xref: /linux/mm/memory.c (revision c06944560a562828d507166b4f87c01c367cc9c1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 
80 #include <trace/events/kmem.h>
81 
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88 
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92 
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96 
97 static vm_fault_t do_fault(struct vm_fault *vmf);
98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
99 static bool vmf_pte_changed(struct vm_fault *vmf);
100 
101 /*
102  * Return true if the original pte was a uffd-wp pte marker (so the pte was
103  * wr-protected).
104  */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
106 {
107 	if (!userfaultfd_wp(vmf->vma))
108 		return false;
109 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
110 		return false;
111 
112 	return pte_marker_uffd_wp(vmf->orig_pte);
113 }
114 
115 /*
116  * Randomize the address space (stacks, mmaps, brk, etc.).
117  *
118  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119  *   as ancient (libc5 based) binaries can segfault. )
120  */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123 					1;
124 #else
125 					2;
126 #endif
127 
128 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)129 static inline bool arch_wants_old_prefaulted_pte(void)
130 {
131 	/*
132 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
133 	 * some architectures, even if it's performed in hardware. By
134 	 * default, "false" means prefaulted entries will be 'young'.
135 	 */
136 	return false;
137 }
138 #endif
139 
disable_randmaps(char * s)140 static int __init disable_randmaps(char *s)
141 {
142 	randomize_va_space = 0;
143 	return 1;
144 }
145 __setup("norandmaps", disable_randmaps);
146 
147 unsigned long zero_pfn __read_mostly;
148 EXPORT_SYMBOL(zero_pfn);
149 
150 unsigned long highest_memmap_pfn __read_mostly;
151 
152 /*
153  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
154  */
init_zero_pfn(void)155 static int __init init_zero_pfn(void)
156 {
157 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
158 	return 0;
159 }
160 early_initcall(init_zero_pfn);
161 
mm_trace_rss_stat(struct mm_struct * mm,int member)162 void mm_trace_rss_stat(struct mm_struct *mm, int member)
163 {
164 	trace_rss_stat(mm, member);
165 }
166 
167 /*
168  * Note: this doesn't free the actual pages themselves. That
169  * has been handled earlier when unmapping all the memory regions.
170  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)171 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
172 			   unsigned long addr)
173 {
174 	pgtable_t token = pmd_pgtable(*pmd);
175 	pmd_clear(pmd);
176 	pte_free_tlb(tlb, token, addr);
177 	mm_dec_nr_ptes(tlb->mm);
178 }
179 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)180 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
181 				unsigned long addr, unsigned long end,
182 				unsigned long floor, unsigned long ceiling)
183 {
184 	pmd_t *pmd;
185 	unsigned long next;
186 	unsigned long start;
187 
188 	start = addr;
189 	pmd = pmd_offset(pud, addr);
190 	do {
191 		next = pmd_addr_end(addr, end);
192 		if (pmd_none_or_clear_bad(pmd))
193 			continue;
194 		free_pte_range(tlb, pmd, addr);
195 	} while (pmd++, addr = next, addr != end);
196 
197 	start &= PUD_MASK;
198 	if (start < floor)
199 		return;
200 	if (ceiling) {
201 		ceiling &= PUD_MASK;
202 		if (!ceiling)
203 			return;
204 	}
205 	if (end - 1 > ceiling - 1)
206 		return;
207 
208 	pmd = pmd_offset(pud, start);
209 	pud_clear(pud);
210 	pmd_free_tlb(tlb, pmd, start);
211 	mm_dec_nr_pmds(tlb->mm);
212 }
213 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)214 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
215 				unsigned long addr, unsigned long end,
216 				unsigned long floor, unsigned long ceiling)
217 {
218 	pud_t *pud;
219 	unsigned long next;
220 	unsigned long start;
221 
222 	start = addr;
223 	pud = pud_offset(p4d, addr);
224 	do {
225 		next = pud_addr_end(addr, end);
226 		if (pud_none_or_clear_bad(pud))
227 			continue;
228 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
229 	} while (pud++, addr = next, addr != end);
230 
231 	start &= P4D_MASK;
232 	if (start < floor)
233 		return;
234 	if (ceiling) {
235 		ceiling &= P4D_MASK;
236 		if (!ceiling)
237 			return;
238 	}
239 	if (end - 1 > ceiling - 1)
240 		return;
241 
242 	pud = pud_offset(p4d, start);
243 	p4d_clear(p4d);
244 	pud_free_tlb(tlb, pud, start);
245 	mm_dec_nr_puds(tlb->mm);
246 }
247 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)248 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
249 				unsigned long addr, unsigned long end,
250 				unsigned long floor, unsigned long ceiling)
251 {
252 	p4d_t *p4d;
253 	unsigned long next;
254 	unsigned long start;
255 
256 	start = addr;
257 	p4d = p4d_offset(pgd, addr);
258 	do {
259 		next = p4d_addr_end(addr, end);
260 		if (p4d_none_or_clear_bad(p4d))
261 			continue;
262 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
263 	} while (p4d++, addr = next, addr != end);
264 
265 	start &= PGDIR_MASK;
266 	if (start < floor)
267 		return;
268 	if (ceiling) {
269 		ceiling &= PGDIR_MASK;
270 		if (!ceiling)
271 			return;
272 	}
273 	if (end - 1 > ceiling - 1)
274 		return;
275 
276 	p4d = p4d_offset(pgd, start);
277 	pgd_clear(pgd);
278 	p4d_free_tlb(tlb, p4d, start);
279 }
280 
281 /**
282  * free_pgd_range - Unmap and free page tables in the range
283  * @tlb: the mmu_gather containing pending TLB flush info
284  * @addr: virtual address start
285  * @end: virtual address end
286  * @floor: lowest address boundary
287  * @ceiling: highest address boundary
288  *
289  * This function tears down all user-level page tables in the
290  * specified virtual address range [@addr..@end). It is part of
291  * the memory unmap flow.
292  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)293 void free_pgd_range(struct mmu_gather *tlb,
294 			unsigned long addr, unsigned long end,
295 			unsigned long floor, unsigned long ceiling)
296 {
297 	pgd_t *pgd;
298 	unsigned long next;
299 
300 	/*
301 	 * The next few lines have given us lots of grief...
302 	 *
303 	 * Why are we testing PMD* at this top level?  Because often
304 	 * there will be no work to do at all, and we'd prefer not to
305 	 * go all the way down to the bottom just to discover that.
306 	 *
307 	 * Why all these "- 1"s?  Because 0 represents both the bottom
308 	 * of the address space and the top of it (using -1 for the
309 	 * top wouldn't help much: the masks would do the wrong thing).
310 	 * The rule is that addr 0 and floor 0 refer to the bottom of
311 	 * the address space, but end 0 and ceiling 0 refer to the top
312 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
313 	 * that end 0 case should be mythical).
314 	 *
315 	 * Wherever addr is brought up or ceiling brought down, we must
316 	 * be careful to reject "the opposite 0" before it confuses the
317 	 * subsequent tests.  But what about where end is brought down
318 	 * by PMD_SIZE below? no, end can't go down to 0 there.
319 	 *
320 	 * Whereas we round start (addr) and ceiling down, by different
321 	 * masks at different levels, in order to test whether a table
322 	 * now has no other vmas using it, so can be freed, we don't
323 	 * bother to round floor or end up - the tests don't need that.
324 	 */
325 
326 	addr &= PMD_MASK;
327 	if (addr < floor) {
328 		addr += PMD_SIZE;
329 		if (!addr)
330 			return;
331 	}
332 	if (ceiling) {
333 		ceiling &= PMD_MASK;
334 		if (!ceiling)
335 			return;
336 	}
337 	if (end - 1 > ceiling - 1)
338 		end -= PMD_SIZE;
339 	if (addr > end - 1)
340 		return;
341 	/*
342 	 * We add page table cache pages with PAGE_SIZE,
343 	 * (see pte_free_tlb()), flush the tlb if we need
344 	 */
345 	tlb_change_page_size(tlb, PAGE_SIZE);
346 	pgd = pgd_offset(tlb->mm, addr);
347 	do {
348 		next = pgd_addr_end(addr, end);
349 		if (pgd_none_or_clear_bad(pgd))
350 			continue;
351 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
352 	} while (pgd++, addr = next, addr != end);
353 }
354 
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)355 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
356 		   struct vm_area_struct *vma, unsigned long floor,
357 		   unsigned long ceiling, bool mm_wr_locked)
358 {
359 	struct unlink_vma_file_batch vb;
360 
361 	tlb_free_vmas(tlb);
362 
363 	do {
364 		unsigned long addr = vma->vm_start;
365 		struct vm_area_struct *next;
366 
367 		/*
368 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
369 		 * be 0.  This will underflow and is okay.
370 		 */
371 		next = mas_find(mas, ceiling - 1);
372 		if (unlikely(xa_is_zero(next)))
373 			next = NULL;
374 
375 		/*
376 		 * Hide vma from rmap and truncate_pagecache before freeing
377 		 * pgtables
378 		 */
379 		if (mm_wr_locked)
380 			vma_start_write(vma);
381 		unlink_anon_vmas(vma);
382 
383 		if (is_vm_hugetlb_page(vma)) {
384 			unlink_file_vma(vma);
385 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 				floor, next ? next->vm_start : ceiling);
387 		} else {
388 			unlink_file_vma_batch_init(&vb);
389 			unlink_file_vma_batch_add(&vb, vma);
390 
391 			/*
392 			 * Optimization: gather nearby vmas into one call down
393 			 */
394 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 			       && !is_vm_hugetlb_page(next)) {
396 				vma = next;
397 				next = mas_find(mas, ceiling - 1);
398 				if (unlikely(xa_is_zero(next)))
399 					next = NULL;
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma_batch_add(&vb, vma);
404 			}
405 			unlink_file_vma_batch_final(&vb);
406 			free_pgd_range(tlb, addr, vma->vm_end,
407 				floor, next ? next->vm_start : ceiling);
408 		}
409 		vma = next;
410 	} while (vma);
411 }
412 
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)413 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
414 {
415 	spinlock_t *ptl = pmd_lock(mm, pmd);
416 
417 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
418 		mm_inc_nr_ptes(mm);
419 		/*
420 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
421 		 * visible before the pte is made visible to other CPUs by being
422 		 * put into page tables.
423 		 *
424 		 * The other side of the story is the pointer chasing in the page
425 		 * table walking code (when walking the page table without locking;
426 		 * ie. most of the time). Fortunately, these data accesses consist
427 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
428 		 * being the notable exception) will already guarantee loads are
429 		 * seen in-order. See the alpha page table accessors for the
430 		 * smp_rmb() barriers in page table walking code.
431 		 */
432 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
433 		pmd_populate(mm, pmd, *pte);
434 		*pte = NULL;
435 	}
436 	spin_unlock(ptl);
437 }
438 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)439 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
440 {
441 	pgtable_t new = pte_alloc_one(mm);
442 	if (!new)
443 		return -ENOMEM;
444 
445 	pmd_install(mm, pmd, &new);
446 	if (new)
447 		pte_free(mm, new);
448 	return 0;
449 }
450 
__pte_alloc_kernel(pmd_t * pmd)451 int __pte_alloc_kernel(pmd_t *pmd)
452 {
453 	pte_t *new = pte_alloc_one_kernel(&init_mm);
454 	if (!new)
455 		return -ENOMEM;
456 
457 	spin_lock(&init_mm.page_table_lock);
458 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
459 		smp_wmb(); /* See comment in pmd_install() */
460 		pmd_populate_kernel(&init_mm, pmd, new);
461 		new = NULL;
462 	}
463 	spin_unlock(&init_mm.page_table_lock);
464 	if (new)
465 		pte_free_kernel(&init_mm, new);
466 	return 0;
467 }
468 
init_rss_vec(int * rss)469 static inline void init_rss_vec(int *rss)
470 {
471 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
472 }
473 
add_mm_rss_vec(struct mm_struct * mm,int * rss)474 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
475 {
476 	int i;
477 
478 	for (i = 0; i < NR_MM_COUNTERS; i++)
479 		if (rss[i])
480 			add_mm_counter(mm, i, rss[i]);
481 }
482 
483 /*
484  * This function is called to print an error when a bad pte
485  * is found. For example, we might have a PFN-mapped pte in
486  * a region that doesn't allow it.
487  *
488  * The calling function must still handle the error.
489  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 			  pte_t pte, struct page *page)
492 {
493 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 	p4d_t *p4d = p4d_offset(pgd, addr);
495 	pud_t *pud = pud_offset(p4d, addr);
496 	pmd_t *pmd = pmd_offset(pud, addr);
497 	struct address_space *mapping;
498 	pgoff_t index;
499 	static unsigned long resume;
500 	static unsigned long nr_shown;
501 	static unsigned long nr_unshown;
502 
503 	/*
504 	 * Allow a burst of 60 reports, then keep quiet for that minute;
505 	 * or allow a steady drip of one report per second.
506 	 */
507 	if (nr_shown == 60) {
508 		if (time_before(jiffies, resume)) {
509 			nr_unshown++;
510 			return;
511 		}
512 		if (nr_unshown) {
513 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 				 nr_unshown);
515 			nr_unshown = 0;
516 		}
517 		nr_shown = 0;
518 	}
519 	if (nr_shown++ == 0)
520 		resume = jiffies + 60 * HZ;
521 
522 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 	index = linear_page_index(vma, addr);
524 
525 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
526 		 current->comm,
527 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 	if (page)
529 		dump_page(page, "bad pte");
530 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 	pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
533 		 vma->vm_file,
534 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 		 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL,
537 		 mapping ? mapping->a_ops->read_folio : NULL);
538 	dump_stack();
539 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541 
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The only exception are zeropages, which are
579  * *never* refcounted.
580  *
581  * The disadvantage is that pages are refcounted (which can be slower and
582  * simply not an option for some PFNMAP users). The advantage is that we
583  * don't have to follow the strict linearity rule of PFNMAP mappings in
584  * order to support COWable mappings.
585  *
586  */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)587 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
588 			    pte_t pte)
589 {
590 	unsigned long pfn = pte_pfn(pte);
591 
592 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
593 		if (likely(!pte_special(pte)))
594 			goto check_pfn;
595 		if (vma->vm_ops && vma->vm_ops->find_special_page)
596 			return vma->vm_ops->find_special_page(vma, addr);
597 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
598 			return NULL;
599 		if (is_zero_pfn(pfn))
600 			return NULL;
601 		if (pte_devmap(pte))
602 		/*
603 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
604 		 * and will have refcounts incremented on their struct pages
605 		 * when they are inserted into PTEs, thus they are safe to
606 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
607 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
608 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
609 		 */
610 			return NULL;
611 
612 		print_bad_pte(vma, addr, pte, NULL);
613 		return NULL;
614 	}
615 
616 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617 
618 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 		if (vma->vm_flags & VM_MIXEDMAP) {
620 			if (!pfn_valid(pfn))
621 				return NULL;
622 			if (is_zero_pfn(pfn))
623 				return NULL;
624 			goto out;
625 		} else {
626 			unsigned long off;
627 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
628 			if (pfn == vma->vm_pgoff + off)
629 				return NULL;
630 			if (!is_cow_mapping(vma->vm_flags))
631 				return NULL;
632 		}
633 	}
634 
635 	if (is_zero_pfn(pfn))
636 		return NULL;
637 
638 check_pfn:
639 	if (unlikely(pfn > highest_memmap_pfn)) {
640 		print_bad_pte(vma, addr, pte, NULL);
641 		return NULL;
642 	}
643 
644 	/*
645 	 * NOTE! We still have PageReserved() pages in the page tables.
646 	 * eg. VDSO mappings can cause them to exist.
647 	 */
648 out:
649 	VM_WARN_ON_ONCE(is_zero_pfn(pfn));
650 	return pfn_to_page(pfn);
651 }
652 
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)653 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
654 			    pte_t pte)
655 {
656 	struct page *page = vm_normal_page(vma, addr, pte);
657 
658 	if (page)
659 		return page_folio(page);
660 	return NULL;
661 }
662 
663 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)664 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
665 				pmd_t pmd)
666 {
667 	unsigned long pfn = pmd_pfn(pmd);
668 
669 	/* Currently it's only used for huge pfnmaps */
670 	if (unlikely(pmd_special(pmd)))
671 		return NULL;
672 
673 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
674 		if (vma->vm_flags & VM_MIXEDMAP) {
675 			if (!pfn_valid(pfn))
676 				return NULL;
677 			goto out;
678 		} else {
679 			unsigned long off;
680 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
681 			if (pfn == vma->vm_pgoff + off)
682 				return NULL;
683 			if (!is_cow_mapping(vma->vm_flags))
684 				return NULL;
685 		}
686 	}
687 
688 	if (pmd_devmap(pmd))
689 		return NULL;
690 	if (is_huge_zero_pmd(pmd))
691 		return NULL;
692 	if (unlikely(pfn > highest_memmap_pfn))
693 		return NULL;
694 
695 	/*
696 	 * NOTE! We still have PageReserved() pages in the page tables.
697 	 * eg. VDSO mappings can cause them to exist.
698 	 */
699 out:
700 	return pfn_to_page(pfn);
701 }
702 
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)703 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
704 				  unsigned long addr, pmd_t pmd)
705 {
706 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
707 
708 	if (page)
709 		return page_folio(page);
710 	return NULL;
711 }
712 #endif
713 
714 /**
715  * restore_exclusive_pte - Restore a device-exclusive entry
716  * @vma: VMA covering @address
717  * @folio: the mapped folio
718  * @page: the mapped folio page
719  * @address: the virtual address
720  * @ptep: pte pointer into the locked page table mapping the folio page
721  * @orig_pte: pte value at @ptep
722  *
723  * Restore a device-exclusive non-swap entry to an ordinary present pte.
724  *
725  * The folio and the page table must be locked, and MMU notifiers must have
726  * been called to invalidate any (exclusive) device mappings.
727  *
728  * Locking the folio makes sure that anybody who just converted the pte to
729  * a device-exclusive entry can map it into the device to make forward
730  * progress without others converting it back until the folio was unlocked.
731  *
732  * If the folio lock ever becomes an issue, we can stop relying on the folio
733  * lock; it might make some scenarios with heavy thrashing less likely to
734  * make forward progress, but these scenarios might not be valid use cases.
735  *
736  * Note that the folio lock does not protect against all cases of concurrent
737  * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
738  * must use MMU notifiers to sync against any concurrent changes.
739  */
restore_exclusive_pte(struct vm_area_struct * vma,struct folio * folio,struct page * page,unsigned long address,pte_t * ptep,pte_t orig_pte)740 static void restore_exclusive_pte(struct vm_area_struct *vma,
741 		struct folio *folio, struct page *page, unsigned long address,
742 		pte_t *ptep, pte_t orig_pte)
743 {
744 	pte_t pte;
745 
746 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
747 
748 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
749 	if (pte_swp_soft_dirty(orig_pte))
750 		pte = pte_mksoft_dirty(pte);
751 
752 	if (pte_swp_uffd_wp(orig_pte))
753 		pte = pte_mkuffd_wp(pte);
754 
755 	if ((vma->vm_flags & VM_WRITE) &&
756 	    can_change_pte_writable(vma, address, pte)) {
757 		if (folio_test_dirty(folio))
758 			pte = pte_mkdirty(pte);
759 		pte = pte_mkwrite(pte, vma);
760 	}
761 	set_pte_at(vma->vm_mm, address, ptep, pte);
762 
763 	/*
764 	 * No need to invalidate - it was non-present before. However
765 	 * secondary CPUs may have mappings that need invalidating.
766 	 */
767 	update_mmu_cache(vma, address, ptep);
768 }
769 
770 /*
771  * Tries to restore an exclusive pte if the page lock can be acquired without
772  * sleeping.
773  */
try_restore_exclusive_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t orig_pte)774 static int try_restore_exclusive_pte(struct vm_area_struct *vma,
775 		unsigned long addr, pte_t *ptep, pte_t orig_pte)
776 {
777 	struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte));
778 	struct folio *folio = page_folio(page);
779 
780 	if (folio_trylock(folio)) {
781 		restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte);
782 		folio_unlock(folio);
783 		return 0;
784 	}
785 
786 	return -EBUSY;
787 }
788 
789 /*
790  * copy one vm_area from one task to the other. Assumes the page tables
791  * already present in the new task to be cleared in the whole range
792  * covered by this vma.
793  */
794 
795 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)796 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
797 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
798 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
799 {
800 	unsigned long vm_flags = dst_vma->vm_flags;
801 	pte_t orig_pte = ptep_get(src_pte);
802 	pte_t pte = orig_pte;
803 	struct folio *folio;
804 	struct page *page;
805 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
806 
807 	if (likely(!non_swap_entry(entry))) {
808 		if (swap_duplicate(entry) < 0)
809 			return -EIO;
810 
811 		/* make sure dst_mm is on swapoff's mmlist. */
812 		if (unlikely(list_empty(&dst_mm->mmlist))) {
813 			spin_lock(&mmlist_lock);
814 			if (list_empty(&dst_mm->mmlist))
815 				list_add(&dst_mm->mmlist,
816 						&src_mm->mmlist);
817 			spin_unlock(&mmlist_lock);
818 		}
819 		/* Mark the swap entry as shared. */
820 		if (pte_swp_exclusive(orig_pte)) {
821 			pte = pte_swp_clear_exclusive(orig_pte);
822 			set_pte_at(src_mm, addr, src_pte, pte);
823 		}
824 		rss[MM_SWAPENTS]++;
825 	} else if (is_migration_entry(entry)) {
826 		folio = pfn_swap_entry_folio(entry);
827 
828 		rss[mm_counter(folio)]++;
829 
830 		if (!is_readable_migration_entry(entry) &&
831 				is_cow_mapping(vm_flags)) {
832 			/*
833 			 * COW mappings require pages in both parent and child
834 			 * to be set to read. A previously exclusive entry is
835 			 * now shared.
836 			 */
837 			entry = make_readable_migration_entry(
838 							swp_offset(entry));
839 			pte = swp_entry_to_pte(entry);
840 			if (pte_swp_soft_dirty(orig_pte))
841 				pte = pte_swp_mksoft_dirty(pte);
842 			if (pte_swp_uffd_wp(orig_pte))
843 				pte = pte_swp_mkuffd_wp(pte);
844 			set_pte_at(src_mm, addr, src_pte, pte);
845 		}
846 	} else if (is_device_private_entry(entry)) {
847 		page = pfn_swap_entry_to_page(entry);
848 		folio = page_folio(page);
849 
850 		/*
851 		 * Update rss count even for unaddressable pages, as
852 		 * they should treated just like normal pages in this
853 		 * respect.
854 		 *
855 		 * We will likely want to have some new rss counters
856 		 * for unaddressable pages, at some point. But for now
857 		 * keep things as they are.
858 		 */
859 		folio_get(folio);
860 		rss[mm_counter(folio)]++;
861 		/* Cannot fail as these pages cannot get pinned. */
862 		folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma);
863 
864 		/*
865 		 * We do not preserve soft-dirty information, because so
866 		 * far, checkpoint/restore is the only feature that
867 		 * requires that. And checkpoint/restore does not work
868 		 * when a device driver is involved (you cannot easily
869 		 * save and restore device driver state).
870 		 */
871 		if (is_writable_device_private_entry(entry) &&
872 		    is_cow_mapping(vm_flags)) {
873 			entry = make_readable_device_private_entry(
874 							swp_offset(entry));
875 			pte = swp_entry_to_pte(entry);
876 			if (pte_swp_uffd_wp(orig_pte))
877 				pte = pte_swp_mkuffd_wp(pte);
878 			set_pte_at(src_mm, addr, src_pte, pte);
879 		}
880 	} else if (is_device_exclusive_entry(entry)) {
881 		/*
882 		 * Make device exclusive entries present by restoring the
883 		 * original entry then copying as for a present pte. Device
884 		 * exclusive entries currently only support private writable
885 		 * (ie. COW) mappings.
886 		 */
887 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
888 		if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte))
889 			return -EBUSY;
890 		return -ENOENT;
891 	} else if (is_pte_marker_entry(entry)) {
892 		pte_marker marker = copy_pte_marker(entry, dst_vma);
893 
894 		if (marker)
895 			set_pte_at(dst_mm, addr, dst_pte,
896 				   make_pte_marker(marker));
897 		return 0;
898 	}
899 	if (!userfaultfd_wp(dst_vma))
900 		pte = pte_swp_clear_uffd_wp(pte);
901 	set_pte_at(dst_mm, addr, dst_pte, pte);
902 	return 0;
903 }
904 
905 /*
906  * Copy a present and normal page.
907  *
908  * NOTE! The usual case is that this isn't required;
909  * instead, the caller can just increase the page refcount
910  * and re-use the pte the traditional way.
911  *
912  * And if we need a pre-allocated page but don't yet have
913  * one, return a negative error to let the preallocation
914  * code know so that it can do so outside the page table
915  * lock.
916  */
917 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)918 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
919 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
920 		  struct folio **prealloc, struct page *page)
921 {
922 	struct folio *new_folio;
923 	pte_t pte;
924 
925 	new_folio = *prealloc;
926 	if (!new_folio)
927 		return -EAGAIN;
928 
929 	/*
930 	 * We have a prealloc page, all good!  Take it
931 	 * over and copy the page & arm it.
932 	 */
933 
934 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
935 		return -EHWPOISON;
936 
937 	*prealloc = NULL;
938 	__folio_mark_uptodate(new_folio);
939 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
940 	folio_add_lru_vma(new_folio, dst_vma);
941 	rss[MM_ANONPAGES]++;
942 
943 	/* All done, just insert the new page copy in the child */
944 	pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot);
945 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
946 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
947 		/* Uffd-wp needs to be delivered to dest pte as well */
948 		pte = pte_mkuffd_wp(pte);
949 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
950 	return 0;
951 }
952 
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)953 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
954 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
955 		pte_t pte, unsigned long addr, int nr)
956 {
957 	struct mm_struct *src_mm = src_vma->vm_mm;
958 
959 	/* If it's a COW mapping, write protect it both processes. */
960 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
961 		wrprotect_ptes(src_mm, addr, src_pte, nr);
962 		pte = pte_wrprotect(pte);
963 	}
964 
965 	/* If it's a shared mapping, mark it clean in the child. */
966 	if (src_vma->vm_flags & VM_SHARED)
967 		pte = pte_mkclean(pte);
968 	pte = pte_mkold(pte);
969 
970 	if (!userfaultfd_wp(dst_vma))
971 		pte = pte_clear_uffd_wp(pte);
972 
973 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
974 }
975 
976 /*
977  * Copy one present PTE, trying to batch-process subsequent PTEs that map
978  * consecutive pages of the same folio by copying them as well.
979  *
980  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
981  * Otherwise, returns the number of copied PTEs (at least 1).
982  */
983 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)984 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
985 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
986 		 int max_nr, int *rss, struct folio **prealloc)
987 {
988 	struct page *page;
989 	struct folio *folio;
990 	bool any_writable;
991 	fpb_t flags = 0;
992 	int err, nr;
993 
994 	page = vm_normal_page(src_vma, addr, pte);
995 	if (unlikely(!page))
996 		goto copy_pte;
997 
998 	folio = page_folio(page);
999 
1000 	/*
1001 	 * If we likely have to copy, just don't bother with batching. Make
1002 	 * sure that the common "small folio" case is as fast as possible
1003 	 * by keeping the batching logic separate.
1004 	 */
1005 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1006 		if (src_vma->vm_flags & VM_SHARED)
1007 			flags |= FPB_IGNORE_DIRTY;
1008 		if (!vma_soft_dirty_enabled(src_vma))
1009 			flags |= FPB_IGNORE_SOFT_DIRTY;
1010 
1011 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1012 				     &any_writable, NULL, NULL);
1013 		folio_ref_add(folio, nr);
1014 		if (folio_test_anon(folio)) {
1015 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1016 								  nr, dst_vma, src_vma))) {
1017 				folio_ref_sub(folio, nr);
1018 				return -EAGAIN;
1019 			}
1020 			rss[MM_ANONPAGES] += nr;
1021 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1022 		} else {
1023 			folio_dup_file_rmap_ptes(folio, page, nr, dst_vma);
1024 			rss[mm_counter_file(folio)] += nr;
1025 		}
1026 		if (any_writable)
1027 			pte = pte_mkwrite(pte, src_vma);
1028 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1029 				    addr, nr);
1030 		return nr;
1031 	}
1032 
1033 	folio_get(folio);
1034 	if (folio_test_anon(folio)) {
1035 		/*
1036 		 * If this page may have been pinned by the parent process,
1037 		 * copy the page immediately for the child so that we'll always
1038 		 * guarantee the pinned page won't be randomly replaced in the
1039 		 * future.
