xref: /linux/include/linux/dma-buf.h (revision a3ebb59eee2e558e8f8f27fc3f75cd367f17cd8e)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Header file for dma buffer sharing framework.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 #ifndef __DMA_BUF_H__
14 #define __DMA_BUF_H__
15 
16 #include <linux/iosys-map.h>
17 #include <linux/file.h>
18 #include <linux/err.h>
19 #include <linux/scatterlist.h>
20 #include <linux/list.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/fs.h>
23 #include <linux/dma-fence.h>
24 #include <linux/wait.h>
25 #include <linux/pci-p2pdma.h>
26 
27 struct device;
28 struct dma_buf;
29 struct dma_buf_attachment;
30 
31 /**
32  * struct dma_buf_ops - operations possible on struct dma_buf
33  * @vmap: [optional] creates a virtual mapping for the buffer into kernel
34  *	  address space. Same restrictions as for vmap and friends apply.
35  * @vunmap: [optional] unmaps a vmap from the buffer
36  */
37 struct dma_buf_ops {
38 	/**
39 	 * @attach:
40 	 *
41 	 * This is called from dma_buf_attach() to make sure that a given
42 	 * &dma_buf_attachment.dev can access the provided &dma_buf. Exporters
43 	 * which support buffer objects in special locations like VRAM or
44 	 * device-specific carveout areas should check whether the buffer could
45 	 * be move to system memory (or directly accessed by the provided
46 	 * device), and otherwise need to fail the attach operation.
47 	 *
48 	 * The exporter should also in general check whether the current
49 	 * allocation fulfills the DMA constraints of the new device. If this
50 	 * is not the case, and the allocation cannot be moved, it should also
51 	 * fail the attach operation.
52 	 *
53 	 * Any exporter-private housekeeping data can be stored in the
54 	 * &dma_buf_attachment.priv pointer.
55 	 *
56 	 * This callback is optional.
57 	 *
58 	 * Returns:
59 	 *
60 	 * 0 on success, negative error code on failure. It might return -EBUSY
61 	 * to signal that backing storage is already allocated and incompatible
62 	 * with the requirements of requesting device.
63 	 */
64 	int (*attach)(struct dma_buf *, struct dma_buf_attachment *);
65 
66 	/**
67 	 * @detach:
68 	 *
69 	 * This is called by dma_buf_detach() to release a &dma_buf_attachment.
70 	 * Provided so that exporters can clean up any housekeeping for an
71 	 * &dma_buf_attachment.
72 	 *
73 	 * This callback is optional.
74 	 */
75 	void (*detach)(struct dma_buf *, struct dma_buf_attachment *);
76 
77 	/**
78 	 * @pin:
79 	 *
80 	 * This is called by dma_buf_pin() and lets the exporter know that the
81 	 * DMA-buf can't be moved any more. Ideally, the exporter should
82 	 * pin the buffer so that it is generally accessible by all
83 	 * devices.
84 	 *
85 	 * This is called with the &dmabuf.resv object locked and is mutual
86 	 * exclusive with @cache_sgt_mapping.
87 	 *
88 	 * This is called automatically for non-dynamic importers from
89 	 * dma_buf_attach().
90 	 *
91 	 * Note that similar to non-dynamic exporters in their @map_dma_buf
92 	 * callback the driver must guarantee that the memory is available for
93 	 * use and cleared of any old data by the time this function returns.
94 	 * Drivers which pipeline their buffer moves internally must wait for
95 	 * all moves and clears to complete.
96 	 *
97 	 * Returns:
98 	 *
99 	 * 0 on success, negative error code on failure.
100 	 */
101 	int (*pin)(struct dma_buf_attachment *attach);
102 
103 	/**
104 	 * @unpin:
105 	 *
106 	 * This is called by dma_buf_unpin() and lets the exporter know that the
107 	 * DMA-buf can be moved again.
108 	 *
109 	 * This is called with the dmabuf->resv object locked and is mutual
110 	 * exclusive with @cache_sgt_mapping.
111 	 *
112 	 * This callback is optional.
