1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 /*
29 * This file and its contents are supplied under the terms of the
30 * Common Development and Distribution License ("CDDL"), version 1.0.
31 * You may only use this file in accordance with the terms of version
32 * 1.0 of the CDDL.
33 *
34 * A full copy of the text of the CDDL should have accompanied this
35 * source. A copy of the CDDL is also available via the Internet at
36 * http://www.illumos.org/license/CDDL.
37 */
38 /* This file is dual-licensed; see usr/src/contrib/bhyve/LICENSE */
39
40 /*
41 * Copyright 2015 Pluribus Networks Inc.
42 * Copyright 2018 Joyent, Inc.
43 * Copyright 2025 Oxide Computer Company
44 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association.
45 */
46
47
48 #include <sys/cdefs.h>
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/module.h>
54 #include <sys/sysctl.h>
55 #include <sys/kmem.h>
56 #include <sys/pcpu.h>
57 #include <sys/mutex.h>
58 #include <sys/proc.h>
59 #include <sys/rwlock.h>
60 #include <sys/sched.h>
61 #include <sys/systm.h>
62 #include <sys/sunddi.h>
63 #include <sys/hma.h>
64 #include <sys/archsystm.h>
65
66 #include <machine/md_var.h>
67 #include <x86/psl.h>
68 #include <x86/apicreg.h>
69
70 #include <machine/specialreg.h>
71 #include <machine/vmm.h>
72 #include <machine/vmm_dev.h>
73 #include <machine/vmparam.h>
74 #include <sys/vmm_instruction_emul.h>
75 #include <sys/vmm_vm.h>
76 #include <sys/vmm_gpt.h>
77 #include <sys/vmm_data.h>
78
79 #include "vmm_ioport.h"
80 #include "vmm_host.h"
81 #include "vmm_util.h"
82 #include "vatpic.h"
83 #include "vatpit.h"
84 #include "vhpet.h"
85 #include "vioapic.h"
86 #include "vlapic.h"
87 #include "vpmtmr.h"
88 #include "vrtc.h"
89 #include "vmm_stat.h"
90 #include "vmm_lapic.h"
91
92 #include "io/ppt.h"
93 #include "io/iommu.h"
94
95 struct vlapic;
96
97 /* Flags for vtc_status */
98 #define VTCS_FPU_RESTORED 1 /* guest FPU restored, host FPU saved */
99 #define VTCS_FPU_CTX_CRITICAL 2 /* in ctx where FPU restore cannot be lazy */
100
101 typedef struct vm_thread_ctx {
102 struct vm *vtc_vm;
103 int vtc_vcpuid;
104 uint_t vtc_status;
105 enum vcpu_ustate vtc_ustate;
106 } vm_thread_ctx_t;
107
108 #define VMM_MTRR_VAR_MAX 10
109 #define VMM_MTRR_DEF_MASK \
110 (MTRR_DEF_ENABLE | MTRR_DEF_FIXED_ENABLE | MTRR_DEF_TYPE)
111 #define VMM_MTRR_PHYSBASE_MASK (MTRR_PHYSBASE_PHYSBASE | MTRR_PHYSBASE_TYPE)
112 #define VMM_MTRR_PHYSMASK_MASK (MTRR_PHYSMASK_PHYSMASK | MTRR_PHYSMASK_VALID)
113 struct vm_mtrr {
114 uint64_t def_type;
115 uint64_t fixed4k[8];
116 uint64_t fixed16k[2];
117 uint64_t fixed64k;
118 struct {
119 uint64_t base;
120 uint64_t mask;
121 } var[VMM_MTRR_VAR_MAX];
122 };
123
124 /*
125 * Initialization:
126 * (a) allocated when vcpu is created
127 * (i) initialized when vcpu is created and when it is reinitialized
128 * (o) initialized the first time the vcpu is created
129 * (x) initialized before use
130 */
131 struct vcpu {
132 /* (o) protects state, run_state, hostcpu, sipi_vector */
133 kmutex_t lock;
134
135 enum vcpu_state state; /* (o) vcpu state */
136 enum vcpu_run_state run_state; /* (i) vcpu init/sipi/run state */
137 kcondvar_t vcpu_cv; /* (o) cpu waiter cv */
138 kcondvar_t state_cv; /* (o) IDLE-transition cv */
139 int hostcpu; /* (o) vcpu's current host cpu */
140 int lastloccpu; /* (o) last host cpu localized to */
141 bool reqidle; /* (i) request vcpu to idle */
142 bool reqconsist; /* (i) req. vcpu exit when consistent */
143 bool reqbarrier; /* (i) request vcpu exit barrier */
144 struct vlapic *vlapic; /* (i) APIC device model */
145 enum x2apic_state x2apic_state; /* (i) APIC mode */
146 uint64_t exit_intinfo; /* (i) events pending at VM exit */
147 uint64_t exc_pending; /* (i) exception pending */
148 bool nmi_pending; /* (i) NMI pending */
149 bool extint_pending; /* (i) INTR pending */
150
151 uint8_t sipi_vector; /* (i) SIPI vector */
152 hma_fpu_t *guestfpu; /* (a,i) guest fpu state */
153 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
154 void *stats; /* (a,i) statistics */
155 struct vm_exit exitinfo; /* (x) exit reason and collateral */
156 uint64_t nextrip; /* (x) next instruction to execute */
157 struct vie *vie_ctx; /* (x) instruction emulation context */
158 vm_client_t *vmclient; /* (a) VM-system client */
159 uint64_t tsc_offset; /* (x) vCPU TSC offset */
160 struct vm_mtrr mtrr; /* (i) vcpu's MTRR */
161 vcpu_cpuid_config_t cpuid_cfg; /* (x) cpuid configuration */
162
163 enum vcpu_ustate ustate; /* (i) microstate for the vcpu */
164 hrtime_t ustate_when; /* (i) time of last ustate change */
165 uint64_t ustate_total[VU_MAX]; /* (o) total time spent in ustates */
166 vm_thread_ctx_t vtc; /* (o) thread state for ctxops */
167 struct ctxop *ctxop; /* (o) ctxop storage for vcpu */
168 };
169
170 #define vcpu_lock(v) mutex_enter(&((v)->lock))
171 #define vcpu_unlock(v) mutex_exit(&((v)->lock))
172 #define vcpu_assert_locked(v) ASSERT(MUTEX_HELD(&((v)->lock)))
173
174 struct mem_seg {
175 size_t len;
176 bool sysmem;
177 vm_object_t *object;
178 };
179 #define VM_MAX_MEMSEGS 5
180
181 struct mem_map {
182 vm_paddr_t gpa;
183 size_t len;
184 uintptr_t segoff;
185 int segid;
186 int prot;
187 int flags;
188 };
189 #define VM_MAX_MEMMAPS 8
190
191 /*
192 * Initialization:
193 * (o) initialized the first time the VM is created
194 * (i) initialized when VM is created and when it is reinitialized
195 * (x) initialized before use
196 */
197 struct vm {
198 void *cookie; /* (i) cpu-specific data */
199 void *iommu; /* (x) iommu-specific data */
200 struct vhpet *vhpet; /* (i) virtual HPET */
201 struct vioapic *vioapic; /* (i) virtual ioapic */
202 struct vatpic *vatpic; /* (i) virtual atpic */
203 struct vatpit *vatpit; /* (i) virtual atpit */
204 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
205 struct vrtc *vrtc; /* (o) virtual RTC */
206 volatile cpuset_t active_cpus; /* (i) active vcpus */
207 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for dbg */
208 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
209 int suspend_how; /* (i) stop VM execution */
210 int suspend_source; /* (i) src vcpuid of suspend */
211 hrtime_t suspend_when; /* (i) time suspend asserted */
212 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
213 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
214 struct vmspace *vmspace; /* (o) guest's address space */
215 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */
216 /* The following describe the vm cpu topology */
217 uint16_t sockets; /* (o) num of sockets */
218 uint16_t cores; /* (o) num of cores/socket */
219 uint16_t threads; /* (o) num of threads/core */
220 uint16_t maxcpus; /* (o) max pluggable cpus */
221
222 hrtime_t boot_hrtime; /* (i) hrtime at VM boot */
223
224 /* TSC and TSC scaling related values */
225 uint64_t tsc_offset; /* (i) VM-wide TSC offset */
226 uint64_t guest_freq; /* (i) guest TSC Frequency */
227 uint64_t freq_multiplier; /* (i) guest/host TSC Ratio */
228
229 struct ioport_config ioports; /* (o) ioport handling */
230
231 bool mem_transient; /* (o) alloc transient memory */
232 bool is_paused; /* (i) instance is paused */
233 };
234
235 static int vmm_initialized;
236 static uint64_t vmm_host_freq;
237
238
239 static void
nullop_panic(void)240 nullop_panic(void)
241 {
242 panic("null vmm operation call");
243 }
244
245 /* Do not allow use of an un-set `ops` to do anything but panic */
246 static struct vmm_ops vmm_ops_null = {
247 .init = (vmm_init_func_t)nullop_panic,
248 .resume = (vmm_resume_func_t)nullop_panic,
249 .vminit = (vmi_init_func_t)nullop_panic,
250 .vmrun = (vmi_run_func_t)nullop_panic,
251 .vmcleanup = (vmi_cleanup_func_t)nullop_panic,
252 .vmgetreg = (vmi_get_register_t)nullop_panic,
253 .vmsetreg = (vmi_set_register_t)nullop_panic,
254 .vmgetdesc = (vmi_get_desc_t)nullop_panic,
255 .vmsetdesc = (vmi_set_desc_t)nullop_panic,
256 .vmgetcap = (vmi_get_cap_t)nullop_panic,
257 .vmsetcap = (vmi_set_cap_t)nullop_panic,
258 .vlapic_init = (vmi_vlapic_init)nullop_panic,
259 .vlapic_cleanup = (vmi_vlapic_cleanup)nullop_panic,
260 .vmpause = (vmi_pause_t)nullop_panic,
261 .vmsavectx = (vmi_savectx)nullop_panic,
262 .vmrestorectx = (vmi_restorectx)nullop_panic,
263 .vmgetmsr = (vmi_get_msr_t)nullop_panic,
264 .vmsetmsr = (vmi_set_msr_t)nullop_panic,
265 .vmfreqratio = (vmi_freqratio_t)nullop_panic,
266 .fr_fracsize = 0,
267 .fr_intsize = 0,
268 };
269
270 static struct vmm_ops *ops = &vmm_ops_null;
271
272 #define VMM_INIT() ((*ops->init)())
273 #define VMM_RESUME() ((*ops->resume)())
274
275 #define VMINIT(vm) ((*ops->vminit)(vm))
276 #define VMRUN(vmi, vcpu, rip) ((*ops->vmrun)(vmi, vcpu, rip))
277 #define VMCLEANUP(vmi) ((*ops->vmcleanup)(vmi))
278
279 #define VMGETREG(vmi, vcpu, num, rv) ((*ops->vmgetreg)(vmi, vcpu, num, rv))
280 #define VMSETREG(vmi, vcpu, num, val) ((*ops->vmsetreg)(vmi, vcpu, num, val))
281 #define VMGETDESC(vmi, vcpu, num, dsc) ((*ops->vmgetdesc)(vmi, vcpu, num, dsc))
282 #define VMSETDESC(vmi, vcpu, num, dsc) ((*ops->vmsetdesc)(vmi, vcpu, num, dsc))
283 #define VMGETCAP(vmi, vcpu, num, rv) ((*ops->vmgetcap)(vmi, vcpu, num, rv))
284 #define VMSETCAP(vmi, vcpu, num, val) ((*ops->vmsetcap)(vmi, vcpu, num, val))
285 #define VLAPIC_INIT(vmi, vcpu) ((*ops->vlapic_init)(vmi, vcpu))
286 #define VLAPIC_CLEANUP(vmi, vlapic) ((*ops->vlapic_cleanup)(vmi, vlapic))
287
288 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS)
289 #define fpu_stop_emulating() clts()
290
291 SDT_PROVIDER_DEFINE(vmm);
292
293 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
294 NULL);
295
296 /*
297 * Halt the guest if all vcpus are executing a HLT instruction with
298 * interrupts disabled.
299 */
300 int halt_detection_enabled = 1;
301
302 /* Trap into hypervisor on all guest exceptions and reflect them back */
303 int trace_guest_exceptions;
304
305 /* Trap WBINVD and ignore it */
306 int trap_wbinvd = 1;
307
308 static void vm_free_memmap(struct vm *vm, int ident);
309 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
310 static void vcpu_notify_event_locked(struct vcpu *vcpu, vcpu_notify_t);
311 static bool vcpu_sleep_bailout_checks(struct vm *vm, int vcpuid);
312 static int vcpu_vector_sipi(struct vm *vm, int vcpuid, uint8_t vector);
313 static bool vm_is_suspended(struct vm *, struct vm_exit *);
314
315 static void vmm_savectx(void *);
316 static void vmm_restorectx(void *);
317 static const struct ctxop_template vmm_ctxop_tpl = {
318 .ct_rev = CTXOP_TPL_REV,
319 .ct_save = vmm_savectx,
320 .ct_restore = vmm_restorectx,
321 };
322
323 static uint64_t calc_tsc_offset(uint64_t base_host_tsc, uint64_t base_guest_tsc,
324 uint64_t mult);
325 static uint64_t calc_guest_tsc(uint64_t host_tsc, uint64_t mult,
326 uint64_t offset);
327
328 /* functions implemented in vmm_time_support.S */
329 uint64_t calc_freq_multiplier(uint64_t guest_hz, uint64_t host_hz,
330 uint32_t frac_size);
331 uint64_t scale_tsc(uint64_t tsc, uint64_t multiplier, uint32_t frac_size);
332
333 #ifdef KTR
334 static const char *
vcpu_state2str(enum vcpu_state state)335 vcpu_state2str(enum vcpu_state state)
336 {
337
338 switch (state) {
339 case VCPU_IDLE:
340 return ("idle");
341 case VCPU_FROZEN:
342 return ("frozen");
343 case VCPU_RUNNING:
344 return ("running");
345 case VCPU_SLEEPING:
346 return ("sleeping");
347 default:
348 return ("unknown");
349 }
350 }
351 #endif
352
353 static void
vcpu_cleanup(struct vm * vm,int i,bool destroy)354 vcpu_cleanup(struct vm *vm, int i, bool destroy)
355 {
356 struct vcpu *vcpu = &vm->vcpu[i];
357
358 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
359 if (destroy) {
360 vmm_stat_free(vcpu->stats);
361
362 vcpu_cpuid_cleanup(&vcpu->cpuid_cfg);
363
364 hma_fpu_free(vcpu->guestfpu);
365 vcpu->guestfpu = NULL;
366
367 vie_free(vcpu->vie_ctx);
368 vcpu->vie_ctx = NULL;
369
370 vmc_destroy(vcpu->vmclient);
371 vcpu->vmclient = NULL;
372
373 ctxop_free(vcpu->ctxop);
374 mutex_destroy(&vcpu->lock);
375 }
376 }
377
378 static void
vcpu_init(struct vm * vm,int vcpu_id,bool create)379 vcpu_init(struct vm *vm, int vcpu_id, bool create)
380 {
381 struct vcpu *vcpu;
382
383 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
384 ("vcpu_init: invalid vcpu %d", vcpu_id));
385
386 vcpu = &vm->vcpu[vcpu_id];
387
388 if (create) {
389 mutex_init(&vcpu->lock, NULL, MUTEX_ADAPTIVE, NULL);
390
391 vcpu->state = VCPU_IDLE;
392 vcpu->hostcpu = NOCPU;
393 vcpu->lastloccpu = NOCPU;
394 vcpu->guestfpu = hma_fpu_alloc(KM_SLEEP);
395 vcpu->stats = vmm_stat_alloc();
396 vcpu->vie_ctx = vie_alloc();
397 vcpu_cpuid_init(&vcpu->cpuid_cfg);
398
399 vcpu->ustate = VU_INIT;
400 vcpu->ustate_when = gethrtime();
401
402 vcpu->vtc.vtc_vm = vm;
403 vcpu->vtc.vtc_vcpuid = vcpu_id;
404 vcpu->ctxop = ctxop_allocate(&vmm_ctxop_tpl, &vcpu->vtc);
405 } else {
406 vie_reset(vcpu->vie_ctx);
407 bzero(&vcpu->exitinfo, sizeof (vcpu->exitinfo));
408 vcpu_ustate_change(vm, vcpu_id, VU_INIT);
409 bzero(&vcpu->mtrr, sizeof (vcpu->mtrr));
410 }
411
412 vcpu->run_state = VRS_HALT;
413 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
414 (void) vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
415 vcpu->reqidle = false;
416 vcpu->reqconsist = false;
417 vcpu->reqbarrier = false;
418 vcpu->exit_intinfo = 0;
419 vcpu->nmi_pending = false;
420 vcpu->extint_pending = false;
421 vcpu->exc_pending = 0;
422 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
423 (void) hma_fpu_init(vcpu->guestfpu);
424 vmm_stat_init(vcpu->stats);
425 vcpu->tsc_offset = 0;
426 }
427
428 int
vcpu_trace_exceptions(struct vm * vm,int vcpuid)429 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
430 {
431 return (trace_guest_exceptions);
432 }
433
434 int
vcpu_trap_wbinvd(struct vm * vm,int vcpuid)435 vcpu_trap_wbinvd(struct vm *vm, int vcpuid)
436 {
437 return (trap_wbinvd);
438 }
439
440 struct vm_exit *
vm_exitinfo(struct vm * vm,int cpuid)441 vm_exitinfo(struct vm *vm, int cpuid)
442 {
443 struct vcpu *vcpu;
444
445 if (cpuid < 0 || cpuid >= vm->maxcpus)
446 panic("vm_exitinfo: invalid cpuid %d", cpuid);
447
448 vcpu = &vm->vcpu[cpuid];
449
450 return (&vcpu->exitinfo);
451 }
452
453 struct vie *
vm_vie_ctx(struct vm * vm,int cpuid)454 vm_vie_ctx(struct vm *vm, int cpuid)
455 {
456 if (cpuid < 0 || cpuid >= vm->maxcpus)
457 panic("vm_vie_ctx: invalid cpuid %d", cpuid);
458
459 return (vm->vcpu[cpuid].vie_ctx);
460 }
461
462 static int
vmm_init(void)463 vmm_init(void)
464 {
465 vmm_host_state_init();
466 vmm_host_freq = unscalehrtime(NANOSEC);
467
468 if (vmm_is_intel()) {
469 ops = &vmm_ops_intel;
470 } else if (vmm_is_svm()) {
471 ops = &vmm_ops_amd;
472 } else {
473 return (ENXIO);
474 }
475
476 if (!vmm_vm_init()) {
477 return (ENXIO);
478 }
479 const int err = VMM_INIT();
480 if (err != 0) {
481 vmm_vm_fini();
482 ops = &vmm_ops_null;
483 return (err);
484 }
485
486 return (0);
487 }
488
489 int
vmm_mod_load()490 vmm_mod_load()
491 {
492 VERIFY(vmm_initialized == 0);
493
494 const int err = vmm_init();
495 if (err == 0) {
496 vmm_initialized = 1;
497 }
498
499 return (err);
500 }
501
502 void
vmm_mod_unload()503 vmm_mod_unload()
504 {
505 VERIFY(vmm_initialized == 1);
506
507 vmm_vm_fini();
508
509 vmm_initialized = 0;
510 }
511
512 /*
513 * Create a test IOMMU domain to see if the host system has necessary hardware
514 * and drivers to do so.
515 */
516 bool
vmm_check_iommu(void)517 vmm_check_iommu(void)
518 {
519 void *domain;
520 const size_t arb_test_sz = (1UL << 32);
521
522 domain = iommu_create_domain(arb_test_sz);
523 if (domain == NULL) {
524 return (false);
525 }
526 iommu_destroy_domain(domain);
527 return (true);
528 }
529
530 static void
vm_init(struct vm * vm,bool create)531 vm_init(struct vm *vm, bool create)
532 {
533 int i;
534
535 vm->cookie = VMINIT(vm);
536 vm->iommu = NULL;
537 vm->vioapic = vioapic_init(vm);
538 vm->vhpet = vhpet_init(vm);
539 vm->vatpic = vatpic_init(vm);
540 vm->vatpit = vatpit_init(vm);
541 vm->vpmtmr = vpmtmr_init(vm);
542 if (create)
543 vm->vrtc = vrtc_init(vm);
544
545 vm_inout_init(vm, &vm->ioports);
546
547 CPU_ZERO(&vm->active_cpus);
548 CPU_ZERO(&vm->debug_cpus);
549
550 vm->suspend_how = 0;
551 vm->suspend_source = 0;
552 vm->suspend_when = 0;
553
554 for (i = 0; i < vm->maxcpus; i++)
555 vcpu_init(vm, i, create);
556
557 /*
558 * Configure VM time-related data, including:
559 * - VM-wide TSC offset
560 * - boot_hrtime
561 * - guest_freq (same as host at boot time)
562 * - freq_multiplier (used for scaling)
563 *
564 * This data is configured such that the call to vm_init() represents
565 * the boot time (when the TSC(s) read 0). Each vCPU will have its own
566 * offset from this, which is altered if/when the guest writes to
567 * MSR_TSC.
568 *
569 * Further changes to this data may occur if userspace writes to the
570 * time data.
571 */
572 const uint64_t boot_tsc = rdtsc_offset();
573
574 /* Convert the boot TSC reading to hrtime */
575 vm->boot_hrtime = (hrtime_t)boot_tsc;
576 scalehrtime(&vm->boot_hrtime);
577
578 /* Guest frequency is the same as the host at boot time */
579 vm->guest_freq = vmm_host_freq;
580
581 /* no scaling needed if guest_freq == host_freq */
582 vm->freq_multiplier = VM_TSCM_NOSCALE;
583
584 /* configure VM-wide offset: initial guest TSC is 0 at boot */
585 vm->tsc_offset = calc_tsc_offset(boot_tsc, 0, vm->freq_multiplier);
586 }
587
588 /*
589 * The default CPU topology is a single thread per package.
590 */
591 uint_t cores_per_package = 1;
592 uint_t threads_per_core = 1;
593
594 int
vm_create(uint64_t flags,struct vm ** retvm)595 vm_create(uint64_t flags, struct vm **retvm)
596 {
597 struct vm *vm;
598 struct vmspace *vmspace;
599
600 /*
601 * If vmm.ko could not be successfully initialized then don't attempt
602 * to create the virtual machine.
