xref: /linux/mm/huge_memory.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/memory-tiers.h>
39 #include <linux/compat.h>
40 #include <linux/pgalloc_tag.h>
41 #include <linux/pagewalk.h>
42 
43 #include <asm/tlb.h>
44 #include <asm/pgalloc.h>
45 #include "internal.h"
46 #include "swap.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/thp.h>
50 
51 /*
52  * By default, transparent hugepage support is disabled in order to avoid
53  * risking an increased memory footprint for applications that are not
54  * guaranteed to benefit from it. When transparent hugepage support is
55  * enabled, it is for all mappings, and khugepaged scans all mappings.
56  * Defrag is invoked by khugepaged hugepage allocations and by page faults
57  * for all hugepage allocations.
58  */
59 unsigned long transparent_hugepage_flags __read_mostly =
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
61 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
62 #endif
63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
64 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
65 #endif
66 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
67 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
68 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
69 
70 static struct shrinker *deferred_split_shrinker;
71 static unsigned long deferred_split_count(struct shrinker *shrink,
72 					  struct shrink_control *sc);
73 static unsigned long deferred_split_scan(struct shrinker *shrink,
74 					 struct shrink_control *sc);
75 static bool split_underused_thp = true;
76 
77 static atomic_t huge_zero_refcount;
78 struct folio *huge_zero_folio __read_mostly;
79 unsigned long huge_zero_pfn __read_mostly = ~0UL;
80 unsigned long huge_anon_orders_always __read_mostly;
81 unsigned long huge_anon_orders_madvise __read_mostly;
82 unsigned long huge_anon_orders_inherit __read_mostly;
83 static bool anon_orders_configured __initdata;
84 
85 static inline bool file_thp_enabled(struct vm_area_struct *vma)
86 {
87 	struct inode *inode;
88 
89 	if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
90 		return false;
91 
92 	if (!vma->vm_file)
93 		return false;
94 
95 	inode = file_inode(vma->vm_file);
96 
97 	return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
98 }
99 
100 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
101 					 vm_flags_t vm_flags,
102 					 unsigned long tva_flags,
103 					 unsigned long orders)
104 {
105 	bool smaps = tva_flags & TVA_SMAPS;
106 	bool in_pf = tva_flags & TVA_IN_PF;
107 	bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
108 	unsigned long supported_orders;
109 
110 	/* Check the intersection of requested and supported orders. */
111 	if (vma_is_anonymous(vma))
112 		supported_orders = THP_ORDERS_ALL_ANON;
113 	else if (vma_is_special_huge(vma))
114 		supported_orders = THP_ORDERS_ALL_SPECIAL;
115 	else
116 		supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
117 
118 	orders &= supported_orders;
119 	if (!orders)
120 		return 0;
121 
122 	if (!vma->vm_mm)		/* vdso */
123 		return 0;
124 
125 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
126 		return 0;
127 
128 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
129 	if (vma_is_dax(vma))
130 		return in_pf ? orders : 0;
131 
132 	/*
133 	 * khugepaged special VMA and hugetlb VMA.
134 	 * Must be checked after dax since some dax mappings may have
135 	 * VM_MIXEDMAP set.
136 	 */
137 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
138 		return 0;
139 
140 	/*
141 	 * Check alignment for file vma and size for both file and anon vma by
142 	 * filtering out the unsuitable orders.
143 	 *
144 	 * Skip the check for page fault. Huge fault does the check in fault
145 	 * handlers.
146 	 */
147 	if (!in_pf) {
148 		int order = highest_order(orders);
149 		unsigned long addr;
150 
151 		while (orders) {
152 			addr = vma->vm_end - (PAGE_SIZE << order);
153 			if (thp_vma_suitable_order(vma, addr, order))
154 				break;
155 			order = next_order(&orders, order);
156 		}
157 
158 		if (!orders)
159 			return 0;
160 	}
161 
162 	/*
163 	 * Enabled via shmem mount options or sysfs settings.
164 	 * Must be done before hugepage flags check since shmem has its
165 	 * own flags.
166 	 */
167 	if (!in_pf && shmem_file(vma->vm_file))
168 		return orders & shmem_allowable_huge_orders(file_inode(vma->vm_file),
169 						   vma, vma->vm_pgoff, 0,
170 						   !enforce_sysfs);
171 
172 	if (!vma_is_anonymous(vma)) {
173 		/*
174 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
175 		 * were already handled in thp_vma_allowable_orders().
176 		 */
177 		if (enforce_sysfs &&
178 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
179 						    !hugepage_global_always())))
180 			return 0;
181 
182 		/*
183 		 * Trust that ->huge_fault() handlers know what they are doing
184 		 * in fault path.
185 		 */
186 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
187 			return orders;
188 		/* Only regular file is valid in collapse path */
189 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
190 			return orders;
191 		return 0;
192 	}
193 
194 	if (vma_is_temporary_stack(vma))
195 		return 0;
196 
197 	/*
198 	 * THPeligible bit of smaps should show 1 for proper VMAs even
199 	 * though anon_vma is not initialized yet.
200 	 *
201 	 * Allow page fault since anon_vma may be not initialized until
202 	 * the first page fault.
203 	 */
204 	if (!vma->anon_vma)
205 		return (smaps || in_pf) ? orders : 0;
206 
207 	return orders;
208 }
209 
210 static bool get_huge_zero_page(void)
211 {
212 	struct folio *zero_folio;
213 retry:
214 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
215 		return true;
216 
217 	zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
218 			HPAGE_PMD_ORDER);
219 	if (!zero_folio) {
220 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
221 		return false;
222 	}
223 	/* Ensure zero folio won't have large_rmappable flag set. */
224 	folio_clear_large_rmappable(zero_folio);
225 	preempt_disable();
226 	if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
227 		preempt_enable();
228 		folio_put(zero_folio);
229 		goto retry;
230 	}
231 	WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
232 
233 	/* We take additional reference here. It will be put back by shrinker */
234 	atomic_set(&huge_zero_refcount, 2);
235 	preempt_enable();
236 	count_vm_event(THP_ZERO_PAGE_ALLOC);
237 	return true;
238 }
239 
240 static void put_huge_zero_page(void)
241 {
242 	/*
243 	 * Counter should never go to zero here. Only shrinker can put
244 	 * last reference.
245 	 */
246 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
247 }
248 
249 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
250 {
251 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
252 		return READ_ONCE(huge_zero_folio);
253 
254 	if (!get_huge_zero_page())
255 		return NULL;
256 
257 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
258 		put_huge_zero_page();
259 
260 	return READ_ONCE(huge_zero_folio);
261 }
262 
263 void mm_put_huge_zero_folio(struct mm_struct *mm)
264 {
265 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
266 		put_huge_zero_page();
267 }
268 
269 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
270 					struct shrink_control *sc)
271 {
272 	/* we can free zero page only if last reference remains */
273 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
274 }
275 
276 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
277 				       struct shrink_control *sc)
278 {
279 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
280 		struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
281 		BUG_ON(zero_folio == NULL);
282 		WRITE_ONCE(huge_zero_pfn, ~0UL);
283 		folio_put(zero_folio);
284 		return HPAGE_PMD_NR;
285 	}
286 
287 	return 0;
288 }
289 
290 static struct shrinker *huge_zero_page_shrinker;
291 
292 #ifdef CONFIG_SYSFS
293 static ssize_t enabled_show(struct kobject *kobj,
294 			    struct kobj_attribute *attr, char *buf)
295 {
296 	const char *output;
297 
298 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
299 		output = "[always] madvise never";
300 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
301 			  &transparent_hugepage_flags))
302 		output = "always [madvise] never";
303 	else
304 		output = "always madvise [never]";
305 
306 	return sysfs_emit(buf, "%s\n", output);
307 }
308 
309 static ssize_t enabled_store(struct kobject *kobj,
310 			     struct kobj_attribute *attr,
311 			     const char *buf, size_t count)
312 {
313 	ssize_t ret = count;
314 
315 	if (sysfs_streq(buf, "always")) {
316 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
317 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
318 	} else if (sysfs_streq(buf, "madvise")) {
319 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
320 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
321 	} else if (sysfs_streq(buf, "never")) {
322 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
323 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
324 	} else
325 		ret = -EINVAL;
326 
327 	if (ret > 0) {
328 		int err = start_stop_khugepaged();
329 		if (err)
330 			ret = err;
331 	}
332 	return ret;
333 }
334 
335 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
336 
337 ssize_t single_hugepage_flag_show(struct kobject *kobj,
338 				  struct kobj_attribute *attr, char *buf,
339 				  enum transparent_hugepage_flag flag)
340 {
341 	return sysfs_emit(buf, "%d\n",
342 			  !!test_bit(flag, &transparent_hugepage_flags));
343 }
344 
345 ssize_t single_hugepage_flag_store(struct kobject *kobj,
346 				 struct kobj_attribute *attr,
347 				 const char *buf, size_t count,
348 				 enum transparent_hugepage_flag flag)
349 {
350 	unsigned long value;
351 	int ret;
352 
353 	ret = kstrtoul(buf, 10, &value);
354 	if (ret < 0)
355 		return ret;
356 	if (value > 1)
357 		return -EINVAL;
358 
359 	if (value)
360 		set_bit(flag, &transparent_hugepage_flags);
361 	else
362 		clear_bit(flag, &transparent_hugepage_flags);
363 
364 	return count;
365 }
366 
367 static ssize_t defrag_show(struct kobject *kobj,
368 			   struct kobj_attribute *attr, char *buf)
369 {
370 	const char *output;
371 
372 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
373 		     &transparent_hugepage_flags))
374 		output = "[always] defer defer+madvise madvise never";
375 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
376 			  &transparent_hugepage_flags))
377 		output = "always [defer] defer+madvise madvise never";
378 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
379 			  &transparent_hugepage_flags))
380 		output = "always defer [defer+madvise] madvise never";
381 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
382 			  &transparent_hugepage_flags))
383 		output = "always defer defer+madvise [madvise] never";
384 	else
385 		output = "always defer defer+madvise madvise [never]";
386 
387 	return sysfs_emit(buf, "%s\n", output);
388 }
389 
390 static ssize_t defrag_store(struct kobject *kobj,
391 			    struct kobj_attribute *attr,
392 			    const char *buf, size_t count)
393 {
394 	if (sysfs_streq(buf, "always")) {
395 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
396 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
397 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
398 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
399 	} else if (sysfs_streq(buf, "defer+madvise")) {
400 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
401 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
402 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
403 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
404 	} else if (sysfs_streq(buf, "defer")) {
405 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
406 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
407 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
408 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
409 	} else if (sysfs_streq(buf, "madvise")) {
410 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
411 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
412 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
413 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
414 	} else if (sysfs_streq(buf, "never")) {
415 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
416 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
417 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
418 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
419 	} else
420 		return -EINVAL;
421 
422 	return count;
423 }
424 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
425 
426 static ssize_t use_zero_page_show(struct kobject *kobj,
427 				  struct kobj_attribute *attr, char *buf)
428 {
429 	return single_hugepage_flag_show(kobj, attr, buf,
430 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
431 }
432 static ssize_t use_zero_page_store(struct kobject *kobj,
433 		struct kobj_attribute *attr, const char *buf, size_t count)
434 {
435 	return single_hugepage_flag_store(kobj, attr, buf, count,
436 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
437 }
438 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
439 
440 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
441 				   struct kobj_attribute *attr, char *buf)
442 {
443 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
444 }
445 static struct kobj_attribute hpage_pmd_size_attr =
446 	__ATTR_RO(hpage_pmd_size);
447 
448 static ssize_t split_underused_thp_show(struct kobject *kobj,
449 			    struct kobj_attribute *attr, char *buf)
450 {
451 	return sysfs_emit(buf, "%d\n", split_underused_thp);
452 }
453 
454 static ssize_t split_underused_thp_store(struct kobject *kobj,
455 			     struct kobj_attribute *attr,
456 			     const char *buf, size_t count)
457 {
458 	int err = kstrtobool(buf, &split_underused_thp);
459 
460 	if (err < 0)
461 		return err;
462 
463 	return count;
464 }
465 
466 static struct kobj_attribute split_underused_thp_attr = __ATTR(
467 	shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
468 
469 static struct attribute *hugepage_attr[] = {
470 	&enabled_attr.attr,
471 	&defrag_attr.attr,
472 	&use_zero_page_attr.attr,
473 	&hpage_pmd_size_attr.attr,
474 #ifdef CONFIG_SHMEM
475 	&shmem_enabled_attr.attr,
476 #endif
477 	&split_underused_thp_attr.attr,
478 	NULL,
479 };
480 
481 static const struct attribute_group hugepage_attr_group = {
482 	.attrs = hugepage_attr,
483 };
484 
485 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
486 static void thpsize_release(struct kobject *kobj);
487 static DEFINE_SPINLOCK(huge_anon_orders_lock);
488 static LIST_HEAD(thpsize_list);
489 
490 static ssize_t anon_enabled_show(struct kobject *kobj,
491 				 struct kobj_attribute *attr, char *buf)
492 {
493 	int order = to_thpsize(kobj)->order;
494 	const char *output;
495 
496 	if (test_bit(order, &huge_anon_orders_always))
497 		output = "[always] inherit madvise never";
498 	else if (test_bit(order, &huge_anon_orders_inherit))
499 		output = "always [inherit] madvise never";
500 	else if (test_bit(order, &huge_anon_orders_madvise))
501 		output = "always inherit [madvise] never";
502 	else
503 		output = "always inherit madvise [never]";
504 
505 	return sysfs_emit(buf, "%s\n", output);
506 }
507 
508 static ssize_t anon_enabled_store(struct kobject *kobj,
509 				  struct kobj_attribute *attr,
510 				  const char *buf, size_t count)
511 {
512 	int order = to_thpsize(kobj)->order;
513 	ssize_t ret = count;
514 
515 	if (sysfs_streq(buf, "always")) {
516 		spin_lock(&huge_anon_orders_lock);
517 		clear_bit(order, &huge_anon_orders_inherit);
518 		clear_bit(order, &huge_anon_orders_madvise);
519 		set_bit(order, &huge_anon_orders_always);
520 		spin_unlock(&huge_anon_orders_lock);
521 	} else if (sysfs_streq(buf, "inherit")) {
522 		spin_lock(&huge_anon_orders_lock);
523 		clear_bit(order, &huge_anon_orders_always);
524 		clear_bit(order, &huge_anon_orders_madvise);
525 		set_bit(order, &huge_anon_orders_inherit);
526 		spin_unlock(&huge_anon_orders_lock);
527 	} else if (sysfs_streq(buf, "madvise")) {
528 		spin_lock(&huge_anon_orders_lock);
529 		clear_bit(order, &huge_anon_orders_always);
530 		clear_bit(order, &huge_anon_orders_inherit);
531 		set_bit(order, &huge_anon_orders_madvise);
532 		spin_unlock(&huge_anon_orders_lock);
533 	} else if (sysfs_streq(buf, "never")) {
534 		spin_lock(&huge_anon_orders_lock);
535 		clear_bit(order, &huge_anon_orders_always);
536 		clear_bit(order, &huge_anon_orders_inherit);
537 		clear_bit(order, &huge_anon_orders_madvise);
538 		spin_unlock(&huge_anon_orders_lock);
539 	} else
540 		ret = -EINVAL;
541 
542 	if (ret > 0) {
543 		int err;
544 
545 		err = start_stop_khugepaged();
546 		if (err)
547 			ret = err;
548 	}
549 	return ret;
550 }
551 
552 static struct kobj_attribute anon_enabled_attr =
553 	__ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
554 
555 static struct attribute *anon_ctrl_attrs[] = {
556 	&anon_enabled_attr.attr,
557 	NULL,
558 };
559 
560 static const struct attribute_group anon_ctrl_attr_grp = {
561 	.attrs = anon_ctrl_attrs,
562 };
563 
564 static struct attribute *file_ctrl_attrs[] = {
565 #ifdef CONFIG_SHMEM
566 	&thpsize_shmem_enabled_attr.attr,
567 #endif
568 	NULL,
569 };
570 
571 static const struct attribute_group file_ctrl_attr_grp = {
572 	.attrs = file_ctrl_attrs,
573 };
574 
575 static struct attribute *any_ctrl_attrs[] = {
576 	NULL,
577 };
578 
579 static const struct attribute_group any_ctrl_attr_grp = {
580 	.attrs = any_ctrl_attrs,
581 };
582 
583 static const struct kobj_type thpsize_ktype = {
584 	.release = &thpsize_release,
585 	.sysfs_ops = &kobj_sysfs_ops,
586 };
587 
588 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
589 
590 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
591 {
592 	unsigned long sum = 0;
593 	int cpu;
594 
595 	for_each_possible_cpu(cpu) {
596 		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
597 
598 		sum += this->stats[order][item];
599 	}
600 
601 	return sum;
602 }
603 
604 #define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
605 static ssize_t _name##_show(struct kobject *kobj,			\
606 			struct kobj_attribute *attr, char *buf)		\
607 {									\
608 	int order = to_thpsize(kobj)->order;				\
609 									\
610 	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
611 }									\
612 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
613 
614 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
615 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
616 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
617 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
618 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
619 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
620 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
621 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
622 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
623 #ifdef CONFIG_SHMEM
624 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
625 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
626 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
627 #endif
628 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
629 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
630 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
631 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
632 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
633 
634 static struct attribute *anon_stats_attrs[] = {
635 	&anon_fault_alloc_attr.attr,
636 	&anon_fault_fallback_attr.attr,
637 	&anon_fault_fallback_charge_attr.attr,
638 #ifndef CONFIG_SHMEM
639 	&zswpout_attr.attr,
640 	&swpin_attr.attr,
641 	&swpin_fallback_attr.attr,
642 	&swpin_fallback_charge_attr.attr,
643 	&swpout_attr.attr,
644 	&swpout_fallback_attr.attr,
645 #endif
646 	&split_deferred_attr.attr,
647 	&nr_anon_attr.attr,
648 	&nr_anon_partially_mapped_attr.attr,
649 	NULL,
650 };
651 
652 static struct attribute_group anon_stats_attr_grp = {
653 	.name = "stats",
654 	.attrs = anon_stats_attrs,
655 };
656 
657 static struct attribute *file_stats_attrs[] = {
658 #ifdef CONFIG_SHMEM
659 	&shmem_alloc_attr.attr,
660 	&shmem_fallback_attr.attr,
661 	&shmem_fallback_charge_attr.attr,
662 #endif
663 	NULL,
664 };
665 
666 static struct attribute_group file_stats_attr_grp = {
667 	.name = "stats",
668 	.attrs = file_stats_attrs,
669 };
670 
671 static struct attribute *any_stats_attrs[] = {
672 #ifdef CONFIG_SHMEM
673 	&zswpout_attr.attr,
674 	&swpin_attr.attr,
675 	&swpin_fallback_attr.attr,
676 	&swpin_fallback_charge_attr.attr,
677 	&swpout_attr.attr,
678 	&swpout_fallback_attr.attr,
679 #endif
680 	&split_attr.attr,
681 	&split_failed_attr.attr,
682 	NULL,
683 };
684 
685 static struct attribute_group any_stats_attr_grp = {
686 	.name = "stats",
687 	.attrs = any_stats_attrs,
688 };
689 
690 static int sysfs_add_group(struct kobject *kobj,
691 			   const struct attribute_group *grp)
692 {
693 	int ret = -ENOENT;
694 
695 	/*
696 	 * If the group is named, try to merge first, assuming the subdirectory
697 	 * was already created. This avoids the warning emitted by
698 	 * sysfs_create_group() if the directory already exists.
