1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11 /* This file is dual-licensed; see usr/src/contrib/bhyve/LICENSE */
12
13 /*
14 * Copyright 2019 Joyent, Inc.
15 * Copyright 2024 Oxide Computer Company
16 */
17
18 #include <sys/types.h>
19 #include <sys/atomic.h>
20 #include <sys/kmem.h>
21 #include <sys/sysmacros.h>
22 #include <sys/sunddi.h>
23 #include <sys/panic.h>
24 #include <vm/hat.h>
25 #include <vm/as.h>
26 #include <vm/hat_i86.h>
27
28 #include <sys/vmm_gpt.h>
29
30 /*
31 * VMM Generic Page Tables
32 *
33 * Bhyve runs on AMD and Intel hosts and both support nested page tables
34 * describing the guest's physical address space. But the two use different and
35 * mutually incompatible page table formats: Intel uses the EPT, which is based
36 * on the Itanium page table format, while AMD uses the nPT, which is based on
37 * the x86_64 page table format.
38 *
39 * The GPT abstracts these format differences, and provides a single interface
40 * for interacting with either kind of table structure.
41 *
42 * At a high-level, the GPT is a tree that mirrors the paging table radix tree.
43 * It is parameterized with operations on PTEs that are specific to the table
44 * type (EPT or nPT) and also keeps track of how many pages the table maps, as
45 * well as a pointer to the root node in the tree.
46 *
47 * A node in the GPT keep pointers to its parent (NULL for the root), its
48 * left-most child, and its siblings. The node understands its position in the
49 * tree in terms of the level it appears at and the index it occupies at its
50 * parent's level, as well as how many children it has. It also owns the
51 * physical memory page for the hardware page table entries that map its
52 * children. Thus, for a node at any given level in the tree, the nested PTE
53 * for that node's child at index $i$ is the i'th uint64_t in that node's entry
54 * page and the entry page is part of the paging structure consumed by hardware.
55 *
56 * The GPT interface provides functions for populating and vacating the tree for
57 * regions in the guest physical address space, and for mapping and unmapping
58 * pages in populated regions. Users must populate a region before mapping
59 * pages into it, and must unmap pages before vacating the region.
60 *
61 * The interface also exposes a function for walking the table from the root to
62 * a leaf entry, populating an array of pointers to PTEs. This walk uses the
63 * hardware page structure itself, and is thus fast, though as a result it
64 * potentially aliases entries; caveat emptor. The walk primitive is used for
65 * mapping, unmapping, and lookups.
66 *
67 * Format-specific differences are abstracted by parameterizing the GPT with a
68 * set of PTE operations specific to the platform. The GPT code makes use of
69 * these when mapping or populating entries, resetting accessed and dirty bits
70 * on entries, and similar operations.
71 */
72
73 /*
74 * A GPT node.
75 *
76 * Each node contains pointers to its parent, its left-most child, and its
77 * siblings. Interior nodes also maintain a reference count, and each node
78 * contains its level and index in its parent's table. Finally, each node
79 * contains the host PFN of the page that it links into the page table, as well
80 * as a kernel pointer to table.
81 *
82 * On leaf nodes, the reference count tracks how many entries in the table are
83 * covered by mapping from the containing vmspace. This is maintained during
84 * calls to vmm_populate_region() and vmm_gpt_vacate_region() as part of vmspace
85 * map/unmap operations, rather than in the data path of faults populating the
86 * PTEs themselves.
87 *
88 * Note, this is carefully sized to fit exactly into a 64-byte cache line.
89 */
90 typedef struct vmm_gpt_node vmm_gpt_node_t;
91 struct vmm_gpt_node {
92 uint64_t vgn_host_pfn;
93 uint16_t vgn_level;
94 uint16_t vgn_index;
95 uint32_t vgn_ref_cnt;
96 vmm_gpt_node_t *vgn_parent;
97 vmm_gpt_node_t *vgn_children;
98 vmm_gpt_node_t *vgn_sib_next;
99 vmm_gpt_node_t *vgn_sib_prev;
100 uint64_t *vgn_entries;
101 uint64_t vgn_gpa;
102 };
103
104 /* Maximum node index determined by number of entries in page table (512) */
105 #define PTE_PER_TABLE 512
106 #define MAX_NODE_IDX (PTE_PER_TABLE - 1)
107
108 /*
109 * A VMM Generic Page Table.
