static void vcpu_notify_event_locked(struct vcpu *vcpu);
219
220 /* global statistics */
221 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
222 VMM_STAT(VMEXIT_UNKNOWN, "number of vmexits for the unknown exception");
223 VMM_STAT(VMEXIT_WFI, "number of times wfi was intercepted");
224 VMM_STAT(VMEXIT_WFE, "number of times wfe was intercepted");
225 VMM_STAT(VMEXIT_HVC, "number of times hvc was intercepted");
226 VMM_STAT(VMEXIT_MSR, "number of times msr/mrs was intercepted");
227 VMM_STAT(VMEXIT_DATA_ABORT, "number of vmexits for a data abort");
228 VMM_STAT(VMEXIT_INSN_ABORT, "number of vmexits for an instruction abort");
229 VMM_STAT(VMEXIT_UNHANDLED_SYNC, "number of vmexits for an unhandled synchronous exception");
230 VMM_STAT(VMEXIT_IRQ, "number of vmexits for an irq");
231 VMM_STAT(VMEXIT_FIQ, "number of vmexits for an interrupt");
232 VMM_STAT(VMEXIT_BRK, "number of vmexits for a breakpoint exception");
233 VMM_STAT(VMEXIT_SS, "number of vmexits for a single-step exception");
234 VMM_STAT(VMEXIT_UNHANDLED_EL2, "number of vmexits for an unhandled EL2 exception");
235 VMM_STAT(VMEXIT_UNHANDLED, "number of vmexits for an unhandled exception");
236
237 /*
238 * Upper limit on vm_maxcpu. We could increase this to 28 bits, but this
239 * is a safe value for now.
240 */
241 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
242
243 static int
vmm_regs_init(struct vmm_regs * regs,const struct vmm_regs * masks)244 vmm_regs_init(struct vmm_regs *regs, const struct vmm_regs *masks)
245 {
246 #define _FETCH_KERN_REG(reg, field) do { \
247 regs->field = vmm_arch_regs_masks.field; \
248 if (!get_kernel_reg_masked(reg, ®s->field, masks->field)) \
249 regs->field = 0; \
250 } while (0)
251 _FETCH_KERN_REG(ID_AA64AFR0_EL1, id_aa64afr0);
252 _FETCH_KERN_REG(ID_AA64AFR1_EL1, id_aa64afr1);
253 _FETCH_KERN_REG(ID_AA64DFR0_EL1, id_aa64dfr0);
254 _FETCH_KERN_REG(ID_AA64DFR1_EL1, id_aa64dfr1);
255 _FETCH_KERN_REG(ID_AA64ISAR0_EL1, id_aa64isar0);
256 _FETCH_KERN_REG(ID_AA64ISAR1_EL1, id_aa64isar1);
257 _FETCH_KERN_REG(ID_AA64ISAR2_EL1, id_aa64isar2);
258 _FETCH_KERN_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0);
259 _FETCH_KERN_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1);
260 _FETCH_KERN_REG(ID_AA64MMFR2_EL1, id_aa64mmfr2);
261 _FETCH_KERN_REG(ID_AA64PFR0_EL1, id_aa64pfr0);
262 _FETCH_KERN_REG(ID_AA64PFR1_EL1, id_aa64pfr1);
263 #undef _FETCH_KERN_REG
264 return (0);
265 }
266
267 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)268 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
269 {
270 vmmops_vcpu_cleanup(vcpu->cookie);
271 vcpu->cookie = NULL;
272 if (destroy) {
273 vmm_stat_free(vcpu->stats);
274 fpu_save_area_free(vcpu->guestfpu);
275 vcpu_lock_destroy(vcpu);
276 }
277 }
278
279 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)280 vcpu_alloc(struct vm *vm, int vcpu_id)
281 {
282 struct vcpu *vcpu;
283
284 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
285 ("vcpu_alloc: invalid vcpu %d", vcpu_id));
286
287 vcpu = malloc(sizeof(*vcpu), M_VMM, M_WAITOK | M_ZERO);
288 vcpu_lock_init(vcpu);
289 vcpu->state = VCPU_IDLE;
290 vcpu->hostcpu = NOCPU;
291 vcpu->vcpuid = vcpu_id;
292 vcpu->vm = vm;
293 vcpu->guestfpu = fpu_save_area_alloc();
294 vcpu->stats = vmm_stat_alloc();
295 return (vcpu);
296 }
297
298 static void
vcpu_init(struct vcpu * vcpu)299 vcpu_init(struct vcpu *vcpu)
300 {
301 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
302 MPASS(vcpu->cookie != NULL);
303 fpu_save_area_reset(vcpu->guestfpu);
304 vmm_stat_init(vcpu->stats);
305 }
306
307 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)308 vm_exitinfo(struct vcpu *vcpu)
309 {
310 return (&vcpu->exitinfo);
311 }
312
313 static int
vmm_unsupported_quirk(void)314 vmm_unsupported_quirk(void)
315 {
316 /*
317 * Known to not load on Ampere eMAG
318 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=285051
319 */
320 if (CPU_MATCH(CPU_IMPL_MASK | CPU_PART_MASK, CPU_IMPL_APM,
321 CPU_PART_EMAG8180, 0, 0))
322 return (ENXIO);
323
324 return (0);
325 }
326
327 static int
vmm_init(void)328 vmm_init(void)
329 {
330 int error;
331
332 vm_maxcpu = mp_ncpus;
333 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
334
335 if (vm_maxcpu > VM_MAXCPU) {
336 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
337 vm_maxcpu = VM_MAXCPU;
338 }
339 if (vm_maxcpu == 0)
340 vm_maxcpu = 1;
341
342 error = vmm_regs_init(&vmm_arch_regs, &vmm_arch_regs_masks);
343 if (error != 0)
344 return (error);
345
346 return (vmmops_modinit(0));
347 }
348
349 static int
vmm_handler(module_t mod,int what,void * arg)350 vmm_handler(module_t mod, int what, void *arg)
351 {
352 int error;
353
354 switch (what) {
355 case MOD_LOAD:
356 error = vmm_unsupported_quirk();
357 if (error != 0)
358 break;
359 error = vmmdev_init();
360 if (error != 0)
361 break;
362 error = vmm_init();
363 if (error == 0)
364 vmm_initialized = true;
365 else
366 (void)vmmdev_cleanup();
367 break;
368 case MOD_UNLOAD:
369 error = vmmdev_cleanup();
370 if (error == 0 && vmm_initialized) {
371 error = vmmops_modcleanup();
372 if (error) {
373 /*
374 * Something bad happened - prevent new
375 * VMs from being created
376 */
377 vmm_initialized = false;
378 }
379 }
380 break;
381 default:
382 error = 0;
383 break;
384 }
385 return (error);
386 }
387
388 static moduledata_t vmm_kmod = {
389 "vmm",
390 vmm_handler,
391 NULL
392 };
393
394 /*
395 * vmm initialization has the following dependencies:
396 *
397 * - HYP initialization requires smp_rendezvous() and therefore must happen
398 * after SMP is fully functional (after SI_SUB_SMP).