1040 		 */
1041 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) {
1042 			/* Page may be pinned, we have to copy. */
1043 			folio_put(folio);
1044 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1045 						addr, rss, prealloc, page);
1046 			return err ? err : 1;
1047 		}
1048 		rss[MM_ANONPAGES]++;
1049 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1050 	} else {
1051 		folio_dup_file_rmap_pte(folio, page, dst_vma);
1052 		rss[mm_counter_file(folio)]++;
1053 	}
1054 
1055 copy_pte:
1056 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1057 	return 1;
1058 }
1059 
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1060 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1061 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1062 {
1063 	struct folio *new_folio;
1064 
1065 	if (need_zero)
1066 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1067 	else
1068 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1069 
1070 	if (!new_folio)
1071 		return NULL;
1072 
1073 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1074 		folio_put(new_folio);
1075 		return NULL;
1076 	}
1077 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1078 
1079 	return new_folio;
1080 }
1081 
1082 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1083 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1084 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1085 	       unsigned long end)
1086 {
1087 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1088 	struct mm_struct *src_mm = src_vma->vm_mm;
1089 	pte_t *orig_src_pte, *orig_dst_pte;
1090 	pte_t *src_pte, *dst_pte;
1091 	pmd_t dummy_pmdval;
1092 	pte_t ptent;
1093 	spinlock_t *src_ptl, *dst_ptl;
1094 	int progress, max_nr, ret = 0;
1095 	int rss[NR_MM_COUNTERS];
1096 	swp_entry_t entry = (swp_entry_t){0};
1097 	struct folio *prealloc = NULL;
1098 	int nr;
1099 
1100 again:
1101 	progress = 0;
1102 	init_rss_vec(rss);
1103 
1104 	/*
1105 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1106 	 * error handling here, assume that exclusive mmap_lock on dst and src
1107 	 * protects anon from unexpected THP transitions; with shmem and file
1108 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1109 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1110 	 * can remove such assumptions later, but this is good enough for now.
1111 	 */
1112 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1113 	if (!dst_pte) {
1114 		ret = -ENOMEM;
1115 		goto out;
1116 	}
1117 
1118 	/*
1119 	 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1120 	 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1121 	 * the PTE page is stable, and there is no need to get pmdval and do
1122 	 * pmd_same() check.
1123 	 */
1124 	src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1125 					   &src_ptl);
1126 	if (!src_pte) {
1127 		pte_unmap_unlock(dst_pte, dst_ptl);
1128 		/* ret == 0 */
1129 		goto out;
1130 	}
1131 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1132 	orig_src_pte = src_pte;
1133 	orig_dst_pte = dst_pte;
1134 	arch_enter_lazy_mmu_mode();
1135 
1136 	do {
1137 		nr = 1;
1138 
1139 		/*
1140 		 * We are holding two locks at this point - either of them
1141 		 * could generate latencies in another task on another CPU.
1142 		 */
1143 		if (progress >= 32) {
1144 			progress = 0;
1145 			if (need_resched() ||
1146 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1147 				break;
1148 		}
1149 		ptent = ptep_get(src_pte);
1150 		if (pte_none(ptent)) {
1151 			progress++;
1152 			continue;
1153 		}
1154 		if (unlikely(!pte_present(ptent))) {
1155 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1156 						  dst_pte, src_pte,
1157 						  dst_vma, src_vma,
1158 						  addr, rss);
1159 			if (ret == -EIO) {
1160 				entry = pte_to_swp_entry(ptep_get(src_pte));
1161 				break;
1162 			} else if (ret == -EBUSY) {
1163 				break;
1164 			} else if (!ret) {
1165 				progress += 8;
1166 				continue;
1167 			}
1168 			ptent = ptep_get(src_pte);
1169 			VM_WARN_ON_ONCE(!pte_present(ptent));
1170 
1171 			/*
1172 			 * Device exclusive entry restored, continue by copying
1173 			 * the now present pte.
1174 			 */
1175 			WARN_ON_ONCE(ret != -ENOENT);
1176 		}
1177 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1178 		max_nr = (end - addr) / PAGE_SIZE;
1179 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1180 					ptent, addr, max_nr, rss, &prealloc);
1181 		/*
1182 		 * If we need a pre-allocated page for this pte, drop the
1183 		 * locks, allocate, and try again.
1184 		 * If copy failed due to hwpoison in source page, break out.
1185 		 */
1186 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1187 			break;
1188 		if (unlikely(prealloc)) {
1189 			/*
1190 			 * pre-alloc page cannot be reused by next time so as
1191 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1192 			 * will allocate page according to address).  This
1193 			 * could only happen if one pinned pte changed.
1194 			 */
1195 			folio_put(prealloc);
1196 			prealloc = NULL;
1197 		}
1198 		nr = ret;
1199 		progress += 8 * nr;
1200 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1201 		 addr != end);
1202 
1203 	arch_leave_lazy_mmu_mode();
1204 	pte_unmap_unlock(orig_src_pte, src_ptl);
1205 	add_mm_rss_vec(dst_mm, rss);
1206 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1207 	cond_resched();
1208 
1209 	if (ret == -EIO) {
1210 		VM_WARN_ON_ONCE(!entry.val);
1211 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1212 			ret = -ENOMEM;
1213 			goto out;
1214 		}
1215 		entry.val = 0;
1216 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1217 		goto out;
1218 	} else if (ret ==  -EAGAIN) {
1219 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1220 		if (!prealloc)
1221 			return -ENOMEM;
1222 	} else if (ret < 0) {
1223 		VM_WARN_ON_ONCE(1);
1224 	}
1225 
1226 	/* We've captured and resolved the error. Reset, try again. */
1227 	ret = 0;
1228 
1229 	if (addr != end)
1230 		goto again;
1231 out:
1232 	if (unlikely(prealloc))
1233 		folio_put(prealloc);
1234 	return ret;
1235 }
1236 
1237 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1238 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1239 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1240 	       unsigned long end)
1241 {
1242 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1243 	struct mm_struct *src_mm = src_vma->vm_mm;
1244 	pmd_t *src_pmd, *dst_pmd;
1245 	unsigned long next;
1246 
1247 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1248 	if (!dst_pmd)
1249 		return -ENOMEM;
1250 	src_pmd = pmd_offset(src_pud, addr);
1251 	do {
1252 		next = pmd_addr_end(addr, end);
1253 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1254 			|| pmd_devmap(*src_pmd)) {
1255 			int err;
1256 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1257 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1258 					    addr, dst_vma, src_vma);
1259 			if (err == -ENOMEM)
1260 				return -ENOMEM;
1261 			if (!err)
1262 				continue;
1263 			/* fall through */
1264 		}
1265 		if (pmd_none_or_clear_bad(src_pmd))
1266 			continue;
1267 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1268 				   addr, next))
1269 			return -ENOMEM;
1270 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1271 	return 0;
1272 }
1273 
1274 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1275 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1276 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1277 	       unsigned long end)
1278 {
1279 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1280 	struct mm_struct *src_mm = src_vma->vm_mm;
1281 	pud_t *src_pud, *dst_pud;
1282 	unsigned long next;
1283 
1284 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1285 	if (!dst_pud)
1286 		return -ENOMEM;
1287 	src_pud = pud_offset(src_p4d, addr);
1288 	do {
1289 		next = pud_addr_end(addr, end);
1290 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1291 			int err;
1292 
1293 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1294 			err = copy_huge_pud(dst_mm, src_mm,
1295 					    dst_pud, src_pud, addr, src_vma);
1296 			if (err == -ENOMEM)
1297 				return -ENOMEM;
1298 			if (!err)
1299 				continue;
1300 			/* fall through */
1301 		}
1302 		if (pud_none_or_clear_bad(src_pud))
1303 			continue;
1304 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1305 				   addr, next))
1306 			return -ENOMEM;
1307 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1308 	return 0;
1309 }
1310 
1311 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1312 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1313 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1314 	       unsigned long end)
1315 {
1316 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1317 	p4d_t *src_p4d, *dst_p4d;
1318 	unsigned long next;
1319 
1320 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1321 	if (!dst_p4d)
1322 		return -ENOMEM;
1323 	src_p4d = p4d_offset(src_pgd, addr);
1324 	do {
1325 		next = p4d_addr_end(addr, end);
1326 		if (p4d_none_or_clear_bad(src_p4d))
1327 			continue;
1328 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1329 				   addr, next))
1330 			return -ENOMEM;
1331 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1332 	return 0;
1333 }
1334 
1335 /*
1336  * Return true if the vma needs to copy the pgtable during this fork().  Return
1337  * false when we can speed up fork() by allowing lazy page faults later until
1338  * when the child accesses the memory range.
1339  */
1340 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1341 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1342 {
1343 	/*
1344 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1345 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1346 	 * contains uffd-wp protection information, that's something we can't
1347 	 * retrieve from page cache, and skip copying will lose those info.
1348 	 */
1349 	if (userfaultfd_wp(dst_vma))
1350 		return true;
1351 
1352 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1353 		return true;
1354 
1355 	if (src_vma->anon_vma)
1356 		return true;
1357 
1358 	/*
1359 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1360 	 * becomes much lighter when there are big shared or private readonly
1361 	 * mappings. The tradeoff is that copy_page_range is more efficient
1362 	 * than faulting.
1363 	 */
1364 	return false;
1365 }
1366 
1367 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1368 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1369 {
1370 	pgd_t *src_pgd, *dst_pgd;
1371 	unsigned long addr = src_vma->vm_start;
1372 	unsigned long end = src_vma->vm_end;
1373 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1374 	struct mm_struct *src_mm = src_vma->vm_mm;
1375 	struct mmu_notifier_range range;
1376 	unsigned long next;
1377 	bool is_cow;
1378 	int ret;
1379 
1380 	if (!vma_needs_copy(dst_vma, src_vma))
1381 		return 0;
1382 
1383 	if (is_vm_hugetlb_page(src_vma))
1384 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1385 
1386 	/*
1387 	 * We need to invalidate the secondary MMU mappings only when
1388 	 * there could be a permission downgrade on the ptes of the
1389 	 * parent mm. And a permission downgrade will only happen if
1390 	 * is_cow_mapping() returns true.
1391 	 */
1392 	is_cow = is_cow_mapping(src_vma->vm_flags);
1393 
1394 	if (is_cow) {
1395 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1396 					0, src_mm, addr, end);
1397 		mmu_notifier_invalidate_range_start(&range);
1398 		/*
1399 		 * Disabling preemption is not needed for the write side, as
1400 		 * the read side doesn't spin, but goes to the mmap_lock.
1401 		 *
1402 		 * Use the raw variant of the seqcount_t write API to avoid
1403 		 * lockdep complaining about preemptibility.
1404 		 */
1405 		vma_assert_write_locked(src_vma);
1406 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1407 	}
1408 
1409 	ret = 0;
1410 	dst_pgd = pgd_offset(dst_mm, addr);
1411 	src_pgd = pgd_offset(src_mm, addr);
1412 	do {
1413 		next = pgd_addr_end(addr, end);
1414 		if (pgd_none_or_clear_bad(src_pgd))
1415 			continue;
1416 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1417 					    addr, next))) {
1418 			ret = -ENOMEM;
1419 			break;
1420 		}
1421 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1422 
1423 	if (is_cow) {
1424 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1425 		mmu_notifier_invalidate_range_end(&range);
1426 	}
1427 	return ret;
1428 }
1429 
1430 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1431 static inline bool should_zap_cows(struct zap_details *details)
1432 {
1433 	/* By default, zap all pages */
1434 	if (!details || details->reclaim_pt)
1435 		return true;
1436 
1437 	/* Or, we zap COWed pages only if the caller wants to */
1438 	return details->even_cows;
1439 }
1440 
1441 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1442 static inline bool should_zap_folio(struct zap_details *details,
1443 				    struct folio *folio)
1444 {
1445 	/* If we can make a decision without *folio.. */
1446 	if (should_zap_cows(details))
1447 		return true;
1448 
1449 	/* Otherwise we should only zap non-anon folios */
1450 	return !folio_test_anon(folio);
1451 }
1452 
zap_drop_markers(struct zap_details * details)1453 static inline bool zap_drop_markers(struct zap_details *details)
1454 {
1455 	if (!details)
1456 		return false;
1457 
1458 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1459 }
1460 
1461 /*
1462  * This function makes sure that we'll replace the none pte with an uffd-wp
1463  * swap special pte marker when necessary. Must be with the pgtable lock held.
1464  *
1465  * Returns true if uffd-wp ptes was installed, false otherwise.
1466  */
1467 static inline bool
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1468 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1469 			      unsigned long addr, pte_t *pte, int nr,
1470 			      struct zap_details *details, pte_t pteval)
1471 {
1472 	bool was_installed = false;
1473 
1474 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1475 	/* Zap on anonymous always means dropping everything */
1476 	if (vma_is_anonymous(vma))
1477 		return false;
1478 
1479 	if (zap_drop_markers(details))
1480 		return false;
1481 
1482 	for (;;) {
1483 		/* the PFN in the PTE is irrelevant. */
1484 		if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1485 			was_installed = true;
1486 		if (--nr == 0)
1487 			break;
1488 		pte++;
1489 		addr += PAGE_SIZE;
1490 	}
1491 #endif
1492 	return was_installed;
1493 }
1494 
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1495 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1496 		struct vm_area_struct *vma, struct folio *folio,
1497 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1498 		unsigned long addr, struct zap_details *details, int *rss,
1499 		bool *force_flush, bool *force_break, bool *any_skipped)
1500 {
1501 	struct mm_struct *mm = tlb->mm;
1502 	bool delay_rmap = false;
1503 
1504 	if (!folio_test_anon(folio)) {
1505 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1506 		if (pte_dirty(ptent)) {
1507 			folio_mark_dirty(folio);
1508 			if (tlb_delay_rmap(tlb)) {
1509 				delay_rmap = true;
1510 				*force_flush = true;
1511 			}
1512 		}
1513 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1514 			folio_mark_accessed(folio);
1515 		rss[mm_counter(folio)] -= nr;
1516 	} else {
1517 		/* We don't need up-to-date accessed/dirty bits. */
1518 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1519 		rss[MM_ANONPAGES] -= nr;
1520 	}
1521 	/* Checking a single PTE in a batch is sufficient. */
1522 	arch_check_zapped_pte(vma, ptent);
1523 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1524 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1525 		*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1526 							     nr, details, ptent);
1527 
1528 	if (!delay_rmap) {
1529 		folio_remove_rmap_ptes(folio, page, nr, vma);
1530 
1531 		if (unlikely(folio_mapcount(folio) < 0))
1532 			print_bad_pte(vma, addr, ptent, page);
1533 	}
1534 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1535 		*force_flush = true;
1536 		*force_break = true;
1537 	}
1538 }
1539 
1540 /*
1541  * Zap or skip at least one present PTE, trying to batch-process subsequent
1542  * PTEs that map consecutive pages of the same folio.
1543  *
1544  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1545  */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1546 static inline int zap_present_ptes(struct mmu_gather *tlb,
1547 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1548 		unsigned int max_nr, unsigned long addr,
1549 		struct zap_details *details, int *rss, bool *force_flush,
1550 		bool *force_break, bool *any_skipped)
1551 {
1552 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1553 	struct mm_struct *mm = tlb->mm;
1554 	struct folio *folio;
1555 	struct page *page;
1556 	int nr;
1557 
1558 	page = vm_normal_page(vma, addr, ptent);
1559 	if (!page) {
1560 		/* We don't need up-to-date accessed/dirty bits. */
1561 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1562 		arch_check_zapped_pte(vma, ptent);
1563 		tlb_remove_tlb_entry(tlb, pte, addr);
1564 		if (userfaultfd_pte_wp(vma, ptent))
1565 			*any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1566 						pte, 1, details, ptent);
1567 		ksm_might_unmap_zero_page(mm, ptent);
1568 		return 1;
1569 	}
1570 
1571 	folio = page_folio(page);
1572 	if (unlikely(!should_zap_folio(details, folio))) {
1573 		*any_skipped = true;
1574 		return 1;
1575 	}
1576 
1577 	/*
1578 	 * Make sure that the common "small folio" case is as fast as possible
1579 	 * by keeping the batching logic separate.
1580 	 */
1581 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1582 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1583 				     NULL, NULL, NULL);
1584 
1585 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1586 				       addr, details, rss, force_flush,
1587 				       force_break, any_skipped);
1588 		return nr;
1589 	}
1590 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1591 			       details, rss, force_flush, force_break, any_skipped);
1592 	return 1;
1593 }
1594 
zap_nonpresent_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * any_skipped)1595 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1596 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1597 		unsigned int max_nr, unsigned long addr,
1598 		struct zap_details *details, int *rss, bool *any_skipped)
1599 {
1600 	swp_entry_t entry;
1601 	int nr = 1;
1602 
1603 	*any_skipped = true;
1604 	entry = pte_to_swp_entry(ptent);
1605 	if (is_device_private_entry(entry) ||
1606 		is_device_exclusive_entry(entry)) {
1607 		struct page *page = pfn_swap_entry_to_page(entry);
1608 		struct folio *folio = page_folio(page);
1609 
1610 		if (unlikely(!should_zap_folio(details, folio)))
1611 			return 1;
1612 		/*
1613 		 * Both device private/exclusive mappings should only
1614 		 * work with anonymous page so far, so we don't need to
1615 		 * consider uffd-wp bit when zap. For more information,
1616 		 * see zap_install_uffd_wp_if_needed().
1617 		 */
1618 		WARN_ON_ONCE(!vma_is_anonymous(vma));
1619 		rss[mm_counter(folio)]--;
1620 		folio_remove_rmap_pte(folio, page, vma);
1621 		folio_put(folio);
1622 	} else if (!non_swap_entry(entry)) {
1623 		/* Genuine swap entries, hence a private anon pages */
1624 		if (!should_zap_cows(details))
1625 			return 1;
1626 
1627 		nr = swap_pte_batch(pte, max_nr, ptent);
1628 		rss[MM_SWAPENTS] -= nr;
1629 		free_swap_and_cache_nr(entry, nr);
1630 	} else if (is_migration_entry(entry)) {
1631 		struct folio *folio = pfn_swap_entry_folio(entry);
1632 
1633 		if (!should_zap_folio(details, folio))
1634 			return 1;
1635 		rss[mm_counter(folio)]--;
1636 	} else if (pte_marker_entry_uffd_wp(entry)) {
1637 		/*
1638 		 * For anon: always drop the marker; for file: only
1639 		 * drop the marker if explicitly requested.
1640 		 */
1641 		if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1642 			return 1;
1643 	} else if (is_guard_swp_entry(entry)) {
1644 		/*
1645 		 * Ordinary zapping should not remove guard PTE
1646 		 * markers. Only do so if we should remove PTE markers
1647 		 * in general.
1648 		 */
1649 		if (!zap_drop_markers(details))
1650 			return 1;
1651 	} else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1652 		if (!should_zap_cows(details))
1653 			return 1;
1654 	} else {
1655 		/* We should have covered all the swap entry types */
1656 		pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1657 		WARN_ON_ONCE(1);
1658 	}
1659 	clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1660 	*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1661 
1662 	return nr;
1663 }
1664 
do_zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,unsigned long addr,unsigned long end,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1665 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1666 				   struct vm_area_struct *vma, pte_t *pte,
1667 				   unsigned long addr, unsigned long end,
1668 				   struct zap_details *details, int *rss,
1669 				   bool *force_flush, bool *force_break,
1670 				   bool *any_skipped)
1671 {
1672 	pte_t ptent = ptep_get(pte);
1673 	int max_nr = (end - addr) / PAGE_SIZE;
1674 	int nr = 0;
1675 
1676 	/* Skip all consecutive none ptes */
1677 	if (pte_none(ptent)) {
1678 		for (nr = 1; nr < max_nr; nr++) {
1679 			ptent = ptep_get(pte + nr);
1680 			if (!pte_none(ptent))
1681 				break;
1682 		}
1683 		max_nr -= nr;
1684 		if (!max_nr)
1685 			return nr;
1686 		pte += nr;
1687 		addr += nr * PAGE_SIZE;
1688 	}
1689 
1690 	if (pte_present(ptent))
1691 		nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1692 				       details, rss, force_flush, force_break,
1693 				       any_skipped);
1694 	else
1695 		nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1696 					  details, rss, any_skipped);
1697 
1698 	return nr;
1699 }
1700 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1701 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1702 				struct vm_area_struct *vma, pmd_t *pmd,
1703 				unsigned long addr, unsigned long end,
1704 				struct zap_details *details)
1705 {
1706 	bool force_flush = false, force_break = false;
1707 	struct mm_struct *mm = tlb->mm;
1708 	int rss[NR_MM_COUNTERS];
1709 	spinlock_t *ptl;
1710 	pte_t *start_pte;
1711 	pte_t *pte;
1712 	pmd_t pmdval;
1713 	unsigned long start = addr;
1714 	bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1715 	bool direct_reclaim = true;
1716 	int nr;
1717 
1718 retry:
1719 	tlb_change_page_size(tlb, PAGE_SIZE);
1720 	init_rss_vec(rss);
1721 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1722 	if (!pte)
1723 		return addr;
1724 
1725 	flush_tlb_batched_pending(mm);
1726 	arch_enter_lazy_mmu_mode();
1727 	do {
1728 		bool any_skipped = false;
1729 
1730 		if (need_resched()) {
1731 			direct_reclaim = false;
1732 			break;
1733 		}
1734 
1735 		nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1736 				      &force_flush, &force_break, &any_skipped);
1737 		if (any_skipped)
1738 			can_reclaim_pt = false;
1739 		if (unlikely(force_break)) {
1740 			addr += nr * PAGE_SIZE;
1741 			direct_reclaim = false;
1742 			break;
1743 		}
1744 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1745 
1746 	/*
1747 	 * Fast path: try to hold the pmd lock and unmap the PTE page.
1748 	 *
1749 	 * If the pte lock was released midway (retry case), or if the attempt
1750 	 * to hold the pmd lock failed, then we need to recheck all pte entries
1751 	 * to ensure they are still none, thereby preventing the pte entries
1752 	 * from being repopulated by another thread.
1753 	 */
1754 	if (can_reclaim_pt && direct_reclaim && addr == end)
1755 		direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1756 
1757 	add_mm_rss_vec(mm, rss);
1758 	arch_leave_lazy_mmu_mode();
1759 
1760 	/* Do the actual TLB flush before dropping ptl */
1761 	if (force_flush) {
1762 		tlb_flush_mmu_tlbonly(tlb);
1763 		tlb_flush_rmaps(tlb, vma);
1764 	}
1765 	pte_unmap_unlock(start_pte, ptl);
1766 
1767 	/*
1768 	 * If we forced a TLB flush (either due to running out of
1769 	 * batch buffers or because we needed to flush dirty TLB
1770 	 * entries before releasing the ptl), free the batched
1771 	 * memory too. Come back again if we didn't do everything.
1772 	 */
1773 	if (force_flush)
1774 		tlb_flush_mmu(tlb);
1775 
1776 	if (addr != end) {
1777 		cond_resched();
1778 		force_flush = false;
1779 		force_break = false;
1780 		goto retry;
1781 	}
1782 
1783 	if (can_reclaim_pt) {
1784 		if (direct_reclaim)
1785 			free_pte(mm, start, tlb, pmdval);
1786 		else
1787 			try_to_free_pte(mm, pmd, start, tlb);
1788 	}
1789 
1790 	return addr;
1791 }
1792 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1793 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1794 				struct vm_area_struct *vma, pud_t *pud,
1795 				unsigned long addr, unsigned long end,
1796 				struct zap_details *details)
1797 {
1798 	pmd_t *pmd;
1799 	unsigned long next;
1800 
1801 	pmd = pmd_offset(pud, addr);
1802 	do {
1803 		next = pmd_addr_end(addr, end);
1804 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1805 			if (next - addr != HPAGE_PMD_SIZE)
1806 				__split_huge_pmd(vma, pmd, addr, false);
1807 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1808 				addr = next;
1809 				continue;
1810 			}
1811 			/* fall through */
1812 		} else if (details && details->single_folio &&
1813 			   folio_test_pmd_mappable(details->single_folio) &&
1814 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1815 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1816 			/*
1817 			 * Take and drop THP pmd lock so that we cannot return
1818 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1819 			 * but not yet decremented compound_mapcount().
1820 			 */
1821 			spin_unlock(ptl);
1822 		}
1823 		if (pmd_none(*pmd)) {
1824 			addr = next;
1825 			continue;
1826 		}
1827 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1828 		if (addr != next)
1829 			pmd--;
1830 	} while (pmd++, cond_resched(), addr != end);
1831 
1832 	return addr;
1833 }
1834 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1835 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1836 				struct vm_area_struct *vma, p4d_t *p4d,
1837 				unsigned long addr, unsigned long end,
1838 				struct zap_details *details)
1839 {
1840 	pud_t *pud;
1841 	unsigned long next;
1842 
1843 	pud = pud_offset(p4d, addr);
1844 	do {
1845 		next = pud_addr_end(addr, end);
1846 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1847 			if (next - addr != HPAGE_PUD_SIZE) {
1848 				mmap_assert_locked(tlb->mm);
1849 				split_huge_pud(vma, pud, addr);
1850 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1851 				goto next;
1852 			/* fall through */
1853 		}
1854 		if (pud_none_or_clear_bad(pud))
1855 			continue;
1856 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1857 next:
1858 		cond_resched();
1859 	} while (pud++, addr = next, addr != end);
1860 
1861 	return addr;
1862 }
1863 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1864 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1865 				struct vm_area_struct *vma, pgd_t *pgd,
1866 				unsigned long addr, unsigned long end,
1867 				struct zap_details *details)
1868 {
1869 	p4d_t *p4d;
1870 	unsigned long next;
1871 
1872 	p4d = p4d_offset(pgd, addr);
1873 	do {
1874 		next = p4d_addr_end(addr, end);
1875 		if (p4d_none_or_clear_bad(p4d))
1876 			continue;
1877 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1878 	} while (p4d++, addr = next, addr != end);
1879 
1880 	return addr;
1881 }
1882 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1883 void unmap_page_range(struct mmu_gather *tlb,
1884 			     struct vm_area_struct *vma,
1885 			     unsigned long addr, unsigned long end,
1886 			     struct zap_details *details)
1887 {
1888 	pgd_t *pgd;
1889 	unsigned long next;
1890 
1891 	BUG_ON(addr >= end);
1892 	tlb_start_vma(tlb, vma);
1893 	pgd = pgd_offset(vma->vm_mm, addr);
1894 	do {
1895 		next = pgd_addr_end(addr, end);
1896 		if (pgd_none_or_clear_bad(pgd))
1897 			continue;
1898 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1899 	} while (pgd++, addr = next, addr != end);
1900 	tlb_end_vma(tlb, vma);
1901 }
1902 
1903 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1904 static void unmap_single_vma(struct mmu_gather *tlb,
1905 		struct vm_area_struct *vma, unsigned long start_addr,
1906 		unsigned long end_addr,
1907 		struct zap_details *details, bool mm_wr_locked)
1908 {
1909 	unsigned long start = max(vma->vm_start, start_addr);
1910 	unsigned long end;
1911 
1912 	if (start >= vma->vm_end)
1913 		return;
1914 	end = min(vma->vm_end, end_addr);
1915 	if (end <= vma->vm_start)
1916 		return;
1917 
1918 	if (vma->vm_file)
1919 		uprobe_munmap(vma, start, end);
1920 
1921 	if (start != end) {
1922 		if (unlikely(is_vm_hugetlb_page(vma))) {
1923 			/*
1924 			 * It is undesirable to test vma->vm_file as it
1925 			 * should be non-null for valid hugetlb area.
1926 			 * However, vm_file will be NULL in the error
1927 			 * cleanup path of mmap_region. When
1928 			 * hugetlbfs ->mmap method fails,
1929 			 * mmap_region() nullifies vma->vm_file
1930 			 * before calling this function to clean up.
1931 			 * Since no pte has actually been setup, it is
1932 			 * safe to do nothing in this case.