110 *
111 * The generic page table is a format-agnostic, 4-level paging structure
112 * modeling a second-level page table (EPT on Intel, nPT on AMD). It
113 * contains a counter of pages the table maps, a pointer to the root node
114 * in the table, and is parameterized with a set of PTE operations specific
115 * to the table type.
116 */
117 struct vmm_gpt {
118 vmm_gpt_node_t *vgpt_root;
119 vmm_pte_ops_t *vgpt_pte_ops;
120 };
121
122 /*
123 * Allocates a vmm_gpt_node_t structure with corresponding page of memory to
124 * hold the PTEs it contains.
125 */
126 static vmm_gpt_node_t *
vmm_gpt_node_alloc(void)127 vmm_gpt_node_alloc(void)
128 {
129 vmm_gpt_node_t *node;
130 caddr_t page;
131
132 node = kmem_zalloc(sizeof (*node), KM_SLEEP);
133 /*
134 * Note: despite the man page, allocating PAGESIZE bytes is
135 * guaranteed to be page-aligned.
136 */
137 page = kmem_zalloc(PAGESIZE, KM_SLEEP);
138 node->vgn_entries = (uint64_t *)page;
139 node->vgn_host_pfn = hat_getpfnum(kas.a_hat, page);
140
141 return (node);
142 }
143
144 /*
145 * Allocates and initializes a vmm_gpt_t.
146 */
147 vmm_gpt_t *
vmm_gpt_alloc(vmm_pte_ops_t * pte_ops)148 vmm_gpt_alloc(vmm_pte_ops_t *pte_ops)
149 {
150 vmm_gpt_t *gpt;
151
152 VERIFY(pte_ops != NULL);
153 gpt = kmem_zalloc(sizeof (*gpt), KM_SLEEP);
154 gpt->vgpt_pte_ops = pte_ops;
155 gpt->vgpt_root = vmm_gpt_node_alloc();
156
157 return (gpt);
158 }
159
160 /*
161 * Frees a given node. The node is expected to have no familial (parent,
162 * children, siblings) associations at this point. Accordingly, its reference
163 * count should be zero.
164 */
165 static void
vmm_gpt_node_free(vmm_gpt_node_t * node)166 vmm_gpt_node_free(vmm_gpt_node_t *node)
167 {
168 ASSERT(node != NULL);
169 ASSERT3U(node->vgn_ref_cnt, ==, 0);
170 ASSERT(node->vgn_host_pfn != PFN_INVALID);
171 ASSERT(node->vgn_entries != NULL);
172 ASSERT(node->vgn_parent == NULL);
173
174 kmem_free(node->vgn_entries, PAGESIZE);
175 kmem_free(node, sizeof (*node));
176 }
177
178 /*
179 * Frees a vmm_gpt_t. Any lingering nodes in the GPT will be freed too.
180 */
181 void
vmm_gpt_free(vmm_gpt_t * gpt)182 vmm_gpt_free(vmm_gpt_t *gpt)
183 {
184 /* Empty anything remaining in the tree */
185 vmm_gpt_vacate_region(gpt, 0, UINT64_MAX & PAGEMASK);
186
187 VERIFY(gpt->vgpt_root != NULL);
188 VERIFY3U(gpt->vgpt_root->vgn_ref_cnt, ==, 0);
189
190 vmm_gpt_node_free(gpt->vgpt_root);
191 kmem_free(gpt, sizeof (*gpt));
192 }
193
194 /*
195 * Given a GPA, return its corresponding index in a paging structure at the
196 * provided level.