399 * - vmm device initialization requires an initialized devfs.
400 */
401 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
402 MODULE_VERSION(vmm, 1);
403
404 static void
vm_init(struct vm * vm,bool create)405 vm_init(struct vm *vm, bool create)
406 {
407 int i;
408
409 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace));
410 MPASS(vm->cookie != NULL);
411
412 CPU_ZERO(&vm->active_cpus);
413 CPU_ZERO(&vm->debug_cpus);
414
415 vm->suspend = 0;
416 CPU_ZERO(&vm->suspended_cpus);
417
418 memset(vm->mmio_region, 0, sizeof(vm->mmio_region));
419 memset(vm->special_reg, 0, sizeof(vm->special_reg));
420
421 if (!create) {
422 for (i = 0; i < vm->maxcpus; i++) {
423 if (vm->vcpu[i] != NULL)
424 vcpu_init(vm->vcpu[i]);
425 }
426 }
427 }
428
429 void
vm_disable_vcpu_creation(struct vm * vm)430 vm_disable_vcpu_creation(struct vm *vm)
431 {
432 sx_xlock(&vm->vcpus_init_lock);
433 vm->dying = true;
434 sx_xunlock(&vm->vcpus_init_lock);
435 }
436
437 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)438 vm_alloc_vcpu(struct vm *vm, int vcpuid)
439 {
440 struct vcpu *vcpu;
441
442 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
443 return (NULL);
444
445 /* Some interrupt controllers may have a CPU limit */
446 if (vcpuid >= vgic_max_cpu_count(vm->cookie))
447 return (NULL);
448
449 vcpu = (struct vcpu *)
450 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
451 if (__predict_true(vcpu != NULL))
452 return (vcpu);
453
454 sx_xlock(&vm->vcpus_init_lock);
455 vcpu = vm->vcpu[vcpuid];
456 if (vcpu == NULL && !vm->dying) {
457 vcpu = vcpu_alloc(vm, vcpuid);
458 vcpu_init(vcpu);
459
460 /*
461 * Ensure vCPU is fully created before updating pointer
462 * to permit unlocked reads above.
463 */
464 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
465 (uintptr_t)vcpu);
466 }
467 sx_xunlock(&vm->vcpus_init_lock);
468 return (vcpu);
469 }
470
471 void
vm_slock_vcpus(struct vm * vm)472 vm_slock_vcpus(struct vm *vm)
473 {
474 sx_slock(&vm->vcpus_init_lock);
475 }
476
477 void
vm_unlock_vcpus(struct vm * vm)478 vm_unlock_vcpus(struct vm *vm)
479 {
480 sx_unlock(&vm->vcpus_init_lock);
481 }
482
483 int
vm_create(const char * name,struct vm ** retvm)484 vm_create(const char *name, struct vm **retvm)
485 {
486 struct vm *vm;
487 struct vmspace *vmspace;
488
489 /*
490 * If vmm.ko could not be successfully initialized then don't attempt
491 * to create the virtual machine.
