xref: /freebsd/sys/kern/subr_vmem.c (revision 1ecf01065b45018de3901c8bf89d703af737feeb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5  * Copyright (c) 2013 EMC Corp.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * From:
32  *	$NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
33  *	$NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
34  */
35 
36 /*
37  * reference:
38  * -	Magazines and Vmem: Extending the Slab Allocator
39  *	to Many CPUs and Arbitrary Resources
40  *	http://www.usenix.org/event/usenix01/bonwick.html
41  */
42 
43 #include <sys/cdefs.h>
44 
45 #ifdef _KERNEL
46 
47 #include "opt_ddb.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/queue.h>
53 #include <sys/callout.h>
54 #include <sys/hash.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/smp.h>
59 #include <sys/condvar.h>
60 #include <sys/sysctl.h>
61 #include <sys/taskqueue.h>
62 #include <sys/vmem.h>
63 #include <sys/vmmeter.h>
64 
65 #include "opt_vm.h"
66 
67 #include <vm/uma.h>
68 #include <vm/vm.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_object.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_page.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_phys.h>
78 #include <vm/vm_pagequeue.h>
79 #include <vm/uma_int.h>
80 
81 #else	/* _KERNEL */
82 
83 #include <sys/types.h>
84 #include <sys/queue.h>
85 #include <sys/hash.h>
86 #include <sys/vmem.h>
87 #include <assert.h>
88 #include <errno.h>
89 #include <pthread.h>
90 #include <pthread_np.h>
91 #include <stdbool.h>
92 #include <stdlib.h>
93 #include <string.h>
94 #include <strings.h>
95 
96 #define	KASSERT(a, b)
97 #define	MPASS(a)
98 #define	WITNESS_WARN(a, b, c)
99 #define	panic(...) assert(0)
100 
101 #endif	/* _KERNEL */
102 
103 #define	VMEM_OPTORDER		5
104 #define	VMEM_OPTVALUE		(1 << VMEM_OPTORDER)
105 #define	VMEM_MAXORDER						\
106     (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER)
107 
108 #define	VMEM_HASHSIZE_MIN	16
109 #define	VMEM_HASHSIZE_MAX	131072
110 
111 #define	VMEM_QCACHE_IDX_MAX	16
112 
113 #define	VMEM_FITMASK	(M_BESTFIT | M_FIRSTFIT | M_NEXTFIT)
114 
115 #define	QC_NAME_MAX	16
116 
117 /*
118  * Data structures private to vmem.
119  */
120 #ifdef _KERNEL
121 
122 #define	VMEM_FLAGS	(M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM |	\
123     M_BESTFIT | M_FIRSTFIT | M_NEXTFIT)
124 
125 #define	BT_FLAGS	(M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)
126 
127 MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");
128 
129 #else	/* _KERNEL */
130 
131 /* bit-compat with kernel */
132 #define	M_ZERO		0
133 #define	M_NOVM		0
134 #define	M_USE_RESERVE	0
135 
136 #define	VMEM_FLAGS	(M_NOWAIT | M_BESTFIT | M_FIRSTFIT | M_NEXTFIT)
137 
138 #define	BT_FLAGS	0
139 
140 #endif	/* _KERNEL */
141 
142 typedef struct vmem_btag bt_t;
143 
144 TAILQ_HEAD(vmem_seglist, vmem_btag);
145 LIST_HEAD(vmem_freelist, vmem_btag);
146 LIST_HEAD(vmem_hashlist, vmem_btag);
147 
148 #ifdef _KERNEL
149 struct qcache {
150 	uma_zone_t	qc_cache;
151 	vmem_t 		*qc_vmem;
152 	vmem_size_t	qc_size;
153 	char		qc_name[QC_NAME_MAX];
154 };
155 typedef struct qcache qcache_t;
156 #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
157 #endif
158 
159 #define	VMEM_NAME_MAX	16
160 
161 /* boundary tag */
162 struct vmem_btag {
163 	TAILQ_ENTRY(vmem_btag) bt_seglist;
164 	union {
165 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
166 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
167 	} bt_u;
168 #define	bt_hashlist	bt_u.u_hashlist
169 #define	bt_freelist	bt_u.u_freelist
170 	vmem_addr_t	bt_start;
171 	vmem_size_t	bt_size;
172 	int		bt_type;
173 };
174 
175 /* vmem arena */
176 struct vmem {
177 #ifdef _KERNEL
178 	struct mtx_padalign	vm_lock;
179 	struct cv		vm_cv;
180 #else
181 	pthread_mutex_t		vm_lock;
182 	pthread_cond_t		vm_cv;
183 #endif
184 	char			vm_name[VMEM_NAME_MAX+1];
185 	LIST_ENTRY(vmem)	vm_alllist;
186 	struct vmem_hashlist	vm_hash0[VMEM_HASHSIZE_MIN];
187 	struct vmem_freelist	vm_freelist[VMEM_MAXORDER];
188 	struct vmem_seglist	vm_seglist;
189 	struct vmem_hashlist	*vm_hashlist;
190 	vmem_size_t		vm_hashsize;
191 
192 	/* Constant after init */
193 	vmem_size_t		vm_qcache_max;
194 	vmem_size_t		vm_quantum_mask;
195 	vmem_size_t		vm_import_quantum;
196 	int			vm_quantum_shift;
197 
198 	/* Written on alloc/free */
199 	LIST_HEAD(, vmem_btag)	vm_freetags;
200 	int			vm_nfreetags;
201 	int			vm_nbusytag;
202 	vmem_size_t		vm_inuse;
203 	vmem_size_t		vm_size;
204 	vmem_size_t		vm_limit;
205 	struct vmem_btag	vm_cursor;
206 
207 	/* Used on import. */
208 	vmem_import_t		*vm_importfn;
209 	vmem_release_t		*vm_releasefn;
210 	void			*vm_arg;
211 
212 	/* Space exhaustion callback. */
213 	vmem_reclaim_t		*vm_reclaimfn;
214 
215 #ifdef _KERNEL
216 	/* quantum cache */
217 	qcache_t		vm_qcache[VMEM_QCACHE_IDX_MAX];
218 #endif
219 };
220 
221 #define	BT_TYPE_SPAN		1	/* Allocated from importfn */
222 #define	BT_TYPE_SPAN_STATIC	2	/* vmem_add() or create. */
223 #define	BT_TYPE_FREE		3	/* Available space. */
224 #define	BT_TYPE_BUSY		4	/* Used space. */
225 #define	BT_TYPE_CURSOR		5	/* Cursor for nextfit allocations. */
226 #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
227 
228 #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
229 
230 #ifdef _KERNEL
231 #if defined(DIAGNOSTIC)
232 static int enable_vmem_check = 0;
233 SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN,
234     &enable_vmem_check, 0, "Enable vmem check");
235 static void vmem_check(vmem_t *);
236 #endif
237 
238 static struct callout	vmem_periodic_ch;
239 static int		vmem_periodic_interval;
240 static struct task	vmem_periodic_wk;
241 
242 static struct mtx_padalign __exclusive_cache_line vmem_list_lock;
243 static uma_zone_t vmem_zone;
244 
245 #else	/* _KERNEL */
246 static pthread_mutex_t vmem_list_lock = PTHREAD_MUTEX_INITIALIZER;
247 
248 #endif	/* _KERNEL */
249 
250 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
251 
252 /* ---- misc */
253 #ifdef _KERNEL
254 #define	VMEM_LIST_LOCK()		mtx_lock(&vmem_list_lock)
255 #define	VMEM_LIST_UNLOCK()		mtx_unlock(&vmem_list_lock)
256 
257 #define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
258 #define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
259 #define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
260 #define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
261 
262 #define	VMEM_LOCK(vm)		mtx_lock(&vm->vm_lock)
263 #define	VMEM_UNLOCK(vm)		mtx_unlock(&vm->vm_lock)
264 #define	VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
265 #define	VMEM_LOCK_DESTROY(vm)	mtx_destroy(&vm->vm_lock)
266 #define	VMEM_ASSERT_LOCKED(vm)	mtx_assert(&vm->vm_lock, MA_OWNED);
267 #else	/* _KERNEL */
268 #define	VMEM_LIST_LOCK()		pthread_mutex_lock(&vmem_list_lock)
269 #define	VMEM_LIST_UNLOCK()		pthread_mutex_unlock(&vmem_list_lock)
270 
271 #define	VMEM_CONDVAR_INIT(vm, wchan)	pthread_cond_init(&vm->vm_cv, NULL)
272 #define	VMEM_CONDVAR_DESTROY(vm)	pthread_cond_destroy(&vm->vm_cv)
273 #define	VMEM_CONDVAR_WAIT(vm)	pthread_cond_wait(&vm->vm_cv, &vm->vm_lock)
274 #define	VMEM_CONDVAR_BROADCAST(vm)	pthread_cond_broadcast(&vm->vm_cv)
275 
276 #define	VMEM_LOCK(vm)		pthread_mutex_lock(&vm->vm_lock)
277 #define	VMEM_UNLOCK(vm)		pthread_mutex_unlock(&vm->vm_lock)
278 #define	VMEM_LOCK_INIT(vm, name) pthread_mutex_init(&vm->vm_lock, NULL)
279 #define	VMEM_LOCK_DESTROY(vm)	pthread_mutex_destroy(&vm->vm_lock)
280 #define	VMEM_ASSERT_LOCKED(vm)	pthread_mutex_isowned_np(&vm->vm_lock)
281 #endif	/* _KERNEL */
282 
283 #define	VMEM_ALIGNUP(addr, align)	(-(-(addr) & -(align)))
284 
285 #define	VMEM_CROSS_P(addr1, addr2, boundary) \
286 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
287 
288 #define	ORDER2SIZE(order)	((order) < VMEM_OPTVALUE ? ((order) + 1) : \
289     (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1)))
290 #define	SIZE2ORDER(size)	((size) <= VMEM_OPTVALUE ? ((size) - 1) : \
291     (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2)))
292 
293 /*
294  * Maximum number of boundary tags that may be required to satisfy an
295  * allocation.  Two may be required to import.  Another two may be
296  * required to clip edges.
