1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * Copyright (c) 2013 EMC Corp.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * From:
32 * $NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
33 * $NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
34 */
35
36 /*
37 * reference:
38 * - Magazines and Vmem: Extending the Slab Allocator
39 * to Many CPUs and Arbitrary Resources
40 * http://www.usenix.org/event/usenix01/bonwick.html
41 */
42
43 #include <sys/cdefs.h>
44
45 #ifdef _KERNEL
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/queue.h>
53 #include <sys/callout.h>
54 #include <sys/hash.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/smp.h>
59 #include <sys/condvar.h>
60 #include <sys/sysctl.h>
61 #include <sys/taskqueue.h>
62 #include <sys/vmem.h>
63 #include <sys/vmmeter.h>
64
65 #include "opt_vm.h"
66
67 #include <vm/uma.h>
68 #include <vm/vm.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_object.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_page.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_phys.h>
78 #include <vm/vm_pagequeue.h>
79 #include <vm/uma_int.h>
80
81 #else /* _KERNEL */
82
83 #include <sys/types.h>
84 #include <sys/queue.h>
85 #include <sys/hash.h>
86 #include <sys/vmem.h>
87 #include <assert.h>
88 #include <errno.h>
89 #include <pthread.h>
90 #include <pthread_np.h>
91 #include <stdbool.h>
92 #include <stdlib.h>
93 #include <string.h>
94 #include <strings.h>
95
96 #define KASSERT(a, b)
97 #define MPASS(a)
98 #define WITNESS_WARN(a, b, c)
99 #define panic(...) assert(0)
100
101 #endif /* _KERNEL */
102
103 #define VMEM_OPTORDER 5
104 #define VMEM_OPTVALUE (1 << VMEM_OPTORDER)
105 #define VMEM_MAXORDER \
106 (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER)
107
108 #define VMEM_HASHSIZE_MIN 16
109 #define VMEM_HASHSIZE_MAX 131072
110
111 #define VMEM_QCACHE_IDX_MAX 16
112
113 #define VMEM_FITMASK (M_BESTFIT | M_FIRSTFIT | M_NEXTFIT)
114
115 #define QC_NAME_MAX 16
116
117 /*
118 * Data structures private to vmem.
119 */
120 #ifdef _KERNEL
121
122 #define VMEM_FLAGS (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | \
123 M_BESTFIT | M_FIRSTFIT | M_NEXTFIT)
124
125 #define BT_FLAGS (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)
126
127 MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");
128
129 #else /* _KERNEL */
130
131 /* bit-compat with kernel */
132 #define M_ZERO 0
133 #define M_NOVM 0
134 #define M_USE_RESERVE 0
135
136 #define VMEM_FLAGS (M_NOWAIT | M_BESTFIT | M_FIRSTFIT | M_NEXTFIT)
137
138 #define BT_FLAGS 0
139
140 #endif /* _KERNEL */
141
142 typedef struct vmem_btag bt_t;
143
144 TAILQ_HEAD(vmem_seglist, vmem_btag);
145 LIST_HEAD(vmem_freelist, vmem_btag);
146 LIST_HEAD(vmem_hashlist, vmem_btag);
147
148 #ifdef _KERNEL
149 struct qcache {
150 uma_zone_t qc_cache;
151 vmem_t *qc_vmem;
152 vmem_size_t qc_size;
153 char qc_name[QC_NAME_MAX];
154 };
155 typedef struct qcache qcache_t;
156 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
157 #endif
158
159 #define VMEM_NAME_MAX 16
160
161 /* boundary tag */
162 struct vmem_btag {
163 TAILQ_ENTRY(vmem_btag) bt_seglist;
164 union {
165 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
166 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
167 } bt_u;
168 #define bt_hashlist bt_u.u_hashlist
169 #define bt_freelist bt_u.u_freelist
170 vmem_addr_t bt_start;
171 vmem_size_t bt_size;
172 int bt_type;
173 };
174
175 /* vmem arena */
176 struct vmem {
177 #ifdef _KERNEL
178 struct mtx_padalign vm_lock;
179 struct cv vm_cv;
180 #else
181 pthread_mutex_t vm_lock;
182 pthread_cond_t vm_cv;
183 #endif
184 char vm_name[VMEM_NAME_MAX+1];
185 LIST_ENTRY(vmem) vm_alllist;
186 struct vmem_hashlist vm_hash0[VMEM_HASHSIZE_MIN];
187 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
188 struct vmem_seglist vm_seglist;
189 struct vmem_hashlist *vm_hashlist;
190 vmem_size_t vm_hashsize;
191
192 /* Constant after init */
193 vmem_size_t vm_qcache_max;
194 vmem_size_t vm_quantum_mask;
195 vmem_size_t vm_import_quantum;
196 int vm_quantum_shift;
197
198 /* Written on alloc/free */
199 LIST_HEAD(, vmem_btag) vm_freetags;
200 int vm_nfreetags;
201 int vm_nbusytag;
202 vmem_size_t vm_inuse;
203 vmem_size_t vm_size;
204 vmem_size_t vm_limit;
205 struct vmem_btag vm_cursor;
206
207 /* Used on import. */
208 vmem_import_t *vm_importfn;
209 vmem_release_t *vm_releasefn;
210 void *vm_arg;
211
212 /* Space exhaustion callback. */
213 vmem_reclaim_t *vm_reclaimfn;
214
215 #ifdef _KERNEL
216 /* quantum cache */
217 qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX];
218 #endif
219 };
220
221 #define BT_TYPE_SPAN 1 /* Allocated from importfn */
222 #define BT_TYPE_SPAN_STATIC 2 /* vmem_add() or create. */
223 #define BT_TYPE_FREE 3 /* Available space. */
224 #define BT_TYPE_BUSY 4 /* Used space. */
225 #define BT_TYPE_CURSOR 5 /* Cursor for nextfit allocations. */
226 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
227
228 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
229
230 #ifdef _KERNEL
231 #if defined(DIAGNOSTIC)
232 static int enable_vmem_check = 0;
233 SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN,
234 &enable_vmem_check, 0, "Enable vmem check");
235 static void vmem_check(vmem_t *);
236 #endif
237
238 static struct callout vmem_periodic_ch;
239 static int vmem_periodic_interval;
240 static struct task vmem_periodic_wk;
241
242 static struct mtx_padalign __exclusive_cache_line vmem_list_lock;
243 static uma_zone_t vmem_zone;
244
245 #else /* _KERNEL */
246 static pthread_mutex_t vmem_list_lock = PTHREAD_MUTEX_INITIALIZER;
247
248 #endif /* _KERNEL */
249
250 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
251
252 /* ---- misc */
253 #ifdef _KERNEL
254 #define VMEM_LIST_LOCK() mtx_lock(&vmem_list_lock)
255 #define VMEM_LIST_UNLOCK() mtx_unlock(&vmem_list_lock)
256
257 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
258 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
259 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
260 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
261
262 #define VMEM_LOCK(vm) mtx_lock(&vm->vm_lock)
263 #define VMEM_UNLOCK(vm) mtx_unlock(&vm->vm_lock)
264 #define VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
265 #define VMEM_LOCK_DESTROY(vm) mtx_destroy(&vm->vm_lock)
266 #define VMEM_ASSERT_LOCKED(vm) mtx_assert(&vm->vm_lock, MA_OWNED);
267 #else /* _KERNEL */
268 #define VMEM_LIST_LOCK() pthread_mutex_lock(&vmem_list_lock)
269 #define VMEM_LIST_UNLOCK() pthread_mutex_unlock(&vmem_list_lock)
270
271 #define VMEM_CONDVAR_INIT(vm, wchan) pthread_cond_init(&vm->vm_cv, NULL)
272 #define VMEM_CONDVAR_DESTROY(vm) pthread_cond_destroy(&vm->vm_cv)
273 #define VMEM_CONDVAR_WAIT(vm) pthread_cond_wait(&vm->vm_cv, &vm->vm_lock)
274 #define VMEM_CONDVAR_BROADCAST(vm) pthread_cond_broadcast(&vm->vm_cv)
275
276 #define VMEM_LOCK(vm) pthread_mutex_lock(&vm->vm_lock)
277 #define VMEM_UNLOCK(vm) pthread_mutex_unlock(&vm->vm_lock)
278 #define VMEM_LOCK_INIT(vm, name) pthread_mutex_init(&vm->vm_lock, NULL)
279 #define VMEM_LOCK_DESTROY(vm) pthread_mutex_destroy(&vm->vm_lock)
280 #define VMEM_ASSERT_LOCKED(vm) pthread_mutex_isowned_np(&vm->vm_lock)
281 #endif /* _KERNEL */
282
283 #define VMEM_ALIGNUP(addr, align) (-(-(addr) & -(align)))
284
285 #define VMEM_CROSS_P(addr1, addr2, boundary) \
286 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
287
288 #define ORDER2SIZE(order) ((order) < VMEM_OPTVALUE ? ((order) + 1) : \
289 (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1)))
290 #define SIZE2ORDER(size) ((size) <= VMEM_OPTVALUE ? ((size) - 1) : \
291 (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2)))
292
293 /*
294 * Maximum number of boundary tags that may be required to satisfy an
295 * allocation. Two may be required to import. Another two may be
296 * required to clip edges.
