1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/leafops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/shmem_fs.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 #include <linux/pgalloc.h>
80 #include <linux/uaccess.h>
81
82 #include <trace/events/kmem.h>
83
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96
97 static vm_fault_t do_fault(struct vm_fault *vmf);
98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
99 static bool vmf_pte_changed(struct vm_fault *vmf);
100
101 /*
102 * Return true if the original pte was a uffd-wp pte marker (so the pte was
103 * wr-protected).
104 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
106 {
107 if (!userfaultfd_wp(vmf->vma))
108 return false;
109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
110 return false;
111
112 return pte_is_uffd_wp_marker(vmf->orig_pte);
113 }
114
115 /*
116 * Randomize the address space (stacks, mmaps, brk, etc.).
117 *
118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119 * as ancient (libc5 based) binaries can segfault. )
120 */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123 1;
124 #else
125 2;
126 #endif
127
128 static const struct ctl_table mmu_sysctl_table[] = {
129 {
130 .procname = "randomize_va_space",
131 .data = &randomize_va_space,
132 .maxlen = sizeof(int),
133 .mode = 0644,
134 .proc_handler = proc_dointvec,
135 },
136 };
137
init_mm_sysctl(void)138 static int __init init_mm_sysctl(void)
139 {
140 register_sysctl_init("kernel", mmu_sysctl_table);
141 return 0;
142 }
143
144 subsys_initcall(init_mm_sysctl);
145
146 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155 }
156 #endif
157
disable_randmaps(char * s)158 static int __init disable_randmaps(char *s)
159 {
160 randomize_va_space = 0;
161 return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167
168 unsigned long highest_memmap_pfn __read_mostly;
169
170 /*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
init_zero_pfn(void)173 static int __init init_zero_pfn(void)
174 {
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177 }
178 early_initcall(init_zero_pfn);
179
mm_trace_rss_stat(struct mm_struct * mm,int member)180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 trace_rss_stat(mm, member);
183 }
184
185 /*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
191 {
192 pgtable_t token = pmd_pgtable(*pmd);
193 pmd_clear(pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
196 }
197
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
201 {
202 pmd_t *pmd;
203 unsigned long next;
204 unsigned long start;
205
206 start = addr;
207 pmd = pmd_offset(pud, addr);
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
214
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
222 }
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
230 }
231
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235 {
236 pud_t *pud;
237 unsigned long next;
238 unsigned long start;
239
240 start = addr;
241 pud = pud_offset(p4d, addr);
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
248
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
264 }
265
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269 {
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
290 }
291 if (end - 1 > ceiling - 1)
292 return;
293
294 p4d = p4d_offset(pgd, start);
295 pgd_clear(pgd);
296 p4d_free_tlb(tlb, p4d, start);
297 }
298
299 /**
300 * free_pgd_range - Unmap and free page tables in the range
301 * @tlb: the mmu_gather containing pending TLB flush info
302 * @addr: virtual address start
303 * @end: virtual address end
304 * @floor: lowest address boundary
305 * @ceiling: highest address boundary
306 *
307 * This function tears down all user-level page tables in the
308 * specified virtual address range [@addr..@end). It is part of
309 * the memory unmap flow.
310 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)311 void free_pgd_range(struct mmu_gather *tlb,
312 unsigned long addr, unsigned long end,
313 unsigned long floor, unsigned long ceiling)
314 {
315 pgd_t *pgd;
316 unsigned long next;
317
318 /*
319 * The next few lines have given us lots of grief...
320 *
321 * Why are we testing PMD* at this top level? Because often
322 * there will be no work to do at all, and we'd prefer not to
323 * go all the way down to the bottom just to discover that.
324 *
325 * Why all these "- 1"s? Because 0 represents both the bottom
326 * of the address space and the top of it (using -1 for the
327 * top wouldn't help much: the masks would do the wrong thing).
328 * The rule is that addr 0 and floor 0 refer to the bottom of
329 * the address space, but end 0 and ceiling 0 refer to the top
330 * Comparisons need to use "end - 1" and "ceiling - 1" (though
331 * that end 0 case should be mythical).
332 *
333 * Wherever addr is brought up or ceiling brought down, we must
334 * be careful to reject "the opposite 0" before it confuses the
335 * subsequent tests. But what about where end is brought down
336 * by PMD_SIZE below? no, end can't go down to 0 there.
337 *
338 * Whereas we round start (addr) and ceiling down, by different
339 * masks at different levels, in order to test whether a table
340 * now has no other vmas using it, so can be freed, we don't
341 * bother to round floor or end up - the tests don't need that.
342 */
343
344 addr &= PMD_MASK;
345 if (addr < floor) {
346 addr += PMD_SIZE;
347 if (!addr)
348 return;
349 }
350 if (ceiling) {
351 ceiling &= PMD_MASK;
352 if (!ceiling)
353 return;
354 }
355 if (end - 1 > ceiling - 1)
356 end -= PMD_SIZE;
357 if (addr > end - 1)
358 return;
359 /*
360 * We add page table cache pages with PAGE_SIZE,
361 * (see pte_free_tlb()), flush the tlb if we need
362 */
363 tlb_change_page_size(tlb, PAGE_SIZE);
364 pgd = pgd_offset(tlb->mm, addr);
365 do {
366 next = pgd_addr_end(addr, end);
367 if (pgd_none_or_clear_bad(pgd))
368 continue;
369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
370 } while (pgd++, addr = next, addr != end);
371 }
372
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)373 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
374 struct vm_area_struct *vma, unsigned long floor,
375 unsigned long ceiling, bool mm_wr_locked)
376 {
377 struct unlink_vma_file_batch vb;
378
379 tlb_free_vmas(tlb);
380
381 do {
382 unsigned long addr = vma->vm_start;
383 struct vm_area_struct *next;
384
385 /*
386 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
387 * be 0. This will underflow and is okay.
388 */
389 next = mas_find(mas, ceiling - 1);
390 if (unlikely(xa_is_zero(next)))
391 next = NULL;
392
393 /*
394 * Hide vma from rmap and truncate_pagecache before freeing
395 * pgtables
396 */
397 if (mm_wr_locked)
398 vma_start_write(vma);
399 unlink_anon_vmas(vma);
400
401 unlink_file_vma_batch_init(&vb);
402 unlink_file_vma_batch_add(&vb, vma);
403
404 /*
405 * Optimization: gather nearby vmas into one call down
406 */
407 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
408 vma = next;
409 next = mas_find(mas, ceiling - 1);
410 if (unlikely(xa_is_zero(next)))
411 next = NULL;
412 if (mm_wr_locked)
413 vma_start_write(vma);
414 unlink_anon_vmas(vma);
415 unlink_file_vma_batch_add(&vb, vma);
416 }
417 unlink_file_vma_batch_final(&vb);
418
419 free_pgd_range(tlb, addr, vma->vm_end,
420 floor, next ? next->vm_start : ceiling);
421 vma = next;
422 } while (vma);
423 }
424
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)425 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
426 {
427 spinlock_t *ptl = pmd_lock(mm, pmd);
428
429 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
430 mm_inc_nr_ptes(mm);
431 /*
432 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 * visible before the pte is made visible to other CPUs by being
434 * put into page tables.
435 *
436 * The other side of the story is the pointer chasing in the page
437 * table walking code (when walking the page table without locking;
438 * ie. most of the time). Fortunately, these data accesses consist
439 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 * being the notable exception) will already guarantee loads are
441 * seen in-order. See the alpha page table accessors for the
442 * smp_rmb() barriers in page table walking code.
443 */
444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 pmd_populate(mm, pmd, *pte);
446 *pte = NULL;
447 }
448 spin_unlock(ptl);
449 }
450
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)451 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
452 {
453 pgtable_t new = pte_alloc_one(mm);
454 if (!new)
455 return -ENOMEM;
456
457 pmd_install(mm, pmd, &new);
458 if (new)
459 pte_free(mm, new);
460 return 0;
461 }
462
__pte_alloc_kernel(pmd_t * pmd)463 int __pte_alloc_kernel(pmd_t *pmd)
464 {
465 pte_t *new = pte_alloc_one_kernel(&init_mm);
466 if (!new)
467 return -ENOMEM;
468
469 spin_lock(&init_mm.page_table_lock);
470 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
471 smp_wmb(); /* See comment in pmd_install() */
472 pmd_populate_kernel(&init_mm, pmd, new);
473 new = NULL;
474 }
475 spin_unlock(&init_mm.page_table_lock);
476 if (new)
477 pte_free_kernel(&init_mm, new);
478 return 0;
479 }
480
init_rss_vec(int * rss)481 static inline void init_rss_vec(int *rss)
482 {
483 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
484 }
485
add_mm_rss_vec(struct mm_struct * mm,int * rss)486 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
487 {
488 int i;
489
490 for (i = 0; i < NR_MM_COUNTERS; i++)
491 if (rss[i])
492 add_mm_counter(mm, i, rss[i]);
493 }
494
is_bad_page_map_ratelimited(void)495 static bool is_bad_page_map_ratelimited(void)
496 {
497 static unsigned long resume;
498 static unsigned long nr_shown;
499 static unsigned long nr_unshown;
500
501 /*
502 * Allow a burst of 60 reports, then keep quiet for that minute;
503 * or allow a steady drip of one report per second.
504 */
505 if (nr_shown == 60) {
506 if (time_before(jiffies, resume)) {
507 nr_unshown++;
508 return true;
509 }
510 if (nr_unshown) {
511 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 nr_unshown);
513 nr_unshown = 0;
514 }
515 nr_shown = 0;
516 }
517 if (nr_shown++ == 0)
518 resume = jiffies + 60 * HZ;
519 return false;
520 }
521
__print_bad_page_map_pgtable(struct mm_struct * mm,unsigned long addr)522 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr)
523 {
524 unsigned long long pgdv, p4dv, pudv, pmdv;
525 p4d_t p4d, *p4dp;
526 pud_t pud, *pudp;
527 pmd_t pmd, *pmdp;
528 pgd_t *pgdp;
529
530 /*
531 * Although this looks like a fully lockless pgtable walk, it is not:
532 * see locking requirements for print_bad_page_map().
533 */
534 pgdp = pgd_offset(mm, addr);
535 pgdv = pgd_val(*pgdp);
536
537 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) {
538 pr_alert("pgd:%08llx\n", pgdv);
539 return;
540 }
541
542 p4dp = p4d_offset(pgdp, addr);
543 p4d = p4dp_get(p4dp);
544 p4dv = p4d_val(p4d);
545
546 if (!p4d_present(p4d) || p4d_leaf(p4d)) {
547 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv);
548 return;
549 }
550
551 pudp = pud_offset(p4dp, addr);
552 pud = pudp_get(pudp);
553 pudv = pud_val(pud);
554
555 if (!pud_present(pud) || pud_leaf(pud)) {
556 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv);
557 return;
558 }
559
560 pmdp = pmd_offset(pudp, addr);
561 pmd = pmdp_get(pmdp);
562 pmdv = pmd_val(pmd);
563
564 /*
565 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE,
566 * because the table should already be mapped by the caller and
567 * doing another map would be bad. print_bad_page_map() should
568 * already take care of printing the PTE.
569 */
570 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv,
571 p4dv, pudv, pmdv);
572 }
573
574 /*
575 * This function is called to print an error when a bad page table entry (e.g.,
576 * corrupted page table entry) is found. For example, we might have a
577 * PFN-mapped pte in a region that doesn't allow it.
578 *
579 * The calling function must still handle the error.
580 *
581 * This function must be called during a proper page table walk, as it will
582 * re-walk the page table to dump information: the caller MUST prevent page
583 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf
584 * page table lock.
585 */
print_bad_page_map(struct vm_area_struct * vma,unsigned long addr,unsigned long long entry,struct page * page,enum pgtable_level level)586 static void print_bad_page_map(struct vm_area_struct *vma,
587 unsigned long addr, unsigned long long entry, struct page *page,
588 enum pgtable_level level)
589 {
590 struct address_space *mapping;
591 pgoff_t index;
592
593 if (is_bad_page_map_ratelimited())
594 return;
595
596 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
597 index = linear_page_index(vma, addr);
598
599 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm,
600 pgtable_level_to_str(level), entry);
601 __print_bad_page_map_pgtable(vma->vm_mm, addr);
602 if (page)
603 dump_page(page, "bad page map");
604 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
605 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
606 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
607 vma->vm_file,
608 vma->vm_ops ? vma->vm_ops->fault : NULL,
609 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
610 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL,
611 mapping ? mapping->a_ops->read_folio : NULL);
612 dump_stack();
613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
614 }
615 #define print_bad_pte(vma, addr, pte, page) \
616 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE)
617
618 /**
619 * __vm_normal_page() - Get the "struct page" associated with a page table entry.
620 * @vma: The VMA mapping the page table entry.
621 * @addr: The address where the page table entry is mapped.
622 * @pfn: The PFN stored in the page table entry.
623 * @special: Whether the page table entry is marked "special".
624 * @level: The page table level for error reporting purposes only.
625 * @entry: The page table entry value for error reporting purposes only.
626 *
627 * "Special" mappings do not wish to be associated with a "struct page" (either
628 * it doesn't exist, or it exists but they don't want to touch it). In this
629 * case, NULL is returned here. "Normal" mappings do have a struct page and
630 * are ordinarily refcounted.
631 *
632 * Page mappings of the shared zero folios are always considered "special", as
633 * they are not ordinarily refcounted: neither the refcount nor the mapcount
634 * of these folios is adjusted when mapping them into user page tables.
635 * Selected page table walkers (such as GUP) can still identify mappings of the
636 * shared zero folios and work with the underlying "struct page".
637 *
638 * There are 2 broad cases. Firstly, an architecture may define a "special"
639 * page table entry bit, such as pte_special(), in which case this function is
640 * trivial. Secondly, an architecture may not have a spare page table
641 * entry bit, which requires a more complicated scheme, described below.
642 *
643 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on
644 * page table entries that actually map "normal" pages: however, that page
645 * cannot be looked up through the PFN stored in the page table entry, but
646 * instead will be looked up through vm_ops->find_normal_page(). So far, this
647 * only applies to PTEs.
648 *
649 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
650 * special mapping (even if there are underlying and valid "struct pages").
651 * COWed pages of a VM_PFNMAP are always normal.
652 *
653 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
654 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
655 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
656 * mapping will always honor the rule
657 *
658 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
659 *
660 * And for normal mappings this is false.
661 *
662 * This restricts such mappings to be a linear translation from virtual address
663 * to pfn. To get around this restriction, we allow arbitrary mappings so long
664 * as the vma is not a COW mapping; in that case, we know that all ptes are
665 * special (because none can have been COWed).
666 *
667 *
668 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
669 *
670 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
671 * page" backing, however the difference is that _all_ pages with a struct
672 * page (that is, those where pfn_valid is true, except the shared zero
673 * folios) are refcounted and considered normal pages by the VM.
674 *
675 * The disadvantage is that pages are refcounted (which can be slower and
676 * simply not an option for some PFNMAP users). The advantage is that we
677 * don't have to follow the strict linearity rule of PFNMAP mappings in
678 * order to support COWable mappings.
679 *
680 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
681 * NULL if this is a "special" mapping.
682 */
__vm_normal_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,bool special,unsigned long long entry,enum pgtable_level level)683 static inline struct page *__vm_normal_page(struct vm_area_struct *vma,
684 unsigned long addr, unsigned long pfn, bool special,
685 unsigned long long entry, enum pgtable_level level)
686 {
687 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
688 if (unlikely(special)) {
689 #ifdef CONFIG_FIND_NORMAL_PAGE
690 if (vma->vm_ops && vma->vm_ops->find_normal_page)
691 return vma->vm_ops->find_normal_page(vma, addr);
692 #endif /* CONFIG_FIND_NORMAL_PAGE */
693 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
694 return NULL;
695 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
696 return NULL;
697
698 print_bad_page_map(vma, addr, entry, NULL, level);
699 return NULL;
700 }
701 /*
702 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table
703 * mappings (incl. shared zero folios) are marked accordingly.
704 */
705 } else {
706 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) {
707 if (vma->vm_flags & VM_MIXEDMAP) {
708 /* If it has a "struct page", it's "normal". */
709 if (!pfn_valid(pfn))
710 return NULL;
711 } else {
712 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
713
714 /* Only CoW'ed anon folios are "normal". */
715 if (pfn == vma->vm_pgoff + off)
716 return NULL;
717 if (!is_cow_mapping(vma->vm_flags))
718 return NULL;
719 }
720 }
721
722 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
723 return NULL;
724 }
725
726 if (unlikely(pfn > highest_memmap_pfn)) {
727 /* Corrupted page table entry. */
728 print_bad_page_map(vma, addr, entry, NULL, level);
729 return NULL;
730 }
731 /*
732 * NOTE! We still have PageReserved() pages in the page tables.
733 * For example, VDSO mappings can cause them to exist.
734 */
735 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn));
736 return pfn_to_page(pfn);
737 }
738
739 /**
740 * vm_normal_page() - Get the "struct page" associated with a PTE
741 * @vma: The VMA mapping the @pte.
742 * @addr: The address where the @pte is mapped.
743 * @pte: The PTE.
744 *
745 * Get the "struct page" associated with a PTE. See __vm_normal_page()
746 * for details on "normal" and "special" mappings.
747 *
748 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
749 * NULL if this is a "special" mapping.
750 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)751 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
752 pte_t pte)
753 {
754 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte),
755 pte_val(pte), PGTABLE_LEVEL_PTE);
756 }
757
758 /**
759 * vm_normal_folio() - Get the "struct folio" associated with a PTE
760 * @vma: The VMA mapping the @pte.
761 * @addr: The address where the @pte is mapped.
762 * @pte: The PTE.
763 *
764 * Get the "struct folio" associated with a PTE. See __vm_normal_page()
765 * for details on "normal" and "special" mappings.
766 *
767 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
768 * NULL if this is a "special" mapping.
769 */
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)770 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
771 pte_t pte)
772 {
773 struct page *page = vm_normal_page(vma, addr, pte);
774
775 if (page)
776 return page_folio(page);
777 return NULL;
778 }
779
780 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
781 /**
782 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD
783 * @vma: The VMA mapping the @pmd.
784 * @addr: The address where the @pmd is mapped.
785 * @pmd: The PMD.
786 *
787 * Get the "struct page" associated with a PTE. See __vm_normal_page()
788 * for details on "normal" and "special" mappings.
789 *
790 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
791 * NULL if this is a "special" mapping.
792 */
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
794 pmd_t pmd)
795 {
796 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd),
797 pmd_val(pmd), PGTABLE_LEVEL_PMD);
798 }
799
800 /**
801 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD
802 * @vma: The VMA mapping the @pmd.
803 * @addr: The address where the @pmd is mapped.
804 * @pmd: The PMD.
805 *
806 * Get the "struct folio" associated with a PTE. See __vm_normal_page()
807 * for details on "normal" and "special" mappings.
808 *
809 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
810 * NULL if this is a "special" mapping.
811 */
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)812 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
813 unsigned long addr, pmd_t pmd)
814 {
815 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
816
817 if (page)
818 return page_folio(page);
819 return NULL;
820 }
821
822 /**
823 * vm_normal_page_pud() - Get the "struct page" associated with a PUD
824 * @vma: The VMA mapping the @pud.
825 * @addr: The address where the @pud is mapped.
826 * @pud: The PUD.
827 *
828 * Get the "struct page" associated with a PUD. See __vm_normal_page()
829 * for details on "normal" and "special" mappings.
830 *
831 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
832 * NULL if this is a "special" mapping.
833 */
vm_normal_page_pud(struct vm_area_struct * vma,unsigned long addr,pud_t pud)834 struct page *vm_normal_page_pud(struct vm_area_struct *vma,
835 unsigned long addr, pud_t pud)
836 {
837 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud),
838 pud_val(pud), PGTABLE_LEVEL_PUD);
839 }
840 #endif
841
842 /**
843 * restore_exclusive_pte - Restore a device-exclusive entry
844 * @vma: VMA covering @address
845 * @folio: the mapped folio
846 * @page: the mapped folio page
847 * @address: the virtual address
848 * @ptep: pte pointer into the locked page table mapping the folio page
849 * @orig_pte: pte value at @ptep
850 *
851 * Restore a device-exclusive non-swap entry to an ordinary present pte.
852 *
853 * The folio and the page table must be locked, and MMU notifiers must have
854 * been called to invalidate any (exclusive) device mappings.
855 *
856 * Locking the folio makes sure that anybody who just converted the pte to
857 * a device-exclusive entry can map it into the device to make forward
858 * progress without others converting it back until the folio was unlocked.
859 *
860 * If the folio lock ever becomes an issue, we can stop relying on the folio
861 * lock; it might make some scenarios with heavy thrashing less likely to
862 * make forward progress, but these scenarios might not be valid use cases.
863 *
864 * Note that the folio lock does not protect against all cases of concurrent
865 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
866 * must use MMU notifiers to sync against any concurrent changes.
867 */
restore_exclusive_pte(struct vm_area_struct * vma,struct folio * folio,struct page * page,unsigned long address,pte_t * ptep,pte_t orig_pte)868 static void restore_exclusive_pte(struct vm_area_struct *vma,
869 struct folio *folio, struct page *page, unsigned long address,
870 pte_t *ptep, pte_t orig_pte)
871 {
872 pte_t pte;
873
874 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
875
876 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
877 if (pte_swp_soft_dirty(orig_pte))
878 pte = pte_mksoft_dirty(pte);
879
880 if (pte_swp_uffd_wp(orig_pte))
881 pte = pte_mkuffd_wp(pte);
882
883 if ((vma->vm_flags & VM_WRITE) &&
884 can_change_pte_writable(vma, address, pte)) {
885 if (folio_test_dirty(folio))
886 pte = pte_mkdirty(pte);
887 pte = pte_mkwrite(pte, vma);
888 }
889 set_pte_at(vma->vm_mm, address, ptep, pte);
890
891 /*
892 * No need to invalidate - it was non-present before. However
893 * secondary CPUs may have mappings that need invalidating.
894 */
895 update_mmu_cache(vma, address, ptep);
896 }
897
898 /*
899 * Tries to restore an exclusive pte if the page lock can be acquired without
900 * sleeping.
901 */
try_restore_exclusive_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t orig_pte)902 static int try_restore_exclusive_pte(struct vm_area_struct *vma,
903 unsigned long addr, pte_t *ptep, pte_t orig_pte)
904 {
905 const softleaf_t entry = softleaf_from_pte(orig_pte);
906 struct page *page = softleaf_to_page(entry);
907 struct folio *folio = page_folio(page);
908
909 if (folio_trylock(folio)) {
910 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte);
911 folio_unlock(folio);
912 return 0;
913 }
914
915 return -EBUSY;
916 }
917
918 /*
919 * copy one vm_area from one task to the other. Assumes the page tables
920 * already present in the new task to be cleared in the whole range
921 * covered by this vma.
922 */
923
924 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)925 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
926 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
927 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
928 {
929 vm_flags_t vm_flags = dst_vma->vm_flags;
930 pte_t orig_pte = ptep_get(src_pte);
931 softleaf_t entry = softleaf_from_pte(orig_pte);
932 pte_t pte = orig_pte;
933 struct folio *folio;
934 struct page *page;
935
936 if (likely(softleaf_is_swap(entry))) {
937 if (swap_duplicate(entry) < 0)
938 return -EIO;
939
940 /* make sure dst_mm is on swapoff's mmlist. */
941 if (unlikely(list_empty(&dst_mm->mmlist))) {
942 spin_lock(&mmlist_lock);
943 if (list_empty(&dst_mm->mmlist))
944 list_add(&dst_mm->mmlist,
945 &src_mm->mmlist);
946 spin_unlock(&mmlist_lock);
947 }
948 /* Mark the swap entry as shared. */
949 if (pte_swp_exclusive(orig_pte)) {
950 pte = pte_swp_clear_exclusive(orig_pte);
951 set_pte_at(src_mm, addr, src_pte, pte);
952 }
953 rss[MM_SWAPENTS]++;
954 } else if (softleaf_is_migration(entry)) {
955 folio = softleaf_to_folio(entry);
956
957 rss[mm_counter(folio)]++;
958
959 if (!softleaf_is_migration_read(entry) &&
960 is_cow_mapping(vm_flags)) {
961 /*
962 * COW mappings require pages in both parent and child
963 * to be set to read. A previously exclusive entry is
964 * now shared.
965 */
966 entry = make_readable_migration_entry(
967 swp_offset(entry));
968 pte = softleaf_to_pte(entry);
969 if (pte_swp_soft_dirty(orig_pte))
970 pte = pte_swp_mksoft_dirty(pte);
971 if (pte_swp_uffd_wp(orig_pte))
972 pte = pte_swp_mkuffd_wp(pte);
973 set_pte_at(src_mm, addr, src_pte, pte);
974 }
975 } else if (softleaf_is_device_private(entry)) {
976 page = softleaf_to_page(entry);
977 folio = page_folio(page);
978
979 /*
980 * Update rss count even for unaddressable pages, as
981 * they should treated just like normal pages in this
982 * respect.
983 *
984 * We will likely want to have some new rss counters
985 * for unaddressable pages, at some point. But for now
986 * keep things as they are.
987 */
988 folio_get(folio);
989 rss[mm_counter(folio)]++;
990 /* Cannot fail as these pages cannot get pinned. */
991 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma);
992
993 /*
994 * We do not preserve soft-dirty information, because so
995 * far, checkpoint/restore is the only feature that
996 * requires that. And checkpoint/restore does not work
997 * when a device driver is involved (you cannot easily
998 * save and restore device driver state).
999 */
1000 if (softleaf_is_device_private_write(entry) &&
1001 is_cow_mapping(vm_flags)) {
1002 entry = make_readable_device_private_entry(
1003 swp_offset(entry));
1004 pte = swp_entry_to_pte(entry);
1005 if (pte_swp_uffd_wp(orig_pte))
1006 pte = pte_swp_mkuffd_wp(pte);
1007 set_pte_at(src_mm, addr, src_pte, pte);
1008 }
1009 } else if (softleaf_is_device_exclusive(entry)) {
1010 /*
1011 * Make device exclusive entries present by restoring the
1012 * original entry then copying as for a present pte. Device
1013 * exclusive entries currently only support private writable
1014 * (ie. COW) mappings.
1015 */
1016 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
1017 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte))
1018 return -EBUSY;
1019 return -ENOENT;
1020 } else if (softleaf_is_marker(entry)) {
1021 pte_marker marker = copy_pte_marker(entry, dst_vma);
1022
1023 if (marker)
1024 set_pte_at(dst_mm, addr, dst_pte,
1025 make_pte_marker(marker));
1026 return 0;
1027 }
1028 if (!userfaultfd_wp(dst_vma))
1029 pte = pte_swp_clear_uffd_wp(pte);
1030 set_pte_at(dst_mm, addr, dst_pte, pte);
1031 return 0;
1032 }
1033
1034 /*
1035 * Copy a present and normal page.
1036 *
1037 * NOTE! The usual case is that this isn't required;
1038 * instead, the caller can just increase the page refcount
1039 * and re-use the pte the traditional way.
1040 *
1041 * And if we need a pre-allocated page but don't yet have
1042 * one, return a negative error to let the preallocation
1043 * code know so that it can do so outside the page table
1044 * lock.
1045 */
1046 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)1047 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1048 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
1049 struct folio **prealloc, struct page *page)
1050 {
1051 struct folio *new_folio;
1052 pte_t pte;
1053
1054 new_folio = *prealloc;
1055 if (!new_folio)
1056 return -EAGAIN;
1057
1058 /*
1059 * We have a prealloc page, all good! Take it
1060 * over and copy the page & arm it.
1061 */
1062
1063 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
1064 return -EHWPOISON;
1065
1066 *prealloc = NULL;
1067 __folio_mark_uptodate(new_folio);
1068 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
1069 folio_add_lru_vma(new_folio, dst_vma);
1070 rss[MM_ANONPAGES]++;
1071
1072 /* All done, just insert the new page copy in the child */
1073 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot);
1074 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
1075 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
1076 /* Uffd-wp needs to be delivered to dest pte as well */
1077 pte = pte_mkuffd_wp(pte);
1078 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
1079 return 0;
1080 }
1081
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)1082 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
1083 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
1084 pte_t pte, unsigned long addr, int nr)
1085 {
1086 struct mm_struct *src_mm = src_vma->vm_mm;
1087
1088 /* If it's a COW mapping, write protect it both processes. */
1089 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
1090 wrprotect_ptes(src_mm, addr, src_pte, nr);
1091 pte = pte_wrprotect(pte);
1092 }
1093
1094 /* If it's a shared mapping, mark it clean in the child. */
1095 if (src_vma->vm_flags & VM_SHARED)
1096 pte = pte_mkclean(pte);
1097 pte = pte_mkold(pte);
1098
1099 if (!userfaultfd_wp(dst_vma))
1100 pte = pte_clear_uffd_wp(pte);
1101
1102 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
1103 }
1104
1105 /*
1106 * Copy one present PTE, trying to batch-process subsequent PTEs that map
1107 * consecutive pages of the same folio by copying them as well.