699 	 */
700 	if (grp->name)
701 		ret = sysfs_merge_group(kobj, grp);
702 	if (ret)
703 		ret = sysfs_create_group(kobj, grp);
704 
705 	return ret;
706 }
707 
708 static struct thpsize *thpsize_create(int order, struct kobject *parent)
709 {
710 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
711 	struct thpsize *thpsize;
712 	int ret = -ENOMEM;
713 
714 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
715 	if (!thpsize)
716 		goto err;
717 
718 	thpsize->order = order;
719 
720 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
721 				   "hugepages-%lukB", size);
722 	if (ret) {
723 		kfree(thpsize);
724 		goto err;
725 	}
726 
727 
728 	ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
729 	if (ret)
730 		goto err_put;
731 
732 	ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
733 	if (ret)
734 		goto err_put;
735 
736 	if (BIT(order) & THP_ORDERS_ALL_ANON) {
737 		ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
738 		if (ret)
739 			goto err_put;
740 
741 		ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
742 		if (ret)
743 			goto err_put;
744 	}
745 
746 	if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
747 		ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
748 		if (ret)
749 			goto err_put;
750 
751 		ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
752 		if (ret)
753 			goto err_put;
754 	}
755 
756 	return thpsize;
757 err_put:
758 	kobject_put(&thpsize->kobj);
759 err:
760 	return ERR_PTR(ret);
761 }
762 
763 static void thpsize_release(struct kobject *kobj)
764 {
765 	kfree(to_thpsize(kobj));
766 }
767 
768 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
769 {
770 	int err;
771 	struct thpsize *thpsize;
772 	unsigned long orders;
773 	int order;
774 
775 	/*
776 	 * Default to setting PMD-sized THP to inherit the global setting and
777 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
778 	 * constant so we have to do this here.
779 	 */
780 	if (!anon_orders_configured)
781 		huge_anon_orders_inherit = BIT(PMD_ORDER);
782 
783 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
784 	if (unlikely(!*hugepage_kobj)) {
785 		pr_err("failed to create transparent hugepage kobject\n");
786 		return -ENOMEM;
787 	}
788 
789 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
790 	if (err) {
791 		pr_err("failed to register transparent hugepage group\n");
792 		goto delete_obj;
793 	}
794 
795 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
796 	if (err) {
797 		pr_err("failed to register transparent hugepage group\n");
798 		goto remove_hp_group;
799 	}
800 
801 	orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
802 	order = highest_order(orders);
803 	while (orders) {
804 		thpsize = thpsize_create(order, *hugepage_kobj);
805 		if (IS_ERR(thpsize)) {
806 			pr_err("failed to create thpsize for order %d\n", order);
807 			err = PTR_ERR(thpsize);
808 			goto remove_all;
809 		}
810 		list_add(&thpsize->node, &thpsize_list);
811 		order = next_order(&orders, order);
812 	}
813 
814 	return 0;
815 
816 remove_all:
817 	hugepage_exit_sysfs(*hugepage_kobj);
818 	return err;
819 remove_hp_group:
820 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
821 delete_obj:
822 	kobject_put(*hugepage_kobj);
823 	return err;
824 }
825 
826 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
827 {
828 	struct thpsize *thpsize, *tmp;
829 
830 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
831 		list_del(&thpsize->node);
832 		kobject_put(&thpsize->kobj);
833 	}
834 
835 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
836 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
837 	kobject_put(hugepage_kobj);
838 }
839 #else
840 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
841 {
842 	return 0;
843 }
844 
845 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
846 {
847 }
848 #endif /* CONFIG_SYSFS */
849 
850 static int __init thp_shrinker_init(void)
851 {
852 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
853 	if (!huge_zero_page_shrinker)
854 		return -ENOMEM;
855 
856 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
857 						 SHRINKER_MEMCG_AWARE |
858 						 SHRINKER_NONSLAB,
859 						 "thp-deferred_split");
860 	if (!deferred_split_shrinker) {
861 		shrinker_free(huge_zero_page_shrinker);
862 		return -ENOMEM;
863 	}
864 
865 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
866 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
867 	shrinker_register(huge_zero_page_shrinker);
868 
869 	deferred_split_shrinker->count_objects = deferred_split_count;
870 	deferred_split_shrinker->scan_objects = deferred_split_scan;
871 	shrinker_register(deferred_split_shrinker);
872 
873 	return 0;
874 }
875 
876 static void __init thp_shrinker_exit(void)
877 {
878 	shrinker_free(huge_zero_page_shrinker);
879 	shrinker_free(deferred_split_shrinker);
880 }
881 
882 static int __init hugepage_init(void)
883 {
884 	int err;
885 	struct kobject *hugepage_kobj;
886 
887 	if (!has_transparent_hugepage()) {
888 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
889 		return -EINVAL;
890 	}
891 
892 	/*
893 	 * hugepages can't be allocated by the buddy allocator
894 	 */
895 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
896 
897 	err = hugepage_init_sysfs(&hugepage_kobj);
898 	if (err)
899 		goto err_sysfs;
900 
901 	err = khugepaged_init();
902 	if (err)
903 		goto err_slab;
904 
905 	err = thp_shrinker_init();
906 	if (err)
907 		goto err_shrinker;
908 
909 	/*
910 	 * By default disable transparent hugepages on smaller systems,
911 	 * where the extra memory used could hurt more than TLB overhead
912 	 * is likely to save.  The admin can still enable it through /sys.
913 	 */
914 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
915 		transparent_hugepage_flags = 0;
916 		return 0;
917 	}
918 
919 	err = start_stop_khugepaged();
920 	if (err)
921 		goto err_khugepaged;
922 
923 	return 0;
924 err_khugepaged:
925 	thp_shrinker_exit();
926 err_shrinker:
927 	khugepaged_destroy();
928 err_slab:
929 	hugepage_exit_sysfs(hugepage_kobj);
930 err_sysfs:
931 	return err;
932 }
933 subsys_initcall(hugepage_init);
934 
935 static int __init setup_transparent_hugepage(char *str)
936 {
937 	int ret = 0;
938 	if (!str)
939 		goto out;
940 	if (!strcmp(str, "always")) {
941 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
942 			&transparent_hugepage_flags);
943 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
944 			  &transparent_hugepage_flags);
945 		ret = 1;
946 	} else if (!strcmp(str, "madvise")) {
947 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
948 			  &transparent_hugepage_flags);
949 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
950 			&transparent_hugepage_flags);
951 		ret = 1;
952 	} else if (!strcmp(str, "never")) {
953 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
954 			  &transparent_hugepage_flags);
955 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
956 			  &transparent_hugepage_flags);
957 		ret = 1;
958 	}
959 out:
960 	if (!ret)
961 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
962 	return ret;
963 }
964 __setup("transparent_hugepage=", setup_transparent_hugepage);
965 
966 static char str_dup[PAGE_SIZE] __initdata;
967 static int __init setup_thp_anon(char *str)
968 {
969 	char *token, *range, *policy, *subtoken;
970 	unsigned long always, inherit, madvise;
971 	char *start_size, *end_size;
972 	int start, end, nr;
973 	char *p;
974 
975 	if (!str || strlen(str) + 1 > PAGE_SIZE)
976 		goto err;
977 	strscpy(str_dup, str);
978 
979 	always = huge_anon_orders_always;
980 	madvise = huge_anon_orders_madvise;
981 	inherit = huge_anon_orders_inherit;
982 	p = str_dup;
983 	while ((token = strsep(&p, ";")) != NULL) {
984 		range = strsep(&token, ":");
985 		policy = token;
986 
987 		if (!policy)
988 			goto err;
989 
990 		while ((subtoken = strsep(&range, ",")) != NULL) {
991 			if (strchr(subtoken, '-')) {
992 				start_size = strsep(&subtoken, "-");
993 				end_size = subtoken;
994 
995 				start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
996 				end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
997 			} else {
998 				start_size = end_size = subtoken;
999 				start = end = get_order_from_str(subtoken,
1000 								 THP_ORDERS_ALL_ANON);
1001 			}
1002 
1003 			if (start == -EINVAL) {
1004 				pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1005 				goto err;
1006 			}
1007 
1008 			if (end == -EINVAL) {
1009 				pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1010 				goto err;
1011 			}
1012 
1013 			if (start < 0 || end < 0 || start > end)
1014 				goto err;
1015 
1016 			nr = end - start + 1;
1017 			if (!strcmp(policy, "always")) {
1018 				bitmap_set(&always, start, nr);
1019 				bitmap_clear(&inherit, start, nr);
1020 				bitmap_clear(&madvise, start, nr);
1021 			} else if (!strcmp(policy, "madvise")) {
1022 				bitmap_set(&madvise, start, nr);
1023 				bitmap_clear(&inherit, start, nr);
1024 				bitmap_clear(&always, start, nr);
1025 			} else if (!strcmp(policy, "inherit")) {
1026 				bitmap_set(&inherit, start, nr);
1027 				bitmap_clear(&madvise, start, nr);
1028 				bitmap_clear(&always, start, nr);
1029 			} else if (!strcmp(policy, "never")) {
1030 				bitmap_clear(&inherit, start, nr);
1031 				bitmap_clear(&madvise, start, nr);
1032 				bitmap_clear(&always, start, nr);
1033 			} else {
1034 				pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1035 				goto err;
1036 			}
1037 		}
1038 	}
1039 
1040 	huge_anon_orders_always = always;
1041 	huge_anon_orders_madvise = madvise;
1042 	huge_anon_orders_inherit = inherit;
1043 	anon_orders_configured = true;
1044 	return 1;
1045 
1046 err:
1047 	pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1048 	return 0;
1049 }
1050 __setup("thp_anon=", setup_thp_anon);
1051 
1052 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1053 {
1054 	if (likely(vma->vm_flags & VM_WRITE))
1055 		pmd = pmd_mkwrite(pmd, vma);
1056 	return pmd;
1057 }
1058 
1059 #ifdef CONFIG_MEMCG
1060 static inline
1061 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1062 {
1063 	struct mem_cgroup *memcg = folio_memcg(folio);
1064 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1065 
1066 	if (memcg)
1067 		return &memcg->deferred_split_queue;
1068 	else
1069 		return &pgdat->deferred_split_queue;
1070 }
1071 #else
1072 static inline
1073 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1074 {
1075 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1076 
1077 	return &pgdat->deferred_split_queue;
1078 }
1079 #endif
1080 
1081 static inline bool is_transparent_hugepage(const struct folio *folio)
1082 {
1083 	if (!folio_test_large(folio))
1084 		return false;
1085 
1086 	return is_huge_zero_folio(folio) ||
1087 		folio_test_large_rmappable(folio);
1088 }
1089 
1090 static unsigned long __thp_get_unmapped_area(struct file *filp,
1091 		unsigned long addr, unsigned long len,
1092 		loff_t off, unsigned long flags, unsigned long size,
1093 		vm_flags_t vm_flags)
1094 {
1095 	loff_t off_end = off + len;
1096 	loff_t off_align = round_up(off, size);
1097 	unsigned long len_pad, ret, off_sub;
1098 
1099 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1100 		return 0;
1101 
1102 	if (off_end <= off_align || (off_end - off_align) < size)
1103 		return 0;
1104 
1105 	len_pad = len + size;
1106 	if (len_pad < len || (off + len_pad) < off)
1107 		return 0;
1108 
1109 	ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1110 					   off >> PAGE_SHIFT, flags, vm_flags);
1111 
1112 	/*
1113 	 * The failure might be due to length padding. The caller will retry
1114 	 * without the padding.
1115 	 */
1116 	if (IS_ERR_VALUE(ret))
1117 		return 0;
1118 
1119 	/*
1120 	 * Do not try to align to THP boundary if allocation at the address
1121 	 * hint succeeds.
1122 	 */
1123 	if (ret == addr)
1124 		return addr;
1125 
1126 	off_sub = (off - ret) & (size - 1);
1127 
1128 	if (test_bit(MMF_TOPDOWN, &current->mm->flags) && !off_sub)
1129 		return ret + size;
1130 
1131 	ret += off_sub;
1132 	return ret;
1133 }
1134 
1135 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1136 		unsigned long len, unsigned long pgoff, unsigned long flags,
1137 		vm_flags_t vm_flags)
1138 {
1139 	unsigned long ret;
1140 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1141 
1142 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1143 	if (ret)
1144 		return ret;
1145 
1146 	return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1147 					    vm_flags);
1148 }
1149 
1150 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1151 		unsigned long len, unsigned long pgoff, unsigned long flags)
1152 {
1153 	return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1154 }
1155 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1156 
1157 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1158 		unsigned long addr)
1159 {
1160 	gfp_t gfp = vma_thp_gfp_mask(vma);
1161 	const int order = HPAGE_PMD_ORDER;
1162 	struct folio *folio;
1163 
1164 	folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1165 
1166 	if (unlikely(!folio)) {
1167 		count_vm_event(THP_FAULT_FALLBACK);
1168 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1169 		return NULL;
1170 	}
1171 
1172 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1173 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1174 		folio_put(folio);
1175 		count_vm_event(THP_FAULT_FALLBACK);
1176 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1177 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1178 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1179 		return NULL;
1180 	}
1181 	folio_throttle_swaprate(folio, gfp);
1182 
1183        /*
1184 	* When a folio is not zeroed during allocation (__GFP_ZERO not used)
1185 	* or user folios require special handling, folio_zero_user() is used to
1186 	* make sure that the page corresponding to the faulting address will be
1187 	* hot in the cache after zeroing.
1188 	*/
1189 	if (user_alloc_needs_zeroing())
1190 		folio_zero_user(folio, addr);
1191 	/*
1192 	 * The memory barrier inside __folio_mark_uptodate makes sure that
1193 	 * folio_zero_user writes become visible before the set_pmd_at()
1194 	 * write.