1933 			 */
1934 			if (vma->vm_file) {
1935 				zap_flags_t zap_flags = details ?
1936 				    details->zap_flags : 0;
1937 				__unmap_hugepage_range(tlb, vma, start, end,
1938 							     NULL, zap_flags);
1939 			}
1940 		} else
1941 			unmap_page_range(tlb, vma, start, end, details);
1942 	}
1943 }
1944 
1945 /**
1946  * unmap_vmas - unmap a range of memory covered by a list of vma's
1947  * @tlb: address of the caller's struct mmu_gather
1948  * @mas: the maple state
1949  * @vma: the starting vma
1950  * @start_addr: virtual address at which to start unmapping
1951  * @end_addr: virtual address at which to end unmapping
1952  * @tree_end: The maximum index to check
1953  * @mm_wr_locked: lock flag
1954  *
1955  * Unmap all pages in the vma list.
1956  *
1957  * Only addresses between `start' and `end' will be unmapped.
1958  *
1959  * The VMA list must be sorted in ascending virtual address order.
1960  *
1961  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1962  * range after unmap_vmas() returns.  So the only responsibility here is to
1963  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1964  * drops the lock and schedules.
1965  */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1966 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1967 		struct vm_area_struct *vma, unsigned long start_addr,
1968 		unsigned long end_addr, unsigned long tree_end,
1969 		bool mm_wr_locked)
1970 {
1971 	struct mmu_notifier_range range;
1972 	struct zap_details details = {
1973 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1974 		/* Careful - we need to zap private pages too! */
1975 		.even_cows = true,
1976 	};
1977 
1978 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1979 				start_addr, end_addr);
1980 	mmu_notifier_invalidate_range_start(&range);
1981 	do {
1982 		unsigned long start = start_addr;
1983 		unsigned long end = end_addr;
1984 		hugetlb_zap_begin(vma, &start, &end);
1985 		unmap_single_vma(tlb, vma, start, end, &details,
1986 				 mm_wr_locked);
1987 		hugetlb_zap_end(vma, &details);
1988 		vma = mas_find(mas, tree_end - 1);
1989 	} while (vma && likely(!xa_is_zero(vma)));
1990 	mmu_notifier_invalidate_range_end(&range);
1991 }
1992 
1993 /**
1994  * zap_page_range_single_batched - remove user pages in a given range
1995  * @tlb: pointer to the caller's struct mmu_gather
1996  * @vma: vm_area_struct holding the applicable pages
1997  * @address: starting address of pages to remove
1998  * @size: number of bytes to remove
1999  * @details: details of shared cache invalidation
2000  *
2001  * @tlb shouldn't be NULL.  The range must fit into one VMA.  If @vma is for
2002  * hugetlb, @tlb is flushed and re-initialized by this function.
2003  */
zap_page_range_single_batched(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2004 void zap_page_range_single_batched(struct mmu_gather *tlb,
2005 		struct vm_area_struct *vma, unsigned long address,
2006 		unsigned long size, struct zap_details *details)
2007 {
2008 	const unsigned long end = address + size;
2009 	struct mmu_notifier_range range;
2010 
2011 	VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm);
2012 
2013 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2014 				address, end);
2015 	hugetlb_zap_begin(vma, &range.start, &range.end);
2016 	update_hiwater_rss(vma->vm_mm);
2017 	mmu_notifier_invalidate_range_start(&range);
2018 	/*
2019 	 * unmap 'address-end' not 'range.start-range.end' as range
2020 	 * could have been expanded for hugetlb pmd sharing.
2021 	 */
2022 	unmap_single_vma(tlb, vma, address, end, details, false);
2023 	mmu_notifier_invalidate_range_end(&range);
2024 	if (is_vm_hugetlb_page(vma)) {
2025 		/*
2026 		 * flush tlb and free resources before hugetlb_zap_end(), to
2027 		 * avoid concurrent page faults' allocation failure.
2028 		 */
2029 		tlb_finish_mmu(tlb);
2030 		hugetlb_zap_end(vma, details);
2031 		tlb_gather_mmu(tlb, vma->vm_mm);
2032 	}
2033 }
2034 
2035 /**
2036  * zap_page_range_single - remove user pages in a given range
2037  * @vma: vm_area_struct holding the applicable pages
2038  * @address: starting address of pages to zap
2039  * @size: number of bytes to zap
2040  * @details: details of shared cache invalidation
2041  *
2042  * The range must fit into one VMA.
2043  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2044 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2045 		unsigned long size, struct zap_details *details)
2046 {
2047 	struct mmu_gather tlb;
2048 
2049 	tlb_gather_mmu(&tlb, vma->vm_mm);
2050 	zap_page_range_single_batched(&tlb, vma, address, size, details);
2051 	tlb_finish_mmu(&tlb);
2052 }
2053 
2054 /**
2055  * zap_vma_ptes - remove ptes mapping the vma
2056  * @vma: vm_area_struct holding ptes to be zapped
2057  * @address: starting address of pages to zap
2058  * @size: number of bytes to zap
2059  *
2060  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2061  *
2062  * The entire address range must be fully contained within the vma.
2063  *
2064  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)2065 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2066 		unsigned long size)
2067 {
2068 	if (!range_in_vma(vma, address, address + size) ||
2069 	    		!(vma->vm_flags & VM_PFNMAP))
2070 		return;
2071 
2072 	zap_page_range_single(vma, address, size, NULL);
2073 }
2074 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2075 
walk_to_pmd(struct mm_struct * mm,unsigned long addr)2076 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2077 {
2078 	pgd_t *pgd;
2079 	p4d_t *p4d;
2080 	pud_t *pud;
2081 	pmd_t *pmd;
2082 
2083 	pgd = pgd_offset(mm, addr);
2084 	p4d = p4d_alloc(mm, pgd, addr);
2085 	if (!p4d)
2086 		return NULL;
2087 	pud = pud_alloc(mm, p4d, addr);
2088 	if (!pud)
2089 		return NULL;
2090 	pmd = pmd_alloc(mm, pud, addr);
2091 	if (!pmd)
2092 		return NULL;
2093 
2094 	VM_BUG_ON(pmd_trans_huge(*pmd));
2095 	return pmd;
2096 }
2097 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2098 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2099 			spinlock_t **ptl)
2100 {
2101 	pmd_t *pmd = walk_to_pmd(mm, addr);
2102 
2103 	if (!pmd)
2104 		return NULL;
2105 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
2106 }
2107 
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)2108 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2109 {
2110 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2111 	/*
2112 	 * Whoever wants to forbid the zeropage after some zeropages
2113 	 * might already have been mapped has to scan the page tables and
2114 	 * bail out on any zeropages. Zeropages in COW mappings can
2115 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2116 	 */
2117 	if (mm_forbids_zeropage(vma->vm_mm))
2118 		return false;
2119 	/* zeropages in COW mappings are common and unproblematic. */
2120 	if (is_cow_mapping(vma->vm_flags))
2121 		return true;
2122 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2123 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2124 		return true;
2125 	/*
2126 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2127 	 * find the shared zeropage and longterm-pin it, which would
2128 	 * be problematic as soon as the zeropage gets replaced by a different
2129 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2130 	 * now differ to what GUP looked up. FSDAX is incompatible to
2131 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2132 	 * check_vma_flags).
2133 	 */
2134 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2135 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2136 }
2137 
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2138 static int validate_page_before_insert(struct vm_area_struct *vma,
2139 				       struct page *page)
2140 {
2141 	struct folio *folio = page_folio(page);
2142 
2143 	if (!folio_ref_count(folio))
2144 		return -EINVAL;
2145 	if (unlikely(is_zero_folio(folio))) {
2146 		if (!vm_mixed_zeropage_allowed(vma))
2147 			return -EINVAL;
2148 		return 0;
2149 	}
2150 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
2151 	    page_has_type(page))
2152 		return -EINVAL;
2153 	flush_dcache_folio(folio);
2154 	return 0;
2155 }
2156 
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2157 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2158 				unsigned long addr, struct page *page,
2159 				pgprot_t prot, bool mkwrite)
2160 {
2161 	struct folio *folio = page_folio(page);
2162 	pte_t pteval = ptep_get(pte);
2163 
2164 	if (!pte_none(pteval)) {
2165 		if (!mkwrite)
2166 			return -EBUSY;
2167 
2168 		/* see insert_pfn(). */
2169 		if (pte_pfn(pteval) != page_to_pfn(page)) {
2170 			WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval)));
2171 			return -EFAULT;
2172 		}
2173 		pteval = maybe_mkwrite(pteval, vma);
2174 		pteval = pte_mkyoung(pteval);
2175 		if (ptep_set_access_flags(vma, addr, pte, pteval, 1))
2176 			update_mmu_cache(vma, addr, pte);
2177 		return 0;
2178 	}
2179 
2180 	/* Ok, finally just insert the thing.. */
2181 	pteval = mk_pte(page, prot);
2182 	if (unlikely(is_zero_folio(folio))) {
2183 		pteval = pte_mkspecial(pteval);
2184 	} else {
2185 		folio_get(folio);
2186 		pteval = mk_pte(page, prot);
2187 		if (mkwrite) {
2188 			pteval = pte_mkyoung(pteval);
2189 			pteval = maybe_mkwrite(pte_mkdirty(pteval), vma);
2190 		}
2191 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2192 		folio_add_file_rmap_pte(folio, page, vma);
2193 	}
2194 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2195 	return 0;
2196 }
2197 
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2198 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2199 			struct page *page, pgprot_t prot, bool mkwrite)
2200 {
2201 	int retval;
2202 	pte_t *pte;
2203 	spinlock_t *ptl;
2204 
2205 	retval = validate_page_before_insert(vma, page);
2206 	if (retval)
2207 		goto out;
2208 	retval = -ENOMEM;
2209 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2210 	if (!pte)
2211 		goto out;
2212 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot,
2213 					mkwrite);
2214 	pte_unmap_unlock(pte, ptl);
2215 out:
2216 	return retval;
2217 }
2218 
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2219 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2220 			unsigned long addr, struct page *page, pgprot_t prot)
2221 {
2222 	int err;
2223 
2224 	err = validate_page_before_insert(vma, page);
2225 	if (err)
2226 		return err;
2227 	return insert_page_into_pte_locked(vma, pte, addr, page, prot, false);
2228 }
2229 
2230 /* insert_pages() amortizes the cost of spinlock operations
2231  * when inserting pages in a loop.
2232  */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2233 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2234 			struct page **pages, unsigned long *num, pgprot_t prot)
2235 {
2236 	pmd_t *pmd = NULL;
2237 	pte_t *start_pte, *pte;
2238 	spinlock_t *pte_lock;
2239 	struct mm_struct *const mm = vma->vm_mm;
2240 	unsigned long curr_page_idx = 0;
2241 	unsigned long remaining_pages_total = *num;
2242 	unsigned long pages_to_write_in_pmd;
2243 	int ret;
2244 more:
2245 	ret = -EFAULT;
2246 	pmd = walk_to_pmd(mm, addr);
2247 	if (!pmd)
2248 		goto out;
2249 
2250 	pages_to_write_in_pmd = min_t(unsigned long,
2251 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2252 
2253 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2254 	ret = -ENOMEM;
2255 	if (pte_alloc(mm, pmd))
2256 		goto out;
2257 
2258 	while (pages_to_write_in_pmd) {
2259 		int pte_idx = 0;
2260 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2261 
2262 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2263 		if (!start_pte) {
2264 			ret = -EFAULT;
2265 			goto out;
2266 		}
2267 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2268 			int err = insert_page_in_batch_locked(vma, pte,
2269 				addr, pages[curr_page_idx], prot);
2270 			if (unlikely(err)) {
2271 				pte_unmap_unlock(start_pte, pte_lock);
2272 				ret = err;
2273 				remaining_pages_total -= pte_idx;
2274 				goto out;
2275 			}
2276 			addr += PAGE_SIZE;
2277 			++curr_page_idx;
2278 		}
2279 		pte_unmap_unlock(start_pte, pte_lock);
2280 		pages_to_write_in_pmd -= batch_size;
2281 		remaining_pages_total -= batch_size;
2282 	}
2283 	if (remaining_pages_total)
2284 		goto more;
2285 	ret = 0;
2286 out:
2287 	*num = remaining_pages_total;
2288 	return ret;
2289 }
2290 
2291 /**
2292  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2293  * @vma: user vma to map to
2294  * @addr: target start user address of these pages
2295  * @pages: source kernel pages
2296  * @num: in: number of pages to map. out: number of pages that were *not*
2297  * mapped. (0 means all pages were successfully mapped).
2298  *
2299  * Preferred over vm_insert_page() when inserting multiple pages.
2300  *
2301  * In case of error, we may have mapped a subset of the provided
2302  * pages. It is the caller's responsibility to account for this case.
2303  *
2304  * The same restrictions apply as in vm_insert_page().
2305  */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2306 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2307 			struct page **pages, unsigned long *num)
2308 {
2309 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2310 
2311 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2312 		return -EFAULT;
2313 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2314 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2315 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2316 		vm_flags_set(vma, VM_MIXEDMAP);
2317 	}
2318 	/* Defer page refcount checking till we're about to map that page. */
2319 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2320 }
2321 EXPORT_SYMBOL(vm_insert_pages);
2322 
2323 /**
2324  * vm_insert_page - insert single page into user vma
2325  * @vma: user vma to map to
2326  * @addr: target user address of this page
2327  * @page: source kernel page
2328  *
2329  * This allows drivers to insert individual pages they've allocated
2330  * into a user vma. The zeropage is supported in some VMAs,
2331  * see vm_mixed_zeropage_allowed().
2332  *
2333  * The page has to be a nice clean _individual_ kernel allocation.
2334  * If you allocate a compound page, you need to have marked it as
2335  * such (__GFP_COMP), or manually just split the page up yourself
2336  * (see split_page()).
2337  *
2338  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2339  * took an arbitrary page protection parameter. This doesn't allow
2340  * that. Your vma protection will have to be set up correctly, which
2341  * means that if you want a shared writable mapping, you'd better
2342  * ask for a shared writable mapping!
2343  *
2344  * The page does not need to be reserved.
2345  *
2346  * Usually this function is called from f_op->mmap() handler
2347  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2348  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2349  * function from other places, for example from page-fault handler.
2350  *
2351  * Return: %0 on success, negative error code otherwise.
2352  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2354 			struct page *page)
2355 {
2356 	if (addr < vma->vm_start || addr >= vma->vm_end)
2357 		return -EFAULT;
2358 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2359 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2360 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2361 		vm_flags_set(vma, VM_MIXEDMAP);
2362 	}
2363 	return insert_page(vma, addr, page, vma->vm_page_prot, false);
2364 }
2365 EXPORT_SYMBOL(vm_insert_page);
2366 
2367 /*
2368  * __vm_map_pages - maps range of kernel pages into user vma
2369  * @vma: user vma to map to
2370  * @pages: pointer to array of source kernel pages
2371  * @num: number of pages in page array
2372  * @offset: user's requested vm_pgoff
2373  *
2374  * This allows drivers to map range of kernel pages into a user vma.
2375  * The zeropage is supported in some VMAs, see
2376  * vm_mixed_zeropage_allowed().
2377  *
2378  * Return: 0 on success and error code otherwise.
2379  */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2380 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2381 				unsigned long num, unsigned long offset)
2382 {
2383 	unsigned long count = vma_pages(vma);
2384 	unsigned long uaddr = vma->vm_start;
2385 	int ret, i;
2386 
2387 	/* Fail if the user requested offset is beyond the end of the object */
2388 	if (offset >= num)
2389 		return -ENXIO;
2390 
2391 	/* Fail if the user requested size exceeds available object size */
2392 	if (count > num - offset)
2393 		return -ENXIO;
2394 
2395 	for (i = 0; i < count; i++) {
2396 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2397 		if (ret < 0)
2398 			return ret;
2399 		uaddr += PAGE_SIZE;
2400 	}
2401 
2402 	return 0;
2403 }
2404 
2405 /**
2406  * vm_map_pages - maps range of kernel pages starts with non zero offset
2407  * @vma: user vma to map to
2408  * @pages: pointer to array of source kernel pages
2409  * @num: number of pages in page array
2410  *
2411  * Maps an object consisting of @num pages, catering for the user's
2412  * requested vm_pgoff
2413  *
2414  * If we fail to insert any page into the vma, the function will return
2415  * immediately leaving any previously inserted pages present.  Callers
2416  * from the mmap handler may immediately return the error as their caller
2417  * will destroy the vma, removing any successfully inserted pages. Other
2418  * callers should make their own arrangements for calling unmap_region().
2419  *
2420  * Context: Process context. Called by mmap handlers.
2421  * Return: 0 on success and error code otherwise.
2422  */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2423 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2424 				unsigned long num)
2425 {
2426 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2427 }
2428 EXPORT_SYMBOL(vm_map_pages);
2429 
2430 /**
2431  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2432  * @vma: user vma to map to
2433  * @pages: pointer to array of source kernel pages
2434  * @num: number of pages in page array
2435  *
2436  * Similar to vm_map_pages(), except that it explicitly sets the offset
2437  * to 0. This function is intended for the drivers that did not consider
2438  * vm_pgoff.
2439  *
2440  * Context: Process context. Called by mmap handlers.
2441  * Return: 0 on success and error code otherwise.
2442  */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2443 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2444 				unsigned long num)
2445 {
2446 	return __vm_map_pages(vma, pages, num, 0);
2447 }
2448 EXPORT_SYMBOL(vm_map_pages_zero);
2449 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2450 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2451 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2452 {
2453 	struct mm_struct *mm = vma->vm_mm;
2454 	pte_t *pte, entry;
2455 	spinlock_t *ptl;
2456 
2457 	pte = get_locked_pte(mm, addr, &ptl);
2458 	if (!pte)
2459 		return VM_FAULT_OOM;
2460 	entry = ptep_get(pte);
2461 	if (!pte_none(entry)) {
2462 		if (mkwrite) {
2463 			/*
2464 			 * For read faults on private mappings the PFN passed
2465 			 * in may not match the PFN we have mapped if the
2466 			 * mapped PFN is a writeable COW page.  In the mkwrite
2467 			 * case we are creating a writable PTE for a shared
2468 			 * mapping and we expect the PFNs to match. If they
2469 			 * don't match, we are likely racing with block
2470 			 * allocation and mapping invalidation so just skip the
2471 			 * update.
2472 			 */
2473 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2474 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2475 				goto out_unlock;
2476 			}
2477 			entry = pte_mkyoung(entry);
2478 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2479 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2480 				update_mmu_cache(vma, addr, pte);
2481 		}
2482 		goto out_unlock;
2483 	}
2484 
2485 	/* Ok, finally just insert the thing.. */
2486 	if (pfn_t_devmap(pfn))
2487 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2488 	else
2489 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2490 
2491 	if (mkwrite) {
2492 		entry = pte_mkyoung(entry);
2493 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2494 	}
2495 
2496 	set_pte_at(mm, addr, pte, entry);
2497 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2498 
2499 out_unlock:
2500 	pte_unmap_unlock(pte, ptl);
2501 	return VM_FAULT_NOPAGE;
2502 }
2503 
2504 /**
2505  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2506  * @vma: user vma to map to
2507  * @addr: target user address of this page
2508  * @pfn: source kernel pfn
2509  * @pgprot: pgprot flags for the inserted page
2510  *
2511  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2512  * to override pgprot on a per-page basis.
2513  *
2514  * This only makes sense for IO mappings, and it makes no sense for
2515  * COW mappings.  In general, using multiple vmas is preferable;
2516  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2517  * impractical.
2518  *
2519  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2520  * caching- and encryption bits different than those of @vma->vm_page_prot,
2521  * because the caching- or encryption mode may not be known at mmap() time.
2522  *
2523  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2524  * to set caching and encryption bits for those vmas (except for COW pages).
2525  * This is ensured by core vm only modifying these page table entries using
2526  * functions that don't touch caching- or encryption bits, using pte_modify()
2527  * if needed. (See for example mprotect()).
2528  *
2529  * Also when new page-table entries are created, this is only done using the
2530  * fault() callback, and never using the value of vma->vm_page_prot,
2531  * except for page-table entries that point to anonymous pages as the result
2532  * of COW.
2533  *
2534  * Context: Process context.  May allocate using %GFP_KERNEL.
2535  * Return: vm_fault_t value.
2536  */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2537 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2538 			unsigned long pfn, pgprot_t pgprot)
2539 {
2540 	/*
2541 	 * Technically, architectures with pte_special can avoid all these
2542 	 * restrictions (same for remap_pfn_range).  However we would like
2543 	 * consistency in testing and feature parity among all, so we should
2544 	 * try to keep these invariants in place for everybody.
2545 	 */
2546 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2547 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2548 						(VM_PFNMAP|VM_MIXEDMAP));
2549 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2550 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2551 
2552 	if (addr < vma->vm_start || addr >= vma->vm_end)
2553 		return VM_FAULT_SIGBUS;
2554 
2555 	if (!pfn_modify_allowed(pfn, pgprot))
2556 		return VM_FAULT_SIGBUS;
2557 
2558 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2559 
2560 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2561 			false);
2562 }
2563 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2564 
2565 /**
2566  * vmf_insert_pfn - insert single pfn into user vma
2567  * @vma: user vma to map to
2568  * @addr: target user address of this page
2569  * @pfn: source kernel pfn
2570  *
2571  * Similar to vm_insert_page, this allows drivers to insert individual pages
2572  * they've allocated into a user vma. Same comments apply.
2573  *
2574  * This function should only be called from a vm_ops->fault handler, and
2575  * in that case the handler should return the result of this function.
2576  *
2577  * vma cannot be a COW mapping.
2578  *
2579  * As this is called only for pages that do not currently exist, we
2580  * do not need to flush old virtual caches or the TLB.
2581  *
2582  * Context: Process context.  May allocate using %GFP_KERNEL.
2583  * Return: vm_fault_t value.
2584  */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2585 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2586 			unsigned long pfn)
2587 {
2588 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2589 }
2590 EXPORT_SYMBOL(vmf_insert_pfn);
2591 
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn,bool mkwrite)2592 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2593 {
2594 	if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2595 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2596 		return false;
2597 	/* these checks mirror the abort conditions in vm_normal_page */
2598 	if (vma->vm_flags & VM_MIXEDMAP)
2599 		return true;
2600 	if (pfn_t_devmap(pfn))
2601 		return true;
2602 	if (pfn_t_special(pfn))
2603 		return true;
2604 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2605 		return true;
2606 	return false;
2607 }
2608 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2609 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2610 		unsigned long addr, pfn_t pfn, bool mkwrite)
2611 {
2612 	pgprot_t pgprot = vma->vm_page_prot;
2613 	int err;
2614 
2615 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2616 		return VM_FAULT_SIGBUS;
2617 
2618 	if (addr < vma->vm_start || addr >= vma->vm_end)
2619 		return VM_FAULT_SIGBUS;
2620 
2621 	pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot);
2622 
2623 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2624 		return VM_FAULT_SIGBUS;
2625 
2626 	/*
2627 	 * If we don't have pte special, then we have to use the pfn_valid()
2628 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2629 	 * refcount the page if pfn_valid is true (hence insert_page rather
2630 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2631 	 * without pte special, it would there be refcounted as a normal page.
2632 	 */
2633 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2634 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2635 		struct page *page;
2636 
2637 		/*
2638 		 * At this point we are committed to insert_page()
2639 		 * regardless of whether the caller specified flags that
2640 		 * result in pfn_t_has_page() == false.
2641 		 */
2642 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2643 		err = insert_page(vma, addr, page, pgprot, mkwrite);
2644 	} else {
2645 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2646 	}
2647 
2648 	if (err == -ENOMEM)
2649 		return VM_FAULT_OOM;
2650 	if (err < 0 && err != -EBUSY)
2651 		return VM_FAULT_SIGBUS;
2652 
2653 	return VM_FAULT_NOPAGE;
2654 }
2655 
vmf_insert_page_mkwrite(struct vm_fault * vmf,struct page * page,bool write)2656 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
2657 			bool write)
2658 {
2659 	pgprot_t pgprot = vmf->vma->vm_page_prot;
2660 	unsigned long addr = vmf->address;
2661 	int err;
2662 
2663 	if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end)
2664 		return VM_FAULT_SIGBUS;
2665 
2666 	err = insert_page(vmf->vma, addr, page, pgprot, write);
2667 	if (err == -ENOMEM)
2668 		return VM_FAULT_OOM;
2669 	if (err < 0 && err != -EBUSY)
2670 		return VM_FAULT_SIGBUS;
2671 
2672 	return VM_FAULT_NOPAGE;
2673 }
2674 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite);
2675 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2676 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2677 		pfn_t pfn)
2678 {
2679 	return __vm_insert_mixed(vma, addr, pfn, false);
2680 }
2681 EXPORT_SYMBOL(vmf_insert_mixed);
2682 
2683 /*
2684  *  If the insertion of PTE failed because someone else already added a
2685  *  different entry in the mean time, we treat that as success as we assume
2686  *  the same entry was actually inserted.
2687  */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2688 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2689 		unsigned long addr, pfn_t pfn)
2690 {
2691 	return __vm_insert_mixed(vma, addr, pfn, true);
2692 }
2693 
2694 /*
2695  * maps a range of physical memory into the requested pages. the old
2696  * mappings are removed. any references to nonexistent pages results
2697  * in null mappings (currently treated as "copy-on-access")
2698  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2699 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2700 			unsigned long addr, unsigned long end,
2701 			unsigned long pfn, pgprot_t prot)
2702 {
2703 	pte_t *pte, *mapped_pte;
2704 	spinlock_t *ptl;
2705 	int err = 0;
2706 
2707 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2708 	if (!pte)
2709 		return -ENOMEM;
2710 	arch_enter_lazy_mmu_mode();
2711 	do {
2712 		BUG_ON(!pte_none(ptep_get(pte)));
2713 		if (!pfn_modify_allowed(pfn, prot)) {
2714 			err = -EACCES;
2715 			break;
2716 		}
2717 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2718 		pfn++;
2719 	} while (pte++, addr += PAGE_SIZE, addr != end);
2720 	arch_leave_lazy_mmu_mode();
2721 	pte_unmap_unlock(mapped_pte, ptl);
2722 	return err;
2723 }
2724 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2725 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2726 			unsigned long addr, unsigned long end,
2727 			unsigned long pfn, pgprot_t prot)
2728 {
2729 	pmd_t *pmd;
2730 	unsigned long next;
2731 	int err;
2732 
2733 	pfn -= addr >> PAGE_SHIFT;
2734 	pmd = pmd_alloc(mm, pud, addr);
2735 	if (!pmd)
2736 		return -ENOMEM;
2737 	VM_BUG_ON(pmd_trans_huge(*pmd));
2738 	do {
2739 		next = pmd_addr_end(addr, end);
2740 		err = remap_pte_range(mm, pmd, addr, next,
2741 				pfn + (addr >> PAGE_SHIFT), prot);
2742 		if (err)
2743 			return err;
2744 	} while (pmd++, addr = next, addr != end);
2745 	return 0;
2746 }
2747 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2748 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2749 			unsigned long addr, unsigned long end,
2750 			unsigned long pfn, pgprot_t prot)
2751 {
2752 	pud_t *pud;
2753 	unsigned long next;
2754 	int err;
2755 
2756 	pfn -= addr >> PAGE_SHIFT;
2757 	pud = pud_alloc(mm, p4d, addr);
2758 	if (!pud)
2759 		return -ENOMEM;
2760 	do {
2761 		next = pud_addr_end(addr, end);
2762 		err = remap_pmd_range(mm, pud, addr, next,
2763 				pfn + (addr >> PAGE_SHIFT), prot);
2764 		if (err)
2765 			return err;
2766 	} while (pud++, addr = next, addr != end);
2767 	return 0;
2768 }
2769 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2770 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2771 			unsigned long addr, unsigned long end,
2772 			unsigned long pfn, pgprot_t prot)
2773 {
2774 	p4d_t *p4d;
2775 	unsigned long next;
2776 	int err;
2777 
2778 	pfn -= addr >> PAGE_SHIFT;
2779 	p4d = p4d_alloc(mm, pgd, addr);
2780 	if (!p4d)
2781 		return -ENOMEM;
2782 	do {
2783 		next = p4d_addr_end(addr, end);
2784 		err = remap_pud_range(mm, p4d, addr, next,
2785 				pfn + (addr >> PAGE_SHIFT), prot);
2786 		if (err)
2787 			return err;
2788 	} while (p4d++, addr = next, addr != end);
2789 	return 0;
2790 }
2791 
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2792 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2793 		unsigned long pfn, unsigned long size, pgprot_t prot)
2794 {
2795 	pgd_t *pgd;
2796 	unsigned long next;
2797 	unsigned long end = addr + PAGE_ALIGN(size);
2798 	struct mm_struct *mm = vma->vm_mm;
2799 	int err;
2800 
2801 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2802 		return -EINVAL;
2803 
2804 	/*
2805 	 * Physically remapped pages are special. Tell the
2806 	 * rest of the world about it:
2807 	 *   VM_IO tells people not to look at these pages
2808 	 *	(accesses can have side effects).