1108 *
1109 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
1110 * Otherwise, returns the number of copied PTEs (at least 1).
1111 */
1112 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)1113 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1114 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
1115 int max_nr, int *rss, struct folio **prealloc)
1116 {
1117 fpb_t flags = FPB_MERGE_WRITE;
1118 struct page *page;
1119 struct folio *folio;
1120 int err, nr;
1121
1122 page = vm_normal_page(src_vma, addr, pte);
1123 if (unlikely(!page))
1124 goto copy_pte;
1125
1126 folio = page_folio(page);
1127
1128 /*
1129 * If we likely have to copy, just don't bother with batching. Make
1130 * sure that the common "small folio" case is as fast as possible
1131 * by keeping the batching logic separate.
1132 */
1133 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1134 if (!(src_vma->vm_flags & VM_SHARED))
1135 flags |= FPB_RESPECT_DIRTY;
1136 if (vma_soft_dirty_enabled(src_vma))
1137 flags |= FPB_RESPECT_SOFT_DIRTY;
1138
1139 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags);
1140 folio_ref_add(folio, nr);
1141 if (folio_test_anon(folio)) {
1142 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1143 nr, dst_vma, src_vma))) {
1144 folio_ref_sub(folio, nr);
1145 return -EAGAIN;
1146 }
1147 rss[MM_ANONPAGES] += nr;
1148 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1149 } else {
1150 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma);
1151 rss[mm_counter_file(folio)] += nr;
1152 }
1153 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1154 addr, nr);
1155 return nr;
1156 }
1157
1158 folio_get(folio);
1159 if (folio_test_anon(folio)) {
1160 /*
1161 * If this page may have been pinned by the parent process,
1162 * copy the page immediately for the child so that we'll always
1163 * guarantee the pinned page won't be randomly replaced in the
1164 * future.
1165 */
1166 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) {
1167 /* Page may be pinned, we have to copy. */
1168 folio_put(folio);
1169 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1170 addr, rss, prealloc, page);
1171 return err ? err : 1;
1172 }
1173 rss[MM_ANONPAGES]++;
1174 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1175 } else {
1176 folio_dup_file_rmap_pte(folio, page, dst_vma);
1177 rss[mm_counter_file(folio)]++;
1178 }
1179
1180 copy_pte:
1181 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1182 return 1;
1183 }
1184
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1185 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1186 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1187 {
1188 struct folio *new_folio;
1189
1190 if (need_zero)
1191 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1192 else
1193 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1194
1195 if (!new_folio)
1196 return NULL;
1197
1198 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1199 folio_put(new_folio);
1200 return NULL;
1201 }
1202 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1203
1204 return new_folio;
1205 }
1206
1207 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1208 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1209 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1210 unsigned long end)
1211 {
1212 struct mm_struct *dst_mm = dst_vma->vm_mm;
1213 struct mm_struct *src_mm = src_vma->vm_mm;
1214 pte_t *orig_src_pte, *orig_dst_pte;
1215 pte_t *src_pte, *dst_pte;
1216 pmd_t dummy_pmdval;
1217 pte_t ptent;
1218 spinlock_t *src_ptl, *dst_ptl;
1219 int progress, max_nr, ret = 0;
1220 int rss[NR_MM_COUNTERS];
1221 softleaf_t entry = softleaf_mk_none();
1222 struct folio *prealloc = NULL;
1223 int nr;
1224
1225 again:
1226 progress = 0;
1227 init_rss_vec(rss);
1228
1229 /*
1230 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1231 * error handling here, assume that exclusive mmap_lock on dst and src
1232 * protects anon from unexpected THP transitions; with shmem and file
1233 * protected by mmap_lock-less collapse skipping areas with anon_vma
1234 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1235 * can remove such assumptions later, but this is good enough for now.
1236 */
1237 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1238 if (!dst_pte) {
1239 ret = -ENOMEM;
1240 goto out;
1241 }
1242
1243 /*
1244 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1245 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1246 * the PTE page is stable, and there is no need to get pmdval and do
1247 * pmd_same() check.
1248 */
1249 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1250 &src_ptl);
1251 if (!src_pte) {
1252 pte_unmap_unlock(dst_pte, dst_ptl);
1253 /* ret == 0 */
1254 goto out;
1255 }
1256 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1257 orig_src_pte = src_pte;
1258 orig_dst_pte = dst_pte;
1259 arch_enter_lazy_mmu_mode();
1260
1261 do {
1262 nr = 1;
1263
1264 /*
1265 * We are holding two locks at this point - either of them
1266 * could generate latencies in another task on another CPU.
1267 */
1268 if (progress >= 32) {
1269 progress = 0;
1270 if (need_resched() ||
1271 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1272 break;
1273 }
1274 ptent = ptep_get(src_pte);
1275 if (pte_none(ptent)) {
1276 progress++;
1277 continue;
1278 }
1279 if (unlikely(!pte_present(ptent))) {
1280 ret = copy_nonpresent_pte(dst_mm, src_mm,
1281 dst_pte, src_pte,
1282 dst_vma, src_vma,
1283 addr, rss);
1284 if (ret == -EIO) {
1285 entry = softleaf_from_pte(ptep_get(src_pte));
1286 break;
1287 } else if (ret == -EBUSY) {
1288 break;
1289 } else if (!ret) {
1290 progress += 8;
1291 continue;
1292 }
1293 ptent = ptep_get(src_pte);
1294 VM_WARN_ON_ONCE(!pte_present(ptent));
1295
1296 /*
1297 * Device exclusive entry restored, continue by copying
1298 * the now present pte.
1299 */
1300 WARN_ON_ONCE(ret != -ENOENT);
1301 }
1302 /* copy_present_ptes() will clear `*prealloc' if consumed */
1303 max_nr = (end - addr) / PAGE_SIZE;
1304 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1305 ptent, addr, max_nr, rss, &prealloc);
1306 /*
1307 * If we need a pre-allocated page for this pte, drop the
1308 * locks, allocate, and try again.
1309 * If copy failed due to hwpoison in source page, break out.
1310 */
1311 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1312 break;
1313 if (unlikely(prealloc)) {
1314 /*
1315 * pre-alloc page cannot be reused by next time so as
1316 * to strictly follow mempolicy (e.g., alloc_page_vma()
1317 * will allocate page according to address). This
1318 * could only happen if one pinned pte changed.
1319 */
1320 folio_put(prealloc);
1321 prealloc = NULL;
1322 }
1323 nr = ret;
1324 progress += 8 * nr;
1325 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1326 addr != end);
1327
1328 arch_leave_lazy_mmu_mode();
1329 pte_unmap_unlock(orig_src_pte, src_ptl);
1330 add_mm_rss_vec(dst_mm, rss);
1331 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1332 cond_resched();
1333
1334 if (ret == -EIO) {
1335 VM_WARN_ON_ONCE(!entry.val);
1336 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1337 ret = -ENOMEM;
1338 goto out;
1339 }
1340 entry.val = 0;
1341 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1342 goto out;
1343 } else if (ret == -EAGAIN) {
1344 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1345 if (!prealloc)
1346 return -ENOMEM;
1347 } else if (ret < 0) {
1348 VM_WARN_ON_ONCE(1);
1349 }
1350
1351 /* We've captured and resolved the error. Reset, try again. */
1352 ret = 0;
1353
1354 if (addr != end)
1355 goto again;
1356 out:
1357 if (unlikely(prealloc))
1358 folio_put(prealloc);
1359 return ret;
1360 }
1361
1362 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1363 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1364 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1365 unsigned long end)
1366 {
1367 struct mm_struct *dst_mm = dst_vma->vm_mm;
1368 struct mm_struct *src_mm = src_vma->vm_mm;
1369 pmd_t *src_pmd, *dst_pmd;
1370 unsigned long next;
1371
1372 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1373 if (!dst_pmd)
1374 return -ENOMEM;
1375 src_pmd = pmd_offset(src_pud, addr);
1376 do {
1377 next = pmd_addr_end(addr, end);
1378 if (pmd_is_huge(*src_pmd)) {
1379 int err;
1380
1381 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1382 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1383 addr, dst_vma, src_vma);
1384 if (err == -ENOMEM)
1385 return -ENOMEM;
1386 if (!err)
1387 continue;
1388 /* fall through */
1389 }
1390 if (pmd_none_or_clear_bad(src_pmd))
1391 continue;
1392 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1393 addr, next))
1394 return -ENOMEM;
1395 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1396 return 0;
1397 }
1398
1399 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1400 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1401 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1402 unsigned long end)
1403 {
1404 struct mm_struct *dst_mm = dst_vma->vm_mm;
1405 struct mm_struct *src_mm = src_vma->vm_mm;
1406 pud_t *src_pud, *dst_pud;
1407 unsigned long next;
1408
1409 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1410 if (!dst_pud)
1411 return -ENOMEM;
1412 src_pud = pud_offset(src_p4d, addr);
1413 do {
1414 next = pud_addr_end(addr, end);
1415 if (pud_trans_huge(*src_pud)) {
1416 int err;
1417
1418 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1419 err = copy_huge_pud(dst_mm, src_mm,
1420 dst_pud, src_pud, addr, src_vma);
1421 if (err == -ENOMEM)
1422 return -ENOMEM;
1423 if (!err)
1424 continue;
1425 /* fall through */
1426 }
1427 if (pud_none_or_clear_bad(src_pud))
1428 continue;
1429 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1430 addr, next))
1431 return -ENOMEM;
1432 } while (dst_pud++, src_pud++, addr = next, addr != end);
1433 return 0;
1434 }
1435
1436 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1437 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1438 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1439 unsigned long end)
1440 {
1441 struct mm_struct *dst_mm = dst_vma->vm_mm;
1442 p4d_t *src_p4d, *dst_p4d;
1443 unsigned long next;
1444
1445 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1446 if (!dst_p4d)
1447 return -ENOMEM;
1448 src_p4d = p4d_offset(src_pgd, addr);
1449 do {
1450 next = p4d_addr_end(addr, end);
1451 if (p4d_none_or_clear_bad(src_p4d))
1452 continue;
1453 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1454 addr, next))
1455 return -ENOMEM;
1456 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1457 return 0;
1458 }
1459
1460 /*
1461 * Return true if the vma needs to copy the pgtable during this fork(). Return
1462 * false when we can speed up fork() by allowing lazy page faults later until
1463 * when the child accesses the memory range.
1464 */
1465 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1466 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1467 {
1468 /*
1469 * We check against dst_vma as while sane VMA flags will have been
1470 * copied, VM_UFFD_WP may be set only on dst_vma.
1471 */
1472 if (dst_vma->vm_flags & VM_COPY_ON_FORK)
1473 return true;
1474 /*
1475 * The presence of an anon_vma indicates an anonymous VMA has page
1476 * tables which naturally cannot be reconstituted on page fault.
1477 */
1478 if (src_vma->anon_vma)
1479 return true;
1480
1481 /*
1482 * Don't copy ptes where a page fault will fill them correctly. Fork
1483 * becomes much lighter when there are big shared or private readonly
1484 * mappings. The tradeoff is that copy_page_range is more efficient
1485 * than faulting.
1486 */
1487 return false;
1488 }
1489
1490 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1491 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1492 {
1493 pgd_t *src_pgd, *dst_pgd;
1494 unsigned long addr = src_vma->vm_start;
1495 unsigned long end = src_vma->vm_end;
1496 struct mm_struct *dst_mm = dst_vma->vm_mm;
1497 struct mm_struct *src_mm = src_vma->vm_mm;
1498 struct mmu_notifier_range range;
1499 unsigned long next;
1500 bool is_cow;
1501 int ret;
1502
1503 if (!vma_needs_copy(dst_vma, src_vma))
1504 return 0;
1505
1506 if (is_vm_hugetlb_page(src_vma))
1507 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1508
1509 /*
1510 * We need to invalidate the secondary MMU mappings only when
1511 * there could be a permission downgrade on the ptes of the
1512 * parent mm. And a permission downgrade will only happen if
1513 * is_cow_mapping() returns true.
1514 */
1515 is_cow = is_cow_mapping(src_vma->vm_flags);
1516
1517 if (is_cow) {
1518 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1519 0, src_mm, addr, end);
1520 mmu_notifier_invalidate_range_start(&range);
1521 /*
1522 * Disabling preemption is not needed for the write side, as
1523 * the read side doesn't spin, but goes to the mmap_lock.
1524 *
1525 * Use the raw variant of the seqcount_t write API to avoid
1526 * lockdep complaining about preemptibility.
1527 */
1528 vma_assert_write_locked(src_vma);
1529 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1530 }
1531
1532 ret = 0;
1533 dst_pgd = pgd_offset(dst_mm, addr);
1534 src_pgd = pgd_offset(src_mm, addr);
1535 do {
1536 next = pgd_addr_end(addr, end);
1537 if (pgd_none_or_clear_bad(src_pgd))
1538 continue;
1539 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1540 addr, next))) {
1541 ret = -ENOMEM;
1542 break;
1543 }
1544 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1545
1546 if (is_cow) {
1547 raw_write_seqcount_end(&src_mm->write_protect_seq);
1548 mmu_notifier_invalidate_range_end(&range);
1549 }
1550 return ret;
1551 }
1552
1553 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1554 static inline bool should_zap_cows(struct zap_details *details)
1555 {
1556 /* By default, zap all pages */
1557 if (!details || details->reclaim_pt)
1558 return true;
1559
1560 /* Or, we zap COWed pages only if the caller wants to */
1561 return details->even_cows;
1562 }
1563
1564 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1565 static inline bool should_zap_folio(struct zap_details *details,
1566 struct folio *folio)
1567 {
1568 /* If we can make a decision without *folio.. */
1569 if (should_zap_cows(details))
1570 return true;
1571
1572 /* Otherwise we should only zap non-anon folios */
1573 return !folio_test_anon(folio);
1574 }
1575
zap_drop_markers(struct zap_details * details)1576 static inline bool zap_drop_markers(struct zap_details *details)
1577 {
1578 if (!details)
1579 return false;
1580
1581 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1582 }
1583
1584 /*
1585 * This function makes sure that we'll replace the none pte with an uffd-wp
1586 * swap special pte marker when necessary. Must be with the pgtable lock held.
1587 *
1588 * Returns true if uffd-wp ptes was installed, false otherwise.
1589 */
1590 static inline bool
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1591 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1592 unsigned long addr, pte_t *pte, int nr,
1593 struct zap_details *details, pte_t pteval)
1594 {
1595 bool was_installed = false;
1596
1597 if (!uffd_supports_wp_marker())
1598 return false;
1599
1600 /* Zap on anonymous always means dropping everything */
1601 if (vma_is_anonymous(vma))
1602 return false;
1603
1604 if (zap_drop_markers(details))
1605 return false;
1606
1607 for (;;) {
1608 /* the PFN in the PTE is irrelevant. */
1609 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1610 was_installed = true;
1611 if (--nr == 0)
1612 break;
1613 pte++;
1614 addr += PAGE_SIZE;
1615 }
1616
1617 return was_installed;
1618 }
1619
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1620 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1621 struct vm_area_struct *vma, struct folio *folio,
1622 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1623 unsigned long addr, struct zap_details *details, int *rss,
1624 bool *force_flush, bool *force_break, bool *any_skipped)
1625 {
1626 struct mm_struct *mm = tlb->mm;
1627 bool delay_rmap = false;
1628
1629 if (!folio_test_anon(folio)) {
1630 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1631 if (pte_dirty(ptent)) {
1632 folio_mark_dirty(folio);
1633 if (tlb_delay_rmap(tlb)) {
1634 delay_rmap = true;
1635 *force_flush = true;
1636 }
1637 }
1638 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1639 folio_mark_accessed(folio);
1640 rss[mm_counter(folio)] -= nr;
1641 } else {
1642 /* We don't need up-to-date accessed/dirty bits. */
1643 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1644 rss[MM_ANONPAGES] -= nr;
1645 }
1646 /* Checking a single PTE in a batch is sufficient. */
1647 arch_check_zapped_pte(vma, ptent);
1648 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1649 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1650 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1651 nr, details, ptent);
1652
1653 if (!delay_rmap) {
1654 folio_remove_rmap_ptes(folio, page, nr, vma);
1655
1656 if (unlikely(folio_mapcount(folio) < 0))
1657 print_bad_pte(vma, addr, ptent, page);
1658 }
1659 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1660 *force_flush = true;
1661 *force_break = true;
1662 }
1663 }
1664
1665 /*
1666 * Zap or skip at least one present PTE, trying to batch-process subsequent
1667 * PTEs that map consecutive pages of the same folio.
1668 *
1669 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1670 */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1671 static inline int zap_present_ptes(struct mmu_gather *tlb,
1672 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1673 unsigned int max_nr, unsigned long addr,
1674 struct zap_details *details, int *rss, bool *force_flush,
1675 bool *force_break, bool *any_skipped)
1676 {
1677 struct mm_struct *mm = tlb->mm;
1678 struct folio *folio;
1679 struct page *page;
1680 int nr;
1681
1682 page = vm_normal_page(vma, addr, ptent);
1683 if (!page) {
1684 /* We don't need up-to-date accessed/dirty bits. */
1685 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1686 arch_check_zapped_pte(vma, ptent);
1687 tlb_remove_tlb_entry(tlb, pte, addr);
1688 if (userfaultfd_pte_wp(vma, ptent))
1689 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1690 pte, 1, details, ptent);
1691 ksm_might_unmap_zero_page(mm, ptent);
1692 return 1;
1693 }
1694
1695 folio = page_folio(page);
1696 if (unlikely(!should_zap_folio(details, folio))) {
1697 *any_skipped = true;
1698 return 1;
1699 }
1700
1701 /*
1702 * Make sure that the common "small folio" case is as fast as possible
1703 * by keeping the batching logic separate.
1704 */
1705 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1706 nr = folio_pte_batch(folio, pte, ptent, max_nr);
1707 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1708 addr, details, rss, force_flush,
1709 force_break, any_skipped);
1710 return nr;
1711 }
1712 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1713 details, rss, force_flush, force_break, any_skipped);
1714 return 1;
1715 }
1716
zap_nonpresent_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * any_skipped)1717 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1718 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1719 unsigned int max_nr, unsigned long addr,
1720 struct zap_details *details, int *rss, bool *any_skipped)
1721 {
1722 softleaf_t entry;
1723 int nr = 1;
1724
1725 *any_skipped = true;
1726 entry = softleaf_from_pte(ptent);
1727 if (softleaf_is_device_private(entry) ||
1728 softleaf_is_device_exclusive(entry)) {
1729 struct page *page = softleaf_to_page(entry);
1730 struct folio *folio = page_folio(page);
1731
1732 if (unlikely(!should_zap_folio(details, folio)))
1733 return 1;
1734 /*
1735 * Both device private/exclusive mappings should only
1736 * work with anonymous page so far, so we don't need to
1737 * consider uffd-wp bit when zap. For more information,
1738 * see zap_install_uffd_wp_if_needed().
1739 */
1740 WARN_ON_ONCE(!vma_is_anonymous(vma));
1741 rss[mm_counter(folio)]--;
1742 folio_remove_rmap_pte(folio, page, vma);
1743 folio_put(folio);
1744 } else if (softleaf_is_swap(entry)) {
1745 /* Genuine swap entries, hence a private anon pages */
1746 if (!should_zap_cows(details))
1747 return 1;
1748
1749 nr = swap_pte_batch(pte, max_nr, ptent);
1750 rss[MM_SWAPENTS] -= nr;
1751 free_swap_and_cache_nr(entry, nr);
1752 } else if (softleaf_is_migration(entry)) {
1753 struct folio *folio = softleaf_to_folio(entry);
1754
1755 if (!should_zap_folio(details, folio))
1756 return 1;
1757 rss[mm_counter(folio)]--;
1758 } else if (softleaf_is_uffd_wp_marker(entry)) {
1759 /*
1760 * For anon: always drop the marker; for file: only
1761 * drop the marker if explicitly requested.
1762 */
1763 if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1764 return 1;
1765 } else if (softleaf_is_guard_marker(entry)) {
1766 /*
1767 * Ordinary zapping should not remove guard PTE
1768 * markers. Only do so if we should remove PTE markers
1769 * in general.
1770 */
1771 if (!zap_drop_markers(details))
1772 return 1;
1773 } else if (softleaf_is_hwpoison(entry) ||
1774 softleaf_is_poison_marker(entry)) {
1775 if (!should_zap_cows(details))
1776 return 1;
1777 } else {
1778 /* We should have covered all the swap entry types */
1779 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1780 WARN_ON_ONCE(1);
1781 }
1782 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1783 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1784
1785 return nr;
1786 }
1787
do_zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,unsigned long addr,unsigned long end,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1788 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1789 struct vm_area_struct *vma, pte_t *pte,
1790 unsigned long addr, unsigned long end,
1791 struct zap_details *details, int *rss,
1792 bool *force_flush, bool *force_break,
1793 bool *any_skipped)
1794 {
1795 pte_t ptent = ptep_get(pte);
1796 int max_nr = (end - addr) / PAGE_SIZE;
1797 int nr = 0;
1798
1799 /* Skip all consecutive none ptes */
1800 if (pte_none(ptent)) {
1801 for (nr = 1; nr < max_nr; nr++) {
1802 ptent = ptep_get(pte + nr);
1803 if (!pte_none(ptent))
1804 break;
1805 }
1806 max_nr -= nr;
1807 if (!max_nr)
1808 return nr;
1809 pte += nr;
1810 addr += nr * PAGE_SIZE;
1811 }
1812
1813 if (pte_present(ptent))
1814 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1815 details, rss, force_flush, force_break,
1816 any_skipped);
1817 else
1818 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1819 details, rss, any_skipped);
1820
1821 return nr;
1822 }
1823
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1824 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1825 struct vm_area_struct *vma, pmd_t *pmd,
1826 unsigned long addr, unsigned long end,
1827 struct zap_details *details)
1828 {
1829 bool force_flush = false, force_break = false;
1830 struct mm_struct *mm = tlb->mm;
1831 int rss[NR_MM_COUNTERS];
1832 spinlock_t *ptl;
1833 pte_t *start_pte;
1834 pte_t *pte;
1835 pmd_t pmdval;
1836 unsigned long start = addr;
1837 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1838 bool direct_reclaim = true;
1839 int nr;
1840
1841 retry:
1842 tlb_change_page_size(tlb, PAGE_SIZE);
1843 init_rss_vec(rss);
1844 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1845 if (!pte)
1846 return addr;
1847
1848 flush_tlb_batched_pending(mm);
1849 arch_enter_lazy_mmu_mode();
1850 do {
1851 bool any_skipped = false;
1852
1853 if (need_resched()) {
1854 direct_reclaim = false;
1855 break;
1856 }
1857
1858 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1859 &force_flush, &force_break, &any_skipped);
1860 if (any_skipped)
1861 can_reclaim_pt = false;
1862 if (unlikely(force_break)) {
1863 addr += nr * PAGE_SIZE;
1864 direct_reclaim = false;
1865 break;
1866 }
1867 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1868
1869 /*
1870 * Fast path: try to hold the pmd lock and unmap the PTE page.
1871 *
1872 * If the pte lock was released midway (retry case), or if the attempt
1873 * to hold the pmd lock failed, then we need to recheck all pte entries
1874 * to ensure they are still none, thereby preventing the pte entries
1875 * from being repopulated by another thread.
1876 */
1877 if (can_reclaim_pt && direct_reclaim && addr == end)
1878 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1879
1880 add_mm_rss_vec(mm, rss);
1881 arch_leave_lazy_mmu_mode();
1882
1883 /* Do the actual TLB flush before dropping ptl */
1884 if (force_flush) {
1885 tlb_flush_mmu_tlbonly(tlb);
1886 tlb_flush_rmaps(tlb, vma);
1887 }
1888 pte_unmap_unlock(start_pte, ptl);
1889
1890 /*
1891 * If we forced a TLB flush (either due to running out of
1892 * batch buffers or because we needed to flush dirty TLB
1893 * entries before releasing the ptl), free the batched
1894 * memory too. Come back again if we didn't do everything.
1895 */
1896 if (force_flush)
1897 tlb_flush_mmu(tlb);
1898
1899 if (addr != end) {
1900 cond_resched();
1901 force_flush = false;
1902 force_break = false;
1903 goto retry;
1904 }
1905
1906 if (can_reclaim_pt) {
1907 if (direct_reclaim)
1908 free_pte(mm, start, tlb, pmdval);
1909 else
1910 try_to_free_pte(mm, pmd, start, tlb);
1911 }
1912
1913 return addr;
1914 }
1915
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1916 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1917 struct vm_area_struct *vma, pud_t *pud,
1918 unsigned long addr, unsigned long end,
1919 struct zap_details *details)
1920 {
1921 pmd_t *pmd;
1922 unsigned long next;
1923
1924 pmd = pmd_offset(pud, addr);
1925 do {
1926 next = pmd_addr_end(addr, end);
1927 if (pmd_is_huge(*pmd)) {
1928 if (next - addr != HPAGE_PMD_SIZE)
1929 __split_huge_pmd(vma, pmd, addr, false);
1930 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1931 addr = next;
1932 continue;
1933 }
1934 /* fall through */
1935 } else if (details && details->single_folio &&
1936 folio_test_pmd_mappable(details->single_folio) &&
1937 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1938 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1939 /*
1940 * Take and drop THP pmd lock so that we cannot return
1941 * prematurely, while zap_huge_pmd() has cleared *pmd,
1942 * but not yet decremented compound_mapcount().
1943 */
1944 spin_unlock(ptl);
1945 }
1946 if (pmd_none(*pmd)) {
1947 addr = next;
1948 continue;
1949 }
1950 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1951 if (addr != next)
1952 pmd--;
1953 } while (pmd++, cond_resched(), addr != end);
1954
1955 return addr;
1956 }
1957
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1958 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1959 struct vm_area_struct *vma, p4d_t *p4d,
1960 unsigned long addr, unsigned long end,
1961 struct zap_details *details)
1962 {
1963 pud_t *pud;
1964 unsigned long next;
1965
1966 pud = pud_offset(p4d, addr);
1967 do {
1968 next = pud_addr_end(addr, end);
1969 if (pud_trans_huge(*pud)) {
1970 if (next - addr != HPAGE_PUD_SIZE)
1971 split_huge_pud(vma, pud, addr);
1972 else if (zap_huge_pud(tlb, vma, pud, addr))
1973 goto next;
1974 /* fall through */
1975 }
1976 if (pud_none_or_clear_bad(pud))
1977 continue;
1978 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1979 next:
1980 cond_resched();
1981 } while (pud++, addr = next, addr != end);
1982
1983 return addr;
1984 }
1985
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1986 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1987 struct vm_area_struct *vma, pgd_t *pgd,
1988 unsigned long addr, unsigned long end,
1989 struct zap_details *details)
1990 {
1991 p4d_t *p4d;
1992 unsigned long next;
1993
1994 p4d = p4d_offset(pgd, addr);
1995 do {
1996 next = p4d_addr_end(addr, end);
1997 if (p4d_none_or_clear_bad(p4d))
1998 continue;
1999 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
2000 } while (p4d++, addr = next, addr != end);
2001
2002 return addr;
2003 }
2004
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)2005 void unmap_page_range(struct mmu_gather *tlb,
2006 struct vm_area_struct *vma,
2007 unsigned long addr, unsigned long end,
2008 struct zap_details *details)
2009 {
2010 pgd_t *pgd;
2011 unsigned long next;
2012
2013 BUG_ON(addr >= end);
2014 tlb_start_vma(tlb, vma);
2015 pgd = pgd_offset(vma->vm_mm, addr);
2016 do {
2017 next = pgd_addr_end(addr, end);
2018 if (pgd_none_or_clear_bad(pgd))
2019 continue;
2020 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
2021 } while (pgd++, addr = next, addr != end);
2022 tlb_end_vma(tlb, vma);
2023 }
2024
2025
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2026 static void unmap_single_vma(struct mmu_gather *tlb,
2027 struct vm_area_struct *vma, unsigned long start_addr,
2028 unsigned long end_addr, struct zap_details *details)
2029 {
2030 unsigned long start = max(vma->vm_start, start_addr);
2031 unsigned long end;
2032
2033 if (start >= vma->vm_end)
2034 return;
2035 end = min(vma->vm_end, end_addr);
2036 if (end <= vma->vm_start)
2037 return;
2038
2039 if (vma->vm_file)
2040 uprobe_munmap(vma, start, end);
2041
2042 if (start != end) {
2043 if (unlikely(is_vm_hugetlb_page(vma))) {
2044 /*
2045 * It is undesirable to test vma->vm_file as it
2046 * should be non-null for valid hugetlb area.