603 */
604 if (!vmm_initialized)
605 return (ENXIO);
606
607 vmspace = vmspace_alloc(VM_MAXUSER_ADDRESS);
608 if (vmspace == NULL) {
609 return (ENOMEM);
610 }
611
612 if ((flags & VCF_TRACK_DIRTY) != 0) {
613 if (vmspace_set_tracking(vmspace, true) != 0) {
614 vmspace_destroy(vmspace);
615 return (ENOTSUP);
616 }
617 }
618
619 vm = kmem_zalloc(sizeof (struct vm), KM_SLEEP);
620
621 vm->vmspace = vmspace;
622 vm->mem_transient = (flags & VCF_RESERVOIR_MEM) == 0;
623 for (uint_t i = 0; i < VM_MAXCPU; i++) {
624 vm->vcpu[i].vmclient = vmspace_client_alloc(vmspace);
625 }
626
627 vm->sockets = 1;
628 vm->cores = cores_per_package; /* XXX backwards compatibility */
629 vm->threads = threads_per_core; /* XXX backwards compatibility */
630 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */
631
632 vm_init(vm, true);
633
634 *retvm = vm;
635 return (0);
636 }
637
638 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)639 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
640 uint16_t *threads, uint16_t *maxcpus)
641 {
642 *sockets = vm->sockets;
643 *cores = vm->cores;
644 *threads = vm->threads;
645 *maxcpus = vm->maxcpus;
646 }
647
648 uint16_t
vm_get_maxcpus(struct vm * vm)649 vm_get_maxcpus(struct vm *vm)
650 {
651 return (vm->maxcpus);
652 }
653
654 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)655 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
656 uint16_t threads, uint16_t maxcpus)
657 {
658 if (maxcpus != 0)
659 return (EINVAL); /* XXX remove when supported */
660 if ((sockets * cores * threads) > vm->maxcpus)
661 return (EINVAL);
662 /* XXX need to check sockets * cores * threads == vCPU, how? */
663 vm->sockets = sockets;
664 vm->cores = cores;
665 vm->threads = threads;
666 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */
667 return (0);
668 }
669
670 static void
vm_cleanup(struct vm * vm,bool destroy)671 vm_cleanup(struct vm *vm, bool destroy)
672 {
673 struct mem_map *mm;
674 int i;
675
676 ppt_unassign_all(vm);
677
678 if (vm->iommu != NULL)
679 iommu_destroy_domain(vm->iommu);
680
681 /*
682 * Devices which attach their own ioport hooks should be cleaned up
683 * first so they can tear down those registrations.
684 */
685 vpmtmr_cleanup(vm->vpmtmr);
686
687 vm_inout_cleanup(vm, &vm->ioports);
688
689 if (destroy)
690 vrtc_cleanup(vm->vrtc);
691 else
692 vrtc_reset(vm->vrtc);
693
694 vatpit_cleanup(vm->vatpit);
695 vhpet_cleanup(vm->vhpet);
696 vatpic_cleanup(vm->vatpic);
697 vioapic_cleanup(vm->vioapic);
698
699 for (i = 0; i < vm->maxcpus; i++)
700 vcpu_cleanup(vm, i, destroy);
701
702 VMCLEANUP(vm->cookie);
703
704 /*
705 * System memory is removed from the guest address space only when
706 * the VM is destroyed. This is because the mapping remains the same
707 * across VM reset.
708 *
709 * Device memory can be relocated by the guest (e.g. using PCI BARs)
710 * so those mappings are removed on a VM reset.
711 */
712 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
713 mm = &vm->mem_maps[i];
714 if (destroy || !sysmem_mapping(vm, mm)) {
715 vm_free_memmap(vm, i);
716 } else {
717 /*
718 * We need to reset the IOMMU flag so this mapping can
719 * be reused when a VM is rebooted. Since the IOMMU
720 * domain has already been destroyed we can just reset
721 * the flag here.
722 */
723 mm->flags &= ~VM_MEMMAP_F_IOMMU;
724 }
725 }
726
727 if (destroy) {
728 for (i = 0; i < VM_MAX_MEMSEGS; i++)
729 vm_free_memseg(vm, i);
730
731 vmspace_destroy(vm->vmspace);
732 vm->vmspace = NULL;
733 }
734 }
735
736 void
vm_destroy(struct vm * vm)737 vm_destroy(struct vm *vm)
738 {
739 vm_cleanup(vm, true);
740 kmem_free(vm, sizeof (*vm));
741 }
742
743 int
vm_reinit(struct vm * vm,uint64_t flags)744 vm_reinit(struct vm *vm, uint64_t flags)
745 {
746 vm_cleanup(vm, false);
747 vm_init(vm, false);
748 return (0);
749 }
750
751 bool
vm_is_paused(struct vm * vm)752 vm_is_paused(struct vm *vm)
753 {
754 return (vm->is_paused);
755 }
756
757 int
vm_pause_instance(struct vm * vm)758 vm_pause_instance(struct vm *vm)
759 {
760 if (vm->is_paused) {
761 return (EALREADY);
762 }
763 vm->is_paused = true;
764
765 for (uint_t i = 0; i < vm->maxcpus; i++) {
766 struct vcpu *vcpu = &vm->vcpu[i];
767
768 if (!CPU_ISSET(i, &vm->active_cpus)) {
769 continue;
770 }
771 vlapic_pause(vcpu->vlapic);
772
773 /*
774 * vCPU-specific pause logic includes stashing any
775 * to-be-injected events in exit_intinfo where it can be
776 * accessed in a manner generic to the backend.
777 */
778 ops->vmpause(vm->cookie, i);
779 }
780 vhpet_pause(vm->vhpet);
781 vatpit_pause(vm->vatpit);
782 vrtc_pause(vm->vrtc);
783
784 return (0);
785 }
786
787 int
vm_resume_instance(struct vm * vm)788 vm_resume_instance(struct vm *vm)
789 {
790 if (!vm->is_paused) {
791 return (EALREADY);
792 }
793 vm->is_paused = false;
794
795 vrtc_resume(vm->vrtc);
796 vatpit_resume(vm->vatpit);
797 vhpet_resume(vm->vhpet);
798 for (uint_t i = 0; i < vm->maxcpus; i++) {
799 struct vcpu *vcpu = &vm->vcpu[i];
800
801 if (!CPU_ISSET(i, &vm->active_cpus)) {
802 continue;
803 }
804 vlapic_resume(vcpu->vlapic);
805 }
806
807 return (0);
808 }
809
810 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)811 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
812 {
813 vm_object_t *obj;
814
815 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
816 return (ENOMEM);
817 else
818 return (0);
819 }
820
821 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)822 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
823 {
824 return (vmspace_unmap(vm->vmspace, gpa, len));
825 }
826
827 /*
828 * Return 'true' if 'gpa' is allocated in the guest address space.
829 *
830 * This function is called in the context of a running vcpu which acts as
831 * an implicit lock on 'vm->mem_maps[]'.
832 */
833 bool
vm_mem_allocated(struct vm * vm,int vcpuid,vm_paddr_t gpa)834 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
835 {
836 struct mem_map *mm;
837 int i;
838
839 #ifdef INVARIANTS
840 int hostcpu, state;
841 state = vcpu_get_state(vm, vcpuid, &hostcpu);
842 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
843 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
844 #endif
845
846 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
847 mm = &vm->mem_maps[i];
848 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
849 return (true); /* 'gpa' is sysmem or devmem */
850 }
851
852 if (ppt_is_mmio(vm, gpa))
853 return (true); /* 'gpa' is pci passthru mmio */
854
855 return (false);
856 }
857
858 int
vm_alloc_memseg(struct vm * vm,int ident,size_t len,bool sysmem)859 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
860 {
861 struct mem_seg *seg;
862 vm_object_t *obj;
863
864 if (ident < 0 || ident >= VM_MAX_MEMSEGS)
865 return (EINVAL);
866
867 if (len == 0 || (len & PAGEOFFSET))
868 return (EINVAL);
869
870 seg = &vm->mem_segs[ident];
871 if (seg->object != NULL) {
872 if (seg->len == len && seg->sysmem == sysmem)
873 return (EEXIST);
874 else
875 return (EINVAL);
876 }
877
878 obj = vm_object_mem_allocate(len, vm->mem_transient);
879 if (obj == NULL)
880 return (ENOMEM);
881
882 seg->len = len;
883 seg->object = obj;
884 seg->sysmem = sysmem;
885 return (0);
886 }
887
888 int
vm_get_memseg(struct vm * vm,int ident,size_t * len,bool * sysmem,vm_object_t ** objptr)889 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
890 vm_object_t **objptr)
891 {
892 struct mem_seg *seg;
893
894 if (ident < 0 || ident >= VM_MAX_MEMSEGS)
895 return (EINVAL);
896
897 seg = &vm->mem_segs[ident];
898 if (len)
899 *len = seg->len;
900 if (sysmem)
901 *sysmem = seg->sysmem;
902 if (objptr)
903 *objptr = seg->object;
904 return (0);
905 }
906
907 void
vm_free_memseg(struct vm * vm,int ident)908 vm_free_memseg(struct vm *vm, int ident)
909 {
910 struct mem_seg *seg;
911
912 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
913 ("%s: invalid memseg ident %d", __func__, ident));
914
915 seg = &vm->mem_segs[ident];
916 if (seg->object != NULL) {
917 vm_object_release(seg->object);
918 bzero(seg, sizeof (struct mem_seg));
919 }
920 }
921
922 int
vm_mmap_memseg(struct vm * vm,vm_paddr_t gpa,int segid,uintptr_t off,size_t len,int prot,int flags)923 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, uintptr_t off,
924 size_t len, int prot, int flags)
925 {
926 if (prot == 0 || (prot & ~(PROT_ALL)) != 0)
927 return (EINVAL);
928
929 if (flags & ~VM_MEMMAP_F_WIRED)
930 return (EINVAL);
931
932 if (segid < 0 || segid >= VM_MAX_MEMSEGS)
933 return (EINVAL);
934 const struct mem_seg *seg = &vm->mem_segs[segid];
935 if (seg->object == NULL)
936 return (EINVAL);
937
938 const uintptr_t end = off + len;
939 if (((gpa | off | end) & PAGEOFFSET) != 0)
940 return (EINVAL);
941 if (end < off || end > seg->len)
942 return (EINVAL);
943
944 struct mem_map *map = NULL;
945 for (int i = 0; i < VM_MAX_MEMMAPS; i++) {
946 struct mem_map *m = &vm->mem_maps[i];
947 if (m->len == 0) {
948 map = m;
949 break;
950 }
951 }
952 if (map == NULL)
953 return (ENOSPC);
954
955 int error = vmspace_map(vm->vmspace, seg->object, off, gpa, len, prot);
956 if (error != 0)
957 return (EFAULT);
958
959 vm_object_reference(seg->object);
960
961 if ((flags & VM_MEMMAP_F_WIRED) != 0) {
962 error = vmspace_populate(vm->vmspace, gpa, len);
963 if (error != 0) {
964 VERIFY0(vmspace_unmap(vm->vmspace, gpa, len));
965 return (EFAULT);
966 }
967 }
968
969 map->gpa = gpa;
970 map->len = len;
971 map->segoff = off;
972 map->segid = segid;
973 map->prot = prot;
974 map->flags = flags;
975 return (0);
976 }
977
978 int
vm_munmap_memseg(struct vm * vm,vm_paddr_t gpa,size_t len)979 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len)
980 {
981 struct mem_map *m;
982 int i;
983
984 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
985 m = &vm->mem_maps[i];
986 if (m->gpa == gpa && m->len == len &&
987 (m->flags & VM_MEMMAP_F_IOMMU) == 0) {
988 vm_free_memmap(vm, i);
989 return (0);
990 }
991 }
992
993 return (EINVAL);
994 }
995
996 int
vm_mmap_getnext(struct vm * vm,vm_paddr_t * gpa,int * segid,uintptr_t * segoff,size_t * len,int * prot,int * flags)997 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
998 uintptr_t *segoff, size_t *len, int *prot, int *flags)
999 {
1000 struct mem_map *mm, *mmnext;
1001 int i;
1002
1003 mmnext = NULL;
1004 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1005 mm = &vm->mem_maps[i];
1006 if (mm->len == 0 || mm->gpa < *gpa)
1007 continue;
1008 if (mmnext == NULL || mm->gpa < mmnext->gpa)
1009 mmnext = mm;
1010 }
1011
1012 if (mmnext != NULL) {
1013 *gpa = mmnext->gpa;
1014 if (segid)
1015 *segid = mmnext->segid;
1016 if (segoff)
1017 *segoff = mmnext->segoff;
1018 if (len)
1019 *len = mmnext->len;
1020 if (prot)
1021 *prot = mmnext->prot;
1022 if (flags)
1023 *flags = mmnext->flags;
1024 return (0);
1025 } else {
1026 return (ENOENT);
1027 }
1028 }
1029
1030 static void
vm_free_memmap(struct vm * vm,int ident)1031 vm_free_memmap(struct vm *vm, int ident)
1032 {
1033 struct mem_map *mm;
1034 int error;
1035
1036 mm = &vm->mem_maps[ident];
1037 if (mm->len) {
1038 error = vmspace_unmap(vm->vmspace, mm->gpa, mm->len);
1039 VERIFY0(error);
1040 bzero(mm, sizeof (struct mem_map));
1041 }
1042 }
1043
1044 static __inline bool
sysmem_mapping(struct vm * vm,struct mem_map * mm)1045 sysmem_mapping(struct vm *vm, struct mem_map *mm)
1046 {
1047
1048 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
1049 return (true);
1050 else
1051 return (false);
1052 }
1053
1054 vm_paddr_t
vmm_sysmem_maxaddr(struct vm * vm)1055 vmm_sysmem_maxaddr(struct vm *vm)
1056 {
1057 struct mem_map *mm;
1058 vm_paddr_t maxaddr;
1059 int i;
1060
1061 maxaddr = 0;
1062 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1063 mm = &vm->mem_maps[i];
1064 if (sysmem_mapping(vm, mm)) {
1065 if (maxaddr < mm->gpa + mm->len)
1066 maxaddr = mm->gpa + mm->len;
1067 }
1068 }
1069 return (maxaddr);
1070 }
1071
1072 static void
vm_iommu_modify(struct vm * vm,bool map)1073 vm_iommu_modify(struct vm *vm, bool map)
1074 {
1075 int i, sz;
1076 vm_paddr_t gpa, hpa;
1077 struct mem_map *mm;
1078 vm_client_t *vmc;
1079
1080 sz = PAGE_SIZE;
1081 vmc = vmspace_client_alloc(vm->vmspace);
1082
1083 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1084 mm = &vm->mem_maps[i];
1085 if (!sysmem_mapping(vm, mm))
1086 continue;
1087
1088 if (map) {
1089 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
1090 ("iommu map found invalid memmap %lx/%lx/%x",
1091 mm->gpa, mm->len, mm->flags));
1092 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
1093 continue;
1094 mm->flags |= VM_MEMMAP_F_IOMMU;
1095 } else {
1096 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
1097 continue;
1098 mm->flags &= ~VM_MEMMAP_F_IOMMU;
1099 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
1100 ("iommu unmap found invalid memmap %lx/%lx/%x",
1101 mm->gpa, mm->len, mm->flags));
1102 }
1103
1104 gpa = mm->gpa;
1105 while (gpa < mm->gpa + mm->len) {
1106 vm_page_t *vmp;
1107
1108 vmp = vmc_hold(vmc, gpa, PROT_WRITE);
1109 ASSERT(vmp != NULL);
1110 hpa = ((uintptr_t)vmp_get_pfn(vmp) << PAGESHIFT);
1111 (void) vmp_release(vmp);
1112
1113 /*
1114 * When originally ported from FreeBSD, the logic for
1115 * adding memory to the guest domain would
1116 * simultaneously remove it from the host domain. The
1117 * justification for that is not clear, and FreeBSD has
1118 * subsequently changed the behavior to not remove the
1119 * memory from the host domain.
1120 *
1121 * Leaving the guest memory in the host domain for the
1122 * life of the VM is necessary to make it available for
1123 * DMA, such as through viona in the TX path.
1124 */
1125 if (map) {
1126 iommu_create_mapping(vm->iommu, gpa, hpa, sz);
1127 } else {
1128 iommu_remove_mapping(vm->iommu, gpa, sz);
1129 }
1130
1131 gpa += PAGE_SIZE;
1132 }
1133 }
1134 vmc_destroy(vmc);
1135
1136 /*
1137 * Invalidate the cached translations associated with the domain
1138 * from which pages were removed.
1139 */
1140 iommu_invalidate_tlb(vm->iommu);
1141 }
1142
1143 int
vm_unassign_pptdev(struct vm * vm,int pptfd)1144 vm_unassign_pptdev(struct vm *vm, int pptfd)
1145 {
1146 int error;
1147
1148 error = ppt_unassign_device(vm, pptfd);
1149 if (error)
1150 return (error);
1151
1152 if (ppt_assigned_devices(vm) == 0)
1153 vm_iommu_modify(vm, false);
1154
1155 return (0);
1156 }
1157
1158 int
vm_assign_pptdev(struct vm * vm,int pptfd)1159 vm_assign_pptdev(struct vm *vm, int pptfd)
1160 {
1161 int error;
1162 vm_paddr_t maxaddr;
1163
1164 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
1165 if (ppt_assigned_devices(vm) == 0) {
1166 KASSERT(vm->iommu == NULL,
1167 ("vm_assign_pptdev: iommu must be NULL"));
1168 maxaddr = vmm_sysmem_maxaddr(vm);
1169 vm->iommu = iommu_create_domain(maxaddr);
1170 if (vm->iommu == NULL)
1171 return (ENXIO);
1172 vm_iommu_modify(vm, true);
1173 }
1174
1175 error = ppt_assign_device(vm, pptfd);
1176 return (error);
1177 }
1178
1179 int
vm_get_register(struct vm * vm,int vcpuid,int reg,uint64_t * retval)1180 vm_get_register(struct vm *vm, int vcpuid, int reg, uint64_t *retval)
1181 {
1182 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1183 return (EINVAL);
1184
1185 if (reg >= VM_REG_LAST)
1186 return (EINVAL);
1187
1188 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1189 switch (reg) {
1190 case VM_REG_GUEST_XCR0:
1191 *retval = vcpu->guest_xcr0;
1192 return (0);
1193 default:
1194 return (VMGETREG(vm->cookie, vcpuid, reg, retval));
1195 }
1196 }
1197
1198 int
vm_set_register(struct vm * vm,int vcpuid,int reg,uint64_t val)1199 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
1200 {
1201 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1202 return (EINVAL);
1203
1204 if (reg >= VM_REG_LAST)
1205 return (EINVAL);
1206
1207 int error;
1208 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1209 switch (reg) {
1210 case VM_REG_GUEST_RIP:
1211 error = VMSETREG(vm->cookie, vcpuid, reg, val);
1212 if (error == 0) {
1213 vcpu->nextrip = val;
1214 }
1215 return (error);
1216 case VM_REG_GUEST_XCR0:
1217 if (!validate_guest_xcr0(val, vmm_get_host_xcr0())) {
1218 return (EINVAL);
1219 }
1220 vcpu->guest_xcr0 = val;
1221 return (0);
1222 default:
1223 return (VMSETREG(vm->cookie, vcpuid, reg, val));
1224 }
1225 }
1226
1227 static bool
is_descriptor_table(int reg)1228 is_descriptor_table(int reg)
1229 {
1230 switch (reg) {
1231 case VM_REG_GUEST_IDTR:
1232 case VM_REG_GUEST_GDTR:
1233 return (true);
1234 default:
1235 return (false);
1236 }
1237 }
1238
1239 static bool
is_segment_register(int reg)1240 is_segment_register(int reg)
1241 {
1242 switch (reg) {
1243 case VM_REG_GUEST_ES:
1244 case VM_REG_GUEST_CS:
1245 case VM_REG_GUEST_SS:
1246 case VM_REG_GUEST_DS:
1247 case VM_REG_GUEST_FS:
1248 case VM_REG_GUEST_GS:
1249 case VM_REG_GUEST_TR:
1250 case VM_REG_GUEST_LDTR:
1251 return (true);
1252 default:
1253 return (false);
1254 }
1255 }
1256
1257 int
vm_get_seg_desc(struct vm * vm,int vcpu,int reg,struct seg_desc * desc)1258 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, struct seg_desc *desc)
1259 {
1260
1261 if (vcpu < 0 || vcpu >= vm->maxcpus)
1262 return (EINVAL);
1263
1264 if (!is_segment_register(reg) && !is_descriptor_table(reg))
1265 return (EINVAL);
1266
1267 return (VMGETDESC(vm->cookie, vcpu, reg, desc));
1268 }
1269
1270 int
vm_set_seg_desc(struct vm * vm,int vcpu,int reg,const struct seg_desc * desc)1271 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, const struct seg_desc *desc)
1272 {
1273 if (vcpu < 0 || vcpu >= vm->maxcpus)
1274 return (EINVAL);
1275
1276 if (!is_segment_register(reg) && !is_descriptor_table(reg))
1277 return (EINVAL);
1278
1279 return (VMSETDESC(vm->cookie, vcpu, reg, desc));
1280 }
1281
1282 static int
translate_hma_xsave_result(hma_fpu_xsave_result_t res)1283 translate_hma_xsave_result(hma_fpu_xsave_result_t res)
1284 {
1285 switch (res) {
1286 case HFXR_OK:
1287 return (0);
1288 case HFXR_NO_SPACE:
1289 return (ENOSPC);
1290 case HFXR_BAD_ALIGN:
1291 case HFXR_UNSUP_FMT:
1292 case HFXR_UNSUP_FEAT:
1293 case HFXR_INVALID_DATA:
1294 return (EINVAL);
1295 default:
1296 panic("unexpected xsave result");
1297 }
1298 }
1299
1300 int
vm_get_fpu(struct vm * vm,int vcpuid,void * buf,size_t len)1301 vm_get_fpu(struct vm *vm, int vcpuid, void *buf, size_t len)
1302 {
1303 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1304 return (EINVAL);
1305
1306 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1307 hma_fpu_xsave_result_t res;
1308
1309 res = hma_fpu_get_xsave_state(vcpu->guestfpu, buf, len);
1310 return (translate_hma_xsave_result(res));
1311 }
1312
1313 int
vm_set_fpu(struct vm * vm,int vcpuid,void * buf,size_t len)1314 vm_set_fpu(struct vm *vm, int vcpuid, void *buf, size_t len)
1315 {
1316 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1317 return (EINVAL);
1318
1319 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1320 hma_fpu_xsave_result_t res;
1321
1322 res = hma_fpu_set_xsave_state(vcpu->guestfpu, buf, len);
1323 return (translate_hma_xsave_result(res));
1324 }
1325
1326 int
vm_get_run_state(struct vm * vm,int vcpuid,uint32_t * state,uint8_t * sipi_vec)1327 vm_get_run_state(struct vm *vm, int vcpuid, uint32_t *state, uint8_t *sipi_vec)
1328 {
1329 struct vcpu *vcpu;
1330
1331 if (vcpuid < 0 || vcpuid >= vm->maxcpus) {
1332 return (EINVAL);
1333 }
1334
1335 vcpu = &vm->vcpu[vcpuid];
1336
1337 vcpu_lock(vcpu);
1338 *state = vcpu->run_state;
1339 *sipi_vec = vcpu->sipi_vector;
1340 vcpu_unlock(vcpu);
1341
1342 return (0);
1343 }
1344
1345 int
vm_set_run_state(struct vm * vm,int vcpuid,uint32_t state,uint8_t sipi_vec)1346 vm_set_run_state(struct vm *vm, int vcpuid, uint32_t state, uint8_t sipi_vec)
1347 {
1348 struct vcpu *vcpu;
1349
1350 if (vcpuid < 0 || vcpuid >= vm->maxcpus) {
1351 return (EINVAL);
1352 }
1353 if (!VRS_IS_VALID(state)) {
1354 return (EINVAL);
1355 }
1356
1357 vcpu = &vm->vcpu[vcpuid];
1358
1359 vcpu_lock(vcpu);
1360 vcpu->run_state = state;
1361 vcpu->sipi_vector = sipi_vec;
1362 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
1363 vcpu_unlock(vcpu);
1364
1365 return (0);
1366 }
1367
1368 int
vm_track_dirty_pages(struct vm * vm,uint64_t gpa,size_t len,uint8_t * bitmap)1369 vm_track_dirty_pages(struct vm *vm, uint64_t gpa, size_t len, uint8_t *bitmap)
1370 {
1371 ASSERT0(gpa & PAGEOFFSET);
1372 ASSERT0(len & PAGEOFFSET);
1373
1374 /*
1375 * The only difference in expectations between this legacy interface and
1376 * an equivalent call to vm_npt_do_operation() is the check for
1377 * dirty-page-tracking being enabled on the vmspace.
