xref: /freebsd/sys/kern/vfs_bio.c (revision 8ecc41918066422d6788a67251b22d11a6efeddf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/asan.h>
50 #include <sys/bio.h>
51 #include <sys/bitset.h>
52 #include <sys/boottrace.h>
53 #include <sys/buf.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/devicestat.h>
57 #include <sys/eventhandler.h>
58 #include <sys/fail.h>
59 #include <sys/ktr.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/memdesc.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/pctrie.h>
69 #include <sys/proc.h>
70 #include <sys/racct.h>
71 #include <sys/refcount.h>
72 #include <sys/resourcevar.h>
73 #include <sys/rwlock.h>
74 #include <sys/sched.h>
75 #include <sys/smp.h>
76 #include <sys/sysctl.h>
77 #include <sys/syscallsubr.h>
78 #include <sys/vmem.h>
79 #include <sys/vmmeter.h>
80 #include <sys/vnode.h>
81 #include <sys/watchdog.h>
82 #include <geom/geom.h>
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/vm_kern.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_map.h>
92 #include <vm/swap_pager.h>
93 
94 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
95 
96 struct	bio_ops bioops;		/* I/O operation notification */
97 
98 struct	buf_ops buf_ops_bio = {
99 	.bop_name	=	"buf_ops_bio",
100 	.bop_write	=	bufwrite,
101 	.bop_strategy	=	bufstrategy,
102 	.bop_sync	=	bufsync,
103 	.bop_bdflush	=	bufbdflush,
104 };
105 
106 struct bufqueue {
107 	struct mtx_padalign	bq_lock;
108 	TAILQ_HEAD(, buf)	bq_queue;
109 	uint8_t			bq_index;
110 	uint16_t		bq_subqueue;
111 	int			bq_len;
112 } __aligned(CACHE_LINE_SIZE);
113 
114 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
115 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
116 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
117 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
118 
119 struct bufdomain {
120 	struct bufqueue	*bd_subq;
121 	struct bufqueue bd_dirtyq;
122 	struct bufqueue	*bd_cleanq;
123 	struct mtx_padalign bd_run_lock;
124 	/* Constants */
125 	long		bd_maxbufspace;
126 	long		bd_hibufspace;
127 	long 		bd_lobufspace;
128 	long 		bd_bufspacethresh;
129 	int		bd_hifreebuffers;
130 	int		bd_lofreebuffers;
131 	int		bd_hidirtybuffers;
132 	int		bd_lodirtybuffers;
133 	int		bd_dirtybufthresh;
134 	int		bd_lim;
135 	/* atomics */
136 	int		bd_wanted;
137 	bool		bd_shutdown;
138 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
139 	int __aligned(CACHE_LINE_SIZE)	bd_running;
140 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
141 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
142 } __aligned(CACHE_LINE_SIZE);
143 
144 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
145 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
146 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
147 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
148 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
149 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
150 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
151 #define	BD_DOMAIN(bd)		(bd - bdomain)
152 
153 static char *buf;		/* buffer header pool */
154 static struct buf *
nbufp(unsigned i)155 nbufp(unsigned i)
156 {
157 	return ((struct buf *)(buf + (sizeof(struct buf) +
158 	    sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
159 }
160 
161 caddr_t __read_mostly unmapped_buf;
162 #ifdef INVARIANTS
163 void *poisoned_buf = (void *)-1;
164 #endif
165 
166 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
167 struct proc *bufdaemonproc;
168 
169 static void vm_hold_free_pages(struct buf *bp, int newbsize);
170 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
171 		vm_offset_t to);
172 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
173 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
174 		vm_page_t m);
175 static void vfs_clean_pages_dirty_buf(struct buf *bp);
176 static void vfs_setdirty_range(struct buf *bp);
177 static void vfs_vmio_invalidate(struct buf *bp);
178 static void vfs_vmio_truncate(struct buf *bp, int npages);
179 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
180 static int vfs_bio_clcheck(struct vnode *vp, int size,
181 		daddr_t lblkno, daddr_t blkno);
182 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
183 		void (*)(struct buf *));
184 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
185 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
186 static void buf_daemon(void);
187 static __inline void bd_wakeup(void);
188 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
189 static void bufkva_reclaim(vmem_t *, int);
190 static void bufkva_free(struct buf *);
191 static int buf_import(void *, void **, int, int, int);
192 static void buf_release(void *, void **, int);
193 static void maxbcachebuf_adjust(void);
194 static inline struct bufdomain *bufdomain(struct buf *);
195 static void bq_remove(struct bufqueue *bq, struct buf *bp);
196 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
197 static int buf_recycle(struct bufdomain *, bool kva);
198 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
199 	    const char *lockname);
200 static void bd_init(struct bufdomain *bd);
201 static int bd_flushall(struct bufdomain *bd);
202 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
203 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
204 
205 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
206 int vmiodirenable = TRUE;
207 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
208     "Use the VM system for directory writes");
209 static long runningbufspace;
210 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
211     "Amount of presently outstanding async buffer io");
212 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
213     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
214 static counter_u64_t bufkvaspace;
215 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
216     "Kernel virtual memory used for buffers");
217 static long maxbufspace;
218 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
219     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
220     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
221     "Maximum allowed value of bufspace (including metadata)");
222 static long bufmallocspace;
223 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
224     "Amount of malloced memory for buffers");
225 static long maxbufmallocspace;
226 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
227     0, "Maximum amount of malloced memory for buffers");
228 static long lobufspace;
229 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
230     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
231     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
232     "Minimum amount of buffers we want to have");
233 long hibufspace;
234 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
235     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
236     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
237     "Maximum allowed value of bufspace (excluding metadata)");
238 long bufspacethresh;
239 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
240     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
241     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
242     "Bufspace consumed before waking the daemon to free some");
243 static counter_u64_t buffreekvacnt;
244 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
245     "Number of times we have freed the KVA space from some buffer");
246 static counter_u64_t bufdefragcnt;
247 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
248     "Number of times we have had to repeat buffer allocation to defragment");
249 static long lorunningspace;
250 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
251     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
252     "Minimum preferred space used for in-progress I/O");
253 static long hirunningspace;
254 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
255     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
256     "Maximum amount of space to use for in-progress I/O");
257 int dirtybufferflushes;
258 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
259     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
260 int bdwriteskip;
261 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
262     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
263 int altbufferflushes;
264 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
265     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
266 static int recursiveflushes;
267 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
268     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
269 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
270 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
271     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
272     "Number of buffers that are dirty (has unwritten changes) at the moment");
273 static int lodirtybuffers;
274 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
275     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
276     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
277     "How many buffers we want to have free before bufdaemon can sleep");
278 static int hidirtybuffers;
279 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
280     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
281     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
282     "When the number of dirty buffers is considered severe");
283 int dirtybufthresh;
284 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
285     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
286     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
287     "Number of bdwrite to bawrite conversions to clear dirty buffers");
288 static int numfreebuffers;
289 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
290     "Number of free buffers");
291 static int lofreebuffers;
292 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
293     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
294     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
295    "Target number of free buffers");
296 static int hifreebuffers;
297 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
298     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
299     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
300    "Threshold for clean buffer recycling");
301 static counter_u64_t getnewbufcalls;
302 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
303    &getnewbufcalls, "Number of calls to getnewbuf");
304 static counter_u64_t getnewbufrestarts;
305 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
306     &getnewbufrestarts,
307     "Number of times getnewbuf has had to restart a buffer acquisition");
308 static counter_u64_t mappingrestarts;
309 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
310     &mappingrestarts,
311     "Number of times getblk has had to restart a buffer mapping for "
312     "unmapped buffer");
313 static counter_u64_t numbufallocfails;
314 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
315     &numbufallocfails, "Number of times buffer allocations failed");
316 static int flushbufqtarget = 100;
317 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
318     "Amount of work to do in flushbufqueues when helping bufdaemon");
319 static counter_u64_t notbufdflushes;
320 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
321     "Number of dirty buffer flushes done by the bufdaemon helpers");
322 static long barrierwrites;
323 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
324     &barrierwrites, 0, "Number of barrier writes");
325 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed,
326     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
327     &unmapped_buf_allowed, 0,
328     "Permit the use of the unmapped i/o");
329 int maxbcachebuf = MAXBCACHEBUF;
330 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
331     "Maximum size of a buffer cache block");
332 
333 /*
334  * This lock synchronizes access to bd_request.
335  */
336 static struct mtx_padalign __exclusive_cache_line bdlock;
337 
338 /*
339  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
340  * waitrunningbufspace().
341  */
342 static struct mtx_padalign __exclusive_cache_line rbreqlock;
343 
344 /*
345  * Lock that protects bdirtywait.
346  */
347 static struct mtx_padalign __exclusive_cache_line bdirtylock;
348 
349 /*
350  * bufdaemon shutdown request and sleep channel.
351  */
352 static bool bd_shutdown;
353 
354 /*
355  * Wakeup point for bufdaemon, as well as indicator of whether it is already
356  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
357  * is idling.
358  */
359 static int bd_request;
360 
361 /*
362  * Request for the buf daemon to write more buffers than is indicated by
363  * lodirtybuf.  This may be necessary to push out excess dependencies or
364  * defragment the address space where a simple count of the number of dirty
365  * buffers is insufficient to characterize the demand for flushing them.
366  */
367 static int bd_speedupreq;
368 
369 /*
370  * Synchronization (sleep/wakeup) variable for active buffer space requests.
371  * Set when wait starts, cleared prior to wakeup().
372  * Used in runningbufwakeup() and waitrunningbufspace().
373  */
374 static int runningbufreq;
375 
376 /*
377  * Synchronization for bwillwrite() waiters.
378  */
379 static int bdirtywait;
380 
381 /*
382  * Definitions for the buffer free lists.
383  */
384 #define QUEUE_NONE	0	/* on no queue */
385 #define QUEUE_EMPTY	1	/* empty buffer headers */
386 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
387 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
388 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
389 
390 /* Maximum number of buffer domains. */
391 #define	BUF_DOMAINS	8
392 
393 struct bufdomainset bdlodirty;		/* Domains > lodirty */
394 struct bufdomainset bdhidirty;		/* Domains > hidirty */
395 
396 /* Configured number of clean queues. */
397 static int __read_mostly buf_domains;
398 
399 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
400 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
401 struct bufqueue __exclusive_cache_line bqempty;
402 
403 /*
404  * per-cpu empty buffer cache.
405  */
406 uma_zone_t buf_zone;
407 
408 static int
sysctl_runningspace(SYSCTL_HANDLER_ARGS)409 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
410 {
411 	long value;
412 	int error;
413 
414 	value = *(long *)arg1;
415 	error = sysctl_handle_long(oidp, &value, 0, req);
416 	if (error != 0 || req->newptr == NULL)
417 		return (error);
418 	mtx_lock(&rbreqlock);
419 	if (arg1 == &hirunningspace) {
420 		if (value < lorunningspace)
421 			error = EINVAL;
422 		else
423 			hirunningspace = value;
424 	} else {
425 		KASSERT(arg1 == &lorunningspace,
426 		    ("%s: unknown arg1", __func__));
427 		if (value > hirunningspace)
428 			error = EINVAL;
429 		else
430 			lorunningspace = value;
431 	}
432 	mtx_unlock(&rbreqlock);
433 	return (error);
434 }
435 
436 static int
sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)437 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
438 {
439 	int error;
440 	int value;
441 	int i;
442 
443 	value = *(int *)arg1;
444 	error = sysctl_handle_int(oidp, &value, 0, req);
445 	if (error != 0 || req->newptr == NULL)
446 		return (error);
447 	*(int *)arg1 = value;
448 	for (i = 0; i < buf_domains; i++)
449 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
450 		    value / buf_domains;
451 
452 	return (error);
453 }
454 
455 static int
sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)456 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
457 {
458 	long value;
459 	int error;
460 	int i;
461 
462 	value = *(long *)arg1;
463 	error = sysctl_handle_long(oidp, &value, 0, req);
464 	if (error != 0 || req->newptr == NULL)
465 		return (error);
466 	*(long *)arg1 = value;
467 	for (i = 0; i < buf_domains; i++)
468 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
469 		    value / buf_domains;
470 
471 	return (error);
472 }
473 
474 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
475     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
476 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)477 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
478 {
479 	long lvalue;
480 	int ivalue;
481 	int i;
482 
483 	lvalue = 0;
484 	for (i = 0; i < buf_domains; i++)
485 		lvalue += bdomain[i].bd_bufspace;
486 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
487 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
488 	if (lvalue > INT_MAX)
489 		/* On overflow, still write out a long to trigger ENOMEM. */
490 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
491 	ivalue = lvalue;
492 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
493 }
494 #else
495 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)496 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
497 {
498 	long lvalue;
499 	int i;
500 
501 	lvalue = 0;
502 	for (i = 0; i < buf_domains; i++)
503 		lvalue += bdomain[i].bd_bufspace;
504 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
505 }
506 #endif
507 
508 static int
sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)509 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
510 {
511 	int value;
512 	int i;
513 
514 	value = 0;
515 	for (i = 0; i < buf_domains; i++)
516 		value += bdomain[i].bd_numdirtybuffers;
517 	return (sysctl_handle_int(oidp, &value, 0, req));
518 }
519 
520 /*
521  *	bdirtywakeup:
522  *
523  *	Wakeup any bwillwrite() waiters.
524  */
525 static void
bdirtywakeup(void)526 bdirtywakeup(void)
527 {
528 	mtx_lock(&bdirtylock);
529 	if (bdirtywait) {
530 		bdirtywait = 0;
531 		wakeup(&bdirtywait);
532 	}
533 	mtx_unlock(&bdirtylock);
534 }
535 
536 /*
537  *	bd_clear:
538  *
539  *	Clear a domain from the appropriate bitsets when dirtybuffers
540  *	is decremented.
541  */
542 static void
bd_clear(struct bufdomain * bd)543 bd_clear(struct bufdomain *bd)
544 {
545 
546 	mtx_lock(&bdirtylock);
547 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
548 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
549 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
550 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
551 	mtx_unlock(&bdirtylock);
552 }
553 
554 /*
555  *	bd_set:
556  *
557  *	Set a domain in the appropriate bitsets when dirtybuffers
558  *	is incremented.
559  */
560 static void
bd_set(struct bufdomain * bd)561 bd_set(struct bufdomain *bd)
562 {
563 
564 	mtx_lock(&bdirtylock);
565 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
566 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
567 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
568 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
569 	mtx_unlock(&bdirtylock);
570 }
571 
572 /*
573  *	bdirtysub:
574  *
575  *	Decrement the numdirtybuffers count by one and wakeup any
576  *	threads blocked in bwillwrite().
577  */
578 static void
bdirtysub(struct buf * bp)579 bdirtysub(struct buf *bp)
580 {
581 	struct bufdomain *bd;
582 	int num;
583 
584 	bd = bufdomain(bp);
585 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
586 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
587 		bdirtywakeup();
588 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
589 		bd_clear(bd);
590 }
591 
592 /*
593  *	bdirtyadd:
594  *
595  *	Increment the numdirtybuffers count by one and wakeup the buf
596  *	daemon if needed.
597  */
598 static void
bdirtyadd(struct buf * bp)599 bdirtyadd(struct buf *bp)
600 {
601 	struct bufdomain *bd;
602 	int num;
603 
604 	/*
605 	 * Only do the wakeup once as we cross the boundary.  The
606 	 * buf daemon will keep running until the condition clears.
607 	 */
608 	bd = bufdomain(bp);
609 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
610 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
611 		bd_wakeup();
612 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
613 		bd_set(bd);
614 }
615 
616 /*
617  *	bufspace_daemon_wakeup:
618  *
619  *	Wakeup the daemons responsible for freeing clean bufs.
620  */
621 static void
bufspace_daemon_wakeup(struct bufdomain * bd)622 bufspace_daemon_wakeup(struct bufdomain *bd)
623 {
624 
625 	/*
626 	 * avoid the lock if the daemon is running.
627 	 */
628 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
629 		BD_RUN_LOCK(bd);
630 		atomic_store_int(&bd->bd_running, 1);
631 		wakeup(&bd->bd_running);
632 		BD_RUN_UNLOCK(bd);
633 	}
634 }
635 
636 /*
637  *	bufspace_adjust:
638  *
639  *	Adjust the reported bufspace for a KVA managed buffer, possibly
640  * 	waking any waiters.
641  */
642 static void
bufspace_adjust(struct buf * bp,int bufsize)643 bufspace_adjust(struct buf *bp, int bufsize)
644 {
645 	struct bufdomain *bd;
646 	long space;
647 	int diff;
648 
649 	KASSERT((bp->b_flags & B_MALLOC) == 0,
650 	    ("bufspace_adjust: malloc buf %p", bp));
651 	bd = bufdomain(bp);
652 	diff = bufsize - bp->b_bufsize;
653 	if (diff < 0) {
654 		atomic_subtract_long(&bd->bd_bufspace, -diff);
655 	} else if (diff > 0) {
656 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
657 		/* Wake up the daemon on the transition. */
658 		if (space < bd->bd_bufspacethresh &&
659 		    space + diff >= bd->bd_bufspacethresh)
660 			bufspace_daemon_wakeup(bd);
661 	}
662 	bp->b_bufsize = bufsize;
663 }
664 
665 /*
666  *	bufspace_reserve:
667  *
668  *	Reserve bufspace before calling allocbuf().  metadata has a
669  *	different space limit than data.
670  */
671 static int
bufspace_reserve(struct bufdomain * bd,int size,bool metadata)672 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
673 {
674 	long limit, new;
675 	long space;
676 
677 	if (metadata)
678 		limit = bd->bd_maxbufspace;
679 	else
680 		limit = bd->bd_hibufspace;
681 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
682 	new = space + size;
683 	if (new > limit) {
684 		atomic_subtract_long(&bd->bd_bufspace, size);
685 		return (ENOSPC);
686 	}
687 
688 	/* Wake up the daemon on the transition. */
689 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
690 		bufspace_daemon_wakeup(bd);
691 
692 	return (0);
693 }
694 
695 /*
696  *	bufspace_release:
697  *
698  *	Release reserved bufspace after bufspace_adjust() has consumed it.
699  */
700 static void
bufspace_release(struct bufdomain * bd,int size)701 bufspace_release(struct bufdomain *bd, int size)
702 {
703 
704 	atomic_subtract_long(&bd->bd_bufspace, size);
705 }
706 
707 /*
708  *	bufspace_wait:
709  *
710  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
711  *	supplied.  bd_wanted must be set prior to polling for space.  The
712  *	operation must be re-tried on return.
713  */
714 static void
bufspace_wait(struct bufdomain * bd,struct vnode * vp,int gbflags,int slpflag,int slptimeo)715 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
716     int slpflag, int slptimeo)
717 {
718 	struct thread *td;
719 	int error, fl, norunbuf;
720 
721 	if ((gbflags & GB_NOWAIT_BD) != 0)
722 		return;
723 
724 	td = curthread;
725 	BD_LOCK(bd);
726 	while (bd->bd_wanted) {
727 		if (vp != NULL && vp->v_type != VCHR &&
728 		    (td->td_pflags & TDP_BUFNEED) == 0) {
729 			BD_UNLOCK(bd);
730 			/*
731 			 * getblk() is called with a vnode locked, and
732 			 * some majority of the dirty buffers may as
733 			 * well belong to the vnode.  Flushing the
734 			 * buffers there would make a progress that
735 			 * cannot be achieved by the buf_daemon, that
736 			 * cannot lock the vnode.
737 			 */
738 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
739 			    (td->td_pflags & TDP_NORUNNINGBUF);
740 
741 			/*
742 			 * Play bufdaemon.  The getnewbuf() function
743 			 * may be called while the thread owns lock
744 			 * for another dirty buffer for the same
745 			 * vnode, which makes it impossible to use
746 			 * VOP_FSYNC() there, due to the buffer lock
747 			 * recursion.
748 			 */
749 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
750 			fl = buf_flush(vp, bd, flushbufqtarget);
751 			td->td_pflags &= norunbuf;
752 			BD_LOCK(bd);
753 			if (fl != 0)
754 				continue;
755 			if (bd->bd_wanted == 0)
756 				break;
757 		}
758 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
759 		    PVFS | slpflag, "newbuf", slptimeo);
760 		if (error != 0)
761 			break;
762 	}
763 	BD_UNLOCK(bd);
764 }
765 
766 static void
bufspace_daemon_shutdown(void * arg,int howto __unused)767 bufspace_daemon_shutdown(void *arg, int howto __unused)
768 {
769 	struct bufdomain *bd = arg;
770 	int error;
771 
772 	if (KERNEL_PANICKED())
773 		return;
774 
775 	BD_RUN_LOCK(bd);
776 	bd->bd_shutdown = true;
777 	wakeup(&bd->bd_running);
778 	error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
779 	    "bufspace_shutdown", 60 * hz);
780 	BD_RUN_UNLOCK(bd);
781 	if (error != 0)
782 		printf("bufspacedaemon wait error: %d\n", error);
783 }
784 
785 /*
786  *	bufspace_daemon:
787  *
788  *	buffer space management daemon.  Tries to maintain some marginal
789  *	amount of free buffer space so that requesting processes neither
790  *	block nor work to reclaim buffers.
791  */
792 static void
bufspace_daemon(void * arg)793 bufspace_daemon(void *arg)
794 {
795 	struct bufdomain *bd = arg;
796 
797 	EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
798 	    SHUTDOWN_PRI_LAST + 100);
799 
800 	BD_RUN_LOCK(bd);
801 	while (!bd->bd_shutdown) {
802 		BD_RUN_UNLOCK(bd);
803 
804 		/*
805 		 * Free buffers from the clean queue until we meet our
806 		 * targets.
807 		 *
808 		 * Theory of operation:  The buffer cache is most efficient
809 		 * when some free buffer headers and space are always
810 		 * available to getnewbuf().  This daemon attempts to prevent
811 		 * the excessive blocking and synchronization associated
812 		 * with shortfall.  It goes through three phases according
813 		 * demand:
814 		 *
815 		 * 1)	The daemon wakes up voluntarily once per-second
816 		 *	during idle periods when the counters are below
817 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
818 		 *
819 		 * 2)	The daemon wakes up as we cross the thresholds
820 		 *	ahead of any potential blocking.  This may bounce
821 		 *	slightly according to the rate of consumption and
822 		 *	release.
823 		 *
824 		 * 3)	The daemon and consumers are starved for working
825 		 *	clean buffers.  This is the 'bufspace' sleep below
826 		 *	which will inefficiently trade bufs with bqrelse
827 		 *	until we return to condition 2.
828 		 */
829 		while (bd->bd_bufspace > bd->bd_lobufspace ||
830 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
831 			if (buf_recycle(bd, false) != 0) {
832 				if (bd_flushall(bd))
833 					continue;
834 				/*
835 				 * Speedup dirty if we've run out of clean
836 				 * buffers.  This is possible in particular
837 				 * because softdep may held many bufs locked
838 				 * pending writes to other bufs which are
839 				 * marked for delayed write, exhausting
840 				 * clean space until they are written.