2809 	 *   VM_PFNMAP tells the core MM that the base pages are just
2810 	 *	raw PFN mappings, and do not have a "struct page" associated
2811 	 *	with them.
2812 	 *   VM_DONTEXPAND
2813 	 *      Disable vma merging and expanding with mremap().
2814 	 *   VM_DONTDUMP
2815 	 *      Omit vma from core dump, even when VM_IO turned off.
2816 	 *
2817 	 * There's a horrible special case to handle copy-on-write
2818 	 * behaviour that some programs depend on. We mark the "original"
2819 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2820 	 * See vm_normal_page() for details.
2821 	 */
2822 	if (is_cow_mapping(vma->vm_flags)) {
2823 		if (addr != vma->vm_start || end != vma->vm_end)
2824 			return -EINVAL;
2825 		vma->vm_pgoff = pfn;
2826 	}
2827 
2828 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2829 
2830 	BUG_ON(addr >= end);
2831 	pfn -= addr >> PAGE_SHIFT;
2832 	pgd = pgd_offset(mm, addr);
2833 	flush_cache_range(vma, addr, end);
2834 	do {
2835 		next = pgd_addr_end(addr, end);
2836 		err = remap_p4d_range(mm, pgd, addr, next,
2837 				pfn + (addr >> PAGE_SHIFT), prot);
2838 		if (err)
2839 			return err;
2840 	} while (pgd++, addr = next, addr != end);
2841 
2842 	return 0;
2843 }
2844 
2845 /*
2846  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2847  * must have pre-validated the caching bits of the pgprot_t.
2848  */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2849 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2850 		unsigned long pfn, unsigned long size, pgprot_t prot)
2851 {
2852 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2853 
2854 	if (!error)
2855 		return 0;
2856 
2857 	/*
2858 	 * A partial pfn range mapping is dangerous: it does not
2859 	 * maintain page reference counts, and callers may free
2860 	 * pages due to the error. So zap it early.
2861 	 */
2862 	zap_page_range_single(vma, addr, size, NULL);
2863 	return error;
2864 }
2865 
2866 #ifdef __HAVE_PFNMAP_TRACKING
pfnmap_track_ctx_alloc(unsigned long pfn,unsigned long size,pgprot_t * prot)2867 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn,
2868 		unsigned long size, pgprot_t *prot)
2869 {
2870 	struct pfnmap_track_ctx *ctx;
2871 
2872 	if (pfnmap_track(pfn, size, prot))
2873 		return ERR_PTR(-EINVAL);
2874 
2875 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
2876 	if (unlikely(!ctx)) {
2877 		pfnmap_untrack(pfn, size);
2878 		return ERR_PTR(-ENOMEM);
2879 	}
2880 
2881 	ctx->pfn = pfn;
2882 	ctx->size = size;
2883 	kref_init(&ctx->kref);
2884 	return ctx;
2885 }
2886 
pfnmap_track_ctx_release(struct kref * ref)2887 void pfnmap_track_ctx_release(struct kref *ref)
2888 {
2889 	struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref);
2890 
2891 	pfnmap_untrack(ctx->pfn, ctx->size);
2892 	kfree(ctx);
2893 }
2894 #endif /* __HAVE_PFNMAP_TRACKING */
2895 
2896 /**
2897  * remap_pfn_range - remap kernel memory to userspace
2898  * @vma: user vma to map to
2899  * @addr: target page aligned user address to start at
2900  * @pfn: page frame number of kernel physical memory address
2901  * @size: size of mapping area
2902  * @prot: page protection flags for this mapping
2903  *
2904  * Note: this is only safe if the mm semaphore is held when called.
2905  *
2906  * Return: %0 on success, negative error code otherwise.
2907  */
2908 #ifdef __HAVE_PFNMAP_TRACKING
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2909 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2910 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2911 {
2912 	struct pfnmap_track_ctx *ctx = NULL;
2913 	int err;
2914 
2915 	size = PAGE_ALIGN(size);
2916 
2917 	/*
2918 	 * If we cover the full VMA, we'll perform actual tracking, and
2919 	 * remember to untrack when the last reference to our tracking
2920 	 * context from a VMA goes away. We'll keep tracking the whole pfn
2921 	 * range even during VMA splits and partial unmapping.
2922 	 *
2923 	 * If we only cover parts of the VMA, we'll only setup the cachemode
2924 	 * in the pgprot for the pfn range.
2925 	 */
2926 	if (addr == vma->vm_start && addr + size == vma->vm_end) {
2927 		if (vma->pfnmap_track_ctx)
2928 			return -EINVAL;
2929 		ctx = pfnmap_track_ctx_alloc(pfn, size, &prot);
2930 		if (IS_ERR(ctx))
2931 			return PTR_ERR(ctx);
2932 	} else if (pfnmap_setup_cachemode(pfn, size, &prot)) {
2933 		return -EINVAL;
2934 	}
2935 
2936 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2937 	if (ctx) {
2938 		if (err)
2939 			kref_put(&ctx->kref, pfnmap_track_ctx_release);
2940 		else
2941 			vma->pfnmap_track_ctx = ctx;
2942 	}
2943 	return err;
2944 }
2945 
2946 #else
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2947 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2948 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2949 {
2950 	return remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2951 }
2952 #endif
2953 EXPORT_SYMBOL(remap_pfn_range);
2954 
2955 /**
2956  * vm_iomap_memory - remap memory to userspace
2957  * @vma: user vma to map to
2958  * @start: start of the physical memory to be mapped
2959  * @len: size of area
2960  *
2961  * This is a simplified io_remap_pfn_range() for common driver use. The
2962  * driver just needs to give us the physical memory range to be mapped,
2963  * we'll figure out the rest from the vma information.
2964  *
2965  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2966  * whatever write-combining details or similar.
2967  *
2968  * Return: %0 on success, negative error code otherwise.
2969  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2970 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2971 {
2972 	unsigned long vm_len, pfn, pages;
2973 
2974 	/* Check that the physical memory area passed in looks valid */
2975 	if (start + len < start)
2976 		return -EINVAL;
2977 	/*
2978 	 * You *really* shouldn't map things that aren't page-aligned,
2979 	 * but we've historically allowed it because IO memory might
2980 	 * just have smaller alignment.
2981 	 */
2982 	len += start & ~PAGE_MASK;
2983 	pfn = start >> PAGE_SHIFT;
2984 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2985 	if (pfn + pages < pfn)
2986 		return -EINVAL;
2987 
2988 	/* We start the mapping 'vm_pgoff' pages into the area */
2989 	if (vma->vm_pgoff > pages)
2990 		return -EINVAL;
2991 	pfn += vma->vm_pgoff;
2992 	pages -= vma->vm_pgoff;
2993 
2994 	/* Can we fit all of the mapping? */
2995 	vm_len = vma->vm_end - vma->vm_start;
2996 	if (vm_len >> PAGE_SHIFT > pages)
2997 		return -EINVAL;
2998 
2999 	/* Ok, let it rip */
3000 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
3001 }
3002 EXPORT_SYMBOL(vm_iomap_memory);
3003 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3004 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
3005 				     unsigned long addr, unsigned long end,
3006 				     pte_fn_t fn, void *data, bool create,
3007 				     pgtbl_mod_mask *mask)
3008 {
3009 	pte_t *pte, *mapped_pte;
3010 	int err = 0;
3011 	spinlock_t *ptl;
3012 
3013 	if (create) {
3014 		mapped_pte = pte = (mm == &init_mm) ?
3015 			pte_alloc_kernel_track(pmd, addr, mask) :
3016 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
3017 		if (!pte)
3018 			return -ENOMEM;
3019 	} else {
3020 		mapped_pte = pte = (mm == &init_mm) ?
3021 			pte_offset_kernel(pmd, addr) :
3022 			pte_offset_map_lock(mm, pmd, addr, &ptl);
3023 		if (!pte)
3024 			return -EINVAL;
3025 	}
3026 
3027 	arch_enter_lazy_mmu_mode();
3028 
3029 	if (fn) {
3030 		do {
3031 			if (create || !pte_none(ptep_get(pte))) {
3032 				err = fn(pte, addr, data);
3033 				if (err)
3034 					break;
3035 			}
3036 		} while (pte++, addr += PAGE_SIZE, addr != end);
3037 	}
3038 	*mask |= PGTBL_PTE_MODIFIED;
3039 
3040 	arch_leave_lazy_mmu_mode();
3041 
3042 	if (mm != &init_mm)
3043 		pte_unmap_unlock(mapped_pte, ptl);
3044 	return err;
3045 }
3046 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3047 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
3048 				     unsigned long addr, unsigned long end,
3049 				     pte_fn_t fn, void *data, bool create,
3050 				     pgtbl_mod_mask *mask)
3051 {
3052 	pmd_t *pmd;
3053 	unsigned long next;
3054 	int err = 0;
3055 
3056 	BUG_ON(pud_leaf(*pud));
3057 
3058 	if (create) {
3059 		pmd = pmd_alloc_track(mm, pud, addr, mask);
3060 		if (!pmd)
3061 			return -ENOMEM;
3062 	} else {
3063 		pmd = pmd_offset(pud, addr);
3064 	}
3065 	do {
3066 		next = pmd_addr_end(addr, end);
3067 		if (pmd_none(*pmd) && !create)
3068 			continue;
3069 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
3070 			return -EINVAL;
3071 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
3072 			if (!create)
3073 				continue;
3074 			pmd_clear_bad(pmd);
3075 		}
3076 		err = apply_to_pte_range(mm, pmd, addr, next,
3077 					 fn, data, create, mask);
3078 		if (err)
3079 			break;
3080 	} while (pmd++, addr = next, addr != end);
3081 
3082 	return err;
3083 }
3084 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3085 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
3086 				     unsigned long addr, unsigned long end,
3087 				     pte_fn_t fn, void *data, bool create,
3088 				     pgtbl_mod_mask *mask)
3089 {
3090 	pud_t *pud;
3091 	unsigned long next;
3092 	int err = 0;
3093 
3094 	if (create) {
3095 		pud = pud_alloc_track(mm, p4d, addr, mask);
3096 		if (!pud)
3097 			return -ENOMEM;
3098 	} else {
3099 		pud = pud_offset(p4d, addr);
3100 	}
3101 	do {
3102 		next = pud_addr_end(addr, end);
3103 		if (pud_none(*pud) && !create)
3104 			continue;
3105 		if (WARN_ON_ONCE(pud_leaf(*pud)))
3106 			return -EINVAL;
3107 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
3108 			if (!create)
3109 				continue;
3110 			pud_clear_bad(pud);
3111 		}
3112 		err = apply_to_pmd_range(mm, pud, addr, next,
3113 					 fn, data, create, mask);
3114 		if (err)
3115 			break;
3116 	} while (pud++, addr = next, addr != end);
3117 
3118 	return err;
3119 }
3120 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3121 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3122 				     unsigned long addr, unsigned long end,
3123 				     pte_fn_t fn, void *data, bool create,
3124 				     pgtbl_mod_mask *mask)
3125 {
3126 	p4d_t *p4d;
3127 	unsigned long next;
3128 	int err = 0;
3129 
3130 	if (create) {
3131 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
3132 		if (!p4d)
3133 			return -ENOMEM;
3134 	} else {
3135 		p4d = p4d_offset(pgd, addr);
3136 	}
3137 	do {
3138 		next = p4d_addr_end(addr, end);
3139 		if (p4d_none(*p4d) && !create)
3140 			continue;
3141 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3142 			return -EINVAL;
3143 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3144 			if (!create)
3145 				continue;
3146 			p4d_clear_bad(p4d);
3147 		}
3148 		err = apply_to_pud_range(mm, p4d, addr, next,
3149 					 fn, data, create, mask);
3150 		if (err)
3151 			break;
3152 	} while (p4d++, addr = next, addr != end);
3153 
3154 	return err;
3155 }
3156 
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)3157 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3158 				 unsigned long size, pte_fn_t fn,
3159 				 void *data, bool create)
3160 {
3161 	pgd_t *pgd;
3162 	unsigned long start = addr, next;
3163 	unsigned long end = addr + size;
3164 	pgtbl_mod_mask mask = 0;
3165 	int err = 0;
3166 
3167 	if (WARN_ON(addr >= end))
3168 		return -EINVAL;
3169 
3170 	pgd = pgd_offset(mm, addr);
3171 	do {
3172 		next = pgd_addr_end(addr, end);
3173 		if (pgd_none(*pgd) && !create)
3174 			continue;
3175 		if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3176 			err = -EINVAL;
3177 			break;
3178 		}
3179 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3180 			if (!create)
3181 				continue;
3182 			pgd_clear_bad(pgd);
3183 		}
3184 		err = apply_to_p4d_range(mm, pgd, addr, next,
3185 					 fn, data, create, &mask);
3186 		if (err)
3187 			break;
3188 	} while (pgd++, addr = next, addr != end);
3189 
3190 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3191 		arch_sync_kernel_mappings(start, start + size);
3192 
3193 	return err;
3194 }
3195 
3196 /*
3197  * Scan a region of virtual memory, filling in page tables as necessary
3198  * and calling a provided function on each leaf page table.
3199  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3200 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3201 			unsigned long size, pte_fn_t fn, void *data)
3202 {
3203 	return __apply_to_page_range(mm, addr, size, fn, data, true);
3204 }
3205 EXPORT_SYMBOL_GPL(apply_to_page_range);
3206 
3207 /*
3208  * Scan a region of virtual memory, calling a provided function on
3209  * each leaf page table where it exists.
3210  *
3211  * Unlike apply_to_page_range, this does _not_ fill in page tables
3212  * where they are absent.
3213  */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3214 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3215 				 unsigned long size, pte_fn_t fn, void *data)
3216 {
3217 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3218 }
3219 
3220 /*
3221  * handle_pte_fault chooses page fault handler according to an entry which was
3222  * read non-atomically.  Before making any commitment, on those architectures
3223  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3224  * parts, do_swap_page must check under lock before unmapping the pte and
3225  * proceeding (but do_wp_page is only called after already making such a check;
3226  * and do_anonymous_page can safely check later on).
3227  */
pte_unmap_same(struct vm_fault * vmf)3228 static inline int pte_unmap_same(struct vm_fault *vmf)
3229 {
3230 	int same = 1;
3231 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3232 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3233 		spin_lock(vmf->ptl);
3234 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3235 		spin_unlock(vmf->ptl);
3236 	}
3237 #endif
3238 	pte_unmap(vmf->pte);
3239 	vmf->pte = NULL;
3240 	return same;
3241 }
3242 
3243 /*
3244  * Return:
3245  *	0:		copied succeeded
3246  *	-EHWPOISON:	copy failed due to hwpoison in source page
3247  *	-EAGAIN:	copied failed (some other reason)
3248  */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3249 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3250 				      struct vm_fault *vmf)
3251 {
3252 	int ret;
3253 	void *kaddr;
3254 	void __user *uaddr;
3255 	struct vm_area_struct *vma = vmf->vma;
3256 	struct mm_struct *mm = vma->vm_mm;
3257 	unsigned long addr = vmf->address;
3258 
3259 	if (likely(src)) {
3260 		if (copy_mc_user_highpage(dst, src, addr, vma))
3261 			return -EHWPOISON;
3262 		return 0;
3263 	}
3264 
3265 	/*
3266 	 * If the source page was a PFN mapping, we don't have
3267 	 * a "struct page" for it. We do a best-effort copy by
3268 	 * just copying from the original user address. If that
3269 	 * fails, we just zero-fill it. Live with it.
3270 	 */
3271 	kaddr = kmap_local_page(dst);
3272 	pagefault_disable();
3273 	uaddr = (void __user *)(addr & PAGE_MASK);
3274 
3275 	/*
3276 	 * On architectures with software "accessed" bits, we would
3277 	 * take a double page fault, so mark it accessed here.
3278 	 */
3279 	vmf->pte = NULL;
3280 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3281 		pte_t entry;
3282 
3283 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3284 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3285 			/*
3286 			 * Other thread has already handled the fault
3287 			 * and update local tlb only
3288 			 */
3289 			if (vmf->pte)
3290 				update_mmu_tlb(vma, addr, vmf->pte);
3291 			ret = -EAGAIN;
3292 			goto pte_unlock;
3293 		}
3294 
3295 		entry = pte_mkyoung(vmf->orig_pte);
3296 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3297 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3298 	}
3299 
3300 	/*
3301 	 * This really shouldn't fail, because the page is there
3302 	 * in the page tables. But it might just be unreadable,
3303 	 * in which case we just give up and fill the result with
3304 	 * zeroes.
3305 	 */
3306 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3307 		if (vmf->pte)
3308 			goto warn;
3309 
3310 		/* Re-validate under PTL if the page is still mapped */
3311 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3312 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3313 			/* The PTE changed under us, update local tlb */
3314 			if (vmf->pte)
3315 				update_mmu_tlb(vma, addr, vmf->pte);
3316 			ret = -EAGAIN;
3317 			goto pte_unlock;
3318 		}
3319 
3320 		/*
3321 		 * The same page can be mapped back since last copy attempt.
3322 		 * Try to copy again under PTL.
3323 		 */
3324 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3325 			/*
3326 			 * Give a warn in case there can be some obscure
3327 			 * use-case
3328 			 */
3329 warn:
3330 			WARN_ON_ONCE(1);
3331 			clear_page(kaddr);
3332 		}
3333 	}
3334 
3335 	ret = 0;
3336 
3337 pte_unlock:
3338 	if (vmf->pte)
3339 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3340 	pagefault_enable();
3341 	kunmap_local(kaddr);
3342 	flush_dcache_page(dst);
3343 
3344 	return ret;
3345 }
3346 
__get_fault_gfp_mask(struct vm_area_struct * vma)3347 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3348 {
3349 	struct file *vm_file = vma->vm_file;
3350 
3351 	if (vm_file)
3352 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3353 
3354 	/*
3355 	 * Special mappings (e.g. VDSO) do not have any file so fake
3356 	 * a default GFP_KERNEL for them.
3357 	 */
3358 	return GFP_KERNEL;
3359 }
3360 
3361 /*
3362  * Notify the address space that the page is about to become writable so that
3363  * it can prohibit this or wait for the page to get into an appropriate state.
3364  *
3365  * We do this without the lock held, so that it can sleep if it needs to.
3366  */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3367 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3368 {
3369 	vm_fault_t ret;
3370 	unsigned int old_flags = vmf->flags;
3371 
3372 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3373 
3374 	if (vmf->vma->vm_file &&
3375 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3376 		return VM_FAULT_SIGBUS;
3377 
3378 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3379 	/* Restore original flags so that caller is not surprised */
3380 	vmf->flags = old_flags;
3381 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3382 		return ret;
3383 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3384 		folio_lock(folio);
3385 		if (!folio->mapping) {
3386 			folio_unlock(folio);
3387 			return 0; /* retry */
3388 		}
3389 		ret |= VM_FAULT_LOCKED;
3390 	} else
3391 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3392 	return ret;
3393 }
3394 
3395 /*
3396  * Handle dirtying of a page in shared file mapping on a write fault.
3397  *
3398  * The function expects the page to be locked and unlocks it.
3399  */
fault_dirty_shared_page(struct vm_fault * vmf)3400 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3401 {
3402 	struct vm_area_struct *vma = vmf->vma;
3403 	struct address_space *mapping;
3404 	struct folio *folio = page_folio(vmf->page);
3405 	bool dirtied;
3406 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3407 
3408 	dirtied = folio_mark_dirty(folio);
3409 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3410 	/*
3411 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3412 	 * by truncate after folio_unlock().   The address_space itself remains
3413 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3414 	 * release semantics to prevent the compiler from undoing this copying.
3415 	 */
3416 	mapping = folio_raw_mapping(folio);
3417 	folio_unlock(folio);
3418 
3419 	if (!page_mkwrite)
3420 		file_update_time(vma->vm_file);
3421 
3422 	/*
3423 	 * Throttle page dirtying rate down to writeback speed.
3424 	 *
3425 	 * mapping may be NULL here because some device drivers do not
3426 	 * set page.mapping but still dirty their pages
3427 	 *
3428 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3429 	 * is pinning the mapping, as per above.
3430 	 */
3431 	if ((dirtied || page_mkwrite) && mapping) {
3432 		struct file *fpin;
3433 
3434 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3435 		balance_dirty_pages_ratelimited(mapping);
3436 		if (fpin) {
3437 			fput(fpin);
3438 			return VM_FAULT_COMPLETED;
3439 		}
3440 	}
3441 
3442 	return 0;
3443 }
3444 
3445 /*
3446  * Handle write page faults for pages that can be reused in the current vma
3447  *
3448  * This can happen either due to the mapping being with the VM_SHARED flag,
3449  * or due to us being the last reference standing to the page. In either
3450  * case, all we need to do here is to mark the page as writable and update
3451  * any related book-keeping.
3452  */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3453 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3454 	__releases(vmf->ptl)
3455 {
3456 	struct vm_area_struct *vma = vmf->vma;
3457 	pte_t entry;
3458 
3459 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3460 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3461 
3462 	if (folio) {
3463 		VM_BUG_ON(folio_test_anon(folio) &&
3464 			  !PageAnonExclusive(vmf->page));
3465 		/*
3466 		 * Clear the folio's cpupid information as the existing
3467 		 * information potentially belongs to a now completely
3468 		 * unrelated process.
3469 		 */
3470 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3471 	}
3472 
3473 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3474 	entry = pte_mkyoung(vmf->orig_pte);
3475 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3476 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3477 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3478 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3479 	count_vm_event(PGREUSE);
3480 }
3481 
3482 /*
3483  * We could add a bitflag somewhere, but for now, we know that all
3484  * vm_ops that have a ->map_pages have been audited and don't need
3485  * the mmap_lock to be held.
3486  */
vmf_can_call_fault(const struct vm_fault * vmf)3487 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3488 {
3489 	struct vm_area_struct *vma = vmf->vma;
3490 
3491 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3492 		return 0;
3493 	vma_end_read(vma);
3494 	return VM_FAULT_RETRY;
3495 }
3496 
3497 /**
3498  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3499  * @vmf: The vm_fault descriptor passed from the fault handler.
3500  *
3501  * When preparing to insert an anonymous page into a VMA from a
3502  * fault handler, call this function rather than anon_vma_prepare().
3503  * If this vma does not already have an associated anon_vma and we are
3504  * only protected by the per-VMA lock, the caller must retry with the
3505  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3506  * determine if this VMA can share its anon_vma, and that's not safe to
3507  * do with only the per-VMA lock held for this VMA.
3508  *
3509  * Return: 0 if fault handling can proceed.  Any other value should be
3510  * returned to the caller.
3511  */
__vmf_anon_prepare(struct vm_fault * vmf)3512 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3513 {
3514 	struct vm_area_struct *vma = vmf->vma;
3515 	vm_fault_t ret = 0;
3516 
3517 	if (likely(vma->anon_vma))
3518 		return 0;
3519 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3520 		if (!mmap_read_trylock(vma->vm_mm))
3521 			return VM_FAULT_RETRY;
3522 	}
3523 	if (__anon_vma_prepare(vma))
3524 		ret = VM_FAULT_OOM;
3525 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3526 		mmap_read_unlock(vma->vm_mm);
3527 	return ret;
3528 }
3529 
3530 /*
3531  * Handle the case of a page which we actually need to copy to a new page,
3532  * either due to COW or unsharing.
3533  *
3534  * Called with mmap_lock locked and the old page referenced, but
3535  * without the ptl held.
3536  *
3537  * High level logic flow:
3538  *
3539  * - Allocate a page, copy the content of the old page to the new one.
3540  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3541  * - Take the PTL. If the pte changed, bail out and release the allocated page
3542  * - If the pte is still the way we remember it, update the page table and all
3543  *   relevant references. This includes dropping the reference the page-table
3544  *   held to the old page, as well as updating the rmap.
3545  * - In any case, unlock the PTL and drop the reference we took to the old page.
3546  */
wp_page_copy(struct vm_fault * vmf)3547 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3548 {
3549 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3550 	struct vm_area_struct *vma = vmf->vma;
3551 	struct mm_struct *mm = vma->vm_mm;
3552 	struct folio *old_folio = NULL;
3553 	struct folio *new_folio = NULL;
3554 	pte_t entry;
3555 	int page_copied = 0;
3556 	struct mmu_notifier_range range;
3557 	vm_fault_t ret;
3558 	bool pfn_is_zero;
3559 
3560 	delayacct_wpcopy_start();
3561 
3562 	if (vmf->page)
3563 		old_folio = page_folio(vmf->page);
3564 	ret = vmf_anon_prepare(vmf);
3565 	if (unlikely(ret))
3566 		goto out;
3567 
3568 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3569 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3570 	if (!new_folio)
3571 		goto oom;
3572 
3573 	if (!pfn_is_zero) {
3574 		int err;
3575 
3576 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3577 		if (err) {
3578 			/*
3579 			 * COW failed, if the fault was solved by other,
3580 			 * it's fine. If not, userspace would re-fault on
3581 			 * the same address and we will handle the fault
3582 			 * from the second attempt.
3583 			 * The -EHWPOISON case will not be retried.
3584 			 */
3585 			folio_put(new_folio);
3586 			if (old_folio)
3587 				folio_put(old_folio);
3588 
3589 			delayacct_wpcopy_end();
3590 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3591 		}
3592 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3593 	}
3594 
3595 	__folio_mark_uptodate(new_folio);
3596 
3597 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3598 				vmf->address & PAGE_MASK,
3599 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3600 	mmu_notifier_invalidate_range_start(&range);
3601 
3602 	/*
3603 	 * Re-check the pte - we dropped the lock
3604 	 */
3605 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3606 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3607 		if (old_folio) {
3608 			if (!folio_test_anon(old_folio)) {
3609 				dec_mm_counter(mm, mm_counter_file(old_folio));
3610 				inc_mm_counter(mm, MM_ANONPAGES);
3611 			}
3612 		} else {
3613 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3614 			inc_mm_counter(mm, MM_ANONPAGES);
3615 		}
3616 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3617 		entry = folio_mk_pte(new_folio, vma->vm_page_prot);
3618 		entry = pte_sw_mkyoung(entry);
3619 		if (unlikely(unshare)) {
3620 			if (pte_soft_dirty(vmf->orig_pte))
3621 				entry = pte_mksoft_dirty(entry);
3622 			if (pte_uffd_wp(vmf->orig_pte))
3623 				entry = pte_mkuffd_wp(entry);
3624 		} else {
3625 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3626 		}
3627 
3628 		/*
3629 		 * Clear the pte entry and flush it first, before updating the
3630 		 * pte with the new entry, to keep TLBs on different CPUs in
3631 		 * sync. This code used to set the new PTE then flush TLBs, but
3632 		 * that left a window where the new PTE could be loaded into
3633 		 * some TLBs while the old PTE remains in others.
3634 		 */
3635 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3636 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3637 		folio_add_lru_vma(new_folio, vma);
3638 		BUG_ON(unshare && pte_write(entry));
3639 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3640 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3641 		if (old_folio) {
3642 			/*
3643 			 * Only after switching the pte to the new page may
3644 			 * we remove the mapcount here. Otherwise another
3645 			 * process may come and find the rmap count decremented
3646 			 * before the pte is switched to the new page, and
3647 			 * "reuse" the old page writing into it while our pte
3648 			 * here still points into it and can be read by other
3649 			 * threads.
3650 			 *
3651 			 * The critical issue is to order this
3652 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3653 			 * above. Those stores are ordered by (if nothing else,)
3654 			 * the barrier present in the atomic_add_negative
3655 			 * in folio_remove_rmap_pte();
3656 			 *
3657 			 * Then the TLB flush in ptep_clear_flush ensures that
3658 			 * no process can access the old page before the
3659 			 * decremented mapcount is visible. And the old page
3660 			 * cannot be reused until after the decremented
3661 			 * mapcount is visible. So transitively, TLBs to
3662 			 * old page will be flushed before it can be reused.
