xref: /linux/mm/internal.h (revision 36ec807b627b4c0a0a382f0ae48eac7187d14b2b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/tracepoint-defs.h>
17 
18 struct folio_batch;
19 
20 /*
21  * The set of flags that only affect watermark checking and reclaim
22  * behaviour. This is used by the MM to obey the caller constraints
23  * about IO, FS and watermark checking while ignoring placement
24  * hints such as HIGHMEM usage.
25  */
26 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
27 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
28 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
29 			__GFP_NOLOCKDEP)
30 
31 /* The GFP flags allowed during early boot */
32 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
33 
34 /* Control allocation cpuset and node placement constraints */
35 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
36 
37 /* Do not use these with a slab allocator */
38 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
39 
40 /*
41  * Different from WARN_ON_ONCE(), no warning will be issued
42  * when we specify __GFP_NOWARN.
43  */
44 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
45 	static bool __section(".data.once") __warned;			\
46 	int __ret_warn_once = !!(cond);					\
47 									\
48 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
49 		__warned = true;					\
50 		WARN_ON(1);						\
51 	}								\
52 	unlikely(__ret_warn_once);					\
53 })
54 
55 void page_writeback_init(void);
56 
57 /*
58  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
59  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
60  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
61  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
62  */
63 #define ENTIRELY_MAPPED		0x800000
64 #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
65 
66 /*
67  * Flags passed to __show_mem() and show_free_areas() to suppress output in
68  * various contexts.
69  */
70 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
71 
72 /*
73  * How many individual pages have an elevated _mapcount.  Excludes
74  * the folio's entire_mapcount.
75  *
76  * Don't use this function outside of debugging code.
77  */
78 static inline int folio_nr_pages_mapped(const struct folio *folio)
79 {
80 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
81 }
82 
83 /*
84  * Retrieve the first entry of a folio based on a provided entry within the
85  * folio. We cannot rely on folio->swap as there is no guarantee that it has
86  * been initialized. Used for calling arch_swap_restore()
87  */
88 static inline swp_entry_t folio_swap(swp_entry_t entry,
89 		const struct folio *folio)
90 {
91 	swp_entry_t swap = {
92 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
93 	};
94 
95 	return swap;
96 }
97 
98 static inline void *folio_raw_mapping(const struct folio *folio)
99 {
100 	unsigned long mapping = (unsigned long)folio->mapping;
101 
102 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
103 }
104 
105 #ifdef CONFIG_MMU
106 
107 /* Flags for folio_pte_batch(). */
108 typedef int __bitwise fpb_t;
109 
110 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
111 #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
112 
113 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
114 #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
115 
116 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
117 {
118 	if (flags & FPB_IGNORE_DIRTY)
119 		pte = pte_mkclean(pte);
120 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
121 		pte = pte_clear_soft_dirty(pte);
122 	return pte_wrprotect(pte_mkold(pte));
123 }
124 
125 /**
126  * folio_pte_batch - detect a PTE batch for a large folio
127  * @folio: The large folio to detect a PTE batch for.
128  * @addr: The user virtual address the first page is mapped at.
129  * @start_ptep: Page table pointer for the first entry.
130  * @pte: Page table entry for the first page.
131  * @max_nr: The maximum number of table entries to consider.
132  * @flags: Flags to modify the PTE batch semantics.
133  * @any_writable: Optional pointer to indicate whether any entry except the
134  *		  first one is writable.
135  * @any_young: Optional pointer to indicate whether any entry except the
136  *		  first one is young.
137  * @any_dirty: Optional pointer to indicate whether any entry except the
138  *		  first one is dirty.
139  *
140  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
141  * pages of the same large folio.
142  *
143  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
144  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
145  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
146  *
147  * start_ptep must map any page of the folio. max_nr must be at least one and
148  * must be limited by the caller so scanning cannot exceed a single page table.
149  *
150  * Return: the number of table entries in the batch.
151  */
152 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
153 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
154 		bool *any_writable, bool *any_young, bool *any_dirty)
155 {
156 	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
157 	const pte_t *end_ptep = start_ptep + max_nr;
158 	pte_t expected_pte, *ptep;
159 	bool writable, young, dirty;
160 	int nr;
161 
162 	if (any_writable)
163 		*any_writable = false;
164 	if (any_young)
165 		*any_young = false;
166 	if (any_dirty)
167 		*any_dirty = false;
168 
169 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
170 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
171 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
172 
173 	nr = pte_batch_hint(start_ptep, pte);
174 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
175 	ptep = start_ptep + nr;
176 
177 	while (ptep < end_ptep) {
178 		pte = ptep_get(ptep);
179 		if (any_writable)
180 			writable = !!pte_write(pte);
181 		if (any_young)
182 			young = !!pte_young(pte);
183 		if (any_dirty)
184 			dirty = !!pte_dirty(pte);
185 		pte = __pte_batch_clear_ignored(pte, flags);
186 
187 		if (!pte_same(pte, expected_pte))
188 			break;
189 
190 		/*
191 		 * Stop immediately once we reached the end of the folio. In
192 		 * corner cases the next PFN might fall into a different
193 		 * folio.