1195 	 */
1196 	__folio_mark_uptodate(folio);
1197 	return folio;
1198 }
1199 
1200 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1201 		struct vm_area_struct *vma, unsigned long haddr)
1202 {
1203 	pmd_t entry;
1204 
1205 	entry = folio_mk_pmd(folio, vma->vm_page_prot);
1206 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1207 	folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1208 	folio_add_lru_vma(folio, vma);
1209 	set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1210 	update_mmu_cache_pmd(vma, haddr, pmd);
1211 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1212 	count_vm_event(THP_FAULT_ALLOC);
1213 	count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1214 	count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1215 }
1216 
1217 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1218 {
1219 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1220 	struct vm_area_struct *vma = vmf->vma;
1221 	struct folio *folio;
1222 	pgtable_t pgtable;
1223 	vm_fault_t ret = 0;
1224 
1225 	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1226 	if (unlikely(!folio))
1227 		return VM_FAULT_FALLBACK;
1228 
1229 	pgtable = pte_alloc_one(vma->vm_mm);
1230 	if (unlikely(!pgtable)) {
1231 		ret = VM_FAULT_OOM;
1232 		goto release;
1233 	}
1234 
1235 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1236 	if (unlikely(!pmd_none(*vmf->pmd))) {
1237 		goto unlock_release;
1238 	} else {
1239 		ret = check_stable_address_space(vma->vm_mm);
1240 		if (ret)
1241 			goto unlock_release;
1242 
1243 		/* Deliver the page fault to userland */
1244 		if (userfaultfd_missing(vma)) {
1245 			spin_unlock(vmf->ptl);
1246 			folio_put(folio);
1247 			pte_free(vma->vm_mm, pgtable);
1248 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
1249 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1250 			return ret;
1251 		}
1252 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1253 		map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1254 		mm_inc_nr_ptes(vma->vm_mm);
1255 		deferred_split_folio(folio, false);
1256 		spin_unlock(vmf->ptl);
1257 	}
1258 
1259 	return 0;
1260 unlock_release:
1261 	spin_unlock(vmf->ptl);
1262 release:
1263 	if (pgtable)
1264 		pte_free(vma->vm_mm, pgtable);
1265 	folio_put(folio);
1266 	return ret;
1267 
1268 }
1269 
1270 /*
1271  * always: directly stall for all thp allocations
1272  * defer: wake kswapd and fail if not immediately available
1273  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1274  *		  fail if not immediately available
1275  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1276  *	    available
1277  * never: never stall for any thp allocation
1278  */
1279 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1280 {
1281 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1282 
1283 	/* Always do synchronous compaction */
1284 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1285 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1286 
1287 	/* Kick kcompactd and fail quickly */
1288 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1289 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1290 
1291 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
1292 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1293 		return GFP_TRANSHUGE_LIGHT |
1294 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
1295 					__GFP_KSWAPD_RECLAIM);
1296 
1297 	/* Only do synchronous compaction if madvised */
1298 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1299 		return GFP_TRANSHUGE_LIGHT |
1300 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1301 
1302 	return GFP_TRANSHUGE_LIGHT;
1303 }
1304 
1305 /* Caller must hold page table lock. */
1306 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1307 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1308 		struct folio *zero_folio)
1309 {
1310 	pmd_t entry;
1311 	entry = folio_mk_pmd(zero_folio, vma->vm_page_prot);
1312 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1313 	set_pmd_at(mm, haddr, pmd, entry);
1314 	mm_inc_nr_ptes(mm);
1315 }
1316 
1317 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1318 {
1319 	struct vm_area_struct *vma = vmf->vma;
1320 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1321 	vm_fault_t ret;
1322 
1323 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1324 		return VM_FAULT_FALLBACK;
1325 	ret = vmf_anon_prepare(vmf);
1326 	if (ret)
1327 		return ret;
1328 	khugepaged_enter_vma(vma, vma->vm_flags);
1329 
1330 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1331 			!mm_forbids_zeropage(vma->vm_mm) &&
1332 			transparent_hugepage_use_zero_page()) {
1333 		pgtable_t pgtable;
1334 		struct folio *zero_folio;
1335 		vm_fault_t ret;
1336 
1337 		pgtable = pte_alloc_one(vma->vm_mm);
1338 		if (unlikely(!pgtable))
1339 			return VM_FAULT_OOM;
1340 		zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1341 		if (unlikely(!zero_folio)) {
1342 			pte_free(vma->vm_mm, pgtable);
1343 			count_vm_event(THP_FAULT_FALLBACK);
1344 			return VM_FAULT_FALLBACK;
1345 		}
1346 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1347 		ret = 0;
1348 		if (pmd_none(*vmf->pmd)) {
1349 			ret = check_stable_address_space(vma->vm_mm);
1350 			if (ret) {
1351 				spin_unlock(vmf->ptl);
1352 				pte_free(vma->vm_mm, pgtable);
1353 			} else if (userfaultfd_missing(vma)) {
1354 				spin_unlock(vmf->ptl);
1355 				pte_free(vma->vm_mm, pgtable);
1356 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1357 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1358 			} else {
1359 				set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1360 						   haddr, vmf->pmd, zero_folio);
1361 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1362 				spin_unlock(vmf->ptl);
1363 			}
1364 		} else {
1365 			spin_unlock(vmf->ptl);
1366 			pte_free(vma->vm_mm, pgtable);
1367 		}
1368 		return ret;
1369 	}
1370 
1371 	return __do_huge_pmd_anonymous_page(vmf);
1372 }
1373 
1374 struct folio_or_pfn {
1375 	union {
1376 		struct folio *folio;
1377 		unsigned long pfn;
1378 	};
1379 	bool is_folio;
1380 };
1381 
1382 static int insert_pmd(struct vm_area_struct *vma, unsigned long addr,
1383 		pmd_t *pmd, struct folio_or_pfn fop, pgprot_t prot,
1384 		bool write, pgtable_t pgtable)
1385 {
1386 	struct mm_struct *mm = vma->vm_mm;
1387 	pmd_t entry;
1388 
1389 	lockdep_assert_held(pmd_lockptr(mm, pmd));
1390 
1391 	if (!pmd_none(*pmd)) {
1392 		const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1393 					  fop.pfn;
1394 
1395 		if (write) {
1396 			if (pmd_pfn(*pmd) != pfn) {
1397 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1398 				return -EEXIST;
1399 			}
1400 			entry = pmd_mkyoung(*pmd);
1401 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1402 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1403 				update_mmu_cache_pmd(vma, addr, pmd);
1404 		}
1405 
1406 		return -EEXIST;
1407 	}
1408 
1409 	if (fop.is_folio) {
1410 		entry = folio_mk_pmd(fop.folio, vma->vm_page_prot);
1411 
1412 		folio_get(fop.folio);
1413 		folio_add_file_rmap_pmd(fop.folio, &fop.folio->page, vma);
1414 		add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PMD_NR);
1415 	} else {
1416 		entry = pmd_mkhuge(pfn_pmd(fop.pfn, prot));
1417 		entry = pmd_mkspecial(entry);
1418 	}
1419 	if (write) {
1420 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1421 		entry = maybe_pmd_mkwrite(entry, vma);
1422 	}
1423 
1424 	if (pgtable) {
1425 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1426 		mm_inc_nr_ptes(mm);
1427 	}
1428 
1429 	set_pmd_at(mm, addr, pmd, entry);
1430 	update_mmu_cache_pmd(vma, addr, pmd);
1431 	return 0;
1432 }
1433 
1434 /**
1435  * vmf_insert_pfn_pmd - insert a pmd size pfn
1436  * @vmf: Structure describing the fault
1437  * @pfn: pfn to insert
1438  * @write: whether it's a write fault
1439  *
1440  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1441  *
1442  * Return: vm_fault_t value.
1443  */
1444 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn,
1445 			      bool write)
1446 {
1447 	unsigned long addr = vmf->address & PMD_MASK;
1448 	struct vm_area_struct *vma = vmf->vma;
1449 	pgprot_t pgprot = vma->vm_page_prot;
1450 	struct folio_or_pfn fop = {
1451 		.pfn = pfn,
1452 	};
1453 	pgtable_t pgtable = NULL;
1454 	spinlock_t *ptl;
1455 	int error;
1456 
1457 	/*
1458 	 * If we had pmd_special, we could avoid all these restrictions,
1459 	 * but we need to be consistent with PTEs and architectures that
1460 	 * can't support a 'special' bit.
1461 	 */
1462 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1463 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1464 						(VM_PFNMAP|VM_MIXEDMAP));
1465 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1466 
1467 	if (addr < vma->vm_start || addr >= vma->vm_end)
1468 		return VM_FAULT_SIGBUS;
1469 
1470 	if (arch_needs_pgtable_deposit()) {
1471 		pgtable = pte_alloc_one(vma->vm_mm);
1472 		if (!pgtable)
1473 			return VM_FAULT_OOM;
1474 	}
1475 
1476 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1477 
1478 	ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1479 	error = insert_pmd(vma, addr, vmf->pmd, fop, pgprot, write,
1480 			   pgtable);
1481 	spin_unlock(ptl);
1482 	if (error && pgtable)
1483 		pte_free(vma->vm_mm, pgtable);
1484 
1485 	return VM_FAULT_NOPAGE;
1486 }
1487 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1488 
1489 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1490 				bool write)
1491 {
1492 	struct vm_area_struct *vma = vmf->vma;
1493 	unsigned long addr = vmf->address & PMD_MASK;
1494 	struct mm_struct *mm = vma->vm_mm;
1495 	struct folio_or_pfn fop = {
1496 		.folio = folio,
1497 		.is_folio = true,
1498 	};
1499 	spinlock_t *ptl;
1500 	pgtable_t pgtable = NULL;
1501 	int error;
1502 
1503 	if (addr < vma->vm_start || addr >= vma->vm_end)
1504 		return VM_FAULT_SIGBUS;
1505 
1506 	if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1507 		return VM_FAULT_SIGBUS;
1508 
1509 	if (arch_needs_pgtable_deposit()) {
1510 		pgtable = pte_alloc_one(vma->vm_mm);
1511 		if (!pgtable)
1512 			return VM_FAULT_OOM;
1513 	}
1514 
1515 	ptl = pmd_lock(mm, vmf->pmd);
1516 	error = insert_pmd(vma, addr, vmf->pmd, fop, vma->vm_page_prot,
1517 			   write, pgtable);
1518 	spin_unlock(ptl);
1519 	if (error && pgtable)
1520 		pte_free(mm, pgtable);
1521 
1522 	return VM_FAULT_NOPAGE;
1523 }
1524 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1525 
1526 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1527 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1528 {
1529 	if (likely(vma->vm_flags & VM_WRITE))
1530 		pud = pud_mkwrite(pud);
1531 	return pud;
1532 }
1533 
1534 static void insert_pud(struct vm_area_struct *vma, unsigned long addr,
1535 		pud_t *pud, struct folio_or_pfn fop, pgprot_t prot, bool write)
1536 {
1537 	struct mm_struct *mm = vma->vm_mm;
1538 	pud_t entry;
1539 
1540 	if (!pud_none(*pud)) {
1541 		const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1542 					  fop.pfn;
1543 
1544 		if (write) {
1545 			if (WARN_ON_ONCE(pud_pfn(*pud) != pfn))
1546 				return;
1547 			entry = pud_mkyoung(*pud);
1548 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1549 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1550 				update_mmu_cache_pud(vma, addr, pud);
1551 		}
1552 		return;
1553 	}
1554 
1555 	if (fop.is_folio) {
1556 		entry = folio_mk_pud(fop.folio, vma->vm_page_prot);
1557 
1558 		folio_get(fop.folio);
1559 		folio_add_file_rmap_pud(fop.folio, &fop.folio->page, vma);
1560 		add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PUD_NR);
1561 	} else {
1562 		entry = pud_mkhuge(pfn_pud(fop.pfn, prot));
1563 		entry = pud_mkspecial(entry);
1564 	}
1565 	if (write) {
1566 		entry = pud_mkyoung(pud_mkdirty(entry));
1567 		entry = maybe_pud_mkwrite(entry, vma);
1568 	}
1569 	set_pud_at(mm, addr, pud, entry);
1570 	update_mmu_cache_pud(vma, addr, pud);
1571 }
1572 
1573 /**
1574  * vmf_insert_pfn_pud - insert a pud size pfn
1575  * @vmf: Structure describing the fault
1576  * @pfn: pfn to insert
1577  * @write: whether it's a write fault
1578  *
1579  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1580  *
1581  * Return: vm_fault_t value.
1582  */
1583 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn,
1584 			      bool write)
1585 {
1586 	unsigned long addr = vmf->address & PUD_MASK;
1587 	struct vm_area_struct *vma = vmf->vma;
1588 	pgprot_t pgprot = vma->vm_page_prot;
1589 	struct folio_or_pfn fop = {
1590 		.pfn = pfn,
1591 	};
1592 	spinlock_t *ptl;
1593 
1594 	/*
1595 	 * If we had pud_special, we could avoid all these restrictions,
1596 	 * but we need to be consistent with PTEs and architectures that
1597 	 * can't support a 'special' bit.
1598 	 */
1599 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1600 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1601 						(VM_PFNMAP|VM_MIXEDMAP));
1602 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1603 
1604 	if (addr < vma->vm_start || addr >= vma->vm_end)
1605 		return VM_FAULT_SIGBUS;
1606 
1607 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1608 
1609 	ptl = pud_lock(vma->vm_mm, vmf->pud);
1610 	insert_pud(vma, addr, vmf->pud, fop, pgprot, write);
1611 	spin_unlock(ptl);
1612 
1613 	return VM_FAULT_NOPAGE;
1614 }
1615 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1616 
1617 /**
1618  * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1619  * @vmf: Structure describing the fault
1620  * @folio: folio to insert
1621  * @write: whether it's a write fault
1622  *
1623  * Return: vm_fault_t value.
1624  */
1625 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1626 				bool write)
1627 {
1628 	struct vm_area_struct *vma = vmf->vma;
1629 	unsigned long addr = vmf->address & PUD_MASK;
1630 	pud_t *pud = vmf->pud;
1631 	struct mm_struct *mm = vma->vm_mm;
1632 	struct folio_or_pfn fop = {
1633 		.folio = folio,
1634 		.is_folio = true,
1635 	};
1636 	spinlock_t *ptl;
1637 
1638 	if (addr < vma->vm_start || addr >= vma->vm_end)
1639 		return VM_FAULT_SIGBUS;
1640 
1641 	if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1642 		return VM_FAULT_SIGBUS;
1643 
1644 	ptl = pud_lock(mm, pud);
1645 	insert_pud(vma, addr, vmf->pud, fop, vma->vm_page_prot, write);
1646 	spin_unlock(ptl);
1647 
1648 	return VM_FAULT_NOPAGE;
1649 }
1650 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1651 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1652 
1653 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1654 	       pmd_t *pmd, bool write)
1655 {
1656 	pmd_t _pmd;
1657 
1658 	_pmd = pmd_mkyoung(*pmd);
1659 	if (write)
1660 		_pmd = pmd_mkdirty(_pmd);
1661 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1662 				  pmd, _pmd, write))
1663 		update_mmu_cache_pmd(vma, addr, pmd);
1664 }
1665 
1666 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1667 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1668 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1669 {
1670 	spinlock_t *dst_ptl, *src_ptl;
1671 	struct page *src_page;
1672 	struct folio *src_folio;
1673 	pmd_t pmd;
1674 	pgtable_t pgtable = NULL;
1675 	int ret = -ENOMEM;
1676 
1677 	pmd = pmdp_get_lockless(src_pmd);
1678 	if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1679 		dst_ptl = pmd_lock(dst_mm, dst_pmd);
1680 		src_ptl = pmd_lockptr(src_mm, src_pmd);
1681 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1682 		/*
1683 		 * No need to recheck the pmd, it can't change with write
1684 		 * mmap lock held here.
1685 		 *
1686 		 * Meanwhile, making sure it's not a CoW VMA with writable
1687 		 * mapping, otherwise it means either the anon page wrongly
1688 		 * applied special bit, or we made the PRIVATE mapping be
1689 		 * able to wrongly write to the backend MMIO.
1690 		 */
1691 		VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1692 		goto set_pmd;
1693 	}
1694 
1695 	/* Skip if can be re-fill on fault */
1696 	if (!vma_is_anonymous(dst_vma))
1697 		return 0;
1698 
1699 	pgtable = pte_alloc_one(dst_mm);
1700 	if (unlikely(!pgtable))
1701 		goto out;
1702 
1703 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1704 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1705 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1706 
1707 	ret = -EAGAIN;
1708 	pmd = *src_pmd;
1709 
1710 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1711 	if (unlikely(is_swap_pmd(pmd))) {
1712 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1713 
1714 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1715 		if (!is_readable_migration_entry(entry)) {
1716 			entry = make_readable_migration_entry(
1717 							swp_offset(entry));
1718 			pmd = swp_entry_to_pmd(entry);
1719 			if (pmd_swp_soft_dirty(*src_pmd))
1720 				pmd = pmd_swp_mksoft_dirty(pmd);
1721 			if (pmd_swp_uffd_wp(*src_pmd))
1722 				pmd = pmd_swp_mkuffd_wp(pmd);
1723 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1724 		}
1725 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1726 		mm_inc_nr_ptes(dst_mm);
1727 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1728 		if (!userfaultfd_wp(dst_vma))
1729 			pmd = pmd_swp_clear_uffd_wp(pmd);
1730 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1731 		ret = 0;
1732 		goto out_unlock;
1733 	}
1734 #endif
1735 
1736 	if (unlikely(!pmd_trans_huge(pmd))) {
1737 		pte_free(dst_mm, pgtable);
1738 		goto out_unlock;
1739 	}
1740 	/*
1741 	 * When page table lock is held, the huge zero pmd should not be
1742 	 * under splitting since we don't split the page itself, only pmd to
1743 	 * a page table.
1744 	 */
1745 	if (is_huge_zero_pmd(pmd)) {
1746 		/*
1747 		 * mm_get_huge_zero_folio() will never allocate a new
1748 		 * folio here, since we already have a zero page to
1749 		 * copy. It just takes a reference.
1750 		 */
1751 		mm_get_huge_zero_folio(dst_mm);
1752 		goto out_zero_page;
1753 	}
1754 
1755 	src_page = pmd_page(pmd);
1756 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1757 	src_folio = page_folio(src_page);
1758 
1759 	folio_get(src_folio);
1760 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1761 		/* Page maybe pinned: split and retry the fault on PTEs. */
1762 		folio_put(src_folio);
1763 		pte_free(dst_mm, pgtable);
1764 		spin_unlock(src_ptl);
1765 		spin_unlock(dst_ptl);
1766 		__split_huge_pmd(src_vma, src_pmd, addr, false);
1767 		return -EAGAIN;
1768 	}
1769 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1770 out_zero_page:
1771 	mm_inc_nr_ptes(dst_mm);
1772 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1773 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1774 	if (!userfaultfd_wp(dst_vma))
1775 		pmd = pmd_clear_uffd_wp(pmd);
1776 	pmd = pmd_wrprotect(pmd);
1777 set_pmd:
1778 	pmd = pmd_mkold(pmd);
1779 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1780 
1781 	ret = 0;
1782 out_unlock:
1783 	spin_unlock(src_ptl);
1784 	spin_unlock(dst_ptl);
1785 out:
1786 	return ret;
1787 }
1788 
1789 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1790 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1791 	       pud_t *pud, bool write)
1792 {
1793 	pud_t _pud;
1794 
1795 	_pud = pud_mkyoung(*pud);
1796 	if (write)
1797 		_pud = pud_mkdirty(_pud);
1798 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1799 				  pud, _pud, write))
1800 		update_mmu_cache_pud(vma, addr, pud);
1801 }
1802 
1803 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1804 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1805 		  struct vm_area_struct *vma)
1806 {
1807 	spinlock_t *dst_ptl, *src_ptl;
1808 	pud_t pud;
1809 	int ret;
1810 
1811 	dst_ptl = pud_lock(dst_mm, dst_pud);
1812 	src_ptl = pud_lockptr(src_mm, src_pud);
1813 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1814 
1815 	ret = -EAGAIN;
1816 	pud = *src_pud;
1817 	if (unlikely(!pud_trans_huge(pud)))
1818 		goto out_unlock;
1819 
1820 	/*
1821 	 * TODO: once we support anonymous pages, use
1822 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1823 	 */
1824 	if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1825 		pudp_set_wrprotect(src_mm, addr, src_pud);
1826 		pud = pud_wrprotect(pud);
1827 	}
1828 	pud = pud_mkold(pud);
1829 	set_pud_at(dst_mm, addr, dst_pud, pud);
1830 
1831 	ret = 0;
1832 out_unlock:
1833 	spin_unlock(src_ptl);
1834 	spin_unlock(dst_ptl);
1835 	return ret;
1836 }
1837 
1838 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1839 {
1840 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1841 
1842 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1843 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1844 		goto unlock;
1845 
1846 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1847 unlock:
1848 	spin_unlock(vmf->ptl);
1849 }
1850 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1851 
1852 void huge_pmd_set_accessed(struct vm_fault *vmf)
1853 {
1854 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1855 
1856 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1857 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1858 		goto unlock;
1859 
1860 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1861 
1862 unlock:
1863 	spin_unlock(vmf->ptl);
1864 }
1865 
1866 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1867 {
1868 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1869 	struct vm_area_struct *vma = vmf->vma;
1870 	struct mmu_notifier_range range;
1871 	struct folio *folio;
1872 	vm_fault_t ret = 0;
1873 
1874 	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1875 	if (unlikely(!folio))
1876 		return VM_FAULT_FALLBACK;
1877 
1878 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1879 				haddr + HPAGE_PMD_SIZE);
1880 	mmu_notifier_invalidate_range_start(&range);
1881 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1882 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1883 		goto release;
1884 	ret = check_stable_address_space(vma->vm_mm);
1885 	if (ret)
1886 		goto release;
1887 	(void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1888 	map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1889 	goto unlock;
1890 release:
1891 	folio_put(folio);
1892 unlock:
1893 	spin_unlock(vmf->ptl);
1894 	mmu_notifier_invalidate_range_end(&range);
1895 	return ret;
1896 }
1897 
1898 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1899 {
1900 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1901 	struct vm_area_struct *vma = vmf->vma;
1902 	struct folio *folio;
1903 	struct page *page;
1904 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1905 	pmd_t orig_pmd = vmf->orig_pmd;
1906 
1907 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1908 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1909 
1910 	if (is_huge_zero_pmd(orig_pmd)) {
1911 		vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1912 
1913 		if (!(ret & VM_FAULT_FALLBACK))
1914 			return ret;
1915 
1916 		/* Fallback to splitting PMD if THP cannot be allocated */
1917 		goto fallback;
1918 	}
1919 
1920 	spin_lock(vmf->ptl);
1921 
1922 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1923 		spin_unlock(vmf->ptl);
1924 		return 0;
1925 	}
1926 
1927 	page = pmd_page(orig_pmd);
1928 	folio = page_folio(page);
1929 	VM_BUG_ON_PAGE(!PageHead(page), page);
1930 
1931 	/* Early check when only holding the PT lock. */
1932 	if (PageAnonExclusive(page))
1933 		goto reuse;
1934 
1935 	if (!folio_trylock(folio)) {
1936 		folio_get(folio);
1937 		spin_unlock(vmf->ptl);
1938 		folio_lock(folio);
1939 		spin_lock(vmf->ptl);
1940 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1941 			spin_unlock(vmf->ptl);
1942 			folio_unlock(folio);
1943 			folio_put(folio);
1944 			return 0;
1945 		}
1946 		folio_put(folio);
1947 	}
1948 
1949 	/* Recheck after temporarily dropping the PT lock. */
1950 	if (PageAnonExclusive(page)) {
1951 		folio_unlock(folio);
1952 		goto reuse;
1953 	}
1954 
1955 	/*
1956 	 * See do_wp_page(): we can only reuse the folio exclusively if
1957 	 * there are no additional references. Note that we always drain
1958 	 * the LRU cache immediately after adding a THP.