297  */
298 #define	BT_MAXALLOC	4
299 
300 /*
301  * Max free limits the number of locally cached boundary tags.  We
302  * just want to avoid hitting the zone allocator for every call.
303  */
304 #define BT_MAXFREE	(BT_MAXALLOC * 8)
305 
306 #ifdef _KERNEL
307 /* Allocator for boundary tags. */
308 static uma_zone_t vmem_bt_zone;
309 
310 /* boot time arena storage. */
311 static struct vmem kernel_arena_storage;
312 static struct vmem buffer_arena_storage;
313 static struct vmem transient_arena_storage;
314 vmem_t *kernel_arena = &kernel_arena_storage;
315 vmem_t *buffer_arena = &buffer_arena_storage;
316 vmem_t *transient_arena = &transient_arena_storage;
317 
318 #ifdef DEBUG_MEMGUARD
319 static struct vmem memguard_arena_storage;
320 vmem_t *memguard_arena = &memguard_arena_storage;
321 #endif	/* DEBUG_MEMGUARD */
322 #endif	/* _KERNEL */
323 
324 static bool
bt_isbusy(bt_t * bt)325 bt_isbusy(bt_t *bt)
326 {
327 	return (bt->bt_type == BT_TYPE_BUSY);
328 }
329 
330 static bool
bt_isfree(bt_t * bt)331 bt_isfree(bt_t *bt)
332 {
333 	return (bt->bt_type == BT_TYPE_FREE);
334 }
335 
336 /*
337  * Fill the vmem's boundary tag cache.  We guarantee that boundary tag
338  * allocation will not fail once bt_fill() passes.  To do so we cache
339  * at least the maximum possible tag allocations in the arena.
340  */
341 static __noinline int
_bt_fill(vmem_t * vm,int flags __unused)342 _bt_fill(vmem_t *vm, int flags __unused)
343 {
344 	bt_t *bt;
345 
346 	VMEM_ASSERT_LOCKED(vm);
347 
348 #ifdef _KERNEL
349 	/*
350 	 * Only allow the kernel arena and arenas derived from kernel arena to
351 	 * dip into reserve tags.  They are where new tags come from.
352 	 */
353 	flags &= BT_FLAGS;
354 	if (vm != kernel_arena && vm->vm_arg != kernel_arena)
355 		flags &= ~M_USE_RESERVE;
356 #endif
357 
358 	/*
359 	 * Loop until we meet the reserve.  To minimize the lock shuffle
360 	 * and prevent simultaneous fills we first try a NOWAIT regardless
361 	 * of the caller's flags.  Specify M_NOVM so we don't recurse while
362 	 * holding a vmem lock.
363 	 */
364 	while (vm->vm_nfreetags < BT_MAXALLOC) {
365 #ifdef _KERNEL
366 		bt = uma_zalloc(vmem_bt_zone,
367 		    (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
368 #else
369 		bt = malloc(sizeof(struct vmem_btag));
370 #endif
371 		if (bt == NULL) {
372 #ifdef _KERNEL
373 			VMEM_UNLOCK(vm);
374 			bt = uma_zalloc(vmem_bt_zone, flags);
375 			VMEM_LOCK(vm);
376 #endif
377 			if (bt == NULL)
378 				break;
379 		}
380 		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
381 		vm->vm_nfreetags++;
382 	}
383 
384 	if (vm->vm_nfreetags < BT_MAXALLOC)
385 		return ENOMEM;
386 
387 	return 0;
388 }
389 
390 static inline int
bt_fill(vmem_t * vm,int flags)391 bt_fill(vmem_t *vm, int flags)
392 {
393 	if (vm->vm_nfreetags >= BT_MAXALLOC)
394 		return (0);
395 	return (_bt_fill(vm, flags));
396 }
397 
398 /*
399  * Pop a tag off of the freetag stack.
400  */
401 static bt_t *
bt_alloc(vmem_t * vm)402 bt_alloc(vmem_t *vm)
403 {
404 	bt_t *bt;
405 
406 	VMEM_ASSERT_LOCKED(vm);
407 	bt = LIST_FIRST(&vm->vm_freetags);
408 	MPASS(bt != NULL);
409 	LIST_REMOVE(bt, bt_freelist);
410 	vm->vm_nfreetags--;
411 
412 	return bt;
413 }
414 
415 /*
416  * Trim the per-vmem free list.  Returns with the lock released to
417  * avoid allocator recursions.
418  */
419 static void
bt_freetrim(vmem_t * vm,int freelimit)420 bt_freetrim(vmem_t *vm, int freelimit)
421 {
422 	LIST_HEAD(, vmem_btag) freetags;
423 	bt_t *bt;
424 
425 	LIST_INIT(&freetags);
426 	VMEM_ASSERT_LOCKED(vm);
427 	while (vm->vm_nfreetags > freelimit) {
428 		bt = LIST_FIRST(&vm->vm_freetags);
429 		LIST_REMOVE(bt, bt_freelist);
430 		vm->vm_nfreetags--;
431 		LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
432 	}
433 	VMEM_UNLOCK(vm);
434 	while ((bt = LIST_FIRST(&freetags)) != NULL) {
435 		LIST_REMOVE(bt, bt_freelist);
436 #ifdef	_KERNEL
437 		uma_zfree(vmem_bt_zone, bt);
438 #else
439 		free(bt);
440 #endif
441 	}
442 }
443 
444 static inline void
bt_free(vmem_t * vm,bt_t * bt)445 bt_free(vmem_t *vm, bt_t *bt)
446 {
447 
448 	VMEM_ASSERT_LOCKED(vm);
449 	MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
450 	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
451 	vm->vm_nfreetags++;
452 }
453 
454 /*
455  * Hide MAXALLOC tags before dropping the arena lock to ensure that a
456  * concurrent allocation attempt does not grab them.
457  */
458 static void
bt_save(vmem_t * vm)459 bt_save(vmem_t *vm)
460 {
461 	KASSERT(vm->vm_nfreetags >= BT_MAXALLOC,
462 	    ("%s: insufficient free tags %d", __func__, vm->vm_nfreetags));
463 	vm->vm_nfreetags -= BT_MAXALLOC;
464 }
465 
466 static void
bt_restore(vmem_t * vm)467 bt_restore(vmem_t *vm)
468 {
469 	vm->vm_nfreetags += BT_MAXALLOC;
470 }
471 
472 /*
473  * freelist[0] ... [1, 1]
474  * freelist[1] ... [2, 2]
475  *  :
476  * freelist[29] ... [30, 30]
477  * freelist[30] ... [31, 31]
478  * freelist[31] ... [32, 63]
479  * freelist[33] ... [64, 127]
480  *  :
481  * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1]
482  *  :
483  */
484 
485 static struct vmem_freelist *
bt_freehead_tofree(vmem_t * vm,vmem_size_t size)486 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
487 {
488 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
489 	const int idx = SIZE2ORDER(qsize);
490 
491 	MPASS(size != 0 && qsize != 0);
492 	MPASS((size & vm->vm_quantum_mask) == 0);
493 	MPASS(idx >= 0);
494 	MPASS(idx < VMEM_MAXORDER);
495 
496 	return &vm->vm_freelist[idx];
497 }
498 
499 /*
500  * bt_freehead_toalloc: return the freelist for the given size and allocation
501  * strategy.
502  *
503  * For M_FIRSTFIT, return the list in which any blocks are large enough
504  * for the requested size.  otherwise, return the list which can have blocks
505  * large enough for the requested size.