197 */
198 static inline uint16_t
vmm_gpt_lvl_index(vmm_gpt_node_level_t level,uint64_t gpa)199 vmm_gpt_lvl_index(vmm_gpt_node_level_t level, uint64_t gpa)
200 {
201 ASSERT(level < MAX_GPT_LEVEL);
202
203 const uint16_t mask = (1U << 9) - 1;
204 switch (level) {
205 case LEVEL4: return ((gpa >> 39) & mask);
206 case LEVEL3: return ((gpa >> 30) & mask);
207 case LEVEL2: return ((gpa >> 21) & mask);
208 case LEVEL1: return ((gpa >> 12) & mask);
209 default:
210 panic("impossible level value");
211 };
212 }
213
214 /* Get mask for addresses of entries at a given table level. */
215 static inline uint64_t
vmm_gpt_lvl_mask(vmm_gpt_node_level_t level)216 vmm_gpt_lvl_mask(vmm_gpt_node_level_t level)
217 {
218 ASSERT(level < MAX_GPT_LEVEL);
219
220 switch (level) {
221 case LEVEL4: return (0xffffff8000000000ul); /* entries cover 512G */
222 case LEVEL3: return (0xffffffffc0000000ul); /* entries cover 1G */
223 case LEVEL2: return (0xffffffffffe00000ul); /* entries cover 2M */
224 case LEVEL1: return (0xfffffffffffff000ul); /* entries cover 4K */
225 default:
226 panic("impossible level value");
227 };
228 }
229
230 /* Get length of GPA covered by entries at a given table level. */
231 static inline uint64_t
vmm_gpt_lvl_len(vmm_gpt_node_level_t level)232 vmm_gpt_lvl_len(vmm_gpt_node_level_t level)
233 {
234 ASSERT(level < MAX_GPT_LEVEL);
235
236 switch (level) {
237 case LEVEL4: return (0x8000000000ul); /* entries cover 512G */
238 case LEVEL3: return (0x40000000ul); /* entries cover 1G */
239 case LEVEL2: return (0x200000ul); /* entries cover 2M */
240 case LEVEL1: return (0x1000ul); /* entries cover 4K */
241 default:
242 panic("impossible level value");
243 };
244 }
245
246 /*
247 * Get the ending GPA which this node could possibly cover given its base
248 * address and level.
249 */
250 static inline uint64_t
vmm_gpt_node_end(vmm_gpt_node_t * node)251 vmm_gpt_node_end(vmm_gpt_node_t *node)
252 {
253 ASSERT(node->vgn_level > LEVEL4);
254 return (node->vgn_gpa + vmm_gpt_lvl_len(node->vgn_level - 1));
255 }
256
257 /*
258 * Is this node the last entry in its parent node, based solely by its GPA?
259 */
260 static inline bool
vmm_gpt_node_is_last(vmm_gpt_node_t * node)261 vmm_gpt_node_is_last(vmm_gpt_node_t *node)
262 {
263 return (node->vgn_index == MAX_NODE_IDX);
264 }
265
266 /*
267 * How many table entries (if any) in this node are covered by the range of
268 * [start, end).
269 */
270 static uint16_t
vmm_gpt_node_entries_covered(vmm_gpt_node_t * node,uint64_t start,uint64_t end)271 vmm_gpt_node_entries_covered(vmm_gpt_node_t *node, uint64_t start, uint64_t end)
272 {
273 const uint64_t node_end = vmm_gpt_node_end(node);
274
275 /* Is this node covered at all by the region? */
276 if (start >= node_end || end <= node->vgn_gpa) {
277 return (0);
278 }
279
280 const uint64_t mask = vmm_gpt_lvl_mask(node->vgn_level);
281 const uint64_t covered_start = MAX(node->vgn_gpa, start & mask);
282 const uint64_t covered_end = MIN(node_end, end & mask);
283 const uint64_t per_entry = vmm_gpt_lvl_len(node->vgn_level);
284
285 return ((covered_end - covered_start) / per_entry);
286 }
287
288 /*
289 * Find the next node (by address) in the tree at the same level.
290 *
291 * Returns NULL if this is the last node in the tree or if `only_seq` was true
292 * and there is an address gap between this node and the next.
293 */
294 static vmm_gpt_node_t *
vmm_gpt_node_next(vmm_gpt_node_t * node,bool only_seq)295 vmm_gpt_node_next(vmm_gpt_node_t *node, bool only_seq)
296 {
297 ASSERT3P(node->vgn_parent, !=, NULL);
298 ASSERT3U(node->vgn_level, >, LEVEL4);
299
300 /*
301 * Next node sequentially would be the one at the address starting at
302 * the end of what is covered by this node.
303 */
304 const uint64_t gpa_match = vmm_gpt_node_end(node);
305
306 /* Try our next sibling */
307 vmm_gpt_node_t *next = node->vgn_sib_next;
308 if (next != NULL) {
309 if (next->vgn_gpa == gpa_match || !only_seq) {
310 return (next);
311 }
312 } else {
313 /*
314 * If the next-sibling pointer is NULL on the node, it can mean
315 * one of two things:
316 *
317 * 1. This entry represents the space leading up to the trailing
318 * boundary of what this node covers.