297 */
298 #define BT_MAXALLOC 4
299
300 /*
301 * Max free limits the number of locally cached boundary tags. We
302 * just want to avoid hitting the zone allocator for every call.
303 */
304 #define BT_MAXFREE (BT_MAXALLOC * 8)
305
306 #ifdef _KERNEL
307 /* Allocator for boundary tags. */
308 static uma_zone_t vmem_bt_zone;
309
310 /* boot time arena storage. */
311 static struct vmem kernel_arena_storage;
312 static struct vmem buffer_arena_storage;
313 static struct vmem transient_arena_storage;
314 vmem_t *kernel_arena = &kernel_arena_storage;
315 vmem_t *buffer_arena = &buffer_arena_storage;
316 vmem_t *transient_arena = &transient_arena_storage;
317
318 #ifdef DEBUG_MEMGUARD
319 static struct vmem memguard_arena_storage;
320 vmem_t *memguard_arena = &memguard_arena_storage;
321 #endif /* DEBUG_MEMGUARD */
322 #endif /* _KERNEL */
323
324 static bool
bt_isbusy(bt_t * bt)325 bt_isbusy(bt_t *bt)
326 {
327 return (bt->bt_type == BT_TYPE_BUSY);
328 }
329
330 static bool
bt_isfree(bt_t * bt)331 bt_isfree(bt_t *bt)
332 {
333 return (bt->bt_type == BT_TYPE_FREE);
334 }
335
336 /*
337 * Fill the vmem's boundary tag cache. We guarantee that boundary tag
338 * allocation will not fail once bt_fill() passes. To do so we cache
339 * at least the maximum possible tag allocations in the arena.
340 */
341 static __noinline int
_bt_fill(vmem_t * vm,int flags __unused)342 _bt_fill(vmem_t *vm, int flags __unused)
343 {
344 bt_t *bt;
345
346 VMEM_ASSERT_LOCKED(vm);
347
348 #ifdef _KERNEL
349 /*
350 * Only allow the kernel arena and arenas derived from kernel arena to
351 * dip into reserve tags. They are where new tags come from.
352 */
353 flags &= BT_FLAGS;
354 if (vm != kernel_arena && vm->vm_arg != kernel_arena)
355 flags &= ~M_USE_RESERVE;
356 #endif
357
358 /*
359 * Loop until we meet the reserve. To minimize the lock shuffle
360 * and prevent simultaneous fills we first try a NOWAIT regardless
361 * of the caller's flags. Specify M_NOVM so we don't recurse while
362 * holding a vmem lock.
363 */
364 while (vm->vm_nfreetags < BT_MAXALLOC) {
365 #ifdef _KERNEL
366 bt = uma_zalloc(vmem_bt_zone,
367 (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
368 #else
369 bt = malloc(sizeof(struct vmem_btag));
370 #endif
371 if (bt == NULL) {
372 #ifdef _KERNEL
373 VMEM_UNLOCK(vm);
374 bt = uma_zalloc(vmem_bt_zone, flags);
375 VMEM_LOCK(vm);
376 #endif
377 if (bt == NULL)
378 break;
379 }
380 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
381 vm->vm_nfreetags++;
382 }
383
384 if (vm->vm_nfreetags < BT_MAXALLOC)
385 return ENOMEM;
386
387 return 0;
388 }
389
390 static inline int
bt_fill(vmem_t * vm,int flags)391 bt_fill(vmem_t *vm, int flags)
392 {
393 if (vm->vm_nfreetags >= BT_MAXALLOC)
394 return (0);
395 return (_bt_fill(vm, flags));
396 }
397
398 /*
399 * Pop a tag off of the freetag stack.
400 */
401 static bt_t *
bt_alloc(vmem_t * vm)402 bt_alloc(vmem_t *vm)
403 {
404 bt_t *bt;
405
406 VMEM_ASSERT_LOCKED(vm);
407 bt = LIST_FIRST(&vm->vm_freetags);
408 MPASS(bt != NULL);
409 LIST_REMOVE(bt, bt_freelist);
410 vm->vm_nfreetags--;
411
412 return bt;
413 }
414
415 /*
416 * Trim the per-vmem free list. Returns with the lock released to
417 * avoid allocator recursions.
418 */
419 static void
bt_freetrim(vmem_t * vm,int freelimit)420 bt_freetrim(vmem_t *vm, int freelimit)
421 {
422 LIST_HEAD(, vmem_btag) freetags;
423 bt_t *bt;
424
425 LIST_INIT(&freetags);
426 VMEM_ASSERT_LOCKED(vm);
427 while (vm->vm_nfreetags > freelimit) {
428 bt = LIST_FIRST(&vm->vm_freetags);
429 LIST_REMOVE(bt, bt_freelist);
430 vm->vm_nfreetags--;
431 LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
432 }
433 VMEM_UNLOCK(vm);
434 while ((bt = LIST_FIRST(&freetags)) != NULL) {
435 LIST_REMOVE(bt, bt_freelist);
436 #ifdef _KERNEL
437 uma_zfree(vmem_bt_zone, bt);
438 #else
439 free(bt);
440 #endif
441 }
442 }
443
444 static inline void
bt_free(vmem_t * vm,bt_t * bt)445 bt_free(vmem_t *vm, bt_t *bt)
446 {
447
448 VMEM_ASSERT_LOCKED(vm);
449 MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
450 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
451 vm->vm_nfreetags++;
452 }
453
454 /*
455 * Hide MAXALLOC tags before dropping the arena lock to ensure that a
456 * concurrent allocation attempt does not grab them.
457 */
458 static void
bt_save(vmem_t * vm)459 bt_save(vmem_t *vm)
460 {
461 KASSERT(vm->vm_nfreetags >= BT_MAXALLOC,
462 ("%s: insufficient free tags %d", __func__, vm->vm_nfreetags));
463 vm->vm_nfreetags -= BT_MAXALLOC;
464 }
465
466 static void
bt_restore(vmem_t * vm)467 bt_restore(vmem_t *vm)
468 {
469 vm->vm_nfreetags += BT_MAXALLOC;
470 }
471
472 /*
473 * freelist[0] ... [1, 1]
474 * freelist[1] ... [2, 2]
475 * :
476 * freelist[29] ... [30, 30]
477 * freelist[30] ... [31, 31]
478 * freelist[31] ... [32, 63]
479 * freelist[33] ... [64, 127]
480 * :
481 * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1]
482 * :
483 */
484
485 static struct vmem_freelist *
bt_freehead_tofree(vmem_t * vm,vmem_size_t size)486 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
487 {
488 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
489 const int idx = SIZE2ORDER(qsize);
490
491 MPASS(size != 0 && qsize != 0);
492 MPASS((size & vm->vm_quantum_mask) == 0);
493 MPASS(idx >= 0);
494 MPASS(idx < VMEM_MAXORDER);
495
496 return &vm->vm_freelist[idx];
497 }
498
499 /*
500 * bt_freehead_toalloc: return the freelist for the given size and allocation
501 * strategy.
502 *
503 * For M_FIRSTFIT, return the list in which any blocks are large enough
504 * for the requested size. otherwise, return the list which can have blocks
505 * large enough for the requested size.