2047 * However, vm_file will be NULL in the error
2048 * cleanup path of mmap_region. When
2049 * hugetlbfs ->mmap method fails,
2050 * mmap_region() nullifies vma->vm_file
2051 * before calling this function to clean up.
2052 * Since no pte has actually been setup, it is
2053 * safe to do nothing in this case.
2054 */
2055 if (vma->vm_file) {
2056 zap_flags_t zap_flags = details ?
2057 details->zap_flags : 0;
2058 __unmap_hugepage_range(tlb, vma, start, end,
2059 NULL, zap_flags);
2060 }
2061 } else
2062 unmap_page_range(tlb, vma, start, end, details);
2063 }
2064 }
2065
2066 /**
2067 * unmap_vmas - unmap a range of memory covered by a list of vma's
2068 * @tlb: address of the caller's struct mmu_gather
2069 * @mas: the maple state
2070 * @vma: the starting vma
2071 * @start_addr: virtual address at which to start unmapping
2072 * @end_addr: virtual address at which to end unmapping
2073 * @tree_end: The maximum index to check
2074 *
2075 * Unmap all pages in the vma list.
2076 *
2077 * Only addresses between `start' and `end' will be unmapped.
2078 *
2079 * The VMA list must be sorted in ascending virtual address order.
2080 *
2081 * unmap_vmas() assumes that the caller will flush the whole unmapped address
2082 * range after unmap_vmas() returns. So the only responsibility here is to
2083 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
2084 * drops the lock and schedules.
2085 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end)2086 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2087 struct vm_area_struct *vma, unsigned long start_addr,
2088 unsigned long end_addr, unsigned long tree_end)
2089 {
2090 struct mmu_notifier_range range;
2091 struct zap_details details = {
2092 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
2093 /* Careful - we need to zap private pages too! */
2094 .even_cows = true,
2095 };
2096
2097 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
2098 start_addr, end_addr);
2099 mmu_notifier_invalidate_range_start(&range);
2100 do {
2101 unsigned long start = start_addr;
2102 unsigned long end = end_addr;
2103 hugetlb_zap_begin(vma, &start, &end);
2104 unmap_single_vma(tlb, vma, start, end, &details);
2105 hugetlb_zap_end(vma, &details);
2106 vma = mas_find(mas, tree_end - 1);
2107 } while (vma && likely(!xa_is_zero(vma)));
2108 mmu_notifier_invalidate_range_end(&range);
2109 }
2110
2111 /**
2112 * zap_page_range_single_batched - remove user pages in a given range
2113 * @tlb: pointer to the caller's struct mmu_gather
2114 * @vma: vm_area_struct holding the applicable pages
2115 * @address: starting address of pages to remove
2116 * @size: number of bytes to remove
2117 * @details: details of shared cache invalidation
2118 *
2119 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for
2120 * hugetlb, @tlb is flushed and re-initialized by this function.
2121 */
zap_page_range_single_batched(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2122 void zap_page_range_single_batched(struct mmu_gather *tlb,
2123 struct vm_area_struct *vma, unsigned long address,
2124 unsigned long size, struct zap_details *details)
2125 {
2126 const unsigned long end = address + size;
2127 struct mmu_notifier_range range;
2128
2129 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm);
2130
2131 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2132 address, end);
2133 hugetlb_zap_begin(vma, &range.start, &range.end);
2134 update_hiwater_rss(vma->vm_mm);
2135 mmu_notifier_invalidate_range_start(&range);
2136 /*
2137 * unmap 'address-end' not 'range.start-range.end' as range
2138 * could have been expanded for hugetlb pmd sharing.
2139 */
2140 unmap_single_vma(tlb, vma, address, end, details);
2141 mmu_notifier_invalidate_range_end(&range);
2142 if (is_vm_hugetlb_page(vma)) {
2143 /*
2144 * flush tlb and free resources before hugetlb_zap_end(), to
2145 * avoid concurrent page faults' allocation failure.
2146 */
2147 tlb_finish_mmu(tlb);
2148 hugetlb_zap_end(vma, details);
2149 tlb_gather_mmu(tlb, vma->vm_mm);
2150 }
2151 }
2152
2153 /**
2154 * zap_page_range_single - remove user pages in a given range
2155 * @vma: vm_area_struct holding the applicable pages
2156 * @address: starting address of pages to zap
2157 * @size: number of bytes to zap
2158 * @details: details of shared cache invalidation
2159 *
2160 * The range must fit into one VMA.
2161 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2162 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2163 unsigned long size, struct zap_details *details)
2164 {
2165 struct mmu_gather tlb;
2166
2167 tlb_gather_mmu(&tlb, vma->vm_mm);
2168 zap_page_range_single_batched(&tlb, vma, address, size, details);
2169 tlb_finish_mmu(&tlb);
2170 }
2171
2172 /**
2173 * zap_vma_ptes - remove ptes mapping the vma
2174 * @vma: vm_area_struct holding ptes to be zapped
2175 * @address: starting address of pages to zap
2176 * @size: number of bytes to zap
2177 *
2178 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2179 *
2180 * The entire address range must be fully contained within the vma.
2181 *
2182 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)2183 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2184 unsigned long size)
2185 {
2186 if (!range_in_vma(vma, address, address + size) ||
2187 !(vma->vm_flags & VM_PFNMAP))
2188 return;
2189
2190 zap_page_range_single(vma, address, size, NULL);
2191 }
2192 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2193
walk_to_pmd(struct mm_struct * mm,unsigned long addr)2194 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2195 {
2196 pgd_t *pgd;
2197 p4d_t *p4d;
2198 pud_t *pud;
2199 pmd_t *pmd;
2200
2201 pgd = pgd_offset(mm, addr);
2202 p4d = p4d_alloc(mm, pgd, addr);
2203 if (!p4d)
2204 return NULL;
2205 pud = pud_alloc(mm, p4d, addr);
2206 if (!pud)
2207 return NULL;
2208 pmd = pmd_alloc(mm, pud, addr);
2209 if (!pmd)
2210 return NULL;
2211
2212 VM_BUG_ON(pmd_trans_huge(*pmd));
2213 return pmd;
2214 }
2215
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2216 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2217 spinlock_t **ptl)
2218 {
2219 pmd_t *pmd = walk_to_pmd(mm, addr);
2220
2221 if (!pmd)
2222 return NULL;
2223 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2224 }
2225
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)2226 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2227 {
2228 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2229 /*
2230 * Whoever wants to forbid the zeropage after some zeropages
2231 * might already have been mapped has to scan the page tables and
2232 * bail out on any zeropages. Zeropages in COW mappings can
2233 * be unshared using FAULT_FLAG_UNSHARE faults.
2234 */
2235 if (mm_forbids_zeropage(vma->vm_mm))
2236 return false;
2237 /* zeropages in COW mappings are common and unproblematic. */
2238 if (is_cow_mapping(vma->vm_flags))
2239 return true;
2240 /* Mappings that do not allow for writable PTEs are unproblematic. */
2241 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2242 return true;
2243 /*
2244 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2245 * find the shared zeropage and longterm-pin it, which would
2246 * be problematic as soon as the zeropage gets replaced by a different
2247 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2248 * now differ to what GUP looked up. FSDAX is incompatible to
2249 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2250 * check_vma_flags).
2251 */
2252 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2253 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2254 }
2255
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2256 static int validate_page_before_insert(struct vm_area_struct *vma,
2257 struct page *page)
2258 {
2259 struct folio *folio = page_folio(page);
2260
2261 if (!folio_ref_count(folio))
2262 return -EINVAL;
2263 if (unlikely(is_zero_folio(folio))) {
2264 if (!vm_mixed_zeropage_allowed(vma))
2265 return -EINVAL;
2266 return 0;
2267 }
2268 if (folio_test_anon(folio) || page_has_type(page))
2269 return -EINVAL;
2270 flush_dcache_folio(folio);
2271 return 0;
2272 }
2273
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2274 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2275 unsigned long addr, struct page *page,
2276 pgprot_t prot, bool mkwrite)
2277 {
2278 struct folio *folio = page_folio(page);
2279 pte_t pteval = ptep_get(pte);
2280
2281 if (!pte_none(pteval)) {
2282 if (!mkwrite)
2283 return -EBUSY;
2284
2285 /* see insert_pfn(). */
2286 if (pte_pfn(pteval) != page_to_pfn(page)) {
2287 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval)));
2288 return -EFAULT;
2289 }
2290 pteval = maybe_mkwrite(pteval, vma);
2291 pteval = pte_mkyoung(pteval);
2292 if (ptep_set_access_flags(vma, addr, pte, pteval, 1))
2293 update_mmu_cache(vma, addr, pte);
2294 return 0;
2295 }
2296
2297 /* Ok, finally just insert the thing.. */
2298 pteval = mk_pte(page, prot);
2299 if (unlikely(is_zero_folio(folio))) {
2300 pteval = pte_mkspecial(pteval);
2301 } else {
2302 folio_get(folio);
2303 pteval = mk_pte(page, prot);
2304 if (mkwrite) {
2305 pteval = pte_mkyoung(pteval);
2306 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma);
2307 }
2308 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2309 folio_add_file_rmap_pte(folio, page, vma);
2310 }
2311 set_pte_at(vma->vm_mm, addr, pte, pteval);
2312 return 0;
2313 }
2314
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2315 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2316 struct page *page, pgprot_t prot, bool mkwrite)
2317 {
2318 int retval;
2319 pte_t *pte;
2320 spinlock_t *ptl;
2321
2322 retval = validate_page_before_insert(vma, page);
2323 if (retval)
2324 goto out;
2325 retval = -ENOMEM;
2326 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2327 if (!pte)
2328 goto out;
2329 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot,
2330 mkwrite);
2331 pte_unmap_unlock(pte, ptl);
2332 out:
2333 return retval;
2334 }
2335
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2336 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2337 unsigned long addr, struct page *page, pgprot_t prot)
2338 {
2339 int err;
2340
2341 err = validate_page_before_insert(vma, page);
2342 if (err)
2343 return err;
2344 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false);
2345 }
2346
2347 /* insert_pages() amortizes the cost of spinlock operations
2348 * when inserting pages in a loop.
2349 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2350 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2351 struct page **pages, unsigned long *num, pgprot_t prot)
2352 {
2353 pmd_t *pmd = NULL;
2354 pte_t *start_pte, *pte;
2355 spinlock_t *pte_lock;
2356 struct mm_struct *const mm = vma->vm_mm;
2357 unsigned long curr_page_idx = 0;
2358 unsigned long remaining_pages_total = *num;
2359 unsigned long pages_to_write_in_pmd;
2360 int ret;
2361 more:
2362 ret = -EFAULT;
2363 pmd = walk_to_pmd(mm, addr);
2364 if (!pmd)
2365 goto out;
2366
2367 pages_to_write_in_pmd = min_t(unsigned long,
2368 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2369
2370 /* Allocate the PTE if necessary; takes PMD lock once only. */
2371 ret = -ENOMEM;
2372 if (pte_alloc(mm, pmd))
2373 goto out;
2374
2375 while (pages_to_write_in_pmd) {
2376 int pte_idx = 0;
2377 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2378
2379 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2380 if (!start_pte) {
2381 ret = -EFAULT;
2382 goto out;
2383 }
2384 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2385 int err = insert_page_in_batch_locked(vma, pte,
2386 addr, pages[curr_page_idx], prot);
2387 if (unlikely(err)) {
2388 pte_unmap_unlock(start_pte, pte_lock);
2389 ret = err;
2390 remaining_pages_total -= pte_idx;
2391 goto out;
2392 }
2393 addr += PAGE_SIZE;
2394 ++curr_page_idx;
2395 }
2396 pte_unmap_unlock(start_pte, pte_lock);
2397 pages_to_write_in_pmd -= batch_size;
2398 remaining_pages_total -= batch_size;
2399 }
2400 if (remaining_pages_total)
2401 goto more;
2402 ret = 0;
2403 out:
2404 *num = remaining_pages_total;
2405 return ret;
2406 }
2407
2408 /**
2409 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2410 * @vma: user vma to map to
2411 * @addr: target start user address of these pages
2412 * @pages: source kernel pages
2413 * @num: in: number of pages to map. out: number of pages that were *not*
2414 * mapped. (0 means all pages were successfully mapped).
2415 *
2416 * Preferred over vm_insert_page() when inserting multiple pages.
2417 *
2418 * In case of error, we may have mapped a subset of the provided
2419 * pages. It is the caller's responsibility to account for this case.
2420 *
2421 * The same restrictions apply as in vm_insert_page().
2422 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2423 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2424 struct page **pages, unsigned long *num)
2425 {
2426 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2427
2428 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2429 return -EFAULT;
2430 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2431 BUG_ON(mmap_read_trylock(vma->vm_mm));
2432 BUG_ON(vma->vm_flags & VM_PFNMAP);
2433 vm_flags_set(vma, VM_MIXEDMAP);
2434 }
2435 /* Defer page refcount checking till we're about to map that page. */
2436 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2437 }
2438 EXPORT_SYMBOL(vm_insert_pages);
2439
2440 /**
2441 * vm_insert_page - insert single page into user vma
2442 * @vma: user vma to map to
2443 * @addr: target user address of this page
2444 * @page: source kernel page
2445 *
2446 * This allows drivers to insert individual pages they've allocated
2447 * into a user vma. The zeropage is supported in some VMAs,
2448 * see vm_mixed_zeropage_allowed().
2449 *
2450 * The page has to be a nice clean _individual_ kernel allocation.
2451 * If you allocate a compound page, you need to have marked it as
2452 * such (__GFP_COMP), or manually just split the page up yourself
2453 * (see split_page()).
2454 *
2455 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2456 * took an arbitrary page protection parameter. This doesn't allow
2457 * that. Your vma protection will have to be set up correctly, which
2458 * means that if you want a shared writable mapping, you'd better
2459 * ask for a shared writable mapping!
2460 *
2461 * The page does not need to be reserved.
2462 *
2463 * Usually this function is called from f_op->mmap() handler
2464 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2465 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2466 * function from other places, for example from page-fault handler.
2467 *
2468 * Return: %0 on success, negative error code otherwise.
2469 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2471 struct page *page)
2472 {
2473 if (addr < vma->vm_start || addr >= vma->vm_end)
2474 return -EFAULT;
2475 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2476 BUG_ON(mmap_read_trylock(vma->vm_mm));
2477 BUG_ON(vma->vm_flags & VM_PFNMAP);
2478 vm_flags_set(vma, VM_MIXEDMAP);
2479 }
2480 return insert_page(vma, addr, page, vma->vm_page_prot, false);
2481 }
2482 EXPORT_SYMBOL(vm_insert_page);
2483
2484 /*
2485 * __vm_map_pages - maps range of kernel pages into user vma
2486 * @vma: user vma to map to
2487 * @pages: pointer to array of source kernel pages
2488 * @num: number of pages in page array
2489 * @offset: user's requested vm_pgoff
2490 *
2491 * This allows drivers to map range of kernel pages into a user vma.
2492 * The zeropage is supported in some VMAs, see
2493 * vm_mixed_zeropage_allowed().
2494 *
2495 * Return: 0 on success and error code otherwise.
2496 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2497 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2498 unsigned long num, unsigned long offset)
2499 {
2500 unsigned long count = vma_pages(vma);
2501 unsigned long uaddr = vma->vm_start;
2502 int ret, i;
2503
2504 /* Fail if the user requested offset is beyond the end of the object */
2505 if (offset >= num)
2506 return -ENXIO;
2507
2508 /* Fail if the user requested size exceeds available object size */
2509 if (count > num - offset)
2510 return -ENXIO;
2511
2512 for (i = 0; i < count; i++) {
2513 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2514 if (ret < 0)
2515 return ret;
2516 uaddr += PAGE_SIZE;
2517 }
2518
2519 return 0;
2520 }
2521
2522 /**
2523 * vm_map_pages - maps range of kernel pages starts with non zero offset
2524 * @vma: user vma to map to
2525 * @pages: pointer to array of source kernel pages
2526 * @num: number of pages in page array
2527 *
2528 * Maps an object consisting of @num pages, catering for the user's
2529 * requested vm_pgoff
2530 *
2531 * If we fail to insert any page into the vma, the function will return
2532 * immediately leaving any previously inserted pages present. Callers
2533 * from the mmap handler may immediately return the error as their caller
2534 * will destroy the vma, removing any successfully inserted pages. Other
2535 * callers should make their own arrangements for calling unmap_region().
2536 *
2537 * Context: Process context. Called by mmap handlers.
2538 * Return: 0 on success and error code otherwise.
2539 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2540 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2541 unsigned long num)
2542 {
2543 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2544 }
2545 EXPORT_SYMBOL(vm_map_pages);
2546
2547 /**
2548 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2549 * @vma: user vma to map to
2550 * @pages: pointer to array of source kernel pages
2551 * @num: number of pages in page array
2552 *
2553 * Similar to vm_map_pages(), except that it explicitly sets the offset
2554 * to 0. This function is intended for the drivers that did not consider
2555 * vm_pgoff.
2556 *
2557 * Context: Process context. Called by mmap handlers.
2558 * Return: 0 on success and error code otherwise.
2559 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2560 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2561 unsigned long num)
2562 {
2563 return __vm_map_pages(vma, pages, num, 0);
2564 }
2565 EXPORT_SYMBOL(vm_map_pages_zero);
2566
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot,bool mkwrite)2567 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2568 unsigned long pfn, pgprot_t prot, bool mkwrite)
2569 {
2570 struct mm_struct *mm = vma->vm_mm;
2571 pte_t *pte, entry;
2572 spinlock_t *ptl;
2573
2574 pte = get_locked_pte(mm, addr, &ptl);
2575 if (!pte)
2576 return VM_FAULT_OOM;
2577 entry = ptep_get(pte);
2578 if (!pte_none(entry)) {
2579 if (mkwrite) {
2580 /*
2581 * For read faults on private mappings the PFN passed
2582 * in may not match the PFN we have mapped if the
2583 * mapped PFN is a writeable COW page. In the mkwrite
2584 * case we are creating a writable PTE for a shared
2585 * mapping and we expect the PFNs to match. If they
2586 * don't match, we are likely racing with block
2587 * allocation and mapping invalidation so just skip the
2588 * update.
2589 */
2590 if (pte_pfn(entry) != pfn) {
2591 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2592 goto out_unlock;
2593 }
2594 entry = pte_mkyoung(entry);
2595 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2596 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2597 update_mmu_cache(vma, addr, pte);
2598 }
2599 goto out_unlock;
2600 }
2601
2602 /* Ok, finally just insert the thing.. */
2603 entry = pte_mkspecial(pfn_pte(pfn, prot));
2604
2605 if (mkwrite) {
2606 entry = pte_mkyoung(entry);
2607 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2608 }
2609
2610 set_pte_at(mm, addr, pte, entry);
2611 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2612
2613 out_unlock:
2614 pte_unmap_unlock(pte, ptl);
2615 return VM_FAULT_NOPAGE;
2616 }
2617
2618 /**
2619 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2620 * @vma: user vma to map to
2621 * @addr: target user address of this page
2622 * @pfn: source kernel pfn
2623 * @pgprot: pgprot flags for the inserted page
2624 *
2625 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2626 * to override pgprot on a per-page basis.
2627 *
2628 * This only makes sense for IO mappings, and it makes no sense for
2629 * COW mappings. In general, using multiple vmas is preferable;
2630 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2631 * impractical.
2632 *
2633 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2634 * caching- and encryption bits different than those of @vma->vm_page_prot,
2635 * because the caching- or encryption mode may not be known at mmap() time.
2636 *
2637 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2638 * to set caching and encryption bits for those vmas (except for COW pages).
2639 * This is ensured by core vm only modifying these page table entries using
2640 * functions that don't touch caching- or encryption bits, using pte_modify()
2641 * if needed. (See for example mprotect()).
2642 *
2643 * Also when new page-table entries are created, this is only done using the
2644 * fault() callback, and never using the value of vma->vm_page_prot,
2645 * except for page-table entries that point to anonymous pages as the result
2646 * of COW.
2647 *
2648 * Context: Process context. May allocate using %GFP_KERNEL.
2649 * Return: vm_fault_t value.
2650 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2651 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2652 unsigned long pfn, pgprot_t pgprot)
2653 {
2654 /*
2655 * Technically, architectures with pte_special can avoid all these
2656 * restrictions (same for remap_pfn_range). However we would like
2657 * consistency in testing and feature parity among all, so we should
2658 * try to keep these invariants in place for everybody.
2659 */
2660 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2661 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2662 (VM_PFNMAP|VM_MIXEDMAP));
2663 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2664 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2665
2666 if (addr < vma->vm_start || addr >= vma->vm_end)
2667 return VM_FAULT_SIGBUS;
2668
2669 if (!pfn_modify_allowed(pfn, pgprot))
2670 return VM_FAULT_SIGBUS;
2671
2672 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2673
2674 return insert_pfn(vma, addr, pfn, pgprot, false);
2675 }
2676 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2677
2678 /**
2679 * vmf_insert_pfn - insert single pfn into user vma
2680 * @vma: user vma to map to
2681 * @addr: target user address of this page
2682 * @pfn: source kernel pfn
2683 *
2684 * Similar to vm_insert_page, this allows drivers to insert individual pages
2685 * they've allocated into a user vma. Same comments apply.
2686 *
2687 * This function should only be called from a vm_ops->fault handler, and
2688 * in that case the handler should return the result of this function.
2689 *
2690 * vma cannot be a COW mapping.
2691 *
2692 * As this is called only for pages that do not currently exist, we
2693 * do not need to flush old virtual caches or the TLB.
2694 *
2695 * Context: Process context. May allocate using %GFP_KERNEL.
2696 * Return: vm_fault_t value.
2697 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2698 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2699 unsigned long pfn)
2700 {
2701 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2702 }
2703 EXPORT_SYMBOL(vmf_insert_pfn);
2704
vm_mixed_ok(struct vm_area_struct * vma,unsigned long pfn,bool mkwrite)2705 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn,
2706 bool mkwrite)
2707 {
2708 if (unlikely(is_zero_pfn(pfn)) &&
2709 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2710 return false;
2711 /* these checks mirror the abort conditions in vm_normal_page */
2712 if (vma->vm_flags & VM_MIXEDMAP)
2713 return true;
2714 if (is_zero_pfn(pfn))
2715 return true;
2716 return false;
2717 }
2718
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,bool mkwrite)2719 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2720 unsigned long addr, unsigned long pfn, bool mkwrite)
2721 {
2722 pgprot_t pgprot = vma->vm_page_prot;
2723 int err;
2724
2725 if (!vm_mixed_ok(vma, pfn, mkwrite))
2726 return VM_FAULT_SIGBUS;
2727
2728 if (addr < vma->vm_start || addr >= vma->vm_end)
2729 return VM_FAULT_SIGBUS;
2730
2731 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2732
2733 if (!pfn_modify_allowed(pfn, pgprot))
2734 return VM_FAULT_SIGBUS;
2735
2736 /*
2737 * If we don't have pte special, then we have to use the pfn_valid()
2738 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2739 * refcount the page if pfn_valid is true (hence insert_page rather
2740 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2741 * without pte special, it would there be refcounted as a normal page.
2742 */
2743 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) {
2744 struct page *page;
2745
2746 /*
2747 * At this point we are committed to insert_page()
2748 * regardless of whether the caller specified flags that
2749 * result in pfn_t_has_page() == false.
2750 */
2751 page = pfn_to_page(pfn);
2752 err = insert_page(vma, addr, page, pgprot, mkwrite);
2753 } else {
2754 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2755 }
2756
2757 if (err == -ENOMEM)
2758 return VM_FAULT_OOM;
2759 if (err < 0 && err != -EBUSY)
2760 return VM_FAULT_SIGBUS;
2761
2762 return VM_FAULT_NOPAGE;
2763 }
2764
vmf_insert_page_mkwrite(struct vm_fault * vmf,struct page * page,bool write)2765 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
2766 bool write)
2767 {
2768 pgprot_t pgprot = vmf->vma->vm_page_prot;
2769 unsigned long addr = vmf->address;
2770 int err;
2771
2772 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end)
2773 return VM_FAULT_SIGBUS;
2774
2775 err = insert_page(vmf->vma, addr, page, pgprot, write);
2776 if (err == -ENOMEM)
2777 return VM_FAULT_OOM;
2778 if (err < 0 && err != -EBUSY)
2779 return VM_FAULT_SIGBUS;
2780
2781 return VM_FAULT_NOPAGE;
2782 }
2783 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite);
2784
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2785 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2786 unsigned long pfn)
2787 {
2788 return __vm_insert_mixed(vma, addr, pfn, false);
2789 }
2790 EXPORT_SYMBOL(vmf_insert_mixed);
2791
2792 /*
2793 * If the insertion of PTE failed because someone else already added a
2794 * different entry in the mean time, we treat that as success as we assume
2795 * the same entry was actually inserted.
2796 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2797 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2798 unsigned long addr, unsigned long pfn)
2799 {
2800 return __vm_insert_mixed(vma, addr, pfn, true);
2801 }
2802
2803 /*
2804 * maps a range of physical memory into the requested pages. the old
2805 * mappings are removed. any references to nonexistent pages results
2806 * in null mappings (currently treated as "copy-on-access")
2807 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2808 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2809 unsigned long addr, unsigned long end,
2810 unsigned long pfn, pgprot_t prot)
2811 {
2812 pte_t *pte, *mapped_pte;
2813 spinlock_t *ptl;
2814 int err = 0;
2815
2816 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2817 if (!pte)
2818 return -ENOMEM;
2819 arch_enter_lazy_mmu_mode();
2820 do {
2821 BUG_ON(!pte_none(ptep_get(pte)));
2822 if (!pfn_modify_allowed(pfn, prot)) {
2823 err = -EACCES;
2824 break;
2825 }
2826 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2827 pfn++;
2828 } while (pte++, addr += PAGE_SIZE, addr != end);
2829 arch_leave_lazy_mmu_mode();
2830 pte_unmap_unlock(mapped_pte, ptl);
2831 return err;
2832 }
2833
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2834 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2835 unsigned long addr, unsigned long end,
2836 unsigned long pfn, pgprot_t prot)
2837 {
2838 pmd_t *pmd;
2839 unsigned long next;
2840 int err;
2841
2842 pfn -= addr >> PAGE_SHIFT;
2843 pmd = pmd_alloc(mm, pud, addr);
2844 if (!pmd)
2845 return -ENOMEM;
2846 VM_BUG_ON(pmd_trans_huge(*pmd));
2847 do {
2848 next = pmd_addr_end(addr, end);
2849 err = remap_pte_range(mm, pmd, addr, next,
2850 pfn + (addr >> PAGE_SHIFT), prot);
2851 if (err)
2852 return err;
2853 } while (pmd++, addr = next, addr != end);
2854 return 0;
2855 }
2856
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2857 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2858 unsigned long addr, unsigned long end,
2859 unsigned long pfn, pgprot_t prot)
2860 {
2861 pud_t *pud;
2862 unsigned long next;
2863 int err;
2864
2865 pfn -= addr >> PAGE_SHIFT;
2866 pud = pud_alloc(mm, p4d, addr);
2867 if (!pud)
2868 return -ENOMEM;
2869 do {
2870 next = pud_addr_end(addr, end);
2871 err = remap_pmd_range(mm, pud, addr, next,
2872 pfn + (addr >> PAGE_SHIFT), prot);
2873 if (err)
2874 return err;
2875 } while (pud++, addr = next, addr != end);
2876 return 0;
2877 }
2878
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2879 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2880 unsigned long addr, unsigned long end,
2881 unsigned long pfn, pgprot_t prot)
2882 {
2883 p4d_t *p4d;
2884 unsigned long next;
2885 int err;
2886
2887 pfn -= addr >> PAGE_SHIFT;
2888 p4d = p4d_alloc(mm, pgd, addr);
2889 if (!p4d)
2890 return -ENOMEM;
2891 do {
2892 next = p4d_addr_end(addr, end);
2893 err = remap_pud_range(mm, p4d, addr, next,
2894 pfn + (addr >> PAGE_SHIFT), prot);
2895 if (err)
2896 return err;
2897 } while (p4d++, addr = next, addr != end);
2898 return 0;
2899 }
2900
get_remap_pgoff(vm_flags_t vm_flags,unsigned long addr,unsigned long end,unsigned long vm_start,unsigned long vm_end,unsigned long pfn,pgoff_t * vm_pgoff_p)2901 static int get_remap_pgoff(vm_flags_t vm_flags, unsigned long addr,
2902 unsigned long end, unsigned long vm_start, unsigned long vm_end,
2903 unsigned long pfn, pgoff_t *vm_pgoff_p)
2904 {
2905 /*
2906 * There's a horrible special case to handle copy-on-write
2907 * behaviour that some programs depend on. We mark the "original"
2908 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2909 * See vm_normal_page() for details.