1378 */
1379 if (!vmspace_get_tracking(vm->vmspace)) {
1380 return (EPERM);
1381 }
1382
1383 vmspace_bits_operate(vm->vmspace, gpa, len,
1384 VBO_RESET_DIRTY | VBO_FLAG_BITMAP_OUT, bitmap);
1385 return (0);
1386 }
1387
1388 int
vm_npt_do_operation(struct vm * vm,uint64_t gpa,size_t len,uint32_t oper,uint8_t * bitmap,int * rvalp)1389 vm_npt_do_operation(struct vm *vm, uint64_t gpa, size_t len, uint32_t oper,
1390 uint8_t *bitmap, int *rvalp)
1391 {
1392 ASSERT0(gpa & PAGEOFFSET);
1393 ASSERT0(len & PAGEOFFSET);
1394
1395 /*
1396 * For now, the bits defined in vmm_dev.h are meant to match up 1:1 with
1397 * those in vmm_vm.h
1398 */
1399 CTASSERT(VNO_OP_RESET_DIRTY == VBO_RESET_DIRTY);
1400 CTASSERT(VNO_OP_SET_DIRTY == VBO_SET_DIRTY);
1401 CTASSERT(VNO_OP_GET_DIRTY == VBO_GET_DIRTY);
1402 CTASSERT(VNO_FLAG_BITMAP_IN == VBO_FLAG_BITMAP_IN);
1403 CTASSERT(VNO_FLAG_BITMAP_OUT == VBO_FLAG_BITMAP_OUT);
1404
1405 const uint32_t oper_only =
1406 oper & ~(VNO_FLAG_BITMAP_IN | VNO_FLAG_BITMAP_OUT);
1407 switch (oper_only) {
1408 case VNO_OP_RESET_DIRTY:
1409 case VNO_OP_SET_DIRTY:
1410 case VNO_OP_GET_DIRTY:
1411 if (len == 0) {
1412 break;
1413 }
1414 vmspace_bits_operate(vm->vmspace, gpa, len, oper, bitmap);
1415 break;
1416 case VNO_OP_GET_TRACK_DIRTY:
1417 ASSERT3P(rvalp, !=, NULL);
1418 *rvalp = vmspace_get_tracking(vm->vmspace) ? 1 : 0;
1419 break;
1420 case VNO_OP_EN_TRACK_DIRTY:
1421 return (vmspace_set_tracking(vm->vmspace, true));
1422 case VNO_OP_DIS_TRACK_DIRTY:
1423 return (vmspace_set_tracking(vm->vmspace, false));
1424 default:
1425 return (EINVAL);
1426 }
1427 return (0);
1428 }
1429
1430 static void
restore_guest_fpustate(struct vcpu * vcpu)1431 restore_guest_fpustate(struct vcpu *vcpu)
1432 {
1433 /* Save host FPU and restore guest FPU */
1434 fpu_stop_emulating();
1435 hma_fpu_start_guest(vcpu->guestfpu);
1436
1437 /* restore guest XCR0 if XSAVE is enabled in the host */
1438 if (rcr4() & CR4_XSAVE)
1439 load_xcr(0, vcpu->guest_xcr0);
1440
1441 /*
1442 * The FPU is now "dirty" with the guest's state so turn on emulation
1443 * to trap any access to the FPU by the host.
1444 */
1445 fpu_start_emulating();
1446 }
1447
1448 static void
save_guest_fpustate(struct vcpu * vcpu)1449 save_guest_fpustate(struct vcpu *vcpu)
1450 {
1451
1452 if ((rcr0() & CR0_TS) == 0)
1453 panic("fpu emulation not enabled in host!");
1454
1455 /* save guest XCR0 and restore host XCR0 */
1456 if (rcr4() & CR4_XSAVE) {
1457 vcpu->guest_xcr0 = rxcr(0);
1458 load_xcr(0, vmm_get_host_xcr0());
1459 }
1460
1461 /* save guest FPU and restore host FPU */
1462 fpu_stop_emulating();
1463 hma_fpu_stop_guest(vcpu->guestfpu);
1464 /*
1465 * When the host state has been restored, we should not re-enable
1466 * CR0.TS on illumos for eager FPU.
1467 */
1468 }
1469
1470 static int
vcpu_set_state_locked(struct vm * vm,int vcpuid,enum vcpu_state newstate,bool from_idle)1471 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
1472 bool from_idle)
1473 {
1474 struct vcpu *vcpu;
1475 int error;
1476
1477 vcpu = &vm->vcpu[vcpuid];
1478 vcpu_assert_locked(vcpu);
1479
1480 /*
1481 * State transitions from the vmmdev_ioctl() must always begin from
1482 * the VCPU_IDLE state. This guarantees that there is only a single
1483 * ioctl() operating on a vcpu at any point.
1484 */
1485 if (from_idle) {
1486 while (vcpu->state != VCPU_IDLE) {
1487 vcpu->reqidle = true;
1488 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
1489 cv_wait(&vcpu->state_cv, &vcpu->lock);
1490 vcpu->reqidle = false;
1491 }
1492 } else {
1493 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1494 "vcpu idle state"));
1495 }
1496
1497 if (vcpu->state == VCPU_RUNNING) {
1498 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1499 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1500 } else {
1501 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1502 "vcpu that is not running", vcpu->hostcpu));
1503 }
1504
1505 /*
1506 * The following state transitions are allowed:
1507 * IDLE -> FROZEN -> IDLE
1508 * FROZEN -> RUNNING -> FROZEN
1509 * FROZEN -> SLEEPING -> FROZEN
1510 */
1511 switch (vcpu->state) {
1512 case VCPU_IDLE:
1513 case VCPU_RUNNING:
1514 case VCPU_SLEEPING:
1515 error = (newstate != VCPU_FROZEN);
1516 break;
1517 case VCPU_FROZEN:
1518 error = (newstate == VCPU_FROZEN);
1519 break;
1520 default:
1521 error = 1;
1522 break;
1523 }
1524
1525 if (error)
1526 return (EBUSY);
1527
1528 vcpu->state = newstate;
1529 if (newstate == VCPU_RUNNING)
1530 vcpu->hostcpu = curcpu;
1531 else
1532 vcpu->hostcpu = NOCPU;
1533
1534 if (newstate == VCPU_IDLE) {
1535 cv_broadcast(&vcpu->state_cv);
1536 }
1537
1538 return (0);
1539 }
1540
1541 static void
vcpu_require_state(struct vm * vm,int vcpuid,enum vcpu_state newstate)1542 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1543 {
1544 int error;
1545
1546 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
1547 panic("Error %d setting state to %d\n", error, newstate);
1548 }
1549
1550 static void
vcpu_require_state_locked(struct vm * vm,int vcpuid,enum vcpu_state newstate)1551 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1552 {
1553 int error;
1554
1555 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
1556 panic("Error %d setting state to %d", error, newstate);
1557 }
1558
1559 /*
1560 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1561 */
1562 static int
vm_handle_hlt(struct vm * vm,int vcpuid,bool intr_disabled)1563 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled)
1564 {
1565 struct vcpu *vcpu;
1566 int vcpu_halted, vm_halted;
1567 bool userspace_exit = false;
1568
1569 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1570
1571 vcpu = &vm->vcpu[vcpuid];
1572 vcpu_halted = 0;
1573 vm_halted = 0;
1574
1575 vcpu_lock(vcpu);
1576 while (1) {
1577 /*
1578 * Do a final check for pending interrupts (including NMI and
1579 * INIT) before putting this thread to sleep.
1580 */
1581 if (vm_nmi_pending(vm, vcpuid))
1582 break;
1583 if (vcpu_run_state_pending(vm, vcpuid))
1584 break;
1585 if (!intr_disabled) {
1586 if (vm_extint_pending(vm, vcpuid) ||
1587 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1588 break;
1589 }
1590 }
1591
1592 /*
1593 * Also check for software events which would cause a wake-up.
1594 * This will set the appropriate exitcode directly, rather than
1595 * requiring a trip through VM_RUN().
1596 */
1597 if (vcpu_sleep_bailout_checks(vm, vcpuid)) {
1598 userspace_exit = true;
1599 break;
1600 }
1601
1602 /*
1603 * Some Linux guests implement "halt" by having all vcpus
1604 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1605 * track of the vcpus that have entered this state. When all
1606 * vcpus enter the halted state the virtual machine is halted.
1607 */
1608 if (intr_disabled) {
1609 if (!vcpu_halted && halt_detection_enabled) {
1610 vcpu_halted = 1;
1611 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1612 }
1613 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1614 vm_halted = 1;
1615 break;
1616 }
1617 }
1618
1619 vcpu_ustate_change(vm, vcpuid, VU_IDLE);
1620 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1621 (void) cv_wait_sig(&vcpu->vcpu_cv, &vcpu->lock);
1622 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1623 vcpu_ustate_change(vm, vcpuid, VU_EMU_KERN);
1624 }
1625
1626 if (vcpu_halted)
1627 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1628
1629 vcpu_unlock(vcpu);
1630
1631 if (vm_halted) {
1632 (void) vm_suspend(vm, VM_SUSPEND_HALT, -1);
1633 }
1634
1635 return (userspace_exit ? -1 : 0);
1636 }
1637
1638 static int
vm_handle_paging(struct vm * vm,int vcpuid)1639 vm_handle_paging(struct vm *vm, int vcpuid)
1640 {
1641 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1642 vm_client_t *vmc = vcpu->vmclient;
1643 struct vm_exit *vme = &vcpu->exitinfo;
1644 const int ftype = vme->u.paging.fault_type;
1645
1646 ASSERT0(vme->inst_length);
1647 ASSERT(ftype == PROT_READ || ftype == PROT_WRITE || ftype == PROT_EXEC);
1648
1649 if (vmc_fault(vmc, vme->u.paging.gpa, ftype) != 0) {
1650 /*
1651 * If the fault cannot be serviced, kick it out to userspace for
1652 * handling (or more likely, halting the instance).
1653 */
1654 return (-1);
1655 }
1656
1657 return (0);
1658 }
1659
1660 int
vm_service_mmio_read(struct vm * vm,int cpuid,uint64_t gpa,uint64_t * rval,int rsize)1661 vm_service_mmio_read(struct vm *vm, int cpuid, uint64_t gpa, uint64_t *rval,
1662 int rsize)
1663 {
1664 int err = ESRCH;
1665
1666 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1667 struct vlapic *vlapic = vm_lapic(vm, cpuid);
1668
1669 err = vlapic_mmio_read(vlapic, gpa, rval, rsize);
1670 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1671 err = vioapic_mmio_read(vm, cpuid, gpa, rval, rsize);
1672 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1673 err = vhpet_mmio_read(vm, cpuid, gpa, rval, rsize);
1674 }
1675
1676 return (err);
1677 }
1678
1679 int
vm_service_mmio_write(struct vm * vm,int cpuid,uint64_t gpa,uint64_t wval,int wsize)1680 vm_service_mmio_write(struct vm *vm, int cpuid, uint64_t gpa, uint64_t wval,
1681 int wsize)
1682 {
1683 int err = ESRCH;
1684
1685 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1686 struct vlapic *vlapic = vm_lapic(vm, cpuid);
1687
1688 err = vlapic_mmio_write(vlapic, gpa, wval, wsize);
1689 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1690 err = vioapic_mmio_write(vm, cpuid, gpa, wval, wsize);
1691 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1692 err = vhpet_mmio_write(vm, cpuid, gpa, wval, wsize);
1693 }
1694
1695 return (err);
1696 }
1697
1698 static int
vm_handle_mmio_emul(struct vm * vm,int vcpuid)1699 vm_handle_mmio_emul(struct vm *vm, int vcpuid)
1700 {
1701 struct vie *vie;
1702 struct vcpu *vcpu;
1703 struct vm_exit *vme;
1704 uint64_t inst_addr;
1705 int error, fault, cs_d;
1706
1707 vcpu = &vm->vcpu[vcpuid];
1708 vme = &vcpu->exitinfo;
1709 vie = vcpu->vie_ctx;
1710
1711 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1712 __func__, vme->inst_length));
1713
1714 inst_addr = vme->rip + vme->u.mmio_emul.cs_base;
1715 cs_d = vme->u.mmio_emul.cs_d;
1716
1717 /* Fetch the faulting instruction */
1718 if (vie_needs_fetch(vie)) {
1719 error = vie_fetch_instruction(vie, vm, vcpuid, inst_addr,
1720 &fault);
1721 if (error != 0) {
1722 return (error);
1723 } else if (fault) {
1724 /*
1725 * If a fault during instruction fetch was encountered,
1726 * it will have asserted that the appropriate exception
1727 * be injected at next entry.
1728 * No further work is required.
1729 */
1730 return (0);
1731 }
1732 }
1733
1734 if (vie_decode_instruction(vie, vm, vcpuid, cs_d) != 0) {
1735 /* Dump (unrecognized) instruction bytes in userspace */
1736 vie_fallback_exitinfo(vie, vme);
1737 return (-1);
1738 }
1739 if (vme->u.mmio_emul.gla != VIE_INVALID_GLA &&
1740 vie_verify_gla(vie, vm, vcpuid, vme->u.mmio_emul.gla) != 0) {
1741 /* Decoded GLA does not match GLA from VM exit state */
1742 vie_fallback_exitinfo(vie, vme);
1743 return (-1);
1744 }
1745
1746 repeat:
1747 error = vie_emulate_mmio(vie, vm, vcpuid);
1748 if (error < 0) {
1749 /*
1750 * MMIO not handled by any of the in-kernel-emulated devices, so
1751 * make a trip out to userspace for it.
1752 */
1753 vie_exitinfo(vie, vme);
1754 } else if (error == EAGAIN) {
1755 /*
1756 * Continue emulating the rep-prefixed instruction, which has
1757 * not completed its iterations.
1758 *
1759 * In case this can be emulated in-kernel and has a high
1760 * repetition count (causing a tight spin), it should be
1761 * deferential to yield conditions.
1762 */
1763 if (!vcpu_should_yield(vm, vcpuid)) {
1764 goto repeat;
1765 } else {
1766 /*
1767 * Defer to the contending load by making a trip to
1768 * userspace with a no-op (BOGUS) exit reason.
1769 */
1770 vie_reset(vie);
1771 vme->exitcode = VM_EXITCODE_BOGUS;
1772 return (-1);
1773 }
1774 } else if (error == 0) {
1775 /* Update %rip now that instruction has been emulated */
1776 vie_advance_pc(vie, &vcpu->nextrip);
1777 }
1778 return (error);
1779 }
1780
1781 static int
vm_handle_inout(struct vm * vm,int vcpuid,struct vm_exit * vme)1782 vm_handle_inout(struct vm *vm, int vcpuid, struct vm_exit *vme)
1783 {
1784 struct vcpu *vcpu;
1785 struct vie *vie;
1786 int err;
1787
1788 vcpu = &vm->vcpu[vcpuid];
1789 vie = vcpu->vie_ctx;
1790
1791 repeat:
1792 err = vie_emulate_inout(vie, vm, vcpuid);
1793
1794 if (err < 0) {
1795 /*
1796 * In/out not handled by any of the in-kernel-emulated devices,
1797 * so make a trip out to userspace for it.
1798 */
1799 vie_exitinfo(vie, vme);
1800 return (err);
1801 } else if (err == EAGAIN) {
1802 /*
1803 * Continue emulating the rep-prefixed ins/outs, which has not
1804 * completed its iterations.
1805 *
1806 * In case this can be emulated in-kernel and has a high
1807 * repetition count (causing a tight spin), it should be
1808 * deferential to yield conditions.
1809 */
1810 if (!vcpu_should_yield(vm, vcpuid)) {
1811 goto repeat;
1812 } else {
1813 /*
1814 * Defer to the contending load by making a trip to
1815 * userspace with a no-op (BOGUS) exit reason.
1816 */
1817 vie_reset(vie);
1818 vme->exitcode = VM_EXITCODE_BOGUS;
1819 return (-1);
1820 }
1821 } else if (err != 0) {
1822 /* Emulation failure. Bail all the way out to userspace. */
1823 vme->exitcode = VM_EXITCODE_INST_EMUL;
1824 bzero(&vme->u.inst_emul, sizeof (vme->u.inst_emul));
1825 return (-1);
1826 }
1827
1828 vie_advance_pc(vie, &vcpu->nextrip);
1829 return (0);
1830 }
1831
1832 static int
vm_handle_inst_emul(struct vm * vm,int vcpuid)1833 vm_handle_inst_emul(struct vm *vm, int vcpuid)
1834 {
1835 struct vie *vie;
1836 struct vcpu *vcpu;
1837 struct vm_exit *vme;
1838 uint64_t cs_base;
1839 int error, fault, cs_d;
1840
1841 vcpu = &vm->vcpu[vcpuid];
1842 vme = &vcpu->exitinfo;
1843 vie = vcpu->vie_ctx;
1844
1845 vie_cs_info(vie, vm, vcpuid, &cs_base, &cs_d);
1846
1847 /* Fetch the faulting instruction */
1848 ASSERT(vie_needs_fetch(vie));
1849 error = vie_fetch_instruction(vie, vm, vcpuid, vme->rip + cs_base,
1850 &fault);
1851 if (error != 0) {
1852 return (error);
1853 } else if (fault) {
1854 /*
1855 * If a fault during instruction fetch was encounted, it will
1856 * have asserted that the appropriate exception be injected at
1857 * next entry. No further work is required.
1858 */
1859 return (0);
1860 }
1861
1862 if (vie_decode_instruction(vie, vm, vcpuid, cs_d) != 0) {
1863 /* Dump (unrecognized) instruction bytes in userspace */
1864 vie_fallback_exitinfo(vie, vme);
1865 return (-1);
1866 }
1867
1868 error = vie_emulate_other(vie, vm, vcpuid);
1869 if (error != 0) {
1870 /*
1871 * Instruction emulation was unable to complete successfully, so
1872 * kick it out to userspace for handling.
1873 */
1874 vie_fallback_exitinfo(vie, vme);
1875 } else {
1876 /* Update %rip now that instruction has been emulated */
1877 vie_advance_pc(vie, &vcpu->nextrip);
1878 }
1879 return (error);
1880 }
1881
1882 static int
vm_handle_run_state(struct vm * vm,int vcpuid)1883 vm_handle_run_state(struct vm *vm, int vcpuid)
1884 {
1885 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1886 bool handled = false;
1887
1888 vcpu_lock(vcpu);
1889 while (1) {
1890 if ((vcpu->run_state & VRS_PEND_INIT) != 0) {
1891 vcpu_unlock(vcpu);
1892 VERIFY0(vcpu_arch_reset(vm, vcpuid, true));
1893 vcpu_lock(vcpu);
1894
1895 vcpu->run_state &= ~(VRS_RUN | VRS_PEND_INIT);
1896 vcpu->run_state |= VRS_INIT;
1897 }
1898
1899 if ((vcpu->run_state & (VRS_INIT | VRS_RUN | VRS_PEND_SIPI)) ==
1900 (VRS_INIT | VRS_PEND_SIPI)) {
1901 const uint8_t vector = vcpu->sipi_vector;
1902
1903 vcpu_unlock(vcpu);
1904 VERIFY0(vcpu_vector_sipi(vm, vcpuid, vector));
1905 vcpu_lock(vcpu);
1906
1907 vcpu->run_state &= ~VRS_PEND_SIPI;
1908 vcpu->run_state |= VRS_RUN;
1909 }
1910
1911 /*
1912 * If the vCPU is now in the running state, there is no need to
1913 * wait for anything prior to re-entry.
1914 */
1915 if ((vcpu->run_state & VRS_RUN) != 0) {
1916 handled = true;
1917 break;
1918 }
1919
1920 /*
1921 * Also check for software events which would cause a wake-up.
1922 * This will set the appropriate exitcode directly, rather than
1923 * requiring a trip through VM_RUN().
1924 */
1925 if (vcpu_sleep_bailout_checks(vm, vcpuid)) {
1926 break;
1927 }
1928
1929 vcpu_ustate_change(vm, vcpuid, VU_IDLE);
1930 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1931 (void) cv_wait_sig(&vcpu->vcpu_cv, &vcpu->lock);
1932 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1933 vcpu_ustate_change(vm, vcpuid, VU_EMU_KERN);
1934 }
1935 vcpu_unlock(vcpu);
1936
1937 return (handled ? 0 : -1);
1938 }
1939
1940 static int
vm_rdmtrr(const struct vm_mtrr * mtrr,uint32_t num,uint64_t * val)1941 vm_rdmtrr(const struct vm_mtrr *mtrr, uint32_t num, uint64_t *val)
1942 {
1943 switch (num) {
1944 case MSR_MTRRcap:
1945 *val = MTRR_CAP_WC | MTRR_CAP_FIXED | VMM_MTRR_VAR_MAX;
1946 break;
1947 case MSR_MTRRdefType:
1948 *val = mtrr->def_type;
1949 break;
1950 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
1951 *val = mtrr->fixed4k[num - MSR_MTRR4kBase];
1952 break;
1953 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
1954 *val = mtrr->fixed16k[num - MSR_MTRR16kBase];
1955 break;
1956 case MSR_MTRR64kBase:
1957 *val = mtrr->fixed64k;
1958 break;
1959 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: {
1960 uint_t offset = num - MSR_MTRRVarBase;
1961 if (offset % 2 == 0) {
1962 *val = mtrr->var[offset / 2].base;
1963 } else {
1964 *val = mtrr->var[offset / 2].mask;
1965 }
1966 break;
1967 }
1968 default:
1969 return (EINVAL);
1970 }
1971
1972 return (0);
1973 }
1974
1975 static int
vm_wrmtrr(struct vm_mtrr * mtrr,uint32_t num,uint64_t val)1976 vm_wrmtrr(struct vm_mtrr *mtrr, uint32_t num, uint64_t val)
1977 {
1978 switch (num) {
1979 case MSR_MTRRcap:
1980 /* MTRRCAP is read only */
1981 return (EPERM);
1982 case MSR_MTRRdefType:
1983 if (val & ~VMM_MTRR_DEF_MASK) {
1984 /* generate #GP on writes to reserved fields */
1985 return (EINVAL);
1986 }
1987 mtrr->def_type = val;
1988 break;
1989 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
1990 mtrr->fixed4k[num - MSR_MTRR4kBase] = val;
1991 break;
1992 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
1993 mtrr->fixed16k[num - MSR_MTRR16kBase] = val;
1994 break;
1995 case MSR_MTRR64kBase:
1996 mtrr->fixed64k = val;
1997 break;
1998 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: {
1999 uint_t offset = num - MSR_MTRRVarBase;
2000 if (offset % 2 == 0) {
2001 if (val & ~VMM_MTRR_PHYSBASE_MASK) {
2002 /* generate #GP on writes to reserved fields */
2003 return (EINVAL);
2004 }
2005 mtrr->var[offset / 2].base = val;
2006 } else {
2007 if (val & ~VMM_MTRR_PHYSMASK_MASK) {
2008 /* generate #GP on writes to reserved fields */
2009 return (EINVAL);
2010 }
2011 mtrr->var[offset / 2].mask = val;
2012 }
2013 break;
2014 }
2015 default:
2016 return (EINVAL);
2017 }
2018
2019 return (0);
2020 }
2021
2022 static bool
is_mtrr_msr(uint32_t msr)2023 is_mtrr_msr(uint32_t msr)
2024 {
2025 switch (msr) {
2026 case MSR_MTRRcap:
2027 case MSR_MTRRdefType:
2028 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
2029 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
2030 case MSR_MTRR64kBase:
2031 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
2032 return (true);
2033 default:
2034 return (false);
2035 }
2036 }
2037
2038 static int
vm_handle_rdmsr(struct vm * vm,int vcpuid,struct vm_exit * vme)2039 vm_handle_rdmsr(struct vm *vm, int vcpuid, struct vm_exit *vme)
2040 {
2041 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2042 const uint32_t code = vme->u.msr.code;
2043 uint64_t val = 0;
2044
2045 switch (code) {
2046 case MSR_MCG_CAP:
2047 case MSR_MCG_STATUS:
2048 val = 0;
2049 break;
2050
2051 case MSR_MTRRcap:
2052 case MSR_MTRRdefType:
2053 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
2054 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
2055 case MSR_MTRR64kBase:
2056 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
2057 if (vm_rdmtrr(&vcpu->mtrr, code, &val) != 0)
2058 vm_inject_gp(vm, vcpuid);
2059 break;
2060
2061 case MSR_TSC:
2062 /*
2063 * Get the guest TSC, applying necessary vCPU offsets.