506  */
507 static struct vmem_freelist *
bt_freehead_toalloc(vmem_t * vm,vmem_size_t size,int strat)508 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
509 {
510 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
511 	int idx = SIZE2ORDER(qsize);
512 
513 	MPASS(size != 0 && qsize != 0);
514 	MPASS((size & vm->vm_quantum_mask) == 0);
515 
516 	if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
517 		idx++;
518 		/* check too large request? */
519 	}
520 	MPASS(idx >= 0);
521 	MPASS(idx < VMEM_MAXORDER);
522 
523 	return &vm->vm_freelist[idx];
524 }
525 
526 /* ---- boundary tag hash */
527 
528 static struct vmem_hashlist *
bt_hashhead(vmem_t * vm,vmem_addr_t addr)529 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
530 {
531 	struct vmem_hashlist *list;
532 	unsigned int hash;
533 
534 	hash = hash32_buf(&addr, sizeof(addr), 0);
535 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
536 
537 	return list;
538 }
539 
540 static bt_t *
bt_lookupbusy(vmem_t * vm,vmem_addr_t addr)541 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
542 {
543 	struct vmem_hashlist *list;
544 	bt_t *bt;
545 
546 	VMEM_ASSERT_LOCKED(vm);
547 	list = bt_hashhead(vm, addr);
548 	LIST_FOREACH(bt, list, bt_hashlist) {
549 		if (bt->bt_start == addr) {
550 			break;
551 		}
552 	}
553 
554 	return bt;
555 }
556 
557 static void
bt_rembusy(vmem_t * vm,bt_t * bt)558 bt_rembusy(vmem_t *vm, bt_t *bt)
559 {
560 
561 	VMEM_ASSERT_LOCKED(vm);
562 	MPASS(vm->vm_nbusytag > 0);
563 	vm->vm_inuse -= bt->bt_size;
564 	vm->vm_nbusytag--;
565 	LIST_REMOVE(bt, bt_hashlist);
566 }
567 
568 static void
bt_insbusy(vmem_t * vm,bt_t * bt)569 bt_insbusy(vmem_t *vm, bt_t *bt)
570 {
571 	struct vmem_hashlist *list;
572 
573 	VMEM_ASSERT_LOCKED(vm);
574 	MPASS(bt->bt_type == BT_TYPE_BUSY);
575 
576 	list = bt_hashhead(vm, bt->bt_start);
577 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
578 	vm->vm_nbusytag++;
579 	vm->vm_inuse += bt->bt_size;
580 }
581 
582 /* ---- boundary tag list */
583 
584 static void
bt_remseg(vmem_t * vm,bt_t * bt)585 bt_remseg(vmem_t *vm, bt_t *bt)
586 {
587 
588 	MPASS(bt->bt_type != BT_TYPE_CURSOR);
589 	TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
590 	bt_free(vm, bt);
591 }
592 
593 static void
bt_insseg(vmem_t * vm,bt_t * bt,bt_t * prev)594 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
595 {
596 
597 	TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
598 }
599 
600 static void
bt_insseg_tail(vmem_t * vm,bt_t * bt)601 bt_insseg_tail(vmem_t *vm, bt_t *bt)
602 {
603 
604 	TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
605 }
606 
607 static void
bt_remfree(vmem_t * vm __unused,bt_t * bt)608 bt_remfree(vmem_t *vm __unused, bt_t *bt)
609 {
610 
611 	MPASS(bt->bt_type == BT_TYPE_FREE);
612 
613 	LIST_REMOVE(bt, bt_freelist);
614 }
615 
616 static void
bt_insfree(vmem_t * vm,bt_t * bt)617 bt_insfree(vmem_t *vm, bt_t *bt)
618 {
619 	struct vmem_freelist *list;
620 
621 	list = bt_freehead_tofree(vm, bt->bt_size);
622 	LIST_INSERT_HEAD(list, bt, bt_freelist);
623 }
624 
625 /* ---- vmem internal functions */
626 
627 #ifdef _KERNEL
628 /*
629  * Import from the arena into the quantum cache in UMA.
630  *
631  * We use VMEM_ADDR_QCACHE_MIN instead of 0: uma_zalloc() returns 0 to indicate
632  * failure, so UMA can't be used to cache a resource with value 0.
633  */
634 static int
qc_import(void * arg,void ** store,int cnt,int domain,int flags)635 qc_import(void *arg, void **store, int cnt, int domain, int flags)
636 {
637 	qcache_t *qc;
638 	vmem_addr_t addr;
639 	int i;
640 
641 	KASSERT((flags & M_WAITOK) == 0, ("blocking allocation"));
642 
643 	qc = arg;
644 	for (i = 0; i < cnt; i++) {
645 		if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
646 		    VMEM_ADDR_QCACHE_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
647 			break;
648 		store[i] = (void *)addr;
649 	}
650 	return (i);
651 }
652 
653 /*
654  * Release memory from the UMA cache to the arena.
655  */
656 static void
qc_release(void * arg,void ** store,int cnt)657 qc_release(void *arg, void **store, int cnt)
658 {
659 	qcache_t *qc;
660 	int i;
661 
662 	qc = arg;
663 	for (i = 0; i < cnt; i++)
664 		vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
665 }
666 
667 static void
qc_init(vmem_t * vm,vmem_size_t qcache_max)668 qc_init(vmem_t *vm, vmem_size_t qcache_max)
669 {
670 	qcache_t *qc;
671 	vmem_size_t size;
672 	int qcache_idx_max;
673 	int i;
674 
675 	MPASS((qcache_max & vm->vm_quantum_mask) == 0);
676 	qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
677 	    VMEM_QCACHE_IDX_MAX);
678 	vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
679 	for (i = 0; i < qcache_idx_max; i++) {
680 		qc = &vm->vm_qcache[i];
681 		size = (i + 1) << vm->vm_quantum_shift;
682 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
683 		    vm->vm_name, size);
684 		qc->qc_vmem = vm;
685 		qc->qc_size = size;
686 		qc->qc_cache = uma_zcache_create(qc->qc_name, size,
687 		    NULL, NULL, NULL, NULL, qc_import, qc_release, qc, 0);
688 		MPASS(qc->qc_cache);
689 	}
690 }
691 
692 static void
qc_destroy(vmem_t * vm)693 qc_destroy(vmem_t *vm)
694 {
695 	int qcache_idx_max;
696 	int i;
697 
698 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
699 	for (i = 0; i < qcache_idx_max; i++)
700 		uma_zdestroy(vm->vm_qcache[i].qc_cache);
701 }
702 
703 static void
qc_drain(vmem_t * vm)704 qc_drain(vmem_t *vm)
705 {
706 	int qcache_idx_max;
707 	int i;
708 
709 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
710 	for (i = 0; i < qcache_idx_max; i++)
711 		uma_zone_reclaim(vm->vm_qcache[i].qc_cache, UMA_RECLAIM_DRAIN);
712 }
713 
714 #ifndef UMA_USE_DMAP
715 
716 static struct mtx_padalign __exclusive_cache_line vmem_bt_lock;
717 
718 /*
719  * vmem_bt_alloc:  Allocate a new page of boundary tags.
720  *
721  * On architectures with UMA_USE_DMAP there is no recursion; no address
722  * space need be allocated to allocate boundary tags.  For the others, we
723  * must handle recursion.  Boundary tags are necessary to allocate new
724  * boundary tags.
725  *
726  * UMA guarantees that enough tags are held in reserve to allocate a new
727  * page of kva.  We dip into this reserve by specifying M_USE_RESERVE only
728  * when allocating the page to hold new boundary tags.  In this way the
729  * reserve is automatically filled by the allocation that uses the reserve.
730  *
731  * We still have to guarantee that the new tags are allocated atomically since
732  * many threads may try concurrently.  The bt_lock provides this guarantee.
733  * We convert WAITOK allocations to NOWAIT and then handle the blocking here
734  * on failure.  It's ok to return NULL for a WAITOK allocation as UMA will
735  * loop again after checking to see if we lost the race to allocate.
736  *
737  * There is a small race between vmem_bt_alloc() returning the page and the
738  * zone lock being acquired to add the page to the zone.  For WAITOK
739  * allocations we just pause briefly.  NOWAIT may experience a transient
740  * failure.  To alleviate this we permit a small number of simultaneous
741  * fills to proceed concurrently so NOWAIT is less likely to fail unless
742  * we are really out of KVA.
743  */
744 static void *
vmem_bt_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)745 vmem_bt_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
746     int wait)
747 {
748 	vmem_addr_t addr;
749 
750 	*pflag = UMA_SLAB_KERNEL;
751 
752 	/*
753 	 * Single thread boundary tag allocation so that the address space
754 	 * and memory are added in one atomic operation.