2910 */
2911 if (is_cow_mapping(vm_flags)) {
2912 if (addr != vm_start || end != vm_end)
2913 return -EINVAL;
2914 *vm_pgoff_p = pfn;
2915 }
2916
2917 return 0;
2918 }
2919
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2920 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2921 unsigned long pfn, unsigned long size, pgprot_t prot)
2922 {
2923 pgd_t *pgd;
2924 unsigned long next;
2925 unsigned long end = addr + PAGE_ALIGN(size);
2926 struct mm_struct *mm = vma->vm_mm;
2927 int err;
2928
2929 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2930 return -EINVAL;
2931
2932 VM_WARN_ON_ONCE((vma->vm_flags & VM_REMAP_FLAGS) != VM_REMAP_FLAGS);
2933
2934 BUG_ON(addr >= end);
2935 pfn -= addr >> PAGE_SHIFT;
2936 pgd = pgd_offset(mm, addr);
2937 flush_cache_range(vma, addr, end);
2938 do {
2939 next = pgd_addr_end(addr, end);
2940 err = remap_p4d_range(mm, pgd, addr, next,
2941 pfn + (addr >> PAGE_SHIFT), prot);
2942 if (err)
2943 return err;
2944 } while (pgd++, addr = next, addr != end);
2945
2946 return 0;
2947 }
2948
2949 /*
2950 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2951 * must have pre-validated the caching bits of the pgprot_t.
2952 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2953 static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2954 unsigned long pfn, unsigned long size, pgprot_t prot)
2955 {
2956 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2957
2958 if (!error)
2959 return 0;
2960
2961 /*
2962 * A partial pfn range mapping is dangerous: it does not
2963 * maintain page reference counts, and callers may free
2964 * pages due to the error. So zap it early.
2965 */
2966 zap_page_range_single(vma, addr, size, NULL);
2967 return error;
2968 }
2969
2970 #ifdef __HAVE_PFNMAP_TRACKING
pfnmap_track_ctx_alloc(unsigned long pfn,unsigned long size,pgprot_t * prot)2971 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn,
2972 unsigned long size, pgprot_t *prot)
2973 {
2974 struct pfnmap_track_ctx *ctx;
2975
2976 if (pfnmap_track(pfn, size, prot))
2977 return ERR_PTR(-EINVAL);
2978
2979 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
2980 if (unlikely(!ctx)) {
2981 pfnmap_untrack(pfn, size);
2982 return ERR_PTR(-ENOMEM);
2983 }
2984
2985 ctx->pfn = pfn;
2986 ctx->size = size;
2987 kref_init(&ctx->kref);
2988 return ctx;
2989 }
2990
pfnmap_track_ctx_release(struct kref * ref)2991 void pfnmap_track_ctx_release(struct kref *ref)
2992 {
2993 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref);
2994
2995 pfnmap_untrack(ctx->pfn, ctx->size);
2996 kfree(ctx);
2997 }
2998
remap_pfn_range_track(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2999 static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr,
3000 unsigned long pfn, unsigned long size, pgprot_t prot)
3001 {
3002 struct pfnmap_track_ctx *ctx = NULL;
3003 int err;
3004
3005 size = PAGE_ALIGN(size);
3006
3007 /*
3008 * If we cover the full VMA, we'll perform actual tracking, and
3009 * remember to untrack when the last reference to our tracking
3010 * context from a VMA goes away. We'll keep tracking the whole pfn
3011 * range even during VMA splits and partial unmapping.
3012 *
3013 * If we only cover parts of the VMA, we'll only setup the cachemode
3014 * in the pgprot for the pfn range.
3015 */
3016 if (addr == vma->vm_start && addr + size == vma->vm_end) {
3017 if (vma->pfnmap_track_ctx)
3018 return -EINVAL;
3019 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot);
3020 if (IS_ERR(ctx))
3021 return PTR_ERR(ctx);
3022 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) {
3023 return -EINVAL;
3024 }
3025
3026 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3027 if (ctx) {
3028 if (err)
3029 kref_put(&ctx->kref, pfnmap_track_ctx_release);
3030 else
3031 vma->pfnmap_track_ctx = ctx;
3032 }
3033 return err;
3034 }
3035
do_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3036 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3037 unsigned long pfn, unsigned long size, pgprot_t prot)
3038 {
3039 return remap_pfn_range_track(vma, addr, pfn, size, prot);
3040 }
3041 #else
do_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3042 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3043 unsigned long pfn, unsigned long size, pgprot_t prot)
3044 {
3045 return remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3046 }
3047 #endif
3048
remap_pfn_range_prepare(struct vm_area_desc * desc,unsigned long pfn)3049 void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn)
3050 {
3051 /*
3052 * We set addr=VMA start, end=VMA end here, so this won't fail, but we
3053 * check it again on complete and will fail there if specified addr is
3054 * invalid.
3055 */
3056 get_remap_pgoff(desc->vm_flags, desc->start, desc->end,
3057 desc->start, desc->end, pfn, &desc->pgoff);
3058 desc->vm_flags |= VM_REMAP_FLAGS;
3059 }
3060
remap_pfn_range_prepare_vma(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size)3061 static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr,
3062 unsigned long pfn, unsigned long size)
3063 {
3064 unsigned long end = addr + PAGE_ALIGN(size);
3065 int err;
3066
3067 err = get_remap_pgoff(vma->vm_flags, addr, end,
3068 vma->vm_start, vma->vm_end,
3069 pfn, &vma->vm_pgoff);
3070 if (err)
3071 return err;
3072
3073 vm_flags_set(vma, VM_REMAP_FLAGS);
3074 return 0;
3075 }
3076
3077 /**
3078 * remap_pfn_range - remap kernel memory to userspace
3079 * @vma: user vma to map to
3080 * @addr: target page aligned user address to start at
3081 * @pfn: page frame number of kernel physical memory address
3082 * @size: size of mapping area
3083 * @prot: page protection flags for this mapping
3084 *
3085 * Note: this is only safe if the mm semaphore is held when called.
3086 *
3087 * Return: %0 on success, negative error code otherwise.
3088 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3089 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3090 unsigned long pfn, unsigned long size, pgprot_t prot)
3091 {
3092 int err;
3093
3094 err = remap_pfn_range_prepare_vma(vma, addr, pfn, size);
3095 if (err)
3096 return err;
3097
3098 return do_remap_pfn_range(vma, addr, pfn, size, prot);
3099 }
3100 EXPORT_SYMBOL(remap_pfn_range);
3101
remap_pfn_range_complete(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3102 int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr,
3103 unsigned long pfn, unsigned long size, pgprot_t prot)
3104 {
3105 return do_remap_pfn_range(vma, addr, pfn, size, prot);
3106 }
3107
3108 /**
3109 * vm_iomap_memory - remap memory to userspace
3110 * @vma: user vma to map to
3111 * @start: start of the physical memory to be mapped
3112 * @len: size of area
3113 *
3114 * This is a simplified io_remap_pfn_range() for common driver use. The
3115 * driver just needs to give us the physical memory range to be mapped,
3116 * we'll figure out the rest from the vma information.
3117 *
3118 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
3119 * whatever write-combining details or similar.
3120 *
3121 * Return: %0 on success, negative error code otherwise.
3122 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)3123 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
3124 {
3125 unsigned long vm_len, pfn, pages;
3126
3127 /* Check that the physical memory area passed in looks valid */
3128 if (start + len < start)
3129 return -EINVAL;
3130 /*
3131 * You *really* shouldn't map things that aren't page-aligned,
3132 * but we've historically allowed it because IO memory might
3133 * just have smaller alignment.
3134 */
3135 len += start & ~PAGE_MASK;
3136 pfn = start >> PAGE_SHIFT;
3137 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
3138 if (pfn + pages < pfn)
3139 return -EINVAL;
3140
3141 /* We start the mapping 'vm_pgoff' pages into the area */
3142 if (vma->vm_pgoff > pages)
3143 return -EINVAL;
3144 pfn += vma->vm_pgoff;
3145 pages -= vma->vm_pgoff;
3146
3147 /* Can we fit all of the mapping? */
3148 vm_len = vma->vm_end - vma->vm_start;
3149 if (vm_len >> PAGE_SHIFT > pages)
3150 return -EINVAL;
3151
3152 /* Ok, let it rip */
3153 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
3154 }
3155 EXPORT_SYMBOL(vm_iomap_memory);
3156
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3157 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
3158 unsigned long addr, unsigned long end,
3159 pte_fn_t fn, void *data, bool create,
3160 pgtbl_mod_mask *mask)
3161 {
3162 pte_t *pte, *mapped_pte;
3163 int err = 0;
3164 spinlock_t *ptl;
3165
3166 if (create) {
3167 mapped_pte = pte = (mm == &init_mm) ?
3168 pte_alloc_kernel_track(pmd, addr, mask) :
3169 pte_alloc_map_lock(mm, pmd, addr, &ptl);
3170 if (!pte)
3171 return -ENOMEM;
3172 } else {
3173 mapped_pte = pte = (mm == &init_mm) ?
3174 pte_offset_kernel(pmd, addr) :
3175 pte_offset_map_lock(mm, pmd, addr, &ptl);
3176 if (!pte)
3177 return -EINVAL;
3178 }
3179
3180 arch_enter_lazy_mmu_mode();
3181
3182 if (fn) {
3183 do {
3184 if (create || !pte_none(ptep_get(pte))) {
3185 err = fn(pte, addr, data);
3186 if (err)
3187 break;
3188 }
3189 } while (pte++, addr += PAGE_SIZE, addr != end);
3190 }
3191 *mask |= PGTBL_PTE_MODIFIED;
3192
3193 arch_leave_lazy_mmu_mode();
3194
3195 if (mm != &init_mm)
3196 pte_unmap_unlock(mapped_pte, ptl);
3197 return err;
3198 }
3199
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3200 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
3201 unsigned long addr, unsigned long end,
3202 pte_fn_t fn, void *data, bool create,
3203 pgtbl_mod_mask *mask)
3204 {
3205 pmd_t *pmd;
3206 unsigned long next;
3207 int err = 0;
3208
3209 BUG_ON(pud_leaf(*pud));
3210
3211 if (create) {
3212 pmd = pmd_alloc_track(mm, pud, addr, mask);
3213 if (!pmd)
3214 return -ENOMEM;
3215 } else {
3216 pmd = pmd_offset(pud, addr);
3217 }
3218 do {
3219 next = pmd_addr_end(addr, end);
3220 if (pmd_none(*pmd) && !create)
3221 continue;
3222 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
3223 return -EINVAL;
3224 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
3225 if (!create)
3226 continue;
3227 pmd_clear_bad(pmd);
3228 }
3229 err = apply_to_pte_range(mm, pmd, addr, next,
3230 fn, data, create, mask);
3231 if (err)
3232 break;
3233 } while (pmd++, addr = next, addr != end);
3234
3235 return err;
3236 }
3237
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3238 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
3239 unsigned long addr, unsigned long end,
3240 pte_fn_t fn, void *data, bool create,
3241 pgtbl_mod_mask *mask)
3242 {
3243 pud_t *pud;
3244 unsigned long next;
3245 int err = 0;
3246
3247 if (create) {
3248 pud = pud_alloc_track(mm, p4d, addr, mask);
3249 if (!pud)
3250 return -ENOMEM;
3251 } else {
3252 pud = pud_offset(p4d, addr);
3253 }
3254 do {
3255 next = pud_addr_end(addr, end);
3256 if (pud_none(*pud) && !create)
3257 continue;
3258 if (WARN_ON_ONCE(pud_leaf(*pud)))
3259 return -EINVAL;
3260 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
3261 if (!create)
3262 continue;
3263 pud_clear_bad(pud);
3264 }
3265 err = apply_to_pmd_range(mm, pud, addr, next,
3266 fn, data, create, mask);
3267 if (err)
3268 break;
3269 } while (pud++, addr = next, addr != end);
3270
3271 return err;
3272 }
3273
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3274 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3275 unsigned long addr, unsigned long end,
3276 pte_fn_t fn, void *data, bool create,
3277 pgtbl_mod_mask *mask)
3278 {
3279 p4d_t *p4d;
3280 unsigned long next;
3281 int err = 0;
3282
3283 if (create) {
3284 p4d = p4d_alloc_track(mm, pgd, addr, mask);
3285 if (!p4d)
3286 return -ENOMEM;
3287 } else {
3288 p4d = p4d_offset(pgd, addr);
3289 }
3290 do {
3291 next = p4d_addr_end(addr, end);
3292 if (p4d_none(*p4d) && !create)
3293 continue;
3294 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3295 return -EINVAL;
3296 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3297 if (!create)
3298 continue;
3299 p4d_clear_bad(p4d);
3300 }
3301 err = apply_to_pud_range(mm, p4d, addr, next,
3302 fn, data, create, mask);
3303 if (err)
3304 break;
3305 } while (p4d++, addr = next, addr != end);
3306
3307 return err;
3308 }
3309
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)3310 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3311 unsigned long size, pte_fn_t fn,
3312 void *data, bool create)
3313 {
3314 pgd_t *pgd;
3315 unsigned long start = addr, next;
3316 unsigned long end = addr + size;
3317 pgtbl_mod_mask mask = 0;
3318 int err = 0;
3319
3320 if (WARN_ON(addr >= end))
3321 return -EINVAL;
3322
3323 pgd = pgd_offset(mm, addr);
3324 do {
3325 next = pgd_addr_end(addr, end);
3326 if (pgd_none(*pgd) && !create)
3327 continue;
3328 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3329 err = -EINVAL;
3330 break;
3331 }
3332 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3333 if (!create)
3334 continue;
3335 pgd_clear_bad(pgd);
3336 }
3337 err = apply_to_p4d_range(mm, pgd, addr, next,
3338 fn, data, create, &mask);
3339 if (err)
3340 break;
3341 } while (pgd++, addr = next, addr != end);
3342
3343 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3344 arch_sync_kernel_mappings(start, start + size);
3345
3346 return err;
3347 }
3348
3349 /*
3350 * Scan a region of virtual memory, filling in page tables as necessary
3351 * and calling a provided function on each leaf page table.
3352 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3353 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3354 unsigned long size, pte_fn_t fn, void *data)
3355 {
3356 return __apply_to_page_range(mm, addr, size, fn, data, true);
3357 }
3358 EXPORT_SYMBOL_GPL(apply_to_page_range);
3359
3360 /*
3361 * Scan a region of virtual memory, calling a provided function on
3362 * each leaf page table where it exists.
3363 *
3364 * Unlike apply_to_page_range, this does _not_ fill in page tables
3365 * where they are absent.
3366 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3367 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3368 unsigned long size, pte_fn_t fn, void *data)
3369 {
3370 return __apply_to_page_range(mm, addr, size, fn, data, false);
3371 }
3372
3373 /*
3374 * handle_pte_fault chooses page fault handler according to an entry which was
3375 * read non-atomically. Before making any commitment, on those architectures
3376 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3377 * parts, do_swap_page must check under lock before unmapping the pte and
3378 * proceeding (but do_wp_page is only called after already making such a check;
3379 * and do_anonymous_page can safely check later on).
3380 */
pte_unmap_same(struct vm_fault * vmf)3381 static inline int pte_unmap_same(struct vm_fault *vmf)
3382 {
3383 int same = 1;
3384 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3385 if (sizeof(pte_t) > sizeof(unsigned long)) {
3386 spin_lock(vmf->ptl);
3387 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3388 spin_unlock(vmf->ptl);
3389 }
3390 #endif
3391 pte_unmap(vmf->pte);
3392 vmf->pte = NULL;
3393 return same;
3394 }
3395
3396 /*
3397 * Return:
3398 * 0: copied succeeded
3399 * -EHWPOISON: copy failed due to hwpoison in source page
3400 * -EAGAIN: copied failed (some other reason)
3401 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3402 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3403 struct vm_fault *vmf)
3404 {
3405 int ret;
3406 void *kaddr;
3407 void __user *uaddr;
3408 struct vm_area_struct *vma = vmf->vma;
3409 struct mm_struct *mm = vma->vm_mm;
3410 unsigned long addr = vmf->address;
3411
3412 if (likely(src)) {
3413 if (copy_mc_user_highpage(dst, src, addr, vma))
3414 return -EHWPOISON;
3415 return 0;
3416 }
3417
3418 /*
3419 * If the source page was a PFN mapping, we don't have
3420 * a "struct page" for it. We do a best-effort copy by
3421 * just copying from the original user address. If that
3422 * fails, we just zero-fill it. Live with it.
3423 */
3424 kaddr = kmap_local_page(dst);
3425 pagefault_disable();
3426 uaddr = (void __user *)(addr & PAGE_MASK);
3427
3428 /*
3429 * On architectures with software "accessed" bits, we would
3430 * take a double page fault, so mark it accessed here.
3431 */
3432 vmf->pte = NULL;
3433 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3434 pte_t entry;
3435
3436 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3437 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3438 /*
3439 * Other thread has already handled the fault
3440 * and update local tlb only
3441 */
3442 if (vmf->pte)
3443 update_mmu_tlb(vma, addr, vmf->pte);
3444 ret = -EAGAIN;
3445 goto pte_unlock;
3446 }
3447
3448 entry = pte_mkyoung(vmf->orig_pte);
3449 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3450 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3451 }
3452
3453 /*
3454 * This really shouldn't fail, because the page is there
3455 * in the page tables. But it might just be unreadable,
3456 * in which case we just give up and fill the result with
3457 * zeroes.
3458 */
3459 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3460 if (vmf->pte)
3461 goto warn;
3462
3463 /* Re-validate under PTL if the page is still mapped */
3464 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3465 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3466 /* The PTE changed under us, update local tlb */
3467 if (vmf->pte)
3468 update_mmu_tlb(vma, addr, vmf->pte);
3469 ret = -EAGAIN;
3470 goto pte_unlock;
3471 }
3472
3473 /*
3474 * The same page can be mapped back since last copy attempt.
3475 * Try to copy again under PTL.
3476 */
3477 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3478 /*
3479 * Give a warn in case there can be some obscure
3480 * use-case
3481 */
3482 warn:
3483 WARN_ON_ONCE(1);
3484 clear_page(kaddr);
3485 }
3486 }
3487
3488 ret = 0;
3489
3490 pte_unlock:
3491 if (vmf->pte)
3492 pte_unmap_unlock(vmf->pte, vmf->ptl);
3493 pagefault_enable();
3494 kunmap_local(kaddr);
3495 flush_dcache_page(dst);
3496
3497 return ret;
3498 }
3499
__get_fault_gfp_mask(struct vm_area_struct * vma)3500 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3501 {
3502 struct file *vm_file = vma->vm_file;
3503
3504 if (vm_file)
3505 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3506
3507 /*
3508 * Special mappings (e.g. VDSO) do not have any file so fake
3509 * a default GFP_KERNEL for them.
3510 */
3511 return GFP_KERNEL;
3512 }
3513
3514 /*
3515 * Notify the address space that the page is about to become writable so that
3516 * it can prohibit this or wait for the page to get into an appropriate state.
3517 *
3518 * We do this without the lock held, so that it can sleep if it needs to.
3519 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3520 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3521 {
3522 vm_fault_t ret;
3523 unsigned int old_flags = vmf->flags;
3524
3525 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3526
3527 if (vmf->vma->vm_file &&
3528 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3529 return VM_FAULT_SIGBUS;
3530
3531 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3532 /* Restore original flags so that caller is not surprised */
3533 vmf->flags = old_flags;
3534 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3535 return ret;
3536 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3537 folio_lock(folio);
3538 if (!folio->mapping) {
3539 folio_unlock(folio);
3540 return 0; /* retry */
3541 }
3542 ret |= VM_FAULT_LOCKED;
3543 } else
3544 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3545 return ret;
3546 }
3547
3548 /*
3549 * Handle dirtying of a page in shared file mapping on a write fault.
3550 *
3551 * The function expects the page to be locked and unlocks it.
3552 */
fault_dirty_shared_page(struct vm_fault * vmf)3553 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3554 {
3555 struct vm_area_struct *vma = vmf->vma;
3556 struct address_space *mapping;
3557 struct folio *folio = page_folio(vmf->page);
3558 bool dirtied;
3559 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3560
3561 dirtied = folio_mark_dirty(folio);
3562 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3563 /*
3564 * Take a local copy of the address_space - folio.mapping may be zeroed
3565 * by truncate after folio_unlock(). The address_space itself remains
3566 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3567 * release semantics to prevent the compiler from undoing this copying.
3568 */
3569 mapping = folio_raw_mapping(folio);
3570 folio_unlock(folio);
3571
3572 if (!page_mkwrite)
3573 file_update_time(vma->vm_file);
3574
3575 /*
3576 * Throttle page dirtying rate down to writeback speed.
3577 *
3578 * mapping may be NULL here because some device drivers do not
3579 * set page.mapping but still dirty their pages
3580 *
3581 * Drop the mmap_lock before waiting on IO, if we can. The file
3582 * is pinning the mapping, as per above.
3583 */
3584 if ((dirtied || page_mkwrite) && mapping) {
3585 struct file *fpin;
3586
3587 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3588 balance_dirty_pages_ratelimited(mapping);
3589 if (fpin) {
3590 fput(fpin);
3591 return VM_FAULT_COMPLETED;
3592 }
3593 }
3594
3595 return 0;
3596 }
3597
3598 /*
3599 * Handle write page faults for pages that can be reused in the current vma
3600 *
3601 * This can happen either due to the mapping being with the VM_SHARED flag,
3602 * or due to us being the last reference standing to the page. In either
3603 * case, all we need to do here is to mark the page as writable and update
3604 * any related book-keeping.
3605 */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3606 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3607 __releases(vmf->ptl)
3608 {
3609 struct vm_area_struct *vma = vmf->vma;
3610 pte_t entry;
3611
3612 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3613 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3614
3615 if (folio) {
3616 VM_BUG_ON(folio_test_anon(folio) &&
3617 !PageAnonExclusive(vmf->page));
3618 /*
3619 * Clear the folio's cpupid information as the existing
3620 * information potentially belongs to a now completely
3621 * unrelated process.
3622 */
3623 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3624 }
3625
3626 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3627 entry = pte_mkyoung(vmf->orig_pte);
3628 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3629 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3630 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3631 pte_unmap_unlock(vmf->pte, vmf->ptl);
3632 count_vm_event(PGREUSE);
3633 }
3634
3635 /*
3636 * We could add a bitflag somewhere, but for now, we know that all
3637 * vm_ops that have a ->map_pages have been audited and don't need
3638 * the mmap_lock to be held.
3639 */
vmf_can_call_fault(const struct vm_fault * vmf)3640 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3641 {
3642 struct vm_area_struct *vma = vmf->vma;
3643
3644 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3645 return 0;
3646 vma_end_read(vma);
3647 return VM_FAULT_RETRY;
3648 }
3649
3650 /**
3651 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3652 * @vmf: The vm_fault descriptor passed from the fault handler.
3653 *
3654 * When preparing to insert an anonymous page into a VMA from a
3655 * fault handler, call this function rather than anon_vma_prepare().
3656 * If this vma does not already have an associated anon_vma and we are
3657 * only protected by the per-VMA lock, the caller must retry with the
3658 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3659 * determine if this VMA can share its anon_vma, and that's not safe to
3660 * do with only the per-VMA lock held for this VMA.
3661 *
3662 * Return: 0 if fault handling can proceed. Any other value should be
3663 * returned to the caller.
3664 */
__vmf_anon_prepare(struct vm_fault * vmf)3665 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3666 {
3667 struct vm_area_struct *vma = vmf->vma;
3668 vm_fault_t ret = 0;
3669
3670 if (likely(vma->anon_vma))
3671 return 0;
3672 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3673 if (!mmap_read_trylock(vma->vm_mm))
3674 return VM_FAULT_RETRY;
3675 }
3676 if (__anon_vma_prepare(vma))
3677 ret = VM_FAULT_OOM;
3678 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3679 mmap_read_unlock(vma->vm_mm);
3680 return ret;
3681 }
3682
3683 /*
3684 * Handle the case of a page which we actually need to copy to a new page,
3685 * either due to COW or unsharing.
3686 *
3687 * Called with mmap_lock locked and the old page referenced, but
3688 * without the ptl held.
3689 *
3690 * High level logic flow:
3691 *
3692 * - Allocate a page, copy the content of the old page to the new one.
3693 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3694 * - Take the PTL. If the pte changed, bail out and release the allocated page
3695 * - If the pte is still the way we remember it, update the page table and all
3696 * relevant references. This includes dropping the reference the page-table
3697 * held to the old page, as well as updating the rmap.
3698 * - In any case, unlock the PTL and drop the reference we took to the old page.
3699 */
wp_page_copy(struct vm_fault * vmf)3700 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3701 {
3702 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3703 struct vm_area_struct *vma = vmf->vma;
3704 struct mm_struct *mm = vma->vm_mm;
3705 struct folio *old_folio = NULL;
3706 struct folio *new_folio = NULL;
3707 pte_t entry;
3708 int page_copied = 0;
3709 struct mmu_notifier_range range;
3710 vm_fault_t ret;
3711 bool pfn_is_zero;
3712
3713 delayacct_wpcopy_start();
3714
3715 if (vmf->page)
3716 old_folio = page_folio(vmf->page);
3717 ret = vmf_anon_prepare(vmf);
3718 if (unlikely(ret))
3719 goto out;
3720
3721 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3722 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3723 if (!new_folio)
3724 goto oom;
3725
3726 if (!pfn_is_zero) {
3727 int err;
3728
3729 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3730 if (err) {
3731 /*
3732 * COW failed, if the fault was solved by other,
3733 * it's fine. If not, userspace would re-fault on
3734 * the same address and we will handle the fault
3735 * from the second attempt.
3736 * The -EHWPOISON case will not be retried.
3737 */
3738 folio_put(new_folio);
3739 if (old_folio)
3740 folio_put(old_folio);
3741
3742 delayacct_wpcopy_end();
3743 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3744 }
3745 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3746 }
3747
3748 __folio_mark_uptodate(new_folio);
3749
3750 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3751 vmf->address & PAGE_MASK,
3752 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3753 mmu_notifier_invalidate_range_start(&range);
3754
3755 /*
3756 * Re-check the pte - we dropped the lock
3757 */
3758 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3759 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3760 if (old_folio) {
3761 if (!folio_test_anon(old_folio)) {
3762 dec_mm_counter(mm, mm_counter_file(old_folio));
3763 inc_mm_counter(mm, MM_ANONPAGES);
3764 }
3765 } else {
3766 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3767 inc_mm_counter(mm, MM_ANONPAGES);
3768 }
3769 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3770 entry = folio_mk_pte(new_folio, vma->vm_page_prot);
3771 entry = pte_sw_mkyoung(entry);
3772 if (unlikely(unshare)) {
3773 if (pte_soft_dirty(vmf->orig_pte))
3774 entry = pte_mksoft_dirty(entry);
3775 if (pte_uffd_wp(vmf->orig_pte))
3776 entry = pte_mkuffd_wp(entry);
3777 } else {
3778 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3779 }
3780
3781 /*
3782 * Clear the pte entry and flush it first, before updating the
3783 * pte with the new entry, to keep TLBs on different CPUs in
3784 * sync. This code used to set the new PTE then flush TLBs, but
3785 * that left a window where the new PTE could be loaded into
3786 * some TLBs while the old PTE remains in others.