2064 *
2065 * In all likelihood, this should always be handled in guest
2066 * context by VMX/SVM rather than taking an exit. (Both VMX and
2067 * SVM pass through read-only access to MSR_TSC to the guest.)
2068 *
2069 * The VM-wide TSC offset and per-vCPU offset are included in
2070 * the calculations of vcpu_tsc_offset(), so this is sufficient
2071 * to use as the offset in our calculations.
2072 *
2073 * No physical offset is requested of vcpu_tsc_offset() since
2074 * rdtsc_offset() takes care of that instead.
2075 */
2076 val = calc_guest_tsc(rdtsc_offset(), vm->freq_multiplier,
2077 vcpu_tsc_offset(vm, vcpuid, false));
2078 break;
2079
2080 default:
2081 /*
2082 * Anything not handled at this point will be kicked out to
2083 * userspace for attempted processing there.
2084 */
2085 return (-1);
2086 }
2087
2088 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RAX,
2089 val & 0xffffffff));
2090 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RDX,
2091 val >> 32));
2092 return (0);
2093 }
2094
2095 static int
vm_handle_wrmsr(struct vm * vm,int vcpuid,struct vm_exit * vme)2096 vm_handle_wrmsr(struct vm *vm, int vcpuid, struct vm_exit *vme)
2097 {
2098 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2099 const uint32_t code = vme->u.msr.code;
2100 const uint64_t val = vme->u.msr.wval;
2101
2102 switch (code) {
2103 case MSR_MCG_CAP:
2104 case MSR_MCG_STATUS:
2105 /* Ignore writes */
2106 break;
2107
2108 case MSR_MTRRcap:
2109 case MSR_MTRRdefType:
2110 case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
2111 case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
2112 case MSR_MTRR64kBase:
2113 case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
2114 if (vm_wrmtrr(&vcpu->mtrr, code, val) != 0)
2115 vm_inject_gp(vm, vcpuid);
2116 break;
2117
2118 case MSR_TSC:
2119 /*
2120 * The effect of writing the TSC MSR is that a subsequent read
2121 * of the TSC would report that value written (plus any time
2122 * elapsed between the write and the read).
2123 *
2124 * To calculate that per-vCPU offset, we can work backwards from
2125 * the guest TSC at the time of write:
2126 *
2127 * value = current guest TSC + vCPU offset
2128 *
2129 * so therefore:
2130 *
2131 * value - current guest TSC = vCPU offset
2132 */
2133 vcpu->tsc_offset = val - calc_guest_tsc(rdtsc_offset(),
2134 vm->freq_multiplier, vm->tsc_offset);
2135 break;
2136
2137 default:
2138 /*
2139 * Anything not handled at this point will be kicked out to
2140 * userspace for attempted processing there.
2141 */
2142 return (-1);
2143 }
2144
2145 return (0);
2146 }
2147
2148 /*
2149 * Has a suspend event been asserted on the VM?
2150 *
2151 * The reason and (in the case of a triple-fault) source vcpuid are optionally
2152 * returned if such a state is present.
2153 */
2154 static bool
vm_is_suspended(struct vm * vm,struct vm_exit * vme)2155 vm_is_suspended(struct vm *vm, struct vm_exit *vme)
2156 {
2157 const int val = vm->suspend_how;
2158 if (val == 0) {
2159 return (false);
2160 } else {
2161 if (vme != NULL) {
2162 vme->exitcode = VM_EXITCODE_SUSPENDED;
2163 vme->u.suspended.how = val;
2164 vme->u.suspended.source = vm->suspend_source;
2165 /*
2166 * Normalize suspend event time and, on the off chance
2167 * that it was recorded as occuring prior to VM boot,
2168 * clamp it to a minimum of 0.
2169 */
2170 vme->u.suspended.when = (uint64_t)
2171 MAX(vm_normalize_hrtime(vm, vm->suspend_when), 0);
2172 }
2173 return (true);
2174 }
2175 }
2176
2177 int
vm_suspend(struct vm * vm,enum vm_suspend_how how,int source)2178 vm_suspend(struct vm *vm, enum vm_suspend_how how, int source)
2179 {
2180 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) {
2181 return (EINVAL);
2182 }
2183
2184 /*
2185 * Although the common case of calling vm_suspend() is via
2186 * ioctl(VM_SUSPEND), where all the vCPUs will be held in the frozen
2187 * state, it can also be called by a running vCPU to indicate a
2188 * triple-fault. In the latter case, there is no exclusion from a
2189 * racing vm_suspend() from a different vCPU, so assertion of the
2190 * suspended state must be performed carefully.
2191 *
2192 * The `suspend_when` is set first via atomic cmpset to pick a "winner"
2193 * of the suspension race, followed by population of 'suspend_source'.
2194 * Only after those are done, and a membar is emitted will 'suspend_how'
2195 * be set, which makes the suspended state visible to any vCPU checking
2196 * for it. That order will prevent an incomplete suspend state (between
2197 * 'how', 'source', and 'when') from being observed.
2198 */
2199 const hrtime_t now = gethrtime();
2200 if (atomic_cmpset_long((ulong_t *)&vm->suspend_when, 0, now) == 0) {
2201 return (EALREADY);
2202 }
2203 vm->suspend_source = source;
2204 membar_producer();
2205 vm->suspend_how = how;
2206
2207 /* Notify all active vcpus that they are now suspended. */
2208 for (uint_t i = 0; i < vm->maxcpus; i++) {
2209 struct vcpu *vcpu = &vm->vcpu[i];
2210
2211 vcpu_lock(vcpu);
2212
2213 if (!CPU_ISSET(i, &vm->active_cpus)) {
2214 /*
2215 * vCPUs not already marked as active can be ignored,
2216 * since they cannot become marked as active unless the
2217 * VM is reinitialized, clearing the suspended state.
2218 */
2219 vcpu_unlock(vcpu);
2220 continue;
2221 }
2222
2223 switch (vcpu->state) {
2224 case VCPU_IDLE:
2225 case VCPU_FROZEN:
2226 /*
2227 * vCPUs not locked by in-kernel activity can be
2228 * immediately marked as suspended: The ustate is moved
2229 * back to VU_INIT, since no further guest work will
2230 * occur while the VM is in this state.
2231 *
2232 * A FROZEN vCPU may still change its ustate on the way
2233 * out of the kernel, but a subsequent check at the end
2234 * of vm_run() should be adequate to fix it up.
2235 */
2236 vcpu_ustate_change(vm, i, VU_INIT);
2237 break;
2238 default:
2239 /*
2240 * Any vCPUs which are running or waiting in-kernel
2241 * (such as in HLT) are notified to pick up the newly
2242 * suspended state.
2243 */
2244 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
2245 break;
2246 }
2247 vcpu_unlock(vcpu);
2248 }
2249 return (0);
2250 }
2251
2252 void
vm_exit_run_state(struct vm * vm,int vcpuid,uint64_t rip)2253 vm_exit_run_state(struct vm *vm, int vcpuid, uint64_t rip)
2254 {
2255 struct vm_exit *vmexit;
2256
2257 vmexit = vm_exitinfo(vm, vcpuid);
2258 vmexit->rip = rip;
2259 vmexit->inst_length = 0;
2260 vmexit->exitcode = VM_EXITCODE_RUN_STATE;
2261 vmm_stat_incr(vm, vcpuid, VMEXIT_RUN_STATE, 1);
2262 }
2263
2264 /*
2265 * Some vmm resources, such as the lapic, may have CPU-specific resources
2266 * allocated to them which would benefit from migration onto the host CPU which
2267 * is processing the vcpu state.
2268 */
2269 static void
vm_localize_resources(struct vm * vm,struct vcpu * vcpu)2270 vm_localize_resources(struct vm *vm, struct vcpu *vcpu)
2271 {
2272 /*
2273 * Localizing cyclic resources requires acquisition of cpu_lock, and
2274 * doing so with kpreempt disabled is a recipe for deadlock disaster.
2275 */
2276 VERIFY(curthread->t_preempt == 0);
2277
2278 /*
2279 * Do not bother with localization if this vCPU is about to return to
2280 * the host CPU it was last localized to.
2281 */
2282 if (vcpu->lastloccpu == curcpu)
2283 return;
2284
2285 /*
2286 * Localize system-wide resources to the primary boot vCPU. While any
2287 * of the other vCPUs may access them, it keeps the potential interrupt
2288 * footprint constrained to CPUs involved with this instance.
2289 */
2290 if (vcpu == &vm->vcpu[0]) {
2291 vhpet_localize_resources(vm->vhpet);
2292 vrtc_localize_resources(vm->vrtc);
2293 vatpit_localize_resources(vm->vatpit);
2294 }
2295
2296 vlapic_localize_resources(vcpu->vlapic);
2297
2298 vcpu->lastloccpu = curcpu;
2299 }
2300
2301 static void
vmm_savectx(void * arg)2302 vmm_savectx(void *arg)
2303 {
2304 vm_thread_ctx_t *vtc = arg;
2305 struct vm *vm = vtc->vtc_vm;
2306 const int vcpuid = vtc->vtc_vcpuid;
2307
2308 if (ops->vmsavectx != NULL) {
2309 ops->vmsavectx(vm->cookie, vcpuid);
2310 }
2311
2312 /*
2313 * Account for going off-cpu, unless the vCPU is idled, where being
2314 * off-cpu is the explicit point.
2315 */
2316 if (vm->vcpu[vcpuid].ustate != VU_IDLE) {
2317 vtc->vtc_ustate = vm->vcpu[vcpuid].ustate;
2318 vcpu_ustate_change(vm, vcpuid, VU_SCHED);
2319 }
2320
2321 /*
2322 * If the CPU holds the restored guest FPU state, save it and restore
2323 * the host FPU state before this thread goes off-cpu.
2324 */
2325 if ((vtc->vtc_status & VTCS_FPU_RESTORED) != 0) {
2326 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2327
2328 save_guest_fpustate(vcpu);
2329 vtc->vtc_status &= ~VTCS_FPU_RESTORED;
2330 }
2331 }
2332
2333 static void
vmm_restorectx(void * arg)2334 vmm_restorectx(void *arg)
2335 {
2336 vm_thread_ctx_t *vtc = arg;
2337 struct vm *vm = vtc->vtc_vm;
2338 const int vcpuid = vtc->vtc_vcpuid;
2339
2340 /* Complete microstate accounting for vCPU being off-cpu */
2341 if (vm->vcpu[vcpuid].ustate != VU_IDLE) {
2342 vcpu_ustate_change(vm, vcpuid, vtc->vtc_ustate);
2343 }
2344
2345 /*
2346 * When coming back on-cpu, only restore the guest FPU status if the
2347 * thread is in a context marked as requiring it. This should be rare,
2348 * occurring only when a future logic error results in a voluntary
2349 * sleep during the VMRUN critical section.
2350 *
2351 * The common case will result in elision of the guest FPU state
2352 * restoration, deferring that action until it is clearly necessary
2353 * during vm_run.
2354 */
2355 VERIFY((vtc->vtc_status & VTCS_FPU_RESTORED) == 0);
2356 if ((vtc->vtc_status & VTCS_FPU_CTX_CRITICAL) != 0) {
2357 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2358
2359 restore_guest_fpustate(vcpu);
2360 vtc->vtc_status |= VTCS_FPU_RESTORED;
2361 }
2362
2363 if (ops->vmrestorectx != NULL) {
2364 ops->vmrestorectx(vm->cookie, vcpuid);
2365 }
2366
2367 }
2368
2369 /* Convenience defines for parsing vm_entry`cmd values */
2370 #define VEC_MASK_FLAGS (VEC_FLAG_EXIT_CONSISTENT)
2371 #define VEC_MASK_CMD (~VEC_MASK_FLAGS)
2372
2373 static int
vm_entry_actions(struct vm * vm,int vcpuid,const struct vm_entry * entry,struct vm_exit * vme)2374 vm_entry_actions(struct vm *vm, int vcpuid, const struct vm_entry *entry,
2375 struct vm_exit *vme)
2376 {
2377 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2378 struct vie *vie = vcpu->vie_ctx;
2379 int err = 0;
2380
2381 const uint_t cmd = entry->cmd & VEC_MASK_CMD;
2382 const uint_t flags = entry->cmd & VEC_MASK_FLAGS;
2383
2384 switch (cmd) {
2385 case VEC_DEFAULT:
2386 break;
2387 case VEC_DISCARD_INSTR:
2388 vie_reset(vie);
2389 break;
2390 case VEC_FULFILL_MMIO:
2391 err = vie_fulfill_mmio(vie, &entry->u.mmio);
2392 if (err == 0) {
2393 err = vie_emulate_mmio(vie, vm, vcpuid);
2394 if (err == 0) {
2395 vie_advance_pc(vie, &vcpu->nextrip);
2396 } else if (err < 0) {
2397 vie_exitinfo(vie, vme);
2398 } else if (err == EAGAIN) {
2399 /*
2400 * Clear the instruction emulation state in
2401 * order to re-enter VM context and continue
2402 * this 'rep <instruction>'
2403 */
2404 vie_reset(vie);
2405 err = 0;
2406 }
2407 }
2408 break;
2409 case VEC_FULFILL_INOUT:
2410 err = vie_fulfill_inout(vie, &entry->u.inout);
2411 if (err == 0) {
2412 err = vie_emulate_inout(vie, vm, vcpuid);
2413 if (err == 0) {
2414 vie_advance_pc(vie, &vcpu->nextrip);
2415 } else if (err < 0) {
2416 vie_exitinfo(vie, vme);
2417 } else if (err == EAGAIN) {
2418 /*
2419 * Clear the instruction emulation state in
2420 * order to re-enter VM context and continue
2421 * this 'rep ins/outs'
2422 */
2423 vie_reset(vie);
2424 err = 0;
2425 }
2426 }
2427 break;
2428 default:
2429 return (EINVAL);
2430 }
2431
2432 /*
2433 * Pay heed to requests for exit-when-vCPU-is-consistent requests, at
2434 * least when we are not immediately bound for another exit due to
2435 * multi-part instruction emulation or related causes.
2436 */
2437 if ((flags & VEC_FLAG_EXIT_CONSISTENT) != 0 && err == 0) {
2438 vcpu->reqconsist = true;
2439 }
2440
2441 return (err);
2442 }
2443
2444 static int
vm_loop_checks(struct vm * vm,int vcpuid,struct vm_exit * vme)2445 vm_loop_checks(struct vm *vm, int vcpuid, struct vm_exit *vme)
2446 {
2447 struct vie *vie;
2448
2449 vie = vm->vcpu[vcpuid].vie_ctx;
2450
2451 if (vie_pending(vie)) {
2452 /*
2453 * Userspace has not fulfilled the pending needs of the
2454 * instruction emulation, so bail back out.
2455 */
2456 vie_exitinfo(vie, vme);
2457 return (-1);
2458 }
2459
2460 return (0);
2461 }
2462
2463 int
vm_run(struct vm * vm,int vcpuid,const struct vm_entry * entry)2464 vm_run(struct vm *vm, int vcpuid, const struct vm_entry *entry)
2465 {
2466 int error;
2467 struct vcpu *vcpu;
2468 struct vm_exit *vme;
2469 bool intr_disabled;
2470 int affinity_type = CPU_CURRENT;
2471
2472 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2473 return (EINVAL);
2474 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
2475 return (EINVAL);
2476 if (vm->is_paused) {
2477 return (EBUSY);
2478 }
2479
2480 vcpu = &vm->vcpu[vcpuid];
2481 vme = &vcpu->exitinfo;
2482
2483 vcpu_ustate_change(vm, vcpuid, VU_EMU_KERN);
2484
2485 vcpu->vtc.vtc_status = 0;
2486 ctxop_attach(curthread, vcpu->ctxop);
2487
2488 error = vm_entry_actions(vm, vcpuid, entry, vme);
2489 if (error != 0) {
2490 goto exit;
2491 }
2492
2493 restart:
2494 error = vm_loop_checks(vm, vcpuid, vme);
2495 if (error != 0) {
2496 goto exit;
2497 }
2498
2499 thread_affinity_set(curthread, affinity_type);
2500 /*
2501 * Resource localization should happen after the CPU affinity for the
2502 * thread has been set to ensure that access from restricted contexts,
2503 * such as VMX-accelerated APIC operations, can occur without inducing
2504 * cyclic cross-calls.
2505 *
2506 * This must be done prior to disabling kpreempt via critical_enter().
2507 */
2508 vm_localize_resources(vm, vcpu);
2509 affinity_type = CPU_CURRENT;
2510 critical_enter();
2511
2512 /* Force a trip through update_sregs to reload %fs/%gs and friends */
2513 PCB_SET_UPDATE_SEGS(&ttolwp(curthread)->lwp_pcb);
2514
2515 if ((vcpu->vtc.vtc_status & VTCS_FPU_RESTORED) == 0) {
2516 restore_guest_fpustate(vcpu);
2517 vcpu->vtc.vtc_status |= VTCS_FPU_RESTORED;
2518 }
2519 vcpu->vtc.vtc_status |= VTCS_FPU_CTX_CRITICAL;
2520
2521 vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
2522 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip);
2523 vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
2524
2525 /*
2526 * Once clear of the delicate contexts comprising the VM_RUN handler,
2527 * thread CPU affinity can be loosened while other processing occurs.
2528 */
2529 vcpu->vtc.vtc_status &= ~VTCS_FPU_CTX_CRITICAL;
2530 thread_affinity_clear(curthread);
2531 critical_exit();
2532
2533 if (error != 0) {
2534 /* Communicate out any error from VMRUN() above */
2535 goto exit;
2536 }
2537
2538 vcpu->nextrip = vme->rip + vme->inst_length;
2539 switch (vme->exitcode) {
2540 case VM_EXITCODE_RUN_STATE:
2541 error = vm_handle_run_state(vm, vcpuid);
2542 break;
2543 case VM_EXITCODE_IOAPIC_EOI:
2544 vioapic_process_eoi(vm, vcpuid,
2545 vme->u.ioapic_eoi.vector);
2546 break;
2547 case VM_EXITCODE_HLT:
2548 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
2549 error = vm_handle_hlt(vm, vcpuid, intr_disabled);
2550 break;
2551 case VM_EXITCODE_PAGING:
2552 error = vm_handle_paging(vm, vcpuid);
2553 break;
2554 case VM_EXITCODE_MMIO_EMUL:
2555 error = vm_handle_mmio_emul(vm, vcpuid);
2556 break;
2557 case VM_EXITCODE_INOUT:
2558 error = vm_handle_inout(vm, vcpuid, vme);
2559 break;
2560 case VM_EXITCODE_INST_EMUL:
2561 error = vm_handle_inst_emul(vm, vcpuid);
2562 break;
2563 case VM_EXITCODE_MONITOR:
2564 case VM_EXITCODE_MWAIT:
2565 case VM_EXITCODE_VMINSN:
2566 vm_inject_ud(vm, vcpuid);
2567 break;
2568 case VM_EXITCODE_RDMSR:
2569 error = vm_handle_rdmsr(vm, vcpuid, vme);
2570 break;
2571 case VM_EXITCODE_WRMSR:
2572 error = vm_handle_wrmsr(vm, vcpuid, vme);
2573 break;
2574 case VM_EXITCODE_HT:
2575 affinity_type = CPU_BEST;
2576 break;
2577 case VM_EXITCODE_MTRAP:
2578 VERIFY0(vm_suspend_cpu(vm, vcpuid));
2579 error = -1;
2580 break;
2581 default:
2582 /* handled in userland */
2583 error = -1;
2584 break;
2585 }
2586
2587 if (error == 0) {
2588 /* VM exit conditions handled in-kernel, continue running */
2589 goto restart;
2590 }
2591
2592 exit:
2593 kpreempt_disable();
2594 ctxop_detach(curthread, vcpu->ctxop);
2595 /* Make sure all of the needed vCPU context state is saved */
2596 vmm_savectx(&vcpu->vtc);
2597 kpreempt_enable();
2598
2599 /*
2600 * Bill time in userspace against VU_EMU_USER, unless the VM is
2601 * suspended, in which case VU_INIT is the choice.
2602 */
2603 vcpu_ustate_change(vm, vcpuid,
2604 vm_is_suspended(vm, NULL) ? VU_INIT : VU_EMU_USER);
2605
2606 return (error);
2607 }
2608
2609 int
vm_restart_instruction(void * arg,int vcpuid)2610 vm_restart_instruction(void *arg, int vcpuid)
2611 {
2612 struct vm *vm;
2613 struct vcpu *vcpu;
2614 enum vcpu_state state;
2615 uint64_t rip;
2616 int error;
2617
2618 vm = arg;
2619 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2620 return (EINVAL);
2621
2622 vcpu = &vm->vcpu[vcpuid];
2623 state = vcpu_get_state(vm, vcpuid, NULL);
2624 if (state == VCPU_RUNNING) {
2625 /*
2626 * When a vcpu is "running" the next instruction is determined
2627 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
2628 * Thus setting 'inst_length' to zero will cause the current
2629 * instruction to be restarted.
2630 */
2631 vcpu->exitinfo.inst_length = 0;
2632 } else if (state == VCPU_FROZEN) {
2633 /*
2634 * When a vcpu is "frozen" it is outside the critical section
2635 * around VMRUN() and 'nextrip' points to the next instruction.
2636 * Thus instruction restart is achieved by setting 'nextrip'
2637 * to the vcpu's %rip.
2638 */
2639 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
2640 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
2641 vcpu->nextrip = rip;
2642 } else {
2643 panic("%s: invalid state %d", __func__, state);
2644 }
2645 return (0);
2646 }
2647
2648 int
vm_exit_intinfo(struct vm * vm,int vcpuid,uint64_t info)2649 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
2650 {
2651 struct vcpu *vcpu;
2652
2653 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2654 return (EINVAL);
2655
2656 vcpu = &vm->vcpu[vcpuid];
2657
2658 if (VM_INTINFO_PENDING(info)) {
2659 const uint32_t type = VM_INTINFO_TYPE(info);
2660 const uint8_t vector = VM_INTINFO_VECTOR(info);
2661
2662 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
2663 return (EINVAL);
2664 if (type == VM_INTINFO_HWEXCP && vector >= 32)
2665 return (EINVAL);
2666 if (info & VM_INTINFO_MASK_RSVD)
2667 return (EINVAL);
2668 } else {
2669 info = 0;
2670 }
2671 vcpu->exit_intinfo = info;
2672 return (0);
2673 }
2674
2675 enum exc_class {
2676 EXC_BENIGN,
2677 EXC_CONTRIBUTORY,
2678 EXC_PAGEFAULT
2679 };
2680
2681 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
2682
2683 static enum exc_class
exception_class(uint64_t info)2684 exception_class(uint64_t info)
2685 {
2686 ASSERT(VM_INTINFO_PENDING(info));
2687
2688 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
2689 switch (VM_INTINFO_TYPE(info)) {
2690 case VM_INTINFO_HWINTR:
2691 case VM_INTINFO_SWINTR:
2692 case VM_INTINFO_NMI:
2693 return (EXC_BENIGN);
2694 default:
2695 /*
2696 * Hardware exception.