113 	 */
114 	void (*unpin)(struct dma_buf_attachment *attach);
115 
116 	/**
117 	 * @map_dma_buf:
118 	 *
119 	 * This is called by dma_buf_map_attachment() and is used to map a
120 	 * shared &dma_buf into device address space, and it is mandatory. It
121 	 * can only be called if @attach has been called successfully.
122 	 *
123 	 * This call may sleep, e.g. when the backing storage first needs to be
124 	 * allocated, or moved to a location suitable for all currently attached
125 	 * devices.
126 	 *
127 	 * Note that any specific buffer attributes required for this function
128 	 * should get added to device_dma_parameters accessible via
129 	 * &device.dma_params from the &dma_buf_attachment. The @attach callback
130 	 * should also check these constraints.
131 	 *
132 	 * If this is being called for the first time, the exporter can now
133 	 * choose to scan through the list of attachments for this buffer,
134 	 * collate the requirements of the attached devices, and choose an
135 	 * appropriate backing storage for the buffer.
136 	 *
137 	 * Based on enum dma_data_direction, it might be possible to have
138 	 * multiple users accessing at the same time (for reading, maybe), or
139 	 * any other kind of sharing that the exporter might wish to make
140 	 * available to buffer-users.
141 	 *
142 	 * This is always called with the dmabuf->resv object locked when
143 	 * the dynamic_mapping flag is true.
144 	 *
145 	 * Note that for non-dynamic exporters the driver must guarantee that
146 	 * that the memory is available for use and cleared of any old data by
147 	 * the time this function returns.  Drivers which pipeline their buffer
148 	 * moves internally must wait for all moves and clears to complete.
149 	 * Dynamic exporters do not need to follow this rule: For non-dynamic
150 	 * importers the buffer is already pinned through @pin, which has the
151 	 * same requirements. Dynamic importers otoh are required to obey the
152 	 * dma_resv fences.
153 	 *
154 	 * Returns:
155 	 *
156 	 * A &sg_table scatter list of the backing storage of the DMA buffer,
157 	 * already mapped into the device address space of the &device attached
158 	 * with the provided &dma_buf_attachment. The addresses and lengths in
159 	 * the scatter list are PAGE_SIZE aligned.
160 	 *
161 	 * On failure, returns a negative error value wrapped into a pointer.
162 	 * May also return -EINTR when a signal was received while being
163 	 * blocked.
164 	 *
165 	 * Note that exporters should not try to cache the scatter list, or
166 	 * return the same one for multiple calls. Caching is done either by the
167 	 * DMA-BUF code (for non-dynamic importers) or the importer. Ownership
168 	 * of the scatter list is transferred to the caller, and returned by
169 	 * @unmap_dma_buf.
170 	 */
171 	struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *,
172 					 enum dma_data_direction);
173 	/**
174 	 * @unmap_dma_buf:
175 	 *
176 	 * This is called by dma_buf_unmap_attachment() and should unmap and
177 	 * release the &sg_table allocated in @map_dma_buf, and it is mandatory.
178 	 * For static dma_buf handling this might also unpin the backing
179 	 * storage if this is the last mapping of the DMA buffer.
180 	 */
181 	void (*unmap_dma_buf)(struct dma_buf_attachment *,
182 			      struct sg_table *,
183 			      enum dma_data_direction);
184 
185 	/* TODO: Add try_map_dma_buf version, to return immed with -EBUSY
186 	 * if the call would block.
187 	 */
188 
189 	/**
190 	 * @release:
191 	 *
192 	 * Called after the last dma_buf_put to release the &dma_buf, and
193 	 * mandatory.
194 	 */
195 	void (*release)(struct dma_buf *);
196 
197 	/**
198 	 * @begin_cpu_access:
199 	 *
200 	 * This is called from dma_buf_begin_cpu_access() and allows the
201 	 * exporter to ensure that the memory is actually coherent for cpu
202 	 * access. The exporter also needs to ensure that cpu access is coherent
203 	 * for the access direction. The direction can be used by the exporter
204 	 * to optimize the cache flushing, i.e. access with a different
205 	 * direction (read instead of write) might return stale or even bogus
206 	 * data (e.g. when the exporter needs to copy the data to temporary
207 	 * storage).