194 		 */
195 		if (pte_pfn(pte) >= folio_end_pfn)
196 			break;
197 
198 		if (any_writable)
199 			*any_writable |= writable;
200 		if (any_young)
201 			*any_young |= young;
202 		if (any_dirty)
203 			*any_dirty |= dirty;
204 
205 		nr = pte_batch_hint(ptep, pte);
206 		expected_pte = pte_advance_pfn(expected_pte, nr);
207 		ptep += nr;
208 	}
209 
210 	return min(ptep - start_ptep, max_nr);
211 }
212 
213 /**
214  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
215  *	 forward or backward by delta
216  * @pte: The initial pte state; is_swap_pte(pte) must be true and
217  *	 non_swap_entry() must be false.
218  * @delta: The direction and the offset we are moving; forward if delta
219  *	 is positive; backward if delta is negative
220  *
221  * Moves the swap offset, while maintaining all other fields, including
222  * swap type, and any swp pte bits. The resulting pte is returned.
223  */
224 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
225 {
226 	swp_entry_t entry = pte_to_swp_entry(pte);
227 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
228 						   (swp_offset(entry) + delta)));
229 
230 	if (pte_swp_soft_dirty(pte))
231 		new = pte_swp_mksoft_dirty(new);
232 	if (pte_swp_exclusive(pte))
233 		new = pte_swp_mkexclusive(new);
234 	if (pte_swp_uffd_wp(pte))
235 		new = pte_swp_mkuffd_wp(new);
236 
237 	return new;
238 }
239 
240 
241 /**
242  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
243  * @pte: The initial pte state; is_swap_pte(pte) must be true and
244  *	 non_swap_entry() must be false.
245  *
246  * Increments the swap offset, while maintaining all other fields, including
247  * swap type, and any swp pte bits. The resulting pte is returned.
248  */
249 static inline pte_t pte_next_swp_offset(pte_t pte)
250 {
251 	return pte_move_swp_offset(pte, 1);
252 }
253 
254 /**
255  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
256  * @start_ptep: Page table pointer for the first entry.
257  * @max_nr: The maximum number of table entries to consider.
258  * @pte: Page table entry for the first entry.
259  *
260  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
261  * containing swap entries all with consecutive offsets and targeting the same
262  * swap type, all with matching swp pte bits.
263  *
264  * max_nr must be at least one and must be limited by the caller so scanning
265  * cannot exceed a single page table.
266  *
267  * Return: the number of table entries in the batch.
268  */
269 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
270 {
271 	pte_t expected_pte = pte_next_swp_offset(pte);
272 	const pte_t *end_ptep = start_ptep + max_nr;
273 	pte_t *ptep = start_ptep + 1;
274 
275 	VM_WARN_ON(max_nr < 1);
276 	VM_WARN_ON(!is_swap_pte(pte));
277 	VM_WARN_ON(non_swap_entry(pte_to_swp_entry(pte)));
278 
279 	while (ptep < end_ptep) {
280 		pte = ptep_get(ptep);
281 
282 		if (!pte_same(pte, expected_pte))
283 			break;
284 
285 		expected_pte = pte_next_swp_offset(expected_pte);
286 		ptep++;
287 	}
288 
289 	return ptep - start_ptep;
290 }
291 #endif /* CONFIG_MMU */
292 
293 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
294 						int nr_throttled);
295 static inline void acct_reclaim_writeback(struct folio *folio)
296 {
297 	pg_data_t *pgdat = folio_pgdat(folio);
298 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
299 
300 	if (nr_throttled)
301 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
302 }
303 
304 static inline void wake_throttle_isolated(pg_data_t *pgdat)
305 {
306 	wait_queue_head_t *wqh;
307 
308 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
309 	if (waitqueue_active(wqh))
310 		wake_up(wqh);
311 }
312 
313 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf);
314 vm_fault_t do_swap_page(struct vm_fault *vmf);
315 void folio_rotate_reclaimable(struct folio *folio);
316 bool __folio_end_writeback(struct folio *folio);
317 void deactivate_file_folio(struct folio *folio);
318 void folio_activate(struct folio *folio);
319 
320 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
321 		   struct vm_area_struct *start_vma, unsigned long floor,
322 		   unsigned long ceiling, bool mm_wr_locked);
323 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
324 
325 struct zap_details;
326 void unmap_page_range(struct mmu_gather *tlb,
327 			     struct vm_area_struct *vma,
328 			     unsigned long addr, unsigned long end,
329 			     struct zap_details *details);
330 
331 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
332 		unsigned int order);
333 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
334 static inline void force_page_cache_readahead(struct address_space *mapping,
335 		struct file *file, pgoff_t index, unsigned long nr_to_read)
336 {
337 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
338 	force_page_cache_ra(&ractl, nr_to_read);
339 }
340 
341 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
342 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
343 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
344 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
345 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
346 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
347 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
348 		loff_t end);
349 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
350 unsigned long mapping_try_invalidate(struct address_space *mapping,
351 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
352 
353 /**
354  * folio_evictable - Test whether a folio is evictable.
355  * @folio: The folio to test.
356  *
357  * Test whether @folio is evictable -- i.e., should be placed on
358  * active/inactive lists vs unevictable list.
359  *
360  * Reasons folio might not be evictable:
361  * 1. folio's mapping marked unevictable
362  * 2. One of the pages in the folio is part of an mlocked VMA
363  */
364 static inline bool folio_evictable(struct folio *folio)
365 {
366 	bool ret;
367 
368 	/* Prevent address_space of inode and swap cache from being freed */
369 	rcu_read_lock();
370 	ret = !mapping_unevictable(folio_mapping(folio)) &&
371 			!folio_test_mlocked(folio);
372 	rcu_read_unlock();
373 	return ret;
374 }
375 
376 /*
377  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
378  * a count of one.