841 				 */
842 				bd_speedup();
843 				BD_LOCK(bd);
844 				if (bd->bd_wanted) {
845 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
846 					    PRIBIO|PDROP, "bufspace", hz/10);
847 				} else
848 					BD_UNLOCK(bd);
849 			}
850 			maybe_yield();
851 		}
852 
853 		/*
854 		 * Re-check our limits and sleep.  bd_running must be
855 		 * cleared prior to checking the limits to avoid missed
856 		 * wakeups.  The waker will adjust one of bufspace or
857 		 * freebuffers prior to checking bd_running.
858 		 */
859 		BD_RUN_LOCK(bd);
860 		if (bd->bd_shutdown)
861 			break;
862 		atomic_store_int(&bd->bd_running, 0);
863 		if (bd->bd_bufspace < bd->bd_bufspacethresh &&
864 		    bd->bd_freebuffers > bd->bd_lofreebuffers) {
865 			msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
866 			    PRIBIO, "-", hz);
867 		} else {
868 			/* Avoid spurious wakeups while running. */
869 			atomic_store_int(&bd->bd_running, 1);
870 		}
871 	}
872 	wakeup(&bd->bd_shutdown);
873 	BD_RUN_UNLOCK(bd);
874 	kthread_exit();
875 }
876 
877 /*
878  *	bufmallocadjust:
879  *
880  *	Adjust the reported bufspace for a malloc managed buffer, possibly
881  *	waking any waiters.
882  */
883 static void
bufmallocadjust(struct buf * bp,int bufsize)884 bufmallocadjust(struct buf *bp, int bufsize)
885 {
886 	int diff;
887 
888 	KASSERT((bp->b_flags & B_MALLOC) != 0,
889 	    ("bufmallocadjust: non-malloc buf %p", bp));
890 	diff = bufsize - bp->b_bufsize;
891 	if (diff < 0)
892 		atomic_subtract_long(&bufmallocspace, -diff);
893 	else
894 		atomic_add_long(&bufmallocspace, diff);
895 	bp->b_bufsize = bufsize;
896 }
897 
898 /*
899  *	runningwakeup:
900  *
901  *	Wake up processes that are waiting on asynchronous writes to fall
902  *	below lorunningspace.
903  */
904 static void
runningwakeup(void)905 runningwakeup(void)
906 {
907 
908 	mtx_lock(&rbreqlock);
909 	if (runningbufreq) {
910 		runningbufreq = 0;
911 		wakeup(&runningbufreq);
912 	}
913 	mtx_unlock(&rbreqlock);
914 }
915 
916 /*
917  *	runningbufwakeup:
918  *
919  *	Decrement the outstanding write count according.
920  */
921 void
runningbufwakeup(struct buf * bp)922 runningbufwakeup(struct buf *bp)
923 {
924 	long space, bspace;
925 
926 	bspace = bp->b_runningbufspace;
927 	if (bspace == 0)
928 		return;
929 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
930 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
931 	    space, bspace));
932 	bp->b_runningbufspace = 0;
933 	/*
934 	 * Only acquire the lock and wakeup on the transition from exceeding
935 	 * the threshold to falling below it.
936 	 */
937 	if (space < lorunningspace)
938 		return;
939 	if (space - bspace > lorunningspace)
940 		return;
941 	runningwakeup();
942 }
943 
944 long
runningbufclaim(struct buf * bp,int space)945 runningbufclaim(struct buf *bp, int space)
946 {
947 	long old;
948 
949 	old = atomic_fetchadd_long(&runningbufspace, space);
950 	bp->b_runningbufspace = space;
951 	return (old);
952 }
953 
954 /*
955  *	waitrunningbufspace()
956  *
957  *	runningbufspace is a measure of the amount of I/O currently
958  *	running.  This routine is used in async-write situations to
959  *	prevent creating huge backups of pending writes to a device.
960  *	Only asynchronous writes are governed by this function.
961  *
962  *	This does NOT turn an async write into a sync write.  It waits
963  *	for earlier writes to complete and generally returns before the
964  *	caller's write has reached the device.
965  */
966 void
waitrunningbufspace(void)967 waitrunningbufspace(void)
968 {
969 
970 	mtx_lock(&rbreqlock);
971 	while (runningbufspace > hirunningspace) {
972 		runningbufreq = 1;
973 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
974 	}
975 	mtx_unlock(&rbreqlock);
976 }
977 
978 /*
979  *	vfs_buf_test_cache:
980  *
981  *	Called when a buffer is extended.  This function clears the B_CACHE
982  *	bit if the newly extended portion of the buffer does not contain
983  *	valid data.
984  */
985 static __inline void
vfs_buf_test_cache(struct buf * bp,vm_ooffset_t foff,vm_offset_t off,vm_offset_t size,vm_page_t m)986 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
987     vm_offset_t size, vm_page_t m)
988 {
989 
990 	/*
991 	 * This function and its results are protected by higher level
992 	 * synchronization requiring vnode and buf locks to page in and
993 	 * validate pages.
994 	 */
995 	if (bp->b_flags & B_CACHE) {
996 		int base = (foff + off) & PAGE_MASK;
997 		if (vm_page_is_valid(m, base, size) == 0)
998 			bp->b_flags &= ~B_CACHE;
999 	}
1000 }
1001 
1002 /* Wake up the buffer daemon if necessary */
1003 static void
bd_wakeup(void)1004 bd_wakeup(void)
1005 {
1006 
1007 	mtx_lock(&bdlock);
1008 	if (bd_request == 0) {
1009 		bd_request = 1;
1010 		wakeup(&bd_request);
1011 	}
1012 	mtx_unlock(&bdlock);
1013 }
1014 
1015 /*
1016  * Adjust the maxbcachbuf tunable.
1017  */
1018 static void
maxbcachebuf_adjust(void)1019 maxbcachebuf_adjust(void)
1020 {
1021 	int i;
1022 
1023 	/*
1024 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
1025 	 */
1026 	i = 2;
1027 	while (i * 2 <= maxbcachebuf)
1028 		i *= 2;
1029 	maxbcachebuf = i;
1030 	if (maxbcachebuf < MAXBSIZE)
1031 		maxbcachebuf = MAXBSIZE;
1032 	if (maxbcachebuf > maxphys)
1033 		maxbcachebuf = maxphys;
1034 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1035 		printf("maxbcachebuf=%d\n", maxbcachebuf);
1036 }
1037 
1038 /*
1039  * bd_speedup - speedup the buffer cache flushing code
1040  */
1041 void
bd_speedup(void)1042 bd_speedup(void)
1043 {
1044 	int needwake;
1045 
1046 	mtx_lock(&bdlock);
1047 	needwake = 0;
1048 	if (bd_speedupreq == 0 || bd_request == 0)
1049 		needwake = 1;
1050 	bd_speedupreq = 1;
1051 	bd_request = 1;
1052 	if (needwake)
1053 		wakeup(&bd_request);
1054 	mtx_unlock(&bdlock);
1055 }
1056 
1057 #ifdef __i386__
1058 #define	TRANSIENT_DENOM	5
1059 #else
1060 #define	TRANSIENT_DENOM 10
1061 #endif
1062 
1063 /*
1064  * Calculating buffer cache scaling values and reserve space for buffer
1065  * headers.  This is called during low level kernel initialization and
1066  * may be called more then once.  We CANNOT write to the memory area
1067  * being reserved at this time.
1068  */
1069 caddr_t
kern_vfs_bio_buffer_alloc(caddr_t v,long physmem_est)1070 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1071 {
1072 	int tuned_nbuf;
1073 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1074 
1075 	/*
1076 	 * With KASAN or KMSAN enabled, the kernel map is shadowed.  Account for
1077 	 * this when sizing maps based on the amount of physical memory
1078 	 * available.
1079 	 */
1080 #if defined(KASAN)
1081 	physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1082 	    (KASAN_SHADOW_SCALE + 1);
1083 #elif defined(KMSAN)
1084 	physmem_est /= 3;
1085 
1086 	/*
1087 	 * KMSAN cannot reliably determine whether buffer data is initialized
1088 	 * unless it is updated through a KVA mapping.
1089 	 */
1090 	unmapped_buf_allowed = 0;
1091 #endif
1092 
1093 	/*
1094 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1095 	 * PAGE_SIZE is >= 1K)
1096 	 */
1097 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1098 
1099 	maxbcachebuf_adjust();
1100 	/*
1101 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1102 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1103 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1104 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1105 	 * the buffer cache we limit the eventual kva reservation to
1106 	 * maxbcache bytes.
1107 	 *
1108 	 * factor represents the 1/4 x ram conversion.
1109 	 */
1110 	if (nbuf == 0) {
1111 		int factor = 4 * BKVASIZE / 1024;
1112 
1113 		nbuf = 50;
1114 		if (physmem_est > 4096)
1115 			nbuf += min((physmem_est - 4096) / factor,
1116 			    65536 / factor);
1117 		if (physmem_est > 65536)
1118 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1119 			    32 * 1024 * 1024 / (factor * 5));
1120 
1121 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1122 			nbuf = maxbcache / BKVASIZE;
1123 		tuned_nbuf = 1;
1124 	} else
1125 		tuned_nbuf = 0;
1126 
1127 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1128 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1129 	if (nbuf > maxbuf) {
1130 		if (!tuned_nbuf)
1131 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1132 			    maxbuf);
1133 		nbuf = maxbuf;
1134 	}
1135 
1136 	/*
1137 	 * Ideal allocation size for the transient bio submap is 10%
1138 	 * of the maximal space buffer map.  This roughly corresponds
1139 	 * to the amount of the buffer mapped for typical UFS load.
1140 	 *
1141 	 * Clip the buffer map to reserve space for the transient
1142 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1143 	 * maximum buffer map extent on the platform.
1144 	 *
1145 	 * The fall-back to the maxbuf in case of maxbcache unset,
1146 	 * allows to not trim the buffer KVA for the architectures
1147 	 * with ample KVA space.
1148 	 */
1149 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1150 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1151 		buf_sz = (long)nbuf * BKVASIZE;
1152 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1153 		    (TRANSIENT_DENOM - 1)) {
1154 			/*
1155 			 * There is more KVA than memory.  Do not
1156 			 * adjust buffer map size, and assign the rest
1157 			 * of maxbuf to transient map.
1158 			 */
1159 			biotmap_sz = maxbuf_sz - buf_sz;
1160 		} else {
1161 			/*
1162 			 * Buffer map spans all KVA we could afford on
1163 			 * this platform.  Give 10% (20% on i386) of
1164 			 * the buffer map to the transient bio map.
1165 			 */
1166 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1167 			buf_sz -= biotmap_sz;
1168 		}
1169 		if (biotmap_sz / INT_MAX > maxphys)
1170 			bio_transient_maxcnt = INT_MAX;
1171 		else
1172 			bio_transient_maxcnt = biotmap_sz / maxphys;
1173 		/*
1174 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1175 		 * using the transient mapping.
1176 		 */
1177 		if (bio_transient_maxcnt > 1024)
1178 			bio_transient_maxcnt = 1024;
1179 		if (tuned_nbuf)
1180 			nbuf = buf_sz / BKVASIZE;
1181 	}
1182 
1183 	if (nswbuf == 0) {
1184 		/*
1185 		 * Pager buffers are allocated for short periods, so scale the
1186 		 * number of reserved buffers based on the number of CPUs rather
1187 		 * than amount of memory.
1188 		 */
1189 		nswbuf = min(nbuf / 4, 32 * mp_ncpus);
1190 		if (nswbuf < NSWBUF_MIN)
1191 			nswbuf = NSWBUF_MIN;
1192 	}
1193 
1194 	/*
1195 	 * Reserve space for the buffer cache buffers
1196 	 */
1197 	buf = (char *)v;
1198 	v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1199 	    atop(maxbcachebuf)) * nbuf;
1200 
1201 	return (v);
1202 }
1203 
1204 /*
1205  * Single global constant for BUF_WMESG, to avoid getting multiple
1206  * references.
1207  */
1208 static const char buf_wmesg[] = "bufwait";
1209 
1210 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1211 void
bufinit(void)1212 bufinit(void)
1213 {
1214 	struct buf *bp;
1215 	int i;
1216 
1217 	TSENTER();
1218 	KASSERT(maxbcachebuf >= MAXBSIZE,
1219 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1220 	    MAXBSIZE));
1221 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1222 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1223 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1224 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1225 
1226 	unmapped_buf = (caddr_t)kva_alloc(maxphys);
1227 #ifdef INVARIANTS
1228 	poisoned_buf = unmapped_buf;
1229 #endif
1230 
1231 	/* finally, initialize each buffer header and stick on empty q */
1232 	for (i = 0; i < nbuf; i++) {
1233 		bp = nbufp(i);
1234 		bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1235 		bp->b_flags = B_INVAL;
1236 		bp->b_rcred = NOCRED;
1237 		bp->b_wcred = NOCRED;
1238 		bp->b_qindex = QUEUE_NONE;
1239 		bp->b_domain = -1;
1240 		bp->b_subqueue = mp_maxid + 1;
1241 		bp->b_xflags = 0;
1242 		bp->b_data = bp->b_kvabase = unmapped_buf;
1243 		LIST_INIT(&bp->b_dep);
1244 		BUF_LOCKINIT(bp, buf_wmesg);
1245 		bq_insert(&bqempty, bp, false);
1246 	}
1247 
1248 	/*
1249 	 * maxbufspace is the absolute maximum amount of buffer space we are
1250 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1251 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1252 	 * used by most other requests.  The differential is required to
1253 	 * ensure that metadata deadlocks don't occur.
1254 	 *
1255 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1256 	 * this may result in KVM fragmentation which is not handled optimally
1257 	 * by the system. XXX This is less true with vmem.  We could use
1258 	 * PAGE_SIZE.
1259 	 */
1260 	maxbufspace = (long)nbuf * BKVASIZE;
1261 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1262 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1263 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1264 
1265 	/*
1266 	 * Note: The upper limit for hirunningspace was chosen arbitrarily and
1267 	 * may need further tuning. It corresponds to 128 outstanding write IO
1268 	 * requests, which fits with many RAID controllers' tagged queuing
1269 	 * limits.
1270 	 *
1271 	 * The lower 1 MiB limit is the historical upper limit for
1272 	 * hirunningspace.
1273 	 */
1274 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1275 	    128 * maxphys), 1024 * 1024);
1276 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1277 
1278 	/*
1279 	 * Limit the amount of malloc memory since it is wired permanently into
1280 	 * the kernel space.  Even though this is accounted for in the buffer
1281 	 * allocation, we don't want the malloced region to grow uncontrolled.
1282 	 * The malloc scheme improves memory utilization significantly on
1283 	 * average (small) directories.
1284 	 */
1285 	maxbufmallocspace = hibufspace / 20;
1286 
1287 	/*
1288 	 * Reduce the chance of a deadlock occurring by limiting the number
1289 	 * of delayed-write dirty buffers we allow to stack up.
1290 	 */
1291 	hidirtybuffers = nbuf / 4 + 20;
1292 	dirtybufthresh = hidirtybuffers * 9 / 10;
1293 	/*
1294 	 * To support extreme low-memory systems, make sure hidirtybuffers
1295 	 * cannot eat up all available buffer space.  This occurs when our
1296 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1297 	 * buffer space assuming BKVASIZE'd buffers.
1298 	 */
1299 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1300 		hidirtybuffers >>= 1;
1301 	}
1302 	lodirtybuffers = hidirtybuffers / 2;
1303 
1304 	/*
1305 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1306 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1307 	 * are counted as free but will be unavailable to threads executing
1308 	 * on other cpus.
1309 	 *
1310 	 * hifreebuffers is the free target for the bufspace daemon.  This
1311 	 * should be set appropriately to limit work per-iteration.
1312 	 */
1313 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1314 	hifreebuffers = (3 * lofreebuffers) / 2;
1315 	numfreebuffers = nbuf;
1316 
1317 	/* Setup the kva and free list allocators. */
1318 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1319 	buf_zone = uma_zcache_create("buf free cache",
1320 	    sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1321 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1322 
1323 	/*
1324 	 * Size the clean queue according to the amount of buffer space.
1325 	 * One queue per-256mb up to the max.  More queues gives better
1326 	 * concurrency but less accurate LRU.
1327 	 */
1328 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1329 	for (i = 0 ; i < buf_domains; i++) {
1330 		struct bufdomain *bd;
1331 
1332 		bd = &bdomain[i];
1333 		bd_init(bd);
1334 		bd->bd_freebuffers = nbuf / buf_domains;
1335 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1336 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1337 		bd->bd_bufspace = 0;
1338 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1339 		bd->bd_hibufspace = hibufspace / buf_domains;
1340 		bd->bd_lobufspace = lobufspace / buf_domains;
1341 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1342 		bd->bd_numdirtybuffers = 0;
1343 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1344 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1345 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1346 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1347 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1348 	}
1349 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1350 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1351 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1352 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1353 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1354 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1355 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1356 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1357 	TSEXIT();
1358 }
1359 
1360 #ifdef INVARIANTS
1361 static inline void
vfs_buf_check_mapped(struct buf * bp)1362 vfs_buf_check_mapped(struct buf *bp)
1363 {
1364 
1365 	KASSERT(bp->b_kvabase != unmapped_buf,
1366 	    ("mapped buf: b_kvabase was not updated %p", bp));
1367 	KASSERT(bp->b_data != unmapped_buf,
1368 	    ("mapped buf: b_data was not updated %p", bp));
1369 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1370 	    maxphys, ("b_data + b_offset unmapped %p", bp));
1371 }
1372 
1373 static inline void
vfs_buf_check_unmapped(struct buf * bp)1374 vfs_buf_check_unmapped(struct buf *bp)
1375 {
1376 
1377 	KASSERT(bp->b_data == unmapped_buf,
1378 	    ("unmapped buf: corrupted b_data %p", bp));
1379 }
1380 
1381 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1382 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1383 #else
1384 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1385 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1386 #endif
1387 
1388 static int
isbufbusy(struct buf * bp)1389 isbufbusy(struct buf *bp)
1390 {
1391 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1392 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1393 		return (1);
1394 	return (0);
1395 }
1396 
1397 /*
1398  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1399  */
1400 void
bufshutdown(int show_busybufs)1401 bufshutdown(int show_busybufs)
1402 {
1403 	static int first_buf_printf = 1;
1404 	struct buf *bp;
1405 	int i, iter, nbusy, pbusy;
1406 #ifndef PREEMPTION
1407 	int subiter;
1408 #endif
1409 
1410 	/*
1411 	 * Sync filesystems for shutdown
1412 	 */
1413 	wdog_kern_pat(WD_LASTVAL);
1414 	kern_sync(curthread);
1415 
1416 	/*
1417 	 * With soft updates, some buffers that are
1418 	 * written will be remarked as dirty until other
1419 	 * buffers are written.
1420 	 */
1421 	for (iter = pbusy = 0; iter < 20; iter++) {
1422 		nbusy = 0;
1423 		for (i = nbuf - 1; i >= 0; i--) {
1424 			bp = nbufp(i);
1425 			if (isbufbusy(bp))
1426 				nbusy++;
1427 		}
1428 		if (nbusy == 0) {
1429 			if (first_buf_printf)
1430 				printf("All buffers synced.");
1431 			break;
1432 		}
1433 		if (first_buf_printf) {
1434 			printf("Syncing disks, buffers remaining... ");
1435 			first_buf_printf = 0;
1436 		}
1437 		printf("%d ", nbusy);
1438 		if (nbusy < pbusy)
1439 			iter = 0;
1440 		pbusy = nbusy;
1441 
1442 		wdog_kern_pat(WD_LASTVAL);
1443 		kern_sync(curthread);
1444 
1445 #ifdef PREEMPTION
1446 		/*
1447 		 * Spin for a while to allow interrupt threads to run.
1448 		 */
1449 		DELAY(50000 * iter);
1450 #else
1451 		/*
1452 		 * Context switch several times to allow interrupt
1453 		 * threads to run.
1454 		 */
1455 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1456 			sched_relinquish(curthread);
1457 			DELAY(1000);
1458 		}
1459 #endif
1460 	}
1461 	printf("\n");
1462 	/*
1463 	 * Count only busy local buffers to prevent forcing
1464 	 * a fsck if we're just a client of a wedged NFS server
1465 	 */
1466 	nbusy = 0;
1467 	for (i = nbuf - 1; i >= 0; i--) {
1468 		bp = nbufp(i);
1469 		if (isbufbusy(bp)) {
1470 #if 0
1471 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1472 			if (bp->b_dev == NULL) {
1473 				TAILQ_REMOVE(&mountlist,
1474 				    bp->b_vp->v_mount, mnt_list);
1475 				continue;
1476 			}
1477 #endif
1478 			nbusy++;
1479 			if (show_busybufs > 0) {
1480 				printf(
1481 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1482 				    nbusy, bp, bp->b_vp, bp->b_flags,
1483 				    (intmax_t)bp->b_blkno,
1484 				    (intmax_t)bp->b_lblkno);
1485 				BUF_LOCKPRINTINFO(bp);
1486 				if (show_busybufs > 1)
1487 					vn_printf(bp->b_vp,
1488 					    "vnode content: ");
1489 			}
1490 		}
1491 	}
1492 	if (nbusy) {
1493 		/*
1494 		 * Failed to sync all blocks. Indicate this and don't
1495 		 * unmount filesystems (thus forcing an fsck on reboot).
1496 		 */
1497 		BOOTTRACE("shutdown failed to sync buffers");
1498 		printf("Giving up on %d buffers\n", nbusy);
1499 		DELAY(5000000);	/* 5 seconds */
1500 		swapoff_all();
1501 	} else {
1502 		BOOTTRACE("shutdown sync complete");
1503 		if (!first_buf_printf)
1504 			printf("Final sync complete\n");
1505 
1506 		/*
1507 		 * Unmount filesystems and perform swapoff, to quiesce
1508 		 * the system as much as possible.  In particular, no
1509 		 * I/O should be initiated from top levels since it
1510 		 * might be abruptly terminated by reset, or otherwise
1511 		 * erronously handled because other parts of the
1512 		 * system are disabled.
1513 		 *
1514 		 * Swapoff before unmount, because file-backed swap is
1515 		 * non-operational after unmount of the underlying
1516 		 * filesystem.
1517 		 */
1518 		if (!KERNEL_PANICKED()) {
1519 			swapoff_all();
1520 			vfs_unmountall();
1521 			BOOTTRACE("shutdown unmounted all filesystems");
1522 		}
1523 	}
1524 	DELAY(100000);		/* wait for console output to finish */
1525 }
1526 
1527 static void
bpmap_qenter(struct buf * bp)1528 bpmap_qenter(struct buf *bp)
1529 {
1530 
1531 	BUF_CHECK_MAPPED(bp);
1532 
1533 	/*
1534 	 * bp->b_data is relative to bp->b_offset, but
1535 	 * bp->b_offset may be offset into the first page.