319 *
320 * 2. The node is not entirely populated, and there is a gap
321 * between the last populated entry, and the trailing
322 * boundary of the node.
323 *
324 * Either way, the proper course of action is to check the first
325 * child of our parent's next sibling.
326 */
327 vmm_gpt_node_t *pibling = node->vgn_parent->vgn_sib_next;
328 if (pibling != NULL) {
329 next = pibling->vgn_children;
330 if (next != NULL) {
331 if (next->vgn_gpa == gpa_match || !only_seq) {
332 return (next);
333 }
334 }
335 }
336 }
337
338 return (NULL);
339 }
340
341
342 /*
343 * Finds the child for the given GPA in the given parent node.
344 * Returns a pointer to node, or NULL if it is not found.
345 */
346 static vmm_gpt_node_t *
vmm_gpt_node_find_child(vmm_gpt_node_t * parent,uint64_t gpa)347 vmm_gpt_node_find_child(vmm_gpt_node_t *parent, uint64_t gpa)
348 {
349 const uint16_t index = vmm_gpt_lvl_index(parent->vgn_level, gpa);
350 for (vmm_gpt_node_t *child = parent->vgn_children;
351 child != NULL && child->vgn_index <= index;
352 child = child->vgn_sib_next) {
353 if (child->vgn_index == index)
354 return (child);
355 }
356
357 return (NULL);
358 }
359
360 /*
361 * Add a child node to the GPT at a position determined by GPA, parent, and (if
362 * present) preceding sibling.
363 *
364 * If `parent` node contains any children, `prev_sibling` must be populated with
365 * a pointer to the node preceding (by GPA) the to-be-added child node.
366 */
367 static void
vmm_gpt_node_add(vmm_gpt_t * gpt,vmm_gpt_node_t * parent,vmm_gpt_node_t * child,uint64_t gpa,vmm_gpt_node_t * prev_sibling)368 vmm_gpt_node_add(vmm_gpt_t *gpt, vmm_gpt_node_t *parent,
369 vmm_gpt_node_t *child, uint64_t gpa, vmm_gpt_node_t *prev_sibling)
370 {
371 ASSERT3U(parent->vgn_level, <, LEVEL1);
372 ASSERT3U(child->vgn_parent, ==, NULL);
373
374 const uint16_t idx = vmm_gpt_lvl_index(parent->vgn_level, gpa);
375 child->vgn_index = idx;
376 child->vgn_level = parent->vgn_level + 1;
377 child->vgn_gpa = gpa & vmm_gpt_lvl_mask(parent->vgn_level);
378
379 /* Establish familial connections */
380 child->vgn_parent = parent;
381 if (prev_sibling != NULL) {
382 ASSERT3U(prev_sibling->vgn_gpa, <, child->vgn_gpa);
383
384 child->vgn_sib_next = prev_sibling->vgn_sib_next;
385 if (child->vgn_sib_next != NULL) {
386 child->vgn_sib_next->vgn_sib_prev = child;
387 }
388 child->vgn_sib_prev = prev_sibling;
389 prev_sibling->vgn_sib_next = child;
390 } else if (parent->vgn_children != NULL) {
391 vmm_gpt_node_t *next_sibling = parent->vgn_children;
392
393 ASSERT3U(next_sibling->vgn_gpa, >, child->vgn_gpa);
394 ASSERT3U(next_sibling->vgn_sib_prev, ==, NULL);
395
396 child->vgn_sib_next = next_sibling;
397 child->vgn_sib_prev = NULL;
398 next_sibling->vgn_sib_prev = child;
399 parent->vgn_children = child;
400 } else {
401 parent->vgn_children = child;
402 child->vgn_sib_next = NULL;
403 child->vgn_sib_prev = NULL;
404 }
405
406 /* Configure PTE for child table */
407 parent->vgn_entries[idx] =
408 gpt->vgpt_pte_ops->vpeo_map_table(child->vgn_host_pfn);
409 parent->vgn_ref_cnt++;
410 }
411
412 /*
413 * Remove a child node from its relatives (parent, siblings) and free it.