379  */
380 static inline void set_page_refcounted(struct page *page)
381 {
382 	VM_BUG_ON_PAGE(PageTail(page), page);
383 	VM_BUG_ON_PAGE(page_ref_count(page), page);
384 	set_page_count(page, 1);
385 }
386 
387 /*
388  * Return true if a folio needs ->release_folio() calling upon it.
389  */
390 static inline bool folio_needs_release(struct folio *folio)
391 {
392 	struct address_space *mapping = folio_mapping(folio);
393 
394 	return folio_has_private(folio) ||
395 		(mapping && mapping_release_always(mapping));
396 }
397 
398 extern unsigned long highest_memmap_pfn;
399 
400 /*
401  * Maximum number of reclaim retries without progress before the OOM
402  * killer is consider the only way forward.
403  */
404 #define MAX_RECLAIM_RETRIES 16
405 
406 /*
407  * in mm/vmscan.c:
408  */
409 bool isolate_lru_page(struct page *page);
410 bool folio_isolate_lru(struct folio *folio);
411 void putback_lru_page(struct page *page);
412 void folio_putback_lru(struct folio *folio);
413 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
414 
415 /*
416  * in mm/rmap.c:
417  */
418 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
419 
420 /*
421  * in mm/page_alloc.c
422  */
423 #define K(x) ((x) << (PAGE_SHIFT-10))
424 
425 extern char * const zone_names[MAX_NR_ZONES];
426 
427 /* perform sanity checks on struct pages being allocated or freed */
428 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
429 
430 extern int min_free_kbytes;
431 
432 void setup_per_zone_wmarks(void);
433 void calculate_min_free_kbytes(void);
434 int __meminit init_per_zone_wmark_min(void);
435 void page_alloc_sysctl_init(void);
436 
437 /*
438  * Structure for holding the mostly immutable allocation parameters passed
439  * between functions involved in allocations, including the alloc_pages*
440  * family of functions.
441  *
442  * nodemask, migratetype and highest_zoneidx are initialized only once in
443  * __alloc_pages() and then never change.
444  *
445  * zonelist, preferred_zone and highest_zoneidx are set first in
446  * __alloc_pages() for the fast path, and might be later changed
447  * in __alloc_pages_slowpath(). All other functions pass the whole structure
448  * by a const pointer.
449  */
450 struct alloc_context {
451 	struct zonelist *zonelist;
452 	nodemask_t *nodemask;
453 	struct zoneref *preferred_zoneref;
454 	int migratetype;
455 
456 	/*
457 	 * highest_zoneidx represents highest usable zone index of
458 	 * the allocation request. Due to the nature of the zone,
459 	 * memory on lower zone than the highest_zoneidx will be
460 	 * protected by lowmem_reserve[highest_zoneidx].
461 	 *
462 	 * highest_zoneidx is also used by reclaim/compaction to limit
463 	 * the target zone since higher zone than this index cannot be
464 	 * usable for this allocation request.
465 	 */
466 	enum zone_type highest_zoneidx;
467 	bool spread_dirty_pages;
468 };
469 
470 /*
471  * This function returns the order of a free page in the buddy system. In
472  * general, page_zone(page)->lock must be held by the caller to prevent the
473  * page from being allocated in parallel and returning garbage as the order.
474  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
475  * page cannot be allocated or merged in parallel. Alternatively, it must
476  * handle invalid values gracefully, and use buddy_order_unsafe() below.
477  */
478 static inline unsigned int buddy_order(struct page *page)
479 {
480 	/* PageBuddy() must be checked by the caller */
481 	return page_private(page);
482 }
483 
484 /*
485  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
486  * PageBuddy() should be checked first by the caller to minimize race window,
487  * and invalid values must be handled gracefully.
488  *
489  * READ_ONCE is used so that if the caller assigns the result into a local
490  * variable and e.g. tests it for valid range before using, the compiler cannot
491  * decide to remove the variable and inline the page_private(page) multiple
492  * times, potentially observing different values in the tests and the actual
493  * use of the result.
494  */
495 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
496 
497 /*
498  * This function checks whether a page is free && is the buddy
499  * we can coalesce a page and its buddy if
500  * (a) the buddy is not in a hole (check before calling!) &&
501  * (b) the buddy is in the buddy system &&
502  * (c) a page and its buddy have the same order &&
503  * (d) a page and its buddy are in the same zone.
504  *
505  * For recording whether a page is in the buddy system, we set PageBuddy.
506  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
507  *
508  * For recording page's order, we use page_private(page).
509  */
510 static inline bool page_is_buddy(struct page *page, struct page *buddy,
511 				 unsigned int order)
512 {
513 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
514 		return false;
515 
516 	if (buddy_order(buddy) != order)
517 		return false;
518 
519 	/*
520 	 * zone check is done late to avoid uselessly calculating
521 	 * zone/node ids for pages that could never merge.
522 	 */
523 	if (page_zone_id(page) != page_zone_id(buddy))
524 		return false;
525 
526 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
527 
528 	return true;
529 }
530 
531 /*
532  * Locate the struct page for both the matching buddy in our
533  * pair (buddy1) and the combined O(n+1) page they form (page).