1536 	 */
1537 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1538 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1539 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1540 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1541 }
1542 
1543 static inline struct bufdomain *
bufdomain(struct buf * bp)1544 bufdomain(struct buf *bp)
1545 {
1546 
1547 	return (&bdomain[bp->b_domain]);
1548 }
1549 
1550 static struct bufqueue *
bufqueue(struct buf * bp)1551 bufqueue(struct buf *bp)
1552 {
1553 
1554 	switch (bp->b_qindex) {
1555 	case QUEUE_NONE:
1556 		/* FALLTHROUGH */
1557 	case QUEUE_SENTINEL:
1558 		return (NULL);
1559 	case QUEUE_EMPTY:
1560 		return (&bqempty);
1561 	case QUEUE_DIRTY:
1562 		return (&bufdomain(bp)->bd_dirtyq);
1563 	case QUEUE_CLEAN:
1564 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1565 	default:
1566 		break;
1567 	}
1568 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1569 }
1570 
1571 /*
1572  * Return the locked bufqueue that bp is a member of.
1573  */
1574 static struct bufqueue *
bufqueue_acquire(struct buf * bp)1575 bufqueue_acquire(struct buf *bp)
1576 {
1577 	struct bufqueue *bq, *nbq;
1578 
1579 	/*
1580 	 * bp can be pushed from a per-cpu queue to the
1581 	 * cleanq while we're waiting on the lock.  Retry
1582 	 * if the queues don't match.
1583 	 */
1584 	bq = bufqueue(bp);
1585 	BQ_LOCK(bq);
1586 	for (;;) {
1587 		nbq = bufqueue(bp);
1588 		if (bq == nbq)
1589 			break;
1590 		BQ_UNLOCK(bq);
1591 		BQ_LOCK(nbq);
1592 		bq = nbq;
1593 	}
1594 	return (bq);
1595 }
1596 
1597 /*
1598  *	binsfree:
1599  *
1600  *	Insert the buffer into the appropriate free list.  Requires a
1601  *	locked buffer on entry and buffer is unlocked before return.
1602  */
1603 static void
binsfree(struct buf * bp,int qindex)1604 binsfree(struct buf *bp, int qindex)
1605 {
1606 	struct bufdomain *bd;
1607 	struct bufqueue *bq;
1608 
1609 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1610 	    ("binsfree: Invalid qindex %d", qindex));
1611 	BUF_ASSERT_XLOCKED(bp);
1612 
1613 	/*
1614 	 * Handle delayed bremfree() processing.
1615 	 */
1616 	if (bp->b_flags & B_REMFREE) {
1617 		if (bp->b_qindex == qindex) {
1618 			bp->b_flags |= B_REUSE;
1619 			bp->b_flags &= ~B_REMFREE;
1620 			BUF_UNLOCK(bp);
1621 			return;
1622 		}
1623 		bq = bufqueue_acquire(bp);
1624 		bq_remove(bq, bp);
1625 		BQ_UNLOCK(bq);
1626 	}
1627 	bd = bufdomain(bp);
1628 	if (qindex == QUEUE_CLEAN) {
1629 		if (bd->bd_lim != 0)
1630 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1631 		else
1632 			bq = bd->bd_cleanq;
1633 	} else
1634 		bq = &bd->bd_dirtyq;
1635 	bq_insert(bq, bp, true);
1636 }
1637 
1638 /*
1639  * buf_free:
1640  *
1641  *	Free a buffer to the buf zone once it no longer has valid contents.
1642  */
1643 static void
buf_free(struct buf * bp)1644 buf_free(struct buf *bp)
1645 {
1646 
1647 	if (bp->b_flags & B_REMFREE)
1648 		bremfreef(bp);
1649 	if (bp->b_vflags & BV_BKGRDINPROG)
1650 		panic("losing buffer 1");
1651 	if (bp->b_rcred != NOCRED) {
1652 		crfree(bp->b_rcred);
1653 		bp->b_rcred = NOCRED;
1654 	}
1655 	if (bp->b_wcred != NOCRED) {
1656 		crfree(bp->b_wcred);
1657 		bp->b_wcred = NOCRED;
1658 	}
1659 	if (!LIST_EMPTY(&bp->b_dep))
1660 		buf_deallocate(bp);
1661 	bufkva_free(bp);
1662 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1663 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1664 	BUF_UNLOCK(bp);
1665 	uma_zfree(buf_zone, bp);
1666 }
1667 
1668 /*
1669  * buf_import:
1670  *
1671  *	Import bufs into the uma cache from the buf list.  The system still
1672  *	expects a static array of bufs and much of the synchronization
1673  *	around bufs assumes type stable storage.  As a result, UMA is used
1674  *	only as a per-cpu cache of bufs still maintained on a global list.
1675  */
1676 static int
buf_import(void * arg,void ** store,int cnt,int domain,int flags)1677 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1678 {
1679 	struct buf *bp;
1680 	int i;
1681 
1682 	BQ_LOCK(&bqempty);
1683 	for (i = 0; i < cnt; i++) {
1684 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1685 		if (bp == NULL)
1686 			break;
1687 		bq_remove(&bqempty, bp);
1688 		store[i] = bp;
1689 	}
1690 	BQ_UNLOCK(&bqempty);
1691 
1692 	return (i);
1693 }
1694 
1695 /*
1696  * buf_release:
1697  *
1698  *	Release bufs from the uma cache back to the buffer queues.
1699  */
1700 static void
buf_release(void * arg,void ** store,int cnt)1701 buf_release(void *arg, void **store, int cnt)
1702 {
1703 	struct bufqueue *bq;
1704 	struct buf *bp;
1705         int i;
1706 
1707 	bq = &bqempty;
1708 	BQ_LOCK(bq);
1709         for (i = 0; i < cnt; i++) {
1710 		bp = store[i];
1711 		/* Inline bq_insert() to batch locking. */
1712 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1713 		bp->b_flags &= ~(B_AGE | B_REUSE);
1714 		bq->bq_len++;
1715 		bp->b_qindex = bq->bq_index;
1716 	}
1717 	BQ_UNLOCK(bq);
1718 }
1719 
1720 /*
1721  * buf_alloc:
1722  *
1723  *	Allocate an empty buffer header.
1724  */
1725 static struct buf *
buf_alloc(struct bufdomain * bd)1726 buf_alloc(struct bufdomain *bd)
1727 {
1728 	struct buf *bp;
1729 	int freebufs, error;
1730 
1731 	/*
1732 	 * We can only run out of bufs in the buf zone if the average buf
1733 	 * is less than BKVASIZE.  In this case the actual wait/block will
1734 	 * come from buf_reycle() failing to flush one of these small bufs.
1735 	 */
1736 	bp = NULL;
1737 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1738 	if (freebufs > 0)
1739 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1740 	if (bp == NULL) {
1741 		atomic_add_int(&bd->bd_freebuffers, 1);
1742 		bufspace_daemon_wakeup(bd);
1743 		counter_u64_add(numbufallocfails, 1);
1744 		return (NULL);
1745 	}
1746 	/*
1747 	 * Wake-up the bufspace daemon on transition below threshold.
1748 	 */
1749 	if (freebufs == bd->bd_lofreebuffers)
1750 		bufspace_daemon_wakeup(bd);
1751 
1752 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1753 	KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1754 	    error));
1755 	(void)error;
1756 
1757 	KASSERT(bp->b_vp == NULL,
1758 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1759 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1760 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1761 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1762 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1763 	KASSERT(bp->b_npages == 0,
1764 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1765 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1766 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1767 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1768 
1769 	bp->b_domain = BD_DOMAIN(bd);
1770 	bp->b_flags = 0;
1771 	bp->b_ioflags = 0;
1772 	bp->b_xflags = 0;
1773 	bp->b_vflags = 0;
1774 	bp->b_vp = NULL;
1775 	bp->b_blkno = bp->b_lblkno = 0;
1776 	bp->b_offset = NOOFFSET;
1777 	bp->b_iodone = 0;
1778 	bp->b_error = 0;
1779 	bp->b_resid = 0;
1780 	bp->b_bcount = 0;
1781 	bp->b_npages = 0;
1782 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1783 	bp->b_bufobj = NULL;
1784 	bp->b_data = bp->b_kvabase = unmapped_buf;
1785 	bp->b_fsprivate1 = NULL;
1786 	bp->b_fsprivate2 = NULL;
1787 	bp->b_fsprivate3 = NULL;
1788 	LIST_INIT(&bp->b_dep);
1789 
1790 	return (bp);
1791 }
1792 
1793 /*
1794  *	buf_recycle:
1795  *
1796  *	Free a buffer from the given bufqueue.  kva controls whether the
1797  *	freed buf must own some kva resources.  This is used for
1798  *	defragmenting.
1799  */
1800 static int
buf_recycle(struct bufdomain * bd,bool kva)1801 buf_recycle(struct bufdomain *bd, bool kva)
1802 {
1803 	struct bufqueue *bq;
1804 	struct buf *bp, *nbp;
1805 
1806 	if (kva)
1807 		counter_u64_add(bufdefragcnt, 1);
1808 	nbp = NULL;
1809 	bq = bd->bd_cleanq;
1810 	BQ_LOCK(bq);
1811 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1812 	    ("buf_recycle: Locks don't match"));
1813 	nbp = TAILQ_FIRST(&bq->bq_queue);
1814 
1815 	/*
1816 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1817 	 * depending.
1818 	 */
1819 	while ((bp = nbp) != NULL) {
1820 		/*
1821 		 * Calculate next bp (we can only use it if we do not
1822 		 * release the bqlock).
1823 		 */
1824 		nbp = TAILQ_NEXT(bp, b_freelist);
1825 
1826 		/*
1827 		 * If we are defragging then we need a buffer with
1828 		 * some kva to reclaim.
1829 		 */
1830 		if (kva && bp->b_kvasize == 0)
1831 			continue;
1832 
1833 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1834 			continue;
1835 
1836 		/*
1837 		 * Implement a second chance algorithm for frequently
1838 		 * accessed buffers.
1839 		 */
1840 		if ((bp->b_flags & B_REUSE) != 0) {
1841 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1842 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1843 			bp->b_flags &= ~B_REUSE;
1844 			BUF_UNLOCK(bp);
1845 			continue;
1846 		}
1847 
1848 		/*
1849 		 * Skip buffers with background writes in progress.
1850 		 */
1851 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1852 			BUF_UNLOCK(bp);
1853 			continue;
1854 		}
1855 
1856 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1857 		    ("buf_recycle: inconsistent queue %d bp %p",
1858 		    bp->b_qindex, bp));
1859 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1860 		    ("getnewbuf: queue domain %d doesn't match request %d",
1861 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1862 		/*
1863 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1864 		 * the scan from this point on.
1865 		 */
1866 		bq_remove(bq, bp);
1867 		BQ_UNLOCK(bq);
1868 
1869 		/*
1870 		 * Requeue the background write buffer with error and
1871 		 * restart the scan.
1872 		 */
1873 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1874 			bqrelse(bp);
1875 			BQ_LOCK(bq);
1876 			nbp = TAILQ_FIRST(&bq->bq_queue);
1877 			continue;
1878 		}
1879 		bp->b_flags |= B_INVAL;
1880 		brelse(bp);
1881 		return (0);
1882 	}
1883 	bd->bd_wanted = 1;
1884 	BQ_UNLOCK(bq);
1885 
1886 	return (ENOBUFS);
1887 }
1888 
1889 /*
1890  *	bremfree:
1891  *
1892  *	Mark the buffer for removal from the appropriate free list.
1893  *
1894  */
1895 void
bremfree(struct buf * bp)1896 bremfree(struct buf *bp)
1897 {
1898 
1899 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1900 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1901 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1902 	KASSERT(bp->b_qindex != QUEUE_NONE,
1903 	    ("bremfree: buffer %p not on a queue.", bp));
1904 	BUF_ASSERT_XLOCKED(bp);
1905 
1906 	bp->b_flags |= B_REMFREE;
1907 }
1908 
1909 /*
1910  *	bremfreef:
1911  *
1912  *	Force an immediate removal from a free list.  Used only in nfs when
1913  *	it abuses the b_freelist pointer.
1914  */
1915 void
bremfreef(struct buf * bp)1916 bremfreef(struct buf *bp)
1917 {
1918 	struct bufqueue *bq;
1919 
1920 	bq = bufqueue_acquire(bp);
1921 	bq_remove(bq, bp);
1922 	BQ_UNLOCK(bq);
1923 }
1924 
1925 static void
bq_init(struct bufqueue * bq,int qindex,int subqueue,const char * lockname)1926 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1927 {
1928 
1929 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1930 	TAILQ_INIT(&bq->bq_queue);
1931 	bq->bq_len = 0;
1932 	bq->bq_index = qindex;
1933 	bq->bq_subqueue = subqueue;
1934 }
1935 
1936 static void
bd_init(struct bufdomain * bd)1937 bd_init(struct bufdomain *bd)
1938 {
1939 	int i;
1940 
1941 	/* Per-CPU clean buf queues, plus one global queue. */
1942 	bd->bd_subq = mallocarray(mp_maxid + 2, sizeof(struct bufqueue),
1943 	    M_BIOBUF, M_WAITOK | M_ZERO);
1944 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1945 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1946 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1947 	for (i = 0; i <= mp_maxid; i++)
1948 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1949 		    "bufq clean subqueue lock");
1950 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1951 }
1952 
1953 /*
1954  *	bq_remove:
1955  *
1956  *	Removes a buffer from the free list, must be called with the
1957  *	correct qlock held.
1958  */
1959 static void
bq_remove(struct bufqueue * bq,struct buf * bp)1960 bq_remove(struct bufqueue *bq, struct buf *bp)
1961 {
1962 
1963 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1964 	    bp, bp->b_vp, bp->b_flags);
1965 	KASSERT(bp->b_qindex != QUEUE_NONE,
1966 	    ("bq_remove: buffer %p not on a queue.", bp));
1967 	KASSERT(bufqueue(bp) == bq,
1968 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1969 
1970 	BQ_ASSERT_LOCKED(bq);
1971 	if (bp->b_qindex != QUEUE_EMPTY) {
1972 		BUF_ASSERT_XLOCKED(bp);
1973 	}
1974 	KASSERT(bq->bq_len >= 1,
1975 	    ("queue %d underflow", bp->b_qindex));
1976 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1977 	bq->bq_len--;
1978 	bp->b_qindex = QUEUE_NONE;
1979 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1980 }
1981 
1982 static void
bd_flush(struct bufdomain * bd,struct bufqueue * bq)1983 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1984 {
1985 	struct buf *bp;
1986 
1987 	BQ_ASSERT_LOCKED(bq);
1988 	if (bq != bd->bd_cleanq) {
1989 		BD_LOCK(bd);
1990 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1991 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1992 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1993 			    b_freelist);
1994 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1995 		}
1996 		bd->bd_cleanq->bq_len += bq->bq_len;
1997 		bq->bq_len = 0;
1998 	}
1999 	if (bd->bd_wanted) {
2000 		bd->bd_wanted = 0;
2001 		wakeup(&bd->bd_wanted);
2002 	}
2003 	if (bq != bd->bd_cleanq)
2004 		BD_UNLOCK(bd);
2005 }
2006 
2007 static int
bd_flushall(struct bufdomain * bd)2008 bd_flushall(struct bufdomain *bd)
2009 {
2010 	struct bufqueue *bq;
2011 	int flushed;
2012 	int i;
2013 
2014 	if (bd->bd_lim == 0)
2015 		return (0);
2016 	flushed = 0;
2017 	for (i = 0; i <= mp_maxid; i++) {
2018 		bq = &bd->bd_subq[i];
2019 		if (bq->bq_len == 0)
2020 			continue;
2021 		BQ_LOCK(bq);
2022 		bd_flush(bd, bq);
2023 		BQ_UNLOCK(bq);
2024 		flushed++;
2025 	}
2026 
2027 	return (flushed);
2028 }
2029 
2030 static void
bq_insert(struct bufqueue * bq,struct buf * bp,bool unlock)2031 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
2032 {
2033 	struct bufdomain *bd;
2034 
2035 	if (bp->b_qindex != QUEUE_NONE)
2036 		panic("bq_insert: free buffer %p onto another queue?", bp);
2037 
2038 	bd = bufdomain(bp);
2039 	if (bp->b_flags & B_AGE) {
2040 		/* Place this buf directly on the real queue. */
2041 		if (bq->bq_index == QUEUE_CLEAN)
2042 			bq = bd->bd_cleanq;
2043 		BQ_LOCK(bq);
2044 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
2045 	} else {
2046 		BQ_LOCK(bq);
2047 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
2048 	}
2049 	bp->b_flags &= ~(B_AGE | B_REUSE);
2050 	bq->bq_len++;
2051 	bp->b_qindex = bq->bq_index;
2052 	bp->b_subqueue = bq->bq_subqueue;
2053 
2054 	/*
2055 	 * Unlock before we notify so that we don't wakeup a waiter that
2056 	 * fails a trylock on the buf and sleeps again.
2057 	 */
2058 	if (unlock)
2059 		BUF_UNLOCK(bp);
2060 
2061 	if (bp->b_qindex == QUEUE_CLEAN) {
2062 		/*
2063 		 * Flush the per-cpu queue and notify any waiters.
2064 		 */
2065 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2066 		    bq->bq_len >= bd->bd_lim))
2067 			bd_flush(bd, bq);
2068 	}
2069 	BQ_UNLOCK(bq);
2070 }
2071 
2072 /*
2073  *	bufkva_free:
2074  *
2075  *	Free the kva allocation for a buffer.
2076  *
2077  */
2078 static void
bufkva_free(struct buf * bp)2079 bufkva_free(struct buf *bp)
2080 {
2081 
2082 #ifdef INVARIANTS
2083 	if (bp->b_kvasize == 0) {
2084 		KASSERT(bp->b_kvabase == unmapped_buf &&
2085 		    bp->b_data == unmapped_buf,
2086 		    ("Leaked KVA space on %p", bp));
2087 	} else if (buf_mapped(bp))
2088 		BUF_CHECK_MAPPED(bp);
2089 	else
2090 		BUF_CHECK_UNMAPPED(bp);
2091 #endif
2092 	if (bp->b_kvasize == 0)
2093 		return;
2094 
2095 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2096 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2097 	counter_u64_add(buffreekvacnt, 1);
2098 	bp->b_data = bp->b_kvabase = unmapped_buf;
2099 	bp->b_kvasize = 0;
2100 }
2101 
2102 /*
2103  *	bufkva_alloc:
2104  *
2105  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2106  */
2107 static int
bufkva_alloc(struct buf * bp,int maxsize,int gbflags)2108 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2109 {
2110 	vm_offset_t addr;
2111 	int error;
2112 
2113 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2114 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2115 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
2116 	KASSERT(maxsize <= maxbcachebuf,
2117 	    ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2118 
2119 	bufkva_free(bp);
2120 
2121 	addr = 0;
2122 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2123 	if (error != 0) {
2124 		/*
2125 		 * Buffer map is too fragmented.  Request the caller
2126 		 * to defragment the map.
2127 		 */
2128 		return (error);
2129 	}
2130 	bp->b_kvabase = (caddr_t)addr;
2131 	bp->b_kvasize = maxsize;
2132 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2133 	if ((gbflags & GB_UNMAPPED) != 0) {
2134 		bp->b_data = unmapped_buf;
2135 		BUF_CHECK_UNMAPPED(bp);
2136 	} else {
2137 		bp->b_data = bp->b_kvabase;
2138 		BUF_CHECK_MAPPED(bp);
2139 	}
2140 	return (0);
2141 }
2142 
2143 /*
2144  *	bufkva_reclaim:
2145  *
2146  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2147  *	callback that fires to avoid returning failure.
2148  */
2149 static void
bufkva_reclaim(vmem_t * vmem,int flags)2150 bufkva_reclaim(vmem_t *vmem, int flags)
2151 {
2152 	bool done;
2153 	int q;
2154 	int i;
2155 
2156 	done = false;
2157 	for (i = 0; i < 5; i++) {
2158 		for (q = 0; q < buf_domains; q++)
2159 			if (buf_recycle(&bdomain[q], true) != 0)
2160 				done = true;
2161 		if (done)
2162 			break;
2163 	}
2164 	return;
2165 }
2166 
2167 /*
2168  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2169  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2170  * the buffer is valid and we do not have to do anything.
2171  */
2172 static void
breada(struct vnode * vp,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *))2173 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2174     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2175 {
2176 	struct buf *rabp;
2177 	struct thread *td;
2178 	int i;
2179 
2180 	td = curthread;
2181 
2182 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2183 		if (inmem(vp, *rablkno))
2184 			continue;
2185 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2186 		if ((rabp->b_flags & B_CACHE) != 0) {
2187 			brelse(rabp);
2188 			continue;
2189 		}
2190 #ifdef RACCT
2191 		if (racct_enable) {
2192 			PROC_LOCK(curproc);
2193 			racct_add_buf(curproc, rabp, 0);
2194 			PROC_UNLOCK(curproc);
2195 		}
2196 #endif /* RACCT */
2197 		td->td_ru.ru_inblock++;
2198 		rabp->b_flags |= B_ASYNC;
2199 		rabp->b_flags &= ~B_INVAL;
2200 		if ((flags & GB_CKHASH) != 0) {
2201 			rabp->b_flags |= B_CKHASH;
2202 			rabp->b_ckhashcalc = ckhashfunc;
2203 		}
2204 		rabp->b_ioflags &= ~BIO_ERROR;
2205 		rabp->b_iocmd = BIO_READ;
2206 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2207 			rabp->b_rcred = crhold(cred);
2208 		vfs_busy_pages(rabp, 0);
2209 		BUF_KERNPROC(rabp);
2210 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2211 		bstrategy(rabp);
2212 	}
2213 }
2214 
2215 /*
2216  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2217  *
2218  * Get a buffer with the specified data.  Look in the cache first.  We
2219  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2220  * is set, the buffer is valid and we do not have to do anything, see
2221  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2222  *
2223  * Always return a NULL buffer pointer (in bpp) when returning an error.
2224  *
2225  * The blkno parameter is the logical block being requested. Normally
2226  * the mapping of logical block number to disk block address is done
2227  * by calling VOP_BMAP(). However, if the mapping is already known, the
2228  * disk block address can be passed using the dblkno parameter. If the
2229  * disk block address is not known, then the same value should be passed
2230  * for blkno and dblkno.
2231  */
2232 int
breadn_flags(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *),struct buf ** bpp)2233 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2234     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2235     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2236 {
2237 	struct buf *bp;
2238 	struct thread *td;
2239 	int error, readwait, rv;
2240 
2241 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2242 	td = curthread;
2243 	/*
2244 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2245 	 * are specified.