755 	 */
756 	mtx_lock(&vmem_bt_lock);
757 	if (vmem_xalloc(vm_dom[domain].vmd_kernel_arena, bytes, 0, 0, 0,
758 	    VMEM_ADDR_MIN, VMEM_ADDR_MAX,
759 	    M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT, &addr) == 0) {
760 		if (kmem_back_domain(domain, kernel_object, addr, bytes,
761 		    M_NOWAIT | M_USE_RESERVE) == 0) {
762 			mtx_unlock(&vmem_bt_lock);
763 			return ((void *)addr);
764 		}
765 		vmem_xfree(vm_dom[domain].vmd_kernel_arena, addr, bytes);
766 		mtx_unlock(&vmem_bt_lock);
767 		/*
768 		 * Out of memory, not address space.  This may not even be
769 		 * possible due to M_USE_RESERVE page allocation.
770 		 */
771 		if (wait & M_WAITOK)
772 			vm_wait_domain(domain);
773 		return (NULL);
774 	}
775 	mtx_unlock(&vmem_bt_lock);
776 	/*
777 	 * We're either out of address space or lost a fill race.
778 	 */
779 	if (wait & M_WAITOK)
780 		pause("btalloc", 1);
781 
782 	return (NULL);
783 }
784 #endif
785 
786 void
vmem_startup(void)787 vmem_startup(void)
788 {
789 
790 	mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
791 	vmem_zone = uma_zcreate("vmem",
792 	    sizeof(struct vmem), NULL, NULL, NULL, NULL,
793 	    UMA_ALIGN_PTR, 0);
794 	vmem_bt_zone = uma_zcreate("vmem btag",
795 	    sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
796 	    UMA_ALIGN_PTR, UMA_ZONE_VM);
797 #ifndef UMA_USE_DMAP
798 	mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
799 	uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
800 	/*
801 	 * Reserve enough tags to allocate new tags.  We allow multiple
802 	 * CPUs to attempt to allocate new tags concurrently to limit
803 	 * false restarts in UMA.  vmem_bt_alloc() allocates from a per-domain
804 	 * arena, which may involve importing a range from the kernel arena,
805 	 * so we need to keep at least 2 * BT_MAXALLOC tags reserved.
806 	 */
807 	uma_zone_reserve(vmem_bt_zone, 2 * BT_MAXALLOC * mp_ncpus);
808 	uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
809 #endif
810 }
811 
812 static int
vmem_rehash(vmem_t * vm,vmem_size_t newhashsize)813 vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
814 {
815 	bt_t *bt;
816 	struct vmem_hashlist *newhashlist;
817 	struct vmem_hashlist *oldhashlist;
818 	vmem_size_t i, oldhashsize;
819 
820 	MPASS(newhashsize > 0);
821 
822 	newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
823 	    M_VMEM, M_NOWAIT);
824 	if (newhashlist == NULL)
825 		return ENOMEM;
826 	for (i = 0; i < newhashsize; i++) {
827 		LIST_INIT(&newhashlist[i]);
828 	}
829 
830 	VMEM_LOCK(vm);
831 	oldhashlist = vm->vm_hashlist;
832 	oldhashsize = vm->vm_hashsize;
833 	vm->vm_hashlist = newhashlist;
834 	vm->vm_hashsize = newhashsize;
835 	if (oldhashlist == NULL) {
836 		VMEM_UNLOCK(vm);
837 		return 0;
838 	}
839 	for (i = 0; i < oldhashsize; i++) {
840 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
841 			bt_rembusy(vm, bt);
842 			bt_insbusy(vm, bt);
843 		}
844 	}
845 	VMEM_UNLOCK(vm);
846 
847 	if (oldhashlist != vm->vm_hash0)
848 		free(oldhashlist, M_VMEM);
849 
850 	return 0;
851 }
852 
853 static void
vmem_periodic_kick(void * dummy)854 vmem_periodic_kick(void *dummy)
855 {
856 
857 	taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
858 }
859 
860 static void
vmem_periodic(void * unused,int pending)861 vmem_periodic(void *unused, int pending)
862 {
863 	vmem_t *vm;
864 	vmem_size_t desired;
865 	vmem_size_t current;
866 
867 	VMEM_LIST_LOCK();
868 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
869 #ifdef DIAGNOSTIC
870 		/* Convenient time to verify vmem state. */
871 		if (enable_vmem_check == 1) {
872 			VMEM_LOCK(vm);
873 			vmem_check(vm);
874 			VMEM_UNLOCK(vm);
875 		}
876 #endif
877 		desired = 1 << flsl(vm->vm_nbusytag);
878 		desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
879 		    VMEM_HASHSIZE_MAX);
880 		current = vm->vm_hashsize;
881 
882 		/* Grow in powers of two.  Shrink less aggressively. */
883 		if (desired >= current * 2 || desired * 4 <= current)
884 			vmem_rehash(vm, desired);
885 
886 		/*
887 		 * Periodically wake up threads waiting for resources,
888 		 * so they could ask for reclamation again.
889 		 */
890 		VMEM_CONDVAR_BROADCAST(vm);
891 	}
892 	VMEM_LIST_UNLOCK();
893 
894 	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
895 	    vmem_periodic_kick, NULL);
896 }
897 
898 static void
vmem_start_callout(void * unused)899 vmem_start_callout(void *unused)
900 {
901 
902 	TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
903 	vmem_periodic_interval = hz * 10;
904 	callout_init(&vmem_periodic_ch, 1);
905 	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
906 	    vmem_periodic_kick, NULL);
907 }
908 SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);
909 #endif	/* _KERNEL */
910 
911 static void
vmem_add1(vmem_t * vm,vmem_addr_t addr,vmem_size_t size,int type)912 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
913 {
914 	bt_t *btfree, *btprev, *btspan;
915 
916 	VMEM_ASSERT_LOCKED(vm);
917 	MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
918 	MPASS((size & vm->vm_quantum_mask) == 0);
919 
920 	if (vm->vm_releasefn == NULL) {
921 		/*
922 		 * The new segment will never be released, so see if it is
923 		 * contiguous with respect to an existing segment.  In this case
924 		 * a span tag is not needed, and it may be possible now or in
925 		 * the future to coalesce the new segment with an existing free
926 		 * segment.
927 		 */
928 		btprev = TAILQ_LAST(&vm->vm_seglist, vmem_seglist);
929 		if ((!bt_isbusy(btprev) && !bt_isfree(btprev)) ||
930 		    btprev->bt_start + btprev->bt_size != addr)
931 			btprev = NULL;
932 	} else {
933 		btprev = NULL;
934 	}
935 
936 	if (btprev == NULL || bt_isbusy(btprev)) {
937 		if (btprev == NULL) {
938 			btspan = bt_alloc(vm);
939 			btspan->bt_type = type;
940 			btspan->bt_start = addr;
941 			btspan->bt_size = size;
942 			bt_insseg_tail(vm, btspan);
943 		}
944 
945 		btfree = bt_alloc(vm);
946 		btfree->bt_type = BT_TYPE_FREE;
947 		btfree->bt_start = addr;
948 		btfree->bt_size = size;
949 		bt_insseg_tail(vm, btfree);
950 		bt_insfree(vm, btfree);
951 	} else {
952 		bt_remfree(vm, btprev);
953 		btprev->bt_size += size;
954 		bt_insfree(vm, btprev);
955 	}
956 
957 	vm->vm_size += size;
958 }
959 
960 static void
vmem_destroy1(vmem_t * vm)961 vmem_destroy1(vmem_t *vm)
962 {
963 	bt_t *bt;
964 
965 #ifdef	_KERNEL
966 	/*
967 	 * Drain per-cpu quantum caches.
968 	 */
969 	qc_destroy(vm);
970 #endif
971 
972 	/*
973 	 * The vmem should now only contain empty segments.
974 	 */
975 	VMEM_LOCK(vm);
976 	MPASS(vm->vm_nbusytag == 0);
977 
978 	TAILQ_REMOVE(&vm->vm_seglist, &vm->vm_cursor, bt_seglist);
979 	while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
980 		bt_remseg(vm, bt);
981 
982 	if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0) {
983 #ifdef _KERNEL
984 		free(vm->vm_hashlist, M_VMEM);
985 #else
986 		free(vm->vm_hashlist);
987 #endif
988 	}
989 
990 	bt_freetrim(vm, 0);
991 
992 	VMEM_CONDVAR_DESTROY(vm);
993 	VMEM_LOCK_DESTROY(vm);
994 #ifdef _KERNEL
995 	uma_zfree(vmem_zone, vm);
996 #else
997 	free(vm);
998 #endif
999 }
1000 
1001 static int
vmem_import(vmem_t * vm,vmem_size_t size,vmem_size_t align,int flags)1002 vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
1003 {
1004 	vmem_addr_t addr;
1005 	int error;
1006 
1007 	if (vm->vm_importfn == NULL)
1008 		return (EINVAL);
1009 
1010 	/*
1011 	 * To make sure we get a span that meets the alignment we double it
1012 	 * and add the size to the tail.  This slightly overestimates.