1959 	 */
1960 	if (folio_ref_count(folio) >
1961 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1962 		goto unlock_fallback;
1963 	if (folio_test_swapcache(folio))
1964 		folio_free_swap(folio);
1965 	if (folio_ref_count(folio) == 1) {
1966 		pmd_t entry;
1967 
1968 		folio_move_anon_rmap(folio, vma);
1969 		SetPageAnonExclusive(page);
1970 		folio_unlock(folio);
1971 reuse:
1972 		if (unlikely(unshare)) {
1973 			spin_unlock(vmf->ptl);
1974 			return 0;
1975 		}
1976 		entry = pmd_mkyoung(orig_pmd);
1977 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1978 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1979 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1980 		spin_unlock(vmf->ptl);
1981 		return 0;
1982 	}
1983 
1984 unlock_fallback:
1985 	folio_unlock(folio);
1986 	spin_unlock(vmf->ptl);
1987 fallback:
1988 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false);
1989 	return VM_FAULT_FALLBACK;
1990 }
1991 
1992 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1993 					   unsigned long addr, pmd_t pmd)
1994 {
1995 	struct page *page;
1996 
1997 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1998 		return false;
1999 
2000 	/* Don't touch entries that are not even readable (NUMA hinting). */
2001 	if (pmd_protnone(pmd))
2002 		return false;
2003 
2004 	/* Do we need write faults for softdirty tracking? */
2005 	if (pmd_needs_soft_dirty_wp(vma, pmd))
2006 		return false;
2007 
2008 	/* Do we need write faults for uffd-wp tracking? */
2009 	if (userfaultfd_huge_pmd_wp(vma, pmd))
2010 		return false;
2011 
2012 	if (!(vma->vm_flags & VM_SHARED)) {
2013 		/* See can_change_pte_writable(). */
2014 		page = vm_normal_page_pmd(vma, addr, pmd);
2015 		return page && PageAnon(page) && PageAnonExclusive(page);
2016 	}
2017 
2018 	/* See can_change_pte_writable(). */
2019 	return pmd_dirty(pmd);
2020 }
2021 
2022 /* NUMA hinting page fault entry point for trans huge pmds */
2023 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2024 {
2025 	struct vm_area_struct *vma = vmf->vma;
2026 	struct folio *folio;
2027 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2028 	int nid = NUMA_NO_NODE;
2029 	int target_nid, last_cpupid;
2030 	pmd_t pmd, old_pmd;
2031 	bool writable = false;
2032 	int flags = 0;
2033 
2034 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2035 	old_pmd = pmdp_get(vmf->pmd);
2036 
2037 	if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2038 		spin_unlock(vmf->ptl);
2039 		return 0;
2040 	}
2041 
2042 	pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2043 
2044 	/*
2045 	 * Detect now whether the PMD could be writable; this information
2046 	 * is only valid while holding the PT lock.
2047 	 */
2048 	writable = pmd_write(pmd);
2049 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2050 	    can_change_pmd_writable(vma, vmf->address, pmd))
2051 		writable = true;
2052 
2053 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
2054 	if (!folio)
2055 		goto out_map;
2056 
2057 	nid = folio_nid(folio);
2058 
2059 	target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2060 					&last_cpupid);
2061 	if (target_nid == NUMA_NO_NODE)
2062 		goto out_map;
2063 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2064 		flags |= TNF_MIGRATE_FAIL;
2065 		goto out_map;
2066 	}
2067 	/* The folio is isolated and isolation code holds a folio reference. */
2068 	spin_unlock(vmf->ptl);
2069 	writable = false;
2070 
2071 	if (!migrate_misplaced_folio(folio, target_nid)) {
2072 		flags |= TNF_MIGRATED;
2073 		nid = target_nid;
2074 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2075 		return 0;
2076 	}
2077 
2078 	flags |= TNF_MIGRATE_FAIL;
2079 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2080 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2081 		spin_unlock(vmf->ptl);
2082 		return 0;
2083 	}
2084 out_map:
2085 	/* Restore the PMD */
2086 	pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2087 	pmd = pmd_mkyoung(pmd);
2088 	if (writable)
2089 		pmd = pmd_mkwrite(pmd, vma);
2090 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2091 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2092 	spin_unlock(vmf->ptl);
2093 
2094 	if (nid != NUMA_NO_NODE)
2095 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2096 	return 0;
2097 }
2098 
2099 /*
2100  * Return true if we do MADV_FREE successfully on entire pmd page.
2101  * Otherwise, return false.
2102  */
2103 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2104 		pmd_t *pmd, unsigned long addr, unsigned long next)
2105 {
2106 	spinlock_t *ptl;
2107 	pmd_t orig_pmd;
2108 	struct folio *folio;
2109 	struct mm_struct *mm = tlb->mm;
2110 	bool ret = false;
2111 
2112 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2113 
2114 	ptl = pmd_trans_huge_lock(pmd, vma);
2115 	if (!ptl)
2116 		goto out_unlocked;
2117 
2118 	orig_pmd = *pmd;
2119 	if (is_huge_zero_pmd(orig_pmd))
2120 		goto out;
2121 
2122 	if (unlikely(!pmd_present(orig_pmd))) {
2123 		VM_BUG_ON(thp_migration_supported() &&
2124 				  !is_pmd_migration_entry(orig_pmd));
2125 		goto out;
2126 	}
2127 
2128 	folio = pmd_folio(orig_pmd);
2129 	/*
2130 	 * If other processes are mapping this folio, we couldn't discard
2131 	 * the folio unless they all do MADV_FREE so let's skip the folio.
2132 	 */
2133 	if (folio_maybe_mapped_shared(folio))
2134 		goto out;
2135 
2136 	if (!folio_trylock(folio))
2137 		goto out;
2138 
2139 	/*
2140 	 * If user want to discard part-pages of THP, split it so MADV_FREE
2141 	 * will deactivate only them.
2142 	 */
2143 	if (next - addr != HPAGE_PMD_SIZE) {
2144 		folio_get(folio);
2145 		spin_unlock(ptl);
2146 		split_folio(folio);
2147 		folio_unlock(folio);
2148 		folio_put(folio);
2149 		goto out_unlocked;
2150 	}
2151 
2152 	if (folio_test_dirty(folio))
2153 		folio_clear_dirty(folio);
2154 	folio_unlock(folio);
2155 
2156 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2157 		pmdp_invalidate(vma, addr, pmd);
2158 		orig_pmd = pmd_mkold(orig_pmd);
2159 		orig_pmd = pmd_mkclean(orig_pmd);
2160 
2161 		set_pmd_at(mm, addr, pmd, orig_pmd);
2162 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2163 	}
2164 
2165 	folio_mark_lazyfree(folio);
2166 	ret = true;
2167 out:
2168 	spin_unlock(ptl);
2169 out_unlocked:
2170 	return ret;
2171 }
2172 
2173 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2174 {
2175 	pgtable_t pgtable;
2176 
2177 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2178 	pte_free(mm, pgtable);
2179 	mm_dec_nr_ptes(mm);
2180 }
2181 
2182 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2183 		 pmd_t *pmd, unsigned long addr)
2184 {
2185 	pmd_t orig_pmd;
2186 	spinlock_t *ptl;
2187 
2188 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2189 
2190 	ptl = __pmd_trans_huge_lock(pmd, vma);
2191 	if (!ptl)
2192 		return 0;
2193 	/*
2194 	 * For architectures like ppc64 we look at deposited pgtable
2195 	 * when calling pmdp_huge_get_and_clear. So do the
2196 	 * pgtable_trans_huge_withdraw after finishing pmdp related
2197 	 * operations.
2198 	 */
2199 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2200 						tlb->fullmm);
2201 	arch_check_zapped_pmd(vma, orig_pmd);
2202 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2203 	if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2204 		if (arch_needs_pgtable_deposit())
2205 			zap_deposited_table(tlb->mm, pmd);
2206 		spin_unlock(ptl);
2207 	} else if (is_huge_zero_pmd(orig_pmd)) {
2208 		if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2209 			zap_deposited_table(tlb->mm, pmd);
2210 		spin_unlock(ptl);
2211 	} else {
2212 		struct folio *folio = NULL;
2213 		int flush_needed = 1;
2214 
2215 		if (pmd_present(orig_pmd)) {
2216 			struct page *page = pmd_page(orig_pmd);
2217 
2218 			folio = page_folio(page);
2219 			folio_remove_rmap_pmd(folio, page, vma);
2220 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2221 			VM_BUG_ON_PAGE(!PageHead(page), page);
2222 		} else if (thp_migration_supported()) {
2223 			swp_entry_t entry;
2224 
2225 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2226 			entry = pmd_to_swp_entry(orig_pmd);
2227 			folio = pfn_swap_entry_folio(entry);
2228 			flush_needed = 0;
2229 		} else
2230 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2231 
2232 		if (folio_test_anon(folio)) {
2233 			zap_deposited_table(tlb->mm, pmd);
2234 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2235 		} else {
2236 			if (arch_needs_pgtable_deposit())
2237 				zap_deposited_table(tlb->mm, pmd);
2238 			add_mm_counter(tlb->mm, mm_counter_file(folio),
2239 				       -HPAGE_PMD_NR);
2240 
2241 			/*
2242 			 * Use flush_needed to indicate whether the PMD entry
2243 			 * is present, instead of checking pmd_present() again.
2244 			 */
2245 			if (flush_needed && pmd_young(orig_pmd) &&
2246 			    likely(vma_has_recency(vma)))
2247 				folio_mark_accessed(folio);
2248 		}
2249 
2250 		spin_unlock(ptl);
2251 		if (flush_needed)
2252 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2253 	}
2254 	return 1;
2255 }
2256 
2257 #ifndef pmd_move_must_withdraw
2258 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2259 					 spinlock_t *old_pmd_ptl,
2260 					 struct vm_area_struct *vma)
2261 {
2262 	/*
2263 	 * With split pmd lock we also need to move preallocated
2264 	 * PTE page table if new_pmd is on different PMD page table.
2265 	 *
2266 	 * We also don't deposit and withdraw tables for file pages.
2267 	 */
2268 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2269 }
2270 #endif
2271 
2272 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2273 {
2274 #ifdef CONFIG_MEM_SOFT_DIRTY
2275 	if (unlikely(is_pmd_migration_entry(pmd)))
2276 		pmd = pmd_swp_mksoft_dirty(pmd);
2277 	else if (pmd_present(pmd))
2278 		pmd = pmd_mksoft_dirty(pmd);
2279 #endif
2280 	return pmd;
2281 }
2282 
2283 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2284 {
2285 	if (pmd_present(pmd))
2286 		pmd = pmd_clear_uffd_wp(pmd);
2287 	else if (is_swap_pmd(pmd))
2288 		pmd = pmd_swp_clear_uffd_wp(pmd);
2289 
2290 	return pmd;
2291 }
2292 
2293 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2294 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2295 {
2296 	spinlock_t *old_ptl, *new_ptl;
2297 	pmd_t pmd;
2298 	struct mm_struct *mm = vma->vm_mm;
2299 	bool force_flush = false;
2300 
2301 	/*
2302 	 * The destination pmd shouldn't be established, free_pgtables()
2303 	 * should have released it; but move_page_tables() might have already
2304 	 * inserted a page table, if racing against shmem/file collapse.
2305 	 */
2306 	if (!pmd_none(*new_pmd)) {
2307 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
2308 		return false;
2309 	}
2310 
2311 	/*
2312 	 * We don't have to worry about the ordering of src and dst
2313 	 * ptlocks because exclusive mmap_lock prevents deadlock.
2314 	 */
2315 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2316 	if (old_ptl) {
2317 		new_ptl = pmd_lockptr(mm, new_pmd);
2318 		if (new_ptl != old_ptl)
2319 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2320 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2321 		if (pmd_present(pmd))
2322 			force_flush = true;
2323 		VM_BUG_ON(!pmd_none(*new_pmd));
2324 
2325 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2326 			pgtable_t pgtable;
2327 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2328 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2329 		}
2330 		pmd = move_soft_dirty_pmd(pmd);
2331 		if (vma_has_uffd_without_event_remap(vma))
2332 			pmd = clear_uffd_wp_pmd(pmd);
2333 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2334 		if (force_flush)
2335 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2336 		if (new_ptl != old_ptl)
2337 			spin_unlock(new_ptl);
2338 		spin_unlock(old_ptl);
2339 		return true;
2340 	}
2341 	return false;
2342 }
2343 
2344 /*
2345  * Returns
2346  *  - 0 if PMD could not be locked
2347  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2348  *      or if prot_numa but THP migration is not supported
2349  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2350  */
2351 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2352 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2353 		    unsigned long cp_flags)
2354 {
2355 	struct mm_struct *mm = vma->vm_mm;
2356 	spinlock_t *ptl;
2357 	pmd_t oldpmd, entry;
2358 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2359 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2360 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2361 	int ret = 1;
2362 
2363 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2364 
2365 	if (prot_numa && !thp_migration_supported())
2366 		return 1;
2367 
2368 	ptl = __pmd_trans_huge_lock(pmd, vma);
2369 	if (!ptl)
2370 		return 0;
2371 
2372 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2373 	if (is_swap_pmd(*pmd)) {
2374 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2375 		struct folio *folio = pfn_swap_entry_folio(entry);
2376 		pmd_t newpmd;
2377 
2378 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2379 		if (is_writable_migration_entry(entry)) {
2380 			/*
2381 			 * A protection check is difficult so
2382 			 * just be safe and disable write
2383 			 */
2384 			if (folio_test_anon(folio))
2385 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2386 			else
2387 				entry = make_readable_migration_entry(swp_offset(entry));
2388 			newpmd = swp_entry_to_pmd(entry);
2389 			if (pmd_swp_soft_dirty(*pmd))
2390 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2391 		} else {
2392 			newpmd = *pmd;
2393 		}
2394 
2395 		if (uffd_wp)
2396 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2397 		else if (uffd_wp_resolve)
2398 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2399 		if (!pmd_same(*pmd, newpmd))
2400 			set_pmd_at(mm, addr, pmd, newpmd);
2401 		goto unlock;
2402 	}
2403 #endif
2404 
2405 	if (prot_numa) {
2406 		struct folio *folio;
2407 		bool toptier;
2408 		/*
2409 		 * Avoid trapping faults against the zero page. The read-only
2410 		 * data is likely to be read-cached on the local CPU and
2411 		 * local/remote hits to the zero page are not interesting.
2412 		 */
2413 		if (is_huge_zero_pmd(*pmd))
2414 			goto unlock;
2415 
2416 		if (pmd_protnone(*pmd))
2417 			goto unlock;
2418 
2419 		folio = pmd_folio(*pmd);
2420 		toptier = node_is_toptier(folio_nid(folio));
2421 		/*
2422 		 * Skip scanning top tier node if normal numa
2423 		 * balancing is disabled
2424 		 */
2425 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2426 		    toptier)
2427 			goto unlock;
2428 
2429 		if (folio_use_access_time(folio))
2430 			folio_xchg_access_time(folio,
2431 					       jiffies_to_msecs(jiffies));
2432 	}
2433 	/*
2434 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2435 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2436 	 * which is also under mmap_read_lock(mm):
2437 	 *
2438 	 *	CPU0:				CPU1:
2439 	 *				change_huge_pmd(prot_numa=1)
2440 	 *				 pmdp_huge_get_and_clear_notify()
2441 	 * madvise_dontneed()
2442 	 *  zap_pmd_range()
2443 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2444 	 *   // skip the pmd
2445 	 *				 set_pmd_at();
2446 	 *				 // pmd is re-established
2447 	 *
2448 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2449 	 * which may break userspace.
2450 	 *
2451 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2452 	 * dirty/young flags set by hardware.
2453 	 */
2454 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2455 
2456 	entry = pmd_modify(oldpmd, newprot);
2457 	if (uffd_wp)
2458 		entry = pmd_mkuffd_wp(entry);
2459 	else if (uffd_wp_resolve)
2460 		/*
2461 		 * Leave the write bit to be handled by PF interrupt
2462 		 * handler, then things like COW could be properly
2463 		 * handled.