3787 */
3788 ptep_clear_flush(vma, vmf->address, vmf->pte);
3789 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3790 folio_add_lru_vma(new_folio, vma);
3791 BUG_ON(unshare && pte_write(entry));
3792 set_pte_at(mm, vmf->address, vmf->pte, entry);
3793 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3794 if (old_folio) {
3795 /*
3796 * Only after switching the pte to the new page may
3797 * we remove the mapcount here. Otherwise another
3798 * process may come and find the rmap count decremented
3799 * before the pte is switched to the new page, and
3800 * "reuse" the old page writing into it while our pte
3801 * here still points into it and can be read by other
3802 * threads.
3803 *
3804 * The critical issue is to order this
3805 * folio_remove_rmap_pte() with the ptp_clear_flush
3806 * above. Those stores are ordered by (if nothing else,)
3807 * the barrier present in the atomic_add_negative
3808 * in folio_remove_rmap_pte();
3809 *
3810 * Then the TLB flush in ptep_clear_flush ensures that
3811 * no process can access the old page before the
3812 * decremented mapcount is visible. And the old page
3813 * cannot be reused until after the decremented
3814 * mapcount is visible. So transitively, TLBs to
3815 * old page will be flushed before it can be reused.
3816 */
3817 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3818 }
3819
3820 /* Free the old page.. */
3821 new_folio = old_folio;
3822 page_copied = 1;
3823 pte_unmap_unlock(vmf->pte, vmf->ptl);
3824 } else if (vmf->pte) {
3825 update_mmu_tlb(vma, vmf->address, vmf->pte);
3826 pte_unmap_unlock(vmf->pte, vmf->ptl);
3827 }
3828
3829 mmu_notifier_invalidate_range_end(&range);
3830
3831 if (new_folio)
3832 folio_put(new_folio);
3833 if (old_folio) {
3834 if (page_copied)
3835 free_swap_cache(old_folio);
3836 folio_put(old_folio);
3837 }
3838
3839 delayacct_wpcopy_end();
3840 return 0;
3841 oom:
3842 ret = VM_FAULT_OOM;
3843 out:
3844 if (old_folio)
3845 folio_put(old_folio);
3846
3847 delayacct_wpcopy_end();
3848 return ret;
3849 }
3850
3851 /**
3852 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3853 * writeable once the page is prepared
3854 *
3855 * @vmf: structure describing the fault
3856 * @folio: the folio of vmf->page
3857 *
3858 * This function handles all that is needed to finish a write page fault in a
3859 * shared mapping due to PTE being read-only once the mapped page is prepared.
3860 * It handles locking of PTE and modifying it.
3861 *
3862 * The function expects the page to be locked or other protection against
3863 * concurrent faults / writeback (such as DAX radix tree locks).
3864 *
3865 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3866 * we acquired PTE lock.
3867 */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3868 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3869 {
3870 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3871 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3872 &vmf->ptl);
3873 if (!vmf->pte)
3874 return VM_FAULT_NOPAGE;
3875 /*
3876 * We might have raced with another page fault while we released the
3877 * pte_offset_map_lock.
3878 */
3879 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3880 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3881 pte_unmap_unlock(vmf->pte, vmf->ptl);
3882 return VM_FAULT_NOPAGE;
3883 }
3884 wp_page_reuse(vmf, folio);
3885 return 0;
3886 }
3887
3888 /*
3889 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3890 * mapping
3891 */
wp_pfn_shared(struct vm_fault * vmf)3892 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3893 {
3894 struct vm_area_struct *vma = vmf->vma;
3895
3896 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3897 vm_fault_t ret;
3898
3899 pte_unmap_unlock(vmf->pte, vmf->ptl);
3900 ret = vmf_can_call_fault(vmf);
3901 if (ret)
3902 return ret;
3903
3904 vmf->flags |= FAULT_FLAG_MKWRITE;
3905 ret = vma->vm_ops->pfn_mkwrite(vmf);
3906 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3907 return ret;
3908 return finish_mkwrite_fault(vmf, NULL);
3909 }
3910 wp_page_reuse(vmf, NULL);
3911 return 0;
3912 }
3913
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3914 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3915 __releases(vmf->ptl)
3916 {
3917 struct vm_area_struct *vma = vmf->vma;
3918 vm_fault_t ret = 0;
3919
3920 folio_get(folio);
3921
3922 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3923 vm_fault_t tmp;
3924
3925 pte_unmap_unlock(vmf->pte, vmf->ptl);
3926 tmp = vmf_can_call_fault(vmf);
3927 if (tmp) {
3928 folio_put(folio);
3929 return tmp;
3930 }
3931
3932 tmp = do_page_mkwrite(vmf, folio);
3933 if (unlikely(!tmp || (tmp &
3934 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3935 folio_put(folio);
3936 return tmp;
3937 }
3938 tmp = finish_mkwrite_fault(vmf, folio);
3939 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3940 folio_unlock(folio);
3941 folio_put(folio);
3942 return tmp;
3943 }
3944 } else {
3945 wp_page_reuse(vmf, folio);
3946 folio_lock(folio);
3947 }
3948 ret |= fault_dirty_shared_page(vmf);
3949 folio_put(folio);
3950
3951 return ret;
3952 }
3953
3954 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)3955 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3956 struct vm_area_struct *vma)
3957 {
3958 bool exclusive = false;
3959
3960 /* Let's just free up a large folio if only a single page is mapped. */
3961 if (folio_large_mapcount(folio) <= 1)
3962 return false;
3963
3964 /*
3965 * The assumption for anonymous folios is that each page can only get
3966 * mapped once into each MM. The only exception are KSM folios, which
3967 * are always small.
3968 *
3969 * Each taken mapcount must be paired with exactly one taken reference,
3970 * whereby the refcount must be incremented before the mapcount when
3971 * mapping a page, and the refcount must be decremented after the
3972 * mapcount when unmapping a page.
3973 *
3974 * If all folio references are from mappings, and all mappings are in
3975 * the page tables of this MM, then this folio is exclusive to this MM.
3976 */
3977 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3978 return false;
3979
3980 VM_WARN_ON_ONCE(folio_test_ksm(folio));
3981
3982 if (unlikely(folio_test_swapcache(folio))) {
3983 /*
3984 * Note: freeing up the swapcache will fail if some PTEs are
3985 * still swap entries.
3986 */
3987 if (!folio_trylock(folio))
3988 return false;
3989 folio_free_swap(folio);
3990 folio_unlock(folio);
3991 }
3992
3993 if (folio_large_mapcount(folio) != folio_ref_count(folio))
3994 return false;
3995
3996 /* Stabilize the mapcount vs. refcount and recheck. */
3997 folio_lock_large_mapcount(folio);
3998 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio);
3999
4000 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
4001 goto unlock;
4002 if (folio_large_mapcount(folio) != folio_ref_count(folio))
4003 goto unlock;
4004
4005 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio);
4006 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio);
4007 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id &&
4008 folio_mm_id(folio, 1) != vma->vm_mm->mm_id);
4009
4010 /*
4011 * Do we need the folio lock? Likely not. If there would have been
4012 * references from page migration/swapout, we would have detected
4013 * an additional folio reference and never ended up here.
4014 */
4015 exclusive = true;
4016 unlock:
4017 folio_unlock_large_mapcount(folio);
4018 return exclusive;
4019 }
4020 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)4021 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
4022 struct vm_area_struct *vma)
4023 {
4024 BUILD_BUG();
4025 }
4026 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4027
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)4028 static bool wp_can_reuse_anon_folio(struct folio *folio,
4029 struct vm_area_struct *vma)
4030 {
4031 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio))
4032 return __wp_can_reuse_large_anon_folio(folio, vma);
4033
4034 /*
4035 * We have to verify under folio lock: these early checks are
4036 * just an optimization to avoid locking the folio and freeing
4037 * the swapcache if there is little hope that we can reuse.
4038 *
4039 * KSM doesn't necessarily raise the folio refcount.
4040 */
4041 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
4042 return false;
4043 if (!folio_test_lru(folio))
4044 /*
4045 * We cannot easily detect+handle references from
4046 * remote LRU caches or references to LRU folios.
4047 */
4048 lru_add_drain();
4049 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
4050 return false;
4051 if (!folio_trylock(folio))
4052 return false;
4053 if (folio_test_swapcache(folio))
4054 folio_free_swap(folio);
4055 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
4056 folio_unlock(folio);
4057 return false;
4058 }
4059 /*
4060 * Ok, we've got the only folio reference from our mapping
4061 * and the folio is locked, it's dark out, and we're wearing
4062 * sunglasses. Hit it.
4063 */
4064 folio_move_anon_rmap(folio, vma);
4065 folio_unlock(folio);
4066 return true;
4067 }
4068
4069 /*
4070 * This routine handles present pages, when
4071 * * users try to write to a shared page (FAULT_FLAG_WRITE)
4072 * * GUP wants to take a R/O pin on a possibly shared anonymous page
4073 * (FAULT_FLAG_UNSHARE)
4074 *
4075 * It is done by copying the page to a new address and decrementing the
4076 * shared-page counter for the old page.
4077 *
4078 * Note that this routine assumes that the protection checks have been
4079 * done by the caller (the low-level page fault routine in most cases).
4080 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
4081 * done any necessary COW.
4082 *
4083 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
4084 * though the page will change only once the write actually happens. This
4085 * avoids a few races, and potentially makes it more efficient.
4086 *
4087 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4088 * but allow concurrent faults), with pte both mapped and locked.
4089 * We return with mmap_lock still held, but pte unmapped and unlocked.
4090 */
do_wp_page(struct vm_fault * vmf)4091 static vm_fault_t do_wp_page(struct vm_fault *vmf)
4092 __releases(vmf->ptl)
4093 {
4094 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4095 struct vm_area_struct *vma = vmf->vma;
4096 struct folio *folio = NULL;
4097 pte_t pte;
4098
4099 if (likely(!unshare)) {
4100 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
4101 if (!userfaultfd_wp_async(vma)) {
4102 pte_unmap_unlock(vmf->pte, vmf->ptl);
4103 return handle_userfault(vmf, VM_UFFD_WP);
4104 }
4105
4106 /*
4107 * Nothing needed (cache flush, TLB invalidations,
4108 * etc.) because we're only removing the uffd-wp bit,
4109 * which is completely invisible to the user.
4110 */
4111 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
4112
4113 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4114 /*
4115 * Update this to be prepared for following up CoW
4116 * handling
4117 */
4118 vmf->orig_pte = pte;
4119 }
4120
4121 /*
4122 * Userfaultfd write-protect can defer flushes. Ensure the TLB
4123 * is flushed in this case before copying.
4124 */
4125 if (unlikely(userfaultfd_wp(vmf->vma) &&
4126 mm_tlb_flush_pending(vmf->vma->vm_mm)))
4127 flush_tlb_page(vmf->vma, vmf->address);
4128 }
4129
4130 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
4131
4132 if (vmf->page)
4133 folio = page_folio(vmf->page);
4134
4135 /*
4136 * Shared mapping: we are guaranteed to have VM_WRITE and
4137 * FAULT_FLAG_WRITE set at this point.
4138 */
4139 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4140 /*
4141 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
4142 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
4143 *
4144 * We should not cow pages in a shared writeable mapping.
4145 * Just mark the pages writable and/or call ops->pfn_mkwrite.
4146 */
4147 if (!vmf->page || is_fsdax_page(vmf->page)) {
4148 vmf->page = NULL;
4149 return wp_pfn_shared(vmf);
4150 }
4151 return wp_page_shared(vmf, folio);
4152 }
4153
4154 /*
4155 * Private mapping: create an exclusive anonymous page copy if reuse
4156 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
4157 *
4158 * If we encounter a page that is marked exclusive, we must reuse
4159 * the page without further checks.
4160 */
4161 if (folio && folio_test_anon(folio) &&
4162 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
4163 if (!PageAnonExclusive(vmf->page))
4164 SetPageAnonExclusive(vmf->page);
4165 if (unlikely(unshare)) {
4166 pte_unmap_unlock(vmf->pte, vmf->ptl);
4167 return 0;
4168 }
4169 wp_page_reuse(vmf, folio);
4170 return 0;
4171 }
4172 /*
4173 * Ok, we need to copy. Oh, well..
4174 */
4175 if (folio)
4176 folio_get(folio);
4177
4178 pte_unmap_unlock(vmf->pte, vmf->ptl);
4179 #ifdef CONFIG_KSM
4180 if (folio && folio_test_ksm(folio))
4181 count_vm_event(COW_KSM);
4182 #endif
4183 return wp_page_copy(vmf);
4184 }
4185
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)4186 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
4187 unsigned long start_addr, unsigned long end_addr,
4188 struct zap_details *details)
4189 {
4190 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
4191 }
4192
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)4193 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
4194 pgoff_t first_index,
4195 pgoff_t last_index,
4196 struct zap_details *details)
4197 {
4198 struct vm_area_struct *vma;
4199 pgoff_t vba, vea, zba, zea;
4200
4201 vma_interval_tree_foreach(vma, root, first_index, last_index) {
4202 vba = vma->vm_pgoff;
4203 vea = vba + vma_pages(vma) - 1;
4204 zba = max(first_index, vba);
4205 zea = min(last_index, vea);
4206
4207 unmap_mapping_range_vma(vma,
4208 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
4209 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
4210 details);
4211 }
4212 }
4213
4214 /**
4215 * unmap_mapping_folio() - Unmap single folio from processes.
4216 * @folio: The locked folio to be unmapped.
4217 *
4218 * Unmap this folio from any userspace process which still has it mmaped.
4219 * Typically, for efficiency, the range of nearby pages has already been
4220 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
4221 * truncation or invalidation holds the lock on a folio, it may find that
4222 * the page has been remapped again: and then uses unmap_mapping_folio()
4223 * to unmap it finally.
4224 */
unmap_mapping_folio(struct folio * folio)4225 void unmap_mapping_folio(struct folio *folio)
4226 {
4227 struct address_space *mapping = folio->mapping;
4228 struct zap_details details = { };
4229 pgoff_t first_index;
4230 pgoff_t last_index;
4231
4232 VM_BUG_ON(!folio_test_locked(folio));
4233
4234 first_index = folio->index;
4235 last_index = folio_next_index(folio) - 1;
4236
4237 details.even_cows = false;
4238 details.single_folio = folio;
4239 details.zap_flags = ZAP_FLAG_DROP_MARKER;
4240
4241 i_mmap_lock_read(mapping);
4242 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4243 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4244 last_index, &details);
4245 i_mmap_unlock_read(mapping);
4246 }
4247
4248 /**
4249 * unmap_mapping_pages() - Unmap pages from processes.
4250 * @mapping: The address space containing pages to be unmapped.
4251 * @start: Index of first page to be unmapped.
4252 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
4253 * @even_cows: Whether to unmap even private COWed pages.
4254 *
4255 * Unmap the pages in this address space from any userspace process which
4256 * has them mmaped. Generally, you want to remove COWed pages as well when
4257 * a file is being truncated, but not when invalidating pages from the page
4258 * cache.
4259 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)4260 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
4261 pgoff_t nr, bool even_cows)
4262 {
4263 struct zap_details details = { };
4264 pgoff_t first_index = start;
4265 pgoff_t last_index = start + nr - 1;
4266
4267 details.even_cows = even_cows;
4268 if (last_index < first_index)
4269 last_index = ULONG_MAX;
4270
4271 i_mmap_lock_read(mapping);
4272 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4273 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4274 last_index, &details);
4275 i_mmap_unlock_read(mapping);
4276 }
4277 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
4278
4279 /**
4280 * unmap_mapping_range - unmap the portion of all mmaps in the specified
4281 * address_space corresponding to the specified byte range in the underlying
4282 * file.
4283 *
4284 * @mapping: the address space containing mmaps to be unmapped.
4285 * @holebegin: byte in first page to unmap, relative to the start of
4286 * the underlying file. This will be rounded down to a PAGE_SIZE
4287 * boundary. Note that this is different from truncate_pagecache(), which
4288 * must keep the partial page. In contrast, we must get rid of
4289 * partial pages.
4290 * @holelen: size of prospective hole in bytes. This will be rounded
4291 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
4292 * end of the file.
4293 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
4294 * but 0 when invalidating pagecache, don't throw away private data.
4295 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)4296 void unmap_mapping_range(struct address_space *mapping,
4297 loff_t const holebegin, loff_t const holelen, int even_cows)
4298 {
4299 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
4300 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
4301
4302 /* Check for overflow. */
4303 if (sizeof(holelen) > sizeof(hlen)) {
4304 long long holeend =
4305 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
4306 if (holeend & ~(long long)ULONG_MAX)
4307 hlen = ULONG_MAX - hba + 1;
4308 }
4309
4310 unmap_mapping_pages(mapping, hba, hlen, even_cows);
4311 }
4312 EXPORT_SYMBOL(unmap_mapping_range);
4313
4314 /*
4315 * Restore a potential device exclusive pte to a working pte entry
4316 */
remove_device_exclusive_entry(struct vm_fault * vmf)4317 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
4318 {
4319 struct folio *folio = page_folio(vmf->page);
4320 struct vm_area_struct *vma = vmf->vma;
4321 struct mmu_notifier_range range;
4322 vm_fault_t ret;
4323
4324 /*
4325 * We need a reference to lock the folio because we don't hold
4326 * the PTL so a racing thread can remove the device-exclusive
4327 * entry and unmap it. If the folio is free the entry must
4328 * have been removed already. If it happens to have already
4329 * been re-allocated after being freed all we do is lock and
4330 * unlock it.
4331 */
4332 if (!folio_try_get(folio))
4333 return 0;
4334
4335 ret = folio_lock_or_retry(folio, vmf);
4336 if (ret) {
4337 folio_put(folio);
4338 return ret;
4339 }
4340 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0,
4341 vma->vm_mm, vmf->address & PAGE_MASK,
4342 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
4343 mmu_notifier_invalidate_range_start(&range);
4344
4345 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4346 &vmf->ptl);
4347 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4348 restore_exclusive_pte(vma, folio, vmf->page, vmf->address,
4349 vmf->pte, vmf->orig_pte);
4350
4351 if (vmf->pte)
4352 pte_unmap_unlock(vmf->pte, vmf->ptl);
4353 folio_unlock(folio);
4354 folio_put(folio);
4355
4356 mmu_notifier_invalidate_range_end(&range);
4357 return 0;
4358 }
4359
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)4360 static inline bool should_try_to_free_swap(struct folio *folio,
4361 struct vm_area_struct *vma,
4362 unsigned int fault_flags)
4363 {
4364 if (!folio_test_swapcache(folio))
4365 return false;
4366 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4367 folio_test_mlocked(folio))
4368 return true;
4369 /*
4370 * If we want to map a page that's in the swapcache writable, we
4371 * have to detect via the refcount if we're really the exclusive
4372 * user. Try freeing the swapcache to get rid of the swapcache
4373 * reference only in case it's likely that we'll be the exclusive user.
4374 */
4375 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4376 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4377 }
4378
pte_marker_clear(struct vm_fault * vmf)4379 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4380 {
4381 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4382 vmf->address, &vmf->ptl);
4383 if (!vmf->pte)
4384 return 0;
4385 /*
4386 * Be careful so that we will only recover a special uffd-wp pte into a
4387 * none pte. Otherwise it means the pte could have changed, so retry.
4388 *
4389 * This should also cover the case where e.g. the pte changed
4390 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4391 * So pte_is_marker() check is not enough to safely drop the pte.
4392 */
4393 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4394 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4395 pte_unmap_unlock(vmf->pte, vmf->ptl);
4396 return 0;
4397 }
4398
do_pte_missing(struct vm_fault * vmf)4399 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4400 {
4401 if (vma_is_anonymous(vmf->vma))
4402 return do_anonymous_page(vmf);
4403 else
4404 return do_fault(vmf);
4405 }
4406
4407 /*
4408 * This is actually a page-missing access, but with uffd-wp special pte
4409 * installed. It means this pte was wr-protected before being unmapped.
4410 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)4411 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4412 {
4413 /*
4414 * Just in case there're leftover special ptes even after the region
4415 * got unregistered - we can simply clear them.
4416 */
4417 if (unlikely(!userfaultfd_wp(vmf->vma)))
4418 return pte_marker_clear(vmf);
4419
4420 return do_pte_missing(vmf);
4421 }
4422
handle_pte_marker(struct vm_fault * vmf)4423 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4424 {
4425 const softleaf_t entry = softleaf_from_pte(vmf->orig_pte);
4426 const pte_marker marker = softleaf_to_marker(entry);
4427
4428 /*
4429 * PTE markers should never be empty. If anything weird happened,
4430 * the best thing to do is to kill the process along with its mm.
4431 */
4432 if (WARN_ON_ONCE(!marker))
4433 return VM_FAULT_SIGBUS;
4434
4435 /* Higher priority than uffd-wp when data corrupted */
4436 if (marker & PTE_MARKER_POISONED)
4437 return VM_FAULT_HWPOISON;
4438
4439 /* Hitting a guard page is always a fatal condition. */
4440 if (marker & PTE_MARKER_GUARD)
4441 return VM_FAULT_SIGSEGV;
4442
4443 if (softleaf_is_uffd_wp_marker(entry))
4444 return pte_marker_handle_uffd_wp(vmf);
4445
4446 /* This is an unknown pte marker */
4447 return VM_FAULT_SIGBUS;
4448 }
4449
__alloc_swap_folio(struct vm_fault * vmf)4450 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4451 {
4452 struct vm_area_struct *vma = vmf->vma;
4453 struct folio *folio;
4454 softleaf_t entry;
4455
4456 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4457 if (!folio)
4458 return NULL;
4459
4460 entry = softleaf_from_pte(vmf->orig_pte);
4461 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4462 GFP_KERNEL, entry)) {
4463 folio_put(folio);
4464 return NULL;
4465 }
4466
4467 return folio;
4468 }
4469
4470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4471 /*
4472 * Check if the PTEs within a range are contiguous swap entries
4473 * and have consistent swapcache, zeromap.
4474 */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4475 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4476 {
4477 unsigned long addr;
4478 softleaf_t entry;
4479 int idx;
4480 pte_t pte;
4481
4482 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4483 idx = (vmf->address - addr) / PAGE_SIZE;
4484 pte = ptep_get(ptep);
4485
4486 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4487 return false;
4488 entry = softleaf_from_pte(pte);
4489 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4490 return false;
4491
4492 /*
4493 * swap_read_folio() can't handle the case a large folio is hybridly
4494 * from different backends. And they are likely corner cases. Similar
4495 * things might be added once zswap support large folios.
4496 */
4497 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4498 return false;
4499 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4500 return false;
4501
4502 return true;
4503 }
4504
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4505 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4506 unsigned long addr,
4507 unsigned long orders)
4508 {
4509 int order, nr;
4510
4511 order = highest_order(orders);
4512
4513 /*
4514 * To swap in a THP with nr pages, we require that its first swap_offset
4515 * is aligned with that number, as it was when the THP was swapped out.
4516 * This helps filter out most invalid entries.
4517 */
4518 while (orders) {
4519 nr = 1 << order;
4520 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4521 break;
4522 order = next_order(&orders, order);
4523 }
4524
4525 return orders;
4526 }
4527
alloc_swap_folio(struct vm_fault * vmf)4528 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4529 {
4530 struct vm_area_struct *vma = vmf->vma;
4531 unsigned long orders;
4532 struct folio *folio;
4533 unsigned long addr;
4534 softleaf_t entry;
4535 spinlock_t *ptl;
4536 pte_t *pte;
4537 gfp_t gfp;
4538 int order;
4539
4540 /*
4541 * If uffd is active for the vma we need per-page fault fidelity to
4542 * maintain the uffd semantics.
4543 */
4544 if (unlikely(userfaultfd_armed(vma)))
4545 goto fallback;
4546
4547 /*
4548 * A large swapped out folio could be partially or fully in zswap. We
4549 * lack handling for such cases, so fallback to swapping in order-0
4550 * folio.
4551 */
4552 if (!zswap_never_enabled())
4553 goto fallback;
4554
4555 entry = softleaf_from_pte(vmf->orig_pte);
4556 /*
4557 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4558 * and suitable for swapping THP.
4559 */
4560 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
4561 BIT(PMD_ORDER) - 1);
4562 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4563 orders = thp_swap_suitable_orders(swp_offset(entry),
4564 vmf->address, orders);
4565
4566 if (!orders)
4567 goto fallback;
4568
4569 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4570 vmf->address & PMD_MASK, &ptl);
4571 if (unlikely(!pte))
4572 goto fallback;
4573
4574 /*
4575 * For do_swap_page, find the highest order where the aligned range is
4576 * completely swap entries with contiguous swap offsets.
4577 */
4578 order = highest_order(orders);
4579 while (orders) {
4580 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4581 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4582 break;
4583 order = next_order(&orders, order);
4584 }
4585
4586 pte_unmap_unlock(pte, ptl);
4587
4588 /* Try allocating the highest of the remaining orders. */
4589 gfp = vma_thp_gfp_mask(vma);
4590 while (orders) {
4591 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4592 folio = vma_alloc_folio(gfp, order, vma, addr);
4593 if (folio) {
4594 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4595 gfp, entry))
4596 return folio;
4597 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4598 folio_put(folio);
4599 }
4600 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4601 order = next_order(&orders, order);
4602 }
4603
4604 fallback:
4605 return __alloc_swap_folio(vmf);
4606 }
4607 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4608 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4609 {
4610 return __alloc_swap_folio(vmf);
4611 }
4612 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4613
4614 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4615
4616 /*
4617 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4618 * but allow concurrent faults), and pte mapped but not yet locked.
4619 * We return with pte unmapped and unlocked.
4620 *
4621 * We return with the mmap_lock locked or unlocked in the same cases
4622 * as does filemap_fault().
4623 */
do_swap_page(struct vm_fault * vmf)4624 vm_fault_t do_swap_page(struct vm_fault *vmf)
4625 {
4626 struct vm_area_struct *vma = vmf->vma;
4627 struct folio *swapcache, *folio = NULL;
4628 DECLARE_WAITQUEUE(wait, current);
4629 struct page *page;
4630 struct swap_info_struct *si = NULL;
4631 rmap_t rmap_flags = RMAP_NONE;
4632 bool need_clear_cache = false;
4633 bool exclusive = false;
4634 softleaf_t entry;
4635 pte_t pte;
4636 vm_fault_t ret = 0;
4637 void *shadow = NULL;
4638 int nr_pages;
4639 unsigned long page_idx;
4640 unsigned long address;
4641 pte_t *ptep;
4642
4643 if (!pte_unmap_same(vmf))
4644 goto out;
4645
4646 entry = softleaf_from_pte(vmf->orig_pte);
4647 if (unlikely(!softleaf_is_swap(entry))) {
4648 if (softleaf_is_migration(entry)) {
4649 migration_entry_wait(vma->vm_mm, vmf->pmd,
4650 vmf->address);
4651 } else if (softleaf_is_device_exclusive(entry)) {
4652 vmf->page = softleaf_to_page(entry);
4653 ret = remove_device_exclusive_entry(vmf);
4654 } else if (softleaf_is_device_private(entry)) {
4655 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4656 /*
4657 * migrate_to_ram is not yet ready to operate
4658 * under VMA lock.
4659 */
4660 vma_end_read(vma);
4661 ret = VM_FAULT_RETRY;
4662 goto out;
4663 }
4664
4665 vmf->page = softleaf_to_page(entry);
4666 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4667 vmf->address, &vmf->ptl);
4668 if (unlikely(!vmf->pte ||
4669 !pte_same(ptep_get(vmf->pte),
4670 vmf->orig_pte)))
4671 goto unlock;
4672
4673 /*
4674 * Get a page reference while we know the page can't be
4675 * freed.