1013 	 */
1014 	if (align != vm->vm_quantum_mask + 1)
1015 		size = (align * 2) + size;
1016 	size = roundup(size, vm->vm_import_quantum);
1017 
1018 	if (vm->vm_limit != 0 && vm->vm_limit < vm->vm_size + size)
1019 		return (ENOMEM);
1020 
1021 	bt_save(vm);
1022 	VMEM_UNLOCK(vm);
1023 	error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
1024 	VMEM_LOCK(vm);
1025 	bt_restore(vm);
1026 	if (error)
1027 		return (ENOMEM);
1028 
1029 	vmem_add1(vm, addr, size, BT_TYPE_SPAN);
1030 
1031 	return 0;
1032 }
1033 
1034 /*
1035  * vmem_fit: check if a bt can satisfy the given restrictions.
1036  *
1037  * it's a caller's responsibility to ensure the region is big enough
1038  * before calling us.
1039  */
1040 static int
vmem_fit(const bt_t * bt,vmem_size_t size,vmem_size_t align,vmem_size_t phase,vmem_size_t nocross,vmem_addr_t minaddr,vmem_addr_t maxaddr,vmem_addr_t * addrp)1041 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
1042     vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
1043     vmem_addr_t maxaddr, vmem_addr_t *addrp)
1044 {
1045 	vmem_addr_t start;
1046 	vmem_addr_t end;
1047 
1048 	MPASS(size > 0);
1049 	MPASS(bt->bt_size >= size); /* caller's responsibility */
1050 
1051 	/*
1052 	 * XXX assumption: vmem_addr_t and vmem_size_t are
1053 	 * unsigned integer of the same size.
1054 	 */
1055 
1056 	start = bt->bt_start;
1057 	if (start < minaddr) {
1058 		start = minaddr;
1059 	}
1060 	end = BT_END(bt);
1061 	if (end > maxaddr)
1062 		end = maxaddr;
1063 	if (start > end)
1064 		return (ENOMEM);
1065 
1066 	start = VMEM_ALIGNUP(start - phase, align) + phase;
1067 	if (start < bt->bt_start)
1068 		start += align;
1069 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
1070 		MPASS(align < nocross);
1071 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
1072 	}
1073 	if (start <= end && end - start >= size - 1) {
1074 		MPASS((start & (align - 1)) == phase);
1075 		MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
1076 		MPASS(minaddr <= start);
1077 		MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
1078 		MPASS(bt->bt_start <= start);
1079 		MPASS(BT_END(bt) - start >= size - 1);
1080 		*addrp = start;
1081 
1082 		return (0);
1083 	}
1084 	return (ENOMEM);
1085 }
1086 
1087 /*
1088  * vmem_clip:  Trim the boundary tag edges to the requested start and size.
1089  */
1090 static void
vmem_clip(vmem_t * vm,bt_t * bt,vmem_addr_t start,vmem_size_t size)1091 vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
1092 {
1093 	bt_t *btnew;
1094 	bt_t *btprev;
1095 
1096 	VMEM_ASSERT_LOCKED(vm);
1097 	MPASS(bt->bt_type == BT_TYPE_FREE);
1098 	MPASS(bt->bt_size >= size);
1099 	bt_remfree(vm, bt);
1100 	if (bt->bt_start != start) {
1101 		btprev = bt_alloc(vm);
1102 		btprev->bt_type = BT_TYPE_FREE;
1103 		btprev->bt_start = bt->bt_start;
1104 		btprev->bt_size = start - bt->bt_start;
1105 		bt->bt_start = start;
1106 		bt->bt_size -= btprev->bt_size;
1107 		bt_insfree(vm, btprev);
1108 		bt_insseg(vm, btprev,
1109 		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1110 	}
1111 	MPASS(bt->bt_start == start);
1112 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1113 		/* split */
1114 		btnew = bt_alloc(vm);
1115 		btnew->bt_type = BT_TYPE_BUSY;
1116 		btnew->bt_start = bt->bt_start;
1117 		btnew->bt_size = size;
1118 		bt->bt_start = bt->bt_start + size;
1119 		bt->bt_size -= size;
1120 		bt_insfree(vm, bt);
1121 		bt_insseg(vm, btnew,
1122 		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1123 		bt_insbusy(vm, btnew);
1124 		bt = btnew;
1125 	} else {
1126 		bt->bt_type = BT_TYPE_BUSY;
1127 		bt_insbusy(vm, bt);
1128 	}
1129 	MPASS(bt->bt_size >= size);
1130 }
1131 
1132 static int
vmem_try_fetch(vmem_t * vm,const vmem_size_t size,vmem_size_t align,int flags)1133 vmem_try_fetch(vmem_t *vm, const vmem_size_t size, vmem_size_t align, int flags)
1134 {
1135 	vmem_size_t avail;
1136 
1137 	VMEM_ASSERT_LOCKED(vm);
1138 
1139 	/*
1140 	 * XXX it is possible to fail to meet xalloc constraints with the
1141 	 * imported region.  It is up to the user to specify the
1142 	 * import quantum such that it can satisfy any allocation.
1143 	 */
1144 	if (vmem_import(vm, size, align, flags) == 0)
1145 		return (1);
1146 
1147 	/*
1148 	 * Try to free some space from the quantum cache or reclaim
1149 	 * functions if available.
1150 	 */
1151 	if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
1152 		avail = vm->vm_size - vm->vm_inuse;
1153 		bt_save(vm);
1154 		VMEM_UNLOCK(vm);
1155 #ifdef _KERNEL
1156 		if (vm->vm_qcache_max != 0)
1157 			qc_drain(vm);
1158 #endif
1159 		if (vm->vm_reclaimfn != NULL)
1160 			vm->vm_reclaimfn(vm, flags);
1161 		VMEM_LOCK(vm);
1162 		bt_restore(vm);
1163 		/* If we were successful retry even NOWAIT. */
1164 		if (vm->vm_size - vm->vm_inuse > avail)
1165 			return (1);
1166 	}
1167 	if ((flags & M_NOWAIT) != 0)
1168 		return (0);
1169 	bt_save(vm);
1170 	VMEM_CONDVAR_WAIT(vm);
1171 	bt_restore(vm);
1172 	return (1);
1173 }
1174 
1175 static int
vmem_try_release(vmem_t * vm,struct vmem_btag * bt,const bool remfree)1176 vmem_try_release(vmem_t *vm, struct vmem_btag *bt, const bool remfree)
1177 {
1178 	struct vmem_btag *prev;
1179 
1180 	MPASS(bt->bt_type == BT_TYPE_FREE);
1181 
1182 	if (vm->vm_releasefn == NULL)
1183 		return (0);
1184 
1185 	prev = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1186 	MPASS(prev != NULL);
1187 	MPASS(prev->bt_type != BT_TYPE_FREE);
1188 
1189 	if (prev->bt_type == BT_TYPE_SPAN && prev->bt_size == bt->bt_size) {
1190 		vmem_addr_t spanaddr;
1191 		vmem_size_t spansize;
1192 
1193 		MPASS(prev->bt_start == bt->bt_start);
1194 		spanaddr = prev->bt_start;
1195 		spansize = prev->bt_size;
1196 		if (remfree)
1197 			bt_remfree(vm, bt);
1198 		bt_remseg(vm, bt);
1199 		bt_remseg(vm, prev);
1200 		vm->vm_size -= spansize;
1201 		VMEM_CONDVAR_BROADCAST(vm);
1202 		bt_freetrim(vm, BT_MAXFREE);
1203 		vm->vm_releasefn(vm->vm_arg, spanaddr, spansize);
1204 		return (1);
1205 	}
1206 	return (0);
1207 }
1208 
1209 static int
vmem_xalloc_nextfit(vmem_t * vm,const vmem_size_t size,vmem_size_t align,const vmem_size_t phase,const vmem_size_t nocross,int flags,vmem_addr_t * addrp)1210 vmem_xalloc_nextfit(vmem_t *vm, const vmem_size_t size, vmem_size_t align,
1211     const vmem_size_t phase, const vmem_size_t nocross, int flags,
1212     vmem_addr_t *addrp)
1213 {
1214 	struct vmem_btag *bt, *cursor, *next, *prev;
1215 	int error;
1216 
1217 	error = ENOMEM;
1218 	VMEM_LOCK(vm);
1219 
1220 	/*
1221 	 * Make sure we have enough tags to complete the operation.
1222 	 */
1223 	if (bt_fill(vm, flags) != 0)
1224 		goto out;
1225 
1226 retry:
1227 	/*
1228 	 * Find the next free tag meeting our constraints.  If one is found,
1229 	 * perform the allocation.