506 */
507 static struct vmem_freelist *
bt_freehead_toalloc(vmem_t * vm,vmem_size_t size,int strat)508 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
509 {
510 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
511 int idx = SIZE2ORDER(qsize);
512
513 MPASS(size != 0 && qsize != 0);
514 MPASS((size & vm->vm_quantum_mask) == 0);
515
516 if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
517 idx++;
518 /* check too large request? */
519 }
520 MPASS(idx >= 0);
521 MPASS(idx < VMEM_MAXORDER);
522
523 return &vm->vm_freelist[idx];
524 }
525
526 /* ---- boundary tag hash */
527
528 static struct vmem_hashlist *
bt_hashhead(vmem_t * vm,vmem_addr_t addr)529 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
530 {
531 struct vmem_hashlist *list;
532 unsigned int hash;
533
534 hash = hash32_buf(&addr, sizeof(addr), 0);
535 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
536
537 return list;
538 }
539
540 static bt_t *
bt_lookupbusy(vmem_t * vm,vmem_addr_t addr)541 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
542 {
543 struct vmem_hashlist *list;
544 bt_t *bt;
545
546 VMEM_ASSERT_LOCKED(vm);
547 list = bt_hashhead(vm, addr);
548 LIST_FOREACH(bt, list, bt_hashlist) {
549 if (bt->bt_start == addr) {
550 break;
551 }
552 }
553
554 return bt;
555 }
556
557 static void
bt_rembusy(vmem_t * vm,bt_t * bt)558 bt_rembusy(vmem_t *vm, bt_t *bt)
559 {
560
561 VMEM_ASSERT_LOCKED(vm);
562 MPASS(vm->vm_nbusytag > 0);
563 vm->vm_inuse -= bt->bt_size;
564 vm->vm_nbusytag--;
565 LIST_REMOVE(bt, bt_hashlist);
566 }
567
568 static void
bt_insbusy(vmem_t * vm,bt_t * bt)569 bt_insbusy(vmem_t *vm, bt_t *bt)
570 {
571 struct vmem_hashlist *list;
572
573 VMEM_ASSERT_LOCKED(vm);
574 MPASS(bt->bt_type == BT_TYPE_BUSY);
575
576 list = bt_hashhead(vm, bt->bt_start);
577 LIST_INSERT_HEAD(list, bt, bt_hashlist);
578 vm->vm_nbusytag++;
579 vm->vm_inuse += bt->bt_size;
580 }
581
582 /* ---- boundary tag list */
583
584 static void
bt_remseg(vmem_t * vm,bt_t * bt)585 bt_remseg(vmem_t *vm, bt_t *bt)
586 {
587
588 MPASS(bt->bt_type != BT_TYPE_CURSOR);
589 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
590 bt_free(vm, bt);
591 }
592
593 static void
bt_insseg(vmem_t * vm,bt_t * bt,bt_t * prev)594 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
595 {
596
597 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
598 }
599
600 static void
bt_insseg_tail(vmem_t * vm,bt_t * bt)601 bt_insseg_tail(vmem_t *vm, bt_t *bt)
602 {
603
604 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
605 }
606
607 static void
bt_remfree(vmem_t * vm __unused,bt_t * bt)608 bt_remfree(vmem_t *vm __unused, bt_t *bt)
609 {
610
611 MPASS(bt->bt_type == BT_TYPE_FREE);
612
613 LIST_REMOVE(bt, bt_freelist);
614 }
615
616 static void
bt_insfree(vmem_t * vm,bt_t * bt)617 bt_insfree(vmem_t *vm, bt_t *bt)
618 {
619 struct vmem_freelist *list;
620
621 list = bt_freehead_tofree(vm, bt->bt_size);
622 LIST_INSERT_HEAD(list, bt, bt_freelist);
623 }
624
625 /* ---- vmem internal functions */
626
627 #ifdef _KERNEL
628 /*
629 * Import from the arena into the quantum cache in UMA.
630 *
631 * We use VMEM_ADDR_QCACHE_MIN instead of 0: uma_zalloc() returns 0 to indicate
632 * failure, so UMA can't be used to cache a resource with value 0.
633 */
634 static int
qc_import(void * arg,void ** store,int cnt,int domain,int flags)635 qc_import(void *arg, void **store, int cnt, int domain, int flags)
636 {
637 qcache_t *qc;
638 vmem_addr_t addr;
639 int i;
640
641 KASSERT((flags & M_WAITOK) == 0, ("blocking allocation"));
642
643 qc = arg;
644 for (i = 0; i < cnt; i++) {
645 if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
646 VMEM_ADDR_QCACHE_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
647 break;
648 store[i] = (void *)addr;
649 }
650 return (i);
651 }
652
653 /*
654 * Release memory from the UMA cache to the arena.
655 */
656 static void
qc_release(void * arg,void ** store,int cnt)657 qc_release(void *arg, void **store, int cnt)
658 {
659 qcache_t *qc;
660 int i;
661
662 qc = arg;
663 for (i = 0; i < cnt; i++)
664 vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
665 }
666
667 static void
qc_init(vmem_t * vm,vmem_size_t qcache_max)668 qc_init(vmem_t *vm, vmem_size_t qcache_max)
669 {
670 qcache_t *qc;
671 vmem_size_t size;
672 int qcache_idx_max;
673 int i;
674
675 MPASS((qcache_max & vm->vm_quantum_mask) == 0);
676 qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
677 VMEM_QCACHE_IDX_MAX);
678 vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
679 for (i = 0; i < qcache_idx_max; i++) {
680 qc = &vm->vm_qcache[i];
681 size = (i + 1) << vm->vm_quantum_shift;
682 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
683 vm->vm_name, size);
684 qc->qc_vmem = vm;
685 qc->qc_size = size;
686 qc->qc_cache = uma_zcache_create(qc->qc_name, size,
687 NULL, NULL, NULL, NULL, qc_import, qc_release, qc, 0);
688 MPASS(qc->qc_cache);
689 }
690 }
691
692 static void
qc_destroy(vmem_t * vm)693 qc_destroy(vmem_t *vm)
694 {
695 int qcache_idx_max;
696 int i;
697
698 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
699 for (i = 0; i < qcache_idx_max; i++)
700 uma_zdestroy(vm->vm_qcache[i].qc_cache);
701 }
702
703 static void
qc_drain(vmem_t * vm)704 qc_drain(vmem_t *vm)
705 {
706 int qcache_idx_max;
707 int i;
708
709 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
710 for (i = 0; i < qcache_idx_max; i++)
711 uma_zone_reclaim(vm->vm_qcache[i].qc_cache, UMA_RECLAIM_DRAIN);
712 }
713
714 #ifndef UMA_USE_DMAP
715
716 static struct mtx_padalign __exclusive_cache_line vmem_bt_lock;
717
718 /*
719 * vmem_bt_alloc: Allocate a new page of boundary tags.
720 *
721 * On architectures with UMA_USE_DMAP there is no recursion; no address
722 * space need be allocated to allocate boundary tags. For the others, we
723 * must handle recursion. Boundary tags are necessary to allocate new
724 * boundary tags.
725 *
726 * UMA guarantees that enough tags are held in reserve to allocate a new
727 * page of kva. We dip into this reserve by specifying M_USE_RESERVE only
728 * when allocating the page to hold new boundary tags. In this way the
729 * reserve is automatically filled by the allocation that uses the reserve.
730 *
731 * We still have to guarantee that the new tags are allocated atomically since
732 * many threads may try concurrently. The bt_lock provides this guarantee.
733 * We convert WAITOK allocations to NOWAIT and then handle the blocking here
734 * on failure. It's ok to return NULL for a WAITOK allocation as UMA will
735 * loop again after checking to see if we lost the race to allocate.
736 *
737 * There is a small race between vmem_bt_alloc() returning the page and the
738 * zone lock being acquired to add the page to the zone. For WAITOK
739 * allocations we just pause briefly. NOWAIT may experience a transient
740 * failure. To alleviate this we permit a small number of simultaneous
741 * fills to proceed concurrently so NOWAIT is less likely to fail unless
742 * we are really out of KVA.
743 */
744 static void *
vmem_bt_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)745 vmem_bt_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
746 int wait)
747 {
748 vmem_addr_t addr;
749
750 *pflag = UMA_SLAB_KERNEL;
751
752 /*
753 * Single thread boundary tag allocation so that the address space
754 * and memory are added in one atomic operation.