2697 *
2698 * SVM and VT-x use identical type values to represent NMI,
2699 * hardware interrupt and software interrupt.
2700 *
2701 * SVM uses type '3' for all exceptions. VT-x uses type '3'
2702 * for exceptions except #BP and #OF. #BP and #OF use a type
2703 * value of '5' or '6'. Therefore we don't check for explicit
2704 * values of 'type' to classify 'intinfo' into a hardware
2705 * exception.
2706 */
2707 break;
2708 }
2709
2710 switch (VM_INTINFO_VECTOR(info)) {
2711 case IDT_PF:
2712 case IDT_VE:
2713 return (EXC_PAGEFAULT);
2714 case IDT_DE:
2715 case IDT_TS:
2716 case IDT_NP:
2717 case IDT_SS:
2718 case IDT_GP:
2719 return (EXC_CONTRIBUTORY);
2720 default:
2721 return (EXC_BENIGN);
2722 }
2723 }
2724
2725 /*
2726 * Fetch event pending injection into the guest, if one exists.
2727 *
2728 * Returns true if an event is to be injected (which is placed in `retinfo`).
2729 */
2730 bool
vm_entry_intinfo(struct vm * vm,int vcpuid,uint64_t * retinfo)2731 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
2732 {
2733 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2734 const uint64_t info1 = vcpu->exit_intinfo;
2735 vcpu->exit_intinfo = 0;
2736 const uint64_t info2 = vcpu->exc_pending;
2737 vcpu->exc_pending = 0;
2738
2739 if (VM_INTINFO_PENDING(info1) && VM_INTINFO_PENDING(info2)) {
2740 /*
2741 * If an exception occurs while attempting to call the
2742 * double-fault handler the processor enters shutdown mode
2743 * (aka triple fault).
2744 */
2745 if (VM_INTINFO_TYPE(info1) == VM_INTINFO_HWEXCP &&
2746 VM_INTINFO_VECTOR(info1) == IDT_DF) {
2747 (void) vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT, vcpuid);
2748 *retinfo = 0;
2749 return (false);
2750 }
2751 /*
2752 * "Conditions for Generating a Double Fault"
2753 * Intel SDM, Vol3, Table 6-5
2754 */
2755 const enum exc_class exc1 = exception_class(info1);
2756 const enum exc_class exc2 = exception_class(info2);
2757 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
2758 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
2759 /* Convert nested fault into a double fault. */
2760 *retinfo =
2761 VM_INTINFO_VALID |
2762 VM_INTINFO_DEL_ERRCODE |
2763 VM_INTINFO_HWEXCP |
2764 IDT_DF;
2765 } else {
2766 /* Handle exceptions serially */
2767 vcpu->exit_intinfo = info1;
2768 *retinfo = info2;
2769 }
2770 return (true);
2771 } else if (VM_INTINFO_PENDING(info1)) {
2772 *retinfo = info1;
2773 return (true);
2774 } else if (VM_INTINFO_PENDING(info2)) {
2775 *retinfo = info2;
2776 return (true);
2777 }
2778
2779 return (false);
2780 }
2781
2782 int
vm_get_intinfo(struct vm * vm,int vcpuid,uint64_t * info1,uint64_t * info2)2783 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
2784 {
2785 struct vcpu *vcpu;
2786
2787 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2788 return (EINVAL);
2789
2790 vcpu = &vm->vcpu[vcpuid];
2791 *info1 = vcpu->exit_intinfo;
2792 *info2 = vcpu->exc_pending;
2793 return (0);
2794 }
2795
2796 int
vm_inject_exception(struct vm * vm,int vcpuid,uint8_t vector,bool errcode_valid,uint32_t errcode,bool restart_instruction)2797 vm_inject_exception(struct vm *vm, int vcpuid, uint8_t vector,
2798 bool errcode_valid, uint32_t errcode, bool restart_instruction)
2799 {
2800 struct vcpu *vcpu;
2801 uint64_t regval;
2802 int error;
2803
2804 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2805 return (EINVAL);
2806
2807 if (vector >= 32)
2808 return (EINVAL);
2809
2810 /*
2811 * NMIs are to be injected via their own specialized path using
2812 * vm_inject_nmi().
2813 */
2814 if (vector == IDT_NMI) {
2815 return (EINVAL);
2816 }
2817
2818 /*
2819 * A double fault exception should never be injected directly into
2820 * the guest. It is a derived exception that results from specific
2821 * combinations of nested faults.
2822 */
2823 if (vector == IDT_DF) {
2824 return (EINVAL);
2825 }
2826
2827 vcpu = &vm->vcpu[vcpuid];
2828
2829 if (VM_INTINFO_PENDING(vcpu->exc_pending)) {
2830 /* Unable to inject exception due to one already pending */
2831 return (EBUSY);
2832 }
2833
2834 if (errcode_valid) {
2835 /*
2836 * Exceptions don't deliver an error code in real mode.
2837 */
2838 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val);
2839 VERIFY0(error);
2840 if ((regval & CR0_PE) == 0) {
2841 errcode_valid = false;
2842 }
2843 }
2844
2845 /*
2846 * From section 26.6.1 "Interruptibility State" in Intel SDM:
2847 *
2848 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
2849 * one instruction or incurs an exception.
2850 */
2851 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
2852 VERIFY0(error);
2853
2854 if (restart_instruction) {
2855 VERIFY0(vm_restart_instruction(vm, vcpuid));
2856 }
2857
2858 uint64_t val = VM_INTINFO_VALID | VM_INTINFO_HWEXCP | vector;
2859 if (errcode_valid) {
2860 val |= VM_INTINFO_DEL_ERRCODE;
2861 val |= (uint64_t)errcode << VM_INTINFO_SHIFT_ERRCODE;
2862 }
2863 vcpu->exc_pending = val;
2864 return (0);
2865 }
2866
2867 void
vm_inject_ud(struct vm * vm,int vcpuid)2868 vm_inject_ud(struct vm *vm, int vcpuid)
2869 {
2870 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_UD, false, 0, true));
2871 }
2872
2873 void
vm_inject_gp(struct vm * vm,int vcpuid)2874 vm_inject_gp(struct vm *vm, int vcpuid)
2875 {
2876 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_GP, true, 0, true));
2877 }
2878
2879 void
vm_inject_ac(struct vm * vm,int vcpuid,uint32_t errcode)2880 vm_inject_ac(struct vm *vm, int vcpuid, uint32_t errcode)
2881 {
2882 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_AC, true, errcode, true));
2883 }
2884
2885 void
vm_inject_ss(struct vm * vm,int vcpuid,uint32_t errcode)2886 vm_inject_ss(struct vm *vm, int vcpuid, uint32_t errcode)
2887 {
2888 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_SS, true, errcode, true));
2889 }
2890
2891 void
vm_inject_pf(struct vm * vm,int vcpuid,uint32_t errcode,uint64_t cr2)2892 vm_inject_pf(struct vm *vm, int vcpuid, uint32_t errcode, uint64_t cr2)
2893 {
2894 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2));
2895 VERIFY0(vm_inject_exception(vm, vcpuid, IDT_PF, true, errcode, true));
2896 }
2897
2898 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2899
2900 int
vm_inject_nmi(struct vm * vm,int vcpuid)2901 vm_inject_nmi(struct vm *vm, int vcpuid)
2902 {
2903 struct vcpu *vcpu;
2904
2905 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2906 return (EINVAL);
2907
2908 vcpu = &vm->vcpu[vcpuid];
2909
2910 vcpu->nmi_pending = true;
2911 vcpu_notify_event(vm, vcpuid);
2912 return (0);
2913 }
2914
2915 bool
vm_nmi_pending(struct vm * vm,int vcpuid)2916 vm_nmi_pending(struct vm *vm, int vcpuid)
2917 {
2918 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2919
2920 return (vcpu->nmi_pending);
2921 }
2922
2923 void
vm_nmi_clear(struct vm * vm,int vcpuid)2924 vm_nmi_clear(struct vm *vm, int vcpuid)
2925 {
2926 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2927
2928 ASSERT(vcpu->nmi_pending);
2929
2930 vcpu->nmi_pending = false;
2931 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
2932 }
2933
2934 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2935
2936 int
vm_inject_extint(struct vm * vm,int vcpuid)2937 vm_inject_extint(struct vm *vm, int vcpuid)
2938 {
2939 struct vcpu *vcpu;
2940
2941 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2942 return (EINVAL);
2943
2944 vcpu = &vm->vcpu[vcpuid];
2945
2946 vcpu->extint_pending = true;
2947 vcpu_notify_event(vm, vcpuid);
2948 return (0);
2949 }
2950
2951 bool
vm_extint_pending(struct vm * vm,int vcpuid)2952 vm_extint_pending(struct vm *vm, int vcpuid)
2953 {
2954 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2955
2956 return (vcpu->extint_pending);
2957 }
2958
2959 void
vm_extint_clear(struct vm * vm,int vcpuid)2960 vm_extint_clear(struct vm *vm, int vcpuid)
2961 {
2962 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2963
2964 ASSERT(vcpu->extint_pending);
2965
2966 vcpu->extint_pending = false;
2967 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
2968 }
2969
2970 int
vm_inject_init(struct vm * vm,int vcpuid)2971 vm_inject_init(struct vm *vm, int vcpuid)
2972 {
2973 struct vcpu *vcpu;
2974
2975 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2976 return (EINVAL);
2977
2978 vcpu = &vm->vcpu[vcpuid];
2979 vcpu_lock(vcpu);
2980 vcpu->run_state |= VRS_PEND_INIT;
2981 /*
2982 * As part of queuing the INIT request, clear any pending SIPI. It
2983 * would not otherwise survive across the reset of the vCPU when it
2984 * undergoes the requested INIT. We would not want it to linger when it
2985 * could be mistaken as a subsequent (after the INIT) SIPI request.
2986 */
2987 vcpu->run_state &= ~VRS_PEND_SIPI;
2988 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
2989
2990 vcpu_unlock(vcpu);
2991 return (0);
2992 }
2993
2994 int
vm_inject_sipi(struct vm * vm,int vcpuid,uint8_t vector)2995 vm_inject_sipi(struct vm *vm, int vcpuid, uint8_t vector)
2996 {
2997 struct vcpu *vcpu;
2998
2999 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3000 return (EINVAL);
3001
3002 vcpu = &vm->vcpu[vcpuid];
3003 vcpu_lock(vcpu);
3004 vcpu->run_state |= VRS_PEND_SIPI;
3005 vcpu->sipi_vector = vector;
3006 /* SIPI is only actionable if the CPU is waiting in INIT state */
3007 if ((vcpu->run_state & (VRS_INIT | VRS_RUN)) == VRS_INIT) {
3008 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
3009 }
3010 vcpu_unlock(vcpu);
3011 return (0);
3012 }
3013
3014 bool
vcpu_run_state_pending(struct vm * vm,int vcpuid)3015 vcpu_run_state_pending(struct vm *vm, int vcpuid)
3016 {
3017 struct vcpu *vcpu;
3018
3019 ASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus);
3020 vcpu = &vm->vcpu[vcpuid];
3021
3022 /* Of interest: vCPU not in running state or with pending INIT */
3023 return ((vcpu->run_state & (VRS_RUN | VRS_PEND_INIT)) != VRS_RUN);
3024 }
3025
3026 int
vcpu_arch_reset(struct vm * vm,int vcpuid,bool init_only)3027 vcpu_arch_reset(struct vm *vm, int vcpuid, bool init_only)
3028 {
3029 struct seg_desc desc;
3030 const enum vm_reg_name clear_regs[] = {
3031 VM_REG_GUEST_CR2,
3032 VM_REG_GUEST_CR3,
3033 VM_REG_GUEST_CR4,
3034 VM_REG_GUEST_RAX,
3035 VM_REG_GUEST_RBX,
3036 VM_REG_GUEST_RCX,
3037 VM_REG_GUEST_RSI,
3038 VM_REG_GUEST_RDI,
3039 VM_REG_GUEST_RBP,
3040 VM_REG_GUEST_RSP,
3041 VM_REG_GUEST_R8,
3042 VM_REG_GUEST_R9,
3043 VM_REG_GUEST_R10,
3044 VM_REG_GUEST_R11,
3045 VM_REG_GUEST_R12,
3046 VM_REG_GUEST_R13,
3047 VM_REG_GUEST_R14,
3048 VM_REG_GUEST_R15,
3049 VM_REG_GUEST_DR0,
3050 VM_REG_GUEST_DR1,
3051 VM_REG_GUEST_DR2,
3052 VM_REG_GUEST_DR3,
3053 VM_REG_GUEST_EFER,
3054 };
3055 const enum vm_reg_name data_segs[] = {
3056 VM_REG_GUEST_SS,
3057 VM_REG_GUEST_DS,
3058 VM_REG_GUEST_ES,
3059 VM_REG_GUEST_FS,
3060 VM_REG_GUEST_GS,
3061 };
3062 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3063
3064 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3065 return (EINVAL);
3066
3067 for (uint_t i = 0; i < nitems(clear_regs); i++) {
3068 VERIFY0(vm_set_register(vm, vcpuid, clear_regs[i], 0));
3069 }
3070
3071 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, 2));
3072 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RIP, 0xfff0));
3073 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CR0, 0x60000010));
3074
3075 /*
3076 * The prescribed contents of %rdx differ slightly between the Intel and
3077 * AMD architectural definitions. The former expects the Extended Model
3078 * in bits 16-19 where the latter expects all the Family, Model, and
3079 * Stepping be there. Common boot ROMs appear to disregard this
3080 * anyways, so we stick with a compromise value similar to what is
3081 * spelled out in the Intel SDM.
3082 */
3083 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RDX, 0x600));
3084
3085 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_DR6, 0xffff0ff0));
3086 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_DR7, 0x400));
3087
3088 /* CS: Present, R/W, Accessed */
3089 desc.access = 0x0093;
3090 desc.base = 0xffff0000;
3091 desc.limit = 0xffff;
3092 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_CS, &desc));
3093 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CS, 0xf000));
3094
3095 /* SS, DS, ES, FS, GS: Present, R/W, Accessed */
3096 desc.access = 0x0093;
3097 desc.base = 0;
3098 desc.limit = 0xffff;
3099 for (uint_t i = 0; i < nitems(data_segs); i++) {
3100 VERIFY0(vm_set_seg_desc(vm, vcpuid, data_segs[i], &desc));
3101 VERIFY0(vm_set_register(vm, vcpuid, data_segs[i], 0));
3102 }
3103
3104 /* GDTR, IDTR */
3105 desc.base = 0;
3106 desc.limit = 0xffff;
3107 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_GDTR, &desc));
3108 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_IDTR, &desc));
3109
3110 /* LDTR: Present, LDT */
3111 desc.access = 0x0082;
3112 desc.base = 0;
3113 desc.limit = 0xffff;
3114 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_LDTR, &desc));
3115 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_LDTR, 0));
3116
3117 /* TR: Present, 32-bit TSS */
3118 desc.access = 0x008b;
3119 desc.base = 0;
3120 desc.limit = 0xffff;
3121 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_TR, &desc));
3122 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_TR, 0));
3123
3124 vlapic_reset(vm_lapic(vm, vcpuid));
3125
3126 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0));
3127
3128 vcpu->exit_intinfo = 0;
3129 vcpu->exc_pending = 0;
3130 vcpu->nmi_pending = false;
3131 vcpu->extint_pending = 0;
3132
3133 /*
3134 * A CPU reset caused by power-on or system reset clears more state than
3135 * one which is trigged from an INIT IPI.
3136 */
3137 if (!init_only) {
3138 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
3139 (void) hma_fpu_init(vcpu->guestfpu);
3140
3141 /* XXX: clear MSRs and other pieces */
3142 bzero(&vcpu->mtrr, sizeof (vcpu->mtrr));
3143 }
3144
3145 return (0);
3146 }
3147
3148 static int
vcpu_vector_sipi(struct vm * vm,int vcpuid,uint8_t vector)3149 vcpu_vector_sipi(struct vm *vm, int vcpuid, uint8_t vector)
3150 {
3151 struct seg_desc desc;
3152
3153 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3154 return (EINVAL);
3155
3156 /* CS: Present, R/W, Accessed */
3157 desc.access = 0x0093;
3158 desc.base = (uint64_t)vector << 12;
3159 desc.limit = 0xffff;
3160 VERIFY0(vm_set_seg_desc(vm, vcpuid, VM_REG_GUEST_CS, &desc));
3161 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_CS,
3162 (uint64_t)vector << 8));
3163
3164 VERIFY0(vm_set_register(vm, vcpuid, VM_REG_GUEST_RIP, 0));
3165
3166 return (0);
3167 }
3168
3169 int
vm_get_capability(struct vm * vm,int vcpu,int type,int * retval)3170 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
3171 {
3172 if (vcpu < 0 || vcpu >= vm->maxcpus)
3173 return (EINVAL);
3174
3175 if (type < 0 || type >= VM_CAP_MAX)
3176 return (EINVAL);
3177
3178 return (VMGETCAP(vm->cookie, vcpu, type, retval));
3179 }
3180
3181 int
vm_set_capability(struct vm * vm,int vcpu,int type,int val)3182 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
3183 {
3184 if (vcpu < 0 || vcpu >= vm->maxcpus)
3185 return (EINVAL);
3186
3187 if (type < 0 || type >= VM_CAP_MAX)
3188 return (EINVAL);
3189
3190 return (VMSETCAP(vm->cookie, vcpu, type, val));
3191 }
3192
3193 vcpu_cpuid_config_t *
vm_cpuid_config(struct vm * vm,int vcpuid)3194 vm_cpuid_config(struct vm *vm, int vcpuid)
3195 {
3196 ASSERT3S(vcpuid, >=, 0);
3197 ASSERT3S(vcpuid, <, VM_MAXCPU);
3198
3199 return (&vm->vcpu[vcpuid].cpuid_cfg);
3200 }
3201
3202 struct vlapic *
vm_lapic(struct vm * vm,int cpu)3203 vm_lapic(struct vm *vm, int cpu)
3204 {
3205 ASSERT3S(cpu, >=, 0);
3206 ASSERT3S(cpu, <, VM_MAXCPU);
3207
3208 return (vm->vcpu[cpu].vlapic);
3209 }
3210
3211 struct vioapic *
vm_ioapic(struct vm * vm)3212 vm_ioapic(struct vm *vm)
3213 {
3214
3215 return (vm->vioapic);
3216 }
3217
3218 struct vhpet *
vm_hpet(struct vm * vm)3219 vm_hpet(struct vm *vm)
3220 {
3221
3222 return (vm->vhpet);
3223 }
3224
3225 void *
vm_iommu_domain(struct vm * vm)3226 vm_iommu_domain(struct vm *vm)
3227 {
3228
3229 return (vm->iommu);
3230 }
3231
3232 int
vcpu_set_state(struct vm * vm,int vcpuid,enum vcpu_state newstate,bool from_idle)3233 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
3234 bool from_idle)
3235 {
3236 int error;
3237 struct vcpu *vcpu;
3238
3239 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3240 panic("vcpu_set_state: invalid vcpuid %d", vcpuid);
3241
3242 vcpu = &vm->vcpu[vcpuid];
3243
3244 vcpu_lock(vcpu);
3245 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
3246 vcpu_unlock(vcpu);
3247
3248 return (error);
3249 }
3250
3251 enum vcpu_state
vcpu_get_state(struct vm * vm,int vcpuid,int * hostcpu)3252 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
3253 {
3254 struct vcpu *vcpu;
3255 enum vcpu_state state;
3256
3257 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3258 panic("vcpu_get_state: invalid vcpuid %d", vcpuid);
3259
3260 vcpu = &vm->vcpu[vcpuid];
3261
3262 vcpu_lock(vcpu);
3263 state = vcpu->state;
3264 if (hostcpu != NULL)
3265 *hostcpu = vcpu->hostcpu;
3266 vcpu_unlock(vcpu);
3267
3268 return (state);
3269 }
3270
3271 /*
3272 * Calculate the TSC offset for a vCPU, applying physical CPU adjustments if
3273 * requested. The offset calculations include the VM-wide TSC offset.
3274 */
3275 uint64_t
vcpu_tsc_offset(struct vm * vm,int vcpuid,bool phys_adj)3276 vcpu_tsc_offset(struct vm *vm, int vcpuid, bool phys_adj)
3277 {
3278 ASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus);
3279
3280 uint64_t vcpu_off = vm->tsc_offset + vm->vcpu[vcpuid].tsc_offset;
3281
3282 if (phys_adj) {
3283 /* Include any offset for the current physical CPU too */
3284 vcpu_off += vmm_host_tsc_delta();
3285 }
3286
3287 return (vcpu_off);
3288 }
3289
3290 uint64_t
vm_get_freq_multiplier(struct vm * vm)3291 vm_get_freq_multiplier(struct vm *vm)
3292 {
3293 return (vm->freq_multiplier);
3294 }
3295
3296 /* Normalize hrtime against the boot time for a VM */
3297 hrtime_t
vm_normalize_hrtime(struct vm * vm,hrtime_t hrt)3298 vm_normalize_hrtime(struct vm *vm, hrtime_t hrt)
3299 {
3300 /* To avoid underflow/overflow UB, perform math as unsigned */
3301 return ((hrtime_t)((uint64_t)hrt - (uint64_t)vm->boot_hrtime));
3302 }
3303
3304 /* Denormalize hrtime against the boot time for a VM */
3305 hrtime_t
vm_denormalize_hrtime(struct vm * vm,hrtime_t hrt)3306 vm_denormalize_hrtime(struct vm *vm, hrtime_t hrt)
3307 {
3308 /* To avoid underflow/overflow UB, perform math as unsigned */
3309 return ((hrtime_t)((uint64_t)hrt + (uint64_t)vm->boot_hrtime));
3310 }
3311
3312 int
vm_activate_cpu(struct vm * vm,int vcpuid)3313 vm_activate_cpu(struct vm *vm, int vcpuid)
3314 {
3315
3316 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3317 return (EINVAL);
3318
3319 if (CPU_ISSET(vcpuid, &vm->active_cpus))
3320 return (EBUSY);
3321
3322 if (vm_is_suspended(vm, NULL)) {
3323 return (EBUSY);
3324 }
3325
3326 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
3327
3328 /*
3329 * It is possible that this vCPU was undergoing activation at the same
3330 * time that the VM was being suspended.