534  *
535  * 1) Any buddy B1 will have an order O twin B2 which satisfies
536  * the following equation:
537  *     B2 = B1 ^ (1 << O)
538  * For example, if the starting buddy (buddy2) is #8 its order
539  * 1 buddy is #10:
540  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
541  *
542  * 2) Any buddy B will have an order O+1 parent P which
543  * satisfies the following equation:
544  *     P = B & ~(1 << O)
545  *
546  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
547  */
548 static inline unsigned long
549 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
550 {
551 	return page_pfn ^ (1 << order);
552 }
553 
554 /*
555  * Find the buddy of @page and validate it.
556  * @page: The input page
557  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
558  *       function is used in the performance-critical __free_one_page().
559  * @order: The order of the page
560  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
561  *             page_to_pfn().
562  *
563  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
564  * not the same as @page. The validation is necessary before use it.
565  *
566  * Return: the found buddy page or NULL if not found.
567  */
568 static inline struct page *find_buddy_page_pfn(struct page *page,
569 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
570 {
571 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
572 	struct page *buddy;
573 
574 	buddy = page + (__buddy_pfn - pfn);
575 	if (buddy_pfn)
576 		*buddy_pfn = __buddy_pfn;
577 
578 	if (page_is_buddy(page, buddy, order))
579 		return buddy;
580 	return NULL;
581 }
582 
583 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
584 				unsigned long end_pfn, struct zone *zone);
585 
586 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
587 				unsigned long end_pfn, struct zone *zone)
588 {
589 	if (zone->contiguous)
590 		return pfn_to_page(start_pfn);
591 
592 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
593 }
594 
595 void set_zone_contiguous(struct zone *zone);
596 
597 static inline void clear_zone_contiguous(struct zone *zone)
598 {
599 	zone->contiguous = false;
600 }
601 
602 extern int __isolate_free_page(struct page *page, unsigned int order);
603 extern void __putback_isolated_page(struct page *page, unsigned int order,
604 				    int mt);
605 extern void memblock_free_pages(struct page *page, unsigned long pfn,
606 					unsigned int order);
607 extern void __free_pages_core(struct page *page, unsigned int order,
608 		enum meminit_context context);
609 
610 /*
611  * This will have no effect, other than possibly generating a warning, if the
612  * caller passes in a non-large folio.
613  */
614 static inline void folio_set_order(struct folio *folio, unsigned int order)
615 {
616 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
617 		return;
618 
619 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
620 #ifdef CONFIG_64BIT
621 	folio->_folio_nr_pages = 1U << order;
622 #endif
623 }
624 
625 void __folio_undo_large_rmappable(struct folio *folio);
626 static inline void folio_undo_large_rmappable(struct folio *folio)
627 {
628 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
629 		return;
630 
631 	/*
632 	 * At this point, there is no one trying to add the folio to
633 	 * deferred_list. If folio is not in deferred_list, it's safe
634 	 * to check without acquiring the split_queue_lock.
635 	 */
636 	if (data_race(list_empty(&folio->_deferred_list)))
637 		return;
638 
639 	__folio_undo_large_rmappable(folio);
640 }
641 
642 static inline struct folio *page_rmappable_folio(struct page *page)
643 {
644 	struct folio *folio = (struct folio *)page;
645 
646 	if (folio && folio_test_large(folio))
647 		folio_set_large_rmappable(folio);
648 	return folio;
649 }
650 
651 static inline void prep_compound_head(struct page *page, unsigned int order)
652 {
653 	struct folio *folio = (struct folio *)page;
654 
655 	folio_set_order(folio, order);
656 	atomic_set(&folio->_large_mapcount, -1);
657 	atomic_set(&folio->_entire_mapcount, -1);
658 	atomic_set(&folio->_nr_pages_mapped, 0);
659 	atomic_set(&folio->_pincount, 0);
660 	if (order > 1)
661 		INIT_LIST_HEAD(&folio->_deferred_list);
662 }
663 
664 static inline void prep_compound_tail(struct page *head, int tail_idx)
665 {
666 	struct page *p = head + tail_idx;
667 
668 	p->mapping = TAIL_MAPPING;
669 	set_compound_head(p, head);
670 	set_page_private(p, 0);
671 }
672 
673 extern void prep_compound_page(struct page *page, unsigned int order);
674 
675 extern void post_alloc_hook(struct page *page, unsigned int order,
676 					gfp_t gfp_flags);
677 extern bool free_pages_prepare(struct page *page, unsigned int order);
678 
679 extern int user_min_free_kbytes;
680 
681 void free_unref_page(struct page *page, unsigned int order);
682 void free_unref_folios(struct folio_batch *fbatch);
683 
684 extern void zone_pcp_reset(struct zone *zone);
685 extern void zone_pcp_disable(struct zone *zone);
686 extern void zone_pcp_enable(struct zone *zone);
687 extern void zone_pcp_init(struct zone *zone);
688 
689 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
690 			  phys_addr_t min_addr,
691 			  int nid, bool exact_nid);
692 
693 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
694 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
695 
696 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
697 
698 /*
699  * in mm/compaction.c
700  */
701 /*
702  * compact_control is used to track pages being migrated and the free pages
703  * they are being migrated to during memory compaction. The free_pfn starts
704  * at the end of a zone and migrate_pfn begins at the start. Movable pages
705  * are moved to the end of a zone during a compaction run and the run
706  * completes when free_pfn <= migrate_pfn
707  */
708 struct compact_control {
709 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
710 	struct list_head migratepages;	/* List of pages being migrated */
711 	unsigned int nr_freepages;	/* Number of isolated free pages */
712 	unsigned int nr_migratepages;	/* Number of pages to migrate */
713 	unsigned long free_pfn;		/* isolate_freepages search base */
714 	/*
715 	 * Acts as an in/out parameter to page isolation for migration.