2464 		 */
2465 		entry = pmd_clear_uffd_wp(entry);
2466 
2467 	/* See change_pte_range(). */
2468 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2469 	    can_change_pmd_writable(vma, addr, entry))
2470 		entry = pmd_mkwrite(entry, vma);
2471 
2472 	ret = HPAGE_PMD_NR;
2473 	set_pmd_at(mm, addr, pmd, entry);
2474 
2475 	if (huge_pmd_needs_flush(oldpmd, entry))
2476 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2477 unlock:
2478 	spin_unlock(ptl);
2479 	return ret;
2480 }
2481 
2482 /*
2483  * Returns:
2484  *
2485  * - 0: if pud leaf changed from under us
2486  * - 1: if pud can be skipped
2487  * - HPAGE_PUD_NR: if pud was successfully processed
2488  */
2489 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2490 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2491 		    pud_t *pudp, unsigned long addr, pgprot_t newprot,
2492 		    unsigned long cp_flags)
2493 {
2494 	struct mm_struct *mm = vma->vm_mm;
2495 	pud_t oldpud, entry;
2496 	spinlock_t *ptl;
2497 
2498 	tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2499 
2500 	/* NUMA balancing doesn't apply to dax */
2501 	if (cp_flags & MM_CP_PROT_NUMA)
2502 		return 1;
2503 
2504 	/*
2505 	 * Huge entries on userfault-wp only works with anonymous, while we
2506 	 * don't have anonymous PUDs yet.
2507 	 */
2508 	if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2509 		return 1;
2510 
2511 	ptl = __pud_trans_huge_lock(pudp, vma);
2512 	if (!ptl)
2513 		return 0;
2514 
2515 	/*
2516 	 * Can't clear PUD or it can race with concurrent zapping.  See
2517 	 * change_huge_pmd().
2518 	 */
2519 	oldpud = pudp_invalidate(vma, addr, pudp);
2520 	entry = pud_modify(oldpud, newprot);
2521 	set_pud_at(mm, addr, pudp, entry);
2522 	tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2523 
2524 	spin_unlock(ptl);
2525 	return HPAGE_PUD_NR;
2526 }
2527 #endif
2528 
2529 #ifdef CONFIG_USERFAULTFD
2530 /*
2531  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2532  * the caller, but it must return after releasing the page_table_lock.
2533  * Just move the page from src_pmd to dst_pmd if possible.
2534  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2535  * repeated by the caller, or other errors in case of failure.
2536  */
2537 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2538 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2539 			unsigned long dst_addr, unsigned long src_addr)
2540 {
2541 	pmd_t _dst_pmd, src_pmdval;
2542 	struct page *src_page;
2543 	struct folio *src_folio;
2544 	struct anon_vma *src_anon_vma;
2545 	spinlock_t *src_ptl, *dst_ptl;
2546 	pgtable_t src_pgtable;
2547 	struct mmu_notifier_range range;
2548 	int err = 0;
2549 
2550 	src_pmdval = *src_pmd;
2551 	src_ptl = pmd_lockptr(mm, src_pmd);
2552 
2553 	lockdep_assert_held(src_ptl);
2554 	vma_assert_locked(src_vma);
2555 	vma_assert_locked(dst_vma);
2556 
2557 	/* Sanity checks before the operation */
2558 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2559 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2560 		spin_unlock(src_ptl);
2561 		return -EINVAL;
2562 	}
2563 
2564 	if (!pmd_trans_huge(src_pmdval)) {
2565 		spin_unlock(src_ptl);
2566 		if (is_pmd_migration_entry(src_pmdval)) {
2567 			pmd_migration_entry_wait(mm, &src_pmdval);
2568 			return -EAGAIN;
2569 		}
2570 		return -ENOENT;
2571 	}
2572 
2573 	src_page = pmd_page(src_pmdval);
2574 
2575 	if (!is_huge_zero_pmd(src_pmdval)) {
2576 		if (unlikely(!PageAnonExclusive(src_page))) {
2577 			spin_unlock(src_ptl);
2578 			return -EBUSY;
2579 		}
2580 
2581 		src_folio = page_folio(src_page);
2582 		folio_get(src_folio);
2583 	} else
2584 		src_folio = NULL;
2585 
2586 	spin_unlock(src_ptl);
2587 
2588 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2589 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2590 				src_addr + HPAGE_PMD_SIZE);
2591 	mmu_notifier_invalidate_range_start(&range);
2592 
2593 	if (src_folio) {
2594 		folio_lock(src_folio);
2595 
2596 		/*
2597 		 * split_huge_page walks the anon_vma chain without the page
2598 		 * lock. Serialize against it with the anon_vma lock, the page
2599 		 * lock is not enough.
2600 		 */
2601 		src_anon_vma = folio_get_anon_vma(src_folio);
2602 		if (!src_anon_vma) {
2603 			err = -EAGAIN;
2604 			goto unlock_folio;
2605 		}
2606 		anon_vma_lock_write(src_anon_vma);
2607 	} else
2608 		src_anon_vma = NULL;
2609 
2610 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2611 	double_pt_lock(src_ptl, dst_ptl);
2612 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2613 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2614 		err = -EAGAIN;
2615 		goto unlock_ptls;
2616 	}
2617 	if (src_folio) {
2618 		if (folio_maybe_dma_pinned(src_folio) ||
2619 		    !PageAnonExclusive(&src_folio->page)) {
2620 			err = -EBUSY;
2621 			goto unlock_ptls;
2622 		}
2623 
2624 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2625 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2626 			err = -EBUSY;
2627 			goto unlock_ptls;
2628 		}
2629 
2630 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2631 		/* Folio got pinned from under us. Put it back and fail the move. */
2632 		if (folio_maybe_dma_pinned(src_folio)) {
2633 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2634 			err = -EBUSY;
2635 			goto unlock_ptls;
2636 		}
2637 
2638 		folio_move_anon_rmap(src_folio, dst_vma);
2639 		src_folio->index = linear_page_index(dst_vma, dst_addr);
2640 
2641 		_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2642 		/* Follow mremap() behavior and treat the entry dirty after the move */
2643 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2644 	} else {
2645 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2646 		_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2647 	}
2648 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2649 
2650 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2651 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2652 unlock_ptls:
2653 	double_pt_unlock(src_ptl, dst_ptl);
2654 	if (src_anon_vma) {
2655 		anon_vma_unlock_write(src_anon_vma);
2656 		put_anon_vma(src_anon_vma);
2657 	}
2658 unlock_folio:
2659 	/* unblock rmap walks */
2660 	if (src_folio)
2661 		folio_unlock(src_folio);
2662 	mmu_notifier_invalidate_range_end(&range);
2663 	if (src_folio)
2664 		folio_put(src_folio);
2665 	return err;
2666 }
2667 #endif /* CONFIG_USERFAULTFD */
2668 
2669 /*
2670  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2671  *
2672  * Note that if it returns page table lock pointer, this routine returns without
2673  * unlocking page table lock. So callers must unlock it.
2674  */
2675 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2676 {
2677 	spinlock_t *ptl;
2678 	ptl = pmd_lock(vma->vm_mm, pmd);
2679 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)))
2680 		return ptl;
2681 	spin_unlock(ptl);
2682 	return NULL;
2683 }
2684 
2685 /*
2686  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2687  *
2688  * Note that if it returns page table lock pointer, this routine returns without
2689  * unlocking page table lock. So callers must unlock it.
2690  */
2691 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2692 {
2693 	spinlock_t *ptl;
2694 
2695 	ptl = pud_lock(vma->vm_mm, pud);
2696 	if (likely(pud_trans_huge(*pud)))
2697 		return ptl;
2698 	spin_unlock(ptl);
2699 	return NULL;
2700 }
2701 
2702 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2703 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2704 		 pud_t *pud, unsigned long addr)
2705 {
2706 	spinlock_t *ptl;
2707 	pud_t orig_pud;
2708 
2709 	ptl = __pud_trans_huge_lock(pud, vma);
2710 	if (!ptl)
2711 		return 0;
2712 
2713 	orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2714 	arch_check_zapped_pud(vma, orig_pud);
2715 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2716 	if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2717 		spin_unlock(ptl);
2718 		/* No zero page support yet */
2719 	} else {
2720 		struct page *page = NULL;
2721 		struct folio *folio;
2722 
2723 		/* No support for anonymous PUD pages or migration yet */
2724 		VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2725 				!pud_present(orig_pud));
2726 
2727 		page = pud_page(orig_pud);
2728 		folio = page_folio(page);
2729 		folio_remove_rmap_pud(folio, page, vma);
2730 		add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2731 
2732 		spin_unlock(ptl);
2733 		tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2734 	}
2735 	return 1;
2736 }
2737 
2738 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2739 		unsigned long haddr)
2740 {
2741 	struct folio *folio;
2742 	struct page *page;
2743 	pud_t old_pud;
2744 
2745 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2746 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2747 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2748 	VM_BUG_ON(!pud_trans_huge(*pud));
2749 
2750 	count_vm_event(THP_SPLIT_PUD);
2751 
2752 	old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2753 
2754 	if (!vma_is_dax(vma))
2755 		return;
2756 
2757 	page = pud_page(old_pud);
2758 	folio = page_folio(page);
2759 
2760 	if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2761 		folio_mark_dirty(folio);
2762 	if (!folio_test_referenced(folio) && pud_young(old_pud))
2763 		folio_set_referenced(folio);
2764 	folio_remove_rmap_pud(folio, page, vma);
2765 	folio_put(folio);
2766 	add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2767 		-HPAGE_PUD_NR);
2768 }
2769 
2770 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2771 		unsigned long address)
2772 {
2773 	spinlock_t *ptl;
2774 	struct mmu_notifier_range range;
2775 
2776 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2777 				address & HPAGE_PUD_MASK,
2778 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2779 	mmu_notifier_invalidate_range_start(&range);
2780 	ptl = pud_lock(vma->vm_mm, pud);
2781 	if (unlikely(!pud_trans_huge(*pud)))
2782 		goto out;
2783 	__split_huge_pud_locked(vma, pud, range.start);
2784 
2785 out:
2786 	spin_unlock(ptl);
2787 	mmu_notifier_invalidate_range_end(&range);
2788 }
2789 #else
2790 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2791 		unsigned long address)
2792 {
2793 }
2794 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2795 
2796 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2797 		unsigned long haddr, pmd_t *pmd)
2798 {
2799 	struct mm_struct *mm = vma->vm_mm;
2800 	pgtable_t pgtable;
2801 	pmd_t _pmd, old_pmd;
2802 	unsigned long addr;
2803 	pte_t *pte;
2804 	int i;
2805 
2806 	/*
2807 	 * Leave pmd empty until pte is filled note that it is fine to delay
2808 	 * notification until mmu_notifier_invalidate_range_end() as we are
2809 	 * replacing a zero pmd write protected page with a zero pte write
2810 	 * protected page.
2811 	 *
2812 	 * See Documentation/mm/mmu_notifier.rst
2813 	 */
2814 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2815 
2816 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2817 	pmd_populate(mm, &_pmd, pgtable);
2818 
2819 	pte = pte_offset_map(&_pmd, haddr);
2820 	VM_BUG_ON(!pte);
2821 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2822 		pte_t entry;
2823 
2824 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2825 		entry = pte_mkspecial(entry);
2826 		if (pmd_uffd_wp(old_pmd))
2827 			entry = pte_mkuffd_wp(entry);
2828 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2829 		set_pte_at(mm, addr, pte, entry);
2830 		pte++;
2831 	}
2832 	pte_unmap(pte - 1);
2833 	smp_wmb(); /* make pte visible before pmd */
2834 	pmd_populate(mm, pmd, pgtable);
2835 }
2836 
2837 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2838 		unsigned long haddr, bool freeze)
2839 {
2840 	struct mm_struct *mm = vma->vm_mm;
2841 	struct folio *folio;
2842 	struct page *page;
2843 	pgtable_t pgtable;
2844 	pmd_t old_pmd, _pmd;
2845 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2846 	bool anon_exclusive = false, dirty = false;
2847 	unsigned long addr;
2848 	pte_t *pte;
2849 	int i;
2850 
2851 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2852 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2853 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2854 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd));
2855 
2856 	count_vm_event(THP_SPLIT_PMD);
2857 
2858 	if (!vma_is_anonymous(vma)) {
2859 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2860 		/*
2861 		 * We are going to unmap this huge page. So
2862 		 * just go ahead and zap it
2863 		 */
2864 		if (arch_needs_pgtable_deposit())
2865 			zap_deposited_table(mm, pmd);
2866 		if (!vma_is_dax(vma) && vma_is_special_huge(vma))
2867 			return;
2868 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2869 			swp_entry_t entry;
2870 
2871 			entry = pmd_to_swp_entry(old_pmd);
2872 			folio = pfn_swap_entry_folio(entry);
2873 		} else if (is_huge_zero_pmd(old_pmd)) {
2874 			return;
2875 		} else {
2876 			page = pmd_page(old_pmd);
2877 			folio = page_folio(page);
2878 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2879 				folio_mark_dirty(folio);
2880 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2881 				folio_set_referenced(folio);
2882 			folio_remove_rmap_pmd(folio, page, vma);
2883 			folio_put(folio);
2884 		}
2885 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2886 		return;
2887 	}
2888 
2889 	if (is_huge_zero_pmd(*pmd)) {
2890 		/*
2891 		 * FIXME: Do we want to invalidate secondary mmu by calling
2892 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2893 		 * inside __split_huge_pmd() ?
2894 		 *
2895 		 * We are going from a zero huge page write protected to zero
2896 		 * small page also write protected so it does not seems useful
2897 		 * to invalidate secondary mmu at this time.
2898 		 */
2899 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2900 	}
2901 
2902 	pmd_migration = is_pmd_migration_entry(*pmd);
2903 	if (unlikely(pmd_migration)) {
2904 		swp_entry_t entry;
2905 
2906 		old_pmd = *pmd;
2907 		entry = pmd_to_swp_entry(old_pmd);
2908 		page = pfn_swap_entry_to_page(entry);
2909 		write = is_writable_migration_entry(entry);
2910 		if (PageAnon(page))
2911 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2912 		young = is_migration_entry_young(entry);
2913 		dirty = is_migration_entry_dirty(entry);
2914 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2915 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2916 	} else {
2917 		/*
2918 		 * Up to this point the pmd is present and huge and userland has
2919 		 * the whole access to the hugepage during the split (which
2920 		 * happens in place). If we overwrite the pmd with the not-huge
2921 		 * version pointing to the pte here (which of course we could if
2922 		 * all CPUs were bug free), userland could trigger a small page
2923 		 * size TLB miss on the small sized TLB while the hugepage TLB
2924 		 * entry is still established in the huge TLB. Some CPU doesn't
2925 		 * like that. See
2926 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2927 		 * 383 on page 105. Intel should be safe but is also warns that
2928 		 * it's only safe if the permission and cache attributes of the
2929 		 * two entries loaded in the two TLB is identical (which should
2930 		 * be the case here). But it is generally safer to never allow
2931 		 * small and huge TLB entries for the same virtual address to be
2932 		 * loaded simultaneously. So instead of doing "pmd_populate();
2933 		 * flush_pmd_tlb_range();" we first mark the current pmd
2934 		 * notpresent (atomically because here the pmd_trans_huge must
2935 		 * remain set at all times on the pmd until the split is
2936 		 * complete for this pmd), then we flush the SMP TLB and finally
2937 		 * we write the non-huge version of the pmd entry with
2938 		 * pmd_populate.
2939 		 */
2940 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2941 		page = pmd_page(old_pmd);
2942 		folio = page_folio(page);
2943 		if (pmd_dirty(old_pmd)) {
2944 			dirty = true;
2945 			folio_set_dirty(folio);
2946 		}
2947 		write = pmd_write(old_pmd);
2948 		young = pmd_young(old_pmd);
2949 		soft_dirty = pmd_soft_dirty(old_pmd);
2950 		uffd_wp = pmd_uffd_wp(old_pmd);
2951 
2952 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2953 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2954 
2955 		/*
2956 		 * Without "freeze", we'll simply split the PMD, propagating the
2957 		 * PageAnonExclusive() flag for each PTE by setting it for
2958 		 * each subpage -- no need to (temporarily) clear.
2959 		 *
2960 		 * With "freeze" we want to replace mapped pages by
2961 		 * migration entries right away. This is only possible if we
2962 		 * managed to clear PageAnonExclusive() -- see
2963 		 * set_pmd_migration_entry().
2964 		 *
2965 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2966 		 * only and let try_to_migrate_one() fail later.
2967 		 *
2968 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2969 		 */
2970 		anon_exclusive = PageAnonExclusive(page);
2971 		if (freeze && anon_exclusive &&
2972 		    folio_try_share_anon_rmap_pmd(folio, page))
2973 			freeze = false;
2974 		if (!freeze) {
2975 			rmap_t rmap_flags = RMAP_NONE;
2976 
2977 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2978 			if (anon_exclusive)
2979 				rmap_flags |= RMAP_EXCLUSIVE;
2980 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2981 						 vma, haddr, rmap_flags);
2982 		}
2983 	}
2984 
2985 	/*
2986 	 * Withdraw the table only after we mark the pmd entry invalid.
2987 	 * This's critical for some architectures (Power).
2988 	 */
2989 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2990 	pmd_populate(mm, &_pmd, pgtable);
2991 
2992 	pte = pte_offset_map(&_pmd, haddr);
2993 	VM_BUG_ON(!pte);
2994 
2995 	/*
2996 	 * Note that NUMA hinting access restrictions are not transferred to
2997 	 * avoid any possibility of altering permissions across VMAs.