2246 	 */
2247 	error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2248 	if (error != 0) {
2249 		*bpp = NULL;
2250 		return (error);
2251 	}
2252 	KASSERT(blkno == bp->b_lblkno,
2253 	    ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2254 	    (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2255 	flags &= ~GB_NOSPARSE;
2256 	*bpp = bp;
2257 
2258 	/*
2259 	 * If not found in cache, do some I/O
2260 	 */
2261 	readwait = 0;
2262 	if ((bp->b_flags & B_CACHE) == 0) {
2263 #ifdef RACCT
2264 		if (racct_enable) {
2265 			PROC_LOCK(td->td_proc);
2266 			racct_add_buf(td->td_proc, bp, 0);
2267 			PROC_UNLOCK(td->td_proc);
2268 		}
2269 #endif /* RACCT */
2270 		td->td_ru.ru_inblock++;
2271 		bp->b_iocmd = BIO_READ;
2272 		bp->b_flags &= ~B_INVAL;
2273 		if ((flags & GB_CKHASH) != 0) {
2274 			bp->b_flags |= B_CKHASH;
2275 			bp->b_ckhashcalc = ckhashfunc;
2276 		}
2277 		if ((flags & GB_CVTENXIO) != 0)
2278 			bp->b_xflags |= BX_CVTENXIO;
2279 		bp->b_ioflags &= ~BIO_ERROR;
2280 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2281 			bp->b_rcred = crhold(cred);
2282 		vfs_busy_pages(bp, 0);
2283 		bp->b_iooffset = dbtob(bp->b_blkno);
2284 		bstrategy(bp);
2285 		++readwait;
2286 	}
2287 
2288 	/*
2289 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2290 	 */
2291 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2292 
2293 	rv = 0;
2294 	if (readwait) {
2295 		rv = bufwait(bp);
2296 		if (rv != 0) {
2297 			brelse(bp);
2298 			*bpp = NULL;
2299 		}
2300 	}
2301 	return (rv);
2302 }
2303 
2304 /*
2305  * Write, release buffer on completion.  (Done by iodone
2306  * if async).  Do not bother writing anything if the buffer
2307  * is invalid.
2308  *
2309  * Note that we set B_CACHE here, indicating that buffer is
2310  * fully valid and thus cacheable.  This is true even of NFS
2311  * now so we set it generally.  This could be set either here
2312  * or in biodone() since the I/O is synchronous.  We put it
2313  * here.
2314  */
2315 int
bufwrite(struct buf * bp)2316 bufwrite(struct buf *bp)
2317 {
2318 	struct vnode *vp;
2319 	long space;
2320 	int oldflags, retval;
2321 	bool vp_md;
2322 
2323 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2324 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2325 		bp->b_flags |= B_INVAL | B_RELBUF;
2326 		bp->b_flags &= ~B_CACHE;
2327 		brelse(bp);
2328 		return (ENXIO);
2329 	}
2330 	if ((bp->b_flags & B_INVAL) != 0) {
2331 		brelse(bp);
2332 		return (0);
2333 	}
2334 
2335 	if ((bp->b_flags & B_BARRIER) != 0)
2336 		atomic_add_long(&barrierwrites, 1);
2337 
2338 	oldflags = bp->b_flags;
2339 
2340 	KASSERT((bp->b_vflags & BV_BKGRDINPROG) == 0,
2341 	    ("FFS background buffer should not get here %p", bp));
2342 
2343 	vp = bp->b_vp;
2344 	vp_md = vp != NULL && (vp->v_vflag & VV_MD) != 0;
2345 
2346 	/*
2347 	 * Mark the buffer clean.  Increment the bufobj write count
2348 	 * before bundirty() call, to prevent other thread from seeing
2349 	 * empty dirty list and zero counter for writes in progress,
2350 	 * falsely indicating that the bufobj is clean.
2351 	 */
2352 	bufobj_wref(bp->b_bufobj);
2353 	bundirty(bp);
2354 
2355 	bp->b_flags &= ~B_DONE;
2356 	bp->b_ioflags &= ~BIO_ERROR;
2357 	bp->b_flags |= B_CACHE;
2358 	bp->b_iocmd = BIO_WRITE;
2359 
2360 	vfs_busy_pages(bp, 1);
2361 
2362 	/*
2363 	 * Normal bwrites pipeline writes
2364 	 */
2365 	space = runningbufclaim(bp, bp->b_bufsize);
2366 
2367 #ifdef RACCT
2368 	if (racct_enable) {
2369 		PROC_LOCK(curproc);
2370 		racct_add_buf(curproc, bp, 1);
2371 		PROC_UNLOCK(curproc);
2372 	}
2373 #endif /* RACCT */
2374 	curthread->td_ru.ru_oublock++;
2375 	if ((oldflags & B_ASYNC) != 0)
2376 		BUF_KERNPROC(bp);
2377 	bp->b_iooffset = dbtob(bp->b_blkno);
2378 	buf_track(bp, __func__);
2379 	bstrategy(bp);
2380 
2381 	if ((oldflags & B_ASYNC) == 0) {
2382 		retval = bufwait(bp);
2383 		brelse(bp);
2384 		return (retval);
2385 	} else if (space > hirunningspace) {
2386 		/*
2387 		 * Don't allow the async write to saturate the I/O
2388 		 * system.  We do not block here if it is the update
2389 		 * or syncer daemon trying to clean up as that can
2390 		 * lead to deadlock.
2391 		 */
2392 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2393 			waitrunningbufspace();
2394 	}
2395 
2396 	return (0);
2397 }
2398 
2399 void
bufbdflush(struct bufobj * bo,struct buf * bp)2400 bufbdflush(struct bufobj *bo, struct buf *bp)
2401 {
2402 	struct buf *nbp;
2403 	struct bufdomain *bd;
2404 
2405 	bd = &bdomain[bo->bo_domain];
2406 	if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2407 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2408 		altbufferflushes++;
2409 	} else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2410 		BO_LOCK(bo);
2411 		/*
2412 		 * Try to find a buffer to flush.
2413 		 */
2414 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2415 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2416 			    BUF_LOCK(nbp,
2417 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2418 				continue;
2419 			if (bp == nbp)
2420 				panic("bdwrite: found ourselves");
2421 			BO_UNLOCK(bo);
2422 			/* Don't countdeps with the bo lock held. */
2423 			if (buf_countdeps(nbp, 0)) {
2424 				BO_LOCK(bo);
2425 				BUF_UNLOCK(nbp);
2426 				continue;
2427 			}
2428 			if (nbp->b_flags & B_CLUSTEROK) {
2429 				vfs_bio_awrite(nbp);
2430 			} else {
2431 				bremfree(nbp);
2432 				bawrite(nbp);
2433 			}
2434 			dirtybufferflushes++;
2435 			break;
2436 		}
2437 		if (nbp == NULL)
2438 			BO_UNLOCK(bo);
2439 	}
2440 }
2441 
2442 /*
2443  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2444  * anything if the buffer is marked invalid.
2445  *
2446  * Note that since the buffer must be completely valid, we can safely
2447  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2448  * biodone() in order to prevent getblk from writing the buffer
2449  * out synchronously.
2450  */
2451 void
bdwrite(struct buf * bp)2452 bdwrite(struct buf *bp)
2453 {
2454 	struct thread *td = curthread;
2455 	struct vnode *vp;
2456 	struct bufobj *bo;
2457 
2458 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2459 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2460 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2461 	    ("Barrier request in delayed write %p", bp));
2462 
2463 	if (bp->b_flags & B_INVAL) {
2464 		brelse(bp);
2465 		return;
2466 	}
2467 
2468 	/*
2469 	 * If we have too many dirty buffers, don't create any more.
2470 	 * If we are wildly over our limit, then force a complete
2471 	 * cleanup. Otherwise, just keep the situation from getting
2472 	 * out of control. Note that we have to avoid a recursive
2473 	 * disaster and not try to clean up after our own cleanup!
2474 	 */
2475 	vp = bp->b_vp;
2476 	bo = bp->b_bufobj;
2477 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2478 		td->td_pflags |= TDP_INBDFLUSH;
2479 		BO_BDFLUSH(bo, bp);
2480 		td->td_pflags &= ~TDP_INBDFLUSH;
2481 	} else
2482 		recursiveflushes++;
2483 
2484 	bdirty(bp);
2485 	/*
2486 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2487 	 * true even of NFS now.
2488 	 */
2489 	bp->b_flags |= B_CACHE;
2490 
2491 	/*
2492 	 * This bmap keeps the system from needing to do the bmap later,
2493 	 * perhaps when the system is attempting to do a sync.  Since it
2494 	 * is likely that the indirect block -- or whatever other datastructure
2495 	 * that the filesystem needs is still in memory now, it is a good
2496 	 * thing to do this.  Note also, that if the pageout daemon is
2497 	 * requesting a sync -- there might not be enough memory to do
2498 	 * the bmap then...  So, this is important to do.
2499 	 */
2500 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2501 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2502 	}
2503 
2504 	buf_track(bp, __func__);
2505 
2506 	/*
2507 	 * Set the *dirty* buffer range based upon the VM system dirty
2508 	 * pages.
2509 	 *
2510 	 * Mark the buffer pages as clean.  We need to do this here to
2511 	 * satisfy the vnode_pager and the pageout daemon, so that it
2512 	 * thinks that the pages have been "cleaned".  Note that since
2513 	 * the pages are in a delayed write buffer -- the VFS layer
2514 	 * "will" see that the pages get written out on the next sync,
2515 	 * or perhaps the cluster will be completed.
2516 	 */
2517 	vfs_clean_pages_dirty_buf(bp);
2518 	bqrelse(bp);
2519 
2520 	/*
2521 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2522 	 * due to the softdep code.
2523 	 */
2524 }
2525 
2526 /*
2527  *	bdirty:
2528  *
2529  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2530  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2531  *	itself to properly update it in the dirty/clean lists.  We mark it
2532  *	B_DONE to ensure that any asynchronization of the buffer properly
2533  *	clears B_DONE ( else a panic will occur later ).
2534  *
2535  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2536  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2537  *	should only be called if the buffer is known-good.
2538  *
2539  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2540  *	count.
2541  *
2542  *	The buffer must be on QUEUE_NONE.
2543  */
2544 void
bdirty(struct buf * bp)2545 bdirty(struct buf *bp)
2546 {
2547 
2548 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2549 	    bp, bp->b_vp, bp->b_flags);
2550 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2551 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2552 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2553 	bp->b_flags &= ~(B_RELBUF);
2554 	bp->b_iocmd = BIO_WRITE;
2555 
2556 	if ((bp->b_flags & B_DELWRI) == 0) {
2557 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2558 		reassignbuf(bp);
2559 		bdirtyadd(bp);
2560 	}
2561 }
2562 
2563 /*
2564  *	bundirty:
2565  *
2566  *	Clear B_DELWRI for buffer.
2567  *
2568  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2569  *	count.
2570  *
2571  *	The buffer must be on QUEUE_NONE.
2572  */
2573 
2574 void
bundirty(struct buf * bp)2575 bundirty(struct buf *bp)
2576 {
2577 
2578 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2579 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2580 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2581 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2582 
2583 	if (bp->b_flags & B_DELWRI) {
2584 		bp->b_flags &= ~B_DELWRI;
2585 		reassignbuf(bp);
2586 		bdirtysub(bp);
2587 	}
2588 	/*
2589 	 * Since it is now being written, we can clear its deferred write flag.
2590 	 */
2591 	bp->b_flags &= ~B_DEFERRED;
2592 }
2593 
2594 /*
2595  *	bawrite:
2596  *
2597  *	Asynchronous write.  Start output on a buffer, but do not wait for
2598  *	it to complete.  The buffer is released when the output completes.
2599  *
2600  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2601  *	B_INVAL buffers.  Not us.
2602  */
2603 void
bawrite(struct buf * bp)2604 bawrite(struct buf *bp)
2605 {
2606 
2607 	bp->b_flags |= B_ASYNC;
2608 	(void) bwrite(bp);
2609 }
2610 
2611 /*
2612  *	babarrierwrite:
2613  *
2614  *	Asynchronous barrier write.  Start output on a buffer, but do not
2615  *	wait for it to complete.  Place a write barrier after this write so
2616  *	that this buffer and all buffers written before it are committed to
2617  *	the disk before any buffers written after this write are committed
2618  *	to the disk.  The buffer is released when the output completes.
2619  */
2620 void
babarrierwrite(struct buf * bp)2621 babarrierwrite(struct buf *bp)
2622 {
2623 
2624 	bp->b_flags |= B_ASYNC | B_BARRIER;
2625 	(void) bwrite(bp);
2626 }
2627 
2628 /*
2629  *	bbarrierwrite:
2630  *
2631  *	Synchronous barrier write.  Start output on a buffer and wait for
2632  *	it to complete.  Place a write barrier after this write so that
2633  *	this buffer and all buffers written before it are committed to
2634  *	the disk before any buffers written after this write are committed
2635  *	to the disk.  The buffer is released when the output completes.
2636  */
2637 int
bbarrierwrite(struct buf * bp)2638 bbarrierwrite(struct buf *bp)
2639 {
2640 
2641 	bp->b_flags |= B_BARRIER;
2642 	return (bwrite(bp));
2643 }
2644 
2645 /*
2646  *	bwillwrite:
2647  *
2648  *	Called prior to the locking of any vnodes when we are expecting to
2649  *	write.  We do not want to starve the buffer cache with too many
2650  *	dirty buffers so we block here.  By blocking prior to the locking
2651  *	of any vnodes we attempt to avoid the situation where a locked vnode
2652  *	prevents the various system daemons from flushing related buffers.
2653  */
2654 void
bwillwrite(void)2655 bwillwrite(void)
2656 {
2657 
2658 	if (buf_dirty_count_severe()) {
2659 		mtx_lock(&bdirtylock);
2660 		while (buf_dirty_count_severe()) {
2661 			bdirtywait = 1;
2662 			msleep(&bdirtywait, &bdirtylock, PVFS, "flswai", 0);
2663 		}
2664 		mtx_unlock(&bdirtylock);
2665 	}
2666 }
2667 
2668 /*
2669  * Return true if we have too many dirty buffers.
2670  */
2671 int
buf_dirty_count_severe(void)2672 buf_dirty_count_severe(void)
2673 {
2674 
2675 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2676 }
2677 
2678 /*
2679  *	brelse:
2680  *
2681  *	Release a busy buffer and, if requested, free its resources.  The
2682  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2683  *	to be accessed later as a cache entity or reused for other purposes.
2684  */
2685 void
brelse(struct buf * bp)2686 brelse(struct buf *bp)
2687 {
2688 	struct mount *v_mnt;
2689 	int qindex;
2690 
2691 	/*
2692 	 * Many functions erroneously call brelse with a NULL bp under rare
2693 	 * error conditions. Simply return when called with a NULL bp.
2694 	 */
2695 	if (bp == NULL)
2696 		return;
2697 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2698 	    bp, bp->b_vp, bp->b_flags);
2699 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2700 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2701 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2702 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2703 
2704 	if (BUF_LOCKRECURSED(bp)) {
2705 		/*
2706 		 * Do not process, in particular, do not handle the
2707 		 * B_INVAL/B_RELBUF and do not release to free list.
2708 		 */
2709 		BUF_UNLOCK(bp);
2710 		return;
2711 	}
2712 
2713 	if (bp->b_flags & B_MANAGED) {
2714 		bqrelse(bp);
2715 		return;
2716 	}
2717 
2718 	if (LIST_EMPTY(&bp->b_dep)) {
2719 		bp->b_flags &= ~B_IOSTARTED;
2720 	} else {
2721 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2722 		    ("brelse: SU io not finished bp %p", bp));
2723 	}
2724 
2725 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2726 		BO_LOCK(bp->b_bufobj);
2727 		bp->b_vflags &= ~BV_BKGRDERR;
2728 		BO_UNLOCK(bp->b_bufobj);
2729 		bdirty(bp);
2730 	}
2731 
2732 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2733 	    (bp->b_flags & B_INVALONERR)) {
2734 		/*
2735 		 * Forced invalidation of dirty buffer contents, to be used
2736 		 * after a failed write in the rare case that the loss of the
2737 		 * contents is acceptable.  The buffer is invalidated and
2738 		 * freed.
2739 		 */
2740 		bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2741 		bp->b_flags &= ~(B_ASYNC | B_CACHE);
2742 	}
2743 
2744 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2745 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2746 	    !(bp->b_flags & B_INVAL)) {
2747 		/*
2748 		 * Failed write, redirty.  All errors except ENXIO (which
2749 		 * means the device is gone) are treated as being
2750 		 * transient.
2751 		 *
2752 		 * XXX Treating EIO as transient is not correct; the
2753 		 * contract with the local storage device drivers is that
2754 		 * they will only return EIO once the I/O is no longer
2755 		 * retriable.  Network I/O also respects this through the
2756 		 * guarantees of TCP and/or the internal retries of NFS.
2757 		 * ENOMEM might be transient, but we also have no way of
2758 		 * knowing when its ok to retry/reschedule.  In general,
2759 		 * this entire case should be made obsolete through better
2760 		 * error handling/recovery and resource scheduling.
2761 		 *
2762 		 * Do this also for buffers that failed with ENXIO, but have
2763 		 * non-empty dependencies - the soft updates code might need
2764 		 * to access the buffer to untangle them.
2765 		 *
2766 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2767 		 */
2768 		bp->b_ioflags &= ~BIO_ERROR;
2769 		bdirty(bp);
2770 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2771 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2772 		/*
2773 		 * Either a failed read I/O, or we were asked to free or not
2774 		 * cache the buffer, or we failed to write to a device that's
2775 		 * no longer present.
2776 		 */
2777 		bp->b_flags |= B_INVAL;
2778 		if (!LIST_EMPTY(&bp->b_dep))
2779 			buf_deallocate(bp);
2780 		if (bp->b_flags & B_DELWRI)
2781 			bdirtysub(bp);
2782 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2783 		if ((bp->b_flags & B_VMIO) == 0) {
2784 			allocbuf(bp, 0);
2785 			if (bp->b_vp)
2786 				brelvp(bp);
2787 		}
2788 	}
2789 
2790 	/*
2791 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2792 	 * is called with B_DELWRI set, the underlying pages may wind up
2793 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2794 	 * because pages associated with a B_DELWRI bp are marked clean.
2795 	 *
2796 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2797 	 * if B_DELWRI is set.
2798 	 */
2799 	if (bp->b_flags & B_DELWRI)
2800 		bp->b_flags &= ~B_RELBUF;
2801 
2802 	/*
2803 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2804 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2805 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2806 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2807 	 *
2808 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2809 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2810 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2811 	 *
2812 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2813 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2814 	 * the commit state and we cannot afford to lose the buffer. If the
2815 	 * buffer has a background write in progress, we need to keep it
2816 	 * around to prevent it from being reconstituted and starting a second
2817 	 * background write.
2818 	 */
2819 
2820 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2821 
2822 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2823 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2824 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2825 	    vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2826 		vfs_vmio_invalidate(bp);
2827 		allocbuf(bp, 0);
2828 	}
2829 
2830 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2831 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2832 		allocbuf(bp, 0);
2833 		bp->b_flags &= ~B_NOREUSE;
2834 		if (bp->b_vp != NULL)
2835 			brelvp(bp);
2836 	}
2837 
2838 	/*
2839 	 * If the buffer has junk contents signal it and eventually
2840 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2841 	 * doesn't find it.
2842 	 */
2843 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2844 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2845 		bp->b_flags |= B_INVAL;
2846 	if (bp->b_flags & B_INVAL) {
2847 		if (bp->b_flags & B_DELWRI)
2848 			bundirty(bp);
2849 		if (bp->b_vp)
2850 			brelvp(bp);
2851 	}
2852 
2853 	buf_track(bp, __func__);
2854 
2855 	/* buffers with no memory */
2856 	if (bp->b_bufsize == 0) {
2857 		buf_free(bp);
2858 		return;
2859 	}
2860 	/* buffers with junk contents */
2861 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2862 	    (bp->b_ioflags & BIO_ERROR)) {
2863 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2864 		if (bp->b_vflags & BV_BKGRDINPROG)
2865 			panic("losing buffer 2");
2866 		qindex = QUEUE_CLEAN;
2867 		bp->b_flags |= B_AGE;
2868 	/* remaining buffers */
2869 	} else if (bp->b_flags & B_DELWRI)
2870 		qindex = QUEUE_DIRTY;
2871 	else
2872 		qindex = QUEUE_CLEAN;
2873 
2874 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2875 		panic("brelse: not dirty");
2876 
2877 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2878 	bp->b_xflags &= ~(BX_CVTENXIO);
2879 	/* binsfree unlocks bp. */
2880 	binsfree(bp, qindex);
2881 }
2882 
2883 /*
2884  * Release a buffer back to the appropriate queue but do not try to free
2885  * it.  The buffer is expected to be used again soon.
2886  *
2887  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2888  * biodone() to requeue an async I/O on completion.  It is also used when
2889  * known good buffers need to be requeued but we think we may need the data
2890  * again soon.
2891  *
2892  * XXX we should be able to leave the B_RELBUF hint set on completion.
2893  */
2894 void
bqrelse(struct buf * bp)2895 bqrelse(struct buf *bp)
2896 {
2897 	int qindex;
2898 
2899 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2900 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2901 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2902 
2903 	qindex = QUEUE_NONE;
2904 	if (BUF_LOCKRECURSED(bp)) {
2905 		/* do not release to free list */
2906 		BUF_UNLOCK(bp);
2907 		return;
2908 	}
2909 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2910 	bp->b_xflags &= ~(BX_CVTENXIO);
2911 
2912 	if (LIST_EMPTY(&bp->b_dep)) {
2913 		bp->b_flags &= ~B_IOSTARTED;
2914 	} else {
2915 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2916 		    ("bqrelse: SU io not finished bp %p", bp));
2917 	}
2918 
2919 	if (bp->b_flags & B_MANAGED) {
2920 		if (bp->b_flags & B_REMFREE)
2921 			bremfreef(bp);
2922 		goto out;
2923 	}
2924 
2925 	/* buffers with stale but valid contents */
2926 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2927 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2928 		BO_LOCK(bp->b_bufobj);
2929 		bp->b_vflags &= ~BV_BKGRDERR;
2930 		BO_UNLOCK(bp->b_bufobj);
2931 		qindex = QUEUE_DIRTY;
2932 	} else {
2933 		if ((bp->b_flags & B_DELWRI) == 0 &&
2934 		    (bp->b_xflags & BX_VNDIRTY))
2935 			panic("bqrelse: not dirty");
2936 		if ((bp->b_flags & B_NOREUSE) != 0) {
2937 			brelse(bp);
2938 			return;
2939 		}
2940 		qindex = QUEUE_CLEAN;
2941 	}
2942 	buf_track(bp, __func__);
2943 	/* binsfree unlocks bp. */
2944 	binsfree(bp, qindex);
2945 	return;
2946 
2947 out:
2948 	buf_track(bp, __func__);
2949 	/* unlock */
2950 	BUF_UNLOCK(bp);
2951 }
2952 
2953 /*
2954  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2955  * restore bogus pages.