208 	 *
209 	 * Note that this is both called through the DMA_BUF_IOCTL_SYNC IOCTL
210 	 * command for userspace mappings established through @mmap, and also
211 	 * for kernel mappings established with @vmap.
212 	 *
213 	 * This callback is optional.
214 	 *
215 	 * Returns:
216 	 *
217 	 * 0 on success or a negative error code on failure. This can for
218 	 * example fail when the backing storage can't be allocated. Can also
219 	 * return -ERESTARTSYS or -EINTR when the call has been interrupted and
220 	 * needs to be restarted.
221 	 */
222 	int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);
223 
224 	/**
225 	 * @end_cpu_access:
226 	 *
227 	 * This is called from dma_buf_end_cpu_access() when the importer is
228 	 * done accessing the CPU. The exporter can use this to flush caches and
229 	 * undo anything else done in @begin_cpu_access.
230 	 *
231 	 * This callback is optional.
232 	 *
233 	 * Returns:
234 	 *
235 	 * 0 on success or a negative error code on failure. Can return
236 	 * -ERESTARTSYS or -EINTR when the call has been interrupted and needs
237 	 * to be restarted.
238 	 */
239 	int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);
240 
241 	/**
242 	 * @mmap:
243 	 *
244 	 * This callback is used by the dma_buf_mmap() function
245 	 *
246 	 * Note that the mapping needs to be incoherent, userspace is expected
247 	 * to bracket CPU access using the DMA_BUF_IOCTL_SYNC interface.
248 	 *
249 	 * Because dma-buf buffers have invariant size over their lifetime, the
250 	 * dma-buf core checks whether a vma is too large and rejects such
251 	 * mappings. The exporter hence does not need to duplicate this check.
252 	 * Drivers do not need to check this themselves.
253 	 *
254 	 * If an exporter needs to manually flush caches and hence needs to fake
255 	 * coherency for mmap support, it needs to be able to zap all the ptes
256 	 * pointing at the backing storage. Now linux mm needs a struct
257 	 * address_space associated with the struct file stored in vma->vm_file
258 	 * to do that with the function unmap_mapping_range. But the dma_buf
259 	 * framework only backs every dma_buf fd with the anon_file struct file,
260 	 * i.e. all dma_bufs share the same file.
261 	 *
262 	 * Hence exporters need to setup their own file (and address_space)
263 	 * association by setting vma->vm_file and adjusting vma->vm_pgoff in
264 	 * the dma_buf mmap callback. In the specific case of a gem driver the
265 	 * exporter could use the shmem file already provided by gem (and set
266 	 * vm_pgoff = 0). Exporters can then zap ptes by unmapping the
267 	 * corresponding range of the struct address_space associated with their
268 	 * own file.
269 	 *
270 	 * This callback is optional.
271 	 *
272 	 * Returns:
273 	 *
274 	 * 0 on success or a negative error code on failure.
275 	 */
276 	int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);
277 
278 	int (*vmap)(struct dma_buf *dmabuf, struct iosys_map *map);
279 	void (*vunmap)(struct dma_buf *dmabuf, struct iosys_map *map);
280 };
281 
282 /**
283  * struct dma_buf - shared buffer object
284  *
285  * This represents a shared buffer, created by calling dma_buf_export(). The
286  * userspace representation is a normal file descriptor, which can be created by
287  * calling dma_buf_fd().
288  *
289  * Shared dma buffers are reference counted using dma_buf_put() and
290  * get_dma_buf().
291  *
292  * Device DMA access is handled by the separate &struct dma_buf_attachment.
293  */
294 struct dma_buf {
295 	/**
296 	 * @size:
297 	 *
298 	 * Size of the buffer; invariant over the lifetime of the buffer.
299 	 */
300 	size_t size;
301 
302 	/**
303 	 * @file:
304 	 *
305 	 * File pointer used for sharing buffers across, and for refcounting.
306 	 * See dma_buf_get() and dma_buf_put().