4676 */
4677 if (trylock_page(vmf->page)) {
4678 struct dev_pagemap *pgmap;
4679
4680 get_page(vmf->page);
4681 pte_unmap_unlock(vmf->pte, vmf->ptl);
4682 pgmap = page_pgmap(vmf->page);
4683 ret = pgmap->ops->migrate_to_ram(vmf);
4684 unlock_page(vmf->page);
4685 put_page(vmf->page);
4686 } else {
4687 pte_unmap_unlock(vmf->pte, vmf->ptl);
4688 }
4689 } else if (softleaf_is_hwpoison(entry)) {
4690 ret = VM_FAULT_HWPOISON;
4691 } else if (softleaf_is_marker(entry)) {
4692 ret = handle_pte_marker(vmf);
4693 } else {
4694 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4695 ret = VM_FAULT_SIGBUS;
4696 }
4697 goto out;
4698 }
4699
4700 /* Prevent swapoff from happening to us. */
4701 si = get_swap_device(entry);
4702 if (unlikely(!si))
4703 goto out;
4704
4705 folio = swap_cache_get_folio(entry);
4706 if (folio)
4707 swap_update_readahead(folio, vma, vmf->address);
4708 swapcache = folio;
4709
4710 if (!folio) {
4711 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4712 __swap_count(entry) == 1) {
4713 /* skip swapcache */
4714 folio = alloc_swap_folio(vmf);
4715 if (folio) {
4716 __folio_set_locked(folio);
4717 __folio_set_swapbacked(folio);
4718
4719 nr_pages = folio_nr_pages(folio);
4720 if (folio_test_large(folio))
4721 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4722 /*
4723 * Prevent parallel swapin from proceeding with
4724 * the cache flag. Otherwise, another thread
4725 * may finish swapin first, free the entry, and
4726 * swapout reusing the same entry. It's
4727 * undetectable as pte_same() returns true due
4728 * to entry reuse.
4729 */
4730 if (swapcache_prepare(entry, nr_pages)) {
4731 /*
4732 * Relax a bit to prevent rapid
4733 * repeated page faults.
4734 */
4735 add_wait_queue(&swapcache_wq, &wait);
4736 schedule_timeout_uninterruptible(1);
4737 remove_wait_queue(&swapcache_wq, &wait);
4738 goto out_page;
4739 }
4740 need_clear_cache = true;
4741
4742 memcg1_swapin(entry, nr_pages);
4743
4744 shadow = swap_cache_get_shadow(entry);
4745 if (shadow)
4746 workingset_refault(folio, shadow);
4747
4748 folio_add_lru(folio);
4749
4750 /* To provide entry to swap_read_folio() */
4751 folio->swap = entry;
4752 swap_read_folio(folio, NULL);
4753 folio->private = NULL;
4754 }
4755 } else {
4756 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4757 vmf);
4758 swapcache = folio;
4759 }
4760
4761 if (!folio) {
4762 /*
4763 * Back out if somebody else faulted in this pte
4764 * while we released the pte lock.
4765 */
4766 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4767 vmf->address, &vmf->ptl);
4768 if (likely(vmf->pte &&
4769 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4770 ret = VM_FAULT_OOM;
4771 goto unlock;
4772 }
4773
4774 /* Had to read the page from swap area: Major fault */
4775 ret = VM_FAULT_MAJOR;
4776 count_vm_event(PGMAJFAULT);
4777 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4778 }
4779
4780 ret |= folio_lock_or_retry(folio, vmf);
4781 if (ret & VM_FAULT_RETRY)
4782 goto out_release;
4783
4784 page = folio_file_page(folio, swp_offset(entry));
4785 if (swapcache) {
4786 /*
4787 * Make sure folio_free_swap() or swapoff did not release the
4788 * swapcache from under us. The page pin, and pte_same test
4789 * below, are not enough to exclude that. Even if it is still
4790 * swapcache, we need to check that the page's swap has not
4791 * changed.
4792 */
4793 if (unlikely(!folio_matches_swap_entry(folio, entry)))
4794 goto out_page;
4795
4796 if (unlikely(PageHWPoison(page))) {
4797 /*
4798 * hwpoisoned dirty swapcache pages are kept for killing
4799 * owner processes (which may be unknown at hwpoison time)
4800 */
4801 ret = VM_FAULT_HWPOISON;
4802 goto out_page;
4803 }
4804
4805 /*
4806 * KSM sometimes has to copy on read faults, for example, if
4807 * folio->index of non-ksm folios would be nonlinear inside the
4808 * anon VMA -- the ksm flag is lost on actual swapout.
4809 */
4810 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4811 if (unlikely(!folio)) {
4812 ret = VM_FAULT_OOM;
4813 folio = swapcache;
4814 goto out_page;
4815 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4816 ret = VM_FAULT_HWPOISON;
4817 folio = swapcache;
4818 goto out_page;
4819 }
4820 if (folio != swapcache)
4821 page = folio_page(folio, 0);
4822
4823 /*
4824 * If we want to map a page that's in the swapcache writable, we
4825 * have to detect via the refcount if we're really the exclusive
4826 * owner. Try removing the extra reference from the local LRU
4827 * caches if required.
4828 */
4829 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4830 !folio_test_ksm(folio) && !folio_test_lru(folio))
4831 lru_add_drain();
4832 }
4833
4834 folio_throttle_swaprate(folio, GFP_KERNEL);
4835
4836 /*
4837 * Back out if somebody else already faulted in this pte.
4838 */
4839 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4840 &vmf->ptl);
4841 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4842 goto out_nomap;
4843
4844 if (unlikely(!folio_test_uptodate(folio))) {
4845 ret = VM_FAULT_SIGBUS;
4846 goto out_nomap;
4847 }
4848
4849 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4850 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4851 unsigned long nr = folio_nr_pages(folio);
4852 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4853 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4854 pte_t *folio_ptep = vmf->pte - idx;
4855 pte_t folio_pte = ptep_get(folio_ptep);
4856
4857 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4858 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4859 goto out_nomap;
4860
4861 page_idx = idx;
4862 address = folio_start;
4863 ptep = folio_ptep;
4864 goto check_folio;
4865 }
4866
4867 nr_pages = 1;
4868 page_idx = 0;
4869 address = vmf->address;
4870 ptep = vmf->pte;
4871 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4872 int nr = folio_nr_pages(folio);
4873 unsigned long idx = folio_page_idx(folio, page);
4874 unsigned long folio_start = address - idx * PAGE_SIZE;
4875 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4876 pte_t *folio_ptep;
4877 pte_t folio_pte;
4878
4879 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4880 goto check_folio;
4881 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4882 goto check_folio;
4883
4884 folio_ptep = vmf->pte - idx;
4885 folio_pte = ptep_get(folio_ptep);
4886 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4887 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4888 goto check_folio;
4889
4890 page_idx = idx;
4891 address = folio_start;
4892 ptep = folio_ptep;
4893 nr_pages = nr;
4894 entry = folio->swap;
4895 page = &folio->page;
4896 }
4897
4898 check_folio:
4899 /*
4900 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4901 * must never point at an anonymous page in the swapcache that is
4902 * PG_anon_exclusive. Sanity check that this holds and especially, that
4903 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4904 * check after taking the PT lock and making sure that nobody
4905 * concurrently faulted in this page and set PG_anon_exclusive.
4906 */
4907 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4908 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4909
4910 /*
4911 * Check under PT lock (to protect against concurrent fork() sharing
4912 * the swap entry concurrently) for certainly exclusive pages.
4913 */
4914 if (!folio_test_ksm(folio)) {
4915 exclusive = pte_swp_exclusive(vmf->orig_pte);
4916 if (folio != swapcache) {
4917 /*
4918 * We have a fresh page that is not exposed to the
4919 * swapcache -> certainly exclusive.
4920 */
4921 exclusive = true;
4922 } else if (exclusive && folio_test_writeback(folio) &&
4923 data_race(si->flags & SWP_STABLE_WRITES)) {
4924 /*
4925 * This is tricky: not all swap backends support
4926 * concurrent page modifications while under writeback.
4927 *
4928 * So if we stumble over such a page in the swapcache
4929 * we must not set the page exclusive, otherwise we can
4930 * map it writable without further checks and modify it
4931 * while still under writeback.
4932 *
4933 * For these problematic swap backends, simply drop the
4934 * exclusive marker: this is perfectly fine as we start
4935 * writeback only if we fully unmapped the page and
4936 * there are no unexpected references on the page after
4937 * unmapping succeeded. After fully unmapped, no
4938 * further GUP references (FOLL_GET and FOLL_PIN) can
4939 * appear, so dropping the exclusive marker and mapping
4940 * it only R/O is fine.
4941 */
4942 exclusive = false;
4943 }
4944 }
4945
4946 /*
4947 * Some architectures may have to restore extra metadata to the page
4948 * when reading from swap. This metadata may be indexed by swap entry
4949 * so this must be called before swap_free().
4950 */
4951 arch_swap_restore(folio_swap(entry, folio), folio);
4952
4953 /*
4954 * Remove the swap entry and conditionally try to free up the swapcache.
4955 * We're already holding a reference on the page but haven't mapped it
4956 * yet.
4957 */
4958 swap_free_nr(entry, nr_pages);
4959 if (should_try_to_free_swap(folio, vma, vmf->flags))
4960 folio_free_swap(folio);
4961
4962 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4963 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4964 pte = mk_pte(page, vma->vm_page_prot);
4965 if (pte_swp_soft_dirty(vmf->orig_pte))
4966 pte = pte_mksoft_dirty(pte);
4967 if (pte_swp_uffd_wp(vmf->orig_pte))
4968 pte = pte_mkuffd_wp(pte);
4969
4970 /*
4971 * Same logic as in do_wp_page(); however, optimize for pages that are
4972 * certainly not shared either because we just allocated them without
4973 * exposing them to the swapcache or because the swap entry indicates
4974 * exclusivity.
4975 */
4976 if (!folio_test_ksm(folio) &&
4977 (exclusive || folio_ref_count(folio) == 1)) {
4978 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4979 !pte_needs_soft_dirty_wp(vma, pte)) {
4980 pte = pte_mkwrite(pte, vma);
4981 if (vmf->flags & FAULT_FLAG_WRITE) {
4982 pte = pte_mkdirty(pte);
4983 vmf->flags &= ~FAULT_FLAG_WRITE;
4984 }
4985 }
4986 rmap_flags |= RMAP_EXCLUSIVE;
4987 }
4988 folio_ref_add(folio, nr_pages - 1);
4989 flush_icache_pages(vma, page, nr_pages);
4990 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4991
4992 /* ksm created a completely new copy */
4993 if (unlikely(folio != swapcache && swapcache)) {
4994 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4995 folio_add_lru_vma(folio, vma);
4996 } else if (!folio_test_anon(folio)) {
4997 /*
4998 * We currently only expect small !anon folios which are either
4999 * fully exclusive or fully shared, or new allocated large
5000 * folios which are fully exclusive. If we ever get large
5001 * folios within swapcache here, we have to be careful.
5002 */
5003 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
5004 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
5005 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
5006 } else {
5007 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
5008 rmap_flags);
5009 }
5010
5011 VM_BUG_ON(!folio_test_anon(folio) ||
5012 (pte_write(pte) && !PageAnonExclusive(page)));
5013 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
5014 arch_do_swap_page_nr(vma->vm_mm, vma, address,
5015 pte, pte, nr_pages);
5016
5017 folio_unlock(folio);
5018 if (folio != swapcache && swapcache) {
5019 /*
5020 * Hold the lock to avoid the swap entry to be reused
5021 * until we take the PT lock for the pte_same() check
5022 * (to avoid false positives from pte_same). For
5023 * further safety release the lock after the swap_free
5024 * so that the swap count won't change under a
5025 * parallel locked swapcache.
5026 */
5027 folio_unlock(swapcache);
5028 folio_put(swapcache);
5029 }
5030
5031 if (vmf->flags & FAULT_FLAG_WRITE) {
5032 ret |= do_wp_page(vmf);
5033 if (ret & VM_FAULT_ERROR)
5034 ret &= VM_FAULT_ERROR;
5035 goto out;
5036 }
5037
5038 /* No need to invalidate - it was non-present before */
5039 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
5040 unlock:
5041 if (vmf->pte)
5042 pte_unmap_unlock(vmf->pte, vmf->ptl);
5043 out:
5044 /* Clear the swap cache pin for direct swapin after PTL unlock */
5045 if (need_clear_cache) {
5046 swapcache_clear(si, entry, nr_pages);
5047 if (waitqueue_active(&swapcache_wq))
5048 wake_up(&swapcache_wq);
5049 }
5050 if (si)
5051 put_swap_device(si);
5052 return ret;
5053 out_nomap:
5054 if (vmf->pte)
5055 pte_unmap_unlock(vmf->pte, vmf->ptl);
5056 out_page:
5057 folio_unlock(folio);
5058 out_release:
5059 folio_put(folio);
5060 if (folio != swapcache && swapcache) {
5061 folio_unlock(swapcache);
5062 folio_put(swapcache);
5063 }
5064 if (need_clear_cache) {
5065 swapcache_clear(si, entry, nr_pages);
5066 if (waitqueue_active(&swapcache_wq))
5067 wake_up(&swapcache_wq);
5068 }
5069 if (si)
5070 put_swap_device(si);
5071 return ret;
5072 }
5073
pte_range_none(pte_t * pte,int nr_pages)5074 static bool pte_range_none(pte_t *pte, int nr_pages)
5075 {
5076 int i;
5077
5078 for (i = 0; i < nr_pages; i++) {
5079 if (!pte_none(ptep_get_lockless(pte + i)))
5080 return false;
5081 }
5082
5083 return true;
5084 }
5085
alloc_anon_folio(struct vm_fault * vmf)5086 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
5087 {
5088 struct vm_area_struct *vma = vmf->vma;
5089 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5090 unsigned long orders;
5091 struct folio *folio;
5092 unsigned long addr;
5093 pte_t *pte;
5094 gfp_t gfp;
5095 int order;
5096
5097 /*
5098 * If uffd is active for the vma we need per-page fault fidelity to
5099 * maintain the uffd semantics.
5100 */
5101 if (unlikely(userfaultfd_armed(vma)))
5102 goto fallback;
5103
5104 /*
5105 * Get a list of all the (large) orders below PMD_ORDER that are enabled
5106 * for this vma. Then filter out the orders that can't be allocated over
5107 * the faulting address and still be fully contained in the vma.
5108 */
5109 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
5110 BIT(PMD_ORDER) - 1);
5111 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
5112
5113 if (!orders)
5114 goto fallback;
5115
5116 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
5117 if (!pte)
5118 return ERR_PTR(-EAGAIN);
5119
5120 /*
5121 * Find the highest order where the aligned range is completely
5122 * pte_none(). Note that all remaining orders will be completely
5123 * pte_none().
5124 */
5125 order = highest_order(orders);
5126 while (orders) {
5127 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5128 if (pte_range_none(pte + pte_index(addr), 1 << order))
5129 break;
5130 order = next_order(&orders, order);
5131 }
5132
5133 pte_unmap(pte);
5134
5135 if (!orders)
5136 goto fallback;
5137
5138 /* Try allocating the highest of the remaining orders. */
5139 gfp = vma_thp_gfp_mask(vma);
5140 while (orders) {
5141 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5142 folio = vma_alloc_folio(gfp, order, vma, addr);
5143 if (folio) {
5144 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
5145 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
5146 folio_put(folio);
5147 goto next;
5148 }
5149 folio_throttle_swaprate(folio, gfp);
5150 /*
5151 * When a folio is not zeroed during allocation
5152 * (__GFP_ZERO not used) or user folios require special
5153 * handling, folio_zero_user() is used to make sure
5154 * that the page corresponding to the faulting address
5155 * will be hot in the cache after zeroing.
5156 */
5157 if (user_alloc_needs_zeroing())
5158 folio_zero_user(folio, vmf->address);
5159 return folio;
5160 }
5161 next:
5162 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
5163 order = next_order(&orders, order);
5164 }
5165
5166 fallback:
5167 #endif
5168 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
5169 }
5170
5171 /*
5172 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5173 * but allow concurrent faults), and pte mapped but not yet locked.
5174 * We return with mmap_lock still held, but pte unmapped and unlocked.
5175 */
do_anonymous_page(struct vm_fault * vmf)5176 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
5177 {
5178 struct vm_area_struct *vma = vmf->vma;
5179 unsigned long addr = vmf->address;
5180 struct folio *folio;
5181 vm_fault_t ret = 0;
5182 int nr_pages = 1;
5183 pte_t entry;
5184
5185 /* File mapping without ->vm_ops ? */
5186 if (vma->vm_flags & VM_SHARED)
5187 return VM_FAULT_SIGBUS;
5188
5189 /*
5190 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
5191 * be distinguished from a transient failure of pte_offset_map().
5192 */
5193 if (pte_alloc(vma->vm_mm, vmf->pmd))
5194 return VM_FAULT_OOM;
5195
5196 /* Use the zero-page for reads */
5197 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
5198 !mm_forbids_zeropage(vma->vm_mm)) {
5199 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
5200 vma->vm_page_prot));
5201 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5202 vmf->address, &vmf->ptl);
5203 if (!vmf->pte)
5204 goto unlock;
5205 if (vmf_pte_changed(vmf)) {
5206 update_mmu_tlb(vma, vmf->address, vmf->pte);
5207 goto unlock;
5208 }
5209 ret = check_stable_address_space(vma->vm_mm);
5210 if (ret)
5211 goto unlock;
5212 /* Deliver the page fault to userland, check inside PT lock */
5213 if (userfaultfd_missing(vma)) {
5214 pte_unmap_unlock(vmf->pte, vmf->ptl);
5215 return handle_userfault(vmf, VM_UFFD_MISSING);
5216 }
5217 goto setpte;
5218 }
5219
5220 /* Allocate our own private page. */
5221 ret = vmf_anon_prepare(vmf);
5222 if (ret)
5223 return ret;
5224 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
5225 folio = alloc_anon_folio(vmf);
5226 if (IS_ERR(folio))
5227 return 0;
5228 if (!folio)
5229 goto oom;
5230
5231 nr_pages = folio_nr_pages(folio);
5232 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
5233
5234 /*
5235 * The memory barrier inside __folio_mark_uptodate makes sure that
5236 * preceding stores to the page contents become visible before
5237 * the set_pte_at() write.
5238 */
5239 __folio_mark_uptodate(folio);
5240
5241 entry = folio_mk_pte(folio, vma->vm_page_prot);
5242 entry = pte_sw_mkyoung(entry);
5243 if (vma->vm_flags & VM_WRITE)
5244 entry = pte_mkwrite(pte_mkdirty(entry), vma);
5245
5246 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
5247 if (!vmf->pte)
5248 goto release;
5249 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
5250 update_mmu_tlb(vma, addr, vmf->pte);
5251 goto release;
5252 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5253 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5254 goto release;
5255 }
5256
5257 ret = check_stable_address_space(vma->vm_mm);
5258 if (ret)
5259 goto release;
5260
5261 /* Deliver the page fault to userland, check inside PT lock */
5262 if (userfaultfd_missing(vma)) {
5263 pte_unmap_unlock(vmf->pte, vmf->ptl);
5264 folio_put(folio);
5265 return handle_userfault(vmf, VM_UFFD_MISSING);
5266 }
5267
5268 folio_ref_add(folio, nr_pages - 1);
5269 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
5270 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
5271 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5272 folio_add_lru_vma(folio, vma);
5273 setpte:
5274 if (vmf_orig_pte_uffd_wp(vmf))
5275 entry = pte_mkuffd_wp(entry);
5276 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
5277
5278 /* No need to invalidate - it was non-present before */
5279 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
5280 unlock:
5281 if (vmf->pte)
5282 pte_unmap_unlock(vmf->pte, vmf->ptl);
5283 return ret;
5284 release:
5285 folio_put(folio);
5286 goto unlock;
5287 oom:
5288 return VM_FAULT_OOM;
5289 }
5290
5291 /*
5292 * The mmap_lock must have been held on entry, and may have been
5293 * released depending on flags and vma->vm_ops->fault() return value.
5294 * See filemap_fault() and __lock_page_retry().
5295 */
__do_fault(struct vm_fault * vmf)5296 static vm_fault_t __do_fault(struct vm_fault *vmf)
5297 {
5298 struct vm_area_struct *vma = vmf->vma;
5299 struct folio *folio;
5300 vm_fault_t ret;
5301
5302 /*
5303 * Preallocate pte before we take page_lock because this might lead to
5304 * deadlocks for memcg reclaim which waits for pages under writeback:
5305 * lock_page(A)
5306 * SetPageWriteback(A)
5307 * unlock_page(A)
5308 * lock_page(B)
5309 * lock_page(B)
5310 * pte_alloc_one
5311 * shrink_folio_list
5312 * wait_on_page_writeback(A)
5313 * SetPageWriteback(B)
5314 * unlock_page(B)
5315 * # flush A, B to clear the writeback
5316 */
5317 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
5318 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5319 if (!vmf->prealloc_pte)
5320 return VM_FAULT_OOM;
5321 }
5322
5323 ret = vma->vm_ops->fault(vmf);
5324 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
5325 VM_FAULT_DONE_COW)))
5326 return ret;
5327
5328 folio = page_folio(vmf->page);
5329 if (unlikely(PageHWPoison(vmf->page))) {
5330 vm_fault_t poisonret = VM_FAULT_HWPOISON;
5331 if (ret & VM_FAULT_LOCKED) {
5332 if (page_mapped(vmf->page))
5333 unmap_mapping_folio(folio);
5334 /* Retry if a clean folio was removed from the cache. */
5335 if (mapping_evict_folio(folio->mapping, folio))
5336 poisonret = VM_FAULT_NOPAGE;
5337 folio_unlock(folio);
5338 }
5339 folio_put(folio);
5340 vmf->page = NULL;
5341 return poisonret;
5342 }
5343
5344 if (unlikely(!(ret & VM_FAULT_LOCKED)))
5345 folio_lock(folio);
5346 else
5347 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5348
5349 return ret;
5350 }
5351
5352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)5353 static void deposit_prealloc_pte(struct vm_fault *vmf)
5354 {
5355 struct vm_area_struct *vma = vmf->vma;
5356
5357 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5358 /*
5359 * We are going to consume the prealloc table,
5360 * count that as nr_ptes.
5361 */
5362 mm_inc_nr_ptes(vma->vm_mm);
5363 vmf->prealloc_pte = NULL;
5364 }
5365
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5366 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5367 {
5368 struct vm_area_struct *vma = vmf->vma;
5369 bool write = vmf->flags & FAULT_FLAG_WRITE;
5370 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5371 pmd_t entry;
5372 vm_fault_t ret = VM_FAULT_FALLBACK;
5373
5374 /*
5375 * It is too late to allocate a small folio, we already have a large
5376 * folio in the pagecache: especially s390 KVM cannot tolerate any
5377 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5378 * PMD mappings if THPs are disabled. As we already have a THP,
5379 * behave as if we are forcing a collapse.
5380 */
5381 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags,
5382 /* forced_collapse=*/ true))
5383 return ret;
5384
5385 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5386 return ret;
5387
5388 if (folio_order(folio) != HPAGE_PMD_ORDER)
5389 return ret;
5390 page = &folio->page;
5391
5392 /*
5393 * Just backoff if any subpage of a THP is corrupted otherwise
5394 * the corrupted page may mapped by PMD silently to escape the
5395 * check. This kind of THP just can be PTE mapped. Access to
5396 * the corrupted subpage should trigger SIGBUS as expected.
5397 */
5398 if (unlikely(folio_test_has_hwpoisoned(folio)))
5399 return ret;
5400
5401 /*
5402 * Archs like ppc64 need additional space to store information
5403 * related to pte entry. Use the preallocated table for that.
5404 */
5405 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5406 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5407 if (!vmf->prealloc_pte)
5408 return VM_FAULT_OOM;
5409 }
5410
5411 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5412 if (unlikely(!pmd_none(*vmf->pmd)))
5413 goto out;
5414
5415 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5416
5417 entry = folio_mk_pmd(folio, vma->vm_page_prot);
5418 if (write)
5419 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5420
5421 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5422 folio_add_file_rmap_pmd(folio, page, vma);
5423
5424 /*
5425 * deposit and withdraw with pmd lock held
5426 */
5427 if (arch_needs_pgtable_deposit())
5428 deposit_prealloc_pte(vmf);
5429
5430 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5431
5432 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5433
5434 /* fault is handled */
5435 ret = 0;
5436 count_vm_event(THP_FILE_MAPPED);
5437 out:
5438 spin_unlock(vmf->ptl);
5439 return ret;
5440 }
5441 #else
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5442 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5443 {
5444 return VM_FAULT_FALLBACK;
5445 }
5446 #endif
5447
5448 /**
5449 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5450 * @vmf: Fault description.
5451 * @folio: The folio that contains @page.
5452 * @page: The first page to create a PTE for.
5453 * @nr: The number of PTEs to create.
5454 * @addr: The first address to create a PTE for.
5455 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5456 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5457 struct page *page, unsigned int nr, unsigned long addr)
5458 {
5459 struct vm_area_struct *vma = vmf->vma;
5460 bool write = vmf->flags & FAULT_FLAG_WRITE;
5461 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5462 pte_t entry;
5463
5464 flush_icache_pages(vma, page, nr);
5465 entry = mk_pte(page, vma->vm_page_prot);
5466
5467 if (prefault && arch_wants_old_prefaulted_pte())
5468 entry = pte_mkold(entry);
5469 else
5470 entry = pte_sw_mkyoung(entry);
5471
5472 if (write)
5473 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5474 else if (pte_write(entry) && folio_test_dirty(folio))
5475 entry = pte_mkdirty(entry);
5476 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5477 entry = pte_mkuffd_wp(entry);
5478 /* copy-on-write page */
5479 if (write && !(vma->vm_flags & VM_SHARED)) {
5480 VM_BUG_ON_FOLIO(nr != 1, folio);
5481 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5482 folio_add_lru_vma(folio, vma);
5483 } else {
5484 folio_add_file_rmap_ptes(folio, page, nr, vma);
5485 }
5486 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5487
5488 /* no need to invalidate: a not-present page won't be cached */
5489 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5490 }
5491
vmf_pte_changed(struct vm_fault * vmf)5492 static bool vmf_pte_changed(struct vm_fault *vmf)
5493 {
5494 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5495 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5496
5497 return !pte_none(ptep_get(vmf->pte));
5498 }
5499
5500 /**
5501 * finish_fault - finish page fault once we have prepared the page to fault
5502 *
5503 * @vmf: structure describing the fault
5504 *
5505 * This function handles all that is needed to finish a page fault once the
5506 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5507 * given page, adds reverse page mapping, handles memcg charges and LRU
5508 * addition.
5509 *
5510 * The function expects the page to be locked and on success it consumes a
5511 * reference of a page being mapped (for the PTE which maps it).
5512 *
5513 * Return: %0 on success, %VM_FAULT_ code in case of error.
5514 */
finish_fault(struct vm_fault * vmf)5515 vm_fault_t finish_fault(struct vm_fault *vmf)
5516 {
5517 struct vm_area_struct *vma = vmf->vma;
5518 struct page *page;
5519 struct folio *folio;
5520 vm_fault_t ret;
5521 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5522 !(vma->vm_flags & VM_SHARED);
5523 int type, nr_pages;
5524 unsigned long addr;
5525 bool needs_fallback = false;
5526
5527 fallback:
5528 addr = vmf->address;
5529
5530 /* Did we COW the page? */
5531 if (is_cow)
5532 page = vmf->cow_page;
5533 else
5534 page = vmf->page;
5535
5536 folio = page_folio(page);
5537 /*
5538 * check even for read faults because we might have lost our CoWed
5539 * page
5540 */
5541 if (!(vma->vm_flags & VM_SHARED)) {
5542 ret = check_stable_address_space(vma->vm_mm);
5543 if (ret)
5544 return ret;
5545 }
5546
5547 if (!needs_fallback && vma->vm_file) {
5548 struct address_space *mapping = vma->vm_file->f_mapping;
5549 pgoff_t file_end;
5550
5551 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
5552
5553 /*
5554 * Do not allow to map with PTEs beyond i_size and with PMD
5555 * across i_size to preserve SIGBUS semantics.
5556 *
5557 * Make an exception for shmem/tmpfs that for long time
5558 * intentionally mapped with PMDs across i_size.
5559 */
5560 needs_fallback = !shmem_mapping(mapping) &&
5561 file_end < folio_next_index(folio);
5562 }
5563
5564 if (pmd_none(*vmf->pmd)) {
5565 if (!needs_fallback && folio_test_pmd_mappable(folio)) {
5566 ret = do_set_pmd(vmf, folio, page);
5567 if (ret != VM_FAULT_FALLBACK)
5568 return ret;
5569 }
5570
5571 if (vmf->prealloc_pte)
5572 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5573 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5574 return VM_FAULT_OOM;
5575 }
5576
5577 nr_pages = folio_nr_pages(folio);
5578
5579 /* Using per-page fault to maintain the uffd semantics */
5580 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) {
5581 nr_pages = 1;
5582 } else if (nr_pages > 1) {
5583 pgoff_t idx = folio_page_idx(folio, page);
5584 /* The page offset of vmf->address within the VMA. */
5585 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5586 /* The index of the entry in the pagetable for fault page. */
5587 pgoff_t pte_off = pte_index(vmf->address);
5588
5589 /*
5590 * Fallback to per-page fault in case the folio size in page
5591 * cache beyond the VMA limits and PMD pagetable limits.