755 */
756 mtx_lock(&vmem_bt_lock);
757 if (vmem_xalloc(vm_dom[domain].vmd_kernel_arena, bytes, 0, 0, 0,
758 VMEM_ADDR_MIN, VMEM_ADDR_MAX,
759 M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT, &addr) == 0) {
760 if (kmem_back_domain(domain, kernel_object, addr, bytes,
761 M_NOWAIT | M_USE_RESERVE) == 0) {
762 mtx_unlock(&vmem_bt_lock);
763 return ((void *)addr);
764 }
765 vmem_xfree(vm_dom[domain].vmd_kernel_arena, addr, bytes);
766 mtx_unlock(&vmem_bt_lock);
767 /*
768 * Out of memory, not address space. This may not even be
769 * possible due to M_USE_RESERVE page allocation.
770 */
771 if (wait & M_WAITOK)
772 vm_wait_domain(domain);
773 return (NULL);
774 }
775 mtx_unlock(&vmem_bt_lock);
776 /*
777 * We're either out of address space or lost a fill race.
778 */
779 if (wait & M_WAITOK)
780 pause("btalloc", 1);
781
782 return (NULL);
783 }
784 #endif
785
786 void
vmem_startup(void)787 vmem_startup(void)
788 {
789
790 mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
791 vmem_zone = uma_zcreate("vmem",
792 sizeof(struct vmem), NULL, NULL, NULL, NULL,
793 UMA_ALIGN_PTR, 0);
794 vmem_bt_zone = uma_zcreate("vmem btag",
795 sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
796 UMA_ALIGN_PTR, UMA_ZONE_VM);
797 #ifndef UMA_USE_DMAP
798 mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
799 uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
800 /*
801 * Reserve enough tags to allocate new tags. We allow multiple
802 * CPUs to attempt to allocate new tags concurrently to limit
803 * false restarts in UMA. vmem_bt_alloc() allocates from a per-domain
804 * arena, which may involve importing a range from the kernel arena,
805 * so we need to keep at least 2 * BT_MAXALLOC tags reserved.
806 */
807 uma_zone_reserve(vmem_bt_zone, 2 * BT_MAXALLOC * mp_ncpus);
808 uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
809 #endif
810 }
811
812 static int
vmem_rehash(vmem_t * vm,vmem_size_t newhashsize)813 vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
814 {
815 bt_t *bt;
816 struct vmem_hashlist *newhashlist;
817 struct vmem_hashlist *oldhashlist;
818 vmem_size_t i, oldhashsize;
819
820 MPASS(newhashsize > 0);
821
822 newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
823 M_VMEM, M_NOWAIT);
824 if (newhashlist == NULL)
825 return ENOMEM;
826 for (i = 0; i < newhashsize; i++) {
827 LIST_INIT(&newhashlist[i]);
828 }
829
830 VMEM_LOCK(vm);
831 oldhashlist = vm->vm_hashlist;
832 oldhashsize = vm->vm_hashsize;
833 vm->vm_hashlist = newhashlist;
834 vm->vm_hashsize = newhashsize;
835 if (oldhashlist == NULL) {
836 VMEM_UNLOCK(vm);
837 return 0;
838 }
839 for (i = 0; i < oldhashsize; i++) {
840 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
841 bt_rembusy(vm, bt);
842 bt_insbusy(vm, bt);
843 }
844 }
845 VMEM_UNLOCK(vm);
846
847 if (oldhashlist != vm->vm_hash0)
848 free(oldhashlist, M_VMEM);
849
850 return 0;
851 }
852
853 static void
vmem_periodic_kick(void * dummy)854 vmem_periodic_kick(void *dummy)
855 {
856
857 taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
858 }
859
860 static void
vmem_periodic(void * unused,int pending)861 vmem_periodic(void *unused, int pending)
862 {
863 vmem_t *vm;
864 vmem_size_t desired;
865 vmem_size_t current;
866
867 VMEM_LIST_LOCK();
868 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
869 #ifdef DIAGNOSTIC
870 /* Convenient time to verify vmem state. */
871 if (enable_vmem_check == 1) {
872 VMEM_LOCK(vm);
873 vmem_check(vm);
874 VMEM_UNLOCK(vm);
875 }
876 #endif
877 desired = 1 << flsl(vm->vm_nbusytag);
878 desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
879 VMEM_HASHSIZE_MAX);
880 current = vm->vm_hashsize;
881
882 /* Grow in powers of two. Shrink less aggressively. */
883 if (desired >= current * 2 || desired * 4 <= current)
884 vmem_rehash(vm, desired);
885
886 /*
887 * Periodically wake up threads waiting for resources,
888 * so they could ask for reclamation again.
889 */
890 VMEM_CONDVAR_BROADCAST(vm);
891 }
892 VMEM_LIST_UNLOCK();
893
894 callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
895 vmem_periodic_kick, NULL);
896 }
897
898 static void
vmem_start_callout(void * unused)899 vmem_start_callout(void *unused)
900 {
901
902 TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
903 vmem_periodic_interval = hz * 10;
904 callout_init(&vmem_periodic_ch, 1);
905 callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
906 vmem_periodic_kick, NULL);
907 }
908 SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);
909 #endif /* _KERNEL */
910
911 static void
vmem_add1(vmem_t * vm,vmem_addr_t addr,vmem_size_t size,int type)912 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
913 {
914 bt_t *btfree, *btprev, *btspan;
915
916 VMEM_ASSERT_LOCKED(vm);
917 MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
918 MPASS((size & vm->vm_quantum_mask) == 0);
919
920 if (vm->vm_releasefn == NULL) {
921 /*
922 * The new segment will never be released, so see if it is
923 * contiguous with respect to an existing segment. In this case
924 * a span tag is not needed, and it may be possible now or in
925 * the future to coalesce the new segment with an existing free
926 * segment.
927 */
928 btprev = TAILQ_LAST(&vm->vm_seglist, vmem_seglist);
929 if ((!bt_isbusy(btprev) && !bt_isfree(btprev)) ||
930 btprev->bt_start + btprev->bt_size != addr)
931 btprev = NULL;
932 } else {
933 btprev = NULL;
934 }
935
936 if (btprev == NULL || bt_isbusy(btprev)) {
937 if (btprev == NULL) {
938 btspan = bt_alloc(vm);
939 btspan->bt_type = type;
940 btspan->bt_start = addr;
941 btspan->bt_size = size;
942 bt_insseg_tail(vm, btspan);
943 }
944
945 btfree = bt_alloc(vm);
946 btfree->bt_type = BT_TYPE_FREE;
947 btfree->bt_start = addr;
948 btfree->bt_size = size;
949 bt_insseg_tail(vm, btfree);
950 bt_insfree(vm, btfree);
951 } else {
952 bt_remfree(vm, btprev);
953 btprev->bt_size += size;
954 bt_insfree(vm, btprev);
955 }
956
957 vm->vm_size += size;
958 }
959
960 static void
vmem_destroy1(vmem_t * vm)961 vmem_destroy1(vmem_t *vm)
962 {
963 bt_t *bt;
964
965 #ifdef _KERNEL
966 /*
967 * Drain per-cpu quantum caches.
968 */
969 qc_destroy(vm);
970 #endif
971
972 /*
973 * The vmem should now only contain empty segments.
974 */
975 VMEM_LOCK(vm);
976 MPASS(vm->vm_nbusytag == 0);
977
978 TAILQ_REMOVE(&vm->vm_seglist, &vm->vm_cursor, bt_seglist);
979 while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
980 bt_remseg(vm, bt);
981
982 if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0) {
983 #ifdef _KERNEL
984 free(vm->vm_hashlist, M_VMEM);
985 #else
986 free(vm->vm_hashlist);
987 #endif
988 }
989
990 bt_freetrim(vm, 0);
991
992 VMEM_CONDVAR_DESTROY(vm);
993 VMEM_LOCK_DESTROY(vm);
994 #ifdef _KERNEL
995 uma_zfree(vmem_zone, vm);
996 #else
997 free(vm);
998 #endif
999 }
1000
1001 static int
vmem_import(vmem_t * vm,vmem_size_t size,vmem_size_t align,int flags)1002 vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
1003 {
1004 vmem_addr_t addr;
1005 int error;
1006
1007 if (vm->vm_importfn == NULL)
1008 return (EINVAL);
1009
1010 /*
1011 * To make sure we get a span that meets the alignment we double it
1012 * and add the size to the tail. This slightly overestimates.