414 */
415 static void
vmm_gpt_node_remove(vmm_gpt_node_t * child)416 vmm_gpt_node_remove(vmm_gpt_node_t *child)
417 {
418 ASSERT3P(child->vgn_children, ==, NULL);
419 ASSERT3U(child->vgn_ref_cnt, ==, 0);
420 ASSERT3P(child->vgn_parent, !=, NULL);
421
422 /* Unlink child from its siblings and parent */
423 vmm_gpt_node_t *parent = child->vgn_parent;
424 vmm_gpt_node_t *prev = child->vgn_sib_prev;
425 vmm_gpt_node_t *next = child->vgn_sib_next;
426 if (prev != NULL) {
427 ASSERT3P(prev->vgn_sib_next, ==, child);
428 prev->vgn_sib_next = next;
429 }
430 if (next != NULL) {
431 ASSERT3P(next->vgn_sib_prev, ==, child);
432 next->vgn_sib_prev = prev;
433 }
434 if (prev == NULL) {
435 ASSERT3P(parent->vgn_children, ==, child);
436 parent->vgn_children = next;
437 }
438 child->vgn_parent = NULL;
439 child->vgn_sib_next = NULL;
440 child->vgn_sib_prev = NULL;
441 parent->vgn_entries[child->vgn_index] = 0;
442 parent->vgn_ref_cnt--;
443
444 vmm_gpt_node_free(child);
445 }
446
447 /*
448 * Walks the GPT for the given GPA, accumulating entries to the given depth. If
449 * the walk terminates before the depth is reached, the remaining entries are
450 * written with NULLs.
451 */
452 void
vmm_gpt_walk(vmm_gpt_t * gpt,uint64_t gpa,uint64_t ** entries,vmm_gpt_node_level_t depth)453 vmm_gpt_walk(vmm_gpt_t *gpt, uint64_t gpa, uint64_t **entries,
454 vmm_gpt_node_level_t depth)
455 {
456 uint64_t *current_entries, entry;
457 pfn_t pfn;
458
459 ASSERT(gpt != NULL);
460 current_entries = gpt->vgpt_root->vgn_entries;
461 for (uint_t i = 0; i < depth; i++) {
462 if (current_entries == NULL) {
463 entries[i] = NULL;
464 continue;
465 }
466 entries[i] = ¤t_entries[vmm_gpt_lvl_index(i, gpa)];
467 entry = *entries[i];
468 if (!gpt->vgpt_pte_ops->vpeo_pte_is_present(entry)) {
469 current_entries = NULL;
470 continue;
471 }
472 pfn = gpt->vgpt_pte_ops->vpeo_pte_pfn(entry);
473 current_entries = (uint64_t *)hat_kpm_pfn2va(pfn);
474 }
475 }
476
477 /*
478 * Looks up an entry given GPA.
479 */
480 uint64_t *
vmm_gpt_lookup(vmm_gpt_t * gpt,uint64_t gpa)481 vmm_gpt_lookup(vmm_gpt_t *gpt, uint64_t gpa)
482 {
483 uint64_t *entries[MAX_GPT_LEVEL];
484
485 vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL);
486
487 return (entries[LEVEL1]);
488 }
489
490 /*
491 * Populate child table nodes for a given level between the provided interval
492 * of [addr, addr + len). Caller is expected to provide a pointer to the parent
493 * node which would contain the child node for GPA at `addr`. A pointer to said
494 * child node will be returned when the operation is complete.
495 */
496 static vmm_gpt_node_t *
vmm_gpt_populate_region_lvl(vmm_gpt_t * gpt,uint64_t addr,uint64_t len,vmm_gpt_node_t * node_start)497 vmm_gpt_populate_region_lvl(vmm_gpt_t *gpt, uint64_t addr, uint64_t len,
498 vmm_gpt_node_t *node_start)
499 {
500 const vmm_gpt_node_level_t lvl = node_start->vgn_level;
501 const uint64_t end = addr + len;
502 const uint64_t incr = vmm_gpt_lvl_len(lvl);
503 uint64_t gpa = addr & vmm_gpt_lvl_mask(lvl);
504 vmm_gpt_node_t *parent = node_start;
505
506 /* Try to locate node at starting address */
507 vmm_gpt_node_t *prev = NULL, *node = parent->vgn_children;
508 while (node != NULL && node->vgn_gpa < gpa) {
509 prev = node;
510 node = node->vgn_sib_next;
511 }
512
513 /*
514 * If no node exists at the starting address, create one and link it
515 * into the parent.