716 	 * isolate_migratepages uses it as a search base.
717 	 * isolate_migratepages_block will update the value to the next pfn
718 	 * after the last isolated one.
719 	 */
720 	unsigned long migrate_pfn;
721 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
722 	struct zone *zone;
723 	unsigned long total_migrate_scanned;
724 	unsigned long total_free_scanned;
725 	unsigned short fast_search_fail;/* failures to use free list searches */
726 	short search_order;		/* order to start a fast search at */
727 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
728 	int order;			/* order a direct compactor needs */
729 	int migratetype;		/* migratetype of direct compactor */
730 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
731 	const int highest_zoneidx;	/* zone index of a direct compactor */
732 	enum migrate_mode mode;		/* Async or sync migration mode */
733 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
734 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
735 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
736 	bool direct_compaction;		/* False from kcompactd or /proc/... */
737 	bool proactive_compaction;	/* kcompactd proactive compaction */
738 	bool whole_zone;		/* Whole zone should/has been scanned */
739 	bool contended;			/* Signal lock contention */
740 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
741 					 * when there are potentially transient
742 					 * isolation or migration failures to
743 					 * ensure forward progress.
744 					 */
745 	bool alloc_contig;		/* alloc_contig_range allocation */
746 };
747 
748 /*
749  * Used in direct compaction when a page should be taken from the freelists
750  * immediately when one is created during the free path.
751  */
752 struct capture_control {
753 	struct compact_control *cc;
754 	struct page *page;
755 };
756 
757 unsigned long
758 isolate_freepages_range(struct compact_control *cc,
759 			unsigned long start_pfn, unsigned long end_pfn);
760 int
761 isolate_migratepages_range(struct compact_control *cc,
762 			   unsigned long low_pfn, unsigned long end_pfn);
763 
764 int __alloc_contig_migrate_range(struct compact_control *cc,
765 					unsigned long start, unsigned long end,
766 					int migratetype);
767 
768 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
769 void init_cma_reserved_pageblock(struct page *page);
770 
771 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
772 
773 int find_suitable_fallback(struct free_area *area, unsigned int order,
774 			int migratetype, bool only_stealable, bool *can_steal);
775 
776 static inline bool free_area_empty(struct free_area *area, int migratetype)
777 {
778 	return list_empty(&area->free_list[migratetype]);
779 }
780 
781 /*
782  * These three helpers classifies VMAs for virtual memory accounting.
783  */
784 
785 /*
786  * Executable code area - executable, not writable, not stack
787  */
788 static inline bool is_exec_mapping(vm_flags_t flags)
789 {
790 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
791 }
792 
793 /*
794  * Stack area (including shadow stacks)
795  *
796  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
797  * do_mmap() forbids all other combinations.
798  */
799 static inline bool is_stack_mapping(vm_flags_t flags)
800 {
801 	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
802 }
803 
804 /*
805  * Data area - private, writable, not stack
806  */
807 static inline bool is_data_mapping(vm_flags_t flags)
808 {
809 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
810 }
811 
812 /* mm/util.c */
813 struct anon_vma *folio_anon_vma(struct folio *folio);
814 
815 #ifdef CONFIG_MMU
816 void unmap_mapping_folio(struct folio *folio);
817 extern long populate_vma_page_range(struct vm_area_struct *vma,
818 		unsigned long start, unsigned long end, int *locked);
819 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
820 		unsigned long end, bool write, int *locked);
821 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
822 			       unsigned long bytes);
823 
824 /*
825  * NOTE: This function can't tell whether the folio is "fully mapped" in the
826  * range.
827  * "fully mapped" means all the pages of folio is associated with the page
828  * table of range while this function just check whether the folio range is
829  * within the range [start, end). Function caller needs to do page table
830  * check if it cares about the page table association.
831  *
832  * Typical usage (like mlock or madvise) is:
833  * Caller knows at least 1 page of folio is associated with page table of VMA
834  * and the range [start, end) is intersect with the VMA range. Caller wants
835  * to know whether the folio is fully associated with the range. It calls
836  * this function to check whether the folio is in the range first. Then checks
837  * the page table to know whether the folio is fully mapped to the range.
838  */
839 static inline bool
840 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
841 		unsigned long start, unsigned long end)
842 {
843 	pgoff_t pgoff, addr;
844 	unsigned long vma_pglen = vma_pages(vma);
845 
846 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
847 	if (start > end)
848 		return false;
849 
850 	if (start < vma->vm_start)
851 		start = vma->vm_start;
852 
853 	if (end > vma->vm_end)
854 		end = vma->vm_end;
855 
856 	pgoff = folio_pgoff(folio);
857 
858 	/* if folio start address is not in vma range */
859 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
860 		return false;
861 
862 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
863 
864 	return !(addr < start || end - addr < folio_size(folio));
865 }
866 
867 static inline bool
868 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
869 {
870 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
871 }
872 
873 /*
874  * mlock_vma_folio() and munlock_vma_folio():
875  * should be called with vma's mmap_lock held for read or write,
876  * under page table lock for the pte/pmd being added or removed.