3331 */
3332 if (vm_is_suspended(vm, NULL)) {
3333 return (EBUSY);
3334 }
3335
3336 return (0);
3337 }
3338
3339 int
vm_suspend_cpu(struct vm * vm,int vcpuid)3340 vm_suspend_cpu(struct vm *vm, int vcpuid)
3341 {
3342 int i;
3343
3344 if (vcpuid < -1 || vcpuid >= vm->maxcpus)
3345 return (EINVAL);
3346
3347 if (vcpuid == -1) {
3348 vm->debug_cpus = vm->active_cpus;
3349 for (i = 0; i < vm->maxcpus; i++) {
3350 if (CPU_ISSET(i, &vm->active_cpus))
3351 vcpu_notify_event(vm, i);
3352 }
3353 } else {
3354 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
3355 return (EINVAL);
3356
3357 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus);
3358 vcpu_notify_event(vm, vcpuid);
3359 }
3360 return (0);
3361 }
3362
3363 int
vm_resume_cpu(struct vm * vm,int vcpuid)3364 vm_resume_cpu(struct vm *vm, int vcpuid)
3365 {
3366
3367 if (vcpuid < -1 || vcpuid >= vm->maxcpus)
3368 return (EINVAL);
3369
3370 if (vcpuid == -1) {
3371 CPU_ZERO(&vm->debug_cpus);
3372 } else {
3373 if (!CPU_ISSET(vcpuid, &vm->debug_cpus))
3374 return (EINVAL);
3375
3376 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus);
3377 }
3378 return (0);
3379 }
3380
3381 static bool
vcpu_bailout_checks(struct vm * vm,int vcpuid)3382 vcpu_bailout_checks(struct vm *vm, int vcpuid)
3383 {
3384 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3385 struct vm_exit *vme = &vcpu->exitinfo;
3386
3387 ASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus);
3388
3389 /*
3390 * Check if VM is suspended, only passing the 'vm_exit *' to be
3391 * populated if this check is being performed as part of entry.
3392 */
3393 if (vm_is_suspended(vm, vme)) {
3394 /* Confirm exit details are as expected */
3395 VERIFY3S(vme->exitcode, ==, VM_EXITCODE_SUSPENDED);
3396 VERIFY(vme->u.suspended.how > VM_SUSPEND_NONE &&
3397 vme->u.suspended.how < VM_SUSPEND_LAST);
3398
3399 return (true);
3400 }
3401 if (vcpu->reqidle) {
3402 /*
3403 * Another thread is trying to lock this vCPU and is waiting for
3404 * it to enter the VCPU_IDLE state. Take a lap with a BOGUS
3405 * exit to allow other thread(s) access to this vCPU.
3406 */
3407 vme->exitcode = VM_EXITCODE_BOGUS;
3408 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
3409 return (true);
3410 }
3411 if (vcpu->reqbarrier) {
3412 /*
3413 * Similar to 'reqidle', userspace has requested that this vCPU
3414 * be pushed to a barrier by exiting to userspace. Take that
3415 * lap with BOGUS and clear the flag.
3416 */
3417 vme->exitcode = VM_EXITCODE_BOGUS;
3418 vcpu->reqbarrier = false;
3419 return (true);
3420 }
3421 if (vcpu->reqconsist) {
3422 /*
3423 * We only expect exit-when-consistent requests to be asserted
3424 * during entry, not as an otherwise spontaneous condition. As
3425 * such, we do not count it among the exit statistics, and emit
3426 * the expected BOGUS exitcode, while clearing the request.
3427 */
3428 vme->exitcode = VM_EXITCODE_BOGUS;
3429 vcpu->reqconsist = false;
3430 return (true);
3431 }
3432 if (vcpu_should_yield(vm, vcpuid)) {
3433 vme->exitcode = VM_EXITCODE_BOGUS;
3434 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
3435 return (true);
3436 }
3437 if (CPU_ISSET(vcpuid, &vm->debug_cpus)) {
3438 vme->exitcode = VM_EXITCODE_DEBUG;
3439 return (true);
3440 }
3441
3442 return (false);
3443 }
3444
3445 static bool
vcpu_sleep_bailout_checks(struct vm * vm,int vcpuid)3446 vcpu_sleep_bailout_checks(struct vm *vm, int vcpuid)
3447 {
3448 if (vcpu_bailout_checks(vm, vcpuid)) {
3449 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3450 struct vm_exit *vme = &vcpu->exitinfo;
3451
3452 /*
3453 * Bail-out check done prior to sleeping (in vCPU contexts like
3454 * HLT or wait-for-SIPI) expect that %rip is already populated
3455 * in the vm_exit structure, and we would only modify the
3456 * exitcode and clear the inst_length.
3457 */
3458 vme->inst_length = 0;
3459 return (true);
3460 }
3461 return (false);
3462 }
3463
3464 bool
vcpu_entry_bailout_checks(struct vm * vm,int vcpuid,uint64_t rip)3465 vcpu_entry_bailout_checks(struct vm *vm, int vcpuid, uint64_t rip)
3466 {
3467 if (vcpu_bailout_checks(vm, vcpuid)) {
3468 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3469 struct vm_exit *vme = &vcpu->exitinfo;
3470
3471 /*
3472 * Bail-out checks done as part of VM entry require an updated
3473 * %rip to populate the vm_exit struct if any of the conditions
3474 * of interest are matched in the check.
3475 */
3476 vme->rip = rip;
3477 vme->inst_length = 0;
3478 return (true);
3479 }
3480 return (false);
3481 }
3482
3483 int
vm_vcpu_barrier(struct vm * vm,int vcpuid)3484 vm_vcpu_barrier(struct vm *vm, int vcpuid)
3485 {
3486 if (vcpuid >= 0 && vcpuid < vm->maxcpus) {
3487 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3488
3489 /* Push specified vCPU to barrier */
3490 vcpu_lock(vcpu);
3491 if (CPU_ISSET(vcpuid, &vm->active_cpus)) {
3492 vcpu->reqbarrier = true;
3493 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
3494 }
3495 vcpu_unlock(vcpu);
3496
3497 return (0);
3498 } else if (vcpuid == -1) {
3499 /* Push all (active) vCPUs to barrier */
3500 for (int i = 0; i < vm->maxcpus; i++) {
3501 struct vcpu *vcpu = &vm->vcpu[i];
3502
3503 vcpu_lock(vcpu);
3504 if (CPU_ISSET(vcpuid, &vm->active_cpus)) {
3505 vcpu->reqbarrier = true;
3506 vcpu_notify_event_locked(vcpu,
3507 VCPU_NOTIFY_EXIT);
3508 }
3509 vcpu_unlock(vcpu);
3510 }
3511
3512 return (0);
3513 } else {
3514 return (EINVAL);
3515 }
3516 }
3517
3518 cpuset_t
vm_active_cpus(struct vm * vm)3519 vm_active_cpus(struct vm *vm)
3520 {
3521 return (vm->active_cpus);
3522 }
3523
3524 cpuset_t
vm_debug_cpus(struct vm * vm)3525 vm_debug_cpus(struct vm *vm)
3526 {
3527 return (vm->debug_cpus);
3528 }
3529
3530 void *
vcpu_stats(struct vm * vm,int vcpuid)3531 vcpu_stats(struct vm *vm, int vcpuid)
3532 {
3533
3534 return (vm->vcpu[vcpuid].stats);
3535 }
3536
3537 int
vm_get_x2apic_state(struct vm * vm,int vcpuid,enum x2apic_state * state)3538 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
3539 {
3540 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3541 return (EINVAL);
3542
3543 *state = vm->vcpu[vcpuid].x2apic_state;
3544
3545 return (0);
3546 }
3547
3548 int
vm_set_x2apic_state(struct vm * vm,int vcpuid,enum x2apic_state state)3549 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
3550 {
3551 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
3552 return (EINVAL);
3553
3554 if (state >= X2APIC_STATE_LAST)
3555 return (EINVAL);
3556
3557 vm->vcpu[vcpuid].x2apic_state = state;
3558
3559 vlapic_set_x2apic_state(vm, vcpuid, state);
3560
3561 return (0);
3562 }
3563
3564 /*
3565 * This function is called to ensure that a vcpu "sees" a pending event
3566 * as soon as possible:
3567 * - If the vcpu thread is sleeping then it is woken up.
3568 * - If the vcpu is running on a different host_cpu then an IPI will be directed
3569 * to the host_cpu to cause the vcpu to trap into the hypervisor.
3570 */
3571 static void
vcpu_notify_event_locked(struct vcpu * vcpu,vcpu_notify_t ntype)3572 vcpu_notify_event_locked(struct vcpu *vcpu, vcpu_notify_t ntype)
3573 {
3574 int hostcpu;
3575
3576 ASSERT(ntype == VCPU_NOTIFY_APIC || VCPU_NOTIFY_EXIT);
3577
3578 hostcpu = vcpu->hostcpu;
3579 if (vcpu->state == VCPU_RUNNING) {
3580 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
3581 if (hostcpu != curcpu) {
3582 if (ntype == VCPU_NOTIFY_APIC) {
3583 vlapic_post_intr(vcpu->vlapic, hostcpu);
3584 } else {
3585 poke_cpu(hostcpu);
3586 }
3587 } else {
3588 /*
3589 * If the 'vcpu' is running on 'curcpu' then it must
3590 * be sending a notification to itself (e.g. SELF_IPI).
3591 * The pending event will be picked up when the vcpu
3592 * transitions back to guest context.
3593 */
3594 }
3595 } else {
3596 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
3597 "with hostcpu %d", vcpu->state, hostcpu));
3598 if (vcpu->state == VCPU_SLEEPING) {
3599 cv_signal(&vcpu->vcpu_cv);
3600 }
3601 }
3602 }
3603
3604 void
vcpu_notify_event(struct vm * vm,int vcpuid)3605 vcpu_notify_event(struct vm *vm, int vcpuid)
3606 {
3607 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3608
3609 vcpu_lock(vcpu);
3610 vcpu_notify_event_locked(vcpu, VCPU_NOTIFY_EXIT);
3611 vcpu_unlock(vcpu);
3612 }
3613
3614 void
vcpu_notify_event_type(struct vm * vm,int vcpuid,vcpu_notify_t ntype)3615 vcpu_notify_event_type(struct vm *vm, int vcpuid, vcpu_notify_t ntype)
3616 {
3617 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3618
3619 if (ntype == VCPU_NOTIFY_NONE) {
3620 return;
3621 }
3622
3623 vcpu_lock(vcpu);
3624 vcpu_notify_event_locked(vcpu, ntype);
3625 vcpu_unlock(vcpu);
3626 }
3627
3628 void
vcpu_ustate_change(struct vm * vm,int vcpuid,enum vcpu_ustate ustate)3629 vcpu_ustate_change(struct vm *vm, int vcpuid, enum vcpu_ustate ustate)
3630 {
3631 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3632 const hrtime_t now = gethrtime();
3633
3634 ASSERT3S(ustate, <, VU_MAX);
3635 ASSERT3S(ustate, >=, VU_INIT);
3636
3637 if (ustate == vcpu->ustate) {
3638 return;
3639 }
3640
3641 const hrtime_t delta = now - vcpu->ustate_when;
3642 vcpu->ustate_total[vcpu->ustate] += delta;
3643
3644 membar_producer();
3645
3646 vcpu->ustate_when = now;
3647 vcpu->ustate = ustate;
3648 }
3649
3650 void *
vm_get_cookie(struct vm * vm)3651 vm_get_cookie(struct vm *vm)
3652 {
3653 return (vm->cookie);
3654 }
3655
3656 struct vmspace *
vm_get_vmspace(struct vm * vm)3657 vm_get_vmspace(struct vm *vm)
3658 {
3659
3660 return (vm->vmspace);
3661 }
3662
3663 struct vm_client *
vm_get_vmclient(struct vm * vm,int vcpuid)3664 vm_get_vmclient(struct vm *vm, int vcpuid)
3665 {
3666 return (vm->vcpu[vcpuid].vmclient);
3667 }
3668
3669 int
vm_apicid2vcpuid(struct vm * vm,int apicid)3670 vm_apicid2vcpuid(struct vm *vm, int apicid)
3671 {
3672 /*
3673 * XXX apic id is assumed to be numerically identical to vcpu id
3674 */
3675 return (apicid);
3676 }
3677
3678 struct vatpic *
vm_atpic(struct vm * vm)3679 vm_atpic(struct vm *vm)
3680 {
3681 return (vm->vatpic);
3682 }
3683
3684 struct vatpit *
vm_atpit(struct vm * vm)3685 vm_atpit(struct vm *vm)
3686 {
3687 return (vm->vatpit);
3688 }
3689
3690 struct vpmtmr *
vm_pmtmr(struct vm * vm)3691 vm_pmtmr(struct vm *vm)
3692 {
3693
3694 return (vm->vpmtmr);
3695 }
3696
3697 struct vrtc *
vm_rtc(struct vm * vm)3698 vm_rtc(struct vm *vm)
3699 {
3700
3701 return (vm->vrtc);
3702 }
3703
3704 enum vm_reg_name
vm_segment_name(int seg)3705 vm_segment_name(int seg)
3706 {
3707 static enum vm_reg_name seg_names[] = {
3708 VM_REG_GUEST_ES,
3709 VM_REG_GUEST_CS,
3710 VM_REG_GUEST_SS,
3711 VM_REG_GUEST_DS,
3712 VM_REG_GUEST_FS,
3713 VM_REG_GUEST_GS
3714 };
3715
3716 KASSERT(seg >= 0 && seg < nitems(seg_names),
3717 ("%s: invalid segment encoding %d", __func__, seg));
3718 return (seg_names[seg]);
3719 }
3720
3721 void
vm_copy_teardown(struct vm * vm,int vcpuid,struct vm_copyinfo * copyinfo,uint_t num_copyinfo)3722 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
3723 uint_t num_copyinfo)
3724 {
3725 for (uint_t idx = 0; idx < num_copyinfo; idx++) {
3726 if (copyinfo[idx].cookie != NULL) {
3727 (void) vmp_release((vm_page_t *)copyinfo[idx].cookie);
3728 }
3729 }
3730 bzero(copyinfo, num_copyinfo * sizeof (struct vm_copyinfo));
3731 }
3732
3733 int
vm_copy_setup(struct vm * vm,int vcpuid,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,uint_t num_copyinfo,int * fault)3734 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
3735 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
3736 uint_t num_copyinfo, int *fault)
3737 {
3738 uint_t idx, nused;
3739 size_t n, off, remaining;
3740 vm_client_t *vmc = vm_get_vmclient(vm, vcpuid);
3741
3742 bzero(copyinfo, sizeof (struct vm_copyinfo) * num_copyinfo);
3743
3744 nused = 0;
3745 remaining = len;
3746 while (remaining > 0) {
3747 uint64_t gpa;
3748 int error;
3749
3750 if (nused >= num_copyinfo)
3751 return (EFAULT);
3752 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
3753 if (error || *fault)
3754 return (error);
3755 off = gpa & PAGEOFFSET;
3756 n = min(remaining, PAGESIZE - off);
3757 copyinfo[nused].gpa = gpa;
3758 copyinfo[nused].len = n;
3759 remaining -= n;
3760 gla += n;
3761 nused++;
3762 }
3763
3764 for (idx = 0; idx < nused; idx++) {
3765 vm_page_t *vmp;
3766 caddr_t hva;
3767
3768 vmp = vmc_hold(vmc, copyinfo[idx].gpa & PAGEMASK, prot);
3769 if (vmp == NULL) {
3770 break;
3771 }
3772 if ((prot & PROT_WRITE) != 0) {
3773 hva = (caddr_t)vmp_get_writable(vmp);
3774 } else {
3775 hva = (caddr_t)vmp_get_readable(vmp);
3776 }
3777 copyinfo[idx].hva = hva + (copyinfo[idx].gpa & PAGEOFFSET);
3778 copyinfo[idx].cookie = vmp;
3779 copyinfo[idx].prot = prot;
3780 }
3781
3782 if (idx != nused) {
3783 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
3784 return (EFAULT);
3785 } else {
3786 *fault = 0;
3787 return (0);
3788 }
3789 }
3790
3791 void
vm_copyin(struct vm * vm,int vcpuid,struct vm_copyinfo * copyinfo,void * kaddr,size_t len)3792 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
3793 size_t len)
3794 {
3795 char *dst;
3796 int idx;
3797
3798 dst = kaddr;
3799 idx = 0;
3800 while (len > 0) {
3801 ASSERT(copyinfo[idx].prot & PROT_READ);
3802
3803 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
3804 len -= copyinfo[idx].len;
3805 dst += copyinfo[idx].len;
3806 idx++;
3807 }
3808 }
3809
3810 void
vm_copyout(struct vm * vm,int vcpuid,const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)3811 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
3812 struct vm_copyinfo *copyinfo, size_t len)
3813 {
3814 const char *src;
3815 int idx;
3816
3817 src = kaddr;
3818 idx = 0;
3819 while (len > 0) {
3820 ASSERT(copyinfo[idx].prot & PROT_WRITE);
3821
3822 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
3823 len -= copyinfo[idx].len;
3824 src += copyinfo[idx].len;
3825 idx++;
3826 }
3827 }
3828
3829 /*
3830 * Return the amount of in-use and wired memory for the VM. Since
3831 * these are global stats, only return the values with for vCPU 0
3832 */
3833 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
3834
3835 static void
vm_get_rescnt(struct vm * vm,int vcpu,struct vmm_stat_type * stat)3836 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
3837 {
3838 if (vcpu == 0) {
3839 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
3840 PAGE_SIZE * vmspace_resident_count(vm->vmspace));
3841 }
3842 }
3843
3844 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
3845
3846 int
vm_ioport_access(struct vm * vm,int vcpuid,bool in,uint16_t port,uint8_t bytes,uint32_t * val)3847 vm_ioport_access(struct vm *vm, int vcpuid, bool in, uint16_t port,
3848 uint8_t bytes, uint32_t *val)
3849 {
3850 return (vm_inout_access(&vm->ioports, in, port, bytes, val));
3851 }
3852
3853 /*
3854 * bhyve-internal interfaces to attach or detach IO port handlers.
3855 * Must be called with VM write lock held for safety.
3856 */
3857 int
vm_ioport_attach(struct vm * vm,uint16_t port,ioport_handler_t func,void * arg,void ** cookie)3858 vm_ioport_attach(struct vm *vm, uint16_t port, ioport_handler_t func, void *arg,
3859 void **cookie)
3860 {
3861 int err;
3862 err = vm_inout_attach(&vm->ioports, port, IOPF_DEFAULT, func, arg);
3863 if (err == 0) {
3864 *cookie = (void *)IOP_GEN_COOKIE(func, arg, port);
3865 }
3866 return (err);
3867 }
3868 int
vm_ioport_detach(struct vm * vm,void ** cookie,ioport_handler_t * old_func,void ** old_arg)3869 vm_ioport_detach(struct vm *vm, void **cookie, ioport_handler_t *old_func,
3870 void **old_arg)
3871 {
3872 uint16_t port = IOP_PORT_FROM_COOKIE((uintptr_t)*cookie);
3873 int err;
3874
3875 err = vm_inout_detach(&vm->ioports, port, false, old_func, old_arg);
3876 if (err == 0) {
3877 *cookie = NULL;
3878 }
3879 return (err);
3880 }
3881
3882 /*
3883 * External driver interfaces to attach or detach IO port handlers.
3884 * Must be called with VM write lock held for safety.
3885 */
3886 int
vm_ioport_hook(struct vm * vm,uint16_t port,ioport_handler_t func,void * arg,void ** cookie)3887 vm_ioport_hook(struct vm *vm, uint16_t port, ioport_handler_t func,
3888 void *arg, void **cookie)
3889 {
3890 int err;
3891
3892 if (port == 0) {
3893 return (EINVAL);
3894 }
3895
3896 err = vm_inout_attach(&vm->ioports, port, IOPF_DRV_HOOK, func, arg);
3897 if (err == 0) {
3898 *cookie = (void *)IOP_GEN_COOKIE(func, arg, port);
3899 }
3900 return (err);
3901 }
3902 void
vm_ioport_unhook(struct vm * vm,void ** cookie)3903 vm_ioport_unhook(struct vm *vm, void **cookie)
3904 {
3905 uint16_t port = IOP_PORT_FROM_COOKIE((uintptr_t)*cookie);
3906 ioport_handler_t old_func;
3907 void *old_arg;
3908 int err;
3909
3910 err = vm_inout_detach(&vm->ioports, port, true, &old_func, &old_arg);
3911
3912 /* ioport-hook-using drivers are expected to be well-behaved */
3913 VERIFY0(err);
3914 VERIFY(IOP_GEN_COOKIE(old_func, old_arg, port) == (uintptr_t)*cookie);
3915
3916 *cookie = NULL;
3917 }
3918
3919 int
vmm_kstat_update_vcpu(struct kstat * ksp,int rw)3920 vmm_kstat_update_vcpu(struct kstat *ksp, int rw)
3921 {
3922 struct vm *vm = ksp->ks_private;
3923 vmm_vcpu_kstats_t *vvk = ksp->ks_data;
3924 const int vcpuid = vvk->vvk_vcpu.value.ui32;
3925 struct vcpu *vcpu = &vm->vcpu[vcpuid];
3926
3927 ASSERT3U(vcpuid, <, VM_MAXCPU);
3928
3929 vvk->vvk_time_init.value.ui64 = vcpu->ustate_total[VU_INIT];
3930 vvk->vvk_time_run.value.ui64 = vcpu->ustate_total[VU_RUN];
3931 vvk->vvk_time_idle.value.ui64 = vcpu->ustate_total[VU_IDLE];
3932 vvk->vvk_time_emu_kern.value.ui64 = vcpu->ustate_total[VU_EMU_KERN];
3933 vvk->vvk_time_emu_user.value.ui64 = vcpu->ustate_total[VU_EMU_USER];
3934 vvk->vvk_time_sched.value.ui64 = vcpu->ustate_total[VU_SCHED];
3935
3936 return (0);
3937 }
3938
3939 SET_DECLARE(vmm_data_version_entries, const vmm_data_version_entry_t);
3940
3941 static int
vmm_data_find(const vmm_data_req_t * req,const vmm_data_version_entry_t ** resp)3942 vmm_data_find(const vmm_data_req_t *req, const vmm_data_version_entry_t **resp)
3943 {
3944 const vmm_data_version_entry_t **vdpp, *vdp;
3945
3946 ASSERT(resp != NULL);
3947 ASSERT(req->vdr_result_len != NULL);
3948
3949 SET_FOREACH(vdpp, vmm_data_version_entries) {
3950 vdp = *vdpp;
3951 if (vdp->vdve_class != req->vdr_class ||
3952 vdp->vdve_version != req->vdr_version) {
3953 continue;
3954 }
3955
3956 /*
3957 * Enforce any data length expectation expressed by the provider
3958 * for this data.
3959 */
3960 if (vdp->vdve_len_expect != 0 &&
3961 vdp->vdve_len_expect > req->vdr_len) {
3962 *req->vdr_result_len = vdp->vdve_len_expect;
3963 return (ENOSPC);
3964 }
3965
3966 /*
3967 * Make sure that the provided vcpuid is acceptable for the
3968 * backend handler.
3969 */
3970 if (vdp->vdve_readf != NULL || vdp->vdve_writef != NULL) {
3971 /*
3972 * While it is tempting to demand the -1 sentinel value
3973 * in vcpuid here, that expectation was not established
3974 * for early consumers, so it is ignored.
3975 */
3976 } else if (vdp->vdve_vcpu_readf != NULL ||
3977 vdp->vdve_vcpu_writef != NULL) {
3978 /*
3979 * Per-vCPU handlers which permit "wildcard" access will
3980 * accept a vcpuid of -1 (for VM-wide data), while all
3981 * others expect vcpuid [0, VM_MAXCPU).
3982 */
3983 const int llimit = vdp->vdve_vcpu_wildcard ? -1 : 0;
3984 if (req->vdr_vcpuid < llimit ||
3985 req->vdr_vcpuid >= VM_MAXCPU) {
3986 return (EINVAL);
3987 }
3988 } else {
3989 /*
3990 * A provider with neither VM-wide nor per-vCPU handlers
3991 * is completely unexpected. Such a situation should be
3992 * made into a compile-time error. Bail out for now,
3993 * rather than punishing the user with a panic.