3663 			 */
3664 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3665 		}
3666 
3667 		/* Free the old page.. */
3668 		new_folio = old_folio;
3669 		page_copied = 1;
3670 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3671 	} else if (vmf->pte) {
3672 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3673 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3674 	}
3675 
3676 	mmu_notifier_invalidate_range_end(&range);
3677 
3678 	if (new_folio)
3679 		folio_put(new_folio);
3680 	if (old_folio) {
3681 		if (page_copied)
3682 			free_swap_cache(old_folio);
3683 		folio_put(old_folio);
3684 	}
3685 
3686 	delayacct_wpcopy_end();
3687 	return 0;
3688 oom:
3689 	ret = VM_FAULT_OOM;
3690 out:
3691 	if (old_folio)
3692 		folio_put(old_folio);
3693 
3694 	delayacct_wpcopy_end();
3695 	return ret;
3696 }
3697 
3698 /**
3699  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3700  *			  writeable once the page is prepared
3701  *
3702  * @vmf: structure describing the fault
3703  * @folio: the folio of vmf->page
3704  *
3705  * This function handles all that is needed to finish a write page fault in a
3706  * shared mapping due to PTE being read-only once the mapped page is prepared.
3707  * It handles locking of PTE and modifying it.
3708  *
3709  * The function expects the page to be locked or other protection against
3710  * concurrent faults / writeback (such as DAX radix tree locks).
3711  *
3712  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3713  * we acquired PTE lock.
3714  */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3715 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3716 {
3717 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3718 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3719 				       &vmf->ptl);
3720 	if (!vmf->pte)
3721 		return VM_FAULT_NOPAGE;
3722 	/*
3723 	 * We might have raced with another page fault while we released the
3724 	 * pte_offset_map_lock.
3725 	 */
3726 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3727 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3728 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 		return VM_FAULT_NOPAGE;
3730 	}
3731 	wp_page_reuse(vmf, folio);
3732 	return 0;
3733 }
3734 
3735 /*
3736  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3737  * mapping
3738  */
wp_pfn_shared(struct vm_fault * vmf)3739 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3740 {
3741 	struct vm_area_struct *vma = vmf->vma;
3742 
3743 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3744 		vm_fault_t ret;
3745 
3746 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3747 		ret = vmf_can_call_fault(vmf);
3748 		if (ret)
3749 			return ret;
3750 
3751 		vmf->flags |= FAULT_FLAG_MKWRITE;
3752 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3753 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3754 			return ret;
3755 		return finish_mkwrite_fault(vmf, NULL);
3756 	}
3757 	wp_page_reuse(vmf, NULL);
3758 	return 0;
3759 }
3760 
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3761 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3762 	__releases(vmf->ptl)
3763 {
3764 	struct vm_area_struct *vma = vmf->vma;
3765 	vm_fault_t ret = 0;
3766 
3767 	folio_get(folio);
3768 
3769 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3770 		vm_fault_t tmp;
3771 
3772 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3773 		tmp = vmf_can_call_fault(vmf);
3774 		if (tmp) {
3775 			folio_put(folio);
3776 			return tmp;
3777 		}
3778 
3779 		tmp = do_page_mkwrite(vmf, folio);
3780 		if (unlikely(!tmp || (tmp &
3781 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3782 			folio_put(folio);
3783 			return tmp;
3784 		}
3785 		tmp = finish_mkwrite_fault(vmf, folio);
3786 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3787 			folio_unlock(folio);
3788 			folio_put(folio);
3789 			return tmp;
3790 		}
3791 	} else {
3792 		wp_page_reuse(vmf, folio);
3793 		folio_lock(folio);
3794 	}
3795 	ret |= fault_dirty_shared_page(vmf);
3796 	folio_put(folio);
3797 
3798 	return ret;
3799 }
3800 
3801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)3802 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3803 		struct vm_area_struct *vma)
3804 {
3805 	bool exclusive = false;
3806 
3807 	/* Let's just free up a large folio if only a single page is mapped. */
3808 	if (folio_large_mapcount(folio) <= 1)
3809 		return false;
3810 
3811 	/*
3812 	 * The assumption for anonymous folios is that each page can only get
3813 	 * mapped once into each MM. The only exception are KSM folios, which
3814 	 * are always small.
3815 	 *
3816 	 * Each taken mapcount must be paired with exactly one taken reference,
3817 	 * whereby the refcount must be incremented before the mapcount when
3818 	 * mapping a page, and the refcount must be decremented after the
3819 	 * mapcount when unmapping a page.
3820 	 *
3821 	 * If all folio references are from mappings, and all mappings are in
3822 	 * the page tables of this MM, then this folio is exclusive to this MM.
3823 	 */
3824 	if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3825 		return false;
3826 
3827 	VM_WARN_ON_ONCE(folio_test_ksm(folio));
3828 
3829 	if (unlikely(folio_test_swapcache(folio))) {
3830 		/*
3831 		 * Note: freeing up the swapcache will fail if some PTEs are
3832 		 * still swap entries.
3833 		 */
3834 		if (!folio_trylock(folio))
3835 			return false;
3836 		folio_free_swap(folio);
3837 		folio_unlock(folio);
3838 	}
3839 
3840 	if (folio_large_mapcount(folio) != folio_ref_count(folio))
3841 		return false;
3842 
3843 	/* Stabilize the mapcount vs. refcount and recheck. */
3844 	folio_lock_large_mapcount(folio);
3845 	VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio);
3846 
3847 	if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3848 		goto unlock;
3849 	if (folio_large_mapcount(folio) != folio_ref_count(folio))
3850 		goto unlock;
3851 
3852 	VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio);
3853 	VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio);
3854 	VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id &&
3855 			folio_mm_id(folio, 1) != vma->vm_mm->mm_id);
3856 
3857 	/*
3858 	 * Do we need the folio lock? Likely not. If there would have been
3859 	 * references from page migration/swapout, we would have detected
3860 	 * an additional folio reference and never ended up here.
3861 	 */
3862 	exclusive = true;
3863 unlock:
3864 	folio_unlock_large_mapcount(folio);
3865 	return exclusive;
3866 }
3867 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)3868 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3869 		struct vm_area_struct *vma)
3870 {
3871 	BUILD_BUG();
3872 }
3873 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3874 
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)3875 static bool wp_can_reuse_anon_folio(struct folio *folio,
3876 				    struct vm_area_struct *vma)
3877 {
3878 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio))
3879 		return __wp_can_reuse_large_anon_folio(folio, vma);
3880 
3881 	/*
3882 	 * We have to verify under folio lock: these early checks are
3883 	 * just an optimization to avoid locking the folio and freeing
3884 	 * the swapcache if there is little hope that we can reuse.
3885 	 *
3886 	 * KSM doesn't necessarily raise the folio refcount.
3887 	 */
3888 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3889 		return false;
3890 	if (!folio_test_lru(folio))
3891 		/*
3892 		 * We cannot easily detect+handle references from
3893 		 * remote LRU caches or references to LRU folios.
3894 		 */
3895 		lru_add_drain();
3896 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3897 		return false;
3898 	if (!folio_trylock(folio))
3899 		return false;
3900 	if (folio_test_swapcache(folio))
3901 		folio_free_swap(folio);
3902 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3903 		folio_unlock(folio);
3904 		return false;
3905 	}
3906 	/*
3907 	 * Ok, we've got the only folio reference from our mapping
3908 	 * and the folio is locked, it's dark out, and we're wearing
3909 	 * sunglasses. Hit it.
3910 	 */
3911 	folio_move_anon_rmap(folio, vma);
3912 	folio_unlock(folio);
3913 	return true;
3914 }
3915 
3916 /*
3917  * This routine handles present pages, when
3918  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3919  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3920  *   (FAULT_FLAG_UNSHARE)
3921  *
3922  * It is done by copying the page to a new address and decrementing the
3923  * shared-page counter for the old page.
3924  *
3925  * Note that this routine assumes that the protection checks have been
3926  * done by the caller (the low-level page fault routine in most cases).
3927  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3928  * done any necessary COW.
3929  *
3930  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3931  * though the page will change only once the write actually happens. This
3932  * avoids a few races, and potentially makes it more efficient.
3933  *
3934  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3935  * but allow concurrent faults), with pte both mapped and locked.
3936  * We return with mmap_lock still held, but pte unmapped and unlocked.
3937  */
do_wp_page(struct vm_fault * vmf)3938 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3939 	__releases(vmf->ptl)
3940 {
3941 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3942 	struct vm_area_struct *vma = vmf->vma;
3943 	struct folio *folio = NULL;
3944 	pte_t pte;
3945 
3946 	if (likely(!unshare)) {
3947 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3948 			if (!userfaultfd_wp_async(vma)) {
3949 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3950 				return handle_userfault(vmf, VM_UFFD_WP);
3951 			}
3952 
3953 			/*
3954 			 * Nothing needed (cache flush, TLB invalidations,
3955 			 * etc.) because we're only removing the uffd-wp bit,
3956 			 * which is completely invisible to the user.
3957 			 */
3958 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3959 
3960 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3961 			/*
3962 			 * Update this to be prepared for following up CoW
3963 			 * handling
3964 			 */
3965 			vmf->orig_pte = pte;
3966 		}
3967 
3968 		/*
3969 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3970 		 * is flushed in this case before copying.
3971 		 */
3972 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3973 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3974 			flush_tlb_page(vmf->vma, vmf->address);
3975 	}
3976 
3977 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3978 
3979 	if (vmf->page)
3980 		folio = page_folio(vmf->page);
3981 
3982 	/*
3983 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3984 	 * FAULT_FLAG_WRITE set at this point.
3985 	 */
3986 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3987 		/*
3988 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3989 		 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
3990 		 *
3991 		 * We should not cow pages in a shared writeable mapping.
3992 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3993 		 */
3994 		if (!vmf->page || is_fsdax_page(vmf->page)) {
3995 			vmf->page = NULL;
3996 			return wp_pfn_shared(vmf);
3997 		}
3998 		return wp_page_shared(vmf, folio);
3999 	}
4000 
4001 	/*
4002 	 * Private mapping: create an exclusive anonymous page copy if reuse
4003 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
4004 	 *
4005 	 * If we encounter a page that is marked exclusive, we must reuse
4006 	 * the page without further checks.
4007 	 */
4008 	if (folio && folio_test_anon(folio) &&
4009 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
4010 		if (!PageAnonExclusive(vmf->page))
4011 			SetPageAnonExclusive(vmf->page);
4012 		if (unlikely(unshare)) {
4013 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4014 			return 0;
4015 		}
4016 		wp_page_reuse(vmf, folio);
4017 		return 0;
4018 	}
4019 	/*
4020 	 * Ok, we need to copy. Oh, well..
4021 	 */
4022 	if (folio)
4023 		folio_get(folio);
4024 
4025 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4026 #ifdef CONFIG_KSM
4027 	if (folio && folio_test_ksm(folio))
4028 		count_vm_event(COW_KSM);
4029 #endif
4030 	return wp_page_copy(vmf);
4031 }
4032 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)4033 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
4034 		unsigned long start_addr, unsigned long end_addr,
4035 		struct zap_details *details)
4036 {
4037 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
4038 }
4039 
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)4040 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
4041 					    pgoff_t first_index,
4042 					    pgoff_t last_index,
4043 					    struct zap_details *details)
4044 {
4045 	struct vm_area_struct *vma;
4046 	pgoff_t vba, vea, zba, zea;
4047 
4048 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
4049 		vba = vma->vm_pgoff;
4050 		vea = vba + vma_pages(vma) - 1;
4051 		zba = max(first_index, vba);
4052 		zea = min(last_index, vea);
4053 
4054 		unmap_mapping_range_vma(vma,
4055 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
4056 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
4057 				details);
4058 	}
4059 }
4060 
4061 /**
4062  * unmap_mapping_folio() - Unmap single folio from processes.
4063  * @folio: The locked folio to be unmapped.
4064  *
4065  * Unmap this folio from any userspace process which still has it mmaped.
4066  * Typically, for efficiency, the range of nearby pages has already been
4067  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
4068  * truncation or invalidation holds the lock on a folio, it may find that
4069  * the page has been remapped again: and then uses unmap_mapping_folio()
4070  * to unmap it finally.
4071  */
unmap_mapping_folio(struct folio * folio)4072 void unmap_mapping_folio(struct folio *folio)
4073 {
4074 	struct address_space *mapping = folio->mapping;
4075 	struct zap_details details = { };
4076 	pgoff_t	first_index;
4077 	pgoff_t	last_index;
4078 
4079 	VM_BUG_ON(!folio_test_locked(folio));
4080 
4081 	first_index = folio->index;
4082 	last_index = folio_next_index(folio) - 1;
4083 
4084 	details.even_cows = false;
4085 	details.single_folio = folio;
4086 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
4087 
4088 	i_mmap_lock_read(mapping);
4089 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4090 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4091 					 last_index, &details);
4092 	i_mmap_unlock_read(mapping);
4093 }
4094 
4095 /**
4096  * unmap_mapping_pages() - Unmap pages from processes.
4097  * @mapping: The address space containing pages to be unmapped.
4098  * @start: Index of first page to be unmapped.
4099  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
4100  * @even_cows: Whether to unmap even private COWed pages.
4101  *
4102  * Unmap the pages in this address space from any userspace process which
4103  * has them mmaped.  Generally, you want to remove COWed pages as well when
4104  * a file is being truncated, but not when invalidating pages from the page
4105  * cache.
4106  */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)4107 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
4108 		pgoff_t nr, bool even_cows)
4109 {
4110 	struct zap_details details = { };
4111 	pgoff_t	first_index = start;
4112 	pgoff_t	last_index = start + nr - 1;
4113 
4114 	details.even_cows = even_cows;
4115 	if (last_index < first_index)
4116 		last_index = ULONG_MAX;
4117 
4118 	i_mmap_lock_read(mapping);
4119 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4120 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4121 					 last_index, &details);
4122 	i_mmap_unlock_read(mapping);
4123 }
4124 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
4125 
4126 /**
4127  * unmap_mapping_range - unmap the portion of all mmaps in the specified
4128  * address_space corresponding to the specified byte range in the underlying
4129  * file.
4130  *
4131  * @mapping: the address space containing mmaps to be unmapped.
4132  * @holebegin: byte in first page to unmap, relative to the start of
4133  * the underlying file.  This will be rounded down to a PAGE_SIZE
4134  * boundary.  Note that this is different from truncate_pagecache(), which
4135  * must keep the partial page.  In contrast, we must get rid of
4136  * partial pages.
4137  * @holelen: size of prospective hole in bytes.  This will be rounded
4138  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
4139  * end of the file.
4140  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
4141  * but 0 when invalidating pagecache, don't throw away private data.
4142  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)4143 void unmap_mapping_range(struct address_space *mapping,
4144 		loff_t const holebegin, loff_t const holelen, int even_cows)
4145 {
4146 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
4147 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
4148 
4149 	/* Check for overflow. */
4150 	if (sizeof(holelen) > sizeof(hlen)) {
4151 		long long holeend =
4152 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
4153 		if (holeend & ~(long long)ULONG_MAX)
4154 			hlen = ULONG_MAX - hba + 1;
4155 	}
4156 
4157 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
4158 }
4159 EXPORT_SYMBOL(unmap_mapping_range);
4160 
4161 /*
4162  * Restore a potential device exclusive pte to a working pte entry
4163  */
remove_device_exclusive_entry(struct vm_fault * vmf)4164 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
4165 {
4166 	struct folio *folio = page_folio(vmf->page);
4167 	struct vm_area_struct *vma = vmf->vma;
4168 	struct mmu_notifier_range range;
4169 	vm_fault_t ret;
4170 
4171 	/*
4172 	 * We need a reference to lock the folio because we don't hold
4173 	 * the PTL so a racing thread can remove the device-exclusive
4174 	 * entry and unmap it. If the folio is free the entry must
4175 	 * have been removed already. If it happens to have already
4176 	 * been re-allocated after being freed all we do is lock and
4177 	 * unlock it.
4178 	 */
4179 	if (!folio_try_get(folio))
4180 		return 0;
4181 
4182 	ret = folio_lock_or_retry(folio, vmf);
4183 	if (ret) {
4184 		folio_put(folio);
4185 		return ret;
4186 	}
4187 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0,
4188 				vma->vm_mm, vmf->address & PAGE_MASK,
4189 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
4190 	mmu_notifier_invalidate_range_start(&range);
4191 
4192 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4193 				&vmf->ptl);
4194 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4195 		restore_exclusive_pte(vma, folio, vmf->page, vmf->address,
4196 				      vmf->pte, vmf->orig_pte);
4197 
4198 	if (vmf->pte)
4199 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4200 	folio_unlock(folio);
4201 	folio_put(folio);
4202 
4203 	mmu_notifier_invalidate_range_end(&range);
4204 	return 0;
4205 }
4206 
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)4207 static inline bool should_try_to_free_swap(struct folio *folio,
4208 					   struct vm_area_struct *vma,
4209 					   unsigned int fault_flags)
4210 {
4211 	if (!folio_test_swapcache(folio))
4212 		return false;
4213 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4214 	    folio_test_mlocked(folio))
4215 		return true;
4216 	/*
4217 	 * If we want to map a page that's in the swapcache writable, we
4218 	 * have to detect via the refcount if we're really the exclusive
4219 	 * user. Try freeing the swapcache to get rid of the swapcache
4220 	 * reference only in case it's likely that we'll be the exlusive user.
4221 	 */
4222 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4223 		folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4224 }
4225 
pte_marker_clear(struct vm_fault * vmf)4226 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4227 {
4228 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4229 				       vmf->address, &vmf->ptl);
4230 	if (!vmf->pte)
4231 		return 0;
4232 	/*
4233 	 * Be careful so that we will only recover a special uffd-wp pte into a
4234 	 * none pte.  Otherwise it means the pte could have changed, so retry.
4235 	 *
4236 	 * This should also cover the case where e.g. the pte changed
4237 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4238 	 * So is_pte_marker() check is not enough to safely drop the pte.
4239 	 */
4240 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4241 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4242 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4243 	return 0;
4244 }
4245 
do_pte_missing(struct vm_fault * vmf)4246 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4247 {
4248 	if (vma_is_anonymous(vmf->vma))
4249 		return do_anonymous_page(vmf);
4250 	else
4251 		return do_fault(vmf);
4252 }
4253 
4254 /*
4255  * This is actually a page-missing access, but with uffd-wp special pte
4256  * installed.  It means this pte was wr-protected before being unmapped.
4257  */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)4258 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4259 {
4260 	/*
4261 	 * Just in case there're leftover special ptes even after the region
4262 	 * got unregistered - we can simply clear them.
4263 	 */
4264 	if (unlikely(!userfaultfd_wp(vmf->vma)))
4265 		return pte_marker_clear(vmf);
4266 
4267 	return do_pte_missing(vmf);
4268 }
4269 
handle_pte_marker(struct vm_fault * vmf)4270 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4271 {
4272 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4273 	unsigned long marker = pte_marker_get(entry);
4274 
4275 	/*
4276 	 * PTE markers should never be empty.  If anything weird happened,
4277 	 * the best thing to do is to kill the process along with its mm.
4278 	 */
4279 	if (WARN_ON_ONCE(!marker))
4280 		return VM_FAULT_SIGBUS;
4281 
4282 	/* Higher priority than uffd-wp when data corrupted */
4283 	if (marker & PTE_MARKER_POISONED)
4284 		return VM_FAULT_HWPOISON;
4285 
4286 	/* Hitting a guard page is always a fatal condition. */
4287 	if (marker & PTE_MARKER_GUARD)
4288 		return VM_FAULT_SIGSEGV;
4289 
4290 	if (pte_marker_entry_uffd_wp(entry))
4291 		return pte_marker_handle_uffd_wp(vmf);
4292 
4293 	/* This is an unknown pte marker */
4294 	return VM_FAULT_SIGBUS;
4295 }
4296 
__alloc_swap_folio(struct vm_fault * vmf)4297 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4298 {
4299 	struct vm_area_struct *vma = vmf->vma;
4300 	struct folio *folio;
4301 	swp_entry_t entry;
4302 
4303 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4304 	if (!folio)
4305 		return NULL;
4306 
4307 	entry = pte_to_swp_entry(vmf->orig_pte);
4308 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4309 					   GFP_KERNEL, entry)) {
4310 		folio_put(folio);
4311 		return NULL;
4312 	}
4313 
4314 	return folio;
4315 }
4316 
4317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4318 /*
4319  * Check if the PTEs within a range are contiguous swap entries
4320  * and have consistent swapcache, zeromap.
4321  */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4322 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4323 {
4324 	unsigned long addr;
4325 	swp_entry_t entry;
4326 	int idx;
4327 	pte_t pte;
4328 
4329 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4330 	idx = (vmf->address - addr) / PAGE_SIZE;
4331 	pte = ptep_get(ptep);
4332 
4333 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4334 		return false;
4335 	entry = pte_to_swp_entry(pte);
4336 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4337 		return false;
4338 
4339 	/*
4340 	 * swap_read_folio() can't handle the case a large folio is hybridly
4341 	 * from different backends. And they are likely corner cases. Similar
4342 	 * things might be added once zswap support large folios.
4343 	 */
4344 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4345 		return false;
4346 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4347 		return false;
4348 
4349 	return true;
4350 }
4351 
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4352 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4353 						     unsigned long addr,
4354 						     unsigned long orders)
4355 {
4356 	int order, nr;
4357 
4358 	order = highest_order(orders);
4359 
4360 	/*
4361 	 * To swap in a THP with nr pages, we require that its first swap_offset
4362 	 * is aligned with that number, as it was when the THP was swapped out.
4363 	 * This helps filter out most invalid entries.
4364 	 */
4365 	while (orders) {
4366 		nr = 1 << order;
4367 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4368 			break;
4369 		order = next_order(&orders, order);
4370 	}
4371 
4372 	return orders;
4373 }
4374 
alloc_swap_folio(struct vm_fault * vmf)4375 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4376 {
4377 	struct vm_area_struct *vma = vmf->vma;
4378 	unsigned long orders;
4379 	struct folio *folio;
4380 	unsigned long addr;
4381 	swp_entry_t entry;
4382 	spinlock_t *ptl;
4383 	pte_t *pte;
4384 	gfp_t gfp;
4385 	int order;
4386 
4387 	/*
4388 	 * If uffd is active for the vma we need per-page fault fidelity to
4389 	 * maintain the uffd semantics.
4390 	 */
4391 	if (unlikely(userfaultfd_armed(vma)))
4392 		goto fallback;
4393 
4394 	/*
4395 	 * A large swapped out folio could be partially or fully in zswap. We
4396 	 * lack handling for such cases, so fallback to swapping in order-0
4397 	 * folio.
4398 	 */
4399 	if (!zswap_never_enabled())
4400 		goto fallback;
4401 
4402 	entry = pte_to_swp_entry(vmf->orig_pte);
4403 	/*
4404 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4405 	 * and suitable for swapping THP.
4406 	 */
4407 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4408 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4409 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4410 	orders = thp_swap_suitable_orders(swp_offset(entry),
4411 					  vmf->address, orders);
4412 
4413 	if (!orders)
4414 		goto fallback;
4415 
4416 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4417 				  vmf->address & PMD_MASK, &ptl);
4418 	if (unlikely(!pte))
4419 		goto fallback;
4420 
4421 	/*
4422 	 * For do_swap_page, find the highest order where the aligned range is
4423 	 * completely swap entries with contiguous swap offsets.
4424 	 */
4425 	order = highest_order(orders);
4426 	while (orders) {
4427 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4428 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4429 			break;
4430 		order = next_order(&orders, order);
4431 	}
4432 
4433 	pte_unmap_unlock(pte, ptl);
4434 
4435 	/* Try allocating the highest of the remaining orders. */
4436 	gfp = vma_thp_gfp_mask(vma);
4437 	while (orders) {
4438 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4439 		folio = vma_alloc_folio(gfp, order, vma, addr);
4440 		if (folio) {
4441 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4442 							    gfp, entry))
4443 				return folio;
4444 			count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4445 			folio_put(folio);
4446 		}
4447 		count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4448 		order = next_order(&orders, order);
4449 	}
4450 
4451 fallback:
4452 	return __alloc_swap_folio(vmf);
4453 }
4454 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4455 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4456 {
4457 	return __alloc_swap_folio(vmf);
4458 }
4459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4460 
4461 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4462 
4463 /*
4464  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4465  * but allow concurrent faults), and pte mapped but not yet locked.
4466  * We return with pte unmapped and unlocked.
4467  *
4468  * We return with the mmap_lock locked or unlocked in the same cases
4469  * as does filemap_fault().
4470  */
do_swap_page(struct vm_fault * vmf)4471 vm_fault_t do_swap_page(struct vm_fault *vmf)
4472 {
4473 	struct vm_area_struct *vma = vmf->vma;
4474 	struct folio *swapcache, *folio = NULL;
4475 	DECLARE_WAITQUEUE(wait, current);
4476 	struct page *page;
4477 	struct swap_info_struct *si = NULL;
4478 	rmap_t rmap_flags = RMAP_NONE;
4479 	bool need_clear_cache = false;
4480 	bool exclusive = false;
4481 	swp_entry_t entry;
4482 	pte_t pte;
4483 	vm_fault_t ret = 0;
4484 	void *shadow = NULL;
4485 	int nr_pages;
4486 	unsigned long page_idx;
4487 	unsigned long address;
4488 	pte_t *ptep;
4489 
4490 	if (!pte_unmap_same(vmf))
4491 		goto out;
4492 
4493 	entry = pte_to_swp_entry(vmf->orig_pte);
4494 	if (unlikely(non_swap_entry(entry))) {
4495 		if (is_migration_entry(entry)) {
4496 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4497 					     vmf->address);
4498 		} else if (is_device_exclusive_entry(entry)) {
4499 			vmf->page = pfn_swap_entry_to_page(entry);
4500 			ret = remove_device_exclusive_entry(vmf);
4501 		} else if (is_device_private_entry(entry)) {
4502 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4503 				/*
4504 				 * migrate_to_ram is not yet ready to operate
4505 				 * under VMA lock.
4506 				 */
4507 				vma_end_read(vma);
4508 				ret = VM_FAULT_RETRY;
4509 				goto out;
4510 			}
4511 
4512 			vmf->page = pfn_swap_entry_to_page(entry);
4513 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4514 					vmf->address, &vmf->ptl);
4515 			if (unlikely(!vmf->pte ||
4516 				     !pte_same(ptep_get(vmf->pte),
4517 							vmf->orig_pte)))
4518 				goto unlock;
4519 
4520 			/*
4521 			 * Get a page reference while we know the page can't be
4522 			 * freed.
4523 			 */
4524 			if (trylock_page(vmf->page)) {
4525 				struct dev_pagemap *pgmap;
4526 
4527 				get_page(vmf->page);
4528 				pte_unmap_unlock(vmf->pte, vmf->ptl);
4529 				pgmap = page_pgmap(vmf->page);
4530 				ret = pgmap->ops->migrate_to_ram(vmf);
4531 				unlock_page(vmf->page);
4532 				put_page(vmf->page);
4533 			} else {
4534 				pte_unmap_unlock(vmf->pte, vmf->ptl);
4535 			}
4536 		} else if (is_hwpoison_entry(entry)) {
4537 			ret = VM_FAULT_HWPOISON;
4538 		} else if (is_pte_marker_entry(entry)) {
4539 			ret = handle_pte_marker(vmf);
4540 		} else {
4541 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4542 			ret = VM_FAULT_SIGBUS;
4543 		}
4544 		goto out;
4545 	}
4546 
4547 	/* Prevent swapoff from happening to us. */
4548 	si = get_swap_device(entry);
4549 	if (unlikely(!si))
4550 		goto out;
4551 
4552 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4553 	if (folio)
4554 		page = folio_file_page(folio, swp_offset(entry));
4555 	swapcache = folio;
4556 
4557 	if (!folio) {
4558 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4559 		    __swap_count(entry) == 1) {
4560 			/* skip swapcache */
4561 			folio = alloc_swap_folio(vmf);
4562 			if (folio) {
4563 				__folio_set_locked(folio);
4564 				__folio_set_swapbacked(folio);
4565 
4566 				nr_pages = folio_nr_pages(folio);
4567 				if (folio_test_large(folio))
4568 					entry.val = ALIGN_DOWN(entry.val, nr_pages);
4569 				/*
4570 				 * Prevent parallel swapin from proceeding with
4571 				 * the cache flag. Otherwise, another thread
4572 				 * may finish swapin first, free the entry, and
4573 				 * swapout reusing the same entry. It's
4574 				 * undetectable as pte_same() returns true due
4575 				 * to entry reuse.