877  *
878  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
879  * the end of folio_remove_rmap_*(); but new anon folios are managed by
880  * folio_add_lru_vma() calling mlock_new_folio().
881  */
882 void mlock_folio(struct folio *folio);
883 static inline void mlock_vma_folio(struct folio *folio,
884 				struct vm_area_struct *vma)
885 {
886 	/*
887 	 * The VM_SPECIAL check here serves two purposes.
888 	 * 1) VM_IO check prevents migration from double-counting during mlock.
889 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
890 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
891 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
892 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
893 	 */
894 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
895 		mlock_folio(folio);
896 }
897 
898 void munlock_folio(struct folio *folio);
899 static inline void munlock_vma_folio(struct folio *folio,
900 					struct vm_area_struct *vma)
901 {
902 	/*
903 	 * munlock if the function is called. Ideally, we should only
904 	 * do munlock if any page of folio is unmapped from VMA and
905 	 * cause folio not fully mapped to VMA.
906 	 *
907 	 * But it's not easy to confirm that's the situation. So we
908 	 * always munlock the folio and page reclaim will correct it
909 	 * if it's wrong.
910 	 */
911 	if (unlikely(vma->vm_flags & VM_LOCKED))
912 		munlock_folio(folio);
913 }
914 
915 void mlock_new_folio(struct folio *folio);
916 bool need_mlock_drain(int cpu);
917 void mlock_drain_local(void);
918 void mlock_drain_remote(int cpu);
919 
920 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
921 
922 /**
923  * vma_address - Find the virtual address a page range is mapped at
924  * @vma: The vma which maps this object.
925  * @pgoff: The page offset within its object.
926  * @nr_pages: The number of pages to consider.
927  *
928  * If any page in this range is mapped by this VMA, return the first address
929  * where any of these pages appear.  Otherwise, return -EFAULT.
930  */
931 static inline unsigned long vma_address(struct vm_area_struct *vma,
932 		pgoff_t pgoff, unsigned long nr_pages)
933 {
934 	unsigned long address;
935 
936 	if (pgoff >= vma->vm_pgoff) {
937 		address = vma->vm_start +
938 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
939 		/* Check for address beyond vma (or wrapped through 0?) */
940 		if (address < vma->vm_start || address >= vma->vm_end)
941 			address = -EFAULT;
942 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
943 		/* Test above avoids possibility of wrap to 0 on 32-bit */
944 		address = vma->vm_start;
945 	} else {
946 		address = -EFAULT;
947 	}
948 	return address;
949 }
950 
951 /*
952  * Then at what user virtual address will none of the range be found in vma?
953  * Assumes that vma_address() already returned a good starting address.
954  */
955 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
956 {
957 	struct vm_area_struct *vma = pvmw->vma;
958 	pgoff_t pgoff;
959 	unsigned long address;
960 
961 	/* Common case, plus ->pgoff is invalid for KSM */
962 	if (pvmw->nr_pages == 1)
963 		return pvmw->address + PAGE_SIZE;
964 
965 	pgoff = pvmw->pgoff + pvmw->nr_pages;
966 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
967 	/* Check for address beyond vma (or wrapped through 0?) */
968 	if (address < vma->vm_start || address > vma->vm_end)
969 		address = vma->vm_end;
970 	return address;
971 }
972 
973 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
974 						    struct file *fpin)
975 {
976 	int flags = vmf->flags;
977 
978 	if (fpin)
979 		return fpin;
980 
981 	/*
982 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
983 	 * anything, so we only pin the file and drop the mmap_lock if only
984 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
985 	 */
986 	if (fault_flag_allow_retry_first(flags) &&
987 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
988 		fpin = get_file(vmf->vma->vm_file);
989 		release_fault_lock(vmf);
990 	}
991 	return fpin;
992 }
993 #else /* !CONFIG_MMU */
994 static inline void unmap_mapping_folio(struct folio *folio) { }
995 static inline void mlock_new_folio(struct folio *folio) { }
996 static inline bool need_mlock_drain(int cpu) { return false; }
997 static inline void mlock_drain_local(void) { }
998 static inline void mlock_drain_remote(int cpu) { }
999 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1000 {
1001 }
1002 #endif /* !CONFIG_MMU */
1003 
1004 /* Memory initialisation debug and verification */
1005 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1006 DECLARE_STATIC_KEY_TRUE(deferred_pages);
1007 
1008 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1009 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1010 
1011 enum mminit_level {
1012 	MMINIT_WARNING,
1013 	MMINIT_VERIFY,
1014 	MMINIT_TRACE
1015 };
1016 
1017 #ifdef CONFIG_DEBUG_MEMORY_INIT
1018 
1019 extern int mminit_loglevel;
1020 
1021 #define mminit_dprintk(level, prefix, fmt, arg...) \
1022 do { \
1023 	if (level < mminit_loglevel) { \
1024 		if (level <= MMINIT_WARNING) \
1025 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1026 		else \
1027 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1028 	} \
1029 } while (0)
1030 
1031 extern void mminit_verify_pageflags_layout(void);
1032 extern void mminit_verify_zonelist(void);
1033 #else
1034 
1035 static inline void mminit_dprintk(enum mminit_level level,
1036 				const char *prefix, const char *fmt, ...)