5592 */
5593 if (unlikely(vma_off < idx ||
5594 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5595 pte_off < idx ||
5596 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5597 nr_pages = 1;
5598 } else {
5599 /* Now we can set mappings for the whole large folio. */
5600 addr = vmf->address - idx * PAGE_SIZE;
5601 page = &folio->page;
5602 }
5603 }
5604
5605 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5606 addr, &vmf->ptl);
5607 if (!vmf->pte)
5608 return VM_FAULT_NOPAGE;
5609
5610 /* Re-check under ptl */
5611 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5612 update_mmu_tlb(vma, addr, vmf->pte);
5613 ret = VM_FAULT_NOPAGE;
5614 goto unlock;
5615 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5616 needs_fallback = true;
5617 pte_unmap_unlock(vmf->pte, vmf->ptl);
5618 goto fallback;
5619 }
5620
5621 folio_ref_add(folio, nr_pages - 1);
5622 set_pte_range(vmf, folio, page, nr_pages, addr);
5623 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5624 add_mm_counter(vma->vm_mm, type, nr_pages);
5625 ret = 0;
5626
5627 unlock:
5628 pte_unmap_unlock(vmf->pte, vmf->ptl);
5629 return ret;
5630 }
5631
5632 static unsigned long fault_around_pages __read_mostly =
5633 65536 >> PAGE_SHIFT;
5634
5635 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5636 static int fault_around_bytes_get(void *data, u64 *val)
5637 {
5638 *val = fault_around_pages << PAGE_SHIFT;
5639 return 0;
5640 }
5641
5642 /*
5643 * fault_around_bytes must be rounded down to the nearest page order as it's
5644 * what do_fault_around() expects to see.
5645 */
fault_around_bytes_set(void * data,u64 val)5646 static int fault_around_bytes_set(void *data, u64 val)
5647 {
5648 if (val / PAGE_SIZE > PTRS_PER_PTE)
5649 return -EINVAL;
5650
5651 /*
5652 * The minimum value is 1 page, however this results in no fault-around
5653 * at all. See should_fault_around().
5654 */
5655 val = max(val, PAGE_SIZE);
5656 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5657
5658 return 0;
5659 }
5660 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5661 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5662
fault_around_debugfs(void)5663 static int __init fault_around_debugfs(void)
5664 {
5665 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5666 &fault_around_bytes_fops);
5667 return 0;
5668 }
5669 late_initcall(fault_around_debugfs);
5670 #endif
5671
5672 /*
5673 * do_fault_around() tries to map few pages around the fault address. The hope
5674 * is that the pages will be needed soon and this will lower the number of
5675 * faults to handle.
5676 *
5677 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5678 * not ready to be mapped: not up-to-date, locked, etc.
5679 *
5680 * This function doesn't cross VMA or page table boundaries, in order to call
5681 * map_pages() and acquire a PTE lock only once.
5682 *
5683 * fault_around_pages defines how many pages we'll try to map.
5684 * do_fault_around() expects it to be set to a power of two less than or equal
5685 * to PTRS_PER_PTE.
5686 *
5687 * The virtual address of the area that we map is naturally aligned to
5688 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5689 * (and therefore to page order). This way it's easier to guarantee
5690 * that we don't cross page table boundaries.
5691 */
do_fault_around(struct vm_fault * vmf)5692 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5693 {
5694 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5695 pgoff_t pte_off = pte_index(vmf->address);
5696 /* The page offset of vmf->address within the VMA. */
5697 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5698 pgoff_t from_pte, to_pte;
5699 vm_fault_t ret;
5700
5701 /* The PTE offset of the start address, clamped to the VMA. */
5702 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5703 pte_off - min(pte_off, vma_off));
5704
5705 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5706 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5707 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5708
5709 if (pmd_none(*vmf->pmd)) {
5710 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5711 if (!vmf->prealloc_pte)
5712 return VM_FAULT_OOM;
5713 }
5714
5715 rcu_read_lock();
5716 ret = vmf->vma->vm_ops->map_pages(vmf,
5717 vmf->pgoff + from_pte - pte_off,
5718 vmf->pgoff + to_pte - pte_off);
5719 rcu_read_unlock();
5720
5721 return ret;
5722 }
5723
5724 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5725 static inline bool should_fault_around(struct vm_fault *vmf)
5726 {
5727 /* No ->map_pages? No way to fault around... */
5728 if (!vmf->vma->vm_ops->map_pages)
5729 return false;
5730
5731 if (uffd_disable_fault_around(vmf->vma))
5732 return false;
5733
5734 /* A single page implies no faulting 'around' at all. */
5735 return fault_around_pages > 1;
5736 }
5737
do_read_fault(struct vm_fault * vmf)5738 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5739 {
5740 vm_fault_t ret = 0;
5741 struct folio *folio;
5742
5743 /*
5744 * Let's call ->map_pages() first and use ->fault() as fallback
5745 * if page by the offset is not ready to be mapped (cold cache or
5746 * something).
5747 */
5748 if (should_fault_around(vmf)) {
5749 ret = do_fault_around(vmf);
5750 if (ret)
5751 return ret;
5752 }
5753
5754 ret = vmf_can_call_fault(vmf);
5755 if (ret)
5756 return ret;
5757
5758 ret = __do_fault(vmf);
5759 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5760 return ret;
5761
5762 ret |= finish_fault(vmf);
5763 folio = page_folio(vmf->page);
5764 folio_unlock(folio);
5765 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5766 folio_put(folio);
5767 return ret;
5768 }
5769
do_cow_fault(struct vm_fault * vmf)5770 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5771 {
5772 struct vm_area_struct *vma = vmf->vma;
5773 struct folio *folio;
5774 vm_fault_t ret;
5775
5776 ret = vmf_can_call_fault(vmf);
5777 if (!ret)
5778 ret = vmf_anon_prepare(vmf);
5779 if (ret)
5780 return ret;
5781
5782 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5783 if (!folio)
5784 return VM_FAULT_OOM;
5785
5786 vmf->cow_page = &folio->page;
5787
5788 ret = __do_fault(vmf);
5789 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5790 goto uncharge_out;
5791 if (ret & VM_FAULT_DONE_COW)
5792 return ret;
5793
5794 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5795 ret = VM_FAULT_HWPOISON;
5796 goto unlock;
5797 }
5798 __folio_mark_uptodate(folio);
5799
5800 ret |= finish_fault(vmf);
5801 unlock:
5802 unlock_page(vmf->page);
5803 put_page(vmf->page);
5804 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5805 goto uncharge_out;
5806 return ret;
5807 uncharge_out:
5808 folio_put(folio);
5809 return ret;
5810 }
5811
do_shared_fault(struct vm_fault * vmf)5812 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5813 {
5814 struct vm_area_struct *vma = vmf->vma;
5815 vm_fault_t ret, tmp;
5816 struct folio *folio;
5817
5818 ret = vmf_can_call_fault(vmf);
5819 if (ret)
5820 return ret;
5821
5822 ret = __do_fault(vmf);
5823 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5824 return ret;
5825
5826 folio = page_folio(vmf->page);
5827
5828 /*
5829 * Check if the backing address space wants to know that the page is
5830 * about to become writable
5831 */
5832 if (vma->vm_ops->page_mkwrite) {
5833 folio_unlock(folio);
5834 tmp = do_page_mkwrite(vmf, folio);
5835 if (unlikely(!tmp ||
5836 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5837 folio_put(folio);
5838 return tmp;
5839 }
5840 }
5841
5842 ret |= finish_fault(vmf);
5843 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5844 VM_FAULT_RETRY))) {
5845 folio_unlock(folio);
5846 folio_put(folio);
5847 return ret;
5848 }
5849
5850 ret |= fault_dirty_shared_page(vmf);
5851 return ret;
5852 }
5853
5854 /*
5855 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5856 * but allow concurrent faults).
5857 * The mmap_lock may have been released depending on flags and our
5858 * return value. See filemap_fault() and __folio_lock_or_retry().
5859 * If mmap_lock is released, vma may become invalid (for example
5860 * by other thread calling munmap()).
5861 */
do_fault(struct vm_fault * vmf)5862 static vm_fault_t do_fault(struct vm_fault *vmf)
5863 {
5864 struct vm_area_struct *vma = vmf->vma;
5865 struct mm_struct *vm_mm = vma->vm_mm;
5866 vm_fault_t ret;
5867
5868 /*
5869 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5870 */
5871 if (!vma->vm_ops->fault) {
5872 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5873 vmf->address, &vmf->ptl);
5874 if (unlikely(!vmf->pte))
5875 ret = VM_FAULT_SIGBUS;
5876 else {
5877 /*
5878 * Make sure this is not a temporary clearing of pte
5879 * by holding ptl and checking again. A R/M/W update
5880 * of pte involves: take ptl, clearing the pte so that
5881 * we don't have concurrent modification by hardware
5882 * followed by an update.
5883 */
5884 if (unlikely(pte_none(ptep_get(vmf->pte))))
5885 ret = VM_FAULT_SIGBUS;
5886 else
5887 ret = VM_FAULT_NOPAGE;
5888
5889 pte_unmap_unlock(vmf->pte, vmf->ptl);
5890 }
5891 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5892 ret = do_read_fault(vmf);
5893 else if (!(vma->vm_flags & VM_SHARED))
5894 ret = do_cow_fault(vmf);
5895 else
5896 ret = do_shared_fault(vmf);
5897
5898 /* preallocated pagetable is unused: free it */
5899 if (vmf->prealloc_pte) {
5900 pte_free(vm_mm, vmf->prealloc_pte);
5901 vmf->prealloc_pte = NULL;
5902 }
5903 return ret;
5904 }
5905
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5906 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5907 unsigned long addr, int *flags,
5908 bool writable, int *last_cpupid)
5909 {
5910 struct vm_area_struct *vma = vmf->vma;
5911
5912 /*
5913 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5914 * much anyway since they can be in shared cache state. This misses
5915 * the case where a mapping is writable but the process never writes
5916 * to it but pte_write gets cleared during protection updates and
5917 * pte_dirty has unpredictable behaviour between PTE scan updates,
5918 * background writeback, dirty balancing and application behaviour.
5919 */
5920 if (!writable)
5921 *flags |= TNF_NO_GROUP;
5922
5923 /*
5924 * Flag if the folio is shared between multiple address spaces. This
5925 * is later used when determining whether to group tasks together
5926 */
5927 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5928 *flags |= TNF_SHARED;
5929 /*
5930 * For memory tiering mode, cpupid of slow memory page is used
5931 * to record page access time. So use default value.
5932 */
5933 if (folio_use_access_time(folio))
5934 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5935 else
5936 *last_cpupid = folio_last_cpupid(folio);
5937
5938 /* Record the current PID acceesing VMA */
5939 vma_set_access_pid_bit(vma);
5940
5941 count_vm_numa_event(NUMA_HINT_FAULTS);
5942 #ifdef CONFIG_NUMA_BALANCING
5943 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5944 #endif
5945 if (folio_nid(folio) == numa_node_id()) {
5946 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5947 *flags |= TNF_FAULT_LOCAL;
5948 }
5949
5950 return mpol_misplaced(folio, vmf, addr);
5951 }
5952
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5953 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5954 unsigned long fault_addr, pte_t *fault_pte,
5955 bool writable)
5956 {
5957 pte_t pte, old_pte;
5958
5959 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5960 pte = pte_modify(old_pte, vma->vm_page_prot);
5961 pte = pte_mkyoung(pte);
5962 if (writable)
5963 pte = pte_mkwrite(pte, vma);
5964 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5965 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5966 }
5967
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)5968 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5969 struct folio *folio, pte_t fault_pte,
5970 bool ignore_writable, bool pte_write_upgrade)
5971 {
5972 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5973 unsigned long start, end, addr = vmf->address;
5974 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5975 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5976 pte_t *start_ptep;
5977
5978 /* Stay within the VMA and within the page table. */
5979 start = max3(addr_start, pt_start, vma->vm_start);
5980 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5981 vma->vm_end);
5982 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5983
5984 /* Restore all PTEs' mapping of the large folio */
5985 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5986 pte_t ptent = ptep_get(start_ptep);
5987 bool writable = false;
5988
5989 if (!pte_present(ptent) || !pte_protnone(ptent))
5990 continue;
5991
5992 if (pfn_folio(pte_pfn(ptent)) != folio)
5993 continue;
5994
5995 if (!ignore_writable) {
5996 ptent = pte_modify(ptent, vma->vm_page_prot);
5997 writable = pte_write(ptent);
5998 if (!writable && pte_write_upgrade &&
5999 can_change_pte_writable(vma, addr, ptent))
6000 writable = true;
6001 }
6002
6003 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
6004 }
6005 }
6006
do_numa_page(struct vm_fault * vmf)6007 static vm_fault_t do_numa_page(struct vm_fault *vmf)
6008 {
6009 struct vm_area_struct *vma = vmf->vma;
6010 struct folio *folio = NULL;
6011 int nid = NUMA_NO_NODE;
6012 bool writable = false, ignore_writable = false;
6013 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
6014 int last_cpupid;
6015 int target_nid;
6016 pte_t pte, old_pte;
6017 int flags = 0, nr_pages;
6018
6019 /*
6020 * The pte cannot be used safely until we verify, while holding the page
6021 * table lock, that its contents have not changed during fault handling.
6022 */
6023 spin_lock(vmf->ptl);
6024 /* Read the live PTE from the page tables: */
6025 old_pte = ptep_get(vmf->pte);
6026
6027 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
6028 pte_unmap_unlock(vmf->pte, vmf->ptl);
6029 return 0;
6030 }
6031
6032 pte = pte_modify(old_pte, vma->vm_page_prot);
6033
6034 /*
6035 * Detect now whether the PTE could be writable; this information
6036 * is only valid while holding the PT lock.
6037 */
6038 writable = pte_write(pte);
6039 if (!writable && pte_write_upgrade &&
6040 can_change_pte_writable(vma, vmf->address, pte))
6041 writable = true;
6042
6043 folio = vm_normal_folio(vma, vmf->address, pte);
6044 if (!folio || folio_is_zone_device(folio))
6045 goto out_map;
6046
6047 nid = folio_nid(folio);
6048 nr_pages = folio_nr_pages(folio);
6049
6050 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
6051 writable, &last_cpupid);
6052 if (target_nid == NUMA_NO_NODE)
6053 goto out_map;
6054 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
6055 flags |= TNF_MIGRATE_FAIL;
6056 goto out_map;
6057 }
6058 /* The folio is isolated and isolation code holds a folio reference. */
6059 pte_unmap_unlock(vmf->pte, vmf->ptl);
6060 writable = false;
6061 ignore_writable = true;
6062
6063 /* Migrate to the requested node */
6064 if (!migrate_misplaced_folio(folio, target_nid)) {
6065 nid = target_nid;
6066 flags |= TNF_MIGRATED;
6067 task_numa_fault(last_cpupid, nid, nr_pages, flags);
6068 return 0;
6069 }
6070
6071 flags |= TNF_MIGRATE_FAIL;
6072 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
6073 vmf->address, &vmf->ptl);
6074 if (unlikely(!vmf->pte))
6075 return 0;
6076 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
6077 pte_unmap_unlock(vmf->pte, vmf->ptl);
6078 return 0;
6079 }
6080 out_map:
6081 /*
6082 * Make it present again, depending on how arch implements
6083 * non-accessible ptes, some can allow access by kernel mode.
6084 */
6085 if (folio && folio_test_large(folio))
6086 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
6087 pte_write_upgrade);
6088 else
6089 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
6090 writable);
6091 pte_unmap_unlock(vmf->pte, vmf->ptl);
6092
6093 if (nid != NUMA_NO_NODE)
6094 task_numa_fault(last_cpupid, nid, nr_pages, flags);
6095 return 0;
6096 }
6097
create_huge_pmd(struct vm_fault * vmf)6098 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
6099 {
6100 struct vm_area_struct *vma = vmf->vma;
6101 if (vma_is_anonymous(vma))
6102 return do_huge_pmd_anonymous_page(vmf);
6103 if (vma->vm_ops->huge_fault)
6104 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6105 return VM_FAULT_FALLBACK;
6106 }
6107
6108 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)6109 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
6110 {
6111 struct vm_area_struct *vma = vmf->vma;
6112 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6113 vm_fault_t ret;
6114
6115 if (vma_is_anonymous(vma)) {
6116 if (likely(!unshare) &&
6117 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
6118 if (userfaultfd_wp_async(vmf->vma))
6119 goto split;
6120 return handle_userfault(vmf, VM_UFFD_WP);
6121 }
6122 return do_huge_pmd_wp_page(vmf);
6123 }
6124
6125 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6126 if (vma->vm_ops->huge_fault) {
6127 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6128 if (!(ret & VM_FAULT_FALLBACK))
6129 return ret;
6130 }
6131 }
6132
6133 split:
6134 /* COW or write-notify handled on pte level: split pmd. */
6135 __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
6136
6137 return VM_FAULT_FALLBACK;
6138 }
6139
create_huge_pud(struct vm_fault * vmf)6140 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
6141 {
6142 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
6143 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6144 struct vm_area_struct *vma = vmf->vma;
6145 /* No support for anonymous transparent PUD pages yet */
6146 if (vma_is_anonymous(vma))
6147 return VM_FAULT_FALLBACK;
6148 if (vma->vm_ops->huge_fault)
6149 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6150 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
6151 return VM_FAULT_FALLBACK;
6152 }
6153
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)6154 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
6155 {
6156 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
6157 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6158 struct vm_area_struct *vma = vmf->vma;
6159 vm_fault_t ret;
6160
6161 /* No support for anonymous transparent PUD pages yet */
6162 if (vma_is_anonymous(vma))
6163 goto split;
6164 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6165 if (vma->vm_ops->huge_fault) {
6166 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6167 if (!(ret & VM_FAULT_FALLBACK))
6168 return ret;
6169 }
6170 }
6171 split:
6172 /* COW or write-notify not handled on PUD level: split pud.*/
6173 __split_huge_pud(vma, vmf->pud, vmf->address);
6174 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
6175 return VM_FAULT_FALLBACK;
6176 }
6177
6178 /*
6179 * The page faults may be spurious because of the racy access to the
6180 * page table. For example, a non-populated virtual page is accessed
6181 * on 2 CPUs simultaneously, thus the page faults are triggered on
6182 * both CPUs. However, it's possible that one CPU (say CPU A) cannot
6183 * find the reason for the page fault if the other CPU (say CPU B) has
6184 * changed the page table before the PTE is checked on CPU A. Most of
6185 * the time, the spurious page faults can be ignored safely. However,
6186 * if the page fault is for the write access, it's possible that a
6187 * stale read-only TLB entry exists in the local CPU and needs to be
6188 * flushed on some architectures. This is called the spurious page
6189 * fault fixing.
6190 *
6191 * Note: flush_tlb_fix_spurious_fault() is defined as flush_tlb_page()
6192 * by default and used as such on most architectures, while
6193 * flush_tlb_fix_spurious_fault_pmd() is defined as NOP by default and
6194 * used as such on most architectures.
6195 */
fix_spurious_fault(struct vm_fault * vmf,enum pgtable_level ptlevel)6196 static void fix_spurious_fault(struct vm_fault *vmf,
6197 enum pgtable_level ptlevel)
6198 {
6199 /* Skip spurious TLB flush for retried page fault */
6200 if (vmf->flags & FAULT_FLAG_TRIED)
6201 return;
6202 /*
6203 * This is needed only for protection faults but the arch code
6204 * is not yet telling us if this is a protection fault or not.
6205 * This still avoids useless tlb flushes for .text page faults
6206 * with threads.
6207 */
6208 if (vmf->flags & FAULT_FLAG_WRITE) {
6209 if (ptlevel == PGTABLE_LEVEL_PTE)
6210 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
6211 vmf->pte);
6212 else
6213 flush_tlb_fix_spurious_fault_pmd(vmf->vma, vmf->address,
6214 vmf->pmd);
6215 }
6216 }
6217 /*
6218 * These routines also need to handle stuff like marking pages dirty
6219 * and/or accessed for architectures that don't do it in hardware (most
6220 * RISC architectures). The early dirtying is also good on the i386.
6221 *
6222 * There is also a hook called "update_mmu_cache()" that architectures
6223 * with external mmu caches can use to update those (ie the Sparc or
6224 * PowerPC hashed page tables that act as extended TLBs).
6225 *
6226 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
6227 * concurrent faults).
6228 *
6229 * The mmap_lock may have been released depending on flags and our return value.
6230 * See filemap_fault() and __folio_lock_or_retry().
6231 */
handle_pte_fault(struct vm_fault * vmf)6232 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
6233 {
6234 pte_t entry;
6235
6236 if (unlikely(pmd_none(*vmf->pmd))) {
6237 /*
6238 * Leave __pte_alloc() until later: because vm_ops->fault may
6239 * want to allocate huge page, and if we expose page table
6240 * for an instant, it will be difficult to retract from
6241 * concurrent faults and from rmap lookups.
6242 */
6243 vmf->pte = NULL;
6244 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
6245 } else {
6246 pmd_t dummy_pmdval;
6247
6248 /*
6249 * A regular pmd is established and it can't morph into a huge
6250 * pmd by anon khugepaged, since that takes mmap_lock in write
6251 * mode; but shmem or file collapse to THP could still morph
6252 * it into a huge pmd: just retry later if so.
6253 *
6254 * Use the maywrite version to indicate that vmf->pte may be
6255 * modified, but since we will use pte_same() to detect the
6256 * change of the !pte_none() entry, there is no need to recheck
6257 * the pmdval. Here we chooes to pass a dummy variable instead
6258 * of NULL, which helps new user think about why this place is
6259 * special.
6260 */
6261 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
6262 vmf->address, &dummy_pmdval,
6263 &vmf->ptl);
6264 if (unlikely(!vmf->pte))
6265 return 0;
6266 vmf->orig_pte = ptep_get_lockless(vmf->pte);
6267 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
6268
6269 if (pte_none(vmf->orig_pte)) {
6270 pte_unmap(vmf->pte);
6271 vmf->pte = NULL;
6272 }
6273 }
6274
6275 if (!vmf->pte)
6276 return do_pte_missing(vmf);
6277
6278 if (!pte_present(vmf->orig_pte))
6279 return do_swap_page(vmf);
6280
6281 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
6282 return do_numa_page(vmf);
6283
6284 spin_lock(vmf->ptl);
6285 entry = vmf->orig_pte;
6286 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
6287 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
6288 goto unlock;
6289 }
6290 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6291 if (!pte_write(entry))
6292 return do_wp_page(vmf);
6293 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
6294 entry = pte_mkdirty(entry);
6295 }
6296 entry = pte_mkyoung(entry);
6297 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
6298 vmf->flags & FAULT_FLAG_WRITE))
6299 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
6300 vmf->pte, 1);
6301 else
6302 fix_spurious_fault(vmf, PGTABLE_LEVEL_PTE);
6303 unlock:
6304 pte_unmap_unlock(vmf->pte, vmf->ptl);
6305 return 0;
6306 }
6307
6308 /*
6309 * On entry, we hold either the VMA lock or the mmap_lock
6310 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
6311 * the result, the mmap_lock is not held on exit. See filemap_fault()
6312 * and __folio_lock_or_retry().
6313 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)6314 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
6315 unsigned long address, unsigned int flags)
6316 {
6317 struct vm_fault vmf = {
6318 .vma = vma,
6319 .address = address & PAGE_MASK,
6320 .real_address = address,
6321 .flags = flags,
6322 .pgoff = linear_page_index(vma, address),
6323 .gfp_mask = __get_fault_gfp_mask(vma),
6324 };
6325 struct mm_struct *mm = vma->vm_mm;
6326 vm_flags_t vm_flags = vma->vm_flags;
6327 pgd_t *pgd;
6328 p4d_t *p4d;
6329 vm_fault_t ret;
6330
6331 pgd = pgd_offset(mm, address);
6332 p4d = p4d_alloc(mm, pgd, address);
6333 if (!p4d)
6334 return VM_FAULT_OOM;
6335
6336 vmf.pud = pud_alloc(mm, p4d, address);
6337 if (!vmf.pud)
6338 return VM_FAULT_OOM;
6339 retry_pud:
6340 if (pud_none(*vmf.pud) &&
6341 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) {
6342 ret = create_huge_pud(&vmf);
6343 if (!(ret & VM_FAULT_FALLBACK))
6344 return ret;
6345 } else {
6346 pud_t orig_pud = *vmf.pud;
6347
6348 barrier();
6349 if (pud_trans_huge(orig_pud)) {
6350
6351 /*
6352 * TODO once we support anonymous PUDs: NUMA case and
6353 * FAULT_FLAG_UNSHARE handling.
6354 */
6355 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
6356 ret = wp_huge_pud(&vmf, orig_pud);
6357 if (!(ret & VM_FAULT_FALLBACK))
6358 return ret;
6359 } else {
6360 huge_pud_set_accessed(&vmf, orig_pud);
6361 return 0;
6362 }
6363 }
6364 }
6365
6366 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
6367 if (!vmf.pmd)
6368 return VM_FAULT_OOM;
6369
6370 /* Huge pud page fault raced with pmd_alloc? */
6371 if (pud_trans_unstable(vmf.pud))
6372 goto retry_pud;
6373
6374 if (pmd_none(*vmf.pmd) &&
6375 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) {
6376 ret = create_huge_pmd(&vmf);
6377 if (ret & VM_FAULT_FALLBACK)
6378 goto fallback;
6379 else
6380 return ret;
6381 }
6382
6383 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6384 if (pmd_none(vmf.orig_pmd))
6385 goto fallback;
6386
6387 if (unlikely(!pmd_present(vmf.orig_pmd))) {
6388 if (pmd_is_device_private_entry(vmf.orig_pmd))
6389 return do_huge_pmd_device_private(&vmf);
6390
6391 if (pmd_is_migration_entry(vmf.orig_pmd))
6392 pmd_migration_entry_wait(mm, vmf.pmd);
6393 return 0;
6394 }
6395 if (pmd_trans_huge(vmf.orig_pmd)) {
6396 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6397 return do_huge_pmd_numa_page(&vmf);
6398
6399 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6400 !pmd_write(vmf.orig_pmd)) {
6401 ret = wp_huge_pmd(&vmf);
6402 if (!(ret & VM_FAULT_FALLBACK))
6403 return ret;
6404 } else {
6405 vmf.ptl = pmd_lock(mm, vmf.pmd);
6406 if (!huge_pmd_set_accessed(&vmf))
6407 fix_spurious_fault(&vmf, PGTABLE_LEVEL_PMD);
6408 spin_unlock(vmf.ptl);
6409 return 0;
6410 }
6411 }
6412
6413 fallback:
6414 return handle_pte_fault(&vmf);
6415 }
6416
6417 /**
6418 * mm_account_fault - Do page fault accounting
6419 * @mm: mm from which memcg should be extracted. It can be NULL.
6420 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6421 * of perf event counters, but we'll still do the per-task accounting to
6422 * the task who triggered this page fault.
6423 * @address: the faulted address.
6424 * @flags: the fault flags.
6425 * @ret: the fault retcode.
6426 *
6427 * This will take care of most of the page fault accounting. Meanwhile, it
6428 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6429 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6430 * still be in per-arch page fault handlers at the entry of page fault.
6431 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)6432 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6433 unsigned long address, unsigned int flags,
6434 vm_fault_t ret)
6435 {
6436 bool major;
6437
6438 /* Incomplete faults will be accounted upon completion. */
6439 if (ret & VM_FAULT_RETRY)
6440 return;
6441
6442 /*
6443 * To preserve the behavior of older kernels, PGFAULT counters record
6444 * both successful and failed faults, as opposed to perf counters,
6445 * which ignore failed cases.
6446 */
6447 count_vm_event(PGFAULT);
6448 count_memcg_event_mm(mm, PGFAULT);
6449
6450 /*
6451 * Do not account for unsuccessful faults (e.g. when the address wasn't
6452 * valid). That includes arch_vma_access_permitted() failing before
6453 * reaching here. So this is not a "this many hardware page faults"
6454 * counter. We should use the hw profiling for that.