1013 */
1014 if (align != vm->vm_quantum_mask + 1)
1015 size = (align * 2) + size;
1016 size = roundup(size, vm->vm_import_quantum);
1017
1018 if (vm->vm_limit != 0 && vm->vm_limit < vm->vm_size + size)
1019 return (ENOMEM);
1020
1021 bt_save(vm);
1022 VMEM_UNLOCK(vm);
1023 error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
1024 VMEM_LOCK(vm);
1025 bt_restore(vm);
1026 if (error)
1027 return (ENOMEM);
1028
1029 vmem_add1(vm, addr, size, BT_TYPE_SPAN);
1030
1031 return 0;
1032 }
1033
1034 /*
1035 * vmem_fit: check if a bt can satisfy the given restrictions.
1036 *
1037 * it's a caller's responsibility to ensure the region is big enough
1038 * before calling us.
1039 */
1040 static int
vmem_fit(const bt_t * bt,vmem_size_t size,vmem_size_t align,vmem_size_t phase,vmem_size_t nocross,vmem_addr_t minaddr,vmem_addr_t maxaddr,vmem_addr_t * addrp)1041 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
1042 vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
1043 vmem_addr_t maxaddr, vmem_addr_t *addrp)
1044 {
1045 vmem_addr_t start;
1046 vmem_addr_t end;
1047
1048 MPASS(size > 0);
1049 MPASS(bt->bt_size >= size); /* caller's responsibility */
1050
1051 /*
1052 * XXX assumption: vmem_addr_t and vmem_size_t are
1053 * unsigned integer of the same size.
1054 */
1055
1056 start = bt->bt_start;
1057 if (start < minaddr) {
1058 start = minaddr;
1059 }
1060 end = BT_END(bt);
1061 if (end > maxaddr)
1062 end = maxaddr;
1063 if (start > end)
1064 return (ENOMEM);
1065
1066 start = VMEM_ALIGNUP(start - phase, align) + phase;
1067 if (start < bt->bt_start)
1068 start += align;
1069 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
1070 MPASS(align < nocross);
1071 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
1072 }
1073 if (start <= end && end - start >= size - 1) {
1074 MPASS((start & (align - 1)) == phase);
1075 MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
1076 MPASS(minaddr <= start);
1077 MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
1078 MPASS(bt->bt_start <= start);
1079 MPASS(BT_END(bt) - start >= size - 1);
1080 *addrp = start;
1081
1082 return (0);
1083 }
1084 return (ENOMEM);
1085 }
1086
1087 /*
1088 * vmem_clip: Trim the boundary tag edges to the requested start and size.
1089 */
1090 static void
vmem_clip(vmem_t * vm,bt_t * bt,vmem_addr_t start,vmem_size_t size)1091 vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
1092 {
1093 bt_t *btnew;
1094 bt_t *btprev;
1095
1096 VMEM_ASSERT_LOCKED(vm);
1097 MPASS(bt->bt_type == BT_TYPE_FREE);
1098 MPASS(bt->bt_size >= size);
1099 bt_remfree(vm, bt);
1100 if (bt->bt_start != start) {
1101 btprev = bt_alloc(vm);
1102 btprev->bt_type = BT_TYPE_FREE;
1103 btprev->bt_start = bt->bt_start;
1104 btprev->bt_size = start - bt->bt_start;
1105 bt->bt_start = start;
1106 bt->bt_size -= btprev->bt_size;
1107 bt_insfree(vm, btprev);
1108 bt_insseg(vm, btprev,
1109 TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1110 }
1111 MPASS(bt->bt_start == start);
1112 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1113 /* split */
1114 btnew = bt_alloc(vm);
1115 btnew->bt_type = BT_TYPE_BUSY;
1116 btnew->bt_start = bt->bt_start;
1117 btnew->bt_size = size;
1118 bt->bt_start = bt->bt_start + size;
1119 bt->bt_size -= size;
1120 bt_insfree(vm, bt);
1121 bt_insseg(vm, btnew,
1122 TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1123 bt_insbusy(vm, btnew);
1124 bt = btnew;
1125 } else {
1126 bt->bt_type = BT_TYPE_BUSY;
1127 bt_insbusy(vm, bt);
1128 }
1129 MPASS(bt->bt_size >= size);
1130 }
1131
1132 static int
vmem_try_fetch(vmem_t * vm,const vmem_size_t size,vmem_size_t align,int flags)1133 vmem_try_fetch(vmem_t *vm, const vmem_size_t size, vmem_size_t align, int flags)
1134 {
1135 vmem_size_t avail;
1136
1137 VMEM_ASSERT_LOCKED(vm);
1138
1139 /*
1140 * XXX it is possible to fail to meet xalloc constraints with the
1141 * imported region. It is up to the user to specify the
1142 * import quantum such that it can satisfy any allocation.
1143 */
1144 if (vmem_import(vm, size, align, flags) == 0)
1145 return (1);
1146
1147 /*
1148 * Try to free some space from the quantum cache or reclaim
1149 * functions if available.
1150 */
1151 if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
1152 avail = vm->vm_size - vm->vm_inuse;
1153 bt_save(vm);
1154 VMEM_UNLOCK(vm);
1155 #ifdef _KERNEL
1156 if (vm->vm_qcache_max != 0)
1157 qc_drain(vm);
1158 #endif
1159 if (vm->vm_reclaimfn != NULL)
1160 vm->vm_reclaimfn(vm, flags);
1161 VMEM_LOCK(vm);
1162 bt_restore(vm);
1163 /* If we were successful retry even NOWAIT. */
1164 if (vm->vm_size - vm->vm_inuse > avail)
1165 return (1);
1166 }
1167 if ((flags & M_NOWAIT) != 0)
1168 return (0);
1169 bt_save(vm);
1170 VMEM_CONDVAR_WAIT(vm);
1171 bt_restore(vm);
1172 return (1);
1173 }
1174
1175 static int
vmem_try_release(vmem_t * vm,struct vmem_btag * bt,const bool remfree)1176 vmem_try_release(vmem_t *vm, struct vmem_btag *bt, const bool remfree)
1177 {
1178 struct vmem_btag *prev;
1179
1180 MPASS(bt->bt_type == BT_TYPE_FREE);
1181
1182 if (vm->vm_releasefn == NULL)
1183 return (0);
1184
1185 prev = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1186 MPASS(prev != NULL);
1187 MPASS(prev->bt_type != BT_TYPE_FREE);
1188
1189 if (prev->bt_type == BT_TYPE_SPAN && prev->bt_size == bt->bt_size) {
1190 vmem_addr_t spanaddr;
1191 vmem_size_t spansize;
1192
1193 MPASS(prev->bt_start == bt->bt_start);
1194 spanaddr = prev->bt_start;
1195 spansize = prev->bt_size;
1196 if (remfree)
1197 bt_remfree(vm, bt);
1198 bt_remseg(vm, bt);
1199 bt_remseg(vm, prev);
1200 vm->vm_size -= spansize;
1201 VMEM_CONDVAR_BROADCAST(vm);
1202 bt_freetrim(vm, BT_MAXFREE);
1203 vm->vm_releasefn(vm->vm_arg, spanaddr, spansize);
1204 return (1);
1205 }
1206 return (0);
1207 }
1208
1209 static int
vmem_xalloc_nextfit(vmem_t * vm,const vmem_size_t size,vmem_size_t align,const vmem_size_t phase,const vmem_size_t nocross,int flags,vmem_addr_t * addrp)1210 vmem_xalloc_nextfit(vmem_t *vm, const vmem_size_t size, vmem_size_t align,
1211 const vmem_size_t phase, const vmem_size_t nocross, int flags,
1212 vmem_addr_t *addrp)
1213 {
1214 struct vmem_btag *bt, *cursor, *next, *prev;
1215 int error;
1216
1217 error = ENOMEM;
1218 VMEM_LOCK(vm);
1219
1220 /*
1221 * Make sure we have enough tags to complete the operation.
1222 */
1223 if (bt_fill(vm, flags) != 0)
1224 goto out;
1225
1226 retry:
1227 /*
1228 * Find the next free tag meeting our constraints. If one is found,
1229 * perform the allocation.
1230 */
1231 for (cursor = &vm->vm_cursor, bt = TAILQ_NEXT(cursor, bt_seglist);
1232 bt != cursor; bt = TAILQ_NEXT(bt, bt_seglist)) {
1233 if (bt == NULL)
1234 bt = TAILQ_FIRST(&vm->vm_seglist);
1235 if (bt->bt_type == BT_TYPE_FREE && bt->bt_size >= size &&
1236 (error = vmem_fit(bt, size, align, phase, nocross,
1237 VMEM_ADDR_MIN, VMEM_ADDR_MAX, addrp)) == 0) {
1238 vmem_clip(vm, bt, *addrp, size);
1239 break;
1240 }
1241 }
1242
1243 /*
1244 * Try to coalesce free segments around the cursor. If we succeed, and
1245 * have not yet satisfied the allocation request, try again with the
1246 * newly coalesced segment.