2956  */
2957 static void
vfs_vmio_iodone(struct buf * bp)2958 vfs_vmio_iodone(struct buf *bp)
2959 {
2960 	vm_ooffset_t foff;
2961 	vm_page_t m;
2962 	vm_object_t obj;
2963 	struct vnode *vp __unused;
2964 	int i, iosize, resid;
2965 	bool bogus;
2966 
2967 	obj = bp->b_bufobj->bo_object;
2968 	KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2969 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2970 	    blockcount_read(&obj->paging_in_progress), bp->b_npages));
2971 
2972 	vp = bp->b_vp;
2973 	VNPASS(vp->v_holdcnt > 0, vp);
2974 	VNPASS(vp->v_object != NULL, vp);
2975 
2976 	foff = bp->b_offset;
2977 	KASSERT(bp->b_offset != NOOFFSET,
2978 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2979 
2980 	bogus = false;
2981 	iosize = bp->b_bcount - bp->b_resid;
2982 	for (i = 0; i < bp->b_npages; i++) {
2983 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2984 		if (resid > iosize)
2985 			resid = iosize;
2986 
2987 		/*
2988 		 * cleanup bogus pages, restoring the originals
2989 		 */
2990 		m = bp->b_pages[i];
2991 		if (m == bogus_page) {
2992 			bogus = true;
2993 			m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2994 			if (m == NULL)
2995 				panic("biodone: page disappeared!");
2996 			bp->b_pages[i] = m;
2997 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2998 			/*
2999 			 * In the write case, the valid and clean bits are
3000 			 * already changed correctly ( see bdwrite() ), so we
3001 			 * only need to do this here in the read case.
3002 			 */
3003 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
3004 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
3005 			    "has unexpected dirty bits", m));
3006 			vfs_page_set_valid(bp, foff, m);
3007 		}
3008 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
3009 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
3010 		    (intmax_t)foff, (uintmax_t)m->pindex));
3011 
3012 		vm_page_sunbusy(m);
3013 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3014 		iosize -= resid;
3015 	}
3016 	vm_object_pip_wakeupn(obj, bp->b_npages);
3017 	if (bogus && buf_mapped(bp)) {
3018 		BUF_CHECK_MAPPED(bp);
3019 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3020 		    bp->b_pages, bp->b_npages);
3021 	}
3022 }
3023 
3024 /*
3025  * Perform page invalidation when a buffer is released.  The fully invalid
3026  * pages will be reclaimed later in vfs_vmio_truncate().
3027  */
3028 static void
vfs_vmio_invalidate(struct buf * bp)3029 vfs_vmio_invalidate(struct buf *bp)
3030 {
3031 	vm_object_t obj;
3032 	vm_page_t m;
3033 	int flags, i, resid, poffset, presid;
3034 
3035 	if (buf_mapped(bp)) {
3036 		BUF_CHECK_MAPPED(bp);
3037 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
3038 	} else
3039 		BUF_CHECK_UNMAPPED(bp);
3040 	/*
3041 	 * Get the base offset and length of the buffer.  Note that
3042 	 * in the VMIO case if the buffer block size is not
3043 	 * page-aligned then b_data pointer may not be page-aligned.
3044 	 * But our b_pages[] array *IS* page aligned.
3045 	 *
3046 	 * block sizes less then DEV_BSIZE (usually 512) are not
3047 	 * supported due to the page granularity bits (m->valid,
3048 	 * m->dirty, etc...).
3049 	 *
3050 	 * See man buf(9) for more information
3051 	 */
3052 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3053 	obj = bp->b_bufobj->bo_object;
3054 	resid = bp->b_bufsize;
3055 	poffset = bp->b_offset & PAGE_MASK;
3056 	VM_OBJECT_WLOCK(obj);
3057 	for (i = 0; i < bp->b_npages; i++) {
3058 		m = bp->b_pages[i];
3059 		if (m == bogus_page)
3060 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
3061 		bp->b_pages[i] = NULL;
3062 
3063 		presid = resid > (PAGE_SIZE - poffset) ?
3064 		    (PAGE_SIZE - poffset) : resid;
3065 		KASSERT(presid >= 0, ("brelse: extra page"));
3066 		vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3067 		if (pmap_page_wired_mappings(m) == 0)
3068 			vm_page_set_invalid(m, poffset, presid);
3069 		vm_page_sunbusy(m);
3070 		vm_page_release_locked(m, flags);
3071 		resid -= presid;
3072 		poffset = 0;
3073 	}
3074 	VM_OBJECT_WUNLOCK(obj);
3075 	bp->b_npages = 0;
3076 }
3077 
3078 /*
3079  * Page-granular truncation of an existing VMIO buffer.
3080  */
3081 static void
vfs_vmio_truncate(struct buf * bp,int desiredpages)3082 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3083 {
3084 	vm_object_t obj;
3085 	vm_page_t m;
3086 	int flags, i;
3087 
3088 	if (bp->b_npages == desiredpages)
3089 		return;
3090 
3091 	if (buf_mapped(bp)) {
3092 		BUF_CHECK_MAPPED(bp);
3093 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3094 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3095 	} else
3096 		BUF_CHECK_UNMAPPED(bp);
3097 
3098 	/*
3099 	 * The object lock is needed only if we will attempt to free pages.
3100 	 */
3101 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3102 	if ((bp->b_flags & B_DIRECT) != 0) {
3103 		flags |= VPR_TRYFREE;
3104 		obj = bp->b_bufobj->bo_object;
3105 		VM_OBJECT_WLOCK(obj);
3106 	} else {
3107 		obj = NULL;
3108 	}
3109 	for (i = desiredpages; i < bp->b_npages; i++) {
3110 		m = bp->b_pages[i];
3111 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3112 		bp->b_pages[i] = NULL;
3113 		if (obj != NULL)
3114 			vm_page_release_locked(m, flags);
3115 		else
3116 			vm_page_release(m, flags);
3117 	}
3118 	if (obj != NULL)
3119 		VM_OBJECT_WUNLOCK(obj);
3120 	bp->b_npages = desiredpages;
3121 }
3122 
3123 /*
3124  * Byte granular extension of VMIO buffers.
3125  */
3126 static void
vfs_vmio_extend(struct buf * bp,int desiredpages,int size)3127 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3128 {
3129 	/*
3130 	 * We are growing the buffer, possibly in a
3131 	 * byte-granular fashion.
3132 	 */
3133 	vm_object_t obj;
3134 	vm_offset_t toff;
3135 	vm_offset_t tinc;
3136 	vm_page_t m;
3137 
3138 	/*
3139 	 * Step 1, bring in the VM pages from the object, allocating
3140 	 * them if necessary.  We must clear B_CACHE if these pages
3141 	 * are not valid for the range covered by the buffer.
3142 	 */
3143 	obj = bp->b_bufobj->bo_object;
3144 	if (bp->b_npages < desiredpages) {
3145 		KASSERT(desiredpages <= atop(maxbcachebuf),
3146 		    ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3147 		    bp, desiredpages, maxbcachebuf));
3148 
3149 		/*
3150 		 * We must allocate system pages since blocking
3151 		 * here could interfere with paging I/O, no
3152 		 * matter which process we are.
3153 		 *
3154 		 * Only exclusive busy can be tested here.
3155 		 * Blocking on shared busy might lead to
3156 		 * deadlocks once allocbuf() is called after
3157 		 * pages are vfs_busy_pages().
3158 		 */
3159 		(void)vm_page_grab_pages_unlocked(obj,
3160 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3161 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3162 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3163 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3164 		bp->b_npages = desiredpages;
3165 	}
3166 
3167 	/*
3168 	 * Step 2.  We've loaded the pages into the buffer,
3169 	 * we have to figure out if we can still have B_CACHE
3170 	 * set.  Note that B_CACHE is set according to the
3171 	 * byte-granular range ( bcount and size ), not the
3172 	 * aligned range ( newbsize ).
3173 	 *
3174 	 * The VM test is against m->valid, which is DEV_BSIZE
3175 	 * aligned.  Needless to say, the validity of the data
3176 	 * needs to also be DEV_BSIZE aligned.  Note that this
3177 	 * fails with NFS if the server or some other client
3178 	 * extends the file's EOF.  If our buffer is resized,
3179 	 * B_CACHE may remain set! XXX
3180 	 */
3181 	toff = bp->b_bcount;
3182 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3183 	while ((bp->b_flags & B_CACHE) && toff < size) {
3184 		vm_pindex_t pi;
3185 
3186 		if (tinc > (size - toff))
3187 			tinc = size - toff;
3188 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3189 		m = bp->b_pages[pi];
3190 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3191 		toff += tinc;
3192 		tinc = PAGE_SIZE;
3193 	}
3194 
3195 	/*
3196 	 * Step 3, fixup the KVA pmap.
3197 	 */
3198 	if (buf_mapped(bp))
3199 		bpmap_qenter(bp);
3200 	else
3201 		BUF_CHECK_UNMAPPED(bp);
3202 }
3203 
3204 /*
3205  * Check to see if a block at a particular lbn is available for a clustered
3206  * write.
3207  */
3208 static int
vfs_bio_clcheck(struct vnode * vp,int size,daddr_t lblkno,daddr_t blkno)3209 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3210 {
3211 	struct buf *bpa;
3212 	int match;
3213 
3214 	match = 0;
3215 
3216 	/* If the buf isn't in core skip it */
3217 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3218 		return (0);
3219 
3220 	/* If the buf is busy we don't want to wait for it */
3221 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3222 		return (0);
3223 
3224 	/* Only cluster with valid clusterable delayed write buffers */
3225 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3226 	    (B_DELWRI | B_CLUSTEROK))
3227 		goto done;
3228 
3229 	if (bpa->b_bufsize != size)
3230 		goto done;
3231 
3232 	/*
3233 	 * Check to see if it is in the expected place on disk and that the
3234 	 * block has been mapped.
3235 	 */
3236 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3237 		match = 1;
3238 done:
3239 	BUF_UNLOCK(bpa);
3240 	return (match);
3241 }
3242 
3243 /*
3244  *	vfs_bio_awrite:
3245  *
3246  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3247  *	This is much better then the old way of writing only one buffer at
3248  *	a time.  Note that we may not be presented with the buffers in the
3249  *	correct order, so we search for the cluster in both directions.
3250  */
3251 int
vfs_bio_awrite(struct buf * bp)3252 vfs_bio_awrite(struct buf *bp)
3253 {
3254 	struct bufobj *bo;
3255 	int i;
3256 	int j;
3257 	daddr_t lblkno = bp->b_lblkno;
3258 	struct vnode *vp = bp->b_vp;
3259 	int ncl;
3260 	int nwritten;
3261 	int size;
3262 	int maxcl;
3263 	int gbflags;
3264 
3265 	bo = &vp->v_bufobj;
3266 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3267 	/*
3268 	 * right now we support clustered writing only to regular files.  If
3269 	 * we find a clusterable block we could be in the middle of a cluster
3270 	 * rather then at the beginning.
3271 	 */
3272 	if ((vp->v_type == VREG) &&
3273 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3274 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3275 		size = vp->v_mount->mnt_stat.f_iosize;
3276 		maxcl = maxphys / size;
3277 
3278 		BO_RLOCK(bo);
3279 		for (i = 1; i < maxcl; i++)
3280 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3281 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3282 				break;
3283 
3284 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3285 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3286 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3287 				break;
3288 		BO_RUNLOCK(bo);
3289 		--j;
3290 		ncl = i + j;
3291 		/*
3292 		 * this is a possible cluster write
3293 		 */
3294 		if (ncl != 1) {
3295 			BUF_UNLOCK(bp);
3296 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3297 			    gbflags);
3298 			return (nwritten);
3299 		}
3300 	}
3301 	bremfree(bp);
3302 	bp->b_flags |= B_ASYNC;
3303 	/*
3304 	 * default (old) behavior, writing out only one block
3305 	 *
3306 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3307 	 */
3308 	nwritten = bp->b_bufsize;
3309 	(void) bwrite(bp);
3310 
3311 	return (nwritten);
3312 }
3313 
3314 /*
3315  *	getnewbuf_kva:
3316  *
3317  *	Allocate KVA for an empty buf header according to gbflags.
3318  */
3319 static int
getnewbuf_kva(struct buf * bp,int gbflags,int maxsize)3320 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3321 {
3322 
3323 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3324 		/*
3325 		 * In order to keep fragmentation sane we only allocate kva
3326 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3327 		 */
3328 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3329 
3330 		if (maxsize != bp->b_kvasize &&
3331 		    bufkva_alloc(bp, maxsize, gbflags))
3332 			return (ENOSPC);
3333 	}
3334 	return (0);
3335 }
3336 
3337 /*
3338  *	getnewbuf:
3339  *
3340  *	Find and initialize a new buffer header, freeing up existing buffers
3341  *	in the bufqueues as necessary.  The new buffer is returned locked.
3342  *
3343  *	We block if:
3344  *		We have insufficient buffer headers
3345  *		We have insufficient buffer space
3346  *		buffer_arena is too fragmented ( space reservation fails )
3347  *		If we have to flush dirty buffers ( but we try to avoid this )
3348  *
3349  *	The caller is responsible for releasing the reserved bufspace after
3350  *	allocbuf() is called.
3351  */
3352 static struct buf *
getnewbuf(struct vnode * vp,int slpflag,int slptimeo,int maxsize,int gbflags)3353 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3354 {
3355 	struct bufdomain *bd;
3356 	struct buf *bp;
3357 	bool metadata, reserved;
3358 
3359 	bp = NULL;
3360 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3361 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3362 	if (!unmapped_buf_allowed)
3363 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3364 
3365 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3366 	    vp->v_type == VCHR)
3367 		metadata = true;
3368 	else
3369 		metadata = false;
3370 	if (vp == NULL)
3371 		bd = &bdomain[0];
3372 	else
3373 		bd = &bdomain[vp->v_bufobj.bo_domain];
3374 
3375 	counter_u64_add(getnewbufcalls, 1);
3376 	reserved = false;
3377 	do {
3378 		if (reserved == false &&
3379 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3380 			counter_u64_add(getnewbufrestarts, 1);
3381 			continue;
3382 		}
3383 		reserved = true;
3384 		if ((bp = buf_alloc(bd)) == NULL) {
3385 			counter_u64_add(getnewbufrestarts, 1);
3386 			continue;
3387 		}
3388 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3389 			return (bp);
3390 		break;
3391 	} while (buf_recycle(bd, false) == 0);
3392 
3393 	if (reserved)
3394 		bufspace_release(bd, maxsize);
3395 	if (bp != NULL) {
3396 		bp->b_flags |= B_INVAL;
3397 		brelse(bp);
3398 	}
3399 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3400 
3401 	return (NULL);
3402 }
3403 
3404 /*
3405  *	buf_daemon:
3406  *
3407  *	buffer flushing daemon.  Buffers are normally flushed by the
3408  *	update daemon but if it cannot keep up this process starts to
3409  *	take the load in an attempt to prevent getnewbuf() from blocking.
3410  */
3411 static struct kproc_desc buf_kp = {
3412 	"bufdaemon",
3413 	buf_daemon,
3414 	&bufdaemonproc
3415 };
3416 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3417 
3418 static int
buf_flush(struct vnode * vp,struct bufdomain * bd,int target)3419 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3420 {
3421 	int flushed;
3422 
3423 	flushed = flushbufqueues(vp, bd, target, 0);
3424 	if (flushed == 0) {
3425 		/*
3426 		 * Could not find any buffers without rollback
3427 		 * dependencies, so just write the first one
3428 		 * in the hopes of eventually making progress.
3429 		 */
3430 		if (vp != NULL && target > 2)
3431 			target /= 2;
3432 		flushbufqueues(vp, bd, target, 1);
3433 	}
3434 	return (flushed);
3435 }
3436 
3437 static void
buf_daemon_shutdown(void * arg __unused,int howto __unused)3438 buf_daemon_shutdown(void *arg __unused, int howto __unused)
3439 {
3440 	int error;
3441 
3442 	if (KERNEL_PANICKED())
3443 		return;
3444 
3445 	mtx_lock(&bdlock);
3446 	bd_shutdown = true;
3447 	wakeup(&bd_request);
3448 	error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
3449 	    60 * hz);
3450 	mtx_unlock(&bdlock);
3451 	if (error != 0)
3452 		printf("bufdaemon wait error: %d\n", error);
3453 }
3454 
3455 static void
buf_daemon(void)3456 buf_daemon(void)
3457 {
3458 	struct bufdomain *bd;
3459 	int speedupreq;
3460 	int lodirty;
3461 	int i;
3462 
3463 	/*
3464 	 * This process needs to be suspended prior to shutdown sync.
3465 	 */
3466 	EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
3467 	    SHUTDOWN_PRI_LAST + 100);
3468 
3469 	/*
3470 	 * Start the buf clean daemons as children threads.
3471 	 */
3472 	for (i = 0 ; i < buf_domains; i++) {
3473 		int error;
3474 
3475 		error = kthread_add((void (*)(void *))bufspace_daemon,
3476 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3477 		if (error)
3478 			panic("error %d spawning bufspace daemon", error);
3479 	}
3480 
3481 	/*
3482 	 * This process is allowed to take the buffer cache to the limit
3483 	 */
3484 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3485 	mtx_lock(&bdlock);
3486 	while (!bd_shutdown) {
3487 		bd_request = 0;
3488 		mtx_unlock(&bdlock);
3489 
3490 		/*
3491 		 * Save speedupreq for this pass and reset to capture new
3492 		 * requests.
3493 		 */
3494 		speedupreq = bd_speedupreq;
3495 		bd_speedupreq = 0;
3496 
3497 		/*
3498 		 * Flush each domain sequentially according to its level and
3499 		 * the speedup request.
3500 		 */
3501 		for (i = 0; i < buf_domains; i++) {
3502 			bd = &bdomain[i];
3503 			if (speedupreq)
3504 				lodirty = bd->bd_numdirtybuffers / 2;
3505 			else
3506 				lodirty = bd->bd_lodirtybuffers;
3507 			while (bd->bd_numdirtybuffers > lodirty) {
3508 				if (buf_flush(NULL, bd,
3509 				    bd->bd_numdirtybuffers - lodirty) == 0)
3510 					break;
3511 				kern_yield(PRI_USER);
3512 			}
3513 		}
3514 
3515 		/*
3516 		 * Only clear bd_request if we have reached our low water
3517 		 * mark.  The buf_daemon normally waits 1 second and
3518 		 * then incrementally flushes any dirty buffers that have
3519 		 * built up, within reason.
3520 		 *
3521 		 * If we were unable to hit our low water mark and couldn't
3522 		 * find any flushable buffers, we sleep for a short period
3523 		 * to avoid endless loops on unlockable buffers.
3524 		 */
3525 		mtx_lock(&bdlock);
3526 		if (bd_shutdown)
3527 			break;
3528 		if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3529 			/*
3530 			 * We reached our low water mark, reset the
3531 			 * request and sleep until we are needed again.
3532 			 * The sleep is just so the suspend code works.
3533 			 */
3534 			bd_request = 0;
3535 			/*
3536 			 * Do an extra wakeup in case dirty threshold
3537 			 * changed via sysctl and the explicit transition
3538 			 * out of shortfall was missed.
3539 			 */
3540 			bdirtywakeup();
3541 			if (runningbufspace <= lorunningspace)
3542 				runningwakeup();
3543 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3544 		} else {
3545 			/*
3546 			 * We couldn't find any flushable dirty buffers but
3547 			 * still have too many dirty buffers, we
3548 			 * have to sleep and try again.  (rare)
3549 			 */
3550 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3551 		}
3552 	}
3553 	wakeup(&bd_shutdown);
3554 	mtx_unlock(&bdlock);
3555 	kthread_exit();
3556 }
3557 
3558 /*
3559  *	flushbufqueues:
3560  *
3561  *	Try to flush a buffer in the dirty queue.  We must be careful to
3562  *	free up B_INVAL buffers instead of write them, which NFS is
3563  *	particularly sensitive to.
3564  */
3565 static int flushwithdeps = 0;
3566 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3567     &flushwithdeps, 0,
3568     "Number of buffers flushed with dependencies that require rollbacks");
3569 
3570 static int
flushbufqueues(struct vnode * lvp,struct bufdomain * bd,int target,int flushdeps)3571 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3572     int flushdeps)
3573 {
3574 	struct bufqueue *bq;
3575 	struct buf *sentinel;
3576 	struct vnode *vp;
3577 	struct mount *mp;
3578 	struct buf *bp;
3579 	int hasdeps;
3580 	int flushed;
3581 	int error;
3582 	bool unlock;
3583 
3584 	flushed = 0;
3585 	bq = &bd->bd_dirtyq;
3586 	bp = NULL;
3587 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3588 	sentinel->b_qindex = QUEUE_SENTINEL;
3589 	BQ_LOCK(bq);
3590 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3591 	BQ_UNLOCK(bq);
3592 	while (flushed != target) {
3593 		maybe_yield();
3594 		BQ_LOCK(bq);
3595 		bp = TAILQ_NEXT(sentinel, b_freelist);
3596 		if (bp != NULL) {
3597 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3598 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3599 			    b_freelist);
3600 		} else {
3601 			BQ_UNLOCK(bq);
3602 			break;
3603 		}
3604 		/*
3605 		 * Skip sentinels inserted by other invocations of the
3606 		 * flushbufqueues(), taking care to not reorder them.
3607 		 *
3608 		 * Only flush the buffers that belong to the
3609 		 * vnode locked by the curthread.
3610 		 */
3611 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3612 		    bp->b_vp != lvp)) {
3613 			BQ_UNLOCK(bq);
3614 			continue;
3615 		}
3616 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3617 		BQ_UNLOCK(bq);
3618 		if (error != 0)
3619 			continue;
3620 
3621 		/*
3622 		 * BKGRDINPROG can only be set with the buf and bufobj
3623 		 * locks both held.  We tolerate a race to clear it here.
3624 		 */
3625 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3626 		    (bp->b_flags & B_DELWRI) == 0) {
3627 			BUF_UNLOCK(bp);
3628 			continue;
3629 		}
3630 		if (bp->b_flags & B_INVAL) {
3631 			bremfreef(bp);
3632 			brelse(bp);
3633 			flushed++;
3634 			continue;
3635 		}
3636 
3637 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3638 			if (flushdeps == 0) {
3639 				BUF_UNLOCK(bp);
3640 				continue;
3641 			}
3642 			hasdeps = 1;
3643 		} else
3644 			hasdeps = 0;
3645 		/*
3646 		 * We must hold the lock on a vnode before writing
3647 		 * one of its buffers. Otherwise we may confuse, or
3648 		 * in the case of a snapshot vnode, deadlock the
3649 		 * system.
3650 		 *
3651 		 * The lock order here is the reverse of the normal
3652 		 * of vnode followed by buf lock.  This is ok because
3653 		 * the NOWAIT will prevent deadlock.