492 */
493 if (!vmm_initialized)
494 return (ENXIO);
495
496 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
497 return (EINVAL);
498
499 vmspace = vmmops_vmspace_alloc(0, 1ul << 39);
500 if (vmspace == NULL)
501 return (ENOMEM);
502
503 vm = malloc(sizeof(struct vm), M_VMM, M_WAITOK | M_ZERO);
504 strcpy(vm->name, name);
505 vm->vmspace = vmspace;
506 vm_mem_init(&vm->mem);
507 sx_init(&vm->vcpus_init_lock, "vm vcpus");
508
509 vm->sockets = 1;
510 vm->cores = 1; /* XXX backwards compatibility */
511 vm->threads = 1; /* XXX backwards compatibility */
512 vm->maxcpus = vm_maxcpu;
513
514 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm->maxcpus, M_VMM,
515 M_WAITOK | M_ZERO);
516
517 vm_init(vm, true);
518
519 *retvm = vm;
520 return (0);
521 }
522
523 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)524 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
525 uint16_t *threads, uint16_t *maxcpus)
526 {
527 *sockets = vm->sockets;
528 *cores = vm->cores;
529 *threads = vm->threads;
530 *maxcpus = vm->maxcpus;
531 }
532
533 uint16_t
vm_get_maxcpus(struct vm * vm)534 vm_get_maxcpus(struct vm *vm)
535 {
536 return (vm->maxcpus);
537 }
538
539 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)540 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
541 uint16_t threads, uint16_t maxcpus)
542 {
543 /* Ignore maxcpus. */
544 if ((sockets * cores * threads) > vm->maxcpus)
545 return (EINVAL);
546 vm->sockets = sockets;
547 vm->cores = cores;
548 vm->threads = threads;
549 return(0);
550 }
551
552 static void
vm_cleanup(struct vm * vm,bool destroy)553 vm_cleanup(struct vm *vm, bool destroy)
554 {
555 pmap_t pmap __diagused;
556 int i;
557
558 if (destroy) {
559 vm_xlock_memsegs(vm);
560 pmap = vmspace_pmap(vm->vmspace);
561 sched_pin();
562 PCPU_SET(curvmpmap, NULL);
563 sched_unpin();
564 CPU_FOREACH(i) {
565 MPASS(cpuid_to_pcpu[i]->pc_curvmpmap != pmap);
566 }
567 } else
568 vm_assert_memseg_xlocked(vm);
569
570
571 vgic_detach_from_vm(vm->cookie);
572
573 for (i = 0; i < vm->maxcpus; i++) {
574 if (vm->vcpu[i] != NULL)
575 vcpu_cleanup(vm->vcpu[i], destroy);
576 }
577
578 vmmops_cleanup(vm->cookie);
579
580 vm_mem_cleanup(vm);
581 if (destroy) {
582 vm_mem_destroy(vm);
583
584 vmmops_vmspace_free(vm->vmspace);
585 vm->vmspace = NULL;
586
587 for (i = 0; i < vm->maxcpus; i++)
588 free(vm->vcpu[i], M_VMM);
589 free(vm->vcpu, M_VMM);
590 sx_destroy(&vm->vcpus_init_lock);
591 }
592 }
593
594 void
vm_destroy(struct vm * vm)595 vm_destroy(struct vm *vm)
596 {
597 vm_cleanup(vm, true);
598 free(vm, M_VMM);
599 }
600
601 int
vm_reinit(struct vm * vm)602 vm_reinit(struct vm *vm)
603 {
604 int error;
605
606 /*
607 * A virtual machine can be reset only if all vcpus are suspended.
608 */
609 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
610 vm_cleanup(vm, false);
611 vm_init(vm, false);
612 error = 0;
613 } else {
614 error = EBUSY;
615 }
616
617 return (error);
618 }
619
620 const char *
vm_name(struct vm * vm)621 vm_name(struct vm *vm)
622 {
623 return (vm->name);
624 }
625
626 int
vm_gla2gpa_nofault(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * is_fault)627 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
628 uint64_t gla, int prot, uint64_t *gpa, int *is_fault)
629 {
630 return (vmmops_gla2gpa(vcpu->cookie, paging, gla, prot, gpa, is_fault));
631 }
632
633 static int
vmm_reg_raz(struct vcpu * vcpu,uint64_t * rval,void * arg)634 vmm_reg_raz(struct vcpu *vcpu, uint64_t *rval, void *arg)
635 {
636 *rval = 0;
637 return (0);
638 }
639
640 static int
vmm_reg_read_arg(struct vcpu * vcpu,uint64_t * rval,void * arg)641 vmm_reg_read_arg(struct vcpu *vcpu, uint64_t *rval, void *arg)
642 {
643 *rval = *(uint64_t *)arg;
644 return (0);
645 }
646
647 static int
vmm_reg_wi(struct vcpu * vcpu,uint64_t wval,void * arg)648 vmm_reg_wi(struct vcpu *vcpu, uint64_t wval, void *arg)
649 {
650 return (0);
651 }
652
653 static const struct vmm_special_reg vmm_special_regs[] = {
654 #define SPECIAL_REG(_reg, _read, _write) \
655 { \
656 .esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) | \
657 ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) | \
658 ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) | \
659 ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) | \
660 ((_reg ## _op2) << ISS_MSR_OP2_SHIFT), \
661 .esr_mask = ISS_MSR_REG_MASK, \
662 .reg_read = (_read), \
663 .reg_write = (_write), \
664 .arg = NULL, \
665 }
666 #define ID_SPECIAL_REG(_reg, _name) \
667 { \
668 .esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) | \
669 ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) | \
670 ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) | \
671 ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) | \
672 ((_reg ## _op2) << ISS_MSR_OP2_SHIFT), \
673 .esr_mask = ISS_MSR_REG_MASK, \
674 .reg_read = vmm_reg_read_arg, \
675 .reg_write = vmm_reg_wi, \
676 .arg = &(vmm_arch_regs._name), \
677 }
678
679 /* ID registers */
680 ID_SPECIAL_REG(ID_AA64PFR0_EL1, id_aa64pfr0),
681 ID_SPECIAL_REG(ID_AA64DFR0_EL1, id_aa64dfr0),
682 ID_SPECIAL_REG(ID_AA64ISAR0_EL1, id_aa64isar0),
683 ID_SPECIAL_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0),
684 ID_SPECIAL_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1),
685
686 /*
687 * All other ID registers are read as zero.