1037 {
1038 }
1039 
1040 static inline void mminit_verify_pageflags_layout(void)
1041 {
1042 }
1043 
1044 static inline void mminit_verify_zonelist(void)
1045 {
1046 }
1047 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1048 
1049 #define NODE_RECLAIM_NOSCAN	-2
1050 #define NODE_RECLAIM_FULL	-1
1051 #define NODE_RECLAIM_SOME	0
1052 #define NODE_RECLAIM_SUCCESS	1
1053 
1054 #ifdef CONFIG_NUMA
1055 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1056 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1057 #else
1058 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1059 				unsigned int order)
1060 {
1061 	return NODE_RECLAIM_NOSCAN;
1062 }
1063 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1064 {
1065 	return NUMA_NO_NODE;
1066 }
1067 #endif
1068 
1069 /*
1070  * mm/memory-failure.c
1071  */
1072 void shake_folio(struct folio *folio);
1073 extern int hwpoison_filter(struct page *p);
1074 
1075 extern u32 hwpoison_filter_dev_major;
1076 extern u32 hwpoison_filter_dev_minor;
1077 extern u64 hwpoison_filter_flags_mask;
1078 extern u64 hwpoison_filter_flags_value;
1079 extern u64 hwpoison_filter_memcg;
1080 extern u32 hwpoison_filter_enable;
1081 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
1082 void SetPageHWPoisonTakenOff(struct page *page);
1083 void ClearPageHWPoisonTakenOff(struct page *page);
1084 bool take_page_off_buddy(struct page *page);
1085 bool put_page_back_buddy(struct page *page);
1086 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1087 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
1088 		     struct vm_area_struct *vma, struct list_head *to_kill,
1089 		     unsigned long ksm_addr);
1090 unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
1091 
1092 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1093         unsigned long, unsigned long,
1094         unsigned long, unsigned long);
1095 
1096 extern void set_pageblock_order(void);
1097 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1098 unsigned long reclaim_pages(struct list_head *folio_list);
1099 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1100 					    struct list_head *folio_list);
1101 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1102 #define ALLOC_WMARK_MIN		WMARK_MIN
1103 #define ALLOC_WMARK_LOW		WMARK_LOW
1104 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1105 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1106 
1107 /* Mask to get the watermark bits */
1108 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1109 
1110 /*
1111  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1112  * cannot assume a reduced access to memory reserves is sufficient for
1113  * !MMU
1114  */
1115 #ifdef CONFIG_MMU
1116 #define ALLOC_OOM		0x08
1117 #else
1118 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
1119 #endif
1120 
1121 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1122 				       * to 25% of the min watermark or
1123 				       * 62.5% if __GFP_HIGH is set.
1124 				       */
1125 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1126 				       * of the min watermark.
1127 				       */
1128 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1129 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1130 #ifdef CONFIG_ZONE_DMA32
1131 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1132 #else
1133 #define ALLOC_NOFRAGMENT	  0x0
1134 #endif
1135 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1136 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1137 
1138 /* Flags that allow allocations below the min watermark. */
1139 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1140 
1141 enum ttu_flags;
1142 struct tlbflush_unmap_batch;
1143 
1144 
1145 /*
1146  * only for MM internal work items which do not depend on
1147  * any allocations or locks which might depend on allocations
1148  */
1149 extern struct workqueue_struct *mm_percpu_wq;
1150 
1151 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1152 void try_to_unmap_flush(void);
1153 void try_to_unmap_flush_dirty(void);
1154 void flush_tlb_batched_pending(struct mm_struct *mm);
1155 #else
1156 static inline void try_to_unmap_flush(void)
1157 {
1158 }
1159 static inline void try_to_unmap_flush_dirty(void)
1160 {
1161 }
1162 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1163 {
1164 }
1165 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1166 
1167 extern const struct trace_print_flags pageflag_names[];
1168 extern const struct trace_print_flags pagetype_names[];
1169 extern const struct trace_print_flags vmaflag_names[];
1170 extern const struct trace_print_flags gfpflag_names[];
1171 
1172 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1173 {
1174 	return migratetype == MIGRATE_HIGHATOMIC;
1175 }
1176 
1177 void setup_zone_pageset(struct zone *zone);
1178 
1179 struct migration_target_control {
1180 	int nid;		/* preferred node id */
1181 	nodemask_t *nmask;
1182 	gfp_t gfp_mask;
1183 	enum migrate_reason reason;
1184 };
1185 
1186 /*
1187  * mm/filemap.c
1188  */
1189 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1190 			      struct folio *folio, loff_t fpos, size_t size);
1191 
1192 /*
1193  * mm/vmalloc.c
1194  */
1195 #ifdef CONFIG_MMU
1196 void __init vmalloc_init(void);
1197 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1198                 pgprot_t prot, struct page **pages, unsigned int page_shift);
1199 #else
1200 static inline void vmalloc_init(void)
1201 {
1202 }
1203 
1204 static inline
1205 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1206                 pgprot_t prot, struct page **pages, unsigned int page_shift)
1207 {
1208 	return -EINVAL;
1209 }
1210 #endif
1211 
1212 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1213 			       unsigned long end, pgprot_t prot,
1214 			       struct page **pages, unsigned int page_shift);
1215 
1216 void vunmap_range_noflush(unsigned long start, unsigned long end);
1217 
1218 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1219 
1220 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
1221 		      unsigned long addr, int page_nid, int *flags);
1222 
1223 void free_zone_device_folio(struct folio *folio);
1224 int migrate_device_coherent_page(struct page *page);
1225 
1226 /*
1227  * mm/gup.c
1228  */
1229 int __must_check try_grab_folio(struct folio *folio, int refs,
1230 				unsigned int flags);
1231 
1232 /*
1233  * mm/huge_memory.c
1234  */
1235 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1236 	       pud_t *pud, bool write);
1237 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1238 	       pmd_t *pmd, bool write);
1239 
1240 /*
1241  * mm/mmap.c
1242  */
1243 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1244 					struct vm_area_struct *vma,
1245 					unsigned long delta);
1246 
1247 enum {
1248 	/* mark page accessed */
1249 	FOLL_TOUCH = 1 << 16,
1250 	/* a retry, previous pass started an IO */
1251 	FOLL_TRIED = 1 << 17,
1252 	/* we are working on non-current tsk/mm */
1253 	FOLL_REMOTE = 1 << 18,
1254 	/* pages must be released via unpin_user_page */
1255 	FOLL_PIN = 1 << 19,
1256 	/* gup_fast: prevent fall-back to slow gup */
1257 	FOLL_FAST_ONLY = 1 << 20,
1258 	/* allow unlocking the mmap lock */
1259 	FOLL_UNLOCKABLE = 1 << 21,
1260 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1261 	FOLL_MADV_POPULATE = 1 << 22,
1262 };
1263 
1264 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1265 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1266 			    FOLL_MADV_POPULATE)
1267 
1268 /*
1269  * Indicates for which pages that are write-protected in the page table,
1270  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1271  * GUP pin will remain consistent with the pages mapped into the page tables
1272  * of the MM.