3654 		 */
3655 		vp = bp->b_vp;
3656 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3657 			BUF_UNLOCK(bp);
3658 			continue;
3659 		}
3660 		if (lvp == NULL) {
3661 			unlock = true;
3662 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3663 		} else {
3664 			ASSERT_VOP_LOCKED(vp, "getbuf");
3665 			unlock = false;
3666 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3667 			    vn_lock(vp, LK_TRYUPGRADE);
3668 		}
3669 		if (error == 0) {
3670 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3671 			    bp, bp->b_vp, bp->b_flags);
3672 			if (curproc == bufdaemonproc) {
3673 				vfs_bio_awrite(bp);
3674 			} else {
3675 				bremfree(bp);
3676 				bwrite(bp);
3677 				counter_u64_add(notbufdflushes, 1);
3678 			}
3679 			vn_finished_write(mp);
3680 			if (unlock)
3681 				VOP_UNLOCK(vp);
3682 			flushwithdeps += hasdeps;
3683 			flushed++;
3684 
3685 			/*
3686 			 * Sleeping on runningbufspace while holding
3687 			 * vnode lock leads to deadlock.
3688 			 */
3689 			if (curproc == bufdaemonproc &&
3690 			    runningbufspace > hirunningspace)
3691 				waitrunningbufspace();
3692 			continue;
3693 		}
3694 		vn_finished_write(mp);
3695 		BUF_UNLOCK(bp);
3696 	}
3697 	BQ_LOCK(bq);
3698 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3699 	BQ_UNLOCK(bq);
3700 	free(sentinel, M_TEMP);
3701 	return (flushed);
3702 }
3703 
3704 /*
3705  * Check to see if a block is currently memory resident.
3706  */
3707 struct buf *
incore(struct bufobj * bo,daddr_t blkno)3708 incore(struct bufobj *bo, daddr_t blkno)
3709 {
3710 	return (gbincore_unlocked(bo, blkno));
3711 }
3712 
3713 /*
3714  * Returns true if no I/O is needed to access the
3715  * associated VM object.  This is like incore except
3716  * it also hunts around in the VM system for the data.
3717  */
3718 bool
inmem(struct vnode * vp,daddr_t blkno)3719 inmem(struct vnode * vp, daddr_t blkno)
3720 {
3721 	vm_object_t obj;
3722 	vm_offset_t toff, tinc, size;
3723 	vm_page_t m, n;
3724 	vm_ooffset_t off;
3725 	int valid;
3726 
3727 	ASSERT_VOP_LOCKED(vp, "inmem");
3728 
3729 	if (incore(&vp->v_bufobj, blkno))
3730 		return (true);
3731 	if (vp->v_mount == NULL)
3732 		return (false);
3733 	obj = vp->v_object;
3734 	if (obj == NULL)
3735 		return (false);
3736 
3737 	size = PAGE_SIZE;
3738 	if (size > vp->v_mount->mnt_stat.f_iosize)
3739 		size = vp->v_mount->mnt_stat.f_iosize;
3740 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3741 
3742 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3743 		m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3744 recheck:
3745 		if (m == NULL)
3746 			return (false);
3747 
3748 		tinc = size;
3749 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3750 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3751 		/*
3752 		 * Consider page validity only if page mapping didn't change
3753 		 * during the check.
3754 		 */
3755 		valid = vm_page_is_valid(m,
3756 		    (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3757 		n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3758 		if (m != n) {
3759 			m = n;
3760 			goto recheck;
3761 		}
3762 		if (!valid)
3763 			return (false);
3764 	}
3765 	return (true);
3766 }
3767 
3768 /*
3769  * Set the dirty range for a buffer based on the status of the dirty
3770  * bits in the pages comprising the buffer.  The range is limited
3771  * to the size of the buffer.
3772  *
3773  * Tell the VM system that the pages associated with this buffer
3774  * are clean.  This is used for delayed writes where the data is
3775  * going to go to disk eventually without additional VM intevention.
3776  *
3777  * Note that while we only really need to clean through to b_bcount, we
3778  * just go ahead and clean through to b_bufsize.
3779  */
3780 static void
vfs_clean_pages_dirty_buf(struct buf * bp)3781 vfs_clean_pages_dirty_buf(struct buf *bp)
3782 {
3783 	vm_ooffset_t foff, noff, eoff;
3784 	vm_page_t m;
3785 	int i;
3786 
3787 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3788 		return;
3789 
3790 	foff = bp->b_offset;
3791 	KASSERT(bp->b_offset != NOOFFSET,
3792 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3793 
3794 	vfs_busy_pages_acquire(bp);
3795 	vfs_setdirty_range(bp);
3796 	for (i = 0; i < bp->b_npages; i++) {
3797 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3798 		eoff = noff;
3799 		if (eoff > bp->b_offset + bp->b_bufsize)
3800 			eoff = bp->b_offset + bp->b_bufsize;
3801 		m = bp->b_pages[i];
3802 		vfs_page_set_validclean(bp, foff, m);
3803 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3804 		foff = noff;
3805 	}
3806 	vfs_busy_pages_release(bp);
3807 }
3808 
3809 static void
vfs_setdirty_range(struct buf * bp)3810 vfs_setdirty_range(struct buf *bp)
3811 {
3812 	vm_offset_t boffset;
3813 	vm_offset_t eoffset;
3814 	int i;
3815 
3816 	/*
3817 	 * test the pages to see if they have been modified directly
3818 	 * by users through the VM system.
3819 	 */
3820 	for (i = 0; i < bp->b_npages; i++)
3821 		vm_page_test_dirty(bp->b_pages[i]);
3822 
3823 	/*
3824 	 * Calculate the encompassing dirty range, boffset and eoffset,
3825 	 * (eoffset - boffset) bytes.
3826 	 */
3827 
3828 	for (i = 0; i < bp->b_npages; i++) {
3829 		if (bp->b_pages[i]->dirty)
3830 			break;
3831 	}
3832 	boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3833 
3834 	for (i = bp->b_npages - 1; i >= 0; --i) {
3835 		if (bp->b_pages[i]->dirty) {
3836 			break;
3837 		}
3838 	}
3839 	eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3840 
3841 	/*
3842 	 * Fit it to the buffer.
3843 	 */
3844 
3845 	if (eoffset > bp->b_bcount)
3846 		eoffset = bp->b_bcount;
3847 
3848 	/*
3849 	 * If we have a good dirty range, merge with the existing
3850 	 * dirty range.
3851 	 */
3852 
3853 	if (boffset < eoffset) {
3854 		if (bp->b_dirtyoff > boffset)
3855 			bp->b_dirtyoff = boffset;
3856 		if (bp->b_dirtyend < eoffset)
3857 			bp->b_dirtyend = eoffset;
3858 	}
3859 }
3860 
3861 /*
3862  * Allocate the KVA mapping for an existing buffer.
3863  * If an unmapped buffer is provided but a mapped buffer is requested, take
3864  * also care to properly setup mappings between pages and KVA.
3865  */
3866 static void
bp_unmapped_get_kva(struct buf * bp,daddr_t blkno,int size,int gbflags)3867 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3868 {
3869 	int bsize, maxsize, need_mapping, need_kva;
3870 	off_t offset;
3871 
3872 	need_mapping = bp->b_data == unmapped_buf &&
3873 	    (gbflags & GB_UNMAPPED) == 0;
3874 	need_kva = bp->b_kvabase == unmapped_buf &&
3875 	    bp->b_data == unmapped_buf &&
3876 	    (gbflags & GB_KVAALLOC) != 0;
3877 	if (!need_mapping && !need_kva)
3878 		return;
3879 
3880 	BUF_CHECK_UNMAPPED(bp);
3881 
3882 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3883 		/*
3884 		 * Buffer is not mapped, but the KVA was already
3885 		 * reserved at the time of the instantiation.  Use the
3886 		 * allocated space.
3887 		 */
3888 		goto has_addr;
3889 	}
3890 
3891 	/*
3892 	 * Calculate the amount of the address space we would reserve
3893 	 * if the buffer was mapped.
3894 	 */
3895 	bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3896 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3897 	offset = blkno * bsize;
3898 	maxsize = size + (offset & PAGE_MASK);
3899 	maxsize = imax(maxsize, bsize);
3900 
3901 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3902 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3903 			/*
3904 			 * XXXKIB: defragmentation cannot
3905 			 * succeed, not sure what else to do.
3906 			 */
3907 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3908 		}
3909 		counter_u64_add(mappingrestarts, 1);
3910 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3911 	}
3912 has_addr:
3913 	if (need_mapping) {
3914 		/* b_offset is handled by bpmap_qenter. */
3915 		bp->b_data = bp->b_kvabase;
3916 		BUF_CHECK_MAPPED(bp);
3917 		bpmap_qenter(bp);
3918 	}
3919 }
3920 
3921 struct buf *
getblk(struct vnode * vp,daddr_t blkno,int size,int slpflag,int slptimeo,int flags)3922 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3923     int flags)
3924 {
3925 	struct buf *bp;
3926 	int error;
3927 
3928 	error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3929 	if (error != 0)
3930 		return (NULL);
3931 	return (bp);
3932 }
3933 
3934 /*
3935  *	getblkx:
3936  *
3937  *	Get a block given a specified block and offset into a file/device.
3938  *	The buffers B_DONE bit will be cleared on return, making it almost
3939  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3940  *	return.  The caller should clear B_INVAL prior to initiating a
3941  *	READ.
3942  *
3943  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3944  *	an existing buffer.
3945  *
3946  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3947  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3948  *	and then cleared based on the backing VM.  If the previous buffer is
3949  *	non-0-sized but invalid, B_CACHE will be cleared.
3950  *
3951  *	If getblk() must create a new buffer, the new buffer is returned with
3952  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3953  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3954  *	backing VM.
3955  *
3956  *	getblk() also forces a bwrite() for any B_DELWRI buffer whose
3957  *	B_CACHE bit is clear.
3958  *
3959  *	What this means, basically, is that the caller should use B_CACHE to
3960  *	determine whether the buffer is fully valid or not and should clear
3961  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3962  *	the buffer by loading its data area with something, the caller needs
3963  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3964  *	the caller should set B_CACHE ( as an optimization ), else the caller
3965  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3966  *	a write attempt or if it was a successful read.  If the caller
3967  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3968  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3969  *
3970  *	The blkno parameter is the logical block being requested. Normally
3971  *	the mapping of logical block number to disk block address is done
3972  *	by calling VOP_BMAP(). However, if the mapping is already known, the
3973  *	disk block address can be passed using the dblkno parameter. If the
3974  *	disk block address is not known, then the same value should be passed
3975  *	for blkno and dblkno.
3976  */
3977 int
getblkx(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,int slpflag,int slptimeo,int flags,struct buf ** bpp)3978 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3979     int slptimeo, int flags, struct buf **bpp)
3980 {
3981 	struct buf *bp;
3982 	struct bufobj *bo;
3983 	daddr_t d_blkno;
3984 	int bsize, error, maxsize, vmio;
3985 	off_t offset;
3986 
3987 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3988 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3989 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3990 	if (vp->v_type != VCHR)
3991 		ASSERT_VOP_LOCKED(vp, "getblk");
3992 	if (size > maxbcachebuf) {
3993 		printf("getblkx: size(%d) > maxbcachebuf(%d)\n", size,
3994 		    maxbcachebuf);
3995 		return (EIO);
3996 	}
3997 	if (!unmapped_buf_allowed)
3998 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3999 
4000 	bo = &vp->v_bufobj;
4001 	d_blkno = dblkno;
4002 
4003 	/* Attempt lockless lookup first. */
4004 	bp = gbincore_unlocked(bo, blkno);
4005 	if (bp == NULL) {
4006 		/*
4007 		 * With GB_NOCREAT we must be sure about not finding the buffer
4008 		 * as it may have been reassigned during unlocked lookup.
4009 		 * If BO_NONSTERILE is still unset, no reassign has occurred.
4010 		 */
4011 		if ((flags & GB_NOCREAT) != 0) {
4012 			/* Ensure bo_flag is loaded after gbincore_unlocked. */
4013 			atomic_thread_fence_acq();
4014 			if ((bo->bo_flag & BO_NONSTERILE) == 0)
4015 				return (EEXIST);
4016 			goto loop;
4017 		}
4018 		goto newbuf_unlocked;
4019 	}
4020 
4021 	error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
4022 	    0);
4023 	if (error != 0) {
4024 		KASSERT(error == EBUSY,
4025 		    ("getblk: unexpected error %d from buf try-lock", error));
4026 		/*
4027 		 * We failed a buf try-lock.
4028 		 *
4029 		 * With GB_LOCK_NOWAIT, just return, rather than taking the
4030 		 * bufobj interlock and trying again, since we would probably
4031 		 * fail again anyway.  This is okay even if the buf's identity
4032 		 * changed and we contended on the wrong lock, as changing
4033 		 * identity itself requires the buf lock, and we could have
4034 		 * contended on the right lock.
4035 		 */
4036 		if ((flags & GB_LOCK_NOWAIT) != 0)
4037 			return (error);
4038 		goto loop;
4039 	}
4040 
4041 	/* Verify buf identify has not changed since lookup. */
4042 	if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
4043 		goto foundbuf_fastpath;
4044 
4045 	/* It changed, fallback to locked lookup. */
4046 	BUF_UNLOCK_RAW(bp);
4047 
4048 	/* As above, with GB_LOCK_NOWAIT, just return. */
4049 	if ((flags & GB_LOCK_NOWAIT) != 0)
4050 		return (EBUSY);
4051 
4052 loop:
4053 	BO_RLOCK(bo);
4054 	bp = gbincore(bo, blkno);
4055 	if (bp != NULL) {
4056 		int lockflags;
4057 
4058 		/*
4059 		 * Buffer is in-core.  If the buffer is not busy nor managed,
4060 		 * it must be on a queue.
4061 		 */
4062 		lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
4063 		    ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
4064 #ifdef WITNESS
4065 		lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
4066 #endif
4067 
4068 		error = BUF_TIMELOCK(bp, lockflags,
4069 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
4070 
4071 		/*
4072 		 * If we slept and got the lock we have to restart in case
4073 		 * the buffer changed identities.
4074 		 */
4075 		if (error == ENOLCK)
4076 			goto loop;
4077 		/* We timed out or were interrupted. */
4078 		else if (error != 0)
4079 			return (error);
4080 
4081 foundbuf_fastpath:
4082 		/* If recursed, assume caller knows the rules. */
4083 		if (BUF_LOCKRECURSED(bp))
4084 			goto end;
4085 
4086 		/*
4087 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
4088 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
4089 		 * and for a VMIO buffer B_CACHE is adjusted according to the
4090 		 * backing VM cache.
4091 		 */
4092 		if (bp->b_flags & B_INVAL)
4093 			bp->b_flags &= ~B_CACHE;
4094 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
4095 			bp->b_flags |= B_CACHE;
4096 		if (bp->b_flags & B_MANAGED)
4097 			MPASS(bp->b_qindex == QUEUE_NONE);
4098 		else
4099 			bremfree(bp);
4100 
4101 		/*
4102 		 * check for size inconsistencies for non-VMIO case.
4103 		 */
4104 		if (bp->b_bcount != size) {
4105 			if ((bp->b_flags & B_VMIO) == 0 ||
4106 			    (size > bp->b_kvasize)) {
4107 				if (bp->b_flags & B_DELWRI) {
4108 					bp->b_flags |= B_NOCACHE;
4109 					bwrite(bp);
4110 				} else {
4111 					if (LIST_EMPTY(&bp->b_dep)) {
4112 						bp->b_flags |= B_RELBUF;
4113 						brelse(bp);
4114 					} else {
4115 						bp->b_flags |= B_NOCACHE;
4116 						bwrite(bp);
4117 					}
4118 				}
4119 				goto loop;
4120 			}
4121 		}
4122 
4123 		/*
4124 		 * Handle the case of unmapped buffer which should
4125 		 * become mapped, or the buffer for which KVA
4126 		 * reservation is requested.
4127 		 */
4128 		bp_unmapped_get_kva(bp, blkno, size, flags);
4129 
4130 		/*
4131 		 * If the size is inconsistent in the VMIO case, we can resize
4132 		 * the buffer.  This might lead to B_CACHE getting set or
4133 		 * cleared.  If the size has not changed, B_CACHE remains
4134 		 * unchanged from its previous state.
4135 		 */
4136 		allocbuf(bp, size);
4137 
4138 		KASSERT(bp->b_offset != NOOFFSET,
4139 		    ("getblk: no buffer offset"));
4140 
4141 		/*
4142 		 * A buffer with B_DELWRI set and B_CACHE clear must
4143 		 * be committed before we can return the buffer in
4144 		 * order to prevent the caller from issuing a read
4145 		 * ( due to B_CACHE not being set ) and overwriting
4146 		 * it.
4147 		 *
4148 		 * Most callers, including NFS and FFS, need this to
4149 		 * operate properly either because they assume they
4150 		 * can issue a read if B_CACHE is not set, or because
4151 		 * ( for example ) an uncached B_DELWRI might loop due
4152 		 * to softupdates re-dirtying the buffer.  In the latter
4153 		 * case, B_CACHE is set after the first write completes,
4154 		 * preventing further loops.
4155 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
4156 		 * above while extending the buffer, we cannot allow the
4157 		 * buffer to remain with B_CACHE set after the write
4158 		 * completes or it will represent a corrupt state.  To
4159 		 * deal with this we set B_NOCACHE to scrap the buffer
4160 		 * after the write.
4161 		 *
4162 		 * We might be able to do something fancy, like setting
4163 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
4164 		 * so the below call doesn't set B_CACHE, but that gets real
4165 		 * confusing.  This is much easier.
4166 		 */
4167 
4168 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4169 			bp->b_flags |= B_NOCACHE;
4170 			bwrite(bp);
4171 			goto loop;
4172 		}
4173 		bp->b_flags &= ~B_DONE;
4174 	} else {
4175 		/*
4176 		 * Buffer is not in-core, create new buffer.  The buffer
4177 		 * returned by getnewbuf() is locked.  Note that the returned
4178 		 * buffer is also considered valid (not marked B_INVAL).
4179 		 */
4180 		BO_RUNLOCK(bo);
4181 newbuf_unlocked:
4182 		/*
4183 		 * If the user does not want us to create the buffer, bail out
4184 		 * here.
4185 		 */
4186 		if (flags & GB_NOCREAT)
4187 			return (EEXIST);
4188 
4189 		bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4190 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4191 		offset = blkno * bsize;
4192 		vmio = vp->v_object != NULL;
4193 		if (vmio) {
4194 			maxsize = size + (offset & PAGE_MASK);
4195 			if (maxsize > maxbcachebuf) {
4196 				printf(
4197 			    "getblkx: maxsize(%d) > maxbcachebuf(%d)\n",
4198 				    maxsize, maxbcachebuf);
4199 				return (EIO);
4200 			}
4201 		} else {
4202 			maxsize = size;
4203 			/* Do not allow non-VMIO notmapped buffers. */
4204 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4205 		}
4206 		maxsize = imax(maxsize, bsize);
4207 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
4208 		    !vn_isdisk(vp)) {
4209 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4210 			KASSERT(error != EOPNOTSUPP,
4211 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4212 			    vp));
4213 			if (error != 0)
4214 				return (error);
4215 			if (d_blkno == -1)
4216 				return (EJUSTRETURN);
4217 		}
4218 
4219 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4220 		if (bp == NULL) {
4221 			if (slpflag || slptimeo)
4222 				return (ETIMEDOUT);
4223 			/*
4224 			 * XXX This is here until the sleep path is diagnosed
4225 			 * enough to work under very low memory conditions.
4226 			 *
4227 			 * There's an issue on low memory, 4BSD+non-preempt
4228 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4229 			 * exhaustion occurs without sleeping for buffer
4230 			 * reclaimation.  This just sticks in a loop and
4231 			 * constantly attempts to allocate a buffer, which
4232 			 * hits exhaustion and tries to wakeup bufdaemon.
4233 			 * This never happens because we never yield.
4234 			 *
4235 			 * The real solution is to identify and fix these cases
4236 			 * so we aren't effectively busy-waiting in a loop
4237 			 * until the reclaimation path has cycles to run.
4238 			 */
4239 			kern_yield(PRI_USER);
4240 			goto loop;
4241 		}
4242 
4243 		/*
4244 		 *
4245 		 * Insert the buffer into the hash, so that it can
4246 		 * be found by incore.
4247 		 *
4248 		 * We don't hold the bufobj interlock while allocating the new
4249 		 * buffer.  Consequently, we can race on buffer creation.  This
4250 		 * can be a problem whether the vnode is locked or not.  If the
4251 		 * buffer is created out from under us, we have to throw away
4252 		 * the one we just created.
4253 		 */
4254 		bp->b_lblkno = blkno;
4255 		bp->b_blkno = d_blkno;
4256 		bp->b_offset = offset;
4257 		error = bgetvp(vp, bp);
4258 		if (error != 0) {
4259 			KASSERT(error == EEXIST,
4260 			    ("getblk: unexpected error %d from bgetvp",
4261 			    error));
4262 			bp->b_flags |= B_INVAL;
4263 			bufspace_release(bufdomain(bp), maxsize);
4264 			brelse(bp);
4265 			goto loop;
4266 		}
4267 
4268 		/*
4269 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4270 		 * buffer size starts out as 0, B_CACHE will be set by
4271 		 * allocbuf() for the VMIO case prior to it testing the
4272 		 * backing store for validity.
4273 		 */
4274 
4275 		if (vmio) {
4276 			bp->b_flags |= B_VMIO;
4277 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4278 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4279 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4280 		} else {
4281 			bp->b_flags &= ~B_VMIO;
4282 			KASSERT(bp->b_bufobj->bo_object == NULL,
4283 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4284 			    bp, bp->b_bufobj->bo_object));
4285 			BUF_CHECK_MAPPED(bp);
4286 		}
4287 
4288 		allocbuf(bp, size);
4289 		bufspace_release(bufdomain(bp), maxsize);
4290 		bp->b_flags &= ~B_DONE;
4291 	}
4292 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4293 end:
4294 	buf_track(bp, __func__);
4295 	KASSERT(bp->b_bufobj == bo,
4296 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4297 	*bpp = bp;
4298 	return (0);
4299 }
4300 
4301 /*
4302  * Get an empty, disassociated buffer of given size.  The buffer is initially
4303  * set to B_INVAL.
4304  */
4305 struct buf *
geteblk(int size,int flags)4306 geteblk(int size, int flags)
4307 {
4308 	struct buf *bp;
4309 	int maxsize;
4310 
4311 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4312 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4313 		if ((flags & GB_NOWAIT_BD) &&
4314 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4315 			return (NULL);
4316 	}
4317 	allocbuf(bp, size);
4318 	bufspace_release(bufdomain(bp), maxsize);
4319 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4320 	return (bp);
4321 }
4322 
4323 /*
4324  * Truncate the backing store for a non-vmio buffer.
4325  */
4326 static void
vfs_nonvmio_truncate(struct buf * bp,int newbsize)4327 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4328 {
4329 
4330 	if (bp->b_flags & B_MALLOC) {
4331 		/*
4332 		 * malloced buffers are not shrunk
4333 		 */
4334 		if (newbsize == 0) {
4335 			bufmallocadjust(bp, 0);
4336 			free(bp->b_data, M_BIOBUF);
4337 			bp->b_data = bp->b_kvabase;
4338 			bp->b_flags &= ~B_MALLOC;
4339 		}
4340 		return;
4341 	}
4342 	vm_hold_free_pages(bp, newbsize);
4343 	bufspace_adjust(bp, newbsize);
4344 }
4345 
4346 /*
4347  * Extend the backing for a non-VMIO buffer.