688 * They are all in the op0=3, op1=0, CRn=0, CRm={0..7} space.
689 */
690 {
691 .esr_iss = (3 << ISS_MSR_OP0_SHIFT) |
692 (0 << ISS_MSR_OP1_SHIFT) |
693 (0 << ISS_MSR_CRn_SHIFT) |
694 (0 << ISS_MSR_CRm_SHIFT),
695 .esr_mask = ISS_MSR_OP0_MASK | ISS_MSR_OP1_MASK |
696 ISS_MSR_CRn_MASK | (0x8 << ISS_MSR_CRm_SHIFT),
697 .reg_read = vmm_reg_raz,
698 .reg_write = vmm_reg_wi,
699 .arg = NULL,
700 },
701
702 /* Counter physical registers */
703 SPECIAL_REG(CNTP_CTL_EL0, vtimer_phys_ctl_read, vtimer_phys_ctl_write),
704 SPECIAL_REG(CNTP_CVAL_EL0, vtimer_phys_cval_read,
705 vtimer_phys_cval_write),
706 SPECIAL_REG(CNTP_TVAL_EL0, vtimer_phys_tval_read,
707 vtimer_phys_tval_write),
708 SPECIAL_REG(CNTPCT_EL0, vtimer_phys_cnt_read, vtimer_phys_cnt_write),
709 #undef SPECIAL_REG
710 };
711
712 void
vm_register_reg_handler(struct vm * vm,uint64_t iss,uint64_t mask,reg_read_t reg_read,reg_write_t reg_write,void * arg)713 vm_register_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask,
714 reg_read_t reg_read, reg_write_t reg_write, void *arg)
715 {
716 int i;
717
718 for (i = 0; i < nitems(vm->special_reg); i++) {
719 if (vm->special_reg[i].esr_iss == 0 &&
720 vm->special_reg[i].esr_mask == 0) {
721 vm->special_reg[i].esr_iss = iss;
722 vm->special_reg[i].esr_mask = mask;
723 vm->special_reg[i].reg_read = reg_read;
724 vm->special_reg[i].reg_write = reg_write;
725 vm->special_reg[i].arg = arg;
726 return;
727 }
728 }
729
730 panic("%s: No free special register slot", __func__);
731 }
732
733 void
vm_deregister_reg_handler(struct vm * vm,uint64_t iss,uint64_t mask)734 vm_deregister_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask)
735 {
736 int i;
737
738 for (i = 0; i < nitems(vm->special_reg); i++) {
739 if (vm->special_reg[i].esr_iss == iss &&
740 vm->special_reg[i].esr_mask == mask) {
741 memset(&vm->special_reg[i], 0,
742 sizeof(vm->special_reg[i]));
743 return;
744 }
745 }
746
747 panic("%s: Invalid special register: iss %lx mask %lx", __func__, iss,
748 mask);
749 }
750
751 static int
vm_handle_reg_emul(struct vcpu * vcpu,bool * retu)752 vm_handle_reg_emul(struct vcpu *vcpu, bool *retu)
753 {
754 struct vm *vm;
755 struct vm_exit *vme;
756 struct vre *vre;
757 int i, rv;
758
759 vm = vcpu->vm;
760 vme = &vcpu->exitinfo;
761 vre = &vme->u.reg_emul.vre;
762
763 for (i = 0; i < nitems(vm->special_reg); i++) {
764 if (vm->special_reg[i].esr_iss == 0 &&
765 vm->special_reg[i].esr_mask == 0)
766 continue;
767
768 if ((vre->inst_syndrome & vm->special_reg[i].esr_mask) ==
769 vm->special_reg[i].esr_iss) {
770 rv = vmm_emulate_register(vcpu, vre,
771 vm->special_reg[i].reg_read,
772 vm->special_reg[i].reg_write,
773 vm->special_reg[i].arg);
774 if (rv == 0) {
775 *retu = false;
776 }
777 return (rv);
778 }
779 }
780 for (i = 0; i < nitems(vmm_special_regs); i++) {
781 if ((vre->inst_syndrome & vmm_special_regs[i].esr_mask) ==
782 vmm_special_regs[i].esr_iss) {
783 rv = vmm_emulate_register(vcpu, vre,
784 vmm_special_regs[i].reg_read,
785 vmm_special_regs[i].reg_write,
786 vmm_special_regs[i].arg);
787 if (rv == 0) {
788 *retu = false;
789 }
790 return (rv);
791 }
792 }
793
794
795 *retu = true;
796 return (0);
797 }
798
799 void
vm_register_inst_handler(struct vm * vm,uint64_t start,uint64_t size,mem_region_read_t mmio_read,mem_region_write_t mmio_write)800 vm_register_inst_handler(struct vm *vm, uint64_t start, uint64_t size,
801 mem_region_read_t mmio_read, mem_region_write_t mmio_write)
802 {
803 int i;
804
805 for (i = 0; i < nitems(vm->mmio_region); i++) {
806 if (vm->mmio_region[i].start == 0 &&
807 vm->mmio_region[i].end == 0) {
808 vm->mmio_region[i].start = start;
809 vm->mmio_region[i].end = start + size;
810 vm->mmio_region[i].read = mmio_read;
811 vm->mmio_region[i].write = mmio_write;
812 return;
813 }
814 }
815
816 panic("%s: No free MMIO region", __func__);
817 }
818
819 void
vm_deregister_inst_handler(struct vm * vm,uint64_t start,uint64_t size)820 vm_deregister_inst_handler(struct vm *vm, uint64_t start, uint64_t size)
821 {
822 int i;
823
824 for (i = 0; i < nitems(vm->mmio_region); i++) {
825 if (vm->mmio_region[i].start == start &&
826 vm->mmio_region[i].end == start + size) {
827 memset(&vm->mmio_region[i], 0,
828 sizeof(vm->mmio_region[i]));
829 return;
830 }
831 }
832
833 panic("%s: Invalid MMIO region: %lx - %lx", __func__, start,
834 start + size);
835 }
836
837 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)838 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
839 {
840 struct vm *vm;