307 	 */
308 	struct file *file;
309 
310 	/**
311 	 * @attachments:
312 	 *
313 	 * List of dma_buf_attachment that denotes all devices attached,
314 	 * protected by &dma_resv lock @resv.
315 	 */
316 	struct list_head attachments;
317 
318 	/** @ops: dma_buf_ops associated with this buffer object. */
319 	const struct dma_buf_ops *ops;
320 
321 	/**
322 	 * @vmapping_counter:
323 	 *
324 	 * Used internally to refcnt the vmaps returned by dma_buf_vmap().
325 	 * Protected by @lock.
326 	 */
327 	unsigned vmapping_counter;
328 
329 	/**
330 	 * @vmap_ptr:
331 	 * The current vmap ptr if @vmapping_counter > 0. Protected by @lock.
332 	 */
333 	struct iosys_map vmap_ptr;
334 
335 	/**
336 	 * @exp_name:
337 	 *
338 	 * Name of the exporter; useful for debugging. Must not be NULL
339 	 */
340 	const char *exp_name;
341 
342 	/**
343 	 * @name:
344 	 *
345 	 * Userspace-provided name. Default value is NULL. If not NULL,
346 	 * length cannot be longer than DMA_BUF_NAME_LEN, including NIL
347 	 * char. Useful for accounting and debugging. Read/Write accesses
348 	 * are protected by @name_lock
349 	 *
350 	 * See the IOCTLs DMA_BUF_SET_NAME or DMA_BUF_SET_NAME_A/B
351 	 */
352 	const char *name;
353 
354 	/** @name_lock: Spinlock to protect name access for read access. */
355 	spinlock_t name_lock;
356 
357 	/**
358 	 * @owner:
359 	 *
360 	 * Pointer to exporter module; used for refcounting when exporter is a
361 	 * kernel module.
362 	 */
363 	struct module *owner;
364 
365 	/** @list_node: node for dma_buf accounting and debugging. */
366 	struct list_head list_node;
367 
368 	/** @priv: exporter specific private data for this buffer object. */
369 	void *priv;
370 
371 	/**
372 	 * @resv:
373 	 *
374 	 * Reservation object linked to this dma-buf.
375 	 *
376 	 * IMPLICIT SYNCHRONIZATION RULES:
377 	 *
378 	 * Drivers which support implicit synchronization of buffer access as
379 	 * e.g. exposed in `Implicit Fence Poll Support`_ must follow the
380 	 * below rules.
381 	 *
382 	 * - Drivers must add a read fence through dma_resv_add_fence() with the
383 	 *   DMA_RESV_USAGE_READ flag for anything the userspace API considers a
384 	 *   read access. This highly depends upon the API and window system.
385 	 *
386 	 * - Similarly drivers must add a write fence through
387 	 *   dma_resv_add_fence() with the DMA_RESV_USAGE_WRITE flag for
388 	 *   anything the userspace API considers write access.
389 	 *
390 	 * - Drivers may just always add a write fence, since that only
391 	 *   causes unnecessary synchronization, but no correctness issues.
392 	 *
393 	 * - Some drivers only expose a synchronous userspace API with no
394 	 *   pipelining across drivers. These do not set any fences for their
395 	 *   access. An example here is v4l.
396 	 *
397 	 * - Driver should use dma_resv_usage_rw() when retrieving fences as
398 	 *   dependency for implicit synchronization.
399 	 *
400 	 * DYNAMIC IMPORTER RULES:
401 	 *
402 	 * Dynamic importers, see dma_buf_attachment_is_dynamic(), have
403 	 * additional constraints on how they set up fences:
404 	 *
405 	 * - Dynamic importers must obey the write fences and wait for them to
406 	 *   signal before allowing access to the buffer's underlying storage
407 	 *   through the device.
408 	 *
409 	 * - Dynamic importers should set fences for any access that they can't
410 	 *   disable immediately from their &dma_buf_attach_ops.move_notify
411 	 *   callback.
412 	 *
413 	 * IMPORTANT:
414 	 *
415 	 * All drivers and memory management related functions must obey the
416 	 * struct dma_resv rules, specifically the rules for updating and
417 	 * obeying fences. See enum dma_resv_usage for further descriptions.