3994 */
3995 return (EINVAL);
3996 }
3997
3998
3999 *resp = vdp;
4000 return (0);
4001 }
4002 return (EINVAL);
4003 }
4004
4005 static void *
vmm_data_from_class(const vmm_data_req_t * req,struct vm * vm)4006 vmm_data_from_class(const vmm_data_req_t *req, struct vm *vm)
4007 {
4008 switch (req->vdr_class) {
4009 case VDC_REGISTER:
4010 case VDC_MSR:
4011 case VDC_FPU:
4012 case VDC_LAPIC:
4013 case VDC_VMM_ARCH:
4014 /*
4015 * These have per-CPU handling which is dispatched outside
4016 * vmm_data_version_entries listing.
4017 */
4018 panic("Unexpected per-vcpu class %u", req->vdr_class);
4019 break;
4020
4021 case VDC_IOAPIC:
4022 return (vm->vioapic);
4023 case VDC_ATPIT:
4024 return (vm->vatpit);
4025 case VDC_ATPIC:
4026 return (vm->vatpic);
4027 case VDC_HPET:
4028 return (vm->vhpet);
4029 case VDC_PM_TIMER:
4030 return (vm->vpmtmr);
4031 case VDC_RTC:
4032 return (vm->vrtc);
4033 case VDC_VMM_TIME:
4034 return (vm);
4035 case VDC_VERSION:
4036 /*
4037 * Play along with all of the other classes which need backup
4038 * data, even though version info does not require it.
4039 */
4040 return (vm);
4041
4042 default:
4043 /* The data class will have been validated by now */
4044 panic("Unexpected class %u", req->vdr_class);
4045 }
4046 }
4047
4048 const uint32_t default_msr_iter[] = {
4049 /*
4050 * Although EFER is also available via the get/set-register interface,
4051 * we include it in the default list of emitted MSRs.
4052 */
4053 MSR_EFER,
4054
4055 /*
4056 * While gsbase and fsbase are accessible via the MSR accessors, they
4057 * are not included in MSR iteration since they are covered by the
4058 * segment descriptor interface too.
4059 */
4060 MSR_KGSBASE,
4061
4062 MSR_STAR,
4063 MSR_LSTAR,
4064 MSR_CSTAR,
4065 MSR_SF_MASK,
4066
4067 MSR_SYSENTER_CS_MSR,
4068 MSR_SYSENTER_ESP_MSR,
4069 MSR_SYSENTER_EIP_MSR,
4070
4071 MSR_PAT,
4072
4073 MSR_TSC,
4074
4075 MSR_MTRRcap,
4076 MSR_MTRRdefType,
4077 MSR_MTRR4kBase, MSR_MTRR4kBase + 1, MSR_MTRR4kBase + 2,
4078 MSR_MTRR4kBase + 3, MSR_MTRR4kBase + 4, MSR_MTRR4kBase + 5,
4079 MSR_MTRR4kBase + 6, MSR_MTRR4kBase + 7,
4080 MSR_MTRR16kBase, MSR_MTRR16kBase + 1,
4081 MSR_MTRR64kBase,
4082 };
4083
4084 static int
vmm_data_read_msr(struct vm * vm,int vcpuid,uint32_t msr,uint64_t * value)4085 vmm_data_read_msr(struct vm *vm, int vcpuid, uint32_t msr, uint64_t *value)
4086 {
4087 int err = 0;
4088
4089 switch (msr) {
4090 case MSR_TSC:
4091 /*
4092 * The vmm-data interface for MSRs provides access to the
4093 * per-vCPU offset of the TSC, when reading/writing MSR_TSC.
4094 *
4095 * The VM-wide offset (and scaling) of the guest TSC is accessed
4096 * via the VMM_TIME data class.
4097 */
4098 *value = vm->vcpu[vcpuid].tsc_offset;
4099 return (0);
4100
4101 default:
4102 if (is_mtrr_msr(msr)) {
4103 err = vm_rdmtrr(&vm->vcpu[vcpuid].mtrr, msr, value);
4104 } else {
4105 err = ops->vmgetmsr(vm->cookie, vcpuid, msr, value);
4106 }
4107 break;
4108 }
4109
4110 return (err);
4111 }
4112
4113 static int
vmm_data_write_msr(struct vm * vm,int vcpuid,uint32_t msr,uint64_t value)4114 vmm_data_write_msr(struct vm *vm, int vcpuid, uint32_t msr, uint64_t value)
4115 {
4116 int err = 0;
4117
4118 switch (msr) {
4119 case MSR_TSC:
4120 /* See vmm_data_read_msr() for more detail */
4121 vm->vcpu[vcpuid].tsc_offset = value;
4122 return (0);
4123 case MSR_MTRRcap: {
4124 /*
4125 * MTRRcap is read-only. If the desired value matches the
4126 * existing one, consider it a success.
4127 */
4128 uint64_t comp;
4129 err = vm_rdmtrr(&vm->vcpu[vcpuid].mtrr, msr, &comp);
4130 if (err == 0 && comp != value) {
4131 return (EINVAL);
4132 }
4133 break;
4134 }
4135 default:
4136 if (is_mtrr_msr(msr)) {
4137 /* MTRRcap is already handled above */
4138 ASSERT3U(msr, !=, MSR_MTRRcap);
4139
4140 err = vm_wrmtrr(&vm->vcpu[vcpuid].mtrr, msr, value);
4141 } else {
4142 err = ops->vmsetmsr(vm->cookie, vcpuid, msr, value);
4143 }
4144 break;
4145 }
4146
4147 return (err);
4148 }
4149
4150 static int
vmm_data_read_msrs(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4151 vmm_data_read_msrs(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4152 {
4153 VERIFY3U(req->vdr_class, ==, VDC_MSR);
4154 VERIFY3U(req->vdr_version, ==, 1);
4155
4156 struct vdi_field_entry_v1 *entryp = req->vdr_data;
4157
4158 /* Specific MSRs requested */
4159 if ((req->vdr_flags & VDX_FLAG_READ_COPYIN) != 0) {
4160 const uint_t count =
4161 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4162
4163 for (uint_t i = 0; i < count; i++, entryp++) {
4164 int err = vmm_data_read_msr(vm, vcpuid,
4165 entryp->vfe_ident, &entryp->vfe_value);
4166
4167 if (err != 0) {
4168 return (err);
4169 }
4170 }
4171
4172 *req->vdr_result_len =
4173 count * sizeof (struct vdi_field_entry_v1);
4174 return (0);
4175 }
4176
4177 /*
4178 * If specific MSRs are not requested, try to provide all those which we
4179 * know about instead.
4180 */
4181 const uint_t num_msrs = nitems(default_msr_iter) +
4182 (VMM_MTRR_VAR_MAX * 2);
4183 const uint32_t output_len =
4184 num_msrs * sizeof (struct vdi_field_entry_v1);
4185
4186 *req->vdr_result_len = output_len;
4187 if (req->vdr_len < output_len) {
4188 return (ENOSPC);
4189 }
4190
4191 /* Output the MSRs in the default list */
4192 for (uint_t i = 0; i < nitems(default_msr_iter); i++, entryp++) {
4193 entryp->vfe_ident = default_msr_iter[i];
4194
4195 /* All of these MSRs are expected to work */
4196 VERIFY0(vmm_data_read_msr(vm, vcpuid, entryp->vfe_ident,
4197 &entryp->vfe_value));
4198 }
4199
4200 /* Output the variable MTRRs */
4201 for (uint_t i = 0; i < (VMM_MTRR_VAR_MAX * 2); i++, entryp++) {
4202 entryp->vfe_ident = MSR_MTRRVarBase + i;
4203
4204 /* All of these MSRs are expected to work */
4205 VERIFY0(vmm_data_read_msr(vm, vcpuid, entryp->vfe_ident,
4206 &entryp->vfe_value));
4207 }
4208 return (0);
4209 }
4210
4211 static int
vmm_data_write_msrs(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4212 vmm_data_write_msrs(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4213 {
4214 VERIFY3U(req->vdr_class, ==, VDC_MSR);
4215 VERIFY3U(req->vdr_version, ==, 1);
4216
4217 const struct vdi_field_entry_v1 *entryp = req->vdr_data;
4218 const uint_t entry_count =
4219 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4220
4221 /*
4222 * First make sure that all of the MSRs can be manipulated.
4223 * For now, this check is done by going though the getmsr handler
4224 */
4225 for (uint_t i = 0; i < entry_count; i++, entryp++) {
4226 const uint64_t msr = entryp->vfe_ident;
4227 uint64_t val;
4228
4229 if (vmm_data_read_msr(vm, vcpuid, msr, &val) != 0) {
4230 return (EINVAL);
4231 }
4232 }
4233
4234 /*
4235 * Fairly confident that all of the 'set' operations are at least
4236 * targeting valid MSRs, continue on.
4237 */
4238 entryp = req->vdr_data;
4239 for (uint_t i = 0; i < entry_count; i++, entryp++) {
4240 int err = vmm_data_write_msr(vm, vcpuid, entryp->vfe_ident,
4241 entryp->vfe_value);
4242
4243 if (err != 0) {
4244 return (err);
4245 }
4246 }
4247 *req->vdr_result_len = entry_count * sizeof (struct vdi_field_entry_v1);
4248
4249 return (0);
4250 }
4251
4252 static const vmm_data_version_entry_t msr_v1 = {
4253 .vdve_class = VDC_MSR,
4254 .vdve_version = 1,
4255 .vdve_len_per_item = sizeof (struct vdi_field_entry_v1),
4256 .vdve_vcpu_readf = vmm_data_read_msrs,
4257 .vdve_vcpu_writef = vmm_data_write_msrs,
4258 };
4259 VMM_DATA_VERSION(msr_v1);
4260
4261 static const uint32_t vmm_arch_v1_fields[] = {
4262 VAI_VM_IS_PAUSED,
4263 };
4264
4265 static const uint32_t vmm_arch_v1_vcpu_fields[] = {
4266 VAI_PEND_NMI,
4267 VAI_PEND_EXTINT,
4268 VAI_PEND_EXCP,
4269 VAI_PEND_INTINFO,
4270 };
4271
4272 static bool
vmm_read_arch_field(struct vm * vm,int vcpuid,uint32_t ident,uint64_t * valp)4273 vmm_read_arch_field(struct vm *vm, int vcpuid, uint32_t ident, uint64_t *valp)
4274 {
4275 ASSERT(valp != NULL);
4276
4277 if (vcpuid == -1) {
4278 switch (ident) {
4279 case VAI_VM_IS_PAUSED:
4280 *valp = vm->is_paused ? 1 : 0;
4281 return (true);
4282 default:
4283 break;
4284 }
4285 } else {
4286 VERIFY(vcpuid >= 0 && vcpuid <= VM_MAXCPU);
4287
4288 struct vcpu *vcpu = &vm->vcpu[vcpuid];
4289 switch (ident) {
4290 case VAI_PEND_NMI:
4291 *valp = vcpu->nmi_pending != 0 ? 1 : 0;
4292 return (true);
4293 case VAI_PEND_EXTINT:
4294 *valp = vcpu->extint_pending != 0 ? 1 : 0;
4295 return (true);
4296 case VAI_PEND_EXCP:
4297 *valp = vcpu->exc_pending;
4298 return (true);
4299 case VAI_PEND_INTINFO:
4300 *valp = vcpu->exit_intinfo;
4301 return (true);
4302 default:
4303 break;
4304 }
4305 }
4306 return (false);
4307 }
4308
4309 static int
vmm_data_read_varch(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4310 vmm_data_read_varch(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4311 {
4312 VERIFY3U(req->vdr_class, ==, VDC_VMM_ARCH);
4313 VERIFY3U(req->vdr_version, ==, 1);
4314
4315 /* per-vCPU fields are handled separately from VM-wide ones */
4316 if (vcpuid != -1 && (vcpuid < 0 || vcpuid >= VM_MAXCPU)) {
4317 return (EINVAL);
4318 }
4319
4320 struct vdi_field_entry_v1 *entryp = req->vdr_data;
4321
4322 /* Specific fields requested */
4323 if ((req->vdr_flags & VDX_FLAG_READ_COPYIN) != 0) {
4324 const uint_t count =
4325 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4326
4327 for (uint_t i = 0; i < count; i++, entryp++) {
4328 if (!vmm_read_arch_field(vm, vcpuid, entryp->vfe_ident,
4329 &entryp->vfe_value)) {
4330 return (EINVAL);
4331 }
4332 }
4333 *req->vdr_result_len =
4334 count * sizeof (struct vdi_field_entry_v1);
4335 return (0);
4336 }
4337
4338 /* Emit all of the possible values */
4339 const uint32_t *idents;
4340 uint_t ident_count;
4341
4342 if (vcpuid == -1) {
4343 idents = vmm_arch_v1_fields;
4344 ident_count = nitems(vmm_arch_v1_fields);
4345 } else {
4346 idents = vmm_arch_v1_vcpu_fields;
4347 ident_count = nitems(vmm_arch_v1_vcpu_fields);
4348
4349 }
4350
4351 const uint32_t total_size =
4352 ident_count * sizeof (struct vdi_field_entry_v1);
4353
4354 *req->vdr_result_len = total_size;
4355 if (req->vdr_len < total_size) {
4356 return (ENOSPC);
4357 }
4358 for (uint_t i = 0; i < ident_count; i++, entryp++) {
4359 entryp->vfe_ident = idents[i];
4360 VERIFY(vmm_read_arch_field(vm, vcpuid, entryp->vfe_ident,
4361 &entryp->vfe_value));
4362 }
4363 return (0);
4364 }
4365
4366 static int
vmm_data_write_varch_vcpu(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4367 vmm_data_write_varch_vcpu(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4368 {
4369 VERIFY3U(req->vdr_class, ==, VDC_VMM_ARCH);
4370 VERIFY3U(req->vdr_version, ==, 1);
4371
4372 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) {
4373 return (EINVAL);
4374 }
4375
4376 const struct vdi_field_entry_v1 *entryp = req->vdr_data;
4377 const uint_t entry_count =
4378 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4379 struct vcpu *vcpu = &vm->vcpu[vcpuid];
4380
4381 for (uint_t i = 0; i < entry_count; i++, entryp++) {
4382 const uint64_t val = entryp->vfe_value;
4383
4384 switch (entryp->vfe_ident) {
4385 case VAI_PEND_NMI:
4386 vcpu->nmi_pending = (val != 0);
4387 break;
4388 case VAI_PEND_EXTINT:
4389 vcpu->extint_pending = (val != 0);
4390 break;
4391 case VAI_PEND_EXCP:
4392 if (!VM_INTINFO_PENDING(val)) {
4393 vcpu->exc_pending = 0;
4394 } else if (VM_INTINFO_TYPE(val) != VM_INTINFO_HWEXCP ||
4395 (val & VM_INTINFO_MASK_RSVD) != 0) {
4396 /* reject improperly-formed hw exception */
4397 return (EINVAL);
4398 } else {
4399 vcpu->exc_pending = val;
4400 }
4401 break;
4402 case VAI_PEND_INTINFO:
4403 if (vm_exit_intinfo(vm, vcpuid, val) != 0) {
4404 return (EINVAL);
4405 }
4406 break;
4407 default:
4408 return (EINVAL);
4409 }
4410 }
4411
4412 *req->vdr_result_len = entry_count * sizeof (struct vdi_field_entry_v1);
4413 return (0);
4414 }
4415
4416 static int
vmm_data_write_varch(struct vm * vm,int vcpuid,const vmm_data_req_t * req)4417 vmm_data_write_varch(struct vm *vm, int vcpuid, const vmm_data_req_t *req)
4418 {
4419 VERIFY3U(req->vdr_class, ==, VDC_VMM_ARCH);
4420 VERIFY3U(req->vdr_version, ==, 1);
4421
4422 /* per-vCPU fields are handled separately from VM-wide ones */
4423 if (vcpuid != -1) {
4424 return (vmm_data_write_varch_vcpu(vm, vcpuid, req));
4425 }
4426
4427 const struct vdi_field_entry_v1 *entryp = req->vdr_data;
4428 const uint_t entry_count =
4429 req->vdr_len / sizeof (struct vdi_field_entry_v1);
4430
4431 if (entry_count > 0) {
4432 if (entryp->vfe_ident == VAI_VM_IS_PAUSED) {
4433 /*
4434 * The VM_PAUSE and VM_RESUME ioctls are the officially
4435 * sanctioned mechanisms for setting the is-paused state
4436 * of the VM.
4437 */
4438 return (EPERM);
4439 } else {
4440 /* no other valid arch entries at this time */
4441 return (EINVAL);
4442 }
4443 }
4444
4445 *req->vdr_result_len = entry_count * sizeof (struct vdi_field_entry_v1);
4446 return (0);
4447 }
4448
4449 static const vmm_data_version_entry_t vmm_arch_v1 = {
4450 .vdve_class = VDC_VMM_ARCH,
4451 .vdve_version = 1,
4452 .vdve_len_per_item = sizeof (struct vdi_field_entry_v1),
4453 .vdve_vcpu_readf = vmm_data_read_varch,
4454 .vdve_vcpu_writef = vmm_data_write_varch,
4455
4456 /*
4457 * Handlers for VMM_ARCH can process VM-wide (vcpuid == -1) entries in
4458 * addition to vCPU specific ones.
4459 */
4460 .vdve_vcpu_wildcard = true,
4461 };
4462 VMM_DATA_VERSION(vmm_arch_v1);
4463
4464
4465 /*
4466 * GUEST TIME SUPPORT
4467 *
4468 * Broadly, there are two categories of functionality related to time passing in
4469 * the guest: the guest's TSC and timers used by emulated devices.
4470 *
4471 * ---------------------------
4472 * GUEST TSC "VIRTUALIZATION"
4473 * ---------------------------
4474 *
4475 * The TSC can be read either via an instruction (rdtsc/rdtscp) or by reading
4476 * the TSC MSR.
4477 *
4478 * When a guest reads the TSC via its MSR, the guest will exit and we emulate
4479 * the rdmsr. More typically, the guest reads the TSC via a rdtsc(p)
4480 * instruction. Both SVM and VMX support virtualizing the guest TSC in hardware
4481 * -- that is, a guest will not generally exit on a rdtsc instruction.
4482 *
4483 * To support hardware-virtualized guest TSC, both SVM and VMX provide two knobs
4484 * for the hypervisor to adjust the guest's view of the TSC:
4485 * - TSC offset
4486 * - TSC frequency multiplier (also called "frequency ratio")
4487 *
4488 * When a guest calls rdtsc(p), the TSC value it sees is the sum of:
4489 * guest_tsc = (host TSC, scaled according to frequency multiplier)
4490 * + (TSC offset, programmed by hypervisor)
4491 *
4492 * See the discussions of the TSC offset and frequency multiplier below for more
4493 * details on each of these.
4494 *
4495 * --------------------
4496 * TSC OFFSET OVERVIEW
4497 * --------------------
4498 *
4499 * The TSC offset is a value added to the host TSC (which may be scaled first)
4500 * to provide the guest TSC. This offset addition is generally done by hardware,
4501 * but may be used in emulating the TSC if necessary.
4502 *
4503 * Recall that general formula for calculating the guest TSC is:
4504 *
4505 * guest_tsc = (host TSC, scaled if needed) + TSC offset
4506 *
4507 * Intuitively, the TSC offset is simply an offset of the host's TSC to make the
4508 * guest's view of the TSC appear correct: The guest TSC should be 0 at boot and
4509 * monotonically increase at a roughly constant frequency. Thus in the simplest
4510 * case, the TSC offset is just the negated value of the host TSC when the guest
4511 * was booted, assuming they have the same frequencies.
4512 *
4513 * In practice, there are several factors that can make calculating the TSC
4514 * offset more complicated, including:
4515 *
4516 * (1) the physical CPU the guest is running on
4517 * (2) whether the guest has written to the TSC of that vCPU
4518 * (3) differing host and guest frequencies, like after a live migration
4519 * (4) a guest running on a different system than where it was booted, like
4520 * after a live migration
4521 *
4522 * We will explore each of these factors individually. See below for a
4523 * summary.
4524 *
4525 *
4526 * (1) Physical CPU offsets
4527 *
4528 * The system maintains a set of per-CPU offsets to the TSC to provide a
4529 * consistent view of the TSC regardless of the CPU a thread is running on.
4530 * These offsets are included automatically as a part of rdtsc_offset().
4531 *
4532 * The per-CPU offset must be included as a part reading the host TSC when
4533 * calculating the offset before running the guest on a given CPU.
4534 *
4535 *
4536 * (2) Guest TSC writes (vCPU offsets)
4537 *
4538 * The TSC is a writable MSR. When a guest writes to the TSC, this operation
4539 * should result in the TSC, when read from that vCPU, shows the value written,
4540 * plus whatever time has elapsed since the read.
4541 *
4542 * To support this, when the guest writes to the TSC, we store an additional
4543 * vCPU offset calculated to make future reads of the TSC map to what the guest
4544 * expects.
4545 *
4546 *
4547 * (3) Differing host and guest frequencies (host TSC scaling)
4548 *
4549 * A guest has the same frequency of its host when it boots, but it may be
4550 * migrated to a machine with a different TSC frequency. Systems expect that
4551 * their TSC frequency does not change. To support this fiction in which a guest
4552 * is running on hardware of a different TSC frequency, the hypervisor can
4553 * program a "frequency multiplier" that represents the ratio of guest/host
4554 * frequency.
4555 *
4556 * Any time a host TSC is used in calculations for the offset, it should be
4557 * "scaled" according to this multiplier, and the hypervisor should program the
4558 * multiplier before running a guest so that the hardware virtualization of the
4559 * TSC functions properly. Similarly, the multiplier should be used in any TSC
4560 * emulation.
4561 *
4562 * See below for more details about the frequency multiplier.
4563 *
4564 *
4565 * (4) Guest running on a system it did not boot on ("base guest TSC")
4566 *
4567 * When a guest boots, its TSC offset is simply the negated host TSC at the time
4568 * it booted. If a guest is migrated from a source host to a target host, the
4569 * TSC offset from the source host is no longer useful for several reasons:
4570 * - the target host TSC has no relationship to the source host TSC
4571 * - the guest did not boot on the target system, so the TSC of the target host
4572 * is not sufficient to describe how long the guest has been running prior to
4573 * migration
4574 * - the target system may have a different TSC frequency than the source system
4575 *
4576 * Ignoring the issue of frequency differences for a moment, let's consider how
4577 * to re-align the guest TSC with the host TSC of the target host. Intuitively,
4578 * for the guest to see the correct TSC, we still want to add some offset to the
4579 * host TSC that offsets how long this guest has been running on
4580 * the system.
4581 *
4582 * An example here might be helpful. Consider a source host and target host,
4583 * both with TSC frequencies of 1GHz. On the source host, the guest and host TSC
4584 * values might look like:
4585 *
4586 * +----------------------------------------------------------------------+
4587 * | Event | source host TSC | guest TSC |
4588 * ------------------------------------------------------------------------
4589 * | guest boot (t=0s) | 5000000000 | 5000000000 + -5000000000 |
4590 * | | | 0 |
4591 * ------------------------------------------------------------------------
4592 * | guest rdtsc (t=10s)) | 15000000000 | 15000000000 + -5000000000 |
4593 * | | | 10000000000 |
4594 * ------------------------------------------------------------------------
4595 * | migration (t=15s) | 20000000000 | 20000000000 + -5000000000 |
4596 * | | | 15000000000 |
4597 * +----------------------------------------------------------------------+
4598 *
4599 * Ignoring the time it takes for a guest to physically migrate machines, on the
4600 * target host, we would expect the TSC to continue functioning as such:
4601 *
4602 * +----------------------------------------------------------------------+
4603 * | Event | target host TSC | guest TSC |
4604 * ------------------------------------------------------------------------
4605 * | guest migrate (t=15s) | 300000000000 | 15000000000 |
4606 * ------------------------------------------------------------------------
4607 * | guest rdtsc (t=20s)) | 305000000000 | 20000000000 |
4608 * ------------------------------------------------------------------------
4609 *
4610 * In order to produce a correct TSC value here, we can calculate a new
4611 * "effective" boot TSC that maps to what the host TSC would've been had it been
4612 * booted on the target. We add that to the guest TSC when it began to run on
4613 * this machine, and negate them both to get a new offset. In this example, the
4614 * effective boot TSC is: -(300000000000 - 15000000000) = -285000000000.