4348  */
4349 static void
vfs_nonvmio_extend(struct buf * bp,int newbsize)4350 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4351 {
4352 	caddr_t origbuf;
4353 	int origbufsize;
4354 
4355 	/*
4356 	 * We only use malloced memory on the first allocation.
4357 	 * and revert to page-allocated memory when the buffer
4358 	 * grows.
4359 	 *
4360 	 * There is a potential smp race here that could lead
4361 	 * to bufmallocspace slightly passing the max.  It
4362 	 * is probably extremely rare and not worth worrying
4363 	 * over.
4364 	 */
4365 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4366 	    bufmallocspace < maxbufmallocspace) {
4367 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4368 		bp->b_flags |= B_MALLOC;
4369 		bufmallocadjust(bp, newbsize);
4370 		return;
4371 	}
4372 
4373 	/*
4374 	 * If the buffer is growing on its other-than-first
4375 	 * allocation then we revert to the page-allocation
4376 	 * scheme.
4377 	 */
4378 	origbuf = NULL;
4379 	origbufsize = 0;
4380 	if (bp->b_flags & B_MALLOC) {
4381 		origbuf = bp->b_data;
4382 		origbufsize = bp->b_bufsize;
4383 		bp->b_data = bp->b_kvabase;
4384 		bufmallocadjust(bp, 0);
4385 		bp->b_flags &= ~B_MALLOC;
4386 		newbsize = round_page(newbsize);
4387 	}
4388 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4389 	    (vm_offset_t) bp->b_data + newbsize);
4390 	if (origbuf != NULL) {
4391 		bcopy(origbuf, bp->b_data, origbufsize);
4392 		free(origbuf, M_BIOBUF);
4393 	}
4394 	bufspace_adjust(bp, newbsize);
4395 }
4396 
4397 /*
4398  * This code constitutes the buffer memory from either anonymous system
4399  * memory (in the case of non-VMIO operations) or from an associated
4400  * VM object (in the case of VMIO operations).  This code is able to
4401  * resize a buffer up or down.
4402  *
4403  * Note that this code is tricky, and has many complications to resolve
4404  * deadlock or inconsistent data situations.  Tread lightly!!!
4405  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4406  * the caller.  Calling this code willy nilly can result in the loss of data.
4407  *
4408  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4409  * B_CACHE for the non-VMIO case.
4410  */
4411 int
allocbuf(struct buf * bp,int size)4412 allocbuf(struct buf *bp, int size)
4413 {
4414 	int newbsize;
4415 
4416 	if (bp->b_bcount == size)
4417 		return (1);
4418 
4419 	KASSERT(bp->b_kvasize == 0 || bp->b_kvasize >= size,
4420 	    ("allocbuf: buffer too small %p %#x %#x",
4421 	    bp, bp->b_kvasize, size));
4422 
4423 	newbsize = roundup2(size, DEV_BSIZE);
4424 	if ((bp->b_flags & B_VMIO) == 0) {
4425 		if ((bp->b_flags & B_MALLOC) == 0)
4426 			newbsize = round_page(newbsize);
4427 		/*
4428 		 * Just get anonymous memory from the kernel.  Don't
4429 		 * mess with B_CACHE.
4430 		 */
4431 		if (newbsize < bp->b_bufsize)
4432 			vfs_nonvmio_truncate(bp, newbsize);
4433 		else if (newbsize > bp->b_bufsize)
4434 			vfs_nonvmio_extend(bp, newbsize);
4435 	} else {
4436 		int desiredpages;
4437 
4438 		desiredpages = size == 0 ? 0 :
4439 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4440 
4441 		KASSERT((bp->b_flags & B_MALLOC) == 0,
4442 		    ("allocbuf: VMIO buffer can't be malloced %p", bp));
4443 
4444 		/*
4445 		 * Set B_CACHE initially if buffer is 0 length or will become
4446 		 * 0-length.
4447 		 */
4448 		if (size == 0 || bp->b_bufsize == 0)
4449 			bp->b_flags |= B_CACHE;
4450 
4451 		if (newbsize < bp->b_bufsize)
4452 			vfs_vmio_truncate(bp, desiredpages);
4453 		/* XXX This looks as if it should be newbsize > b_bufsize */
4454 		else if (size > bp->b_bcount)
4455 			vfs_vmio_extend(bp, desiredpages, size);
4456 		bufspace_adjust(bp, newbsize);
4457 	}
4458 	bp->b_bcount = size;		/* requested buffer size. */
4459 	return (1);
4460 }
4461 
4462 extern int inflight_transient_maps;
4463 
4464 static struct bio_queue nondump_bios;
4465 
4466 void
biodone(struct bio * bp)4467 biodone(struct bio *bp)
4468 {
4469 	struct mtx *mtxp;
4470 	void (*done)(struct bio *);
4471 	vm_offset_t start, end;
4472 
4473 	biotrack(bp, __func__);
4474 
4475 	/*
4476 	 * Avoid completing I/O when dumping after a panic since that may
4477 	 * result in a deadlock in the filesystem or pager code.  Note that
4478 	 * this doesn't affect dumps that were started manually since we aim
4479 	 * to keep the system usable after it has been resumed.
4480 	 */
4481 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4482 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4483 		return;
4484 	}
4485 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4486 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4487 		bp->bio_flags |= BIO_UNMAPPED;
4488 		start = trunc_page((vm_offset_t)bp->bio_data);
4489 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4490 		bp->bio_data = unmapped_buf;
4491 		pmap_qremove(start, atop(end - start));
4492 		vmem_free(transient_arena, start, end - start);
4493 		atomic_add_int(&inflight_transient_maps, -1);
4494 	}
4495 	done = bp->bio_done;
4496 	/*
4497 	 * The check for done == biodone is to allow biodone to be
4498 	 * used as a bio_done routine.
4499 	 */
4500 	if (done == NULL || done == biodone) {
4501 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4502 		mtx_lock(mtxp);
4503 		bp->bio_flags |= BIO_DONE;
4504 		wakeup(bp);
4505 		mtx_unlock(mtxp);
4506 	} else
4507 		done(bp);
4508 }
4509 
4510 /*
4511  * Wait for a BIO to finish.
4512  */
4513 int
biowait(struct bio * bp,const char * wmesg)4514 biowait(struct bio *bp, const char *wmesg)
4515 {
4516 	struct mtx *mtxp;
4517 
4518 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4519 	mtx_lock(mtxp);
4520 	while ((bp->bio_flags & BIO_DONE) == 0)
4521 		msleep(bp, mtxp, PRIBIO, wmesg, 0);
4522 	mtx_unlock(mtxp);
4523 	if (bp->bio_error != 0)
4524 		return (bp->bio_error);
4525 	if (!(bp->bio_flags & BIO_ERROR))
4526 		return (0);
4527 	return (EIO);
4528 }
4529 
4530 void
biofinish(struct bio * bp,struct devstat * stat,int error)4531 biofinish(struct bio *bp, struct devstat *stat, int error)
4532 {
4533 
4534 	if (error) {
4535 		bp->bio_error = error;
4536 		bp->bio_flags |= BIO_ERROR;
4537 	}
4538 	if (stat != NULL)
4539 		devstat_end_transaction_bio(stat, bp);
4540 	biodone(bp);
4541 }
4542 
4543 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4544 void
biotrack_buf(struct bio * bp,const char * location)4545 biotrack_buf(struct bio *bp, const char *location)
4546 {
4547 
4548 	buf_track(bp->bio_track_bp, location);
4549 }
4550 #endif
4551 
4552 /*
4553  *	bufwait:
4554  *
4555  *	Wait for buffer I/O completion, returning error status.  The buffer
4556  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4557  *	error and cleared.
4558  */
4559 int
bufwait(struct buf * bp)4560 bufwait(struct buf *bp)
4561 {
4562 	if (bp->b_iocmd == BIO_READ)
4563 		bwait(bp, PRIBIO, "biord");
4564 	else
4565 		bwait(bp, PRIBIO, "biowr");
4566 	if (bp->b_flags & B_EINTR) {
4567 		bp->b_flags &= ~B_EINTR;
4568 		return (EINTR);
4569 	}
4570 	if (bp->b_ioflags & BIO_ERROR) {
4571 		return (bp->b_error ? bp->b_error : EIO);
4572 	} else {
4573 		return (0);
4574 	}
4575 }
4576 
4577 /*
4578  *	bufdone:
4579  *
4580  *	Finish I/O on a buffer, optionally calling a completion function.
4581  *	This is usually called from an interrupt so process blocking is
4582  *	not allowed.
4583  *
4584  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4585  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4586  *	assuming B_INVAL is clear.
4587  *
4588  *	For the VMIO case, we set B_CACHE if the op was a read and no
4589  *	read error occurred, or if the op was a write.  B_CACHE is never
4590  *	set if the buffer is invalid or otherwise uncacheable.
4591  *
4592  *	bufdone does not mess with B_INVAL, allowing the I/O routine or the
4593  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4594  *	in the biodone routine.
4595  */
4596 void
bufdone(struct buf * bp)4597 bufdone(struct buf *bp)
4598 {
4599 	struct bufobj *dropobj;
4600 	void    (*biodone)(struct buf *);
4601 
4602 	buf_track(bp, __func__);
4603 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4604 	dropobj = NULL;
4605 
4606 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4607 
4608 	runningbufwakeup(bp);
4609 	if (bp->b_iocmd == BIO_WRITE)
4610 		dropobj = bp->b_bufobj;
4611 	/* call optional completion function if requested */
4612 	if (bp->b_iodone != NULL) {
4613 		biodone = bp->b_iodone;
4614 		bp->b_iodone = NULL;
4615 		(*biodone) (bp);
4616 		if (dropobj)
4617 			bufobj_wdrop(dropobj);
4618 		return;
4619 	}
4620 	if (bp->b_flags & B_VMIO) {
4621 		/*
4622 		 * Set B_CACHE if the op was a normal read and no error
4623 		 * occurred.  B_CACHE is set for writes in the b*write()
4624 		 * routines.
4625 		 */
4626 		if (bp->b_iocmd == BIO_READ &&
4627 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4628 		    !(bp->b_ioflags & BIO_ERROR))
4629 			bp->b_flags |= B_CACHE;
4630 		vfs_vmio_iodone(bp);
4631 	}
4632 	if (!LIST_EMPTY(&bp->b_dep))
4633 		buf_complete(bp);
4634 	if ((bp->b_flags & B_CKHASH) != 0) {
4635 		KASSERT(bp->b_iocmd == BIO_READ,
4636 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4637 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4638 		(*bp->b_ckhashcalc)(bp);
4639 	}
4640 	/*
4641 	 * For asynchronous completions, release the buffer now. The brelse
4642 	 * will do a wakeup there if necessary - so no need to do a wakeup
4643 	 * here in the async case. The sync case always needs to do a wakeup.
4644 	 */
4645 	if (bp->b_flags & B_ASYNC) {
4646 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4647 		    (bp->b_ioflags & BIO_ERROR))
4648 			brelse(bp);
4649 		else
4650 			bqrelse(bp);
4651 	} else
4652 		bdone(bp);
4653 	if (dropobj)
4654 		bufobj_wdrop(dropobj);
4655 }
4656 
4657 /*
4658  * This routine is called in lieu of iodone in the case of
4659  * incomplete I/O.  This keeps the busy status for pages
4660  * consistent.
4661  */
4662 void
vfs_unbusy_pages(struct buf * bp)4663 vfs_unbusy_pages(struct buf *bp)
4664 {
4665 	int i;
4666 	vm_object_t obj;
4667 	vm_page_t m;
4668 
4669 	runningbufwakeup(bp);
4670 	if (!(bp->b_flags & B_VMIO))
4671 		return;
4672 
4673 	obj = bp->b_bufobj->bo_object;
4674 	for (i = 0; i < bp->b_npages; i++) {
4675 		m = bp->b_pages[i];
4676 		if (m == bogus_page) {
4677 			m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4678 			if (!m)
4679 				panic("vfs_unbusy_pages: page missing\n");
4680 			bp->b_pages[i] = m;
4681 			if (buf_mapped(bp)) {
4682 				BUF_CHECK_MAPPED(bp);
4683 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4684 				    bp->b_pages, bp->b_npages);
4685 			} else
4686 				BUF_CHECK_UNMAPPED(bp);
4687 		}
4688 		vm_page_sunbusy(m);
4689 	}
4690 	vm_object_pip_wakeupn(obj, bp->b_npages);
4691 }
4692 
4693 /*
4694  * vfs_page_set_valid:
4695  *
4696  *	Set the valid bits in a page based on the supplied offset.   The
4697  *	range is restricted to the buffer's size.
4698  *
4699  *	This routine is typically called after a read completes.
4700  */
4701 static void
vfs_page_set_valid(struct buf * bp,vm_ooffset_t off,vm_page_t m)4702 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4703 {
4704 	vm_ooffset_t eoff;
4705 
4706 	/*
4707 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4708 	 * page boundary and eoff is not greater than the end of the buffer.
4709 	 * The end of the buffer, in this case, is our file EOF, not the
4710 	 * allocation size of the buffer.
4711 	 */
4712 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4713 	if (eoff > bp->b_offset + bp->b_bcount)
4714 		eoff = bp->b_offset + bp->b_bcount;
4715 
4716 	/*
4717 	 * Set valid range.  This is typically the entire buffer and thus the
4718 	 * entire page.
4719 	 */
4720 	if (eoff > off)
4721 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4722 }
4723 
4724 /*
4725  * vfs_page_set_validclean:
4726  *
4727  *	Set the valid bits and clear the dirty bits in a page based on the
4728  *	supplied offset.   The range is restricted to the buffer's size.
4729  */
4730 static void
vfs_page_set_validclean(struct buf * bp,vm_ooffset_t off,vm_page_t m)4731 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4732 {
4733 	vm_ooffset_t soff, eoff;
4734 
4735 	/*
4736 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4737 	 * page boundary or cross the end of the buffer.  The end of the
4738 	 * buffer, in this case, is our file EOF, not the allocation size
4739 	 * of the buffer.
4740 	 */
4741 	soff = off;
4742 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4743 	if (eoff > bp->b_offset + bp->b_bcount)
4744 		eoff = bp->b_offset + bp->b_bcount;
4745 
4746 	/*
4747 	 * Set valid range.  This is typically the entire buffer and thus the
4748 	 * entire page.
4749 	 */
4750 	if (eoff > soff) {
4751 		vm_page_set_validclean(
4752 		    m,
4753 		   (vm_offset_t) (soff & PAGE_MASK),
4754 		   (vm_offset_t) (eoff - soff)
4755 		);
4756 	}
4757 }
4758 
4759 /*
4760  * Acquire a shared busy on all pages in the buf.
4761  */
4762 void
vfs_busy_pages_acquire(struct buf * bp)4763 vfs_busy_pages_acquire(struct buf *bp)
4764 {
4765 	int i;
4766 
4767 	for (i = 0; i < bp->b_npages; i++)
4768 		vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4769 }
4770 
4771 void
vfs_busy_pages_release(struct buf * bp)4772 vfs_busy_pages_release(struct buf *bp)
4773 {
4774 	int i;
4775 
4776 	for (i = 0; i < bp->b_npages; i++)
4777 		vm_page_sunbusy(bp->b_pages[i]);
4778 }
4779 
4780 /*
4781  * This routine is called before a device strategy routine.
4782  * It is used to tell the VM system that paging I/O is in
4783  * progress, and treat the pages associated with the buffer
4784  * almost as being exclusive busy.  Also the object paging_in_progress
4785  * flag is handled to make sure that the object doesn't become
4786  * inconsistent.
4787  *
4788  * Since I/O has not been initiated yet, certain buffer flags
4789  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4790  * and should be ignored.
4791  */
4792 void
vfs_busy_pages(struct buf * bp,int clear_modify)4793 vfs_busy_pages(struct buf *bp, int clear_modify)
4794 {
4795 	vm_object_t obj;
4796 	vm_ooffset_t foff;
4797 	vm_page_t m;
4798 	int i;
4799 	bool bogus;
4800 
4801 	if (!(bp->b_flags & B_VMIO))
4802 		return;
4803 
4804 	obj = bp->b_bufobj->bo_object;
4805 	foff = bp->b_offset;
4806 	KASSERT(bp->b_offset != NOOFFSET,
4807 	    ("vfs_busy_pages: no buffer offset"));
4808 	if ((bp->b_flags & B_CLUSTER) == 0) {
4809 		vm_object_pip_add(obj, bp->b_npages);
4810 		vfs_busy_pages_acquire(bp);
4811 	}
4812 	if (bp->b_bufsize != 0)
4813 		vfs_setdirty_range(bp);
4814 	bogus = false;
4815 	for (i = 0; i < bp->b_npages; i++) {
4816 		m = bp->b_pages[i];
4817 		vm_page_assert_sbusied(m);
4818 
4819 		/*
4820 		 * When readying a buffer for a read ( i.e
4821 		 * clear_modify == 0 ), it is important to do
4822 		 * bogus_page replacement for valid pages in
4823 		 * partially instantiated buffers.  Partially
4824 		 * instantiated buffers can, in turn, occur when
4825 		 * reconstituting a buffer from its VM backing store
4826 		 * base.  We only have to do this if B_CACHE is
4827 		 * clear ( which causes the I/O to occur in the
4828 		 * first place ).  The replacement prevents the read
4829 		 * I/O from overwriting potentially dirty VM-backed
4830 		 * pages.  XXX bogus page replacement is, uh, bogus.
4831 		 * It may not work properly with small-block devices.
4832 		 * We need to find a better way.
4833 		 */
4834 		if (clear_modify) {
4835 			pmap_remove_write(m);
4836 			vfs_page_set_validclean(bp, foff, m);
4837 		} else if (vm_page_all_valid(m) &&
4838 		    (bp->b_flags & B_CACHE) == 0) {
4839 			bp->b_pages[i] = bogus_page;
4840 			bogus = true;
4841 		}
4842 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4843 	}
4844 	if (bogus && buf_mapped(bp)) {
4845 		BUF_CHECK_MAPPED(bp);
4846 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4847 		    bp->b_pages, bp->b_npages);
4848 	}
4849 }
4850 
4851 /*
4852  *	vfs_bio_set_valid:
4853  *
4854  *	Set the range within the buffer to valid.  The range is
4855  *	relative to the beginning of the buffer, b_offset.  Note that
4856  *	b_offset itself may be offset from the beginning of the first
4857  *	page.
4858  */
4859 void
vfs_bio_set_valid(struct buf * bp,int base,int size)4860 vfs_bio_set_valid(struct buf *bp, int base, int size)
4861 {
4862 	int i, n;
4863 	vm_page_t m;
4864 
4865 	if (!(bp->b_flags & B_VMIO))
4866 		return;
4867 
4868 	/*
4869 	 * Fixup base to be relative to beginning of first page.
4870 	 * Set initial n to be the maximum number of bytes in the
4871 	 * first page that can be validated.
4872 	 */
4873 	base += (bp->b_offset & PAGE_MASK);
4874 	n = PAGE_SIZE - (base & PAGE_MASK);
4875 
4876 	/*
4877 	 * Busy may not be strictly necessary here because the pages are
4878 	 * unlikely to be fully valid and the vnode lock will synchronize
4879 	 * their access via getpages.  It is grabbed for consistency with
4880 	 * other page validation.
4881 	 */
4882 	vfs_busy_pages_acquire(bp);
4883 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4884 		m = bp->b_pages[i];
4885 		if (n > size)
4886 			n = size;
4887 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4888 		base += n;
4889 		size -= n;
4890 		n = PAGE_SIZE;
4891 	}
4892 	vfs_busy_pages_release(bp);
4893 }
4894 
4895 /*
4896  *	vfs_bio_clrbuf:
4897  *
4898  *	If the specified buffer is a non-VMIO buffer, clear the entire
4899  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4900  *	validate only the previously invalid portions of the buffer.
4901  *	This routine essentially fakes an I/O, so we need to clear
4902  *	BIO_ERROR and B_INVAL.
4903  *
4904  *	Note that while we only theoretically need to clear through b_bcount,
4905  *	we go ahead and clear through b_bufsize.
4906  */
4907 void
vfs_bio_clrbuf(struct buf * bp)4908 vfs_bio_clrbuf(struct buf *bp)
4909 {
4910 	int i, j, sa, ea, slide, zbits;
4911 	vm_page_bits_t mask;
4912 
4913 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4914 		clrbuf(bp);
4915 		return;
4916 	}
4917 	bp->b_flags &= ~B_INVAL;
4918 	bp->b_ioflags &= ~BIO_ERROR;
4919 	vfs_busy_pages_acquire(bp);
4920 	sa = bp->b_offset & PAGE_MASK;
4921 	slide = 0;
4922 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4923 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4924 		ea = slide & PAGE_MASK;
4925 		if (ea == 0)
4926 			ea = PAGE_SIZE;
4927 		if (bp->b_pages[i] == bogus_page)
4928 			continue;
4929 		j = sa / DEV_BSIZE;
4930 		zbits = (sizeof(vm_page_bits_t) * NBBY) -
4931 		    (ea - sa) / DEV_BSIZE;
4932 		mask = (VM_PAGE_BITS_ALL >> zbits) << j;
4933 		if ((bp->b_pages[i]->valid & mask) == mask)
4934 			continue;
4935 		if ((bp->b_pages[i]->valid & mask) == 0)
4936 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4937 		else {
4938 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4939 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4940 					pmap_zero_page_area(bp->b_pages[i],
4941 					    sa, DEV_BSIZE);
4942 				}
4943 			}
4944 		}
4945 		vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4946 		    roundup2(ea - sa, DEV_BSIZE));
4947 	}
4948 	vfs_busy_pages_release(bp);
4949 	bp->b_resid = 0;
4950 }
4951 
4952 void
vfs_bio_bzero_buf(struct buf * bp,int base,int size)4953 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4954 {
4955 	vm_page_t m;
4956 	int i, n;
4957 
4958 	if (buf_mapped(bp)) {
4959 		BUF_CHECK_MAPPED(bp);
4960 		bzero(bp->b_data + base, size);
4961 	} else {
4962 		BUF_CHECK_UNMAPPED(bp);
4963 		n = PAGE_SIZE - (base & PAGE_MASK);
4964 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4965 			m = bp->b_pages[i];
4966 			if (n > size)
4967 				n = size;
4968 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4969 			base += n;
4970 			size -= n;
4971 			n = PAGE_SIZE;
4972 		}
4973 	}
4974 }
4975 
4976 /*
4977  * Update buffer flags based on I/O request parameters, optionally releasing the
4978  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4979  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4980  * I/O).  Otherwise the buffer is released to the cache.