516 */
517 if (node == NULL || node->vgn_gpa > gpa) {
518 /* Need to insert node for starting GPA */
519 node = vmm_gpt_node_alloc();
520 vmm_gpt_node_add(gpt, parent, node, gpa, prev);
521 }
522
523 vmm_gpt_node_t *front_node = node;
524 prev = node;
525 gpa += incr;
526
527 /*
528 * With a node at the starting address, walk forward creating nodes in
529 * any of the gaps.
530 */
531 for (; gpa < end; gpa += incr, prev = node) {
532 node = vmm_gpt_node_next(prev, true);
533 if (node != NULL) {
534 ASSERT3U(node->vgn_gpa, ==, gpa);
535
536 /* We may have crossed into a new parent */
537 parent = node->vgn_parent;
538 continue;
539 }
540
541 if (vmm_gpt_node_is_last(prev)) {
542 /*
543 * The node preceding this was the last one in its
544 * containing parent, so move on to that parent's
545 * sibling. We expect (demand) that it exist already.
546 */
547 parent = vmm_gpt_node_next(parent, true);
548 ASSERT(parent != NULL);
549
550 /*
551 * Forget our previous sibling, since it is of no use
552 * for assigning the new node to the a now-different
553 * parent.
554 */
555 prev = NULL;
556
557 }
558 node = vmm_gpt_node_alloc();
559 vmm_gpt_node_add(gpt, parent, node, gpa, prev);
560 }
561
562 return (front_node);
563 }
564
565 /*
566 * Ensures that PTEs for the region of address space bounded by
567 * [addr, addr + len) exist in the tree.
568 */
569 void
vmm_gpt_populate_region(vmm_gpt_t * gpt,uint64_t addr,uint64_t len)570 vmm_gpt_populate_region(vmm_gpt_t *gpt, uint64_t addr, uint64_t len)
571 {
572 ASSERT0(addr & PAGEOFFSET);
573 ASSERT0(len & PAGEOFFSET);
574
575 /*
576 * Starting at the top of the tree, ensure that tables covering the
577 * requested region exist at each level.
578 */
579 vmm_gpt_node_t *node = gpt->vgpt_root;
580 for (uint_t lvl = LEVEL4; lvl < LEVEL1; lvl++) {
581 ASSERT3U(node->vgn_level, ==, lvl);
582
583 node = vmm_gpt_populate_region_lvl(gpt, addr, len, node);
584 }
585
586
587 /*
588 * Establish reference counts for the soon-to-be memory PTEs which will
589 * be filling these LEVEL1 tables.
590 */
591 uint64_t gpa = addr;
592 const uint64_t end = addr + len;
593 while (gpa < end) {
594 ASSERT(node != NULL);
595 ASSERT3U(node->vgn_level, ==, LEVEL1);
596
597 const uint16_t covered =
598 vmm_gpt_node_entries_covered(node, addr, end);
599
600 ASSERT(covered != 0);
601 ASSERT3U(node->vgn_ref_cnt, <, PTE_PER_TABLE);
602 ASSERT3U(node->vgn_ref_cnt + covered, <=, PTE_PER_TABLE);
603
604 node->vgn_ref_cnt += covered;
605
606 vmm_gpt_node_t *next = vmm_gpt_node_next(node, true);
607 if (next != NULL) {
608 gpa = next->vgn_gpa;
609 node = next;
610 } else {
611 /*
612 * We do not expect to find a subsequent node after
613 * filling the last node in the table, completing PTE
614 * accounting for the specified range.
615 */
616 VERIFY3U(end, <=, vmm_gpt_node_end(node));
617 break;
618 }
619 }
620 }
621
622 /*
623 * Format a PTE and install it in the provided PTE-pointer.
624 */
625 bool
vmm_gpt_map_at(vmm_gpt_t * gpt,uint64_t * ptep,pfn_t pfn,uint_t prot,uint8_t attr)626 vmm_gpt_map_at(vmm_gpt_t *gpt, uint64_t *ptep, pfn_t pfn, uint_t prot,
627 uint8_t attr)
628 {
629 uint64_t entry, old_entry;
630
631 entry = gpt->vgpt_pte_ops->vpeo_map_page(pfn, prot, attr);
632 old_entry = atomic_cas_64(ptep, 0, entry);
633 if (old_entry != 0) {
634 ASSERT3U(gpt->vgpt_pte_ops->vpeo_pte_pfn(entry), ==,
635 gpt->vgpt_pte_ops->vpeo_pte_pfn(old_entry));
636 return (false);
637 }
638
639 return (true);
640 }
641
642 /*
643 * Inserts an entry for a given GPA into the table. The caller must
644 * ensure that a conflicting PFN is not mapped at the requested location.