4615 *
4616 * +-------------------------------------------------------------------------+
4617 * | Event | target host TSC | guest TSC |
4618 * ---------------------------------------------------------------------------
4619 * | guest "boot" (t=0s) | 285000000000 | 285000000000 + -285000000000 |
4620 * | | | 0 |
4621 * ---------------------------------------------------------------------------
4622 * | guest migrate (t=15s) | 300000000000 | 300000000000 + -285000000000 |
4623 * | | | 15000000000 |
4624 * ---------------------------------------------------------------------------
4625 * | guest rdtsc (t=20s)) | 305000000000 | 305000000000 + -285000000000 |
4626 * | | | 20000000000 |
4627 * --------------------------------------------------------------------------+
4628 *
4629 * To support the offset calculation following a migration, the VMM data time
4630 * interface allows callers to set a "base guest TSC", which is the TSC value of
4631 * the guest when it began running on the host. The current guest TSC can be
4632 * requested via a read of the time data. See below for details on that
4633 * interface.
4634 *
4635 * Frequency differences between the host and the guest are accounted for when
4636 * scaling the host TSC. See below for details on the frequency multiplier.
4637 *
4638 *
4639 * --------------------
4640 * TSC OFFSET SUMMARY
4641 * --------------------
4642 *
4643 * Factoring in all of the components to the TSC above, the TSC offset that is
4644 * programmed by the hypervisor before running a given vCPU is:
4645 *
4646 * offset = -((base host TSC, scaled if needed) - base_guest_tsc) + vCPU offset
4647 *
4648 * This offset is stored in two pieces. Per-vCPU offsets are stored with the
4649 * given vCPU and added in when programming the offset. The rest of the offset
4650 * is stored as a VM-wide offset, and computed either at boot or when the time
4651 * data is written to.
4652 *
4653 * It is safe to add the vCPU offset and the VM-wide offsets together because
4654 * the vCPU offset is in terms of the guest TSC. The host TSC is scaled before
4655 * using it in calculations, so all TSC values are applicable to the same
4656 * frequency.
4657 *
4658 * Note: Though both the VM-wide offset and per-vCPU offsets may be negative, we
4659 * store them as unsigned values and perform all offsetting math unsigned. This
4660 * is to avoid UB from signed overflow.
4661 *
4662 * -------------------------
4663 * TSC FREQUENCY MULTIPLIER
4664 * -------------------------
4665 *
4666 * In order to account for frequency differences between the host and guest, SVM
4667 * and VMX provide an interface to set a "frequency multiplier" (or "frequency
4668 * ratio") representing guest to host frequency. In a hardware-virtualized read
4669 * of the TSC, the host TSC is scaled using this multiplier prior to adding the
4670 * programmed TSC offset.
4671 *
4672 * Both platforms represent the ratio as a fixed point number, where the lower
4673 * bits are used as a fractional component, and some number of the upper bits
4674 * are used as the integer component.
4675 *
4676 * Some example multipliers, for a platform with FRAC fractional bits in the
4677 * multiplier:
4678 * - guest frequency == host: 1 << FRAC
4679 * - guest frequency is 2x host: 1 << (FRAC + 1)
4680 * - guest frequency is 0.5x host: 1 << (FRAC - 1), as the highest-order
4681 * fractional bit represents 1/2
4682 * - guest frequency is 2.5x host: (1 << FRAC) | (1 << (FRAC - 1))
4683 * and so on.
4684 *
4685 * In general, the frequency multiplier is calculated as follows:
4686 * (guest_hz * (1 << FRAC_SIZE)) / host_hz
4687 *
4688 * The multiplier should be used any time the host TSC value is used in
4689 * calculations with the guest TSC (and their frequencies differ). The function
4690 * `vmm_scale_tsc` is intended to be used for these purposes, as it will scale
4691 * the host TSC only if needed.
4692 *
4693 * The multiplier should also be programmed by the hypervisor before the guest
4694 * is run.
4695 *
4696 *
4697 * ----------------------------
4698 * DEVICE TIMERS (BOOT_HRTIME)
4699 * ----------------------------
4700 *
4701 * Emulated devices use timers to do things such as scheduling periodic events.
4702 * These timers are scheduled relative to the hrtime of the host. When device
4703 * state is exported or imported, we use boot_hrtime to normalize these timers
4704 * against the host hrtime. The boot_hrtime represents the hrtime of the host
4705 * when the guest was booted.
4706 *
4707 * If a guest is migrated to a different machine, boot_hrtime must be adjusted
4708 * to match the hrtime of when the guest was effectively booted on the target
4709 * host. This allows timers to continue functioning when device state is
4710 * imported on the target.
4711 *
4712 *
4713 * ------------------------
4714 * VMM DATA TIME INTERFACE
4715 * ------------------------
4716 *
4717 * In order to facilitate live migrations of guests, we provide an interface,
4718 * via the VMM data read/write ioctls, for userspace to make changes to the
4719 * guest's view of the TSC and device timers, allowing these features to
4720 * continue functioning after a migration.
4721 *
4722 * The interface was designed to expose the minimal amount of data needed for a
4723 * userspace component to make adjustments to the guest's view of time (e.g., to
4724 * account for time passing in a live migration). At a minimum, such a program
4725 * needs:
4726 * - the current guest TSC
4727 * - guest TSC frequency
4728 * - guest's boot_hrtime
4729 * - timestamps of when this data was taken (hrtime for hrtime calculations, and
4730 * wall clock time for computing time deltas between machines)
4731 *
4732 * The wall clock time is provided for consumers to make adjustments to the
4733 * guest TSC and boot_hrtime based on deltas observed during migrations. It may
4734 * be prudent for consumers to use this data only in circumstances where the
4735 * source and target have well-synchronized wall clocks, but nothing in the
4736 * interface depends on this assumption.
4737 *
4738 * On writes, consumers write back:
4739 * - the base guest TSC (used for TSC offset calculations)
4740 * - desired boot_hrtime
4741 * - guest_frequency (cannot change)
4742 * - hrtime of when this data was adjusted
4743 * - (wall clock time on writes is ignored)
4744 *
4745 * The interface will adjust the input guest TSC slightly, based on the input
4746 * hrtime, to account for latency between userspace calculations and application
4747 * of the data on the kernel side. This amounts to adding a small amount of
4748 * additional "uptime" for the guest.
4749 *
4750 * After the adjustments, the interface updates the VM-wide TSC offset and
4751 * boot_hrtime. Per-vCPU offsets are not adjusted, as those are already in terms
4752 * of the guest TSC and can be exported/imported via the MSR VMM data interface.
4753 *
4754 *
4755 * --------------------------------
4756 * SUPPORTED PLATFORMS AND CAVEATS
4757 * --------------------------------
4758 *
4759 * While both VMX and SVM offer TSC scaling as a feature, at this time only SVM
4760 * is supported by bhyve.
4761 *
4762 * The time data interface is designed such that Intel support can be added
4763 * easily, and all other aspects of the time interface should work on Intel.
4764 * (Without frequency control though, in practice, doing live migrations of
4765 * guests on Intel will not work for time-related things, as two machines
4766 * rarely have exactly the same frequency).
4767 *
4768 * Additionally, while on both SVM and VMX the frequency multiplier is a fixed
4769 * point number, each uses a different number of fractional and integer bits for
4770 * the multiplier. As such, calculating the multiplier and fractional bit size
4771 * is requested via the vmm_ops.
4772 *
4773 * Care should be taken to set reasonable limits for ratios based on the
4774 * platform, as the difference in fractional bits can lead to slightly different
4775 * tradeoffs in terms of representable ratios and potentially overflowing
4776 * calculations.
4777 */
4778
4779 /*
4780 * Scales the TSC if needed, based on the input frequency multiplier.
4781 */
4782 static uint64_t
vmm_scale_tsc(uint64_t tsc,uint64_t mult)4783 vmm_scale_tsc(uint64_t tsc, uint64_t mult)
4784 {
4785 const uint32_t frac_size = ops->fr_fracsize;
4786
4787 if (mult != VM_TSCM_NOSCALE) {
4788 VERIFY3U(frac_size, >, 0);
4789 return (scale_tsc(tsc, mult, frac_size));
4790 } else {
4791 return (tsc);
4792 }
4793 }
4794
4795 /*
4796 * Calculate the frequency multiplier, which represents the ratio of
4797 * guest_hz / host_hz. The frequency multiplier is a fixed point number with
4798 * `frac_sz` fractional bits (fractional bits begin at bit 0).
4799 *
4800 * See comment for "calc_freq_multiplier" in "vmm_time_support.S" for more
4801 * information about valid input to this function.
4802 */
4803 uint64_t
vmm_calc_freq_multiplier(uint64_t guest_hz,uint64_t host_hz,uint32_t frac_size)4804 vmm_calc_freq_multiplier(uint64_t guest_hz, uint64_t host_hz,
4805 uint32_t frac_size)
4806 {
4807 VERIFY3U(guest_hz, !=, 0);
4808 VERIFY3U(frac_size, >, 0);
4809 VERIFY3U(frac_size, <, 64);
4810
4811 return (calc_freq_multiplier(guest_hz, host_hz, frac_size));
4812 }
4813
4814 /*
4815 * Calculate the guest VM-wide TSC offset.
4816 *
4817 * offset = - ((base host TSC, scaled if needed) - base_guest_tsc)
4818 *
4819 * The base_host_tsc and the base_guest_tsc are the TSC values of the host
4820 * (read on the system) and the guest (calculated) at the same point in time.
4821 * This allows us to fix the guest TSC at this point in time as a base, either
4822 * following boot (guest TSC = 0), or a change to the guest's time data from
4823 * userspace (such as in the case of a migration).
4824 */
4825 static uint64_t
calc_tsc_offset(uint64_t base_host_tsc,uint64_t base_guest_tsc,uint64_t mult)4826 calc_tsc_offset(uint64_t base_host_tsc, uint64_t base_guest_tsc, uint64_t mult)
4827 {
4828 const uint64_t htsc_scaled = vmm_scale_tsc(base_host_tsc, mult);
4829 if (htsc_scaled > base_guest_tsc) {
4830 return ((uint64_t)(- (int64_t)(htsc_scaled - base_guest_tsc)));
4831 } else {
4832 return (base_guest_tsc - htsc_scaled);
4833 }
4834 }
4835
4836 /*
4837 * Calculate an estimate of the guest TSC.
4838 *
4839 * guest_tsc = (host TSC, scaled if needed) + offset
4840 */
4841 static uint64_t
calc_guest_tsc(uint64_t host_tsc,uint64_t mult,uint64_t offset)4842 calc_guest_tsc(uint64_t host_tsc, uint64_t mult, uint64_t offset)
4843 {
4844 return (vmm_scale_tsc(host_tsc, mult) + offset);
4845 }
4846
4847 /*
4848 * Take a non-atomic "snapshot" of the current:
4849 * - TSC
4850 * - hrtime
4851 * - wall clock time
4852 */
4853 static void
vmm_time_snapshot(uint64_t * tsc,hrtime_t * hrtime,timespec_t * hrestime)4854 vmm_time_snapshot(uint64_t *tsc, hrtime_t *hrtime, timespec_t *hrestime)
4855 {
4856 /*
4857 * Disable interrupts while we take the readings: In the absence of a
4858 * mechanism to convert hrtime to hrestime, we want the time between
4859 * each of these measurements to be as small as possible.
4860 */
4861 ulong_t iflag = intr_clear();
4862
4863 hrtime_t hrt = gethrtimeunscaledf();
4864 *tsc = (uint64_t)hrt;
4865 *hrtime = hrt;
4866 scalehrtime(hrtime);
4867 gethrestime(hrestime);
4868
4869 intr_restore(iflag);
4870 }
4871
4872 /*
4873 * Read VMM Time data
4874 *
4875 * Provides:
4876 * - the current guest TSC and TSC frequency
4877 * - guest boot_hrtime
4878 * - timestamps of the read (hrtime and wall clock time)
4879 */
4880 static int
vmm_data_read_vmm_time(void * arg,const vmm_data_req_t * req)4881 vmm_data_read_vmm_time(void *arg, const vmm_data_req_t *req)
4882 {
4883 VERIFY3U(req->vdr_class, ==, VDC_VMM_TIME);
4884 VERIFY3U(req->vdr_version, ==, 1);
4885 VERIFY3U(req->vdr_len, >=, sizeof (struct vdi_time_info_v1));
4886
4887 struct vm *vm = arg;
4888 struct vdi_time_info_v1 *out = req->vdr_data;
4889
4890 /*
4891 * Since write operations on VMM_TIME data are strict about vcpuid
4892 * (see: vmm_data_write_vmm_time()), read operations should be as well.
4893 */
4894 if (req->vdr_vcpuid != -1) {
4895 return (EINVAL);
4896 }
4897
4898 /* Take a snapshot of this point in time */
4899 uint64_t tsc;
4900 hrtime_t hrtime;
4901 timespec_t hrestime;
4902 vmm_time_snapshot(&tsc, &hrtime, &hrestime);
4903
4904 /* Write the output values */
4905 out->vt_guest_freq = vm->guest_freq;
4906
4907 /*
4908 * Use only the VM-wide TSC offset for calculating the guest TSC,
4909 * ignoring per-vCPU offsets. This value is provided as a "base" guest
4910 * TSC at the time of the read; per-vCPU offsets are factored in as
4911 * needed elsewhere, either when running the vCPU or if the guest reads
4912 * the TSC via rdmsr.
4913 */
4914 out->vt_guest_tsc = calc_guest_tsc(tsc, vm->freq_multiplier,
4915 vm->tsc_offset);
4916 out->vt_boot_hrtime = vm->boot_hrtime;
4917 out->vt_hrtime = hrtime;
4918 out->vt_hres_sec = hrestime.tv_sec;
4919 out->vt_hres_ns = hrestime.tv_nsec;
4920
4921 return (0);
4922 }
4923
4924 /*
4925 * Modify VMM Time data related values
4926 *
4927 * This interface serves to allow guests' TSC and device timers to continue
4928 * functioning across live migrations. On a successful write, the VM-wide TSC
4929 * offset and boot_hrtime of the guest are updated.
4930 *
4931 * The interface requires an hrtime of the system at which the caller wrote
4932 * this data; this allows us to adjust the TSC and boot_hrtime slightly to
4933 * account for time passing between the userspace call and application
4934 * of the data here.
4935 *
4936 * There are several possibilities for invalid input, including:
4937 * - a requested guest frequency of 0, or a frequency otherwise unsupported by
4938 * the underlying platform
4939 * - hrtime or boot_hrtime values that appear to be from the future
4940 * - the requested frequency does not match the host, and this system does not
4941 * have hardware TSC scaling support
4942 */
4943 static int
vmm_data_write_vmm_time(void * arg,const vmm_data_req_t * req)4944 vmm_data_write_vmm_time(void *arg, const vmm_data_req_t *req)
4945 {
4946 VERIFY3U(req->vdr_class, ==, VDC_VMM_TIME);
4947 VERIFY3U(req->vdr_version, ==, 1);
4948 VERIFY3U(req->vdr_len, >=, sizeof (struct vdi_time_info_v1));
4949
4950 struct vm *vm = arg;
4951 const struct vdi_time_info_v1 *src = req->vdr_data;
4952
4953 /*
4954 * While vcpuid values != -1 are tolerated by the vmm_data machinery for
4955 * VM-wide endpoints, the time-related data is more strict: It relies on
4956 * write-locking the VM (implied by the vcpuid -1) to prevent vCPUs or
4957 * other bits from observing inconsistent values while the state is
4958 * being written.
4959 */
4960 if (req->vdr_vcpuid != -1) {
4961 return (EINVAL);
4962 }
4963
4964 /*
4965 * Platform-specific checks will verify the requested frequency against
4966 * the supported range further, but a frequency of 0 is never valid.
4967 */
4968 if (src->vt_guest_freq == 0) {
4969 return (EINVAL);
4970 }
4971
4972 /*
4973 * Check whether the request frequency is supported and get the
4974 * frequency multiplier.
4975 */
4976 uint64_t mult = VM_TSCM_NOSCALE;
4977 freqratio_res_t res = ops->vmfreqratio(src->vt_guest_freq,
4978 vmm_host_freq, &mult);
4979 switch (res) {
4980 case FR_SCALING_NOT_SUPPORTED:
4981 /*
4982 * This system doesn't support TSC scaling, and the guest/host
4983 * frequencies differ
4984 */
4985 return (EPERM);
4986 case FR_OUT_OF_RANGE:
4987 /* Requested frequency ratio is too small/large */
4988 return (EINVAL);
4989 case FR_SCALING_NOT_NEEDED:
4990 /* Host and guest frequencies are the same */
4991 VERIFY3U(mult, ==, VM_TSCM_NOSCALE);
4992 break;
4993 case FR_VALID:
4994 VERIFY3U(mult, !=, VM_TSCM_NOSCALE);
4995 break;
4996 }
4997
4998 /*
4999 * Find (and validate) the hrtime delta between the input request and
5000 * when we received it so that we can bump the TSC to account for time
5001 * passing.
5002 *
5003 * We ignore the hrestime as input, as this is a field that
5004 * exists for reads.
5005 */
5006 uint64_t tsc;
5007 hrtime_t hrtime;
5008 timespec_t hrestime;
5009 vmm_time_snapshot(&tsc, &hrtime, &hrestime);
5010 if ((src->vt_hrtime > hrtime) || (src->vt_boot_hrtime > hrtime)) {
5011 /*
5012 * The caller has passed in an hrtime / boot_hrtime from the
5013 * future.
5014 */
5015 return (EINVAL);
5016 }
5017 hrtime_t hrt_delta = hrtime - src->vt_hrtime;
5018
5019 /* Calculate guest TSC adjustment */
5020 const uint64_t host_ticks = unscalehrtime(hrt_delta);
5021 const uint64_t guest_ticks = vmm_scale_tsc(host_ticks,
5022 vm->freq_multiplier);
5023 const uint64_t base_guest_tsc = src->vt_guest_tsc + guest_ticks;
5024
5025 /* Update guest time data */
5026 vm->freq_multiplier = mult;
5027 vm->guest_freq = src->vt_guest_freq;
5028 vm->boot_hrtime = src->vt_boot_hrtime;
5029 vm->tsc_offset = calc_tsc_offset(tsc, base_guest_tsc,
5030 vm->freq_multiplier);
5031
5032 return (0);
5033 }
5034
5035 static const vmm_data_version_entry_t vmm_time_v1 = {
5036 .vdve_class = VDC_VMM_TIME,
5037 .vdve_version = 1,
5038 .vdve_len_expect = sizeof (struct vdi_time_info_v1),
5039 .vdve_readf = vmm_data_read_vmm_time,
5040 .vdve_writef = vmm_data_write_vmm_time,
5041 };
5042 VMM_DATA_VERSION(vmm_time_v1);
5043
5044
5045 static int
vmm_data_read_versions(void * arg,const vmm_data_req_t * req)5046 vmm_data_read_versions(void *arg, const vmm_data_req_t *req)
5047 {
5048 VERIFY3U(req->vdr_class, ==, VDC_VERSION);
5049 VERIFY3U(req->vdr_version, ==, 1);
5050
5051 const uint32_t total_size = SET_COUNT(vmm_data_version_entries) *
5052 sizeof (struct vdi_version_entry_v1);
5053
5054 /* Make sure there is room for all of the entries */
5055 *req->vdr_result_len = total_size;
5056 if (req->vdr_len < *req->vdr_result_len) {
5057 return (ENOSPC);
5058 }
5059
5060 struct vdi_version_entry_v1 *entryp = req->vdr_data;
5061 const vmm_data_version_entry_t **vdpp;
5062 SET_FOREACH(vdpp, vmm_data_version_entries) {
5063 const vmm_data_version_entry_t *vdp = *vdpp;
5064
5065 entryp->vve_class = vdp->vdve_class;
5066 entryp->vve_version = vdp->vdve_version;
5067 entryp->vve_len_expect = vdp->vdve_len_expect;
5068 entryp->vve_len_per_item = vdp->vdve_len_per_item;
5069 entryp++;
5070 }
5071 return (0);
5072 }
5073
5074 static int
vmm_data_write_versions(void * arg,const vmm_data_req_t * req)5075 vmm_data_write_versions(void *arg, const vmm_data_req_t *req)
5076 {
5077 /* Writing to the version information makes no sense */
5078 return (EPERM);
5079 }
5080
5081 static const vmm_data_version_entry_t versions_v1 = {
5082 .vdve_class = VDC_VERSION,
5083 .vdve_version = 1,
5084 .vdve_len_per_item = sizeof (struct vdi_version_entry_v1),
5085 .vdve_readf = vmm_data_read_versions,
5086 .vdve_writef = vmm_data_write_versions,
5087 };
5088 VMM_DATA_VERSION(versions_v1);
5089
5090 int
vmm_data_read(struct vm * vm,const vmm_data_req_t * req)5091 vmm_data_read(struct vm *vm, const vmm_data_req_t *req)
5092 {
5093 int err = 0;
5094
5095 const vmm_data_version_entry_t *entry = NULL;
5096 err = vmm_data_find(req, &entry);
5097 if (err != 0) {
5098 return (err);
5099 }
5100 ASSERT(entry != NULL);
5101
5102 if (entry->vdve_readf != NULL) {
5103 void *datap = vmm_data_from_class(req, vm);
5104
5105 err = entry->vdve_readf(datap, req);
5106 } else if (entry->vdve_vcpu_readf != NULL) {
5107 err = entry->vdve_vcpu_readf(vm, req->vdr_vcpuid, req);
5108 } else {
5109 err = EINVAL;
5110 }
5111
5112 /*
5113 * Successful reads of fixed-length data should populate the length of
5114 * that result.
5115 */
5116 if (err == 0 && entry->vdve_len_expect != 0) {
5117 *req->vdr_result_len = entry->vdve_len_expect;
5118 }
5119
5120 return (err);
5121 }
5122
5123 int
vmm_data_write(struct vm * vm,const vmm_data_req_t * req)5124 vmm_data_write(struct vm *vm, const vmm_data_req_t *req)
5125 {
5126 int err = 0;
5127
5128 const vmm_data_version_entry_t *entry = NULL;
5129 err = vmm_data_find(req, &entry);
5130 if (err != 0) {
5131 return (err);
5132 }
5133 ASSERT(entry != NULL);
5134
5135 if (entry->vdve_writef != NULL) {
5136 void *datap = vmm_data_from_class(req, vm);
5137
5138 err = entry->vdve_writef(datap, req);
5139 } else if (entry->vdve_vcpu_writef != NULL) {
5140 err = entry->vdve_vcpu_writef(vm, req->vdr_vcpuid, req);
5141 } else {
5142 err = EINVAL;
5143 }
5144
5145 /*
5146 * Successful writes of fixed-length data should populate the length of
5147 * that result.
5148 */
5149 if (err == 0 && entry->vdve_len_expect != 0) {
5150 *req->vdr_result_len = entry->vdve_len_expect;
5151 }
5152
5153 return (err);
5154 }
5155