4576 				 */
4577 				if (swapcache_prepare(entry, nr_pages)) {
4578 					/*
4579 					 * Relax a bit to prevent rapid
4580 					 * repeated page faults.
4581 					 */
4582 					add_wait_queue(&swapcache_wq, &wait);
4583 					schedule_timeout_uninterruptible(1);
4584 					remove_wait_queue(&swapcache_wq, &wait);
4585 					goto out_page;
4586 				}
4587 				need_clear_cache = true;
4588 
4589 				memcg1_swapin(entry, nr_pages);
4590 
4591 				shadow = get_shadow_from_swap_cache(entry);
4592 				if (shadow)
4593 					workingset_refault(folio, shadow);
4594 
4595 				folio_add_lru(folio);
4596 
4597 				/* To provide entry to swap_read_folio() */
4598 				folio->swap = entry;
4599 				swap_read_folio(folio, NULL);
4600 				folio->private = NULL;
4601 			}
4602 		} else {
4603 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4604 						vmf);
4605 			swapcache = folio;
4606 		}
4607 
4608 		if (!folio) {
4609 			/*
4610 			 * Back out if somebody else faulted in this pte
4611 			 * while we released the pte lock.
4612 			 */
4613 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4614 					vmf->address, &vmf->ptl);
4615 			if (likely(vmf->pte &&
4616 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4617 				ret = VM_FAULT_OOM;
4618 			goto unlock;
4619 		}
4620 
4621 		/* Had to read the page from swap area: Major fault */
4622 		ret = VM_FAULT_MAJOR;
4623 		count_vm_event(PGMAJFAULT);
4624 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4625 		page = folio_file_page(folio, swp_offset(entry));
4626 	} else if (PageHWPoison(page)) {
4627 		/*
4628 		 * hwpoisoned dirty swapcache pages are kept for killing
4629 		 * owner processes (which may be unknown at hwpoison time)
4630 		 */
4631 		ret = VM_FAULT_HWPOISON;
4632 		goto out_release;
4633 	}
4634 
4635 	ret |= folio_lock_or_retry(folio, vmf);
4636 	if (ret & VM_FAULT_RETRY)
4637 		goto out_release;
4638 
4639 	if (swapcache) {
4640 		/*
4641 		 * Make sure folio_free_swap() or swapoff did not release the
4642 		 * swapcache from under us.  The page pin, and pte_same test
4643 		 * below, are not enough to exclude that.  Even if it is still
4644 		 * swapcache, we need to check that the page's swap has not
4645 		 * changed.
4646 		 */
4647 		if (unlikely(!folio_test_swapcache(folio) ||
4648 			     page_swap_entry(page).val != entry.val))
4649 			goto out_page;
4650 
4651 		/*
4652 		 * KSM sometimes has to copy on read faults, for example, if
4653 		 * folio->index of non-ksm folios would be nonlinear inside the
4654 		 * anon VMA -- the ksm flag is lost on actual swapout.
4655 		 */
4656 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4657 		if (unlikely(!folio)) {
4658 			ret = VM_FAULT_OOM;
4659 			folio = swapcache;
4660 			goto out_page;
4661 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4662 			ret = VM_FAULT_HWPOISON;
4663 			folio = swapcache;
4664 			goto out_page;
4665 		}
4666 		if (folio != swapcache)
4667 			page = folio_page(folio, 0);
4668 
4669 		/*
4670 		 * If we want to map a page that's in the swapcache writable, we
4671 		 * have to detect via the refcount if we're really the exclusive
4672 		 * owner. Try removing the extra reference from the local LRU
4673 		 * caches if required.
4674 		 */
4675 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4676 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4677 			lru_add_drain();
4678 	}
4679 
4680 	folio_throttle_swaprate(folio, GFP_KERNEL);
4681 
4682 	/*
4683 	 * Back out if somebody else already faulted in this pte.
4684 	 */
4685 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4686 			&vmf->ptl);
4687 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4688 		goto out_nomap;
4689 
4690 	if (unlikely(!folio_test_uptodate(folio))) {
4691 		ret = VM_FAULT_SIGBUS;
4692 		goto out_nomap;
4693 	}
4694 
4695 	/* allocated large folios for SWP_SYNCHRONOUS_IO */
4696 	if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4697 		unsigned long nr = folio_nr_pages(folio);
4698 		unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4699 		unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4700 		pte_t *folio_ptep = vmf->pte - idx;
4701 		pte_t folio_pte = ptep_get(folio_ptep);
4702 
4703 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4704 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4705 			goto out_nomap;
4706 
4707 		page_idx = idx;
4708 		address = folio_start;
4709 		ptep = folio_ptep;
4710 		goto check_folio;
4711 	}
4712 
4713 	nr_pages = 1;
4714 	page_idx = 0;
4715 	address = vmf->address;
4716 	ptep = vmf->pte;
4717 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4718 		int nr = folio_nr_pages(folio);
4719 		unsigned long idx = folio_page_idx(folio, page);
4720 		unsigned long folio_start = address - idx * PAGE_SIZE;
4721 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4722 		pte_t *folio_ptep;
4723 		pte_t folio_pte;
4724 
4725 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4726 			goto check_folio;
4727 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4728 			goto check_folio;
4729 
4730 		folio_ptep = vmf->pte - idx;
4731 		folio_pte = ptep_get(folio_ptep);
4732 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4733 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4734 			goto check_folio;
4735 
4736 		page_idx = idx;
4737 		address = folio_start;
4738 		ptep = folio_ptep;
4739 		nr_pages = nr;
4740 		entry = folio->swap;
4741 		page = &folio->page;
4742 	}
4743 
4744 check_folio:
4745 	/*
4746 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4747 	 * must never point at an anonymous page in the swapcache that is
4748 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4749 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4750 	 * check after taking the PT lock and making sure that nobody
4751 	 * concurrently faulted in this page and set PG_anon_exclusive.
4752 	 */
4753 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4754 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4755 
4756 	/*
4757 	 * Check under PT lock (to protect against concurrent fork() sharing
4758 	 * the swap entry concurrently) for certainly exclusive pages.
4759 	 */
4760 	if (!folio_test_ksm(folio)) {
4761 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4762 		if (folio != swapcache) {
4763 			/*
4764 			 * We have a fresh page that is not exposed to the
4765 			 * swapcache -> certainly exclusive.
4766 			 */
4767 			exclusive = true;
4768 		} else if (exclusive && folio_test_writeback(folio) &&
4769 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4770 			/*
4771 			 * This is tricky: not all swap backends support
4772 			 * concurrent page modifications while under writeback.
4773 			 *
4774 			 * So if we stumble over such a page in the swapcache
4775 			 * we must not set the page exclusive, otherwise we can
4776 			 * map it writable without further checks and modify it
4777 			 * while still under writeback.
4778 			 *
4779 			 * For these problematic swap backends, simply drop the
4780 			 * exclusive marker: this is perfectly fine as we start
4781 			 * writeback only if we fully unmapped the page and
4782 			 * there are no unexpected references on the page after
4783 			 * unmapping succeeded. After fully unmapped, no
4784 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4785 			 * appear, so dropping the exclusive marker and mapping
4786 			 * it only R/O is fine.
4787 			 */
4788 			exclusive = false;
4789 		}
4790 	}
4791 
4792 	/*
4793 	 * Some architectures may have to restore extra metadata to the page
4794 	 * when reading from swap. This metadata may be indexed by swap entry
4795 	 * so this must be called before swap_free().
4796 	 */
4797 	arch_swap_restore(folio_swap(entry, folio), folio);
4798 
4799 	/*
4800 	 * Remove the swap entry and conditionally try to free up the swapcache.
4801 	 * We're already holding a reference on the page but haven't mapped it
4802 	 * yet.
4803 	 */
4804 	swap_free_nr(entry, nr_pages);
4805 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4806 		folio_free_swap(folio);
4807 
4808 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4809 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4810 	pte = mk_pte(page, vma->vm_page_prot);
4811 	if (pte_swp_soft_dirty(vmf->orig_pte))
4812 		pte = pte_mksoft_dirty(pte);
4813 	if (pte_swp_uffd_wp(vmf->orig_pte))
4814 		pte = pte_mkuffd_wp(pte);
4815 
4816 	/*
4817 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4818 	 * certainly not shared either because we just allocated them without
4819 	 * exposing them to the swapcache or because the swap entry indicates
4820 	 * exclusivity.
4821 	 */
4822 	if (!folio_test_ksm(folio) &&
4823 	    (exclusive || folio_ref_count(folio) == 1)) {
4824 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4825 		    !pte_needs_soft_dirty_wp(vma, pte)) {
4826 			pte = pte_mkwrite(pte, vma);
4827 			if (vmf->flags & FAULT_FLAG_WRITE) {
4828 				pte = pte_mkdirty(pte);
4829 				vmf->flags &= ~FAULT_FLAG_WRITE;
4830 			}
4831 		}
4832 		rmap_flags |= RMAP_EXCLUSIVE;
4833 	}
4834 	folio_ref_add(folio, nr_pages - 1);
4835 	flush_icache_pages(vma, page, nr_pages);
4836 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4837 
4838 	/* ksm created a completely new copy */
4839 	if (unlikely(folio != swapcache && swapcache)) {
4840 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4841 		folio_add_lru_vma(folio, vma);
4842 	} else if (!folio_test_anon(folio)) {
4843 		/*
4844 		 * We currently only expect small !anon folios which are either
4845 		 * fully exclusive or fully shared, or new allocated large
4846 		 * folios which are fully exclusive. If we ever get large
4847 		 * folios within swapcache here, we have to be careful.
4848 		 */
4849 		VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4850 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4851 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4852 	} else {
4853 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4854 					rmap_flags);
4855 	}
4856 
4857 	VM_BUG_ON(!folio_test_anon(folio) ||
4858 			(pte_write(pte) && !PageAnonExclusive(page)));
4859 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4860 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
4861 			pte, pte, nr_pages);
4862 
4863 	folio_unlock(folio);
4864 	if (folio != swapcache && swapcache) {
4865 		/*
4866 		 * Hold the lock to avoid the swap entry to be reused
4867 		 * until we take the PT lock for the pte_same() check
4868 		 * (to avoid false positives from pte_same). For
4869 		 * further safety release the lock after the swap_free
4870 		 * so that the swap count won't change under a
4871 		 * parallel locked swapcache.
4872 		 */
4873 		folio_unlock(swapcache);
4874 		folio_put(swapcache);
4875 	}
4876 
4877 	if (vmf->flags & FAULT_FLAG_WRITE) {
4878 		ret |= do_wp_page(vmf);
4879 		if (ret & VM_FAULT_ERROR)
4880 			ret &= VM_FAULT_ERROR;
4881 		goto out;
4882 	}
4883 
4884 	/* No need to invalidate - it was non-present before */
4885 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4886 unlock:
4887 	if (vmf->pte)
4888 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4889 out:
4890 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4891 	if (need_clear_cache) {
4892 		swapcache_clear(si, entry, nr_pages);
4893 		if (waitqueue_active(&swapcache_wq))
4894 			wake_up(&swapcache_wq);
4895 	}
4896 	if (si)
4897 		put_swap_device(si);
4898 	return ret;
4899 out_nomap:
4900 	if (vmf->pte)
4901 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4902 out_page:
4903 	folio_unlock(folio);
4904 out_release:
4905 	folio_put(folio);
4906 	if (folio != swapcache && swapcache) {
4907 		folio_unlock(swapcache);
4908 		folio_put(swapcache);
4909 	}
4910 	if (need_clear_cache) {
4911 		swapcache_clear(si, entry, nr_pages);
4912 		if (waitqueue_active(&swapcache_wq))
4913 			wake_up(&swapcache_wq);
4914 	}
4915 	if (si)
4916 		put_swap_device(si);
4917 	return ret;
4918 }
4919 
pte_range_none(pte_t * pte,int nr_pages)4920 static bool pte_range_none(pte_t *pte, int nr_pages)
4921 {
4922 	int i;
4923 
4924 	for (i = 0; i < nr_pages; i++) {
4925 		if (!pte_none(ptep_get_lockless(pte + i)))
4926 			return false;
4927 	}
4928 
4929 	return true;
4930 }
4931 
alloc_anon_folio(struct vm_fault * vmf)4932 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4933 {
4934 	struct vm_area_struct *vma = vmf->vma;
4935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4936 	unsigned long orders;
4937 	struct folio *folio;
4938 	unsigned long addr;
4939 	pte_t *pte;
4940 	gfp_t gfp;
4941 	int order;
4942 
4943 	/*
4944 	 * If uffd is active for the vma we need per-page fault fidelity to
4945 	 * maintain the uffd semantics.
4946 	 */
4947 	if (unlikely(userfaultfd_armed(vma)))
4948 		goto fallback;
4949 
4950 	/*
4951 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4952 	 * for this vma. Then filter out the orders that can't be allocated over
4953 	 * the faulting address and still be fully contained in the vma.
4954 	 */
4955 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4956 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4957 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4958 
4959 	if (!orders)
4960 		goto fallback;
4961 
4962 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4963 	if (!pte)
4964 		return ERR_PTR(-EAGAIN);
4965 
4966 	/*
4967 	 * Find the highest order where the aligned range is completely
4968 	 * pte_none(). Note that all remaining orders will be completely
4969 	 * pte_none().
4970 	 */
4971 	order = highest_order(orders);
4972 	while (orders) {
4973 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4974 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4975 			break;
4976 		order = next_order(&orders, order);
4977 	}
4978 
4979 	pte_unmap(pte);
4980 
4981 	if (!orders)
4982 		goto fallback;
4983 
4984 	/* Try allocating the highest of the remaining orders. */
4985 	gfp = vma_thp_gfp_mask(vma);
4986 	while (orders) {
4987 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4988 		folio = vma_alloc_folio(gfp, order, vma, addr);
4989 		if (folio) {
4990 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4991 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4992 				folio_put(folio);
4993 				goto next;
4994 			}
4995 			folio_throttle_swaprate(folio, gfp);
4996 			/*
4997 			 * When a folio is not zeroed during allocation
4998 			 * (__GFP_ZERO not used) or user folios require special
4999 			 * handling, folio_zero_user() is used to make sure
5000 			 * that the page corresponding to the faulting address
5001 			 * will be hot in the cache after zeroing.
5002 			 */
5003 			if (user_alloc_needs_zeroing())
5004 				folio_zero_user(folio, vmf->address);
5005 			return folio;
5006 		}
5007 next:
5008 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
5009 		order = next_order(&orders, order);
5010 	}
5011 
5012 fallback:
5013 #endif
5014 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
5015 }
5016 
5017 /*
5018  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5019  * but allow concurrent faults), and pte mapped but not yet locked.
5020  * We return with mmap_lock still held, but pte unmapped and unlocked.
5021  */
do_anonymous_page(struct vm_fault * vmf)5022 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
5023 {
5024 	struct vm_area_struct *vma = vmf->vma;
5025 	unsigned long addr = vmf->address;
5026 	struct folio *folio;
5027 	vm_fault_t ret = 0;
5028 	int nr_pages = 1;
5029 	pte_t entry;
5030 
5031 	/* File mapping without ->vm_ops ? */
5032 	if (vma->vm_flags & VM_SHARED)
5033 		return VM_FAULT_SIGBUS;
5034 
5035 	/*
5036 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
5037 	 * be distinguished from a transient failure of pte_offset_map().
5038 	 */
5039 	if (pte_alloc(vma->vm_mm, vmf->pmd))
5040 		return VM_FAULT_OOM;
5041 
5042 	/* Use the zero-page for reads */
5043 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
5044 			!mm_forbids_zeropage(vma->vm_mm)) {
5045 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
5046 						vma->vm_page_prot));
5047 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5048 				vmf->address, &vmf->ptl);
5049 		if (!vmf->pte)
5050 			goto unlock;
5051 		if (vmf_pte_changed(vmf)) {
5052 			update_mmu_tlb(vma, vmf->address, vmf->pte);
5053 			goto unlock;
5054 		}
5055 		ret = check_stable_address_space(vma->vm_mm);
5056 		if (ret)
5057 			goto unlock;
5058 		/* Deliver the page fault to userland, check inside PT lock */
5059 		if (userfaultfd_missing(vma)) {
5060 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5061 			return handle_userfault(vmf, VM_UFFD_MISSING);
5062 		}
5063 		goto setpte;
5064 	}
5065 
5066 	/* Allocate our own private page. */
5067 	ret = vmf_anon_prepare(vmf);
5068 	if (ret)
5069 		return ret;
5070 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
5071 	folio = alloc_anon_folio(vmf);
5072 	if (IS_ERR(folio))
5073 		return 0;
5074 	if (!folio)
5075 		goto oom;
5076 
5077 	nr_pages = folio_nr_pages(folio);
5078 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
5079 
5080 	/*
5081 	 * The memory barrier inside __folio_mark_uptodate makes sure that
5082 	 * preceding stores to the page contents become visible before
5083 	 * the set_pte_at() write.
5084 	 */
5085 	__folio_mark_uptodate(folio);
5086 
5087 	entry = folio_mk_pte(folio, vma->vm_page_prot);
5088 	entry = pte_sw_mkyoung(entry);
5089 	if (vma->vm_flags & VM_WRITE)
5090 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
5091 
5092 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
5093 	if (!vmf->pte)
5094 		goto release;
5095 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
5096 		update_mmu_tlb(vma, addr, vmf->pte);
5097 		goto release;
5098 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5099 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5100 		goto release;
5101 	}
5102 
5103 	ret = check_stable_address_space(vma->vm_mm);
5104 	if (ret)
5105 		goto release;
5106 
5107 	/* Deliver the page fault to userland, check inside PT lock */
5108 	if (userfaultfd_missing(vma)) {
5109 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5110 		folio_put(folio);
5111 		return handle_userfault(vmf, VM_UFFD_MISSING);
5112 	}
5113 
5114 	folio_ref_add(folio, nr_pages - 1);
5115 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
5116 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
5117 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5118 	folio_add_lru_vma(folio, vma);
5119 setpte:
5120 	if (vmf_orig_pte_uffd_wp(vmf))
5121 		entry = pte_mkuffd_wp(entry);
5122 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
5123 
5124 	/* No need to invalidate - it was non-present before */
5125 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
5126 unlock:
5127 	if (vmf->pte)
5128 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5129 	return ret;
5130 release:
5131 	folio_put(folio);
5132 	goto unlock;
5133 oom:
5134 	return VM_FAULT_OOM;
5135 }
5136 
5137 /*
5138  * The mmap_lock must have been held on entry, and may have been
5139  * released depending on flags and vma->vm_ops->fault() return value.
5140  * See filemap_fault() and __lock_page_retry().
5141  */
__do_fault(struct vm_fault * vmf)5142 static vm_fault_t __do_fault(struct vm_fault *vmf)
5143 {
5144 	struct vm_area_struct *vma = vmf->vma;
5145 	struct folio *folio;
5146 	vm_fault_t ret;
5147 
5148 	/*
5149 	 * Preallocate pte before we take page_lock because this might lead to
5150 	 * deadlocks for memcg reclaim which waits for pages under writeback:
5151 	 *				lock_page(A)
5152 	 *				SetPageWriteback(A)
5153 	 *				unlock_page(A)
5154 	 * lock_page(B)
5155 	 *				lock_page(B)
5156 	 * pte_alloc_one
5157 	 *   shrink_folio_list
5158 	 *     wait_on_page_writeback(A)
5159 	 *				SetPageWriteback(B)
5160 	 *				unlock_page(B)
5161 	 *				# flush A, B to clear the writeback
5162 	 */
5163 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
5164 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5165 		if (!vmf->prealloc_pte)
5166 			return VM_FAULT_OOM;
5167 	}
5168 
5169 	ret = vma->vm_ops->fault(vmf);
5170 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
5171 			    VM_FAULT_DONE_COW)))
5172 		return ret;
5173 
5174 	folio = page_folio(vmf->page);
5175 	if (unlikely(PageHWPoison(vmf->page))) {
5176 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
5177 		if (ret & VM_FAULT_LOCKED) {
5178 			if (page_mapped(vmf->page))
5179 				unmap_mapping_folio(folio);
5180 			/* Retry if a clean folio was removed from the cache. */
5181 			if (mapping_evict_folio(folio->mapping, folio))
5182 				poisonret = VM_FAULT_NOPAGE;
5183 			folio_unlock(folio);
5184 		}
5185 		folio_put(folio);
5186 		vmf->page = NULL;
5187 		return poisonret;
5188 	}
5189 
5190 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
5191 		folio_lock(folio);
5192 	else
5193 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5194 
5195 	return ret;
5196 }
5197 
5198 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)5199 static void deposit_prealloc_pte(struct vm_fault *vmf)
5200 {
5201 	struct vm_area_struct *vma = vmf->vma;
5202 
5203 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5204 	/*
5205 	 * We are going to consume the prealloc table,
5206 	 * count that as nr_ptes.
5207 	 */
5208 	mm_inc_nr_ptes(vma->vm_mm);
5209 	vmf->prealloc_pte = NULL;
5210 }
5211 
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5212 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5213 {
5214 	struct vm_area_struct *vma = vmf->vma;
5215 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5216 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5217 	pmd_t entry;
5218 	vm_fault_t ret = VM_FAULT_FALLBACK;
5219 
5220 	/*
5221 	 * It is too late to allocate a small folio, we already have a large
5222 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
5223 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5224 	 * PMD mappings if THPs are disabled.
5225 	 */
5226 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
5227 		return ret;
5228 
5229 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5230 		return ret;
5231 
5232 	if (folio_order(folio) != HPAGE_PMD_ORDER)
5233 		return ret;
5234 	page = &folio->page;
5235 
5236 	/*
5237 	 * Just backoff if any subpage of a THP is corrupted otherwise
5238 	 * the corrupted page may mapped by PMD silently to escape the
5239 	 * check.  This kind of THP just can be PTE mapped.  Access to
5240 	 * the corrupted subpage should trigger SIGBUS as expected.
5241 	 */
5242 	if (unlikely(folio_test_has_hwpoisoned(folio)))
5243 		return ret;
5244 
5245 	/*
5246 	 * Archs like ppc64 need additional space to store information
5247 	 * related to pte entry. Use the preallocated table for that.
5248 	 */
5249 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5250 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5251 		if (!vmf->prealloc_pte)
5252 			return VM_FAULT_OOM;
5253 	}
5254 
5255 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5256 	if (unlikely(!pmd_none(*vmf->pmd)))
5257 		goto out;
5258 
5259 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
5260 
5261 	entry = folio_mk_pmd(folio, vma->vm_page_prot);
5262 	if (write)
5263 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5264 
5265 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5266 	folio_add_file_rmap_pmd(folio, page, vma);
5267 
5268 	/*
5269 	 * deposit and withdraw with pmd lock held
5270 	 */
5271 	if (arch_needs_pgtable_deposit())
5272 		deposit_prealloc_pte(vmf);
5273 
5274 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5275 
5276 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5277 
5278 	/* fault is handled */
5279 	ret = 0;
5280 	count_vm_event(THP_FILE_MAPPED);
5281 out:
5282 	spin_unlock(vmf->ptl);
5283 	return ret;
5284 }
5285 #else
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5286 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5287 {
5288 	return VM_FAULT_FALLBACK;
5289 }
5290 #endif
5291 
5292 /**
5293  * set_pte_range - Set a range of PTEs to point to pages in a folio.
5294  * @vmf: Fault decription.
5295  * @folio: The folio that contains @page.
5296  * @page: The first page to create a PTE for.
5297  * @nr: The number of PTEs to create.
5298  * @addr: The first address to create a PTE for.
5299  */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5300 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5301 		struct page *page, unsigned int nr, unsigned long addr)
5302 {
5303 	struct vm_area_struct *vma = vmf->vma;
5304 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5305 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5306 	pte_t entry;
5307 
5308 	flush_icache_pages(vma, page, nr);
5309 	entry = mk_pte(page, vma->vm_page_prot);
5310 
5311 	if (prefault && arch_wants_old_prefaulted_pte())
5312 		entry = pte_mkold(entry);
5313 	else
5314 		entry = pte_sw_mkyoung(entry);
5315 
5316 	if (write)
5317 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5318 	else if (pte_write(entry) && folio_test_dirty(folio))
5319 		entry = pte_mkdirty(entry);
5320 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5321 		entry = pte_mkuffd_wp(entry);
5322 	/* copy-on-write page */
5323 	if (write && !(vma->vm_flags & VM_SHARED)) {
5324 		VM_BUG_ON_FOLIO(nr != 1, folio);
5325 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5326 		folio_add_lru_vma(folio, vma);
5327 	} else {
5328 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5329 	}
5330 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5331 
5332 	/* no need to invalidate: a not-present page won't be cached */
5333 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5334 }
5335 
vmf_pte_changed(struct vm_fault * vmf)5336 static bool vmf_pte_changed(struct vm_fault *vmf)
5337 {
5338 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5339 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5340 
5341 	return !pte_none(ptep_get(vmf->pte));
5342 }
5343 
5344 /**
5345  * finish_fault - finish page fault once we have prepared the page to fault
5346  *
5347  * @vmf: structure describing the fault
5348  *
5349  * This function handles all that is needed to finish a page fault once the
5350  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5351  * given page, adds reverse page mapping, handles memcg charges and LRU
5352  * addition.
5353  *
5354  * The function expects the page to be locked and on success it consumes a
5355  * reference of a page being mapped (for the PTE which maps it).
5356  *
5357  * Return: %0 on success, %VM_FAULT_ code in case of error.
5358  */
finish_fault(struct vm_fault * vmf)5359 vm_fault_t finish_fault(struct vm_fault *vmf)
5360 {
5361 	struct vm_area_struct *vma = vmf->vma;
5362 	struct page *page;
5363 	struct folio *folio;
5364 	vm_fault_t ret;
5365 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5366 		      !(vma->vm_flags & VM_SHARED);
5367 	int type, nr_pages;
5368 	unsigned long addr;
5369 	bool needs_fallback = false;
5370 
5371 fallback:
5372 	addr = vmf->address;
5373 
5374 	/* Did we COW the page? */
5375 	if (is_cow)
5376 		page = vmf->cow_page;
5377 	else
5378 		page = vmf->page;
5379 
5380 	folio = page_folio(page);
5381 	/*
5382 	 * check even for read faults because we might have lost our CoWed
5383 	 * page
5384 	 */
5385 	if (!(vma->vm_flags & VM_SHARED)) {
5386 		ret = check_stable_address_space(vma->vm_mm);
5387 		if (ret)
5388 			return ret;
5389 	}
5390 
5391 	if (pmd_none(*vmf->pmd)) {
5392 		if (folio_test_pmd_mappable(folio)) {
5393 			ret = do_set_pmd(vmf, folio, page);
5394 			if (ret != VM_FAULT_FALLBACK)
5395 				return ret;
5396 		}
5397 
5398 		if (vmf->prealloc_pte)
5399 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5400 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5401 			return VM_FAULT_OOM;
5402 	}
5403 
5404 	nr_pages = folio_nr_pages(folio);
5405 
5406 	/*
5407 	 * Using per-page fault to maintain the uffd semantics, and same
5408 	 * approach also applies to non-anonymous-shmem faults to avoid
5409 	 * inflating the RSS of the process.
5410 	 */
5411 	if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
5412 	    unlikely(needs_fallback)) {
5413 		nr_pages = 1;
5414 	} else if (nr_pages > 1) {
5415 		pgoff_t idx = folio_page_idx(folio, page);
5416 		/* The page offset of vmf->address within the VMA. */
5417 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5418 		/* The index of the entry in the pagetable for fault page. */
5419 		pgoff_t pte_off = pte_index(vmf->address);
5420 
5421 		/*
5422 		 * Fallback to per-page fault in case the folio size in page
5423 		 * cache beyond the VMA limits and PMD pagetable limits.