645 * Racing operations to map the same PFN at one location is acceptable and
646 * properly handled.
647 */
648 bool
vmm_gpt_map(vmm_gpt_t * gpt,uint64_t gpa,pfn_t pfn,uint_t prot,uint8_t attr)649 vmm_gpt_map(vmm_gpt_t *gpt, uint64_t gpa, pfn_t pfn, uint_t prot, uint8_t attr)
650 {
651 uint64_t *entries[MAX_GPT_LEVEL];
652
653 ASSERT(gpt != NULL);
654 vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL);
655 ASSERT(entries[LEVEL1] != NULL);
656
657 return (vmm_gpt_map_at(gpt, entries[LEVEL1], pfn, prot, attr));
658 }
659
660 /*
661 * Cleans up the unused inner nodes in the GPT for a region of guest physical
662 * address space of [addr, addr + len). The region must map no pages.
663 */
664 void
vmm_gpt_vacate_region(vmm_gpt_t * gpt,uint64_t addr,uint64_t len)665 vmm_gpt_vacate_region(vmm_gpt_t *gpt, uint64_t addr, uint64_t len)
666 {
667 ASSERT0(addr & PAGEOFFSET);
668 ASSERT0(len & PAGEOFFSET);
669
670 const uint64_t end = addr + len;
671 vmm_gpt_node_t *node, *starts[MAX_GPT_LEVEL] = {
672 [LEVEL4] = gpt->vgpt_root,
673 };
674
675 for (vmm_gpt_node_level_t lvl = LEVEL4; lvl < LEVEL1; lvl++) {
676 node = vmm_gpt_node_find_child(starts[lvl], addr);
677 if (node == NULL) {
678 break;
679 }
680 starts[lvl + 1] = node;
681 }
682
683 /*
684 * Starting at the bottom of the tree, ensure that PTEs for pages have
685 * been cleared for the region, and remove the corresponding reference
686 * counts from the containing LEVEL1 tables.
687 */
688 uint64_t gpa = addr;
689 node = starts[LEVEL1];
690 while (gpa < end && node != NULL) {
691 const uint16_t covered =
692 vmm_gpt_node_entries_covered(node, addr, end);
693
694 ASSERT3U(node->vgn_ref_cnt, >=, covered);
695 node->vgn_ref_cnt -= covered;
696
697 node = vmm_gpt_node_next(node, false);
698 if (node != NULL) {
699 gpa = node->vgn_gpa;
700 }
701 }
702
703 /*
704 * With the page PTE references eliminated, work up from the bottom of
705 * the table, removing nodes which have no remaining references.
706 *
707 * This stops short of LEVEL4, which is the root table of the GPT. It
708 * is left standing to be cleaned up when the vmm_gpt_t is destroyed.
709 */
710 for (vmm_gpt_node_level_t lvl = LEVEL1; lvl > LEVEL4; lvl--) {
711 gpa = addr;
712 node = starts[lvl];
713
714 while (gpa < end && node != NULL) {
715 vmm_gpt_node_t *next = vmm_gpt_node_next(node, false);
716
717 if (node->vgn_ref_cnt == 0) {
718 vmm_gpt_node_remove(node);
719 }
720 if (next != NULL) {
721 gpa = next->vgn_gpa;
722 }
723 node = next;
724 }
725 }
726 }
727
728 /*
729 * Remove a mapping from the table. Returns false if the page was not mapped,
730 * otherwise returns true.
731 */
732 bool
vmm_gpt_unmap(vmm_gpt_t * gpt,uint64_t gpa)733 vmm_gpt_unmap(vmm_gpt_t *gpt, uint64_t gpa)
734 {
735 uint64_t *entries[MAX_GPT_LEVEL], entry;
736
737 ASSERT(gpt != NULL);
738 vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL);
739 if (entries[LEVEL1] == NULL)
740 return (false);
741
742 entry = *entries[LEVEL1];
743 *entries[LEVEL1] = 0;
744 return (gpt->vgpt_pte_ops->vpeo_pte_is_present(entry));
745 }
746
747 /*
748 * Un-maps the region of guest physical address space bounded by [start..end).
749 * Returns the number of pages that are unmapped.