2998 	 */
2999 	if (freeze || pmd_migration) {
3000 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3001 			pte_t entry;
3002 			swp_entry_t swp_entry;
3003 
3004 			if (write)
3005 				swp_entry = make_writable_migration_entry(
3006 							page_to_pfn(page + i));
3007 			else if (anon_exclusive)
3008 				swp_entry = make_readable_exclusive_migration_entry(
3009 							page_to_pfn(page + i));
3010 			else
3011 				swp_entry = make_readable_migration_entry(
3012 							page_to_pfn(page + i));
3013 			if (young)
3014 				swp_entry = make_migration_entry_young(swp_entry);
3015 			if (dirty)
3016 				swp_entry = make_migration_entry_dirty(swp_entry);
3017 			entry = swp_entry_to_pte(swp_entry);
3018 			if (soft_dirty)
3019 				entry = pte_swp_mksoft_dirty(entry);
3020 			if (uffd_wp)
3021 				entry = pte_swp_mkuffd_wp(entry);
3022 
3023 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3024 			set_pte_at(mm, addr, pte + i, entry);
3025 		}
3026 	} else {
3027 		pte_t entry;
3028 
3029 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3030 		if (write)
3031 			entry = pte_mkwrite(entry, vma);
3032 		if (!young)
3033 			entry = pte_mkold(entry);
3034 		/* NOTE: this may set soft-dirty too on some archs */
3035 		if (dirty)
3036 			entry = pte_mkdirty(entry);
3037 		if (soft_dirty)
3038 			entry = pte_mksoft_dirty(entry);
3039 		if (uffd_wp)
3040 			entry = pte_mkuffd_wp(entry);
3041 
3042 		for (i = 0; i < HPAGE_PMD_NR; i++)
3043 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3044 
3045 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3046 	}
3047 	pte_unmap(pte);
3048 
3049 	if (!pmd_migration)
3050 		folio_remove_rmap_pmd(folio, page, vma);
3051 	if (freeze)
3052 		put_page(page);
3053 
3054 	smp_wmb(); /* make pte visible before pmd */
3055 	pmd_populate(mm, pmd, pgtable);
3056 }
3057 
3058 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3059 			   pmd_t *pmd, bool freeze)
3060 {
3061 	VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3062 	if (pmd_trans_huge(*pmd) || is_pmd_migration_entry(*pmd))
3063 		__split_huge_pmd_locked(vma, pmd, address, freeze);
3064 }
3065 
3066 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3067 		unsigned long address, bool freeze)
3068 {
3069 	spinlock_t *ptl;
3070 	struct mmu_notifier_range range;
3071 
3072 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3073 				address & HPAGE_PMD_MASK,
3074 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3075 	mmu_notifier_invalidate_range_start(&range);
3076 	ptl = pmd_lock(vma->vm_mm, pmd);
3077 	split_huge_pmd_locked(vma, range.start, pmd, freeze);
3078 	spin_unlock(ptl);
3079 	mmu_notifier_invalidate_range_end(&range);
3080 }
3081 
3082 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3083 		bool freeze)
3084 {
3085 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3086 
3087 	if (!pmd)
3088 		return;
3089 
3090 	__split_huge_pmd(vma, pmd, address, freeze);
3091 }
3092 
3093 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3094 {
3095 	/*
3096 	 * If the new address isn't hpage aligned and it could previously
3097 	 * contain an hugepage: check if we need to split an huge pmd.
3098 	 */
3099 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3100 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3101 			 ALIGN(address, HPAGE_PMD_SIZE)))
3102 		split_huge_pmd_address(vma, address, false);
3103 }
3104 
3105 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3106 			   unsigned long start,
3107 			   unsigned long end,
3108 			   struct vm_area_struct *next)
3109 {
3110 	/* Check if we need to split start first. */
3111 	split_huge_pmd_if_needed(vma, start);
3112 
3113 	/* Check if we need to split end next. */
3114 	split_huge_pmd_if_needed(vma, end);
3115 
3116 	/* If we're incrementing next->vm_start, we might need to split it. */
3117 	if (next)
3118 		split_huge_pmd_if_needed(next, end);
3119 }
3120 
3121 static void unmap_folio(struct folio *folio)
3122 {
3123 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3124 		TTU_BATCH_FLUSH;
3125 
3126 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3127 
3128 	if (folio_test_pmd_mappable(folio))
3129 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
3130 
3131 	/*
3132 	 * Anon pages need migration entries to preserve them, but file
3133 	 * pages can simply be left unmapped, then faulted back on demand.
3134 	 * If that is ever changed (perhaps for mlock), update remap_page().
3135 	 */
3136 	if (folio_test_anon(folio))
3137 		try_to_migrate(folio, ttu_flags);
3138 	else
3139 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3140 
3141 	try_to_unmap_flush();
3142 }
3143 
3144 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3145 					    unsigned long addr, pmd_t *pmdp,
3146 					    struct folio *folio)
3147 {
3148 	struct mm_struct *mm = vma->vm_mm;
3149 	int ref_count, map_count;
3150 	pmd_t orig_pmd = *pmdp;
3151 
3152 	if (pmd_dirty(orig_pmd))
3153 		folio_set_dirty(folio);
3154 	if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3155 		folio_set_swapbacked(folio);
3156 		return false;
3157 	}
3158 
3159 	orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3160 
3161 	/*
3162 	 * Syncing against concurrent GUP-fast:
3163 	 * - clear PMD; barrier; read refcount
3164 	 * - inc refcount; barrier; read PMD
3165 	 */
3166 	smp_mb();
3167 
3168 	ref_count = folio_ref_count(folio);
3169 	map_count = folio_mapcount(folio);
3170 
3171 	/*
3172 	 * Order reads for folio refcount and dirty flag
3173 	 * (see comments in __remove_mapping()).
3174 	 */
3175 	smp_rmb();
3176 
3177 	/*
3178 	 * If the folio or its PMD is redirtied at this point, or if there
3179 	 * are unexpected references, we will give up to discard this folio
3180 	 * and remap it.
3181 	 *
3182 	 * The only folio refs must be one from isolation plus the rmap(s).
3183 	 */
3184 	if (pmd_dirty(orig_pmd))
3185 		folio_set_dirty(folio);
3186 	if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3187 		folio_set_swapbacked(folio);
3188 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3189 		return false;
3190 	}
3191 
3192 	if (ref_count != map_count + 1) {
3193 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3194 		return false;
3195 	}
3196 
3197 	folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3198 	zap_deposited_table(mm, pmdp);
3199 	add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3200 	if (vma->vm_flags & VM_LOCKED)
3201 		mlock_drain_local();
3202 	folio_put(folio);
3203 
3204 	return true;
3205 }
3206 
3207 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3208 			   pmd_t *pmdp, struct folio *folio)
3209 {
3210 	VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3211 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3212 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3213 	VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3214 	VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3215 
3216 	return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3217 }
3218 
3219 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3220 {
3221 	int i = 0;
3222 
3223 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
3224 	if (!folio_test_anon(folio))
3225 		return;
3226 	for (;;) {
3227 		remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3228 		i += folio_nr_pages(folio);
3229 		if (i >= nr)
3230 			break;
3231 		folio = folio_next(folio);
3232 	}
3233 }
3234 
3235 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3236 		struct lruvec *lruvec, struct list_head *list)
3237 {
3238 	VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3239 	lockdep_assert_held(&lruvec->lru_lock);
3240 
3241 	if (list) {
3242 		/* page reclaim is reclaiming a huge page */
3243 		VM_WARN_ON(folio_test_lru(folio));
3244 		folio_get(new_folio);
3245 		list_add_tail(&new_folio->lru, list);
3246 	} else {
3247 		/* head is still on lru (and we have it frozen) */
3248 		VM_WARN_ON(!folio_test_lru(folio));
3249 		if (folio_test_unevictable(folio))
3250 			new_folio->mlock_count = 0;
3251 		else
3252 			list_add_tail(&new_folio->lru, &folio->lru);
3253 		folio_set_lru(new_folio);
3254 	}
3255 }
3256 
3257 /* Racy check whether the huge page can be split */
3258 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3259 {
3260 	int extra_pins;
3261 
3262 	/* Additional pins from page cache */
3263 	if (folio_test_anon(folio))
3264 		extra_pins = folio_test_swapcache(folio) ?
3265 				folio_nr_pages(folio) : 0;
3266 	else
3267 		extra_pins = folio_nr_pages(folio);
3268 	if (pextra_pins)
3269 		*pextra_pins = extra_pins;
3270 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3271 					caller_pins;
3272 }
3273 
3274 /*
3275  * It splits @folio into @new_order folios and copies the @folio metadata to
3276  * all the resulting folios.
3277  */
3278 static void __split_folio_to_order(struct folio *folio, int old_order,
3279 		int new_order)
3280 {
3281 	long new_nr_pages = 1 << new_order;
3282 	long nr_pages = 1 << old_order;
3283 	long i;
3284 
3285 	/*
3286 	 * Skip the first new_nr_pages, since the new folio from them have all
3287 	 * the flags from the original folio.
3288 	 */
3289 	for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3290 		struct page *new_head = &folio->page + i;
3291 
3292 		/*
3293 		 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3294 		 * Don't pass it around before clear_compound_head().
3295 		 */
3296 		struct folio *new_folio = (struct folio *)new_head;
3297 
3298 		VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3299 
3300 		/*
3301 		 * Clone page flags before unfreezing refcount.
3302 		 *
3303 		 * After successful get_page_unless_zero() might follow flags change,
3304 		 * for example lock_page() which set PG_waiters.
3305 		 *
3306 		 * Note that for mapped sub-pages of an anonymous THP,
3307 		 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3308 		 * the migration entry instead from where remap_page() will restore it.
3309 		 * We can still have PG_anon_exclusive set on effectively unmapped and
3310 		 * unreferenced sub-pages of an anonymous THP: we can simply drop
3311 		 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3312 		 */
3313 		new_folio->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3314 		new_folio->flags |= (folio->flags &
3315 				((1L << PG_referenced) |
3316 				 (1L << PG_swapbacked) |
3317 				 (1L << PG_swapcache) |
3318 				 (1L << PG_mlocked) |
3319 				 (1L << PG_uptodate) |
3320 				 (1L << PG_active) |
3321 				 (1L << PG_workingset) |
3322 				 (1L << PG_locked) |
3323 				 (1L << PG_unevictable) |
3324 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3325 				 (1L << PG_arch_2) |
3326 #endif
3327 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3328 				 (1L << PG_arch_3) |
3329 #endif
3330 				 (1L << PG_dirty) |
3331 				 LRU_GEN_MASK | LRU_REFS_MASK));
3332 
3333 		new_folio->mapping = folio->mapping;
3334 		new_folio->index = folio->index + i;
3335 
3336 		/*
3337 		 * page->private should not be set in tail pages. Fix up and warn once
3338 		 * if private is unexpectedly set.
3339 		 */
3340 		if (unlikely(new_folio->private)) {
3341 			VM_WARN_ON_ONCE_PAGE(true, new_head);
3342 			new_folio->private = NULL;
3343 		}
3344 
3345 		if (folio_test_swapcache(folio))
3346 			new_folio->swap.val = folio->swap.val + i;
3347 
3348 		/* Page flags must be visible before we make the page non-compound. */
3349 		smp_wmb();
3350 
3351 		/*
3352 		 * Clear PageTail before unfreezing page refcount.
3353 		 *
3354 		 * After successful get_page_unless_zero() might follow put_page()
3355 		 * which needs correct compound_head().
3356 		 */
3357 		clear_compound_head(new_head);
3358 		if (new_order) {
3359 			prep_compound_page(new_head, new_order);
3360 			folio_set_large_rmappable(new_folio);
3361 		}
3362 
3363 		if (folio_test_young(folio))
3364 			folio_set_young(new_folio);
3365 		if (folio_test_idle(folio))
3366 			folio_set_idle(new_folio);
3367 #ifdef CONFIG_MEMCG
3368 		new_folio->memcg_data = folio->memcg_data;
3369 #endif
3370 
3371 		folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3372 	}
3373 
3374 	if (new_order)
3375 		folio_set_order(folio, new_order);
3376 	else
3377 		ClearPageCompound(&folio->page);
3378 }
3379 
3380 /*
3381  * It splits an unmapped @folio to lower order smaller folios in two ways.
3382  * @folio: the to-be-split folio
3383  * @new_order: the smallest order of the after split folios (since buddy
3384  *             allocator like split generates folios with orders from @folio's
3385  *             order - 1 to new_order).
3386  * @split_at: in buddy allocator like split, the folio containing @split_at
3387  *            will be split until its order becomes @new_order.
3388  * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3389  * @mapping: @folio->mapping
3390  * @uniform_split: if the split is uniform or not (buddy allocator like split)
3391  *
3392  *
3393  * 1. uniform split: the given @folio into multiple @new_order small folios,
3394  *    where all small folios have the same order. This is done when
3395  *    uniform_split is true.
3396  * 2. buddy allocator like (non-uniform) split: the given @folio is split into
3397  *    half and one of the half (containing the given page) is split into half
3398  *    until the given @page's order becomes @new_order. This is done when
3399  *    uniform_split is false.
3400  *
3401  * The high level flow for these two methods are:
3402  * 1. uniform split: a single __split_folio_to_order() is called to split the
3403  *    @folio into @new_order, then we traverse all the resulting folios one by
3404  *    one in PFN ascending order and perform stats, unfreeze, adding to list,
3405  *    and file mapping index operations.
3406  * 2. non-uniform split: in general, folio_order - @new_order calls to
3407  *    __split_folio_to_order() are made in a for loop to split the @folio
3408  *    to one lower order at a time. The resulting small folios are processed
3409  *    like what is done during the traversal in 1, except the one containing
3410  *    @page, which is split in next for loop.
3411  *
3412  * After splitting, the caller's folio reference will be transferred to the
3413  * folio containing @page. The caller needs to unlock and/or free after-split
3414  * folios if necessary.
3415  *
3416  * For !uniform_split, when -ENOMEM is returned, the original folio might be
3417  * split. The caller needs to check the input folio.
3418  */
3419 static int __split_unmapped_folio(struct folio *folio, int new_order,
3420 		struct page *split_at, struct xa_state *xas,
3421 		struct address_space *mapping, bool uniform_split)
3422 {
3423 	int order = folio_order(folio);
3424 	int start_order = uniform_split ? new_order : order - 1;
3425 	bool stop_split = false;
3426 	struct folio *next;
3427 	int split_order;
3428 	int ret = 0;
3429 
3430 	if (folio_test_anon(folio))
3431 		mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3432 
3433 	folio_clear_has_hwpoisoned(folio);
3434 
3435 	/*
3436 	 * split to new_order one order at a time. For uniform split,
3437 	 * folio is split to new_order directly.
3438 	 */
3439 	for (split_order = start_order;
3440 	     split_order >= new_order && !stop_split;
3441 	     split_order--) {
3442 		struct folio *end_folio = folio_next(folio);
3443 		int old_order = folio_order(folio);
3444 		struct folio *new_folio;
3445 
3446 		/* order-1 anonymous folio is not supported */
3447 		if (folio_test_anon(folio) && split_order == 1)
3448 			continue;
3449 		if (uniform_split && split_order != new_order)
3450 			continue;
3451 
3452 		if (mapping) {
3453 			/*
3454 			 * uniform split has xas_split_alloc() called before
3455 			 * irq is disabled to allocate enough memory, whereas
3456 			 * non-uniform split can handle ENOMEM.
3457 			 */
3458 			if (uniform_split)
3459 				xas_split(xas, folio, old_order);
3460 			else {
3461 				xas_set_order(xas, folio->index, split_order);
3462 				xas_try_split(xas, folio, old_order);
3463 				if (xas_error(xas)) {
3464 					ret = xas_error(xas);
3465 					stop_split = true;
3466 				}
3467 			}
3468 		}
3469 
3470 		if (!stop_split) {
3471 			folio_split_memcg_refs(folio, old_order, split_order);
3472 			split_page_owner(&folio->page, old_order, split_order);
3473 			pgalloc_tag_split(folio, old_order, split_order);
3474 
3475 			__split_folio_to_order(folio, old_order, split_order);
3476 		}
3477 
3478 		/*
3479 		 * Iterate through after-split folios and update folio stats.
3480 		 * But in buddy allocator like split, the folio
3481 		 * containing the specified page is skipped until its order
3482 		 * is new_order, since the folio will be worked on in next
3483 		 * iteration.
3484 		 */
3485 		for (new_folio = folio; new_folio != end_folio; new_folio = next) {
3486 			next = folio_next(new_folio);
3487 			/*
3488 			 * for buddy allocator like split, new_folio containing
3489 			 * @split_at page could be split again, thus do not
3490 			 * change stats yet. Wait until new_folio's order is
3491 			 * @new_order or stop_split is set to true by the above
3492 			 * xas_split() failure.
3493 			 */
3494 			if (new_folio == page_folio(split_at)) {
3495 				folio = new_folio;
3496 				if (split_order != new_order && !stop_split)
3497 					continue;
3498 			}
3499 			if (folio_test_anon(new_folio))
3500 				mod_mthp_stat(folio_order(new_folio),
3501 					      MTHP_STAT_NR_ANON, 1);
3502 		}
3503 	}
3504 
3505 	return ret;
3506 }
3507 
3508 bool non_uniform_split_supported(struct folio *folio, unsigned int new_order,
3509 		bool warns)
3510 {
3511 	if (folio_test_anon(folio)) {
3512 		/* order-1 is not supported for anonymous THP. */
3513 		VM_WARN_ONCE(warns && new_order == 1,
3514 				"Cannot split to order-1 folio");
3515 		return new_order != 1;
3516 	} else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3517 	    !mapping_large_folio_support(folio->mapping)) {
3518 		/*
3519 		 * No split if the file system does not support large folio.
3520 		 * Note that we might still have THPs in such mappings due to
3521 		 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3522 		 * does not actually support large folios properly.
3523 		 */
3524 		VM_WARN_ONCE(warns,
3525 			"Cannot split file folio to non-0 order");
3526 		return false;
3527 	}
3528 
3529 	/* Only swapping a whole PMD-mapped folio is supported */
3530 	if (folio_test_swapcache(folio)) {
3531 		VM_WARN_ONCE(warns,
3532 			"Cannot split swapcache folio to non-0 order");
3533 		return false;
3534 	}
3535 
3536 	return true;
3537 }
3538 
3539 /* See comments in non_uniform_split_supported() */
3540 bool uniform_split_supported(struct folio *folio, unsigned int new_order,
3541 		bool warns)
3542 {
3543 	if (folio_test_anon(folio)) {
3544 		VM_WARN_ONCE(warns && new_order == 1,
3545 				"Cannot split to order-1 folio");
3546 		return new_order != 1;
3547 	} else  if (new_order) {
3548 		if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3549 		    !mapping_large_folio_support(folio->mapping)) {
3550 			VM_WARN_ONCE(warns,
3551 				"Cannot split file folio to non-0 order");
3552 			return false;
3553 		}
3554 	}
3555 
3556 	if (new_order && folio_test_swapcache(folio)) {
3557 		VM_WARN_ONCE(warns,
3558 			"Cannot split swapcache folio to non-0 order");
3559 		return false;
3560 	}
3561 
3562 	return true;
3563 }
3564 
3565 /*
3566  * __folio_split: split a folio at @split_at to a @new_order folio
3567  * @folio: folio to split
3568  * @new_order: the order of the new folio
3569  * @split_at: a page within the new folio
3570  * @lock_at: a page within @folio to be left locked to caller
3571  * @list: after-split folios will be put on it if non NULL
3572  * @uniform_split: perform uniform split or not (non-uniform split)
3573  *
3574  * It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3575  * It is in charge of checking whether the split is supported or not and
3576  * preparing @folio for __split_unmapped_folio().