841 struct vm_exit *vme;
842 struct vie *vie;
843 struct hyp *hyp;
844 uint64_t fault_ipa;
845 struct vm_guest_paging *paging;
846 struct vmm_mmio_region *vmr;
847 int error, i;
848
849 vm = vcpu->vm;
850 hyp = vm->cookie;
851 if (!hyp->vgic_attached)
852 goto out_user;
853
854 vme = &vcpu->exitinfo;
855 vie = &vme->u.inst_emul.vie;
856 paging = &vme->u.inst_emul.paging;
857
858 fault_ipa = vme->u.inst_emul.gpa;
859
860 vmr = NULL;
861 for (i = 0; i < nitems(vm->mmio_region); i++) {
862 if (vm->mmio_region[i].start <= fault_ipa &&
863 vm->mmio_region[i].end > fault_ipa) {
864 vmr = &vm->mmio_region[i];
865 break;
866 }
867 }
868 if (vmr == NULL)
869 goto out_user;
870
871 error = vmm_emulate_instruction(vcpu, fault_ipa, vie, paging,
872 vmr->read, vmr->write, retu);
873 return (error);
874
875 out_user:
876 *retu = true;
877 return (0);
878 }
879
880 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)881 vm_suspend(struct vm *vm, enum vm_suspend_how how)
882 {
883 int i;
884
885 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
886 return (EINVAL);
887
888 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
889 VM_CTR2(vm, "virtual machine already suspended %d/%d",
890 vm->suspend, how);
891 return (EALREADY);
892 }
893
894 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
895
896 /*
897 * Notify all active vcpus that they are now suspended.
898 */
899 for (i = 0; i < vm->maxcpus; i++) {
900 if (CPU_ISSET(i, &vm->active_cpus))
901 vcpu_notify_event(vm_vcpu(vm, i));
902 }
903
904 return (0);
905 }
906
907 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t pc)908 vm_exit_suspended(struct vcpu *vcpu, uint64_t pc)
909 {
910 struct vm *vm = vcpu->vm;
911 struct vm_exit *vmexit;
912
913 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
914 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
915
916 vmexit = vm_exitinfo(vcpu);
917 vmexit->pc = pc;
918 vmexit->inst_length = 4;
919 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
920 vmexit->u.suspended.how = vm->suspend;
921 }
922
923 void
vm_exit_debug(struct vcpu * vcpu,uint64_t pc)924 vm_exit_debug(struct vcpu *vcpu, uint64_t pc)
925 {
926 struct vm_exit *vmexit;
927
928 vmexit = vm_exitinfo(vcpu);
929 vmexit->pc = pc;
930 vmexit->inst_length = 4;
931 vmexit->exitcode = VM_EXITCODE_DEBUG;
932 }
933
934 int
vm_activate_cpu(struct vcpu * vcpu)935 vm_activate_cpu(struct vcpu *vcpu)
936 {
937 struct vm *vm = vcpu->vm;
938
939 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
940 return (EBUSY);
941
942 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
943 return (0);
944
945 }
946
947 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)948 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
949 {
950 if (vcpu == NULL) {
951 vm->debug_cpus = vm->active_cpus;
952 for (int i = 0; i < vm->maxcpus; i++) {
953 if (CPU_ISSET(i, &vm->active_cpus))
954 vcpu_notify_event(vm_vcpu(vm, i));
955 }
956 } else {
957 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
958 return (EINVAL);
959
960 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
961 vcpu_notify_event(vcpu);
962 }
963 return (0);
964 }
965
966 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)967 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
968 {
969
970 if (vcpu == NULL) {
971 CPU_ZERO(&vm->debug_cpus);
972 } else {
973 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
974 return (EINVAL);
975
976 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
977 }
978 return (0);
979 }
980
981 int
vcpu_debugged(struct vcpu * vcpu)982 vcpu_debugged(struct vcpu *vcpu)
983 {
984
985 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
986 }
987
988 cpuset_t
vm_active_cpus(struct vm * vm)989 vm_active_cpus(struct vm *vm)
990 {
991
992 return (vm->active_cpus);
993 }
994
995 cpuset_t
vm_debug_cpus(struct vm * vm)996 vm_debug_cpus(struct vm *vm)
997 {
998
999 return (vm->debug_cpus);
1000 }
1001
1002 cpuset_t
vm_suspended_cpus(struct vm * vm)1003 vm_suspended_cpus(struct vm *vm)
1004 {
1005
1006 return (vm->suspended_cpus);
1007 }
1008
1009
1010 void *
vcpu_stats(struct vcpu * vcpu)1011 vcpu_stats(struct vcpu *vcpu)
1012 {
1013
1014 return (vcpu->stats);
1015 }
1016
1017 /*
1018 * This function is called to ensure that a vcpu "sees" a pending event
1019 * as soon as possible:
1020 * - If the vcpu thread is sleeping then it is woken up.
1021 * - If the vcpu is running on a different host_cpu then an IPI will be directed
1022 * to the host_cpu to cause the vcpu to trap into the hypervisor.