1247 */
1248 if ((next = TAILQ_NEXT(cursor, bt_seglist)) != NULL &&
1249 (prev = TAILQ_PREV(cursor, vmem_seglist, bt_seglist)) != NULL &&
1250 next->bt_type == BT_TYPE_FREE && prev->bt_type == BT_TYPE_FREE &&
1251 prev->bt_start + prev->bt_size == next->bt_start) {
1252 prev->bt_size += next->bt_size;
1253 bt_remfree(vm, next);
1254 bt_remseg(vm, next);
1255
1256 /*
1257 * The coalesced segment might be able to satisfy our request.
1258 * If not, we might need to release it from the arena.
1259 */
1260 if (error == ENOMEM && prev->bt_size >= size &&
1261 (error = vmem_fit(prev, size, align, phase, nocross,
1262 VMEM_ADDR_MIN, VMEM_ADDR_MAX, addrp)) == 0) {
1263 vmem_clip(vm, prev, *addrp, size);
1264 bt = prev;
1265 } else
1266 (void)vmem_try_release(vm, prev, true);
1267 }
1268
1269 /*
1270 * If the allocation was successful, advance the cursor.
1271 */
1272 if (error == 0) {
1273 TAILQ_REMOVE(&vm->vm_seglist, cursor, bt_seglist);
1274 for (; bt != NULL && bt->bt_start < *addrp + size;
1275 bt = TAILQ_NEXT(bt, bt_seglist))
1276 ;
1277 if (bt != NULL)
1278 TAILQ_INSERT_BEFORE(bt, cursor, bt_seglist);
1279 else
1280 TAILQ_INSERT_HEAD(&vm->vm_seglist, cursor, bt_seglist);
1281 }
1282
1283 /*
1284 * Attempt to bring additional resources into the arena. If that fails
1285 * and M_WAITOK is specified, sleep waiting for resources to be freed.
1286 */
1287 if (error == ENOMEM && vmem_try_fetch(vm, size, align, flags))
1288 goto retry;
1289
1290 out:
1291 VMEM_UNLOCK(vm);
1292 return (error);
1293 }
1294
1295 /* ---- vmem API */
1296
1297 void
vmem_set_import(vmem_t * vm,vmem_import_t * importfn,vmem_release_t * releasefn,void * arg,vmem_size_t import_quantum)1298 vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
1299 vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
1300 {
1301
1302 VMEM_LOCK(vm);
1303 KASSERT(vm->vm_size == 0, ("%s: arena is non-empty", __func__));
1304 vm->vm_importfn = importfn;
1305 vm->vm_releasefn = releasefn;
1306 vm->vm_arg = arg;
1307 vm->vm_import_quantum = import_quantum;
1308 VMEM_UNLOCK(vm);
1309 }
1310
1311 void
vmem_set_limit(vmem_t * vm,vmem_size_t limit)1312 vmem_set_limit(vmem_t *vm, vmem_size_t limit)
1313 {
1314
1315 VMEM_LOCK(vm);
1316 vm->vm_limit = limit;
1317 VMEM_UNLOCK(vm);
1318 }
1319
1320 void
vmem_set_reclaim(vmem_t * vm,vmem_reclaim_t * reclaimfn)1321 vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
1322 {
1323
1324 VMEM_LOCK(vm);
1325 vm->vm_reclaimfn = reclaimfn;
1326 VMEM_UNLOCK(vm);
1327 }
1328
1329 /*
1330 * vmem_init: Initializes vmem arena.
1331 */
1332 vmem_t *
vmem_init(vmem_t * vm,const char * name,vmem_addr_t base,vmem_size_t size,vmem_size_t quantum,vmem_size_t qcache_max,int flags)1333 vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
1334 vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1335 {
1336 vmem_size_t i;
1337
1338 #ifdef _KERNEL
1339 MPASS(quantum > 0);
1340 MPASS((quantum & (quantum - 1)) == 0);
1341 #else
1342 assert(quantum == 0);
1343 assert(qcache_max == 0);
1344 quantum = 1;
1345 #endif
1346
1347 bzero(vm, sizeof(*vm));
1348
1349 VMEM_CONDVAR_INIT(vm, name);
1350 VMEM_LOCK_INIT(vm, name);
1351 vm->vm_nfreetags = 0;
1352 LIST_INIT(&vm->vm_freetags);
1353 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
1354 vm->vm_quantum_mask = quantum - 1;
1355 vm->vm_quantum_shift = flsl(quantum) - 1;
1356 vm->vm_nbusytag = 0;
1357 vm->vm_size = 0;
1358 vm->vm_limit = 0;
1359 vm->vm_inuse = 0;
1360 #ifdef _KERNEL
1361 qc_init(vm, qcache_max);
1362 #else
1363 (void)qcache_max;
1364 #endif
1365
1366 TAILQ_INIT(&vm->vm_seglist);
1367 vm->vm_cursor.bt_start = vm->vm_cursor.bt_size = 0;
1368 vm->vm_cursor.bt_type = BT_TYPE_CURSOR;
1369 TAILQ_INSERT_TAIL(&vm->vm_seglist, &vm->vm_cursor, bt_seglist);
1370
1371 for (i = 0; i < VMEM_MAXORDER; i++)
1372 LIST_INIT(&vm->vm_freelist[i]);
1373
1374 memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
1375 vm->vm_hashsize = VMEM_HASHSIZE_MIN;
1376 vm->vm_hashlist = vm->vm_hash0;
1377
1378 if (size != 0) {
1379 if (vmem_add(vm, base, size, flags) != 0) {
1380 vmem_destroy1(vm);
1381 return NULL;
1382 }
1383 }
1384
1385 VMEM_LIST_LOCK();
1386 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1387 VMEM_LIST_UNLOCK();
1388
1389 return vm;
1390 }
1391
1392 /*
1393 * vmem_create: create an arena.
1394 */
1395 vmem_t *
vmem_create(const char * name,vmem_addr_t base,vmem_size_t size,vmem_size_t quantum,vmem_size_t qcache_max,int flags)1396 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1397 vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1398 {
1399
1400 vmem_t *vm;
1401
1402 #ifdef _KERNEL
1403 vm = uma_zalloc(vmem_zone, flags & (M_WAITOK|M_NOWAIT));
1404 #else
1405 assert(quantum == 0);
1406 assert(qcache_max == 0);
1407 vm = malloc(sizeof(vmem_t));
1408 #endif
1409 if (vm == NULL)
1410 return (NULL);
1411 if (vmem_init(vm, name, base, size, quantum, qcache_max,
1412 flags) == NULL)
1413 return (NULL);
1414 return (vm);
1415 }
1416
1417 void
vmem_destroy(vmem_t * vm)1418 vmem_destroy(vmem_t *vm)
1419 {
1420 VMEM_LIST_LOCK();
1421 LIST_REMOVE(vm, vm_alllist);
1422 VMEM_LIST_UNLOCK();
1423
1424 vmem_destroy1(vm);
1425 }
1426
1427 vmem_size_t
vmem_roundup_size(vmem_t * vm,vmem_size_t size)1428 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1429 {
1430
1431 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1432 }
1433
1434 /*
1435 * vmem_alloc: allocate resource from the arena.
1436 */
1437 int
vmem_alloc(vmem_t * vm,vmem_size_t size,int flags,vmem_addr_t * addrp)1438 vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
1439 {
1440 const int strat __unused = flags & VMEM_FITMASK;
1441
1442 flags &= VMEM_FLAGS;
1443 MPASS(size > 0);
1444 MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT || strat == M_NEXTFIT);
1445 if ((flags & M_NOWAIT) == 0)
1446 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");
1447
1448 #ifdef _KERNEL
1449 if (size <= vm->vm_qcache_max) {
1450 qcache_t *qc;
1451
1452 /*
1453 * Resource 0 cannot be cached, so avoid a blocking allocation
1454 * in qc_import() and give the vmem_xalloc() call below a chance
1455 * to return 0.