1230 	 */
1231 	for (cursor = &vm->vm_cursor, bt = TAILQ_NEXT(cursor, bt_seglist);
1232 	    bt != cursor; bt = TAILQ_NEXT(bt, bt_seglist)) {
1233 		if (bt == NULL)
1234 			bt = TAILQ_FIRST(&vm->vm_seglist);
1235 		if (bt->bt_type == BT_TYPE_FREE && bt->bt_size >= size &&
1236 		    (error = vmem_fit(bt, size, align, phase, nocross,
1237 		    VMEM_ADDR_MIN, VMEM_ADDR_MAX, addrp)) == 0) {
1238 			vmem_clip(vm, bt, *addrp, size);
1239 			break;
1240 		}
1241 	}
1242 
1243 	/*
1244 	 * Try to coalesce free segments around the cursor.  If we succeed, and
1245 	 * have not yet satisfied the allocation request, try again with the
1246 	 * newly coalesced segment.
1247 	 */
1248 	if ((next = TAILQ_NEXT(cursor, bt_seglist)) != NULL &&
1249 	    (prev = TAILQ_PREV(cursor, vmem_seglist, bt_seglist)) != NULL &&
1250 	    next->bt_type == BT_TYPE_FREE && prev->bt_type == BT_TYPE_FREE &&
1251 	    prev->bt_start + prev->bt_size == next->bt_start) {
1252 		prev->bt_size += next->bt_size;
1253 		bt_remfree(vm, next);
1254 		bt_remseg(vm, next);
1255 
1256 		/*
1257 		 * The coalesced segment might be able to satisfy our request.
1258 		 * If not, we might need to release it from the arena.
1259 		 */
1260 		if (error == ENOMEM && prev->bt_size >= size &&
1261 		    (error = vmem_fit(prev, size, align, phase, nocross,
1262 		    VMEM_ADDR_MIN, VMEM_ADDR_MAX, addrp)) == 0) {
1263 			vmem_clip(vm, prev, *addrp, size);
1264 			bt = prev;
1265 		} else
1266 			(void)vmem_try_release(vm, prev, true);
1267 	}
1268 
1269 	/*
1270 	 * If the allocation was successful, advance the cursor.
1271 	 */
1272 	if (error == 0) {
1273 		TAILQ_REMOVE(&vm->vm_seglist, cursor, bt_seglist);
1274 		for (; bt != NULL && bt->bt_start < *addrp + size;
1275 		    bt = TAILQ_NEXT(bt, bt_seglist))
1276 			;
1277 		if (bt != NULL)
1278 			TAILQ_INSERT_BEFORE(bt, cursor, bt_seglist);
1279 		else
1280 			TAILQ_INSERT_HEAD(&vm->vm_seglist, cursor, bt_seglist);
1281 	}
1282 
1283 	/*
1284 	 * Attempt to bring additional resources into the arena.  If that fails
1285 	 * and M_WAITOK is specified, sleep waiting for resources to be freed.
1286 	 */
1287 	if (error == ENOMEM && vmem_try_fetch(vm, size, align, flags))
1288 		goto retry;
1289 
1290 out:
1291 	VMEM_UNLOCK(vm);
1292 	return (error);
1293 }
1294 
1295 /* ---- vmem API */
1296 
1297 void
vmem_set_import(vmem_t * vm,vmem_import_t * importfn,vmem_release_t * releasefn,void * arg,vmem_size_t import_quantum)1298 vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
1299      vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
1300 {
1301 
1302 	VMEM_LOCK(vm);
1303 	KASSERT(vm->vm_size == 0, ("%s: arena is non-empty", __func__));
1304 	vm->vm_importfn = importfn;
1305 	vm->vm_releasefn = releasefn;
1306 	vm->vm_arg = arg;
1307 	vm->vm_import_quantum = import_quantum;
1308 	VMEM_UNLOCK(vm);
1309 }
1310 
1311 void
vmem_set_limit(vmem_t * vm,vmem_size_t limit)1312 vmem_set_limit(vmem_t *vm, vmem_size_t limit)
1313 {
1314 
1315 	VMEM_LOCK(vm);
1316 	vm->vm_limit = limit;
1317 	VMEM_UNLOCK(vm);
1318 }
1319 
1320 void
vmem_set_reclaim(vmem_t * vm,vmem_reclaim_t * reclaimfn)1321 vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
1322 {
1323 
1324 	VMEM_LOCK(vm);
1325 	vm->vm_reclaimfn = reclaimfn;
1326 	VMEM_UNLOCK(vm);
1327 }
1328 
1329 /*
1330  * vmem_init: Initializes vmem arena.
1331  */
1332 vmem_t *
vmem_init(vmem_t * vm,const char * name,vmem_addr_t base,vmem_size_t size,vmem_size_t quantum,vmem_size_t qcache_max,int flags)1333 vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
1334     vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1335 {
1336 	vmem_size_t i;
1337 
1338 #ifdef _KERNEL
1339 	MPASS(quantum > 0);
1340 	MPASS((quantum & (quantum - 1)) == 0);
1341 #else
1342 	assert(quantum == 0);
1343 	assert(qcache_max == 0);
1344 	quantum = 1;
1345 #endif
1346 
1347 	bzero(vm, sizeof(*vm));
1348 
1349 	VMEM_CONDVAR_INIT(vm, name);
1350 	VMEM_LOCK_INIT(vm, name);
1351 	vm->vm_nfreetags = 0;
1352 	LIST_INIT(&vm->vm_freetags);
1353 	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
1354 	vm->vm_quantum_mask = quantum - 1;
1355 	vm->vm_quantum_shift = flsl(quantum) - 1;
1356 	vm->vm_nbusytag = 0;
1357 	vm->vm_size = 0;
1358 	vm->vm_limit = 0;
1359 	vm->vm_inuse = 0;
1360 #ifdef _KERNEL
1361 	qc_init(vm, qcache_max);
1362 #else
1363 	(void)qcache_max;
1364 #endif
1365 
1366 	TAILQ_INIT(&vm->vm_seglist);
1367 	vm->vm_cursor.bt_start = vm->vm_cursor.bt_size = 0;
1368 	vm->vm_cursor.bt_type = BT_TYPE_CURSOR;
1369 	TAILQ_INSERT_TAIL(&vm->vm_seglist, &vm->vm_cursor, bt_seglist);
1370 
1371 	for (i = 0; i < VMEM_MAXORDER; i++)
1372 		LIST_INIT(&vm->vm_freelist[i]);
1373 
1374 	memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
1375 	vm->vm_hashsize = VMEM_HASHSIZE_MIN;
1376 	vm->vm_hashlist = vm->vm_hash0;
1377 
1378 	if (size != 0) {
1379 		if (vmem_add(vm, base, size, flags) != 0) {
1380 			vmem_destroy1(vm);
1381 			return NULL;
1382 		}
1383 	}
1384 
1385 	VMEM_LIST_LOCK();
1386 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1387 	VMEM_LIST_UNLOCK();
1388 
1389 	return vm;
1390 }
1391 
1392 /*
1393  * vmem_create: create an arena.
1394  */
1395 vmem_t *
vmem_create(const char * name,vmem_addr_t base,vmem_size_t size,vmem_size_t quantum,vmem_size_t qcache_max,int flags)1396 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1397     vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1398 {
1399 
1400 	vmem_t *vm;
1401 
1402 #ifdef _KERNEL
1403 	vm = uma_zalloc(vmem_zone, flags & (M_WAITOK|M_NOWAIT));
1404 #else
1405 	assert(quantum == 0);
1406 	assert(qcache_max == 0);
1407 	vm = malloc(sizeof(vmem_t));
1408 #endif
1409 	if (vm == NULL)
1410 		return (NULL);
1411 	if (vmem_init(vm, name, base, size, quantum, qcache_max,
1412 	    flags) == NULL)
1413 		return (NULL);
1414 	return (vm);
1415 }
1416 
1417 void
vmem_destroy(vmem_t * vm)1418 vmem_destroy(vmem_t *vm)
1419 {
1420 	VMEM_LIST_LOCK();
1421 	LIST_REMOVE(vm, vm_alllist);
1422 	VMEM_LIST_UNLOCK();
1423 
1424 	vmem_destroy1(vm);
1425 }
1426 
1427 vmem_size_t
vmem_roundup_size(vmem_t * vm,vmem_size_t size)1428 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1429 {
1430 
1431 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1432 }
1433 
1434 /*
1435  * vmem_alloc: allocate resource from the arena.
1436  */
1437 int
vmem_alloc(vmem_t * vm,vmem_size_t size,int flags,vmem_addr_t * addrp)1438 vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
1439 {
1440 	const int strat __unused = flags & VMEM_FITMASK;
1441 
1442 	flags &= VMEM_FLAGS;
1443 	MPASS(size > 0);
1444 	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT || strat == M_NEXTFIT);
1445 	if ((flags & M_NOWAIT) == 0)
1446 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");
1447 
1448 #ifdef _KERNEL
1449 	if (size <= vm->vm_qcache_max) {
1450 		qcache_t *qc;
1451 
1452 		/*
1453 		 * Resource 0 cannot be cached, so avoid a blocking allocation
1454 		 * in qc_import() and give the vmem_xalloc() call below a chance
1455 		 * to return 0.