3577  *
3578  * After splitting, the after-split folio containing @lock_at remains locked
3579  * and others are unlocked:
3580  * 1. for uniform split, @lock_at points to one of @folio's subpages;
3581  * 2. for buddy allocator like (non-uniform) split, @lock_at points to @folio.
3582  *
3583  * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3584  * split but not to @new_order, the caller needs to check)
3585  */
3586 static int __folio_split(struct folio *folio, unsigned int new_order,
3587 		struct page *split_at, struct page *lock_at,
3588 		struct list_head *list, bool uniform_split)
3589 {
3590 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3591 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3592 	struct folio *end_folio = folio_next(folio);
3593 	bool is_anon = folio_test_anon(folio);
3594 	struct address_space *mapping = NULL;
3595 	struct anon_vma *anon_vma = NULL;
3596 	int order = folio_order(folio);
3597 	struct folio *new_folio, *next;
3598 	int nr_shmem_dropped = 0;
3599 	int remap_flags = 0;
3600 	int extra_pins, ret;
3601 	pgoff_t end;
3602 	bool is_hzp;
3603 
3604 	VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
3605 	VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
3606 
3607 	if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3608 		return -EINVAL;
3609 
3610 	if (new_order >= folio_order(folio))
3611 		return -EINVAL;
3612 
3613 	if (uniform_split && !uniform_split_supported(folio, new_order, true))
3614 		return -EINVAL;
3615 
3616 	if (!uniform_split &&
3617 	    !non_uniform_split_supported(folio, new_order, true))
3618 		return -EINVAL;
3619 
3620 	is_hzp = is_huge_zero_folio(folio);
3621 	if (is_hzp) {
3622 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3623 		return -EBUSY;
3624 	}
3625 
3626 	if (folio_test_writeback(folio))
3627 		return -EBUSY;
3628 
3629 	if (is_anon) {
3630 		/*
3631 		 * The caller does not necessarily hold an mmap_lock that would
3632 		 * prevent the anon_vma disappearing so we first we take a
3633 		 * reference to it and then lock the anon_vma for write. This
3634 		 * is similar to folio_lock_anon_vma_read except the write lock
3635 		 * is taken to serialise against parallel split or collapse
3636 		 * operations.
3637 		 */
3638 		anon_vma = folio_get_anon_vma(folio);
3639 		if (!anon_vma) {
3640 			ret = -EBUSY;
3641 			goto out;
3642 		}
3643 		mapping = NULL;
3644 		anon_vma_lock_write(anon_vma);
3645 	} else {
3646 		unsigned int min_order;
3647 		gfp_t gfp;
3648 
3649 		mapping = folio->mapping;
3650 
3651 		/* Truncated ? */
3652 		/*
3653 		 * TODO: add support for large shmem folio in swap cache.
3654 		 * When shmem is in swap cache, mapping is NULL and
3655 		 * folio_test_swapcache() is true.
3656 		 */
3657 		if (!mapping) {
3658 			ret = -EBUSY;
3659 			goto out;
3660 		}
3661 
3662 		min_order = mapping_min_folio_order(folio->mapping);
3663 		if (new_order < min_order) {
3664 			VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3665 				     min_order);
3666 			ret = -EINVAL;
3667 			goto out;
3668 		}
3669 
3670 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3671 							GFP_RECLAIM_MASK);
3672 
3673 		if (!filemap_release_folio(folio, gfp)) {
3674 			ret = -EBUSY;
3675 			goto out;
3676 		}
3677 
3678 		if (uniform_split) {
3679 			xas_set_order(&xas, folio->index, new_order);
3680 			xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3681 			if (xas_error(&xas)) {
3682 				ret = xas_error(&xas);
3683 				goto out;
3684 			}
3685 		}
3686 
3687 		anon_vma = NULL;
3688 		i_mmap_lock_read(mapping);
3689 
3690 		/*
3691 		 *__split_unmapped_folio() may need to trim off pages beyond
3692 		 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe
3693 		 * seqlock, which cannot be nested inside the page tree lock.
3694 		 * So note end now: i_size itself may be changed at any moment,
3695 		 * but folio lock is good enough to serialize the trimming.
3696 		 */
3697 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3698 		if (shmem_mapping(mapping))
3699 			end = shmem_fallocend(mapping->host, end);
3700 	}
3701 
3702 	/*
3703 	 * Racy check if we can split the page, before unmap_folio() will
3704 	 * split PMDs
3705 	 */
3706 	if (!can_split_folio(folio, 1, &extra_pins)) {
3707 		ret = -EAGAIN;
3708 		goto out_unlock;
3709 	}
3710 
3711 	unmap_folio(folio);
3712 
3713 	/* block interrupt reentry in xa_lock and spinlock */
3714 	local_irq_disable();
3715 	if (mapping) {
3716 		/*
3717 		 * Check if the folio is present in page cache.
3718 		 * We assume all tail are present too, if folio is there.
3719 		 */
3720 		xas_lock(&xas);
3721 		xas_reset(&xas);
3722 		if (xas_load(&xas) != folio) {
3723 			ret = -EAGAIN;
3724 			goto fail;
3725 		}
3726 	}
3727 
3728 	/* Prevent deferred_split_scan() touching ->_refcount */
3729 	spin_lock(&ds_queue->split_queue_lock);
3730 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3731 		struct address_space *swap_cache = NULL;
3732 		struct lruvec *lruvec;
3733 		int expected_refs;
3734 
3735 		if (folio_order(folio) > 1 &&
3736 		    !list_empty(&folio->_deferred_list)) {
3737 			ds_queue->split_queue_len--;
3738 			if (folio_test_partially_mapped(folio)) {
3739 				folio_clear_partially_mapped(folio);
3740 				mod_mthp_stat(folio_order(folio),
3741 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3742 			}
3743 			/*
3744 			 * Reinitialize page_deferred_list after removing the
3745 			 * page from the split_queue, otherwise a subsequent
3746 			 * split will see list corruption when checking the
3747 			 * page_deferred_list.
3748 			 */
3749 			list_del_init(&folio->_deferred_list);
3750 		}
3751 		spin_unlock(&ds_queue->split_queue_lock);
3752 		if (mapping) {
3753 			int nr = folio_nr_pages(folio);
3754 
3755 			if (folio_test_pmd_mappable(folio) &&
3756 			    new_order < HPAGE_PMD_ORDER) {
3757 				if (folio_test_swapbacked(folio)) {
3758 					__lruvec_stat_mod_folio(folio,
3759 							NR_SHMEM_THPS, -nr);
3760 				} else {
3761 					__lruvec_stat_mod_folio(folio,
3762 							NR_FILE_THPS, -nr);
3763 					filemap_nr_thps_dec(mapping);
3764 				}
3765 			}
3766 		}
3767 
3768 		if (folio_test_swapcache(folio)) {
3769 			if (mapping) {
3770 				VM_WARN_ON_ONCE_FOLIO(mapping, folio);
3771 				ret = -EINVAL;
3772 				goto fail;
3773 			}
3774 
3775 			swap_cache = swap_address_space(folio->swap);
3776 			xa_lock(&swap_cache->i_pages);
3777 		}
3778 
3779 		/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3780 		lruvec = folio_lruvec_lock(folio);
3781 
3782 		ret = __split_unmapped_folio(folio, new_order, split_at, &xas,
3783 					     mapping, uniform_split);
3784 
3785 		/*
3786 		 * Unfreeze after-split folios and put them back to the right
3787 		 * list. @folio should be kept frozon until page cache
3788 		 * entries are updated with all the other after-split folios
3789 		 * to prevent others seeing stale page cache entries.
3790 		 * As a result, new_folio starts from the next folio of
3791 		 * @folio.
3792 		 */
3793 		for (new_folio = folio_next(folio); new_folio != end_folio;
3794 		     new_folio = next) {
3795 			unsigned long nr_pages = folio_nr_pages(new_folio);
3796 
3797 			next = folio_next(new_folio);
3798 
3799 			expected_refs = folio_expected_ref_count(new_folio) + 1;
3800 			folio_ref_unfreeze(new_folio, expected_refs);
3801 
3802 			lru_add_split_folio(folio, new_folio, lruvec, list);
3803 
3804 			/*
3805 			 * Anonymous folio with swap cache.
3806 			 * NOTE: shmem in swap cache is not supported yet.
3807 			 */
3808 			if (swap_cache) {
3809 				__xa_store(&swap_cache->i_pages,
3810 					   swap_cache_index(new_folio->swap),
3811 					   new_folio, 0);
3812 				continue;
3813 			}
3814 
3815 			/* Anonymous folio without swap cache */
3816 			if (!mapping)
3817 				continue;
3818 
3819 			/* Add the new folio to the page cache. */
3820 			if (new_folio->index < end) {
3821 				__xa_store(&mapping->i_pages, new_folio->index,
3822 					   new_folio, 0);
3823 				continue;
3824 			}
3825 
3826 			/* Drop folio beyond EOF: ->index >= end */
3827 			if (shmem_mapping(mapping))
3828 				nr_shmem_dropped += nr_pages;
3829 			else if (folio_test_clear_dirty(new_folio))
3830 				folio_account_cleaned(
3831 					new_folio, inode_to_wb(mapping->host));
3832 			__filemap_remove_folio(new_folio, NULL);
3833 			folio_put_refs(new_folio, nr_pages);
3834 		}
3835 		/*
3836 		 * Unfreeze @folio only after all page cache entries, which
3837 		 * used to point to it, have been updated with new folios.
3838 		 * Otherwise, a parallel folio_try_get() can grab @folio
3839 		 * and its caller can see stale page cache entries.
3840 		 */
3841 		expected_refs = folio_expected_ref_count(folio) + 1;
3842 		folio_ref_unfreeze(folio, expected_refs);
3843 
3844 		unlock_page_lruvec(lruvec);
3845 
3846 		if (swap_cache)
3847 			xa_unlock(&swap_cache->i_pages);
3848 	} else {
3849 		spin_unlock(&ds_queue->split_queue_lock);
3850 		ret = -EAGAIN;
3851 	}
3852 fail:
3853 	if (mapping)
3854 		xas_unlock(&xas);
3855 
3856 	local_irq_enable();
3857 
3858 	if (nr_shmem_dropped)
3859 		shmem_uncharge(mapping->host, nr_shmem_dropped);
3860 
3861 	if (!ret && is_anon)
3862 		remap_flags = RMP_USE_SHARED_ZEROPAGE;
3863 	remap_page(folio, 1 << order, remap_flags);
3864 
3865 	/*
3866 	 * Unlock all after-split folios except the one containing
3867 	 * @lock_at page. If @folio is not split, it will be kept locked.
3868 	 */
3869 	for (new_folio = folio; new_folio != end_folio; new_folio = next) {
3870 		next = folio_next(new_folio);
3871 		if (new_folio == page_folio(lock_at))
3872 			continue;
3873 
3874 		folio_unlock(new_folio);
3875 		/*
3876 		 * Subpages may be freed if there wasn't any mapping
3877 		 * like if add_to_swap() is running on a lru page that
3878 		 * had its mapping zapped. And freeing these pages
3879 		 * requires taking the lru_lock so we do the put_page
3880 		 * of the tail pages after the split is complete.
3881 		 */
3882 		free_folio_and_swap_cache(new_folio);
3883 	}
3884 
3885 out_unlock:
3886 	if (anon_vma) {
3887 		anon_vma_unlock_write(anon_vma);
3888 		put_anon_vma(anon_vma);
3889 	}
3890 	if (mapping)
3891 		i_mmap_unlock_read(mapping);
3892 out:
3893 	xas_destroy(&xas);
3894 	if (order == HPAGE_PMD_ORDER)
3895 		count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3896 	count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3897 	return ret;
3898 }
3899 
3900 /*
3901  * This function splits a large folio into smaller folios of order @new_order.
3902  * @page can point to any page of the large folio to split. The split operation
3903  * does not change the position of @page.
3904  *
3905  * Prerequisites:
3906  *
3907  * 1) The caller must hold a reference on the @page's owning folio, also known
3908  *    as the large folio.
3909  *
3910  * 2) The large folio must be locked.
3911  *
3912  * 3) The folio must not be pinned. Any unexpected folio references, including
3913  *    GUP pins, will result in the folio not getting split; instead, the caller
3914  *    will receive an -EAGAIN.
3915  *
3916  * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3917  *    supported for non-file-backed folios, because folio->_deferred_list, which
3918  *    is used by partially mapped folios, is stored in subpage 2, but an order-1
3919  *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3920  *    since they do not use _deferred_list.
3921  *
3922  * After splitting, the caller's folio reference will be transferred to @page,
3923  * resulting in a raised refcount of @page after this call. The other pages may
3924  * be freed if they are not mapped.
3925  *
3926  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3927  *
3928  * Pages in @new_order will inherit the mapping, flags, and so on from the
3929  * huge page.
3930  *
3931  * Returns 0 if the huge page was split successfully.
3932  *
3933  * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3934  * the folio was concurrently removed from the page cache.
3935  *
3936  * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3937  * under writeback, if fs-specific folio metadata cannot currently be
3938  * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3939  * truncation).
3940  *
3941  * Callers should ensure that the order respects the address space mapping
3942  * min-order if one is set for non-anonymous folios.
3943  *
3944  * Returns -EINVAL when trying to split to an order that is incompatible
3945  * with the folio. Splitting to order 0 is compatible with all folios.
3946  */
3947 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3948 				     unsigned int new_order)
3949 {
3950 	struct folio *folio = page_folio(page);
3951 
3952 	return __folio_split(folio, new_order, &folio->page, page, list, true);
3953 }
3954 
3955 /*
3956  * folio_split: split a folio at @split_at to a @new_order folio
3957  * @folio: folio to split
3958  * @new_order: the order of the new folio
3959  * @split_at: a page within the new folio
3960  *
3961  * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3962  * split but not to @new_order, the caller needs to check)
3963  *
3964  * It has the same prerequisites and returns as
3965  * split_huge_page_to_list_to_order().
3966  *
3967  * Split a folio at @split_at to a new_order folio, leave the
3968  * remaining subpages of the original folio as large as possible. For example,
3969  * in the case of splitting an order-9 folio at its third order-3 subpages to
3970  * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
3971  * After the split, there will be a group of folios with different orders and
3972  * the new folio containing @split_at is marked in bracket:
3973  * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
3974  *
3975  * After split, folio is left locked for caller.
3976  */
3977 int folio_split(struct folio *folio, unsigned int new_order,
3978 		struct page *split_at, struct list_head *list)
3979 {
3980 	return __folio_split(folio, new_order, split_at, &folio->page, list,
3981 			false);
3982 }
3983 
3984 int min_order_for_split(struct folio *folio)
3985 {
3986 	if (folio_test_anon(folio))
3987 		return 0;
3988 
3989 	if (!folio->mapping) {
3990 		if (folio_test_pmd_mappable(folio))
3991 			count_vm_event(THP_SPLIT_PAGE_FAILED);
3992 		return -EBUSY;
3993 	}
3994 
3995 	return mapping_min_folio_order(folio->mapping);
3996 }
3997 
3998 int split_folio_to_list(struct folio *folio, struct list_head *list)
3999 {
4000 	int ret = min_order_for_split(folio);
4001 
4002 	if (ret < 0)
4003 		return ret;
4004 
4005 	return split_huge_page_to_list_to_order(&folio->page, list, ret);
4006 }
4007 
4008 /*
4009  * __folio_unqueue_deferred_split() is not to be called directly:
4010  * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4011  * limits its calls to those folios which may have a _deferred_list for
4012  * queueing THP splits, and that list is (racily observed to be) non-empty.
4013  *
4014  * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4015  * zero: because even when split_queue_lock is held, a non-empty _deferred_list
4016  * might be in use on deferred_split_scan()'s unlocked on-stack list.
4017  *
4018  * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4019  * therefore important to unqueue deferred split before changing folio memcg.
4020  */
4021 bool __folio_unqueue_deferred_split(struct folio *folio)
4022 {
4023 	struct deferred_split *ds_queue;
4024 	unsigned long flags;
4025 	bool unqueued = false;
4026 
4027 	WARN_ON_ONCE(folio_ref_count(folio));
4028 	WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
4029 
4030 	ds_queue = get_deferred_split_queue(folio);
4031 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4032 	if (!list_empty(&folio->_deferred_list)) {
4033 		ds_queue->split_queue_len--;
4034 		if (folio_test_partially_mapped(folio)) {
4035 			folio_clear_partially_mapped(folio);
4036 			mod_mthp_stat(folio_order(folio),
4037 				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4038 		}
4039 		list_del_init(&folio->_deferred_list);
4040 		unqueued = true;
4041 	}
4042 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4043 
4044 	return unqueued;	/* useful for debug warnings */
4045 }
4046 
4047 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
4048 void deferred_split_folio(struct folio *folio, bool partially_mapped)
4049 {
4050 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
4051 #ifdef CONFIG_MEMCG
4052 	struct mem_cgroup *memcg = folio_memcg(folio);
4053 #endif
4054 	unsigned long flags;
4055 
4056 	/*
4057 	 * Order 1 folios have no space for a deferred list, but we also
4058 	 * won't waste much memory by not adding them to the deferred list.
4059 	 */
4060 	if (folio_order(folio) <= 1)
4061 		return;
4062 
4063 	if (!partially_mapped && !split_underused_thp)
4064 		return;
4065 
4066 	/*
4067 	 * Exclude swapcache: originally to avoid a corrupt deferred split
4068 	 * queue. Nowadays that is fully prevented by memcg1_swapout();
4069 	 * but if page reclaim is already handling the same folio, it is
4070 	 * unnecessary to handle it again in the shrinker, so excluding
4071 	 * swapcache here may still be a useful optimization.