4981  */
4982 static void
b_io_dismiss(struct buf * bp,int ioflag,bool release)4983 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4984 {
4985 
4986 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4987 	    ("buf %p non-VMIO noreuse", bp));
4988 
4989 	if ((ioflag & IO_DIRECT) != 0)
4990 		bp->b_flags |= B_DIRECT;
4991 	if ((ioflag & IO_EXT) != 0)
4992 		bp->b_xflags |= BX_ALTDATA;
4993 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4994 		bp->b_flags |= B_RELBUF;
4995 		if ((ioflag & IO_NOREUSE) != 0)
4996 			bp->b_flags |= B_NOREUSE;
4997 		if (release)
4998 			brelse(bp);
4999 	} else if (release)
5000 		bqrelse(bp);
5001 }
5002 
5003 void
vfs_bio_brelse(struct buf * bp,int ioflag)5004 vfs_bio_brelse(struct buf *bp, int ioflag)
5005 {
5006 
5007 	b_io_dismiss(bp, ioflag, true);
5008 }
5009 
5010 void
vfs_bio_set_flags(struct buf * bp,int ioflag)5011 vfs_bio_set_flags(struct buf *bp, int ioflag)
5012 {
5013 
5014 	b_io_dismiss(bp, ioflag, false);
5015 }
5016 
5017 /*
5018  * vm_hold_load_pages and vm_hold_free_pages get pages into
5019  * a buffers address space.  The pages are anonymous and are
5020  * not associated with a file object.
5021  */
5022 static void
vm_hold_load_pages(struct buf * bp,vm_offset_t from,vm_offset_t to)5023 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
5024 {
5025 	vm_offset_t pg;
5026 	vm_page_t p;
5027 	int index;
5028 
5029 	BUF_CHECK_MAPPED(bp);
5030 
5031 	to = round_page(to);
5032 	from = round_page(from);
5033 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5034 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
5035 	KASSERT(to - from <= maxbcachebuf,
5036 	    ("vm_hold_load_pages too large %p %#jx %#jx %u",
5037 	    bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
5038 
5039 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
5040 		/*
5041 		 * note: must allocate system pages since blocking here
5042 		 * could interfere with paging I/O, no matter which
5043 		 * process we are.
5044 		 */
5045 		p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
5046 		    VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
5047 		pmap_qenter(pg, &p, 1);
5048 		bp->b_pages[index] = p;
5049 	}
5050 	bp->b_npages = index;
5051 }
5052 
5053 /* Return pages associated with this buf to the vm system */
5054 static void
vm_hold_free_pages(struct buf * bp,int newbsize)5055 vm_hold_free_pages(struct buf *bp, int newbsize)
5056 {
5057 	vm_offset_t from;
5058 	vm_page_t p;
5059 	int index, newnpages;
5060 
5061 	BUF_CHECK_MAPPED(bp);
5062 
5063 	from = round_page((vm_offset_t)bp->b_data + newbsize);
5064 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5065 	if (bp->b_npages > newnpages)
5066 		pmap_qremove(from, bp->b_npages - newnpages);
5067 	for (index = newnpages; index < bp->b_npages; index++) {
5068 		p = bp->b_pages[index];
5069 		bp->b_pages[index] = NULL;
5070 		vm_page_unwire_noq(p);
5071 		vm_page_free(p);
5072 	}
5073 	bp->b_npages = newnpages;
5074 }
5075 
5076 /*
5077  * Map an IO request into kernel virtual address space.
5078  *
5079  * All requests are (re)mapped into kernel VA space.
5080  * Notice that we use b_bufsize for the size of the buffer
5081  * to be mapped.  b_bcount might be modified by the driver.
5082  *
5083  * Note that even if the caller determines that the address space should
5084  * be valid, a race or a smaller-file mapped into a larger space may
5085  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
5086  * check the return value.
5087  *
5088  * This function only works with pager buffers.
5089  */
5090 int
vmapbuf(struct buf * bp,void * uaddr,size_t len,int mapbuf)5091 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
5092 {
5093 	vm_prot_t prot;
5094 	int pidx;
5095 
5096 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
5097 	prot = VM_PROT_READ;
5098 	if (bp->b_iocmd == BIO_READ)
5099 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
5100 	pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
5101 	    (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
5102 	if (pidx < 0)
5103 		return (-1);
5104 	bp->b_bufsize = len;
5105 	bp->b_npages = pidx;
5106 	bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
5107 	if (mapbuf || !unmapped_buf_allowed) {
5108 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
5109 		bp->b_data = bp->b_kvabase + bp->b_offset;
5110 	} else
5111 		bp->b_data = unmapped_buf;
5112 	return (0);
5113 }
5114 
5115 /*
5116  * Free the io map PTEs associated with this IO operation.
5117  * We also invalidate the TLB entries and restore the original b_addr.
5118  *
5119  * This function only works with pager buffers.
5120  */
5121 void
vunmapbuf(struct buf * bp)5122 vunmapbuf(struct buf *bp)
5123 {
5124 	int npages;
5125 
5126 	npages = bp->b_npages;
5127 	if (buf_mapped(bp))
5128 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5129 	vm_page_unhold_pages(bp->b_pages, npages);
5130 
5131 	bp->b_data = unmapped_buf;
5132 }
5133 
5134 void
bdone(struct buf * bp)5135 bdone(struct buf *bp)
5136 {
5137 	struct mtx *mtxp;
5138 
5139 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5140 	mtx_lock(mtxp);
5141 	bp->b_flags |= B_DONE;
5142 	wakeup(bp);
5143 	mtx_unlock(mtxp);
5144 }
5145 
5146 void
bwait(struct buf * bp,u_char pri,const char * wchan)5147 bwait(struct buf *bp, u_char pri, const char *wchan)
5148 {
5149 	struct mtx *mtxp;
5150 
5151 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5152 	mtx_lock(mtxp);
5153 	while ((bp->b_flags & B_DONE) == 0)
5154 		msleep(bp, mtxp, pri, wchan, 0);
5155 	mtx_unlock(mtxp);
5156 }
5157 
5158 int
bufsync(struct bufobj * bo,int waitfor)5159 bufsync(struct bufobj *bo, int waitfor)
5160 {
5161 
5162 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5163 }
5164 
5165 void
bufstrategy(struct bufobj * bo,struct buf * bp)5166 bufstrategy(struct bufobj *bo, struct buf *bp)
5167 {
5168 	int i __unused;
5169 	struct vnode *vp;
5170 
5171 	vp = bp->b_vp;
5172 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5173 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5174 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5175 	i = VOP_STRATEGY(vp, bp);
5176 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5177 }
5178 
5179 /*
5180  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
5181  */
5182 void
bufobj_init(struct bufobj * bo,void * private)5183 bufobj_init(struct bufobj *bo, void *private)
5184 {
5185 	static volatile int bufobj_cleanq;
5186 
5187         bo->bo_domain =
5188             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5189         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5190         bo->bo_private = private;
5191         TAILQ_INIT(&bo->bo_clean.bv_hd);
5192 	pctrie_init(&bo->bo_clean.bv_root);
5193         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5194 	pctrie_init(&bo->bo_dirty.bv_root);
5195 }
5196 
5197 void
bufobj_wrefl(struct bufobj * bo)5198 bufobj_wrefl(struct bufobj *bo)
5199 {
5200 
5201 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5202 	ASSERT_BO_WLOCKED(bo);
5203 	bo->bo_numoutput++;
5204 }
5205 
5206 void
bufobj_wref(struct bufobj * bo)5207 bufobj_wref(struct bufobj *bo)
5208 {
5209 
5210 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5211 	BO_LOCK(bo);
5212 	bo->bo_numoutput++;
5213 	BO_UNLOCK(bo);
5214 }
5215 
5216 void
bufobj_wdrop(struct bufobj * bo)5217 bufobj_wdrop(struct bufobj *bo)
5218 {
5219 
5220 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5221 	BO_LOCK(bo);
5222 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5223 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5224 		bo->bo_flag &= ~BO_WWAIT;
5225 		wakeup(&bo->bo_numoutput);
5226 	}
5227 	BO_UNLOCK(bo);
5228 }
5229 
5230 int
bufobj_wwait(struct bufobj * bo,int slpflag,int timeo)5231 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5232 {
5233 	int error;
5234 
5235 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5236 	ASSERT_BO_WLOCKED(bo);
5237 	error = 0;
5238 	while (bo->bo_numoutput) {
5239 		bo->bo_flag |= BO_WWAIT;
5240 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5241 		    slpflag | PRIBIO, "bo_wwait", timeo);
5242 		if (error)
5243 			break;
5244 	}
5245 	return (error);
5246 }
5247 
5248 /*
5249  * Set bio_data or bio_ma for struct bio from the struct buf.
5250  */
5251 void
bdata2bio(struct buf * bp,struct bio * bip)5252 bdata2bio(struct buf *bp, struct bio *bip)
5253 {
5254 
5255 	if (!buf_mapped(bp)) {
5256 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5257 		bip->bio_ma = bp->b_pages;
5258 		bip->bio_ma_n = bp->b_npages;
5259 		bip->bio_data = unmapped_buf;
5260 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5261 		bip->bio_flags |= BIO_UNMAPPED;
5262 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5263 		    PAGE_SIZE == bp->b_npages,
5264 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5265 		    (long long)bip->bio_length, bip->bio_ma_n));
5266 	} else {
5267 		bip->bio_data = bp->b_data;
5268 		bip->bio_ma = NULL;
5269 	}
5270 }
5271 
5272 struct memdesc
memdesc_bio(struct bio * bio)5273 memdesc_bio(struct bio *bio)
5274 {
5275 	if ((bio->bio_flags & BIO_VLIST) != 0)
5276 		return (memdesc_vlist((struct bus_dma_segment *)bio->bio_data,
5277 		    bio->bio_ma_n));
5278 
5279 	if ((bio->bio_flags & BIO_UNMAPPED) != 0)
5280 		return (memdesc_vmpages(bio->bio_ma, bio->bio_bcount,
5281 		    bio->bio_ma_offset));
5282 
5283 	return (memdesc_vaddr(bio->bio_data, bio->bio_bcount));
5284 }
5285 
5286 static int buf_pager_relbuf;
5287 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5288     &buf_pager_relbuf, 0,
5289     "Make buffer pager release buffers after reading");
5290 
5291 /*
5292  * The buffer pager.  It uses buffer reads to validate pages.
5293  *
5294  * In contrast to the generic local pager from vm/vnode_pager.c, this
5295  * pager correctly and easily handles volumes where the underlying
5296  * device block size is greater than the machine page size.  The
5297  * buffer cache transparently extends the requested page run to be
5298  * aligned at the block boundary, and does the necessary bogus page
5299  * replacements in the addends to avoid obliterating already valid
5300  * pages.
5301  *
5302  * The only non-trivial issue is that the exclusive busy state for
5303  * pages, which is assumed by the vm_pager_getpages() interface, is
5304  * incompatible with the VMIO buffer cache's desire to share-busy the
5305  * pages.  This function performs a trivial downgrade of the pages'
5306  * state before reading buffers, and a less trivial upgrade from the
5307  * shared-busy to excl-busy state after the read.
5308  */
5309 int
vfs_bio_getpages(struct vnode * vp,vm_page_t * ma,int count,int * rbehind,int * rahead,vbg_get_lblkno_t get_lblkno,vbg_get_blksize_t get_blksize)5310 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5311     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5312     vbg_get_blksize_t get_blksize)
5313 {
5314 	vm_page_t m;
5315 	vm_object_t object;
5316 	struct buf *bp;
5317 	struct mount *mp;
5318 	daddr_t lbn, lbnp;
5319 	vm_ooffset_t la, lb, poff, poffe;
5320 	long bo_bs, bsize;
5321 	int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5322 	bool redo, lpart;
5323 
5324 	object = vp->v_object;
5325 	mp = vp->v_mount;
5326 	error = 0;
5327 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5328 	if (la >= object->un_pager.vnp.vnp_size)
5329 		return (VM_PAGER_BAD);
5330 
5331 	/*
5332 	 * Change the meaning of la from where the last requested page starts
5333 	 * to where it ends, because that's the end of the requested region
5334 	 * and the start of the potential read-ahead region.
5335 	 */
5336 	la += PAGE_SIZE;
5337 	lpart = la > object->un_pager.vnp.vnp_size;
5338 	error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5339 	    &bo_bs);
5340 	if (error != 0)
5341 		return (VM_PAGER_ERROR);
5342 
5343 	/*
5344 	 * Calculate read-ahead, behind and total pages.
5345 	 */
5346 	pgsin = count;
5347 	lb = IDX_TO_OFF(ma[0]->pindex);
5348 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5349 	pgsin += pgsin_b;
5350 	if (rbehind != NULL)
5351 		*rbehind = pgsin_b;
5352 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5353 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5354 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5355 		    PAGE_SIZE) - la);
5356 	pgsin += pgsin_a;
5357 	if (rahead != NULL)
5358 		*rahead = pgsin_a;
5359 	VM_CNT_INC(v_vnodein);
5360 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5361 
5362 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5363 	    != 0) ? GB_UNMAPPED : 0;
5364 again:
5365 	for (i = 0; i < count; i++) {
5366 		if (ma[i] != bogus_page)
5367 			vm_page_busy_downgrade(ma[i]);
5368 	}
5369 
5370 	lbnp = -1;
5371 	for (i = 0; i < count; i++) {
5372 		m = ma[i];
5373 		if (m == bogus_page)
5374 			continue;
5375 
5376 		/*
5377 		 * Pages are shared busy and the object lock is not
5378 		 * owned, which together allow for the pages'
5379 		 * invalidation.  The racy test for validity avoids
5380 		 * useless creation of the buffer for the most typical
5381 		 * case when invalidation is not used in redo or for
5382 		 * parallel read.  The shared->excl upgrade loop at
5383 		 * the end of the function catches the race in a
5384 		 * reliable way (protected by the object lock).
5385 		 */
5386 		if (vm_page_all_valid(m))
5387 			continue;
5388 
5389 		poff = IDX_TO_OFF(m->pindex);
5390 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5391 		for (; poff < poffe; poff += bsize) {
5392 			lbn = get_lblkno(vp, poff);
5393 			if (lbn == lbnp)
5394 				goto next_page;
5395 			lbnp = lbn;
5396 
5397 			error = get_blksize(vp, lbn, &bsize);
5398 			if (error == 0)
5399 				error = bread_gb(vp, lbn, bsize,
5400 				    curthread->td_ucred, br_flags, &bp);
5401 			if (error != 0)
5402 				goto end_pages;
5403 			if (bp->b_rcred == curthread->td_ucred) {
5404 				crfree(bp->b_rcred);
5405 				bp->b_rcred = NOCRED;
5406 			}
5407 			if (LIST_EMPTY(&bp->b_dep)) {
5408 				/*
5409 				 * Invalidation clears m->valid, but
5410 				 * may leave B_CACHE flag if the
5411 				 * buffer existed at the invalidation
5412 				 * time.  In this case, recycle the
5413 				 * buffer to do real read on next
5414 				 * bread() after redo.
5415 				 *
5416 				 * Otherwise B_RELBUF is not strictly
5417 				 * necessary, enable to reduce buf
5418 				 * cache pressure.
5419 				 */
5420 				if (buf_pager_relbuf ||
5421 				    !vm_page_all_valid(m))
5422 					bp->b_flags |= B_RELBUF;
5423 
5424 				bp->b_flags &= ~B_NOCACHE;
5425 				brelse(bp);
5426 			} else {
5427 				bqrelse(bp);
5428 			}
5429 		}
5430 		KASSERT(1 /* racy, enable for debugging */ ||
5431 		    vm_page_all_valid(m) || i == count - 1,
5432 		    ("buf %d %p invalid", i, m));
5433 		if (i == count - 1 && lpart) {
5434 			if (!vm_page_none_valid(m) &&
5435 			    !vm_page_all_valid(m))
5436 				vm_page_zero_invalid(m, TRUE);
5437 		}
5438 next_page:;
5439 	}
5440 end_pages:
5441 
5442 	redo = false;
5443 	for (i = 0; i < count; i++) {
5444 		if (ma[i] == bogus_page)
5445 			continue;
5446 		if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5447 			vm_page_sunbusy(ma[i]);
5448 			ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5449 			    VM_ALLOC_NORMAL);
5450 		}
5451 
5452 		/*
5453 		 * Since the pages were only sbusy while neither the
5454 		 * buffer nor the object lock was held by us, or
5455 		 * reallocated while vm_page_grab() slept for busy
5456 		 * relinguish, they could have been invalidated.
5457 		 * Recheck the valid bits and re-read as needed.
5458 		 *
5459 		 * Note that the last page is made fully valid in the
5460 		 * read loop, and partial validity for the page at
5461 		 * index count - 1 could mean that the page was
5462 		 * invalidated or removed, so we must restart for
5463 		 * safety as well.
5464 		 */
5465 		if (!vm_page_all_valid(ma[i]))
5466 			redo = true;
5467 	}
5468 	if (redo && error == 0)
5469 		goto again;
5470 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5471 }
5472 
5473 #include "opt_ddb.h"
5474 #ifdef DDB
5475 #include <ddb/ddb.h>
5476 
5477 /* DDB command to show buffer data */
DB_SHOW_COMMAND(buffer,db_show_buffer)5478 DB_SHOW_COMMAND(buffer, db_show_buffer)
5479 {
5480 	/* get args */
5481 	struct buf *bp = (struct buf *)addr;
5482 #ifdef FULL_BUF_TRACKING
5483 	uint32_t i, j;
5484 #endif
5485 
5486 	if (!have_addr) {
5487 		db_printf("usage: show buffer <addr>\n");
5488 		return;
5489 	}
5490 
5491 	db_printf("buf at %p\n", bp);
5492 	db_printf("b_flags = 0x%b, b_xflags = 0x%b\n",
5493 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5494 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5495 	db_printf("b_vflags = 0x%b, b_ioflags = 0x%b\n",
5496 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5497 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5498 	db_printf(
5499 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5500 	    "b_bufobj = %p, b_data = %p\n"
5501 	    "b_blkno = %jd, b_lblkno = %jd, b_vp = %p, b_dep = %p\n",
5502 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5503 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5504 	    (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5505 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5506 	    bp->b_kvabase, bp->b_kvasize);
5507 	if (bp->b_npages) {
5508 		int i;
5509 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5510 		for (i = 0; i < bp->b_npages; i++) {
5511 			vm_page_t m;
5512 			m = bp->b_pages[i];
5513 			if (m != NULL)
5514 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5515 				    (u_long)m->pindex,
5516 				    (u_long)VM_PAGE_TO_PHYS(m));
5517 			else
5518 				db_printf("( ??? )");
5519 			if ((i + 1) < bp->b_npages)
5520 				db_printf(",");
5521 		}
5522 		db_printf("\n");
5523 	}
5524 	BUF_LOCKPRINTINFO(bp);
5525 #if defined(FULL_BUF_TRACKING)
5526 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5527 
5528 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5529 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5530 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5531 			continue;
5532 		db_printf(" %2u: %s\n", j,
5533 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5534 	}
5535 #elif defined(BUF_TRACKING)
5536 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5537 #endif
5538 }
5539 
DB_SHOW_COMMAND_FLAGS(bufqueues,bufqueues,DB_CMD_MEMSAFE)5540 DB_SHOW_COMMAND_FLAGS(bufqueues, bufqueues, DB_CMD_MEMSAFE)
5541 {
5542 	struct bufdomain *bd;
5543 	struct buf *bp;
5544 	long total;
5545 	int i, j, cnt;
5546 
5547 	db_printf("bqempty: %d\n", bqempty.bq_len);
5548 
5549 	for (i = 0; i < buf_domains; i++) {
5550 		bd = &bdomain[i];
5551 		db_printf("Buf domain %d\n", i);
5552 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5553 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5554 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5555 		db_printf("\n");
5556 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5557 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5558 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5559 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5560 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5561 		db_printf("\n");
5562 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5563 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5564 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5565 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5566 		db_printf("\n");
5567 		total = 0;
5568 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5569 			total += bp->b_bufsize;
5570 		db_printf("\tcleanq count\t%d (%ld)\n",
5571 		    bd->bd_cleanq->bq_len, total);
5572 		total = 0;
5573 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5574 			total += bp->b_bufsize;
5575 		db_printf("\tdirtyq count\t%d (%ld)\n",
5576 		    bd->bd_dirtyq.bq_len, total);
5577 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5578 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5579 		db_printf("\tCPU ");
5580 		for (j = 0; j <= mp_maxid; j++)
5581 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5582 		db_printf("\n");
5583 		cnt = 0;
5584 		total = 0;
5585 		for (j = 0; j < nbuf; j++) {
5586 			bp = nbufp(j);
5587 			if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5588 				cnt++;
5589 				total += bp->b_bufsize;
5590 			}
5591 		}
5592 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5593 		cnt = 0;
5594 		total = 0;
5595 		for (j = 0; j < nbuf; j++) {
5596 			bp = nbufp(j);
5597 			if (bp->b_domain == i) {
5598 				cnt++;
5599 				total += bp->b_bufsize;
5600 			}
5601 		}
5602 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5603 	}
5604 }
5605 
DB_SHOW_COMMAND_FLAGS(lockedbufs,lockedbufs,DB_CMD_MEMSAFE)5606 DB_SHOW_COMMAND_FLAGS(lockedbufs, lockedbufs, DB_CMD_MEMSAFE)
5607 {
5608 	struct buf *bp;
5609 	int i;
5610 
5611 	for (i = 0; i < nbuf; i++) {
5612 		bp = nbufp(i);
5613 		if (BUF_ISLOCKED(bp)) {
5614 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5615 			db_printf("\n");
5616 			if (db_pager_quit)
5617 				break;
5618 		}
5619 	}
5620 }
5621 
DB_SHOW_COMMAND(vnodebufs,db_show_vnodebufs)5622 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5623 {
5624 	struct vnode *vp;
5625 	struct buf *bp;
5626 
5627 	if (!have_addr) {
5628 		db_printf("usage: show vnodebufs <addr>\n");
5629 		return;
5630 	}
5631 	vp = (struct vnode *)addr;
5632 	db_printf("Clean buffers:\n");
5633 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5634 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5635 		db_printf("\n");
5636 	}
5637 	db_printf("Dirty buffers:\n");
5638 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5639 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5640 		db_printf("\n");
5641 	}
5642 }
5643 
DB_COMMAND_FLAGS(countfreebufs,db_coundfreebufs,DB_CMD_MEMSAFE)5644 DB_COMMAND_FLAGS(countfreebufs, db_coundfreebufs, DB_CMD_MEMSAFE)
5645 {
5646 	struct buf *bp;
5647 	int i, used = 0, nfree = 0;
5648 
5649 	if (have_addr) {
5650 		db_printf("usage: countfreebufs\n");
5651 		return;
5652 	}
5653 
5654 	for (i = 0; i < nbuf; i++) {
5655 		bp = nbufp(i);
5656 		if (bp->b_qindex == QUEUE_EMPTY)
5657 			nfree++;
5658 		else
5659 			used++;
5660 	}
5661 
5662 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5663 	    nfree + used);
5664 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5665 }
5666 #endif /* DDB */
5667