1456 		 */
1457 		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1458 		*addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache,
1459 		    (flags & ~M_WAITOK) | M_NOWAIT);
1460 		if (__predict_true(*addrp != 0))
1461 			return (0);
1462 	}
1463 #endif
1464 
1465 	return (vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1466 	    flags, addrp));
1467 }
1468 
1469 int
vmem_xalloc(vmem_t * vm,const vmem_size_t size0,vmem_size_t align,const vmem_size_t phase,const vmem_size_t nocross,const vmem_addr_t minaddr,const vmem_addr_t maxaddr,int flags,vmem_addr_t * addrp)1470 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1471     const vmem_size_t phase, const vmem_size_t nocross,
1472     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
1473     vmem_addr_t *addrp)
1474 {
1475 	const vmem_size_t size = vmem_roundup_size(vm, size0);
1476 	struct vmem_freelist *list;
1477 	struct vmem_freelist *first;
1478 	struct vmem_freelist *end;
1479 	bt_t *bt;
1480 	int error;
1481 	int strat;
1482 
1483 	flags &= VMEM_FLAGS;
1484 	strat = flags & VMEM_FITMASK;
1485 	MPASS(size0 > 0);
1486 	MPASS(size > 0);
1487 	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT || strat == M_NEXTFIT);
1488 	MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
1489 	if ((flags & M_NOWAIT) == 0)
1490 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
1491 	MPASS((align & vm->vm_quantum_mask) == 0);
1492 	MPASS((align & (align - 1)) == 0);
1493 	MPASS((phase & vm->vm_quantum_mask) == 0);
1494 	MPASS((nocross & vm->vm_quantum_mask) == 0);
1495 	MPASS((nocross & (nocross - 1)) == 0);
1496 	MPASS((align == 0 && phase == 0) || phase < align);
1497 	MPASS(nocross == 0 || nocross >= size);
1498 	MPASS(minaddr <= maxaddr);
1499 	MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1500 	if (strat == M_NEXTFIT)
1501 		MPASS(minaddr == VMEM_ADDR_MIN && maxaddr == VMEM_ADDR_MAX);
1502 
1503 	if (align == 0)
1504 		align = vm->vm_quantum_mask + 1;
1505 	*addrp = 0;
1506 
1507 	/*
1508 	 * Next-fit allocations don't use the freelists.
1509 	 */
1510 	if (strat == M_NEXTFIT)
1511 		return (vmem_xalloc_nextfit(vm, size0, align, phase, nocross,
1512 		    flags, addrp));
1513 
1514 	end = &vm->vm_freelist[VMEM_MAXORDER];
1515 	/*
1516 	 * choose a free block from which we allocate.
1517 	 */
1518 	first = bt_freehead_toalloc(vm, size, strat);
1519 	VMEM_LOCK(vm);
1520 
1521 	/*
1522 	 * Make sure we have enough tags to complete the operation.
1523 	 */
1524 	error = bt_fill(vm, flags);
1525 	if (error != 0)
1526 		goto out;
1527 	for (;;) {
1528 		/*
1529 	 	 * Scan freelists looking for a tag that satisfies the
1530 		 * allocation.  If we're doing BESTFIT we may encounter
1531 		 * sizes below the request.  If we're doing FIRSTFIT we
1532 		 * inspect only the first element from each list.
1533 		 */
1534 		for (list = first; list < end; list++) {
1535 			LIST_FOREACH(bt, list, bt_freelist) {
1536 				if (bt->bt_size >= size) {
1537 					error = vmem_fit(bt, size, align, phase,
1538 					    nocross, minaddr, maxaddr, addrp);
1539 					if (error == 0) {
1540 						vmem_clip(vm, bt, *addrp, size);
1541 						goto out;
1542 					}
1543 				}
1544 				/* FIRST skips to the next list. */
1545 				if (strat == M_FIRSTFIT)
1546 					break;
1547 			}
1548 		}
1549 
1550 		/*
1551 		 * Retry if the fast algorithm failed.
1552 		 */
1553 		if (strat == M_FIRSTFIT) {
1554 			strat = M_BESTFIT;
1555 			first = bt_freehead_toalloc(vm, size, strat);
1556 			continue;
1557 		}
1558 
1559 		/*
1560 		 * Try a few measures to bring additional resources into the
1561 		 * arena.  If all else fails, we will sleep waiting for
1562 		 * resources to be freed.
1563 		 */
1564 		if (!vmem_try_fetch(vm, size, align, flags)) {
1565 			error = ENOMEM;
1566 			break;
1567 		}
1568 	}
1569 out:
1570 	VMEM_UNLOCK(vm);
1571 	if (error != 0 && (flags & M_NOWAIT) == 0)
1572 		panic("failed to allocate waiting allocation\n");
1573 
1574 	return (error);
1575 }
1576 
1577 /*
1578  * vmem_free: free the resource to the arena.
1579  */
1580 void
vmem_free(vmem_t * vm,vmem_addr_t addr,vmem_size_t size)1581 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1582 {
1583 	MPASS(size > 0);
1584 
1585 #ifdef _KERNEL
1586 	if (size <= vm->vm_qcache_max &&
1587 	    __predict_true(addr >= VMEM_ADDR_QCACHE_MIN)) {
1588 		qcache_t *qc;
1589 
1590 		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1591 		uma_zfree(qc->qc_cache, (void *)addr);
1592 	} else
1593 #endif
1594 		vmem_xfree(vm, addr, size);
1595 }
1596 
1597 void
vmem_xfree(vmem_t * vm,vmem_addr_t addr,vmem_size_t size __unused)1598 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size __unused)
1599 {
1600 	bt_t *bt;
1601 	bt_t *t;
1602 
1603 	MPASS(size > 0);
1604 
1605 	VMEM_LOCK(vm);
1606 	bt = bt_lookupbusy(vm, addr);
1607 	MPASS(bt != NULL);
1608 	MPASS(bt->bt_start == addr);
1609 	MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
1610 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1611 	MPASS(bt->bt_type == BT_TYPE_BUSY);
1612 	bt_rembusy(vm, bt);
1613 	bt->bt_type = BT_TYPE_FREE;
1614 
1615 	/* coalesce */
1616 	t = TAILQ_NEXT(bt, bt_seglist);
1617 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1618 		MPASS(BT_END(bt) < t->bt_start);	/* YYY */
1619 		bt->bt_size += t->bt_size;
1620 		bt_remfree(vm, t);
1621 		bt_remseg(vm, t);
1622 	}
1623 	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1624 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1625 		MPASS(BT_END(t) < bt->bt_start);	/* YYY */
1626 		bt->bt_size += t->bt_size;
1627 		bt->bt_start = t->bt_start;
1628 		bt_remfree(vm, t);
1629 		bt_remseg(vm, t);
1630 	}
1631 
1632 	if (!vmem_try_release(vm, bt, false)) {
1633 		bt_insfree(vm, bt);
1634 		VMEM_CONDVAR_BROADCAST(vm);
1635 		bt_freetrim(vm, BT_MAXFREE);
1636 	}
1637 }
1638 
1639 /*
1640  * vmem_add:
1641  *
1642  */
1643 int
vmem_add(vmem_t * vm,vmem_addr_t addr,vmem_size_t size,int flags)1644 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
1645 {
1646 	int error;
1647 
1648 	flags &= VMEM_FLAGS;
1649 
1650 	VMEM_LOCK(vm);
1651 	error = bt_fill(vm, flags);
1652 	if (error == 0)
1653 		vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
1654 	VMEM_UNLOCK(vm);
1655 
1656 	return (error);
1657 }
1658 
1659 /*
1660  * vmem_size: information about arenas size
1661  */
1662 vmem_size_t
vmem_size(vmem_t * vm,int typemask)1663 vmem_size(vmem_t *vm, int typemask)
1664 {
1665 	int i;
1666 
1667 	switch (typemask) {
1668 	case VMEM_ALLOC:
1669 		return vm->vm_inuse;
1670 	case VMEM_FREE:
1671 		return vm->vm_size - vm->vm_inuse;
1672 	case VMEM_FREE|VMEM_ALLOC:
1673 		return vm->vm_size;
1674 	case VMEM_MAXFREE:
1675 		VMEM_LOCK(vm);
1676 		for (i = VMEM_MAXORDER - 1; i >= 0; i--) {
1677 			if (LIST_EMPTY(&vm->vm_freelist[i]))
1678 				continue;
1679 			VMEM_UNLOCK(vm);
1680 			return ((vmem_size_t)ORDER2SIZE(i) <<
1681 			    vm->vm_quantum_shift);
1682 		}
1683 		VMEM_UNLOCK(vm);
1684 		return (0);
1685 	default:
1686 		panic("vmem_size");
1687 		return (0);
1688 	}
1689 }
1690 
1691 /* ---- debug */
1692 
1693 #ifdef _KERNEL
1694 #if defined(DDB) || defined(DIAGNOSTIC)
1695 
1696 static void bt_dump(const bt_t *, int (*)(const char *, ...)