1023 */
1024 static void
vcpu_notify_event_locked(struct vcpu * vcpu)1025 vcpu_notify_event_locked(struct vcpu *vcpu)
1026 {
1027 int hostcpu;
1028
1029 hostcpu = vcpu->hostcpu;
1030 if (vcpu->state == VCPU_RUNNING) {
1031 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
1032 if (hostcpu != curcpu) {
1033 ipi_cpu(hostcpu, vmm_ipinum);
1034 } else {
1035 /*
1036 * If the 'vcpu' is running on 'curcpu' then it must
1037 * be sending a notification to itself (e.g. SELF_IPI).
1038 * The pending event will be picked up when the vcpu
1039 * transitions back to guest context.
1040 */
1041 }
1042 } else {
1043 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
1044 "with hostcpu %d", vcpu->state, hostcpu));
1045 if (vcpu->state == VCPU_SLEEPING)
1046 wakeup_one(vcpu);
1047 }
1048 }
1049
1050 void
vcpu_notify_event(struct vcpu * vcpu)1051 vcpu_notify_event(struct vcpu *vcpu)
1052 {
1053 vcpu_lock(vcpu);
1054 vcpu_notify_event_locked(vcpu);
1055 vcpu_unlock(vcpu);
1056 }
1057
1058 struct vmspace *
vm_vmspace(struct vm * vm)1059 vm_vmspace(struct vm *vm)
1060 {
1061 return (vm->vmspace);
1062 }
1063
1064 struct vm_mem *
vm_mem(struct vm * vm)1065 vm_mem(struct vm *vm)
1066 {
1067 return (&vm->mem);
1068 }
1069
1070 static void
restore_guest_fpustate(struct vcpu * vcpu)1071 restore_guest_fpustate(struct vcpu *vcpu)
1072 {
1073
1074 /* flush host state to the pcb */
1075 vfp_save_state(curthread, curthread->td_pcb);
1076 /* Ensure the VFP state will be re-loaded when exiting the guest */
1077 PCPU_SET(fpcurthread, NULL);
1078
1079 /* restore guest FPU state */
1080 vfp_enable();
1081 vfp_restore(vcpu->guestfpu);
1082
1083 /*
1084 * The FPU is now "dirty" with the guest's state so turn on emulation
1085 * to trap any access to the FPU by the host.
1086 */
1087 vfp_disable();
1088 }
1089
1090 static void
save_guest_fpustate(struct vcpu * vcpu)1091 save_guest_fpustate(struct vcpu *vcpu)
1092 {
1093 if ((READ_SPECIALREG(cpacr_el1) & CPACR_FPEN_MASK) !=
1094 CPACR_FPEN_TRAP_ALL1)
1095 panic("VFP not enabled in host!");
1096
1097 /* save guest FPU state */
1098 vfp_enable();
1099 vfp_store(vcpu->guestfpu);
1100 vfp_disable();
1101
1102 KASSERT(PCPU_GET(fpcurthread) == NULL,
1103 ("%s: fpcurthread set with guest registers", __func__));
1104 }
1105 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1106 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
1107 bool from_idle)
1108 {
1109 int error;
1110
1111 vcpu_assert_locked(vcpu);
1112
1113 /*
1114 * State transitions from the vmmdev_ioctl() must always begin from
1115 * the VCPU_IDLE state. This guarantees that there is only a single
1116 * ioctl() operating on a vcpu at any point.
1117 */
1118 if (from_idle) {
1119 while (vcpu->state != VCPU_IDLE) {
1120 vcpu_notify_event_locked(vcpu);
1121 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1122 }
1123 } else {
1124 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1125 "vcpu idle state"));
1126 }
1127
1128 if (vcpu->state == VCPU_RUNNING) {
1129 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1130 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1131 } else {
1132 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1133 "vcpu that is not running", vcpu->hostcpu));
1134 }
1135
1136 /*
1137 * The following state transitions are allowed:
1138 * IDLE -> FROZEN -> IDLE
1139 * FROZEN -> RUNNING -> FROZEN
1140 * FROZEN -> SLEEPING -> FROZEN
1141 */
1142 switch (vcpu->state) {
1143 case VCPU_IDLE:
1144 case VCPU_RUNNING:
1145 case VCPU_SLEEPING:
1146 error = (newstate != VCPU_FROZEN);
1147 break;
1148 case VCPU_FROZEN:
1149 error = (newstate == VCPU_FROZEN);
1150 break;
1151 default:
1152 error = 1;
1153 break;
1154 }
1155
1156 if (error)
1157 return (EBUSY);
1158
1159 vcpu->state = newstate;
1160 if (newstate == VCPU_RUNNING)
1161 vcpu->hostcpu = curcpu;
1162 else
1163 vcpu->hostcpu = NOCPU;
1164
1165 if (newstate == VCPU_IDLE)
1166 wakeup(&vcpu->state);
1167
1168 return (0);
1169 }
1170
1171 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1172 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1173 {
1174 int error;
1175
1176 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1177 panic("Error %d setting state to %d\n", error, newstate);
1178 }
1179
1180 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1181 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1182 {
1183 int error;
1184
1185 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1186 panic("Error %d setting state to %d", error, newstate);
1187 }
1188