4072 	 */
4073 	if (folio_test_swapcache(folio))
4074 		return;
4075 
4076 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4077 	if (partially_mapped) {
4078 		if (!folio_test_partially_mapped(folio)) {
4079 			folio_set_partially_mapped(folio);
4080 			if (folio_test_pmd_mappable(folio))
4081 				count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4082 			count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4083 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4084 
4085 		}
4086 	} else {
4087 		/* partially mapped folios cannot become non-partially mapped */
4088 		VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4089 	}
4090 	if (list_empty(&folio->_deferred_list)) {
4091 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4092 		ds_queue->split_queue_len++;
4093 #ifdef CONFIG_MEMCG
4094 		if (memcg)
4095 			set_shrinker_bit(memcg, folio_nid(folio),
4096 					 deferred_split_shrinker->id);
4097 #endif
4098 	}
4099 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4100 }
4101 
4102 static unsigned long deferred_split_count(struct shrinker *shrink,
4103 		struct shrink_control *sc)
4104 {
4105 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
4106 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4107 
4108 #ifdef CONFIG_MEMCG
4109 	if (sc->memcg)
4110 		ds_queue = &sc->memcg->deferred_split_queue;
4111 #endif
4112 	return READ_ONCE(ds_queue->split_queue_len);
4113 }
4114 
4115 static bool thp_underused(struct folio *folio)
4116 {
4117 	int num_zero_pages = 0, num_filled_pages = 0;
4118 	void *kaddr;
4119 	int i;
4120 
4121 	if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4122 		return false;
4123 
4124 	for (i = 0; i < folio_nr_pages(folio); i++) {
4125 		kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
4126 		if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
4127 			num_zero_pages++;
4128 			if (num_zero_pages > khugepaged_max_ptes_none) {
4129 				kunmap_local(kaddr);
4130 				return true;
4131 			}
4132 		} else {
4133 			/*
4134 			 * Another path for early exit once the number
4135 			 * of non-zero filled pages exceeds threshold.
4136 			 */
4137 			num_filled_pages++;
4138 			if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
4139 				kunmap_local(kaddr);
4140 				return false;
4141 			}
4142 		}
4143 		kunmap_local(kaddr);
4144 	}
4145 	return false;
4146 }
4147 
4148 static unsigned long deferred_split_scan(struct shrinker *shrink,
4149 		struct shrink_control *sc)
4150 {
4151 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
4152 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4153 	unsigned long flags;
4154 	LIST_HEAD(list);
4155 	struct folio *folio, *next, *prev = NULL;
4156 	int split = 0, removed = 0;
4157 
4158 #ifdef CONFIG_MEMCG
4159 	if (sc->memcg)
4160 		ds_queue = &sc->memcg->deferred_split_queue;
4161 #endif
4162 
4163 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4164 	/* Take pin on all head pages to avoid freeing them under us */
4165 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4166 							_deferred_list) {
4167 		if (folio_try_get(folio)) {
4168 			list_move(&folio->_deferred_list, &list);
4169 		} else {
4170 			/* We lost race with folio_put() */
4171 			if (folio_test_partially_mapped(folio)) {
4172 				folio_clear_partially_mapped(folio);
4173 				mod_mthp_stat(folio_order(folio),
4174 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4175 			}
4176 			list_del_init(&folio->_deferred_list);
4177 			ds_queue->split_queue_len--;
4178 		}
4179 		if (!--sc->nr_to_scan)
4180 			break;
4181 	}
4182 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4183 
4184 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
4185 		bool did_split = false;
4186 		bool underused = false;
4187 
4188 		if (!folio_test_partially_mapped(folio)) {
4189 			underused = thp_underused(folio);
4190 			if (!underused)
4191 				goto next;
4192 		}
4193 		if (!folio_trylock(folio))
4194 			goto next;
4195 		if (!split_folio(folio)) {
4196 			did_split = true;
4197 			if (underused)
4198 				count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4199 			split++;
4200 		}
4201 		folio_unlock(folio);
4202 next:
4203 		/*
4204 		 * split_folio() removes folio from list on success.
4205 		 * Only add back to the queue if folio is partially mapped.
4206 		 * If thp_underused returns false, or if split_folio fails
4207 		 * in the case it was underused, then consider it used and
4208 		 * don't add it back to split_queue.
4209 		 */
4210 		if (did_split) {
4211 			; /* folio already removed from list */
4212 		} else if (!folio_test_partially_mapped(folio)) {
4213 			list_del_init(&folio->_deferred_list);
4214 			removed++;
4215 		} else {
4216 			/*
4217 			 * That unlocked list_del_init() above would be unsafe,
4218 			 * unless its folio is separated from any earlier folios
4219 			 * left on the list (which may be concurrently unqueued)
4220 			 * by one safe folio with refcount still raised.
4221 			 */
4222 			swap(folio, prev);
4223 		}
4224 		if (folio)
4225 			folio_put(folio);
4226 	}
4227 
4228 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4229 	list_splice_tail(&list, &ds_queue->split_queue);
4230 	ds_queue->split_queue_len -= removed;
4231 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4232 
4233 	if (prev)
4234 		folio_put(prev);
4235 
4236 	/*
4237 	 * Stop shrinker if we didn't split any page, but the queue is empty.
4238 	 * This can happen if pages were freed under us.
4239 	 */
4240 	if (!split && list_empty(&ds_queue->split_queue))
4241 		return SHRINK_STOP;
4242 	return split;
4243 }
4244 
4245 #ifdef CONFIG_DEBUG_FS
4246 static void split_huge_pages_all(void)
4247 {
4248 	struct zone *zone;
4249 	struct page *page;
4250 	struct folio *folio;
4251 	unsigned long pfn, max_zone_pfn;
4252 	unsigned long total = 0, split = 0;
4253 
4254 	pr_debug("Split all THPs\n");
4255 	for_each_zone(zone) {
4256 		if (!managed_zone(zone))
4257 			continue;
4258 		max_zone_pfn = zone_end_pfn(zone);
4259 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4260 			int nr_pages;
4261 
4262 			page = pfn_to_online_page(pfn);
4263 			if (!page || PageTail(page))
4264 				continue;
4265 			folio = page_folio(page);
4266 			if (!folio_try_get(folio))
4267 				continue;
4268 
4269 			if (unlikely(page_folio(page) != folio))
4270 				goto next;
4271 
4272 			if (zone != folio_zone(folio))
4273 				goto next;
4274 
4275 			if (!folio_test_large(folio)
4276 				|| folio_test_hugetlb(folio)
4277 				|| !folio_test_lru(folio))
4278 				goto next;
4279 
4280 			total++;
4281 			folio_lock(folio);
4282 			nr_pages = folio_nr_pages(folio);
4283 			if (!split_folio(folio))
4284 				split++;
4285 			pfn += nr_pages - 1;
4286 			folio_unlock(folio);
4287 next:
4288 			folio_put(folio);
4289 			cond_resched();
4290 		}
4291 	}
4292 
4293 	pr_debug("%lu of %lu THP split\n", split, total);
4294 }
4295 
4296 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4297 {
4298 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4299 		    is_vm_hugetlb_page(vma);
4300 }
4301 
4302 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4303 				unsigned long vaddr_end, unsigned int new_order,
4304 				long in_folio_offset)
4305 {
4306 	int ret = 0;
4307 	struct task_struct *task;
4308 	struct mm_struct *mm;
4309 	unsigned long total = 0, split = 0;
4310 	unsigned long addr;
4311 
4312 	vaddr_start &= PAGE_MASK;
4313 	vaddr_end &= PAGE_MASK;
4314 
4315 	task = find_get_task_by_vpid(pid);
4316 	if (!task) {
4317 		ret = -ESRCH;
4318 		goto out;
4319 	}
4320 
4321 	/* Find the mm_struct */
4322 	mm = get_task_mm(task);
4323 	put_task_struct(task);
4324 
4325 	if (!mm) {
4326 		ret = -EINVAL;
4327 		goto out;
4328 	}
4329 
4330 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
4331 		 pid, vaddr_start, vaddr_end);
4332 
4333 	mmap_read_lock(mm);
4334 	/*
4335 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
4336 	 * table filled with PTE-mapped THPs, each of which is distinct.
4337 	 */
4338 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4339 		struct vm_area_struct *vma = vma_lookup(mm, addr);
4340 		struct folio_walk fw;
4341 		struct folio *folio;
4342 		struct address_space *mapping;
4343 		unsigned int target_order = new_order;
4344 
4345 		if (!vma)
4346 			break;
4347 
4348 		/* skip special VMA and hugetlb VMA */
4349 		if (vma_not_suitable_for_thp_split(vma)) {
4350 			addr = vma->vm_end;
4351 			continue;
4352 		}
4353 
4354 		folio = folio_walk_start(&fw, vma, addr, 0);
4355 		if (!folio)
4356 			continue;
4357 
4358 		if (!is_transparent_hugepage(folio))
4359 			goto next;
4360 
4361 		if (!folio_test_anon(folio)) {
4362 			mapping = folio->mapping;
4363 			target_order = max(new_order,
4364 					   mapping_min_folio_order(mapping));
4365 		}
4366 
4367 		if (target_order >= folio_order(folio))
4368 			goto next;
4369 
4370 		total++;
4371 		/*
4372 		 * For folios with private, split_huge_page_to_list_to_order()
4373 		 * will try to drop it before split and then check if the folio
4374 		 * can be split or not. So skip the check here.
4375 		 */
4376 		if (!folio_test_private(folio) &&
4377 		    !can_split_folio(folio, 0, NULL))
4378 			goto next;
4379 
4380 		if (!folio_trylock(folio))
4381 			goto next;
4382 		folio_get(folio);
4383 		folio_walk_end(&fw, vma);
4384 
4385 		if (!folio_test_anon(folio) && folio->mapping != mapping)
4386 			goto unlock;
4387 
4388 		if (in_folio_offset < 0 ||
4389 		    in_folio_offset >= folio_nr_pages(folio)) {
4390 			if (!split_folio_to_order(folio, target_order))
4391 				split++;
4392 		} else {
4393 			struct page *split_at = folio_page(folio,
4394 							   in_folio_offset);
4395 			if (!folio_split(folio, target_order, split_at, NULL))
4396 				split++;
4397 		}
4398 
4399 unlock:
4400 
4401 		folio_unlock(folio);
4402 		folio_put(folio);
4403 
4404 		cond_resched();
4405 		continue;
4406 next:
4407 		folio_walk_end(&fw, vma);
4408 		cond_resched();
4409 	}
4410 	mmap_read_unlock(mm);
4411 	mmput(mm);
4412 
4413 	pr_debug("%lu of %lu THP split\n", split, total);
4414 
4415 out:
4416 	return ret;
4417 }
4418 
4419 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4420 				pgoff_t off_end, unsigned int new_order,
4421 				long in_folio_offset)
4422 {
4423 	struct filename *file;
4424 	struct file *candidate;
4425 	struct address_space *mapping;
4426 	int ret = -EINVAL;
4427 	pgoff_t index;
4428 	int nr_pages = 1;
4429 	unsigned long total = 0, split = 0;
4430 	unsigned int min_order;
4431 	unsigned int target_order;
4432 
4433 	file = getname_kernel(file_path);
4434 	if (IS_ERR(file))
4435 		return ret;
4436 
4437 	candidate = file_open_name(file, O_RDONLY, 0);
4438 	if (IS_ERR(candidate))
4439 		goto out;
4440 
4441 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4442 		 file_path, off_start, off_end);
4443 
4444 	mapping = candidate->f_mapping;
4445 	min_order = mapping_min_folio_order(mapping);
4446 	target_order = max(new_order, min_order);
4447 
4448 	for (index = off_start; index < off_end; index += nr_pages) {
4449 		struct folio *folio = filemap_get_folio(mapping, index);
4450 
4451 		nr_pages = 1;
4452 		if (IS_ERR(folio))
4453 			continue;
4454 
4455 		if (!folio_test_large(folio))
4456 			goto next;
4457 
4458 		total++;
4459 		nr_pages = folio_nr_pages(folio);
4460 
4461 		if (target_order >= folio_order(folio))
4462 			goto next;
4463 
4464 		if (!folio_trylock(folio))
4465 			goto next;
4466 
4467 		if (folio->mapping != mapping)
4468 			goto unlock;
4469 
4470 		if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4471 			if (!split_folio_to_order(folio, target_order))
4472 				split++;
4473 		} else {
4474 			struct page *split_at = folio_page(folio,
4475 							   in_folio_offset);
4476 			if (!folio_split(folio, target_order, split_at, NULL))
4477 				split++;
4478 		}
4479 
4480 unlock:
4481 		folio_unlock(folio);
4482 next:
4483 		folio_put(folio);
4484 		cond_resched();
4485 	}
4486 
4487 	filp_close(candidate, NULL);
4488 	ret = 0;
4489 
4490 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
4491 out:
4492 	putname(file);
4493 	return ret;
4494 }
4495 
4496 #define MAX_INPUT_BUF_SZ 255
4497 
4498 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4499 				size_t count, loff_t *ppops)
4500 {
4501 	static DEFINE_MUTEX(split_debug_mutex);
4502 	ssize_t ret;
4503 	/*
4504 	 * hold pid, start_vaddr, end_vaddr, new_order or
4505 	 * file_path, off_start, off_end, new_order
4506 	 */
4507 	char input_buf[MAX_INPUT_BUF_SZ];
4508 	int pid;
4509 	unsigned long vaddr_start, vaddr_end;
4510 	unsigned int new_order = 0;
4511 	long in_folio_offset = -1;
4512 
4513 	ret = mutex_lock_interruptible(&split_debug_mutex);
4514 	if (ret)
4515 		return ret;
4516 
4517 	ret = -EFAULT;
4518 
4519 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4520 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4521 		goto out;
4522 
4523 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4524 
4525 	if (input_buf[0] == '/') {
4526 		char *tok;
4527 		char *tok_buf = input_buf;
4528 		char file_path[MAX_INPUT_BUF_SZ];
4529 		pgoff_t off_start = 0, off_end = 0;
4530 		size_t input_len = strlen(input_buf);
4531 
4532 		tok = strsep(&tok_buf, ",");
4533 		if (tok && tok_buf) {
4534 			strscpy(file_path, tok);
4535 		} else {
4536 			ret = -EINVAL;
4537 			goto out;
4538 		}
4539 
4540 		ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4541 				&new_order, &in_folio_offset);
4542 		if (ret != 2 && ret != 3 && ret != 4) {
4543 			ret = -EINVAL;
4544 			goto out;
4545 		}
4546 		ret = split_huge_pages_in_file(file_path, off_start, off_end,
4547 				new_order, in_folio_offset);
4548 		if (!ret)
4549 			ret = input_len;
4550 
4551 		goto out;
4552 	}
4553 
4554 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4555 			&vaddr_end, &new_order, &in_folio_offset);
4556 	if (ret == 1 && pid == 1) {
4557 		split_huge_pages_all();
4558 		ret = strlen(input_buf);
4559 		goto out;
4560 	} else if (ret != 3 && ret != 4 && ret != 5) {
4561 		ret = -EINVAL;
4562 		goto out;
4563 	}
4564 
4565 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4566 			in_folio_offset);
4567 	if (!ret)
4568 		ret = strlen(input_buf);
4569 out:
4570 	mutex_unlock(&split_debug_mutex);
4571 	return ret;
4572 
4573 }
4574 
4575 static const struct file_operations split_huge_pages_fops = {
4576 	.owner	 = THIS_MODULE,
4577 	.write	 = split_huge_pages_write,
4578 };
4579 
4580 static int __init split_huge_pages_debugfs(void)
4581 {
4582 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4583 			    &split_huge_pages_fops);
4584 	return 0;
4585 }
4586 late_initcall(split_huge_pages_debugfs);
4587 #endif
4588 
4589 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4590 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4591 		struct page *page)
4592 {
4593 	struct folio *folio = page_folio(page);
4594 	struct vm_area_struct *vma = pvmw->vma;
4595 	struct mm_struct *mm = vma->vm_mm;
4596 	unsigned long address = pvmw->address;
4597 	bool anon_exclusive;
4598 	pmd_t pmdval;
4599 	swp_entry_t entry;
4600 	pmd_t pmdswp;
4601 
4602 	if (!(pvmw->pmd && !pvmw->pte))
4603 		return 0;
4604 
4605 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4606 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4607 
4608 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4609 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4610 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4611 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
4612 		return -EBUSY;
4613 	}
4614 
4615 	if (pmd_dirty(pmdval))
4616 		folio_mark_dirty(folio);
4617 	if (pmd_write(pmdval))
4618 		entry = make_writable_migration_entry(page_to_pfn(page));
4619 	else if (anon_exclusive)
4620 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4621 	else
4622 		entry = make_readable_migration_entry(page_to_pfn(page));
4623 	if (pmd_young(pmdval))
4624 		entry = make_migration_entry_young(entry);
4625 	if (pmd_dirty(pmdval))
4626 		entry = make_migration_entry_dirty(entry);
4627 	pmdswp = swp_entry_to_pmd(entry);
4628 	if (pmd_soft_dirty(pmdval))
4629 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4630 	if (pmd_uffd_wp(pmdval))
4631 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4632 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4633 	folio_remove_rmap_pmd(folio, page, vma);
4634 	folio_put(folio);
4635 	trace_set_migration_pmd(address, pmd_val(pmdswp));
4636 
4637 	return 0;
4638 }
4639 
4640 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4641 {
4642 	struct folio *folio = page_folio(new);
4643 	struct vm_area_struct *vma = pvmw->vma;
4644 	struct mm_struct *mm = vma->vm_mm;
4645 	unsigned long address = pvmw->address;
4646 	unsigned long haddr = address & HPAGE_PMD_MASK;
4647 	pmd_t pmde;
4648 	swp_entry_t entry;
4649 
4650 	if (!(pvmw->pmd && !pvmw->pte))
4651 		return;
4652 
4653 	entry = pmd_to_swp_entry(*pvmw->pmd);
4654 	folio_get(folio);
4655 	pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot));
4656 	if (pmd_swp_soft_dirty(*pvmw->pmd))
4657 		pmde = pmd_mksoft_dirty(pmde);
4658 	if (is_writable_migration_entry(entry))
4659 		pmde = pmd_mkwrite(pmde, vma);
4660 	if (pmd_swp_uffd_wp(*pvmw->pmd))
4661 		pmde = pmd_mkuffd_wp(pmde);
4662 	if (!is_migration_entry_young(entry))
4663 		pmde = pmd_mkold(pmde);
4664 	/* NOTE: this may contain setting soft-dirty on some archs */
4665 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4666 		pmde = pmd_mkdirty(pmde);
4667 
4668 	if (folio_test_anon(folio)) {
4669 		rmap_t rmap_flags = RMAP_NONE;
4670 
4671 		if (!is_readable_migration_entry(entry))
4672 			rmap_flags |= RMAP_EXCLUSIVE;
4673 
4674 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4675 	} else {
4676 		folio_add_file_rmap_pmd(folio, new, vma);
4677 	}
4678 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4679 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4680 
4681 	/* No need to invalidate - it was non-present before */
4682 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
4683 	trace_remove_migration_pmd(address, pmd_val(pmde));
4684 }
4685 #endif
4686