418 	 */
419 	struct dma_resv *resv;
420 
421 	/** @poll: for userspace poll support */
422 	wait_queue_head_t poll;
423 
424 	/** @cb_in: for userspace poll support */
425 	/** @cb_out: for userspace poll support */
426 	struct dma_buf_poll_cb_t {
427 		struct dma_fence_cb cb;
428 		wait_queue_head_t *poll;
429 
430 		__poll_t active;
431 	} cb_in, cb_out;
432 #ifdef CONFIG_DMABUF_SYSFS_STATS
433 	/**
434 	 * @sysfs_entry:
435 	 *
436 	 * For exposing information about this buffer in sysfs. See also
437 	 * `DMA-BUF statistics`_ for the uapi this enables.
438 	 */
439 	struct dma_buf_sysfs_entry {
440 		struct kobject kobj;
441 		struct dma_buf *dmabuf;
442 	} *sysfs_entry;
443 #endif
444 };
445 
446 /**
447  * struct dma_buf_attach_ops - importer operations for an attachment
448  *
449  * Attachment operations implemented by the importer.
450  */
451 struct dma_buf_attach_ops {
452 	/**
453 	 * @allow_peer2peer:
454 	 *
455 	 * If this is set to true the importer must be able to handle peer
456 	 * resources without struct pages.
457 	 */
458 	bool allow_peer2peer;
459 
460 	/**
461 	 * @move_notify: [optional] notification that the DMA-buf is moving
462 	 *
463 	 * If this callback is provided the framework can avoid pinning the
464 	 * backing store while mappings exists.
465 	 *
466 	 * This callback is called with the lock of the reservation object
467 	 * associated with the dma_buf held and the mapping function must be
468 	 * called with this lock held as well. This makes sure that no mapping
469 	 * is created concurrently with an ongoing move operation.
470 	 *
471 	 * Mappings stay valid and are not directly affected by this callback.
472 	 * But the DMA-buf can now be in a different physical location, so all
473 	 * mappings should be destroyed and re-created as soon as possible.
474 	 *
475 	 * New mappings can be created after this callback returns, and will
476 	 * point to the new location of the DMA-buf.
477 	 */
478 	void (*move_notify)(struct dma_buf_attachment *attach);
479 };
480 
481 /**
482  * struct dma_buf_attachment - holds device-buffer attachment data
483  * @dmabuf: buffer for this attachment.
484  * @dev: device attached to the buffer.
485  * @node: list of dma_buf_attachment, protected by dma_resv lock of the dmabuf.
486  * @peer2peer: true if the importer can handle peer resources without pages.
487  * @priv: exporter specific attachment data.
488  * @importer_ops: importer operations for this attachment, if provided
489  * dma_buf_map/unmap_attachment() must be called with the dma_resv lock held.
490  * @importer_priv: importer specific attachment data.
491  *
492  * This structure holds the attachment information between the dma_buf buffer
493  * and its user device(s). The list contains one attachment struct per device
494  * attached to the buffer.
495  *
496  * An attachment is created by calling dma_buf_attach(), and released again by
497  * calling dma_buf_detach(). The DMA mapping itself needed to initiate a
498  * transfer is created by dma_buf_map_attachment() and freed again by calling
499  * dma_buf_unmap_attachment().
500  */
501 struct dma_buf_attachment {
502 	struct dma_buf *dmabuf;
503 	struct device *dev;
504 	struct list_head node;
505 	bool peer2peer;
506 	const struct dma_buf_attach_ops *importer_ops;
507 	void *importer_priv;
508 	void *priv;
509 };
510 
511 /**
512  * struct dma_buf_export_info - holds information needed to export a dma_buf
513  * @exp_name:	name of the exporter - useful for debugging.
514  * @owner:	pointer to exporter module - used for refcounting kernel module
515  * @ops:	Attach allocator-defined dma buf ops to the new buffer
516  * @size:	Size of the buffer - invariant over the lifetime of the buffer
517  * @flags:	mode flags for the file
518  * @resv:	reservation-object, NULL to allocate default one
519  * @priv:	Attach private data of allocator to this buffer
520  *
521  * This structure holds the information required to export the buffer. Used
522  * with dma_buf_export() only.