1189 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)1190 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
1191 {
1192 if (type < 0 || type >= VM_CAP_MAX)
1193 return (EINVAL);
1194
1195 return (vmmops_getcap(vcpu->cookie, type, retval));
1196 }
1197
1198 int
vm_set_capability(struct vcpu * vcpu,int type,int val)1199 vm_set_capability(struct vcpu *vcpu, int type, int val)
1200 {
1201 if (type < 0 || type >= VM_CAP_MAX)
1202 return (EINVAL);
1203
1204 return (vmmops_setcap(vcpu->cookie, type, val));
1205 }
1206
1207 struct vm *
vcpu_vm(struct vcpu * vcpu)1208 vcpu_vm(struct vcpu *vcpu)
1209 {
1210 return (vcpu->vm);
1211 }
1212
1213 int
vcpu_vcpuid(struct vcpu * vcpu)1214 vcpu_vcpuid(struct vcpu *vcpu)
1215 {
1216 return (vcpu->vcpuid);
1217 }
1218
1219 void *
vcpu_get_cookie(struct vcpu * vcpu)1220 vcpu_get_cookie(struct vcpu *vcpu)
1221 {
1222 return (vcpu->cookie);
1223 }
1224
1225 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)1226 vm_vcpu(struct vm *vm, int vcpuid)
1227 {
1228 return (vm->vcpu[vcpuid]);
1229 }
1230
1231 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1232 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
1233 {
1234 int error;
1235
1236 vcpu_lock(vcpu);
1237 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
1238 vcpu_unlock(vcpu);
1239
1240 return (error);
1241 }
1242
1243 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)1244 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
1245 {
1246 enum vcpu_state state;
1247
1248 vcpu_lock(vcpu);
1249 state = vcpu->state;
1250 if (hostcpu != NULL)
1251 *hostcpu = vcpu->hostcpu;
1252 vcpu_unlock(vcpu);
1253
1254 return (state);
1255 }
1256
1257 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)1258 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
1259 {
1260
1261 if (reg >= VM_REG_LAST)
1262 return (EINVAL);
1263
1264 return (vmmops_getreg(vcpu->cookie, reg, retval));
1265 }
1266
1267 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)1268 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
1269 {
1270 int error;
1271
1272 if (reg >= VM_REG_LAST)
1273 return (EINVAL);
1274 error = vmmops_setreg(vcpu->cookie, reg, val);
1275 if (error || reg != VM_REG_GUEST_PC)
1276 return (error);
1277
1278 vcpu->nextpc = val;
1279
1280 return (0);
1281 }
1282
1283 void *
vm_get_cookie(struct vm * vm)1284 vm_get_cookie(struct vm *vm)
1285 {
1286 return (vm->cookie);
1287 }
1288
1289 int
vm_inject_exception(struct vcpu * vcpu,uint64_t esr,uint64_t far)1290 vm_inject_exception(struct vcpu *vcpu, uint64_t esr, uint64_t far)
1291 {
1292 return (vmmops_exception(vcpu->cookie, esr, far));
1293 }
1294
1295 int
vm_attach_vgic(struct vm * vm,struct vm_vgic_descr * descr)1296 vm_attach_vgic(struct vm *vm, struct vm_vgic_descr *descr)
1297 {
1298 return (vgic_attach_to_vm(vm->cookie, descr));
1299 }
1300
1301 int
vm_assert_irq(struct vm * vm,uint32_t irq)1302 vm_assert_irq(struct vm *vm, uint32_t irq)
1303 {
1304 return (vgic_inject_irq(vm->cookie, -1, irq, true));
1305 }
1306
1307 int
vm_deassert_irq(struct vm * vm,uint32_t irq)1308 vm_deassert_irq(struct vm *vm, uint32_t irq)
1309 {
1310 return (vgic_inject_irq(vm->cookie, -1, irq, false));
1311 }
1312
1313 int
vm_raise_msi(struct vm * vm,uint64_t msg,uint64_t addr,int bus,int slot,int func)1314 vm_raise_msi(struct vm *vm, uint64_t msg, uint64_t addr, int bus, int slot,
1315 int func)
1316 {
1317 /* TODO: Should we raise an SError? */
1318 return (vgic_inject_msi(vm->cookie, msg, addr));
1319 }
1320
1321 static int
vm_handle_smccc_call(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1322 vm_handle_smccc_call(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1323 {
1324 struct hypctx *hypctx;
1325 int i;
1326
1327 hypctx = vcpu_get_cookie(vcpu);
1328
1329 if ((hypctx->tf.tf_esr & ESR_ELx_ISS_MASK) != 0)
1330 return (1);
1331
1332 vme->exitcode = VM_EXITCODE_SMCCC;
1333 vme->u.smccc_call.func_id = hypctx->tf.tf_x[0];
1334 for (i = 0; i < nitems(vme->u.smccc_call.args); i++)
1335 vme->u.smccc_call.args[i] = hypctx->tf.tf_x[i + 1];
1336
1337 *retu = true;
1338 return (0);
1339 }
1340
1341 static int
vm_handle_wfi(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1342 vm_handle_wfi(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1343 {
1344 vcpu_lock(vcpu);
1345 while (1) {
1346 if (vgic_has_pending_irq(vcpu->cookie))
1347 break;
1348
1349 if (vcpu_should_yield(vcpu))
1350 break;
1351
1352 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1353 /*
1354 * XXX msleep_spin() cannot be interrupted by signals so
1355 * wake up periodically to check pending signals.