750 */
751 size_t
vmm_gpt_unmap_region(vmm_gpt_t * gpt,uint64_t addr,uint64_t len)752 vmm_gpt_unmap_region(vmm_gpt_t *gpt, uint64_t addr, uint64_t len)
753 {
754 ASSERT0(addr & PAGEOFFSET);
755 ASSERT0(len & PAGEOFFSET);
756
757 const uint64_t end = addr + len;
758 size_t num_unmapped = 0;
759 for (uint64_t gpa = addr; gpa < end; gpa += PAGESIZE) {
760 if (vmm_gpt_unmap(gpt, gpa) != 0) {
761 num_unmapped++;
762 }
763 }
764
765 return (num_unmapped);
766 }
767
768 /*
769 * Returns a value indicating whether or not this GPT maps the given
770 * GPA. If the GPA is mapped, *protp will be filled with the protection
771 * bits of the entry. Otherwise, it will be ignored.
772 */
773 bool
vmm_gpt_is_mapped(vmm_gpt_t * gpt,uint64_t * ptep,pfn_t * pfnp,uint_t * protp)774 vmm_gpt_is_mapped(vmm_gpt_t *gpt, uint64_t *ptep, pfn_t *pfnp, uint_t *protp)
775 {
776 uint64_t entry;
777
778 ASSERT(pfnp != NULL);
779 ASSERT(protp != NULL);
780
781 if (ptep == NULL) {
782 return (false);
783 }
784 entry = *ptep;
785 if (!gpt->vgpt_pte_ops->vpeo_pte_is_present(entry)) {
786 return (false);
787 }
788 *pfnp = gpt->vgpt_pte_ops->vpeo_pte_pfn(entry);
789 *protp = gpt->vgpt_pte_ops->vpeo_pte_prot(entry);
790 return (true);
791 }
792
793 /*
794 * Resets the accessed bit on the page table entry pointed to be `entry`.
795 * If `on` is true, the bit will be set, otherwise it will be cleared.
796 * The old value of the bit is returned.
797 */
798 uint_t
vmm_gpt_reset_accessed(vmm_gpt_t * gpt,uint64_t * entry,bool on)799 vmm_gpt_reset_accessed(vmm_gpt_t *gpt, uint64_t *entry, bool on)
800 {
801 ASSERT(entry != NULL);
802 return (gpt->vgpt_pte_ops->vpeo_reset_accessed(entry, on));
803 }
804
805 /*
806 * Resets the dirty bit on the page table entry pointed to be `entry`.
807 * If `on` is true, the bit will be set, otherwise it will be cleared.
808 * The old value of the bit is returned.
809 */
810 uint_t
vmm_gpt_reset_dirty(vmm_gpt_t * gpt,uint64_t * entry,bool on)811 vmm_gpt_reset_dirty(vmm_gpt_t *gpt, uint64_t *entry, bool on)
812 {
813 ASSERT(entry != NULL);
814 return (gpt->vgpt_pte_ops->vpeo_reset_dirty(entry, on));
815 }
816
817 /*
818 * Query state from PTE pointed to by `entry`.
819 */
820 bool
vmm_gpt_query(vmm_gpt_t * gpt,uint64_t * entry,vmm_gpt_query_t query)821 vmm_gpt_query(vmm_gpt_t *gpt, uint64_t *entry, vmm_gpt_query_t query)
822 {
823 ASSERT(entry != NULL);
824 return (gpt->vgpt_pte_ops->vpeo_query(entry, query));
825 }
826
827 /*
828 * Get properly formatted PML4 (EPTP/nCR3) for GPT.
829 */
830 uint64_t
vmm_gpt_get_pmtp(vmm_gpt_t * gpt,bool track_dirty)831 vmm_gpt_get_pmtp(vmm_gpt_t *gpt, bool track_dirty)
832 {
833 const pfn_t root_pfn = gpt->vgpt_root->vgn_host_pfn;
834 return (gpt->vgpt_pte_ops->vpeo_get_pmtp(root_pfn, track_dirty));
835 }
836
837 /*
838 * Does the GPT hardware support dirty-page-tracking?
839 */
840 bool
vmm_gpt_can_track_dirty(vmm_gpt_t * gpt)841 vmm_gpt_can_track_dirty(vmm_gpt_t *gpt)
842 {
843 return (gpt->vgpt_pte_ops->vpeo_hw_ad_supported());
844 }
845