523  */
524 struct dma_buf_export_info {
525 	const char *exp_name;
526 	struct module *owner;
527 	const struct dma_buf_ops *ops;
528 	size_t size;
529 	int flags;
530 	struct dma_resv *resv;
531 	void *priv;
532 };
533 
534 /**
535  * struct dma_buf_phys_vec - describe continuous chunk of memory
536  * @paddr:   physical address of that chunk
537  * @len:     Length of this chunk
538  */
539 struct dma_buf_phys_vec {
540 	phys_addr_t paddr;
541 	size_t len;
542 };
543 
544 /**
545  * DEFINE_DMA_BUF_EXPORT_INFO - helper macro for exporters
546  * @name: export-info name
547  *
548  * DEFINE_DMA_BUF_EXPORT_INFO macro defines the &struct dma_buf_export_info,
549  * zeroes it out and pre-populates exp_name in it.
550  */
551 #define DEFINE_DMA_BUF_EXPORT_INFO(name)	\
552 	struct dma_buf_export_info name = { .exp_name = KBUILD_MODNAME, \
553 					 .owner = THIS_MODULE }
554 
555 /**
556  * get_dma_buf - convenience wrapper for get_file.
557  * @dmabuf:	[in]	pointer to dma_buf
558  *
559  * Increments the reference count on the dma-buf, needed in case of drivers
560  * that either need to create additional references to the dmabuf on the
561  * kernel side.  For example, an exporter that needs to keep a dmabuf ptr
562  * so that subsequent exports don't create a new dmabuf.
563  */
get_dma_buf(struct dma_buf * dmabuf)564 static inline void get_dma_buf(struct dma_buf *dmabuf)
565 {
566 	get_file(dmabuf->file);
567 }
568 
569 /**
570  * dma_buf_is_dynamic - check if a DMA-buf uses dynamic mappings.
571  * @dmabuf: the DMA-buf to check
572  *
573  * Returns true if a DMA-buf exporter wants to be called with the dma_resv
574  * locked for the map/unmap callbacks, false if it doesn't wants to be called
575  * with the lock held.
576  */
dma_buf_is_dynamic(struct dma_buf * dmabuf)577 static inline bool dma_buf_is_dynamic(struct dma_buf *dmabuf)
578 {
579 	return !!dmabuf->ops->pin;
580 }
581 
582 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
583 					  struct device *dev);
584 struct dma_buf_attachment *
585 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
586 		       const struct dma_buf_attach_ops *importer_ops,
587 		       void *importer_priv);
588 void dma_buf_detach(struct dma_buf *dmabuf,
589 		    struct dma_buf_attachment *attach);
590 int dma_buf_pin(struct dma_buf_attachment *attach);
591 void dma_buf_unpin(struct dma_buf_attachment *attach);
592 
593 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info);
594 
595 int dma_buf_fd(struct dma_buf *dmabuf, int flags);
596 struct dma_buf *dma_buf_get(int fd);
597 void dma_buf_put(struct dma_buf *dmabuf);
598 
599 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *,
600 					enum dma_data_direction);
601 void dma_buf_unmap_attachment(struct dma_buf_attachment *, struct sg_table *,
602 				enum dma_data_direction);
603 void dma_buf_move_notify(struct dma_buf *dma_buf);
604 int dma_buf_begin_cpu_access(struct dma_buf *dma_buf,
605 			     enum dma_data_direction dir);
606 int dma_buf_end_cpu_access(struct dma_buf *dma_buf,
607 			   enum dma_data_direction dir);
608 struct sg_table *
609 dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
610 				enum dma_data_direction direction);
611 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
612 				       struct sg_table *sg_table,
613 				       enum dma_data_direction direction);
614 
615 int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *,
616 		 unsigned long);
617 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map);
618 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map);
619 int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map);
620 void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map);
621 struct dma_buf *dma_buf_iter_begin(void);
622 struct dma_buf *dma_buf_iter_next(struct dma_buf *dmbuf);
623 #endif /* __DMA_BUF_H__ */
624