1356 */
1357 msleep_spin(vcpu, &vcpu->mtx, "vmidle", hz);
1358 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1359 }
1360 vcpu_unlock(vcpu);
1361
1362 *retu = false;
1363 return (0);
1364 }
1365
1366 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1367 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1368 {
1369 struct vm *vm = vcpu->vm;
1370 struct vm_exit *vme;
1371 struct vm_map *map;
1372 uint64_t addr, esr;
1373 pmap_t pmap;
1374 int ftype, rv;
1375
1376 vme = &vcpu->exitinfo;
1377
1378 pmap = vmspace_pmap(vcpu->vm->vmspace);
1379 addr = vme->u.paging.gpa;
1380 esr = vme->u.paging.esr;
1381
1382 /* The page exists, but the page table needs to be updated. */
1383 if (pmap_fault(pmap, esr, addr) == KERN_SUCCESS)
1384 return (0);
1385
1386 switch (ESR_ELx_EXCEPTION(esr)) {
1387 case EXCP_INSN_ABORT_L:
1388 case EXCP_DATA_ABORT_L:
1389 ftype = VM_PROT_EXECUTE | VM_PROT_READ | VM_PROT_WRITE;
1390 break;
1391 default:
1392 panic("%s: Invalid exception (esr = %lx)", __func__, esr);
1393 }
1394
1395 map = &vm->vmspace->vm_map;
1396 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1397 if (rv != KERN_SUCCESS)
1398 return (EFAULT);
1399
1400 return (0);
1401 }
1402
1403 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1404 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1405 {
1406 struct vm *vm = vcpu->vm;
1407 int error, i;
1408 struct thread *td;
1409
1410 error = 0;
1411 td = curthread;
1412
1413 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1414
1415 /*
1416 * Wait until all 'active_cpus' have suspended themselves.
1417 *
1418 * Since a VM may be suspended at any time including when one or
1419 * more vcpus are doing a rendezvous we need to call the rendezvous
1420 * handler while we are waiting to prevent a deadlock.
1421 */
1422 vcpu_lock(vcpu);
1423 while (error == 0) {
1424 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0)
1425 break;
1426
1427 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1428 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1429 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1430 if (td_ast_pending(td, TDA_SUSPEND)) {
1431 vcpu_unlock(vcpu);
1432 error = thread_check_susp(td, false);
1433 vcpu_lock(vcpu);
1434 }
1435 }
1436 vcpu_unlock(vcpu);
1437
1438 /*
1439 * Wakeup the other sleeping vcpus and return to userspace.
1440 */
1441 for (i = 0; i < vm->maxcpus; i++) {
1442 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1443 vcpu_notify_event(vm_vcpu(vm, i));
1444 }
1445 }
1446
1447 *retu = true;
1448 return (error);
1449 }
1450
1451 int
vm_run(struct vcpu * vcpu)1452 vm_run(struct vcpu *vcpu)
1453 {
1454 struct vm *vm = vcpu->vm;
1455 struct vm_eventinfo evinfo;
1456 int error, vcpuid;
1457 struct vm_exit *vme;
1458 bool retu;
1459 pmap_t pmap;
1460
1461 vcpuid = vcpu->vcpuid;
1462
1463 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1464 return (EINVAL);
1465
1466 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1467 return (EINVAL);
1468
1469 pmap = vmspace_pmap(vm->vmspace);
1470 vme = &vcpu->exitinfo;
1471 evinfo.rptr = NULL;
1472 evinfo.sptr = &vm->suspend;
1473 evinfo.iptr = NULL;
1474 restart:
1475 critical_enter();
1476
1477 restore_guest_fpustate(vcpu);
1478
1479 vcpu_require_state(vcpu, VCPU_RUNNING);
1480 error = vmmops_run(vcpu->cookie, vcpu->nextpc, pmap, &evinfo);
1481 vcpu_require_state(vcpu, VCPU_FROZEN);
1482
1483 save_guest_fpustate(vcpu);
1484
1485 critical_exit();
1486
1487 if (error == 0) {
1488 retu = false;
1489 switch (vme->exitcode) {
1490 case VM_EXITCODE_INST_EMUL:
1491 vcpu->nextpc = vme->pc + vme->inst_length;
1492 error = vm_handle_inst_emul(vcpu, &retu);
1493 break;
1494
1495 case VM_EXITCODE_REG_EMUL:
1496 vcpu->nextpc = vme->pc + vme->inst_length;
1497 error = vm_handle_reg_emul(vcpu, &retu);
1498 break;
1499
1500 case VM_EXITCODE_HVC:
1501 /*
1502 * The HVC instruction saves the address for the
1503 * next instruction as the return address.
1504 */
1505 vcpu->nextpc = vme->pc;
1506 /*
1507 * The PSCI call can change the exit information in the
1508 * case of suspend/reset/poweroff/cpu off/cpu on.
1509 */
1510 error = vm_handle_smccc_call(vcpu, vme, &retu);
1511 break;
1512
1513 case VM_EXITCODE_WFI:
1514 vcpu->nextpc = vme->pc + vme->inst_length;
1515 error = vm_handle_wfi(vcpu, vme, &retu);
1516 break;
1517
1518 case VM_EXITCODE_PAGING:
1519 vcpu->nextpc = vme->pc;
1520 error = vm_handle_paging(vcpu, &retu);
1521 break;
1522
1523 case VM_EXITCODE_SUSPENDED:
1524 vcpu->nextpc = vme->pc;
1525 error = vm_handle_suspend(vcpu, &retu);
1526 break;
1527
1528 default:
1529 /* Handle in userland */
1530 vcpu->nextpc = vme->pc;
1531 retu = true;
1532 break;
1533 }
1534 }
1535
1536 if (error == 0 && retu == false)
1537 goto restart;
1538
1539 return (error);
1540 }
1541