6455 */
6456 if (ret & VM_FAULT_ERROR)
6457 return;
6458
6459 /*
6460 * We define the fault as a major fault when the final successful fault
6461 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6462 * handle it immediately previously).
6463 */
6464 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6465
6466 if (major)
6467 current->maj_flt++;
6468 else
6469 current->min_flt++;
6470
6471 /*
6472 * If the fault is done for GUP, regs will be NULL. We only do the
6473 * accounting for the per thread fault counters who triggered the
6474 * fault, and we skip the perf event updates.
6475 */
6476 if (!regs)
6477 return;
6478
6479 if (major)
6480 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6481 else
6482 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6483 }
6484
6485 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)6486 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6487 {
6488 /* the LRU algorithm only applies to accesses with recency */
6489 current->in_lru_fault = vma_has_recency(vma);
6490 }
6491
lru_gen_exit_fault(void)6492 static void lru_gen_exit_fault(void)
6493 {
6494 current->in_lru_fault = false;
6495 }
6496 #else
lru_gen_enter_fault(struct vm_area_struct * vma)6497 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6498 {
6499 }
6500
lru_gen_exit_fault(void)6501 static void lru_gen_exit_fault(void)
6502 {
6503 }
6504 #endif /* CONFIG_LRU_GEN */
6505
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6506 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6507 unsigned int *flags)
6508 {
6509 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6510 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6511 return VM_FAULT_SIGSEGV;
6512 /*
6513 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6514 * just treat it like an ordinary read-fault otherwise.
6515 */
6516 if (!is_cow_mapping(vma->vm_flags))
6517 *flags &= ~FAULT_FLAG_UNSHARE;
6518 } else if (*flags & FAULT_FLAG_WRITE) {
6519 /* Write faults on read-only mappings are impossible ... */
6520 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6521 return VM_FAULT_SIGSEGV;
6522 /* ... and FOLL_FORCE only applies to COW mappings. */
6523 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6524 !is_cow_mapping(vma->vm_flags)))
6525 return VM_FAULT_SIGSEGV;
6526 }
6527 #ifdef CONFIG_PER_VMA_LOCK
6528 /*
6529 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6530 * the assumption that lock is dropped on VM_FAULT_RETRY.
6531 */
6532 if (WARN_ON_ONCE((*flags &
6533 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6534 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6535 return VM_FAULT_SIGSEGV;
6536 #endif
6537
6538 return 0;
6539 }
6540
6541 /*
6542 * By the time we get here, we already hold either the VMA lock or the
6543 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6544 *
6545 * The mmap_lock may have been released depending on flags and our
6546 * return value. See filemap_fault() and __folio_lock_or_retry().
6547 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6548 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6549 unsigned int flags, struct pt_regs *regs)
6550 {
6551 /* If the fault handler drops the mmap_lock, vma may be freed */
6552 struct mm_struct *mm = vma->vm_mm;
6553 vm_fault_t ret;
6554 bool is_droppable;
6555
6556 __set_current_state(TASK_RUNNING);
6557
6558 ret = sanitize_fault_flags(vma, &flags);
6559 if (ret)
6560 goto out;
6561
6562 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6563 flags & FAULT_FLAG_INSTRUCTION,
6564 flags & FAULT_FLAG_REMOTE)) {
6565 ret = VM_FAULT_SIGSEGV;
6566 goto out;
6567 }
6568
6569 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6570
6571 /*
6572 * Enable the memcg OOM handling for faults triggered in user
6573 * space. Kernel faults are handled more gracefully.
6574 */
6575 if (flags & FAULT_FLAG_USER)
6576 mem_cgroup_enter_user_fault();
6577
6578 lru_gen_enter_fault(vma);
6579
6580 if (unlikely(is_vm_hugetlb_page(vma)))
6581 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6582 else
6583 ret = __handle_mm_fault(vma, address, flags);
6584
6585 /*
6586 * Warning: It is no longer safe to dereference vma-> after this point,
6587 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6588 * vma might be destroyed from underneath us.
6589 */
6590
6591 lru_gen_exit_fault();
6592
6593 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6594 if (is_droppable)
6595 ret &= ~VM_FAULT_OOM;
6596
6597 if (flags & FAULT_FLAG_USER) {
6598 mem_cgroup_exit_user_fault();
6599 /*
6600 * The task may have entered a memcg OOM situation but
6601 * if the allocation error was handled gracefully (no
6602 * VM_FAULT_OOM), there is no need to kill anything.
6603 * Just clean up the OOM state peacefully.
6604 */
6605 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6606 mem_cgroup_oom_synchronize(false);
6607 }
6608 out:
6609 mm_account_fault(mm, regs, address, flags, ret);
6610
6611 return ret;
6612 }
6613 EXPORT_SYMBOL_GPL(handle_mm_fault);
6614
6615 #ifndef __PAGETABLE_P4D_FOLDED
6616 /*
6617 * Allocate p4d page table.
6618 * We've already handled the fast-path in-line.
6619 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6620 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6621 {
6622 p4d_t *new = p4d_alloc_one(mm, address);
6623 if (!new)
6624 return -ENOMEM;
6625
6626 spin_lock(&mm->page_table_lock);
6627 if (pgd_present(*pgd)) { /* Another has populated it */
6628 p4d_free(mm, new);
6629 } else {
6630 smp_wmb(); /* See comment in pmd_install() */
6631 pgd_populate(mm, pgd, new);
6632 }
6633 spin_unlock(&mm->page_table_lock);
6634 return 0;
6635 }
6636 #endif /* __PAGETABLE_P4D_FOLDED */
6637
6638 #ifndef __PAGETABLE_PUD_FOLDED
6639 /*
6640 * Allocate page upper directory.
6641 * We've already handled the fast-path in-line.
6642 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6643 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6644 {
6645 pud_t *new = pud_alloc_one(mm, address);
6646 if (!new)
6647 return -ENOMEM;
6648
6649 spin_lock(&mm->page_table_lock);
6650 if (!p4d_present(*p4d)) {
6651 mm_inc_nr_puds(mm);
6652 smp_wmb(); /* See comment in pmd_install() */
6653 p4d_populate(mm, p4d, new);
6654 } else /* Another has populated it */
6655 pud_free(mm, new);
6656 spin_unlock(&mm->page_table_lock);
6657 return 0;
6658 }
6659 #endif /* __PAGETABLE_PUD_FOLDED */
6660
6661 #ifndef __PAGETABLE_PMD_FOLDED
6662 /*
6663 * Allocate page middle directory.
6664 * We've already handled the fast-path in-line.
6665 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6666 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6667 {
6668 spinlock_t *ptl;
6669 pmd_t *new = pmd_alloc_one(mm, address);
6670 if (!new)
6671 return -ENOMEM;
6672
6673 ptl = pud_lock(mm, pud);
6674 if (!pud_present(*pud)) {
6675 mm_inc_nr_pmds(mm);
6676 smp_wmb(); /* See comment in pmd_install() */
6677 pud_populate(mm, pud, new);
6678 } else { /* Another has populated it */
6679 pmd_free(mm, new);
6680 }
6681 spin_unlock(ptl);
6682 return 0;
6683 }
6684 #endif /* __PAGETABLE_PMD_FOLDED */
6685
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6686 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6687 spinlock_t *lock, pte_t *ptep,
6688 pgprot_t pgprot, unsigned long pfn_base,
6689 unsigned long addr_mask, bool writable,
6690 bool special)
6691 {
6692 args->lock = lock;
6693 args->ptep = ptep;
6694 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6695 args->addr_mask = addr_mask;
6696 args->pgprot = pgprot;
6697 args->writable = writable;
6698 args->special = special;
6699 }
6700
pfnmap_lockdep_assert(struct vm_area_struct * vma)6701 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6702 {
6703 #ifdef CONFIG_LOCKDEP
6704 struct file *file = vma->vm_file;
6705 struct address_space *mapping = file ? file->f_mapping : NULL;
6706
6707 if (mapping)
6708 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6709 lockdep_is_held(&vma->vm_mm->mmap_lock));
6710 else
6711 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6712 #endif
6713 }
6714
6715 /**
6716 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6717 * @args: Pointer to struct @follow_pfnmap_args
6718 *
6719 * The caller needs to setup args->vma and args->address to point to the
6720 * virtual address as the target of such lookup. On a successful return,
6721 * the results will be put into other output fields.
6722 *
6723 * After the caller finished using the fields, the caller must invoke
6724 * another follow_pfnmap_end() to proper releases the locks and resources
6725 * of such look up request.
6726 *
6727 * During the start() and end() calls, the results in @args will be valid
6728 * as proper locks will be held. After the end() is called, all the fields
6729 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6730 * use of such information after end() may require proper synchronizations
6731 * by the caller with page table updates, otherwise it can create a
6732 * security bug.
6733 *
6734 * If the PTE maps a refcounted page, callers are responsible to protect
6735 * against invalidation with MMU notifiers; otherwise access to the PFN at
6736 * a later point in time can trigger use-after-free.
6737 *
6738 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6739 * should be taken for read, and the mmap semaphore cannot be released
6740 * before the end() is invoked.
6741 *
6742 * This function must not be used to modify PTE content.
6743 *
6744 * Return: zero on success, negative otherwise.
6745 */
follow_pfnmap_start(struct follow_pfnmap_args * args)6746 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6747 {
6748 struct vm_area_struct *vma = args->vma;
6749 unsigned long address = args->address;
6750 struct mm_struct *mm = vma->vm_mm;
6751 spinlock_t *lock;
6752 pgd_t *pgdp;
6753 p4d_t *p4dp, p4d;
6754 pud_t *pudp, pud;
6755 pmd_t *pmdp, pmd;
6756 pte_t *ptep, pte;
6757
6758 pfnmap_lockdep_assert(vma);
6759
6760 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6761 goto out;
6762
6763 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6764 goto out;
6765 retry:
6766 pgdp = pgd_offset(mm, address);
6767 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6768 goto out;
6769
6770 p4dp = p4d_offset(pgdp, address);
6771 p4d = p4dp_get(p4dp);
6772 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6773 goto out;
6774
6775 pudp = pud_offset(p4dp, address);
6776 pud = pudp_get(pudp);
6777 if (pud_none(pud))
6778 goto out;
6779 if (pud_leaf(pud)) {
6780 lock = pud_lock(mm, pudp);
6781 if (!unlikely(pud_leaf(pud))) {
6782 spin_unlock(lock);
6783 goto retry;
6784 }
6785 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6786 pud_pfn(pud), PUD_MASK, pud_write(pud),
6787 pud_special(pud));
6788 return 0;
6789 }
6790
6791 pmdp = pmd_offset(pudp, address);
6792 pmd = pmdp_get_lockless(pmdp);
6793 if (pmd_leaf(pmd)) {
6794 lock = pmd_lock(mm, pmdp);
6795 if (!unlikely(pmd_leaf(pmd))) {
6796 spin_unlock(lock);
6797 goto retry;
6798 }
6799 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6800 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6801 pmd_special(pmd));
6802 return 0;
6803 }
6804
6805 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6806 if (!ptep)
6807 goto out;
6808 pte = ptep_get(ptep);
6809 if (!pte_present(pte))
6810 goto unlock;
6811 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6812 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6813 pte_special(pte));
6814 return 0;
6815 unlock:
6816 pte_unmap_unlock(ptep, lock);
6817 out:
6818 return -EINVAL;
6819 }
6820 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6821
6822 /**
6823 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6824 * @args: Pointer to struct @follow_pfnmap_args
6825 *
6826 * Must be used in pair of follow_pfnmap_start(). See the start() function
6827 * above for more information.
6828 */
follow_pfnmap_end(struct follow_pfnmap_args * args)6829 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6830 {
6831 if (args->lock)
6832 spin_unlock(args->lock);
6833 if (args->ptep)
6834 pte_unmap(args->ptep);
6835 }
6836 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6837
6838 #ifdef CONFIG_HAVE_IOREMAP_PROT
6839 /**
6840 * generic_access_phys - generic implementation for iomem mmap access
6841 * @vma: the vma to access
6842 * @addr: userspace address, not relative offset within @vma
6843 * @buf: buffer to read/write
6844 * @len: length of transfer
6845 * @write: set to FOLL_WRITE when writing, otherwise reading
6846 *
6847 * This is a generic implementation for &vm_operations_struct.access for an
6848 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6849 * not page based.
6850 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6851 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6852 void *buf, int len, int write)
6853 {
6854 resource_size_t phys_addr;
6855 pgprot_t prot = __pgprot(0);
6856 void __iomem *maddr;
6857 int offset = offset_in_page(addr);
6858 int ret = -EINVAL;
6859 bool writable;
6860 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6861
6862 retry:
6863 if (follow_pfnmap_start(&args))
6864 return -EINVAL;
6865 prot = args.pgprot;
6866 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6867 writable = args.writable;
6868 follow_pfnmap_end(&args);
6869
6870 if ((write & FOLL_WRITE) && !writable)
6871 return -EINVAL;
6872
6873 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6874 if (!maddr)
6875 return -ENOMEM;
6876
6877 if (follow_pfnmap_start(&args))
6878 goto out_unmap;
6879
6880 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
6881 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6882 (writable != args.writable)) {
6883 follow_pfnmap_end(&args);
6884 iounmap(maddr);
6885 goto retry;
6886 }
6887
6888 if (write)
6889 memcpy_toio(maddr + offset, buf, len);
6890 else
6891 memcpy_fromio(buf, maddr + offset, len);
6892 ret = len;
6893 follow_pfnmap_end(&args);
6894 out_unmap:
6895 iounmap(maddr);
6896
6897 return ret;
6898 }
6899 EXPORT_SYMBOL_GPL(generic_access_phys);
6900 #endif
6901
6902 /*
6903 * Access another process' address space as given in mm.
6904 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6905 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6906 void *buf, int len, unsigned int gup_flags)
6907 {
6908 void *old_buf = buf;
6909 int write = gup_flags & FOLL_WRITE;
6910
6911 if (mmap_read_lock_killable(mm))
6912 return 0;
6913
6914 /* Untag the address before looking up the VMA */
6915 addr = untagged_addr_remote(mm, addr);
6916
6917 /* Avoid triggering the temporary warning in __get_user_pages */
6918 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6919 return 0;
6920
6921 /* ignore errors, just check how much was successfully transferred */
6922 while (len) {
6923 int bytes, offset;
6924 void *maddr;
6925 struct folio *folio;
6926 struct vm_area_struct *vma = NULL;
6927 struct page *page = get_user_page_vma_remote(mm, addr,
6928 gup_flags, &vma);
6929
6930 if (IS_ERR(page)) {
6931 /* We might need to expand the stack to access it */
6932 vma = vma_lookup(mm, addr);
6933 if (!vma) {
6934 vma = expand_stack(mm, addr);
6935
6936 /* mmap_lock was dropped on failure */
6937 if (!vma)
6938 return buf - old_buf;
6939
6940 /* Try again if stack expansion worked */
6941 continue;
6942 }
6943
6944 /*
6945 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6946 * we can access using slightly different code.
6947 */
6948 bytes = 0;
6949 #ifdef CONFIG_HAVE_IOREMAP_PROT
6950 if (vma->vm_ops && vma->vm_ops->access)
6951 bytes = vma->vm_ops->access(vma, addr, buf,
6952 len, write);
6953 #endif
6954 if (bytes <= 0)
6955 break;
6956 } else {
6957 folio = page_folio(page);
6958 bytes = len;
6959 offset = addr & (PAGE_SIZE-1);
6960 if (bytes > PAGE_SIZE-offset)
6961 bytes = PAGE_SIZE-offset;
6962
6963 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
6964 if (write) {
6965 copy_to_user_page(vma, page, addr,
6966 maddr + offset, buf, bytes);
6967 folio_mark_dirty_lock(folio);
6968 } else {
6969 copy_from_user_page(vma, page, addr,
6970 buf, maddr + offset, bytes);
6971 }
6972 folio_release_kmap(folio, maddr);
6973 }
6974 len -= bytes;
6975 buf += bytes;
6976 addr += bytes;
6977 }
6978 mmap_read_unlock(mm);
6979
6980 return buf - old_buf;
6981 }
6982
6983 /**
6984 * access_remote_vm - access another process' address space
6985 * @mm: the mm_struct of the target address space
6986 * @addr: start address to access
6987 * @buf: source or destination buffer
6988 * @len: number of bytes to transfer
6989 * @gup_flags: flags modifying lookup behaviour
6990 *
6991 * The caller must hold a reference on @mm.
6992 *
6993 * Return: number of bytes copied from source to destination.
6994 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6995 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6996 void *buf, int len, unsigned int gup_flags)
6997 {
6998 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6999 }
7000
7001 /*
7002 * Access another process' address space.
7003 * Source/target buffer must be kernel space,
7004 * Do not walk the page table directly, use get_user_pages
7005 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)7006 int access_process_vm(struct task_struct *tsk, unsigned long addr,
7007 void *buf, int len, unsigned int gup_flags)
7008 {
7009 struct mm_struct *mm;
7010 int ret;
7011
7012 mm = get_task_mm(tsk);
7013 if (!mm)
7014 return 0;
7015
7016 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
7017
7018 mmput(mm);
7019
7020 return ret;
7021 }
7022 EXPORT_SYMBOL_GPL(access_process_vm);
7023
7024 #ifdef CONFIG_BPF_SYSCALL
7025 /*
7026 * Copy a string from another process's address space as given in mm.
7027 * If there is any error return -EFAULT.
7028 */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)7029 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
7030 void *buf, int len, unsigned int gup_flags)
7031 {
7032 void *old_buf = buf;
7033 int err = 0;
7034
7035 *(char *)buf = '\0';
7036
7037 if (mmap_read_lock_killable(mm))
7038 return -EFAULT;
7039
7040 addr = untagged_addr_remote(mm, addr);
7041
7042 /* Avoid triggering the temporary warning in __get_user_pages */
7043 if (!vma_lookup(mm, addr)) {
7044 err = -EFAULT;
7045 goto out;
7046 }
7047
7048 while (len) {
7049 int bytes, offset, retval;
7050 void *maddr;
7051 struct folio *folio;
7052 struct page *page;
7053 struct vm_area_struct *vma = NULL;
7054
7055 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma);
7056 if (IS_ERR(page)) {
7057 /*
7058 * Treat as a total failure for now until we decide how
7059 * to handle the CONFIG_HAVE_IOREMAP_PROT case and
7060 * stack expansion.
7061 */
7062 *(char *)buf = '\0';
7063 err = -EFAULT;
7064 goto out;
7065 }
7066
7067 folio = page_folio(page);
7068 bytes = len;
7069 offset = addr & (PAGE_SIZE - 1);
7070 if (bytes > PAGE_SIZE - offset)
7071 bytes = PAGE_SIZE - offset;
7072
7073 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
7074 retval = strscpy(buf, maddr + offset, bytes);
7075 if (retval >= 0) {
7076 /* Found the end of the string */
7077 buf += retval;
7078 folio_release_kmap(folio, maddr);
7079 break;
7080 }
7081
7082 buf += bytes - 1;
7083 /*
7084 * Because strscpy always NUL terminates we need to
7085 * copy the last byte in the page if we are going to
7086 * load more pages
7087 */
7088 if (bytes != len) {
7089 addr += bytes - 1;
7090 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1);
7091 buf += 1;
7092 addr += 1;
7093 }
7094 len -= bytes;
7095
7096 folio_release_kmap(folio, maddr);
7097 }
7098
7099 out:
7100 mmap_read_unlock(mm);
7101 if (err)
7102 return err;
7103 return buf - old_buf;
7104 }
7105
7106 /**
7107 * copy_remote_vm_str - copy a string from another process's address space.
7108 * @tsk: the task of the target address space
7109 * @addr: start address to read from
7110 * @buf: destination buffer
7111 * @len: number of bytes to copy
7112 * @gup_flags: flags modifying lookup behaviour
7113 *
7114 * The caller must hold a reference on @mm.
7115 *
7116 * Return: number of bytes copied from @addr (source) to @buf (destination);
7117 * not including the trailing NUL. Always guaranteed to leave NUL-terminated
7118 * buffer. On any error, return -EFAULT.
7119 */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)7120 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
7121 void *buf, int len, unsigned int gup_flags)
7122 {
7123 struct mm_struct *mm;
7124 int ret;
7125
7126 if (unlikely(len == 0))
7127 return 0;
7128
7129 mm = get_task_mm(tsk);
7130 if (!mm) {
7131 *(char *)buf = '\0';
7132 return -EFAULT;
7133 }
7134
7135 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags);
7136
7137 mmput(mm);
7138
7139 return ret;
7140 }
7141 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
7142 #endif /* CONFIG_BPF_SYSCALL */
7143
7144 /*
7145 * Print the name of a VMA.
7146 */
print_vma_addr(char * prefix,unsigned long ip)7147 void print_vma_addr(char *prefix, unsigned long ip)
7148 {
7149 struct mm_struct *mm = current->mm;
7150 struct vm_area_struct *vma;
7151
7152 /*
7153 * we might be running from an atomic context so we cannot sleep
7154 */
7155 if (!mmap_read_trylock(mm))
7156 return;
7157
7158 vma = vma_lookup(mm, ip);
7159 if (vma && vma->vm_file) {
7160 struct file *f = vma->vm_file;
7161 ip -= vma->vm_start;
7162 ip += vma->vm_pgoff << PAGE_SHIFT;
7163 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
7164 vma->vm_start,
7165 vma->vm_end - vma->vm_start);
7166 }
7167 mmap_read_unlock(mm);
7168 }
7169
7170 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)7171 void __might_fault(const char *file, int line)
7172 {
7173 if (pagefault_disabled())
7174 return;
7175 __might_sleep(file, line);
7176 if (current->mm)
7177 might_lock_read(¤t->mm->mmap_lock);
7178 }
7179 EXPORT_SYMBOL(__might_fault);
7180 #endif
7181
7182 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
7183 /*
7184 * Process all subpages of the specified huge page with the specified
7185 * operation. The target subpage will be processed last to keep its
7186 * cache lines hot.
7187 */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)7188 static inline int process_huge_page(
7189 unsigned long addr_hint, unsigned int nr_pages,
7190 int (*process_subpage)(unsigned long addr, int idx, void *arg),
7191 void *arg)
7192 {
7193 int i, n, base, l, ret;
7194 unsigned long addr = addr_hint &
7195 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
7196
7197 /* Process target subpage last to keep its cache lines hot */
7198 might_sleep();
7199 n = (addr_hint - addr) / PAGE_SIZE;
7200 if (2 * n <= nr_pages) {
7201 /* If target subpage in first half of huge page */
7202 base = 0;
7203 l = n;
7204 /* Process subpages at the end of huge page */
7205 for (i = nr_pages - 1; i >= 2 * n; i--) {
7206 cond_resched();
7207 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7208 if (ret)
7209 return ret;
7210 }
7211 } else {
7212 /* If target subpage in second half of huge page */
7213 base = nr_pages - 2 * (nr_pages - n);
7214 l = nr_pages - n;
7215 /* Process subpages at the begin of huge page */
7216 for (i = 0; i < base; i++) {
7217 cond_resched();
7218 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7219 if (ret)
7220 return ret;
7221 }
7222 }
7223 /*
7224 * Process remaining subpages in left-right-left-right pattern
7225 * towards the target subpage
7226 */
7227 for (i = 0; i < l; i++) {
7228 int left_idx = base + i;
7229 int right_idx = base + 2 * l - 1 - i;
7230
7231 cond_resched();
7232 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
7233 if (ret)
7234 return ret;
7235 cond_resched();
7236 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
7237 if (ret)
7238 return ret;
7239 }
7240 return 0;
7241 }
7242
clear_gigantic_page(struct folio * folio,unsigned long addr_hint,unsigned int nr_pages)7243 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
7244 unsigned int nr_pages)
7245 {
7246 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7247 int i;
7248
7249 might_sleep();
7250 for (i = 0; i < nr_pages; i++) {
7251 cond_resched();
7252 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
7253 }
7254 }
7255
clear_subpage(unsigned long addr,int idx,void * arg)7256 static int clear_subpage(unsigned long addr, int idx, void *arg)
7257 {
7258 struct folio *folio = arg;
7259
7260 clear_user_highpage(folio_page(folio, idx), addr);
7261 return 0;
7262 }
7263
7264 /**
7265 * folio_zero_user - Zero a folio which will be mapped to userspace.
7266 * @folio: The folio to zero.
7267 * @addr_hint: The address will be accessed or the base address if uncelar.
7268 */
folio_zero_user(struct folio * folio,unsigned long addr_hint)7269 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7270 {
7271 unsigned int nr_pages = folio_nr_pages(folio);
7272
7273 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7274 clear_gigantic_page(folio, addr_hint, nr_pages);
7275 else
7276 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
7277 }
7278
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int nr_pages)7279 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7280 unsigned long addr_hint,
7281 struct vm_area_struct *vma,
7282 unsigned int nr_pages)
7283 {
7284 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7285 struct page *dst_page;
7286 struct page *src_page;
7287 int i;
7288
7289 for (i = 0; i < nr_pages; i++) {
7290 dst_page = folio_page(dst, i);
7291 src_page = folio_page(src, i);
7292
7293 cond_resched();
7294 if (copy_mc_user_highpage(dst_page, src_page,
7295 addr + i*PAGE_SIZE, vma))
7296 return -EHWPOISON;
7297 }
7298 return 0;
7299 }
7300
7301 struct copy_subpage_arg {
7302 struct folio *dst;
7303 struct folio *src;
7304 struct vm_area_struct *vma;
7305 };
7306
copy_subpage(unsigned long addr,int idx,void * arg)7307 static int copy_subpage(unsigned long addr, int idx, void *arg)
7308 {
7309 struct copy_subpage_arg *copy_arg = arg;
7310 struct page *dst = folio_page(copy_arg->dst, idx);
7311 struct page *src = folio_page(copy_arg->src, idx);
7312
7313 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7314 return -EHWPOISON;
7315 return 0;
7316 }
7317
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)7318 int copy_user_large_folio(struct folio *dst, struct folio *src,
7319 unsigned long addr_hint, struct vm_area_struct *vma)
7320 {
7321 unsigned int nr_pages = folio_nr_pages(dst);
7322 struct copy_subpage_arg arg = {
7323 .dst = dst,
7324 .src = src,
7325 .vma = vma,
7326 };
7327
7328 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7329 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7330
7331 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7332 }
7333
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)7334 long copy_folio_from_user(struct folio *dst_folio,
7335 const void __user *usr_src,
7336 bool allow_pagefault)
7337 {
7338 void *kaddr;
7339 unsigned long i, rc = 0;
7340 unsigned int nr_pages = folio_nr_pages(dst_folio);
7341 unsigned long ret_val = nr_pages * PAGE_SIZE;
7342 struct page *subpage;
7343
7344 for (i = 0; i < nr_pages; i++) {
7345 subpage = folio_page(dst_folio, i);
7346 kaddr = kmap_local_page(subpage);
7347 if (!allow_pagefault)
7348 pagefault_disable();
7349 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7350 if (!allow_pagefault)
7351 pagefault_enable();
7352 kunmap_local(kaddr);
7353
7354 ret_val -= (PAGE_SIZE - rc);
7355 if (rc)
7356 break;
7357
7358 flush_dcache_page(subpage);
7359
7360 cond_resched();
7361 }
7362 return ret_val;
7363 }
7364 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7365
7366 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7367
7368 static struct kmem_cache *page_ptl_cachep;
7369
ptlock_cache_init(void)7370 void __init ptlock_cache_init(void)
7371 {
7372 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7373 SLAB_PANIC, NULL);
7374 }
7375
ptlock_alloc(struct ptdesc * ptdesc)7376 bool ptlock_alloc(struct ptdesc *ptdesc)
7377 {
7378 spinlock_t *ptl;
7379
7380 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7381 if (!ptl)
7382 return false;
7383 ptdesc->ptl = ptl;
7384 return true;
7385 }
7386
ptlock_free(struct ptdesc * ptdesc)7387 void ptlock_free(struct ptdesc *ptdesc)
7388 {
7389 if (ptdesc->ptl)
7390 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7391 }
7392 #endif
7393
vma_pgtable_walk_begin(struct vm_area_struct * vma)7394 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7395 {
7396 if (is_vm_hugetlb_page(vma))
7397 hugetlb_vma_lock_read(vma);
7398 }
7399
vma_pgtable_walk_end(struct vm_area_struct * vma)7400 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7401 {
7402 if (is_vm_hugetlb_page(vma))
7403 hugetlb_vma_unlock_read(vma);
7404 }
7405