1456 */
1457 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1458 *addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache,
1459 (flags & ~M_WAITOK) | M_NOWAIT);
1460 if (__predict_true(*addrp != 0))
1461 return (0);
1462 }
1463 #endif
1464
1465 return (vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1466 flags, addrp));
1467 }
1468
1469 int
vmem_xalloc(vmem_t * vm,const vmem_size_t size0,vmem_size_t align,const vmem_size_t phase,const vmem_size_t nocross,const vmem_addr_t minaddr,const vmem_addr_t maxaddr,int flags,vmem_addr_t * addrp)1470 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1471 const vmem_size_t phase, const vmem_size_t nocross,
1472 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
1473 vmem_addr_t *addrp)
1474 {
1475 const vmem_size_t size = vmem_roundup_size(vm, size0);
1476 struct vmem_freelist *list;
1477 struct vmem_freelist *first;
1478 struct vmem_freelist *end;
1479 bt_t *bt;
1480 int error;
1481 int strat;
1482
1483 flags &= VMEM_FLAGS;
1484 strat = flags & VMEM_FITMASK;
1485 MPASS(size0 > 0);
1486 MPASS(size > 0);
1487 MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT || strat == M_NEXTFIT);
1488 MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
1489 if ((flags & M_NOWAIT) == 0)
1490 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
1491 MPASS((align & vm->vm_quantum_mask) == 0);
1492 MPASS((align & (align - 1)) == 0);
1493 MPASS((phase & vm->vm_quantum_mask) == 0);
1494 MPASS((nocross & vm->vm_quantum_mask) == 0);
1495 MPASS((nocross & (nocross - 1)) == 0);
1496 MPASS((align == 0 && phase == 0) || phase < align);
1497 MPASS(nocross == 0 || nocross >= size);
1498 MPASS(minaddr <= maxaddr);
1499 MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1500 if (strat == M_NEXTFIT)
1501 MPASS(minaddr == VMEM_ADDR_MIN && maxaddr == VMEM_ADDR_MAX);
1502
1503 if (align == 0)
1504 align = vm->vm_quantum_mask + 1;
1505 *addrp = 0;
1506
1507 /*
1508 * Next-fit allocations don't use the freelists.
1509 */
1510 if (strat == M_NEXTFIT)
1511 return (vmem_xalloc_nextfit(vm, size0, align, phase, nocross,
1512 flags, addrp));
1513
1514 end = &vm->vm_freelist[VMEM_MAXORDER];
1515 /*
1516 * choose a free block from which we allocate.
1517 */
1518 first = bt_freehead_toalloc(vm, size, strat);
1519 VMEM_LOCK(vm);
1520
1521 /*
1522 * Make sure we have enough tags to complete the operation.
1523 */
1524 error = bt_fill(vm, flags);
1525 if (error != 0)
1526 goto out;
1527 for (;;) {
1528 /*
1529 * Scan freelists looking for a tag that satisfies the
1530 * allocation. If we're doing BESTFIT we may encounter
1531 * sizes below the request. If we're doing FIRSTFIT we
1532 * inspect only the first element from each list.
1533 */
1534 for (list = first; list < end; list++) {
1535 LIST_FOREACH(bt, list, bt_freelist) {
1536 if (bt->bt_size >= size) {
1537 error = vmem_fit(bt, size, align, phase,
1538 nocross, minaddr, maxaddr, addrp);
1539 if (error == 0) {
1540 vmem_clip(vm, bt, *addrp, size);
1541 goto out;
1542 }
1543 }
1544 /* FIRST skips to the next list. */
1545 if (strat == M_FIRSTFIT)
1546 break;
1547 }
1548 }
1549
1550 /*
1551 * Retry if the fast algorithm failed.
1552 */
1553 if (strat == M_FIRSTFIT) {
1554 strat = M_BESTFIT;
1555 first = bt_freehead_toalloc(vm, size, strat);
1556 continue;
1557 }
1558
1559 /*
1560 * Try a few measures to bring additional resources into the
1561 * arena. If all else fails, we will sleep waiting for
1562 * resources to be freed.
1563 */
1564 if (!vmem_try_fetch(vm, size, align, flags)) {
1565 error = ENOMEM;
1566 break;
1567 }
1568 }
1569 out:
1570 VMEM_UNLOCK(vm);
1571 if (error != 0 && (flags & M_NOWAIT) == 0)
1572 panic("failed to allocate waiting allocation\n");
1573
1574 return (error);
1575 }
1576
1577 /*
1578 * vmem_free: free the resource to the arena.
1579 */
1580 void
vmem_free(vmem_t * vm,vmem_addr_t addr,vmem_size_t size)1581 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1582 {
1583 MPASS(size > 0);
1584
1585 #ifdef _KERNEL
1586 if (size <= vm->vm_qcache_max &&
1587 __predict_true(addr >= VMEM_ADDR_QCACHE_MIN)) {
1588 qcache_t *qc;
1589
1590 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1591 uma_zfree(qc->qc_cache, (void *)addr);
1592 } else
1593 #endif
1594 vmem_xfree(vm, addr, size);
1595 }
1596
1597 void
vmem_xfree(vmem_t * vm,vmem_addr_t addr,vmem_size_t size __unused)1598 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size __unused)
1599 {
1600 bt_t *bt;
1601 bt_t *t;
1602
1603 MPASS(size > 0);
1604
1605 VMEM_LOCK(vm);
1606 bt = bt_lookupbusy(vm, addr);
1607 MPASS(bt != NULL);
1608 MPASS(bt->bt_start == addr);
1609 MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
1610 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1611 MPASS(bt->bt_type == BT_TYPE_BUSY);
1612 bt_rembusy(vm, bt);
1613 bt->bt_type = BT_TYPE_FREE;
1614
1615 /* coalesce */
1616 t = TAILQ_NEXT(bt, bt_seglist);
1617 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1618 MPASS(BT_END(bt) < t->bt_start); /* YYY */
1619 bt->bt_size += t->bt_size;
1620 bt_remfree(vm, t);
1621 bt_remseg(vm, t);
1622 }
1623 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1624 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1625 MPASS(BT_END(t) < bt->bt_start); /* YYY */
1626 bt->bt_size += t->bt_size;
1627 bt->bt_start = t->bt_start;
1628 bt_remfree(vm, t);
1629 bt_remseg(vm, t);
1630 }
1631
1632 if (!vmem_try_release(vm, bt, false)) {
1633 bt_insfree(vm, bt);
1634 VMEM_CONDVAR_BROADCAST(vm);
1635 bt_freetrim(vm, BT_MAXFREE);
1636 }
1637 }
1638
1639 /*
1640 * vmem_add:
1641 *
1642 */
1643 int
vmem_add(vmem_t * vm,vmem_addr_t addr,vmem_size_t size,int flags)1644 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
1645 {
1646 int error;
1647
1648 flags &= VMEM_FLAGS;
1649
1650 VMEM_LOCK(vm);
1651 error = bt_fill(vm, flags);
1652 if (error == 0)
1653 vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
1654 VMEM_UNLOCK(vm);
1655
1656 return (error);
1657 }
1658
1659 /*
1660 * vmem_size: information about arenas size
1661 */
1662 vmem_size_t
vmem_size(vmem_t * vm,int typemask)1663 vmem_size(vmem_t *vm, int typemask)
1664 {
1665 int i;
1666
1667 switch (typemask) {
1668 case VMEM_ALLOC:
1669 return vm->vm_inuse;
1670 case VMEM_FREE:
1671 return vm->vm_size - vm->vm_inuse;
1672 case VMEM_FREE|VMEM_ALLOC:
1673 return vm->vm_size;
1674 case VMEM_MAXFREE:
1675 VMEM_LOCK(vm);
1676 for (i = VMEM_MAXORDER - 1; i >= 0; i--) {
1677 if (LIST_EMPTY(&vm->vm_freelist[i]))
1678 continue;
1679 VMEM_UNLOCK(vm);
1680 return ((vmem_size_t)ORDER2SIZE(i) <<
1681 vm->vm_quantum_shift);
1682 }
1683 VMEM_UNLOCK(vm);
1684 return (0);
1685 default:
1686 panic("vmem_size");
1687 return (0);
1688 }
1689 }
1690
1691 /* ---- debug */
1692
1693 #ifdef _KERNEL
1694 #if defined(DDB) || defined(DIAGNOSTIC)
1695
1696 static void bt_dump(const bt_t *, int (*)(const char *, ...)