1697     __printflike(1, 2));
1698 
1699 static const char *
bt_type_string(int type)1700 bt_type_string(int type)
1701 {
1702 
1703 	switch (type) {
1704 	case BT_TYPE_BUSY:
1705 		return "busy";
1706 	case BT_TYPE_FREE:
1707 		return "free";
1708 	case BT_TYPE_SPAN:
1709 		return "span";
1710 	case BT_TYPE_SPAN_STATIC:
1711 		return "static span";
1712 	case BT_TYPE_CURSOR:
1713 		return "cursor";
1714 	default:
1715 		break;
1716 	}
1717 	return "BOGUS";
1718 }
1719 
1720 static void
bt_dump(const bt_t * bt,int (* pr)(const char *,...))1721 bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
1722 {
1723 
1724 	(*pr)("\t%p: %jx %jx, %d(%s)\n",
1725 	    bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
1726 	    bt->bt_type, bt_type_string(bt->bt_type));
1727 }
1728 
1729 static void
1730 vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
1731 {
1732 	const bt_t *bt;
1733 	int i;
1734 
1735 	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1736 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1737 		bt_dump(bt, pr);
1738 	}
1739 
1740 	for (i = 0; i < VMEM_MAXORDER; i++) {
1741 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1742 
1743 		if (LIST_EMPTY(fl)) {
1744 			continue;
1745 		}
1746 
1747 		(*pr)("freelist[%d]\n", i);
LIST_FOREACH(bt,fl,bt_freelist)1748 		LIST_FOREACH(bt, fl, bt_freelist) {
1749 			bt_dump(bt, pr);
1750 		}
1751 	}
1752 }
1753 
1754 #endif /* defined(DDB) || defined(DIAGNOSTIC) */
1755 
1756 #if defined(DDB)
1757 #include <ddb/ddb.h>
1758 
1759 static bt_t *
vmem_whatis_lookup(vmem_t * vm,vmem_addr_t addr)1760 vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
1761 {
1762 	bt_t *bt;
1763 
1764 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1765 		if (BT_ISSPAN_P(bt)) {
1766 			continue;
1767 		}
1768 		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1769 			return bt;
1770 		}
1771 	}
1772 
1773 	return NULL;
1774 }
1775 
1776 void
vmem_whatis(vmem_addr_t addr,int (* pr)(const char *,...))1777 vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
1778 {
1779 	vmem_t *vm;
1780 
1781 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1782 		bt_t *bt;
1783 
1784 		bt = vmem_whatis_lookup(vm, addr);
1785 		if (bt == NULL) {
1786 			continue;
1787 		}
1788 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1789 		    (void *)addr, (void *)bt->bt_start,
1790 		    (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
1791 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1792 	}
1793 }
1794 
1795 void
vmem_printall(const char * modif,int (* pr)(const char *,...))1796 vmem_printall(const char *modif, int (*pr)(const char *, ...))
1797 {
1798 	const vmem_t *vm;
1799 
1800 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1801 		vmem_dump(vm, pr);
1802 	}
1803 }
1804 
1805 void
vmem_print(vmem_addr_t addr,const char * modif,int (* pr)(const char *,...))1806 vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
1807 {
1808 	const vmem_t *vm = (const void *)addr;
1809 
1810 	vmem_dump(vm, pr);
1811 }
1812 
DB_SHOW_COMMAND(vmemdump,vmemdump)1813 DB_SHOW_COMMAND(vmemdump, vmemdump)
1814 {
1815 
1816 	if (!have_addr) {
1817 		db_printf("usage: show vmemdump <addr>\n");
1818 		return;
1819 	}
1820 
1821 	vmem_dump((const vmem_t *)addr, db_printf);
1822 }
1823 
DB_SHOW_ALL_COMMAND(vmemdump,vmemdumpall)1824 DB_SHOW_ALL_COMMAND(vmemdump, vmemdumpall)
1825 {
1826 	const vmem_t *vm;
1827 
1828 	LIST_FOREACH(vm, &vmem_list, vm_alllist)
1829 		vmem_dump(vm, db_printf);
1830 }
1831 
DB_SHOW_COMMAND(vmem,vmem_summ)1832 DB_SHOW_COMMAND(vmem, vmem_summ)
1833 {
1834 	const vmem_t *vm = (const void *)addr;
1835 	const bt_t *bt;
1836 	size_t ft[VMEM_MAXORDER], ut[VMEM_MAXORDER];
1837 	size_t fs[VMEM_MAXORDER], us[VMEM_MAXORDER];
1838 	int ord;
1839 
1840 	if (!have_addr) {
1841 		db_printf("usage: show vmem <addr>\n");
1842 		return;
1843 	}
1844 
1845 	db_printf("vmem %p '%s'\n", vm, vm->vm_name);
1846 	db_printf("\tquantum:\t%zu\n", vm->vm_quantum_mask + 1);
1847 	db_printf("\tsize:\t%zu\n", vm->vm_size);
1848 	db_printf("\tinuse:\t%zu\n", vm->vm_inuse);
1849 	db_printf("\tfree:\t%zu\n", vm->vm_size - vm->vm_inuse);
1850 	db_printf("\tbusy tags:\t%d\n", vm->vm_nbusytag);
1851 	db_printf("\tfree tags:\t%d\n", vm->vm_nfreetags);
1852 
1853 	memset(&ft, 0, sizeof(ft));
1854 	memset(&ut, 0, sizeof(ut));
1855 	memset(&fs, 0, sizeof(fs));
1856 	memset(&us, 0, sizeof(us));
1857 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1858 		ord = SIZE2ORDER(bt->bt_size >> vm->vm_quantum_shift);
1859 		if (bt->bt_type == BT_TYPE_BUSY) {
1860 			ut[ord]++;
1861 			us[ord] += bt->bt_size;
1862 		} else if (bt->bt_type == BT_TYPE_FREE) {
1863 			ft[ord]++;
1864 			fs[ord] += bt->bt_size;
1865 		}
1866 	}
1867 	db_printf("\t\t\tinuse\tsize\t\tfree\tsize\n");
1868 	for (ord = 0; ord < VMEM_MAXORDER; ord++) {
1869 		if (ut[ord] == 0 && ft[ord] == 0)
1870 			continue;
1871 		db_printf("\t%-15zu %zu\t%-15zu %zu\t%-16zu\n",
1872 		    ORDER2SIZE(ord) << vm->vm_quantum_shift,
1873 		    ut[ord], us[ord], ft[ord], fs[ord]);
1874 	}
1875 }
1876 
DB_SHOW_ALL_COMMAND(vmem,vmem_summall)1877 DB_SHOW_ALL_COMMAND(vmem, vmem_summall)
1878 {
1879 	const vmem_t *vm;
1880 
1881 	LIST_FOREACH(vm, &vmem_list, vm_alllist)
1882 		vmem_summ((db_expr_t)vm, TRUE, count, modif);
1883 }
1884 #endif /* defined(DDB) */
1885 
1886 #define vmem_printf printf
1887 
1888 #if defined(DIAGNOSTIC)
1889 
1890 static bool
vmem_check_sanity(vmem_t * vm)1891 vmem_check_sanity(vmem_t *vm)
1892 {
1893 	const bt_t *bt, *bt2;
1894 
1895 	MPASS(vm != NULL);
1896 
1897 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1898 		if (bt->bt_start > BT_END(bt)) {
1899 			printf("corrupted tag\n");
1900 			bt_dump(bt, vmem_printf);
1901 			return false;
1902 		}
1903 	}
1904 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1905 		if (bt->bt_type == BT_TYPE_CURSOR) {
1906 			if (bt->bt_start != 0 || bt->bt_size != 0) {
1907 				printf("corrupted cursor\n");
1908 				return false;
1909 			}
1910 			continue;
1911 		}
1912 		TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1913 			if (bt == bt2) {
1914 				continue;
1915 			}
1916 			if (bt2->bt_type == BT_TYPE_CURSOR) {
1917 				continue;
1918 			}
1919 			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1920 				continue;
1921 			}
1922 			if (bt->bt_start <= BT_END(bt2) &&
1923 			    bt2->bt_start <= BT_END(bt)) {
1924 				printf("overwrapped tags\n");
1925 				bt_dump(bt, vmem_printf);
1926 				bt_dump(bt2, vmem_printf);
1927 				return false;
1928 			}
1929 		}
1930 	}
1931 
1932 	return true;
1933 }
1934 
1935 static void
vmem_check(vmem_t * vm)1936 vmem_check(vmem_t *vm)
1937 {
1938 
1939 	if (!vmem_check_sanity(vm)) {
1940 		panic("insanity vmem %p", vm);
1941 	}
1942 }
1943 
1944 #endif /* defined(DIAGNOSTIC) */
1945 #endif /* _KERNEL */
1946