5424 		 */
5425 		if (unlikely(vma_off < idx ||
5426 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5427 			    pte_off < idx ||
5428 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5429 			nr_pages = 1;
5430 		} else {
5431 			/* Now we can set mappings for the whole large folio. */
5432 			addr = vmf->address - idx * PAGE_SIZE;
5433 			page = &folio->page;
5434 		}
5435 	}
5436 
5437 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5438 				       addr, &vmf->ptl);
5439 	if (!vmf->pte)
5440 		return VM_FAULT_NOPAGE;
5441 
5442 	/* Re-check under ptl */
5443 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5444 		update_mmu_tlb(vma, addr, vmf->pte);
5445 		ret = VM_FAULT_NOPAGE;
5446 		goto unlock;
5447 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5448 		needs_fallback = true;
5449 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5450 		goto fallback;
5451 	}
5452 
5453 	folio_ref_add(folio, nr_pages - 1);
5454 	set_pte_range(vmf, folio, page, nr_pages, addr);
5455 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5456 	add_mm_counter(vma->vm_mm, type, nr_pages);
5457 	ret = 0;
5458 
5459 unlock:
5460 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5461 	return ret;
5462 }
5463 
5464 static unsigned long fault_around_pages __read_mostly =
5465 	65536 >> PAGE_SHIFT;
5466 
5467 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5468 static int fault_around_bytes_get(void *data, u64 *val)
5469 {
5470 	*val = fault_around_pages << PAGE_SHIFT;
5471 	return 0;
5472 }
5473 
5474 /*
5475  * fault_around_bytes must be rounded down to the nearest page order as it's
5476  * what do_fault_around() expects to see.
5477  */
fault_around_bytes_set(void * data,u64 val)5478 static int fault_around_bytes_set(void *data, u64 val)
5479 {
5480 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5481 		return -EINVAL;
5482 
5483 	/*
5484 	 * The minimum value is 1 page, however this results in no fault-around
5485 	 * at all. See should_fault_around().
5486 	 */
5487 	val = max(val, PAGE_SIZE);
5488 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5489 
5490 	return 0;
5491 }
5492 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5493 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5494 
fault_around_debugfs(void)5495 static int __init fault_around_debugfs(void)
5496 {
5497 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5498 				   &fault_around_bytes_fops);
5499 	return 0;
5500 }
5501 late_initcall(fault_around_debugfs);
5502 #endif
5503 
5504 /*
5505  * do_fault_around() tries to map few pages around the fault address. The hope
5506  * is that the pages will be needed soon and this will lower the number of
5507  * faults to handle.
5508  *
5509  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5510  * not ready to be mapped: not up-to-date, locked, etc.
5511  *
5512  * This function doesn't cross VMA or page table boundaries, in order to call
5513  * map_pages() and acquire a PTE lock only once.
5514  *
5515  * fault_around_pages defines how many pages we'll try to map.
5516  * do_fault_around() expects it to be set to a power of two less than or equal
5517  * to PTRS_PER_PTE.
5518  *
5519  * The virtual address of the area that we map is naturally aligned to
5520  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5521  * (and therefore to page order).  This way it's easier to guarantee
5522  * that we don't cross page table boundaries.
5523  */
do_fault_around(struct vm_fault * vmf)5524 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5525 {
5526 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5527 	pgoff_t pte_off = pte_index(vmf->address);
5528 	/* The page offset of vmf->address within the VMA. */
5529 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5530 	pgoff_t from_pte, to_pte;
5531 	vm_fault_t ret;
5532 
5533 	/* The PTE offset of the start address, clamped to the VMA. */
5534 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5535 		       pte_off - min(pte_off, vma_off));
5536 
5537 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5538 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5539 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5540 
5541 	if (pmd_none(*vmf->pmd)) {
5542 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5543 		if (!vmf->prealloc_pte)
5544 			return VM_FAULT_OOM;
5545 	}
5546 
5547 	rcu_read_lock();
5548 	ret = vmf->vma->vm_ops->map_pages(vmf,
5549 			vmf->pgoff + from_pte - pte_off,
5550 			vmf->pgoff + to_pte - pte_off);
5551 	rcu_read_unlock();
5552 
5553 	return ret;
5554 }
5555 
5556 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5557 static inline bool should_fault_around(struct vm_fault *vmf)
5558 {
5559 	/* No ->map_pages?  No way to fault around... */
5560 	if (!vmf->vma->vm_ops->map_pages)
5561 		return false;
5562 
5563 	if (uffd_disable_fault_around(vmf->vma))
5564 		return false;
5565 
5566 	/* A single page implies no faulting 'around' at all. */
5567 	return fault_around_pages > 1;
5568 }
5569 
do_read_fault(struct vm_fault * vmf)5570 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5571 {
5572 	vm_fault_t ret = 0;
5573 	struct folio *folio;
5574 
5575 	/*
5576 	 * Let's call ->map_pages() first and use ->fault() as fallback
5577 	 * if page by the offset is not ready to be mapped (cold cache or
5578 	 * something).
5579 	 */
5580 	if (should_fault_around(vmf)) {
5581 		ret = do_fault_around(vmf);
5582 		if (ret)
5583 			return ret;
5584 	}
5585 
5586 	ret = vmf_can_call_fault(vmf);
5587 	if (ret)
5588 		return ret;
5589 
5590 	ret = __do_fault(vmf);
5591 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5592 		return ret;
5593 
5594 	ret |= finish_fault(vmf);
5595 	folio = page_folio(vmf->page);
5596 	folio_unlock(folio);
5597 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5598 		folio_put(folio);
5599 	return ret;
5600 }
5601 
do_cow_fault(struct vm_fault * vmf)5602 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5603 {
5604 	struct vm_area_struct *vma = vmf->vma;
5605 	struct folio *folio;
5606 	vm_fault_t ret;
5607 
5608 	ret = vmf_can_call_fault(vmf);
5609 	if (!ret)
5610 		ret = vmf_anon_prepare(vmf);
5611 	if (ret)
5612 		return ret;
5613 
5614 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5615 	if (!folio)
5616 		return VM_FAULT_OOM;
5617 
5618 	vmf->cow_page = &folio->page;
5619 
5620 	ret = __do_fault(vmf);
5621 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5622 		goto uncharge_out;
5623 	if (ret & VM_FAULT_DONE_COW)
5624 		return ret;
5625 
5626 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5627 		ret = VM_FAULT_HWPOISON;
5628 		goto unlock;
5629 	}
5630 	__folio_mark_uptodate(folio);
5631 
5632 	ret |= finish_fault(vmf);
5633 unlock:
5634 	unlock_page(vmf->page);
5635 	put_page(vmf->page);
5636 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5637 		goto uncharge_out;
5638 	return ret;
5639 uncharge_out:
5640 	folio_put(folio);
5641 	return ret;
5642 }
5643 
do_shared_fault(struct vm_fault * vmf)5644 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5645 {
5646 	struct vm_area_struct *vma = vmf->vma;
5647 	vm_fault_t ret, tmp;
5648 	struct folio *folio;
5649 
5650 	ret = vmf_can_call_fault(vmf);
5651 	if (ret)
5652 		return ret;
5653 
5654 	ret = __do_fault(vmf);
5655 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5656 		return ret;
5657 
5658 	folio = page_folio(vmf->page);
5659 
5660 	/*
5661 	 * Check if the backing address space wants to know that the page is
5662 	 * about to become writable
5663 	 */
5664 	if (vma->vm_ops->page_mkwrite) {
5665 		folio_unlock(folio);
5666 		tmp = do_page_mkwrite(vmf, folio);
5667 		if (unlikely(!tmp ||
5668 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5669 			folio_put(folio);
5670 			return tmp;
5671 		}
5672 	}
5673 
5674 	ret |= finish_fault(vmf);
5675 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5676 					VM_FAULT_RETRY))) {
5677 		folio_unlock(folio);
5678 		folio_put(folio);
5679 		return ret;
5680 	}
5681 
5682 	ret |= fault_dirty_shared_page(vmf);
5683 	return ret;
5684 }
5685 
5686 /*
5687  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5688  * but allow concurrent faults).
5689  * The mmap_lock may have been released depending on flags and our
5690  * return value.  See filemap_fault() and __folio_lock_or_retry().
5691  * If mmap_lock is released, vma may become invalid (for example
5692  * by other thread calling munmap()).
5693  */
do_fault(struct vm_fault * vmf)5694 static vm_fault_t do_fault(struct vm_fault *vmf)
5695 {
5696 	struct vm_area_struct *vma = vmf->vma;
5697 	struct mm_struct *vm_mm = vma->vm_mm;
5698 	vm_fault_t ret;
5699 
5700 	/*
5701 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5702 	 */
5703 	if (!vma->vm_ops->fault) {
5704 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5705 					       vmf->address, &vmf->ptl);
5706 		if (unlikely(!vmf->pte))
5707 			ret = VM_FAULT_SIGBUS;
5708 		else {
5709 			/*
5710 			 * Make sure this is not a temporary clearing of pte
5711 			 * by holding ptl and checking again. A R/M/W update
5712 			 * of pte involves: take ptl, clearing the pte so that
5713 			 * we don't have concurrent modification by hardware
5714 			 * followed by an update.
5715 			 */
5716 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5717 				ret = VM_FAULT_SIGBUS;
5718 			else
5719 				ret = VM_FAULT_NOPAGE;
5720 
5721 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5722 		}
5723 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5724 		ret = do_read_fault(vmf);
5725 	else if (!(vma->vm_flags & VM_SHARED))
5726 		ret = do_cow_fault(vmf);
5727 	else
5728 		ret = do_shared_fault(vmf);
5729 
5730 	/* preallocated pagetable is unused: free it */
5731 	if (vmf->prealloc_pte) {
5732 		pte_free(vm_mm, vmf->prealloc_pte);
5733 		vmf->prealloc_pte = NULL;
5734 	}
5735 	return ret;
5736 }
5737 
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5738 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5739 		      unsigned long addr, int *flags,
5740 		      bool writable, int *last_cpupid)
5741 {
5742 	struct vm_area_struct *vma = vmf->vma;
5743 
5744 	/*
5745 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5746 	 * much anyway since they can be in shared cache state. This misses
5747 	 * the case where a mapping is writable but the process never writes
5748 	 * to it but pte_write gets cleared during protection updates and
5749 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5750 	 * background writeback, dirty balancing and application behaviour.
5751 	 */
5752 	if (!writable)
5753 		*flags |= TNF_NO_GROUP;
5754 
5755 	/*
5756 	 * Flag if the folio is shared between multiple address spaces. This
5757 	 * is later used when determining whether to group tasks together
5758 	 */
5759 	if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5760 		*flags |= TNF_SHARED;
5761 	/*
5762 	 * For memory tiering mode, cpupid of slow memory page is used
5763 	 * to record page access time.  So use default value.
5764 	 */
5765 	if (folio_use_access_time(folio))
5766 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5767 	else
5768 		*last_cpupid = folio_last_cpupid(folio);
5769 
5770 	/* Record the current PID acceesing VMA */
5771 	vma_set_access_pid_bit(vma);
5772 
5773 	count_vm_numa_event(NUMA_HINT_FAULTS);
5774 #ifdef CONFIG_NUMA_BALANCING
5775 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5776 #endif
5777 	if (folio_nid(folio) == numa_node_id()) {
5778 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5779 		*flags |= TNF_FAULT_LOCAL;
5780 	}
5781 
5782 	return mpol_misplaced(folio, vmf, addr);
5783 }
5784 
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5785 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5786 					unsigned long fault_addr, pte_t *fault_pte,
5787 					bool writable)
5788 {
5789 	pte_t pte, old_pte;
5790 
5791 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5792 	pte = pte_modify(old_pte, vma->vm_page_prot);
5793 	pte = pte_mkyoung(pte);
5794 	if (writable)
5795 		pte = pte_mkwrite(pte, vma);
5796 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5797 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5798 }
5799 
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)5800 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5801 				       struct folio *folio, pte_t fault_pte,
5802 				       bool ignore_writable, bool pte_write_upgrade)
5803 {
5804 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5805 	unsigned long start, end, addr = vmf->address;
5806 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5807 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5808 	pte_t *start_ptep;
5809 
5810 	/* Stay within the VMA and within the page table. */
5811 	start = max3(addr_start, pt_start, vma->vm_start);
5812 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5813 		   vma->vm_end);
5814 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5815 
5816 	/* Restore all PTEs' mapping of the large folio */
5817 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5818 		pte_t ptent = ptep_get(start_ptep);
5819 		bool writable = false;
5820 
5821 		if (!pte_present(ptent) || !pte_protnone(ptent))
5822 			continue;
5823 
5824 		if (pfn_folio(pte_pfn(ptent)) != folio)
5825 			continue;
5826 
5827 		if (!ignore_writable) {
5828 			ptent = pte_modify(ptent, vma->vm_page_prot);
5829 			writable = pte_write(ptent);
5830 			if (!writable && pte_write_upgrade &&
5831 			    can_change_pte_writable(vma, addr, ptent))
5832 				writable = true;
5833 		}
5834 
5835 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5836 	}
5837 }
5838 
do_numa_page(struct vm_fault * vmf)5839 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5840 {
5841 	struct vm_area_struct *vma = vmf->vma;
5842 	struct folio *folio = NULL;
5843 	int nid = NUMA_NO_NODE;
5844 	bool writable = false, ignore_writable = false;
5845 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5846 	int last_cpupid;
5847 	int target_nid;
5848 	pte_t pte, old_pte;
5849 	int flags = 0, nr_pages;
5850 
5851 	/*
5852 	 * The pte cannot be used safely until we verify, while holding the page
5853 	 * table lock, that its contents have not changed during fault handling.
5854 	 */
5855 	spin_lock(vmf->ptl);
5856 	/* Read the live PTE from the page tables: */
5857 	old_pte = ptep_get(vmf->pte);
5858 
5859 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5860 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5861 		return 0;
5862 	}
5863 
5864 	pte = pte_modify(old_pte, vma->vm_page_prot);
5865 
5866 	/*
5867 	 * Detect now whether the PTE could be writable; this information
5868 	 * is only valid while holding the PT lock.
5869 	 */
5870 	writable = pte_write(pte);
5871 	if (!writable && pte_write_upgrade &&
5872 	    can_change_pte_writable(vma, vmf->address, pte))
5873 		writable = true;
5874 
5875 	folio = vm_normal_folio(vma, vmf->address, pte);
5876 	if (!folio || folio_is_zone_device(folio))
5877 		goto out_map;
5878 
5879 	nid = folio_nid(folio);
5880 	nr_pages = folio_nr_pages(folio);
5881 
5882 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5883 					writable, &last_cpupid);
5884 	if (target_nid == NUMA_NO_NODE)
5885 		goto out_map;
5886 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5887 		flags |= TNF_MIGRATE_FAIL;
5888 		goto out_map;
5889 	}
5890 	/* The folio is isolated and isolation code holds a folio reference. */
5891 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5892 	writable = false;
5893 	ignore_writable = true;
5894 
5895 	/* Migrate to the requested node */
5896 	if (!migrate_misplaced_folio(folio, target_nid)) {
5897 		nid = target_nid;
5898 		flags |= TNF_MIGRATED;
5899 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5900 		return 0;
5901 	}
5902 
5903 	flags |= TNF_MIGRATE_FAIL;
5904 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5905 				       vmf->address, &vmf->ptl);
5906 	if (unlikely(!vmf->pte))
5907 		return 0;
5908 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5909 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5910 		return 0;
5911 	}
5912 out_map:
5913 	/*
5914 	 * Make it present again, depending on how arch implements
5915 	 * non-accessible ptes, some can allow access by kernel mode.
5916 	 */
5917 	if (folio && folio_test_large(folio))
5918 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5919 					   pte_write_upgrade);
5920 	else
5921 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5922 					    writable);
5923 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5924 
5925 	if (nid != NUMA_NO_NODE)
5926 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5927 	return 0;
5928 }
5929 
create_huge_pmd(struct vm_fault * vmf)5930 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5931 {
5932 	struct vm_area_struct *vma = vmf->vma;
5933 	if (vma_is_anonymous(vma))
5934 		return do_huge_pmd_anonymous_page(vmf);
5935 	if (vma->vm_ops->huge_fault)
5936 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5937 	return VM_FAULT_FALLBACK;
5938 }
5939 
5940 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)5941 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5942 {
5943 	struct vm_area_struct *vma = vmf->vma;
5944 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5945 	vm_fault_t ret;
5946 
5947 	if (vma_is_anonymous(vma)) {
5948 		if (likely(!unshare) &&
5949 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5950 			if (userfaultfd_wp_async(vmf->vma))
5951 				goto split;
5952 			return handle_userfault(vmf, VM_UFFD_WP);
5953 		}
5954 		return do_huge_pmd_wp_page(vmf);
5955 	}
5956 
5957 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5958 		if (vma->vm_ops->huge_fault) {
5959 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5960 			if (!(ret & VM_FAULT_FALLBACK))
5961 				return ret;
5962 		}
5963 	}
5964 
5965 split:
5966 	/* COW or write-notify handled on pte level: split pmd. */
5967 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false);
5968 
5969 	return VM_FAULT_FALLBACK;
5970 }
5971 
create_huge_pud(struct vm_fault * vmf)5972 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5973 {
5974 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5975 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5976 	struct vm_area_struct *vma = vmf->vma;
5977 	/* No support for anonymous transparent PUD pages yet */
5978 	if (vma_is_anonymous(vma))
5979 		return VM_FAULT_FALLBACK;
5980 	if (vma->vm_ops->huge_fault)
5981 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5982 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5983 	return VM_FAULT_FALLBACK;
5984 }
5985 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)5986 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5987 {
5988 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5989 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5990 	struct vm_area_struct *vma = vmf->vma;
5991 	vm_fault_t ret;
5992 
5993 	/* No support for anonymous transparent PUD pages yet */
5994 	if (vma_is_anonymous(vma))
5995 		goto split;
5996 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5997 		if (vma->vm_ops->huge_fault) {
5998 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5999 			if (!(ret & VM_FAULT_FALLBACK))
6000 				return ret;
6001 		}
6002 	}
6003 split:
6004 	/* COW or write-notify not handled on PUD level: split pud.*/
6005 	__split_huge_pud(vma, vmf->pud, vmf->address);
6006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
6007 	return VM_FAULT_FALLBACK;
6008 }
6009 
6010 /*
6011  * These routines also need to handle stuff like marking pages dirty
6012  * and/or accessed for architectures that don't do it in hardware (most
6013  * RISC architectures).  The early dirtying is also good on the i386.
6014  *
6015  * There is also a hook called "update_mmu_cache()" that architectures
6016  * with external mmu caches can use to update those (ie the Sparc or
6017  * PowerPC hashed page tables that act as extended TLBs).
6018  *
6019  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
6020  * concurrent faults).
6021  *
6022  * The mmap_lock may have been released depending on flags and our return value.
6023  * See filemap_fault() and __folio_lock_or_retry().
6024  */
handle_pte_fault(struct vm_fault * vmf)6025 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
6026 {
6027 	pte_t entry;
6028 
6029 	if (unlikely(pmd_none(*vmf->pmd))) {
6030 		/*
6031 		 * Leave __pte_alloc() until later: because vm_ops->fault may
6032 		 * want to allocate huge page, and if we expose page table
6033 		 * for an instant, it will be difficult to retract from
6034 		 * concurrent faults and from rmap lookups.
6035 		 */
6036 		vmf->pte = NULL;
6037 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
6038 	} else {
6039 		pmd_t dummy_pmdval;
6040 
6041 		/*
6042 		 * A regular pmd is established and it can't morph into a huge
6043 		 * pmd by anon khugepaged, since that takes mmap_lock in write
6044 		 * mode; but shmem or file collapse to THP could still morph
6045 		 * it into a huge pmd: just retry later if so.
6046 		 *
6047 		 * Use the maywrite version to indicate that vmf->pte may be
6048 		 * modified, but since we will use pte_same() to detect the
6049 		 * change of the !pte_none() entry, there is no need to recheck
6050 		 * the pmdval. Here we chooes to pass a dummy variable instead
6051 		 * of NULL, which helps new user think about why this place is
6052 		 * special.
6053 		 */
6054 		vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
6055 						    vmf->address, &dummy_pmdval,
6056 						    &vmf->ptl);
6057 		if (unlikely(!vmf->pte))
6058 			return 0;
6059 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
6060 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
6061 
6062 		if (pte_none(vmf->orig_pte)) {
6063 			pte_unmap(vmf->pte);
6064 			vmf->pte = NULL;
6065 		}
6066 	}
6067 
6068 	if (!vmf->pte)
6069 		return do_pte_missing(vmf);
6070 
6071 	if (!pte_present(vmf->orig_pte))
6072 		return do_swap_page(vmf);
6073 
6074 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
6075 		return do_numa_page(vmf);
6076 
6077 	spin_lock(vmf->ptl);
6078 	entry = vmf->orig_pte;
6079 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
6080 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
6081 		goto unlock;
6082 	}
6083 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6084 		if (!pte_write(entry))
6085 			return do_wp_page(vmf);
6086 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
6087 			entry = pte_mkdirty(entry);
6088 	}
6089 	entry = pte_mkyoung(entry);
6090 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
6091 				vmf->flags & FAULT_FLAG_WRITE)) {
6092 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
6093 				vmf->pte, 1);
6094 	} else {
6095 		/* Skip spurious TLB flush for retried page fault */
6096 		if (vmf->flags & FAULT_FLAG_TRIED)
6097 			goto unlock;
6098 		/*
6099 		 * This is needed only for protection faults but the arch code
6100 		 * is not yet telling us if this is a protection fault or not.
6101 		 * This still avoids useless tlb flushes for .text page faults
6102 		 * with threads.
6103 		 */
6104 		if (vmf->flags & FAULT_FLAG_WRITE)
6105 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
6106 						     vmf->pte);
6107 	}
6108 unlock:
6109 	pte_unmap_unlock(vmf->pte, vmf->ptl);
6110 	return 0;
6111 }
6112 
6113 /*
6114  * On entry, we hold either the VMA lock or the mmap_lock
6115  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
6116  * the result, the mmap_lock is not held on exit.  See filemap_fault()
6117  * and __folio_lock_or_retry().
6118  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)6119 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
6120 		unsigned long address, unsigned int flags)
6121 {
6122 	struct vm_fault vmf = {
6123 		.vma = vma,
6124 		.address = address & PAGE_MASK,
6125 		.real_address = address,
6126 		.flags = flags,
6127 		.pgoff = linear_page_index(vma, address),
6128 		.gfp_mask = __get_fault_gfp_mask(vma),
6129 	};
6130 	struct mm_struct *mm = vma->vm_mm;
6131 	unsigned long vm_flags = vma->vm_flags;
6132 	pgd_t *pgd;
6133 	p4d_t *p4d;
6134 	vm_fault_t ret;
6135 
6136 	pgd = pgd_offset(mm, address);
6137 	p4d = p4d_alloc(mm, pgd, address);
6138 	if (!p4d)
6139 		return VM_FAULT_OOM;
6140 
6141 	vmf.pud = pud_alloc(mm, p4d, address);
6142 	if (!vmf.pud)
6143 		return VM_FAULT_OOM;
6144 retry_pud:
6145 	if (pud_none(*vmf.pud) &&
6146 	    thp_vma_allowable_order(vma, vm_flags,
6147 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
6148 		ret = create_huge_pud(&vmf);
6149 		if (!(ret & VM_FAULT_FALLBACK))
6150 			return ret;
6151 	} else {
6152 		pud_t orig_pud = *vmf.pud;
6153 
6154 		barrier();
6155 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
6156 
6157 			/*
6158 			 * TODO once we support anonymous PUDs: NUMA case and
6159 			 * FAULT_FLAG_UNSHARE handling.
6160 			 */
6161 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
6162 				ret = wp_huge_pud(&vmf, orig_pud);
6163 				if (!(ret & VM_FAULT_FALLBACK))
6164 					return ret;
6165 			} else {
6166 				huge_pud_set_accessed(&vmf, orig_pud);
6167 				return 0;
6168 			}
6169 		}
6170 	}
6171 
6172 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
6173 	if (!vmf.pmd)
6174 		return VM_FAULT_OOM;
6175 
6176 	/* Huge pud page fault raced with pmd_alloc? */
6177 	if (pud_trans_unstable(vmf.pud))
6178 		goto retry_pud;
6179 
6180 	if (pmd_none(*vmf.pmd) &&
6181 	    thp_vma_allowable_order(vma, vm_flags,
6182 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
6183 		ret = create_huge_pmd(&vmf);
6184 		if (!(ret & VM_FAULT_FALLBACK))
6185 			return ret;
6186 	} else {
6187 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6188 
6189 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
6190 			VM_BUG_ON(thp_migration_supported() &&
6191 					  !is_pmd_migration_entry(vmf.orig_pmd));
6192 			if (is_pmd_migration_entry(vmf.orig_pmd))
6193 				pmd_migration_entry_wait(mm, vmf.pmd);
6194 			return 0;
6195 		}
6196 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
6197 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6198 				return do_huge_pmd_numa_page(&vmf);
6199 
6200 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6201 			    !pmd_write(vmf.orig_pmd)) {
6202 				ret = wp_huge_pmd(&vmf);
6203 				if (!(ret & VM_FAULT_FALLBACK))
6204 					return ret;
6205 			} else {
6206 				huge_pmd_set_accessed(&vmf);
6207 				return 0;
6208 			}
6209 		}
6210 	}
6211 
6212 	return handle_pte_fault(&vmf);
6213 }
6214 
6215 /**
6216  * mm_account_fault - Do page fault accounting
6217  * @mm: mm from which memcg should be extracted. It can be NULL.
6218  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
6219  *        of perf event counters, but we'll still do the per-task accounting to
6220  *        the task who triggered this page fault.
6221  * @address: the faulted address.
6222  * @flags: the fault flags.
6223  * @ret: the fault retcode.
6224  *
6225  * This will take care of most of the page fault accounting.  Meanwhile, it
6226  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6227  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6228  * still be in per-arch page fault handlers at the entry of page fault.
6229  */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)6230 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6231 				    unsigned long address, unsigned int flags,
6232 				    vm_fault_t ret)
6233 {
6234 	bool major;
6235 
6236 	/* Incomplete faults will be accounted upon completion. */
6237 	if (ret & VM_FAULT_RETRY)
6238 		return;
6239 
6240 	/*
6241 	 * To preserve the behavior of older kernels, PGFAULT counters record
6242 	 * both successful and failed faults, as opposed to perf counters,
6243 	 * which ignore failed cases.
6244 	 */
6245 	count_vm_event(PGFAULT);
6246 	count_memcg_event_mm(mm, PGFAULT);
6247 
6248 	/*
6249 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
6250 	 * valid).  That includes arch_vma_access_permitted() failing before
6251 	 * reaching here. So this is not a "this many hardware page faults"
6252 	 * counter.  We should use the hw profiling for that.
6253 	 */
6254 	if (ret & VM_FAULT_ERROR)
6255 		return;
6256 
6257 	/*
6258 	 * We define the fault as a major fault when the final successful fault
6259 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6260 	 * handle it immediately previously).
6261 	 */
6262 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6263 
6264 	if (major)
6265 		current->maj_flt++;
6266 	else
6267 		current->min_flt++;
6268 
6269 	/*
6270 	 * If the fault is done for GUP, regs will be NULL.  We only do the
6271 	 * accounting for the per thread fault counters who triggered the
6272 	 * fault, and we skip the perf event updates.
6273 	 */
6274 	if (!regs)
6275 		return;
6276 
6277 	if (major)
6278 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6279 	else
6280 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6281 }
6282 
6283 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)6284 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6285 {
6286 	/* the LRU algorithm only applies to accesses with recency */
6287 	current->in_lru_fault = vma_has_recency(vma);
6288 }
6289 
lru_gen_exit_fault(void)6290 static void lru_gen_exit_fault(void)
6291 {
6292 	current->in_lru_fault = false;
6293 }
6294 #else
lru_gen_enter_fault(struct vm_area_struct * vma)6295 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6296 {
6297 }
6298 
lru_gen_exit_fault(void)6299 static void lru_gen_exit_fault(void)
6300 {
6301 }
6302 #endif /* CONFIG_LRU_GEN */
6303 
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6304 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6305 				       unsigned int *flags)
6306 {
6307 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6308 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6309 			return VM_FAULT_SIGSEGV;
6310 		/*
6311 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6312 		 * just treat it like an ordinary read-fault otherwise.