1697 __printflike(1, 2));
1698
1699 static const char *
bt_type_string(int type)1700 bt_type_string(int type)
1701 {
1702
1703 switch (type) {
1704 case BT_TYPE_BUSY:
1705 return "busy";
1706 case BT_TYPE_FREE:
1707 return "free";
1708 case BT_TYPE_SPAN:
1709 return "span";
1710 case BT_TYPE_SPAN_STATIC:
1711 return "static span";
1712 case BT_TYPE_CURSOR:
1713 return "cursor";
1714 default:
1715 break;
1716 }
1717 return "BOGUS";
1718 }
1719
1720 static void
bt_dump(const bt_t * bt,int (* pr)(const char *,...))1721 bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
1722 {
1723
1724 (*pr)("\t%p: %jx %jx, %d(%s)\n",
1725 bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
1726 bt->bt_type, bt_type_string(bt->bt_type));
1727 }
1728
1729 static void
1730 vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
1731 {
1732 const bt_t *bt;
1733 int i;
1734
1735 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1736 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1737 bt_dump(bt, pr);
1738 }
1739
1740 for (i = 0; i < VMEM_MAXORDER; i++) {
1741 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1742
1743 if (LIST_EMPTY(fl)) {
1744 continue;
1745 }
1746
1747 (*pr)("freelist[%d]\n", i);
LIST_FOREACH(bt,fl,bt_freelist)1748 LIST_FOREACH(bt, fl, bt_freelist) {
1749 bt_dump(bt, pr);
1750 }
1751 }
1752 }
1753
1754 #endif /* defined(DDB) || defined(DIAGNOSTIC) */
1755
1756 #if defined(DDB)
1757 #include <ddb/ddb.h>
1758
1759 static bt_t *
vmem_whatis_lookup(vmem_t * vm,vmem_addr_t addr)1760 vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
1761 {
1762 bt_t *bt;
1763
1764 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1765 if (BT_ISSPAN_P(bt)) {
1766 continue;
1767 }
1768 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1769 return bt;
1770 }
1771 }
1772
1773 return NULL;
1774 }
1775
1776 void
vmem_whatis(vmem_addr_t addr,int (* pr)(const char *,...))1777 vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
1778 {
1779 vmem_t *vm;
1780
1781 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1782 bt_t *bt;
1783
1784 bt = vmem_whatis_lookup(vm, addr);
1785 if (bt == NULL) {
1786 continue;
1787 }
1788 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1789 (void *)addr, (void *)bt->bt_start,
1790 (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
1791 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1792 }
1793 }
1794
1795 void
vmem_printall(const char * modif,int (* pr)(const char *,...))1796 vmem_printall(const char *modif, int (*pr)(const char *, ...))
1797 {
1798 const vmem_t *vm;
1799
1800 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1801 vmem_dump(vm, pr);
1802 }
1803 }
1804
1805 void
vmem_print(vmem_addr_t addr,const char * modif,int (* pr)(const char *,...))1806 vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
1807 {
1808 const vmem_t *vm = (const void *)addr;
1809
1810 vmem_dump(vm, pr);
1811 }
1812
DB_SHOW_COMMAND(vmemdump,vmemdump)1813 DB_SHOW_COMMAND(vmemdump, vmemdump)
1814 {
1815
1816 if (!have_addr) {
1817 db_printf("usage: show vmemdump <addr>\n");
1818 return;
1819 }
1820
1821 vmem_dump((const vmem_t *)addr, db_printf);
1822 }
1823
DB_SHOW_ALL_COMMAND(vmemdump,vmemdumpall)1824 DB_SHOW_ALL_COMMAND(vmemdump, vmemdumpall)
1825 {
1826 const vmem_t *vm;
1827
1828 LIST_FOREACH(vm, &vmem_list, vm_alllist)
1829 vmem_dump(vm, db_printf);
1830 }
1831
DB_SHOW_COMMAND(vmem,vmem_summ)1832 DB_SHOW_COMMAND(vmem, vmem_summ)
1833 {
1834 const vmem_t *vm = (const void *)addr;
1835 const bt_t *bt;
1836 size_t ft[VMEM_MAXORDER], ut[VMEM_MAXORDER];
1837 size_t fs[VMEM_MAXORDER], us[VMEM_MAXORDER];
1838 int ord;
1839
1840 if (!have_addr) {
1841 db_printf("usage: show vmem <addr>\n");
1842 return;
1843 }
1844
1845 db_printf("vmem %p '%s'\n", vm, vm->vm_name);
1846 db_printf("\tquantum:\t%zu\n", vm->vm_quantum_mask + 1);
1847 db_printf("\tsize:\t%zu\n", vm->vm_size);
1848 db_printf("\tinuse:\t%zu\n", vm->vm_inuse);
1849 db_printf("\tfree:\t%zu\n", vm->vm_size - vm->vm_inuse);
1850 db_printf("\tbusy tags:\t%d\n", vm->vm_nbusytag);
1851 db_printf("\tfree tags:\t%d\n", vm->vm_nfreetags);
1852
1853 memset(&ft, 0, sizeof(ft));
1854 memset(&ut, 0, sizeof(ut));
1855 memset(&fs, 0, sizeof(fs));
1856 memset(&us, 0, sizeof(us));
1857 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1858 ord = SIZE2ORDER(bt->bt_size >> vm->vm_quantum_shift);
1859 if (bt->bt_type == BT_TYPE_BUSY) {
1860 ut[ord]++;
1861 us[ord] += bt->bt_size;
1862 } else if (bt->bt_type == BT_TYPE_FREE) {
1863 ft[ord]++;
1864 fs[ord] += bt->bt_size;
1865 }
1866 }
1867 db_printf("\t\t\tinuse\tsize\t\tfree\tsize\n");
1868 for (ord = 0; ord < VMEM_MAXORDER; ord++) {
1869 if (ut[ord] == 0 && ft[ord] == 0)
1870 continue;
1871 db_printf("\t%-15zu %zu\t%-15zu %zu\t%-16zu\n",
1872 ORDER2SIZE(ord) << vm->vm_quantum_shift,
1873 ut[ord], us[ord], ft[ord], fs[ord]);
1874 }
1875 }
1876
DB_SHOW_ALL_COMMAND(vmem,vmem_summall)1877 DB_SHOW_ALL_COMMAND(vmem, vmem_summall)
1878 {
1879 const vmem_t *vm;
1880
1881 LIST_FOREACH(vm, &vmem_list, vm_alllist)
1882 vmem_summ((db_expr_t)vm, TRUE, count, modif);
1883 }
1884 #endif /* defined(DDB) */
1885
1886 #define vmem_printf printf
1887
1888 #if defined(DIAGNOSTIC)
1889
1890 static bool
vmem_check_sanity(vmem_t * vm)1891 vmem_check_sanity(vmem_t *vm)
1892 {
1893 const bt_t *bt, *bt2;
1894
1895 MPASS(vm != NULL);
1896
1897 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1898 if (bt->bt_start > BT_END(bt)) {
1899 printf("corrupted tag\n");
1900 bt_dump(bt, vmem_printf);
1901 return false;
1902 }
1903 }
1904 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1905 if (bt->bt_type == BT_TYPE_CURSOR) {
1906 if (bt->bt_start != 0 || bt->bt_size != 0) {
1907 printf("corrupted cursor\n");
1908 return false;
1909 }
1910 continue;
1911 }
1912 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1913 if (bt == bt2) {
1914 continue;
1915 }
1916 if (bt2->bt_type == BT_TYPE_CURSOR) {
1917 continue;
1918 }
1919 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1920 continue;
1921 }
1922 if (bt->bt_start <= BT_END(bt2) &&
1923 bt2->bt_start <= BT_END(bt)) {
1924 printf("overwrapped tags\n");
1925 bt_dump(bt, vmem_printf);
1926 bt_dump(bt2, vmem_printf);
1927 return false;
1928 }
1929 }
1930 }
1931
1932 return true;
1933 }
1934
1935 static void
vmem_check(vmem_t * vm)1936 vmem_check(vmem_t *vm)
1937 {
1938
1939 if (!vmem_check_sanity(vm)) {
1940 panic("insanity vmem %p", vm);
1941 }
1942 }
1943
1944 #endif /* defined(DIAGNOSTIC) */
1945 #endif /* _KERNEL */
1946