6313 		 */
6314 		if (!is_cow_mapping(vma->vm_flags))
6315 			*flags &= ~FAULT_FLAG_UNSHARE;
6316 	} else if (*flags & FAULT_FLAG_WRITE) {
6317 		/* Write faults on read-only mappings are impossible ... */
6318 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6319 			return VM_FAULT_SIGSEGV;
6320 		/* ... and FOLL_FORCE only applies to COW mappings. */
6321 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6322 				 !is_cow_mapping(vma->vm_flags)))
6323 			return VM_FAULT_SIGSEGV;
6324 	}
6325 #ifdef CONFIG_PER_VMA_LOCK
6326 	/*
6327 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6328 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6329 	 */
6330 	if (WARN_ON_ONCE((*flags &
6331 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6332 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6333 		return VM_FAULT_SIGSEGV;
6334 #endif
6335 
6336 	return 0;
6337 }
6338 
6339 /*
6340  * By the time we get here, we already hold either the VMA lock or the
6341  * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6342  *
6343  * The mmap_lock may have been released depending on flags and our
6344  * return value.  See filemap_fault() and __folio_lock_or_retry().
6345  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6346 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6347 			   unsigned int flags, struct pt_regs *regs)
6348 {
6349 	/* If the fault handler drops the mmap_lock, vma may be freed */
6350 	struct mm_struct *mm = vma->vm_mm;
6351 	vm_fault_t ret;
6352 	bool is_droppable;
6353 
6354 	__set_current_state(TASK_RUNNING);
6355 
6356 	ret = sanitize_fault_flags(vma, &flags);
6357 	if (ret)
6358 		goto out;
6359 
6360 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6361 					    flags & FAULT_FLAG_INSTRUCTION,
6362 					    flags & FAULT_FLAG_REMOTE)) {
6363 		ret = VM_FAULT_SIGSEGV;
6364 		goto out;
6365 	}
6366 
6367 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6368 
6369 	/*
6370 	 * Enable the memcg OOM handling for faults triggered in user
6371 	 * space.  Kernel faults are handled more gracefully.
6372 	 */
6373 	if (flags & FAULT_FLAG_USER)
6374 		mem_cgroup_enter_user_fault();
6375 
6376 	lru_gen_enter_fault(vma);
6377 
6378 	if (unlikely(is_vm_hugetlb_page(vma)))
6379 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6380 	else
6381 		ret = __handle_mm_fault(vma, address, flags);
6382 
6383 	/*
6384 	 * Warning: It is no longer safe to dereference vma-> after this point,
6385 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6386 	 * vma might be destroyed from underneath us.
6387 	 */
6388 
6389 	lru_gen_exit_fault();
6390 
6391 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6392 	if (is_droppable)
6393 		ret &= ~VM_FAULT_OOM;
6394 
6395 	if (flags & FAULT_FLAG_USER) {
6396 		mem_cgroup_exit_user_fault();
6397 		/*
6398 		 * The task may have entered a memcg OOM situation but
6399 		 * if the allocation error was handled gracefully (no
6400 		 * VM_FAULT_OOM), there is no need to kill anything.
6401 		 * Just clean up the OOM state peacefully.
6402 		 */
6403 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6404 			mem_cgroup_oom_synchronize(false);
6405 	}
6406 out:
6407 	mm_account_fault(mm, regs, address, flags, ret);
6408 
6409 	return ret;
6410 }
6411 EXPORT_SYMBOL_GPL(handle_mm_fault);
6412 
6413 #ifndef __PAGETABLE_P4D_FOLDED
6414 /*
6415  * Allocate p4d page table.
6416  * We've already handled the fast-path in-line.
6417  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6418 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6419 {
6420 	p4d_t *new = p4d_alloc_one(mm, address);
6421 	if (!new)
6422 		return -ENOMEM;
6423 
6424 	spin_lock(&mm->page_table_lock);
6425 	if (pgd_present(*pgd)) {	/* Another has populated it */
6426 		p4d_free(mm, new);
6427 	} else {
6428 		smp_wmb(); /* See comment in pmd_install() */
6429 		pgd_populate(mm, pgd, new);
6430 	}
6431 	spin_unlock(&mm->page_table_lock);
6432 	return 0;
6433 }
6434 #endif /* __PAGETABLE_P4D_FOLDED */
6435 
6436 #ifndef __PAGETABLE_PUD_FOLDED
6437 /*
6438  * Allocate page upper directory.
6439  * We've already handled the fast-path in-line.
6440  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6441 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6442 {
6443 	pud_t *new = pud_alloc_one(mm, address);
6444 	if (!new)
6445 		return -ENOMEM;
6446 
6447 	spin_lock(&mm->page_table_lock);
6448 	if (!p4d_present(*p4d)) {
6449 		mm_inc_nr_puds(mm);
6450 		smp_wmb(); /* See comment in pmd_install() */
6451 		p4d_populate(mm, p4d, new);
6452 	} else	/* Another has populated it */
6453 		pud_free(mm, new);
6454 	spin_unlock(&mm->page_table_lock);
6455 	return 0;
6456 }
6457 #endif /* __PAGETABLE_PUD_FOLDED */
6458 
6459 #ifndef __PAGETABLE_PMD_FOLDED
6460 /*
6461  * Allocate page middle directory.
6462  * We've already handled the fast-path in-line.
6463  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6464 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6465 {
6466 	spinlock_t *ptl;
6467 	pmd_t *new = pmd_alloc_one(mm, address);
6468 	if (!new)
6469 		return -ENOMEM;
6470 
6471 	ptl = pud_lock(mm, pud);
6472 	if (!pud_present(*pud)) {
6473 		mm_inc_nr_pmds(mm);
6474 		smp_wmb(); /* See comment in pmd_install() */
6475 		pud_populate(mm, pud, new);
6476 	} else {	/* Another has populated it */
6477 		pmd_free(mm, new);
6478 	}
6479 	spin_unlock(ptl);
6480 	return 0;
6481 }
6482 #endif /* __PAGETABLE_PMD_FOLDED */
6483 
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6484 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6485 				     spinlock_t *lock, pte_t *ptep,
6486 				     pgprot_t pgprot, unsigned long pfn_base,
6487 				     unsigned long addr_mask, bool writable,
6488 				     bool special)
6489 {
6490 	args->lock = lock;
6491 	args->ptep = ptep;
6492 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6493 	args->addr_mask = addr_mask;
6494 	args->pgprot = pgprot;
6495 	args->writable = writable;
6496 	args->special = special;
6497 }
6498 
pfnmap_lockdep_assert(struct vm_area_struct * vma)6499 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6500 {
6501 #ifdef CONFIG_LOCKDEP
6502 	struct file *file = vma->vm_file;
6503 	struct address_space *mapping = file ? file->f_mapping : NULL;
6504 
6505 	if (mapping)
6506 		lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6507 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6508 	else
6509 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6510 #endif
6511 }
6512 
6513 /**
6514  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6515  * @args: Pointer to struct @follow_pfnmap_args
6516  *
6517  * The caller needs to setup args->vma and args->address to point to the
6518  * virtual address as the target of such lookup.  On a successful return,
6519  * the results will be put into other output fields.
6520  *
6521  * After the caller finished using the fields, the caller must invoke
6522  * another follow_pfnmap_end() to proper releases the locks and resources
6523  * of such look up request.
6524  *
6525  * During the start() and end() calls, the results in @args will be valid
6526  * as proper locks will be held.  After the end() is called, all the fields
6527  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6528  * use of such information after end() may require proper synchronizations
6529  * by the caller with page table updates, otherwise it can create a
6530  * security bug.
6531  *
6532  * If the PTE maps a refcounted page, callers are responsible to protect
6533  * against invalidation with MMU notifiers; otherwise access to the PFN at
6534  * a later point in time can trigger use-after-free.
6535  *
6536  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6537  * should be taken for read, and the mmap semaphore cannot be released
6538  * before the end() is invoked.
6539  *
6540  * This function must not be used to modify PTE content.
6541  *
6542  * Return: zero on success, negative otherwise.
6543  */
follow_pfnmap_start(struct follow_pfnmap_args * args)6544 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6545 {
6546 	struct vm_area_struct *vma = args->vma;
6547 	unsigned long address = args->address;
6548 	struct mm_struct *mm = vma->vm_mm;
6549 	spinlock_t *lock;
6550 	pgd_t *pgdp;
6551 	p4d_t *p4dp, p4d;
6552 	pud_t *pudp, pud;
6553 	pmd_t *pmdp, pmd;
6554 	pte_t *ptep, pte;
6555 
6556 	pfnmap_lockdep_assert(vma);
6557 
6558 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6559 		goto out;
6560 
6561 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6562 		goto out;
6563 retry:
6564 	pgdp = pgd_offset(mm, address);
6565 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6566 		goto out;
6567 
6568 	p4dp = p4d_offset(pgdp, address);
6569 	p4d = READ_ONCE(*p4dp);
6570 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6571 		goto out;
6572 
6573 	pudp = pud_offset(p4dp, address);
6574 	pud = READ_ONCE(*pudp);
6575 	if (pud_none(pud))
6576 		goto out;
6577 	if (pud_leaf(pud)) {
6578 		lock = pud_lock(mm, pudp);
6579 		if (!unlikely(pud_leaf(pud))) {
6580 			spin_unlock(lock);
6581 			goto retry;
6582 		}
6583 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6584 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6585 				  pud_special(pud));
6586 		return 0;
6587 	}
6588 
6589 	pmdp = pmd_offset(pudp, address);
6590 	pmd = pmdp_get_lockless(pmdp);
6591 	if (pmd_leaf(pmd)) {
6592 		lock = pmd_lock(mm, pmdp);
6593 		if (!unlikely(pmd_leaf(pmd))) {
6594 			spin_unlock(lock);
6595 			goto retry;
6596 		}
6597 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6598 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6599 				  pmd_special(pmd));
6600 		return 0;
6601 	}
6602 
6603 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6604 	if (!ptep)
6605 		goto out;
6606 	pte = ptep_get(ptep);
6607 	if (!pte_present(pte))
6608 		goto unlock;
6609 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6610 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6611 			  pte_special(pte));
6612 	return 0;
6613 unlock:
6614 	pte_unmap_unlock(ptep, lock);
6615 out:
6616 	return -EINVAL;
6617 }
6618 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6619 
6620 /**
6621  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6622  * @args: Pointer to struct @follow_pfnmap_args
6623  *
6624  * Must be used in pair of follow_pfnmap_start().  See the start() function
6625  * above for more information.
6626  */
follow_pfnmap_end(struct follow_pfnmap_args * args)6627 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6628 {
6629 	if (args->lock)
6630 		spin_unlock(args->lock);
6631 	if (args->ptep)
6632 		pte_unmap(args->ptep);
6633 }
6634 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6635 
6636 #ifdef CONFIG_HAVE_IOREMAP_PROT
6637 /**
6638  * generic_access_phys - generic implementation for iomem mmap access
6639  * @vma: the vma to access
6640  * @addr: userspace address, not relative offset within @vma
6641  * @buf: buffer to read/write
6642  * @len: length of transfer
6643  * @write: set to FOLL_WRITE when writing, otherwise reading
6644  *
6645  * This is a generic implementation for &vm_operations_struct.access for an
6646  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6647  * not page based.
6648  */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6649 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6650 			void *buf, int len, int write)
6651 {
6652 	resource_size_t phys_addr;
6653 	pgprot_t prot = __pgprot(0);
6654 	void __iomem *maddr;
6655 	int offset = offset_in_page(addr);
6656 	int ret = -EINVAL;
6657 	bool writable;
6658 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6659 
6660 retry:
6661 	if (follow_pfnmap_start(&args))
6662 		return -EINVAL;
6663 	prot = args.pgprot;
6664 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6665 	writable = args.writable;
6666 	follow_pfnmap_end(&args);
6667 
6668 	if ((write & FOLL_WRITE) && !writable)
6669 		return -EINVAL;
6670 
6671 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6672 	if (!maddr)
6673 		return -ENOMEM;
6674 
6675 	if (follow_pfnmap_start(&args))
6676 		goto out_unmap;
6677 
6678 	if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
6679 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6680 	    (writable != args.writable)) {
6681 		follow_pfnmap_end(&args);
6682 		iounmap(maddr);
6683 		goto retry;
6684 	}
6685 
6686 	if (write)
6687 		memcpy_toio(maddr + offset, buf, len);
6688 	else
6689 		memcpy_fromio(buf, maddr + offset, len);
6690 	ret = len;
6691 	follow_pfnmap_end(&args);
6692 out_unmap:
6693 	iounmap(maddr);
6694 
6695 	return ret;
6696 }
6697 EXPORT_SYMBOL_GPL(generic_access_phys);
6698 #endif
6699 
6700 /*
6701  * Access another process' address space as given in mm.
6702  */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6703 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6704 			      void *buf, int len, unsigned int gup_flags)
6705 {
6706 	void *old_buf = buf;
6707 	int write = gup_flags & FOLL_WRITE;
6708 
6709 	if (mmap_read_lock_killable(mm))
6710 		return 0;
6711 
6712 	/* Untag the address before looking up the VMA */
6713 	addr = untagged_addr_remote(mm, addr);
6714 
6715 	/* Avoid triggering the temporary warning in __get_user_pages */
6716 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6717 		return 0;
6718 
6719 	/* ignore errors, just check how much was successfully transferred */
6720 	while (len) {
6721 		int bytes, offset;
6722 		void *maddr;
6723 		struct vm_area_struct *vma = NULL;
6724 		struct page *page = get_user_page_vma_remote(mm, addr,
6725 							     gup_flags, &vma);
6726 
6727 		if (IS_ERR(page)) {
6728 			/* We might need to expand the stack to access it */
6729 			vma = vma_lookup(mm, addr);
6730 			if (!vma) {
6731 				vma = expand_stack(mm, addr);
6732 
6733 				/* mmap_lock was dropped on failure */
6734 				if (!vma)
6735 					return buf - old_buf;
6736 
6737 				/* Try again if stack expansion worked */
6738 				continue;
6739 			}
6740 
6741 			/*
6742 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6743 			 * we can access using slightly different code.
6744 			 */
6745 			bytes = 0;
6746 #ifdef CONFIG_HAVE_IOREMAP_PROT
6747 			if (vma->vm_ops && vma->vm_ops->access)
6748 				bytes = vma->vm_ops->access(vma, addr, buf,
6749 							    len, write);
6750 #endif
6751 			if (bytes <= 0)
6752 				break;
6753 		} else {
6754 			bytes = len;
6755 			offset = addr & (PAGE_SIZE-1);
6756 			if (bytes > PAGE_SIZE-offset)
6757 				bytes = PAGE_SIZE-offset;
6758 
6759 			maddr = kmap_local_page(page);
6760 			if (write) {
6761 				copy_to_user_page(vma, page, addr,
6762 						  maddr + offset, buf, bytes);
6763 				set_page_dirty_lock(page);
6764 			} else {
6765 				copy_from_user_page(vma, page, addr,
6766 						    buf, maddr + offset, bytes);
6767 			}
6768 			unmap_and_put_page(page, maddr);
6769 		}
6770 		len -= bytes;
6771 		buf += bytes;
6772 		addr += bytes;
6773 	}
6774 	mmap_read_unlock(mm);
6775 
6776 	return buf - old_buf;
6777 }
6778 
6779 /**
6780  * access_remote_vm - access another process' address space
6781  * @mm:		the mm_struct of the target address space
6782  * @addr:	start address to access
6783  * @buf:	source or destination buffer
6784  * @len:	number of bytes to transfer
6785  * @gup_flags:	flags modifying lookup behaviour
6786  *
6787  * The caller must hold a reference on @mm.
6788  *
6789  * Return: number of bytes copied from source to destination.
6790  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6791 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6792 		void *buf, int len, unsigned int gup_flags)
6793 {
6794 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6795 }
6796 
6797 /*
6798  * Access another process' address space.
6799  * Source/target buffer must be kernel space,
6800  * Do not walk the page table directly, use get_user_pages
6801  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)6802 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6803 		void *buf, int len, unsigned int gup_flags)
6804 {
6805 	struct mm_struct *mm;
6806 	int ret;
6807 
6808 	mm = get_task_mm(tsk);
6809 	if (!mm)
6810 		return 0;
6811 
6812 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6813 
6814 	mmput(mm);
6815 
6816 	return ret;
6817 }
6818 EXPORT_SYMBOL_GPL(access_process_vm);
6819 
6820 #ifdef CONFIG_BPF_SYSCALL
6821 /*
6822  * Copy a string from another process's address space as given in mm.
6823  * If there is any error return -EFAULT.
6824  */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6825 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
6826 				void *buf, int len, unsigned int gup_flags)
6827 {
6828 	void *old_buf = buf;
6829 	int err = 0;
6830 
6831 	*(char *)buf = '\0';
6832 
6833 	if (mmap_read_lock_killable(mm))
6834 		return -EFAULT;
6835 
6836 	addr = untagged_addr_remote(mm, addr);
6837 
6838 	/* Avoid triggering the temporary warning in __get_user_pages */
6839 	if (!vma_lookup(mm, addr)) {
6840 		err = -EFAULT;
6841 		goto out;
6842 	}
6843 
6844 	while (len) {
6845 		int bytes, offset, retval;
6846 		void *maddr;
6847 		struct page *page;
6848 		struct vm_area_struct *vma = NULL;
6849 
6850 		page = get_user_page_vma_remote(mm, addr, gup_flags, &vma);
6851 		if (IS_ERR(page)) {
6852 			/*
6853 			 * Treat as a total failure for now until we decide how
6854 			 * to handle the CONFIG_HAVE_IOREMAP_PROT case and
6855 			 * stack expansion.
6856 			 */
6857 			*(char *)buf = '\0';
6858 			err = -EFAULT;
6859 			goto out;
6860 		}
6861 
6862 		bytes = len;
6863 		offset = addr & (PAGE_SIZE - 1);
6864 		if (bytes > PAGE_SIZE - offset)
6865 			bytes = PAGE_SIZE - offset;
6866 
6867 		maddr = kmap_local_page(page);
6868 		retval = strscpy(buf, maddr + offset, bytes);
6869 		if (retval >= 0) {
6870 			/* Found the end of the string */
6871 			buf += retval;
6872 			unmap_and_put_page(page, maddr);
6873 			break;
6874 		}
6875 
6876 		buf += bytes - 1;
6877 		/*
6878 		 * Because strscpy always NUL terminates we need to
6879 		 * copy the last byte in the page if we are going to
6880 		 * load more pages
6881 		 */
6882 		if (bytes != len) {
6883 			addr += bytes - 1;
6884 			copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1);
6885 			buf += 1;
6886 			addr += 1;
6887 		}
6888 		len -= bytes;
6889 
6890 		unmap_and_put_page(page, maddr);
6891 	}
6892 
6893 out:
6894 	mmap_read_unlock(mm);
6895 	if (err)
6896 		return err;
6897 	return buf - old_buf;
6898 }
6899 
6900 /**
6901  * copy_remote_vm_str - copy a string from another process's address space.
6902  * @tsk:	the task of the target address space
6903  * @addr:	start address to read from
6904  * @buf:	destination buffer
6905  * @len:	number of bytes to copy
6906  * @gup_flags:	flags modifying lookup behaviour
6907  *
6908  * The caller must hold a reference on @mm.
6909  *
6910  * Return: number of bytes copied from @addr (source) to @buf (destination);
6911  * not including the trailing NUL. Always guaranteed to leave NUL-terminated
6912  * buffer. On any error, return -EFAULT.
6913  */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)6914 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
6915 		       void *buf, int len, unsigned int gup_flags)
6916 {
6917 	struct mm_struct *mm;
6918 	int ret;
6919 
6920 	if (unlikely(len == 0))
6921 		return 0;
6922 
6923 	mm = get_task_mm(tsk);
6924 	if (!mm) {
6925 		*(char *)buf = '\0';
6926 		return -EFAULT;
6927 	}
6928 
6929 	ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags);
6930 
6931 	mmput(mm);
6932 
6933 	return ret;
6934 }
6935 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
6936 #endif /* CONFIG_BPF_SYSCALL */
6937 
6938 /*
6939  * Print the name of a VMA.
6940  */
print_vma_addr(char * prefix,unsigned long ip)6941 void print_vma_addr(char *prefix, unsigned long ip)
6942 {
6943 	struct mm_struct *mm = current->mm;
6944 	struct vm_area_struct *vma;
6945 
6946 	/*
6947 	 * we might be running from an atomic context so we cannot sleep
6948 	 */
6949 	if (!mmap_read_trylock(mm))
6950 		return;
6951 
6952 	vma = vma_lookup(mm, ip);
6953 	if (vma && vma->vm_file) {
6954 		struct file *f = vma->vm_file;
6955 		ip -= vma->vm_start;
6956 		ip += vma->vm_pgoff << PAGE_SHIFT;
6957 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6958 				vma->vm_start,
6959 				vma->vm_end - vma->vm_start);
6960 	}
6961 	mmap_read_unlock(mm);
6962 }
6963 
6964 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)6965 void __might_fault(const char *file, int line)
6966 {
6967 	if (pagefault_disabled())
6968 		return;
6969 	__might_sleep(file, line);
6970 	if (current->mm)
6971 		might_lock_read(&current->mm->mmap_lock);
6972 }
6973 EXPORT_SYMBOL(__might_fault);
6974 #endif
6975 
6976 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6977 /*
6978  * Process all subpages of the specified huge page with the specified
6979  * operation.  The target subpage will be processed last to keep its
6980  * cache lines hot.
6981  */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)6982 static inline int process_huge_page(
6983 	unsigned long addr_hint, unsigned int nr_pages,
6984 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6985 	void *arg)
6986 {
6987 	int i, n, base, l, ret;
6988 	unsigned long addr = addr_hint &
6989 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6990 
6991 	/* Process target subpage last to keep its cache lines hot */
6992 	might_sleep();
6993 	n = (addr_hint - addr) / PAGE_SIZE;
6994 	if (2 * n <= nr_pages) {
6995 		/* If target subpage in first half of huge page */
6996 		base = 0;
6997 		l = n;
6998 		/* Process subpages at the end of huge page */
6999 		for (i = nr_pages - 1; i >= 2 * n; i--) {
7000 			cond_resched();
7001 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7002 			if (ret)
7003 				return ret;
7004 		}
7005 	} else {
7006 		/* If target subpage in second half of huge page */
7007 		base = nr_pages - 2 * (nr_pages - n);
7008 		l = nr_pages - n;
7009 		/* Process subpages at the begin of huge page */
7010 		for (i = 0; i < base; i++) {
7011 			cond_resched();
7012 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7013 			if (ret)
7014 				return ret;
7015 		}
7016 	}
7017 	/*
7018 	 * Process remaining subpages in left-right-left-right pattern
7019 	 * towards the target subpage
7020 	 */
7021 	for (i = 0; i < l; i++) {
7022 		int left_idx = base + i;
7023 		int right_idx = base + 2 * l - 1 - i;
7024 
7025 		cond_resched();
7026 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
7027 		if (ret)
7028 			return ret;
7029 		cond_resched();
7030 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
7031 		if (ret)
7032 			return ret;
7033 	}
7034 	return 0;
7035 }
7036 
clear_gigantic_page(struct folio * folio,unsigned long addr_hint,unsigned int nr_pages)7037 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
7038 				unsigned int nr_pages)
7039 {
7040 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7041 	int i;
7042 
7043 	might_sleep();
7044 	for (i = 0; i < nr_pages; i++) {
7045 		cond_resched();
7046 		clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
7047 	}
7048 }
7049 
clear_subpage(unsigned long addr,int idx,void * arg)7050 static int clear_subpage(unsigned long addr, int idx, void *arg)
7051 {
7052 	struct folio *folio = arg;
7053 
7054 	clear_user_highpage(folio_page(folio, idx), addr);
7055 	return 0;
7056 }
7057 
7058 /**
7059  * folio_zero_user - Zero a folio which will be mapped to userspace.
7060  * @folio: The folio to zero.
7061  * @addr_hint: The address will be accessed or the base address if uncelar.
7062  */
folio_zero_user(struct folio * folio,unsigned long addr_hint)7063 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7064 {
7065 	unsigned int nr_pages = folio_nr_pages(folio);
7066 
7067 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7068 		clear_gigantic_page(folio, addr_hint, nr_pages);
7069 	else
7070 		process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
7071 }
7072 
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int nr_pages)7073 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7074 				   unsigned long addr_hint,
7075 				   struct vm_area_struct *vma,
7076 				   unsigned int nr_pages)
7077 {
7078 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7079 	struct page *dst_page;
7080 	struct page *src_page;
7081 	int i;
7082 
7083 	for (i = 0; i < nr_pages; i++) {
7084 		dst_page = folio_page(dst, i);
7085 		src_page = folio_page(src, i);
7086 
7087 		cond_resched();
7088 		if (copy_mc_user_highpage(dst_page, src_page,
7089 					  addr + i*PAGE_SIZE, vma))
7090 			return -EHWPOISON;
7091 	}
7092 	return 0;
7093 }
7094 
7095 struct copy_subpage_arg {
7096 	struct folio *dst;
7097 	struct folio *src;
7098 	struct vm_area_struct *vma;
7099 };
7100 
copy_subpage(unsigned long addr,int idx,void * arg)7101 static int copy_subpage(unsigned long addr, int idx, void *arg)
7102 {
7103 	struct copy_subpage_arg *copy_arg = arg;
7104 	struct page *dst = folio_page(copy_arg->dst, idx);
7105 	struct page *src = folio_page(copy_arg->src, idx);
7106 
7107 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7108 		return -EHWPOISON;
7109 	return 0;
7110 }
7111 
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)7112 int copy_user_large_folio(struct folio *dst, struct folio *src,
7113 			  unsigned long addr_hint, struct vm_area_struct *vma)
7114 {
7115 	unsigned int nr_pages = folio_nr_pages(dst);
7116 	struct copy_subpage_arg arg = {
7117 		.dst = dst,
7118 		.src = src,
7119 		.vma = vma,
7120 	};
7121 
7122 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7123 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7124 
7125 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7126 }
7127 
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)7128 long copy_folio_from_user(struct folio *dst_folio,
7129 			   const void __user *usr_src,
7130 			   bool allow_pagefault)
7131 {
7132 	void *kaddr;
7133 	unsigned long i, rc = 0;
7134 	unsigned int nr_pages = folio_nr_pages(dst_folio);
7135 	unsigned long ret_val = nr_pages * PAGE_SIZE;
7136 	struct page *subpage;
7137 
7138 	for (i = 0; i < nr_pages; i++) {
7139 		subpage = folio_page(dst_folio, i);
7140 		kaddr = kmap_local_page(subpage);
7141 		if (!allow_pagefault)
7142 			pagefault_disable();
7143 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7144 		if (!allow_pagefault)
7145 			pagefault_enable();
7146 		kunmap_local(kaddr);
7147 
7148 		ret_val -= (PAGE_SIZE - rc);
7149 		if (rc)
7150 			break;
7151 
7152 		flush_dcache_page(subpage);
7153 
7154 		cond_resched();
7155 	}
7156 	return ret_val;
7157 }
7158 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7159 
7160 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7161 
7162 static struct kmem_cache *page_ptl_cachep;
7163 
ptlock_cache_init(void)7164 void __init ptlock_cache_init(void)
7165 {
7166 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7167 			SLAB_PANIC, NULL);
7168 }
7169 
ptlock_alloc(struct ptdesc * ptdesc)7170 bool ptlock_alloc(struct ptdesc *ptdesc)
7171 {
7172 	spinlock_t *ptl;
7173 
7174 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7175 	if (!ptl)
7176 		return false;
7177 	ptdesc->ptl = ptl;
7178 	return true;
7179 }
7180 
ptlock_free(struct ptdesc * ptdesc)7181 void ptlock_free(struct ptdesc *ptdesc)
7182 {
7183 	if (ptdesc->ptl)
7184 		kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7185 }
7186 #endif
7187 
vma_pgtable_walk_begin(struct vm_area_struct * vma)7188 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7189 {
7190 	if (is_vm_hugetlb_page(vma))
7191 		hugetlb_vma_lock_read(vma);
7192 }
7193 
vma_pgtable_walk_end(struct vm_area_struct * vma)7194 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7195 {
7196 	if (is_vm_hugetlb_page(vma))
7197 		hugetlb_vma_unlock_read(vma);
7198 }
7199