1273  *
1274  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1275  * PageAnonExclusive() has to protect against concurrent GUP:
1276  * * Ordinary GUP: Using the PT lock
1277  * * GUP-fast and fork(): mm->write_protect_seq
1278  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1279  *    folio_try_share_anon_rmap_*()
1280  *
1281  * Must be called with the (sub)page that's actually referenced via the
1282  * page table entry, which might not necessarily be the head page for a
1283  * PTE-mapped THP.
1284  *
1285  * If the vma is NULL, we're coming from the GUP-fast path and might have
1286  * to fallback to the slow path just to lookup the vma.
1287  */
1288 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1289 				    unsigned int flags, struct page *page)
1290 {
1291 	/*
1292 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1293 	 * has to be writable -- and if it references (part of) an anonymous
1294 	 * folio, that part is required to be marked exclusive.
1295 	 */
1296 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1297 		return false;
1298 	/*
1299 	 * Note: PageAnon(page) is stable until the page is actually getting
1300 	 * freed.
1301 	 */
1302 	if (!PageAnon(page)) {
1303 		/*
1304 		 * We only care about R/O long-term pining: R/O short-term
1305 		 * pinning does not have the semantics to observe successive
1306 		 * changes through the process page tables.
1307 		 */
1308 		if (!(flags & FOLL_LONGTERM))
1309 			return false;
1310 
1311 		/* We really need the vma ... */
1312 		if (!vma)
1313 			return true;
1314 
1315 		/*
1316 		 * ... because we only care about writable private ("COW")
1317 		 * mappings where we have to break COW early.
1318 		 */
1319 		return is_cow_mapping(vma->vm_flags);
1320 	}
1321 
1322 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1323 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1324 		smp_rmb();
1325 
1326 	/*
1327 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1328 	 * cannot get pinned.
1329 	 */
1330 	return !PageAnonExclusive(page);
1331 }
1332 
1333 extern bool mirrored_kernelcore;
1334 extern bool memblock_has_mirror(void);
1335 
1336 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1337 					  unsigned long start, unsigned long end,
1338 					  pgoff_t pgoff)
1339 {
1340 	vma->vm_start = start;
1341 	vma->vm_end = end;
1342 	vma->vm_pgoff = pgoff;
1343 }
1344 
1345 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1346 {
1347 	/*
1348 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1349 	 * enablements, because when without soft-dirty being compiled in,
1350 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1351 	 * will be constantly true.
1352 	 */
1353 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1354 		return false;
1355 
1356 	/*
1357 	 * Soft-dirty is kind of special: its tracking is enabled when the
1358 	 * vma flags not set.
1359 	 */
1360 	return !(vma->vm_flags & VM_SOFTDIRTY);
1361 }
1362 
1363 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1364 {
1365 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1366 }
1367 
1368 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1369 {
1370 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1371 }
1372 
1373 static inline void vma_iter_config(struct vma_iterator *vmi,
1374 		unsigned long index, unsigned long last)
1375 {
1376 	__mas_set_range(&vmi->mas, index, last - 1);
1377 }
1378 
1379 static inline void vma_iter_reset(struct vma_iterator *vmi)
1380 {
1381 	mas_reset(&vmi->mas);
1382 }
1383 
1384 static inline
1385 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
1386 {
1387 	return mas_prev_range(&vmi->mas, min);
1388 }
1389 
1390 static inline
1391 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
1392 {
1393 	return mas_next_range(&vmi->mas, max);
1394 }
1395 
1396 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
1397 				       unsigned long max, unsigned long size)
1398 {
1399 	return mas_empty_area(&vmi->mas, min, max - 1, size);
1400 }
1401 
1402 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
1403 					unsigned long max, unsigned long size)
1404 {
1405 	return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
1406 }
1407 
1408 /*
1409  * VMA Iterator functions shared between nommu and mmap
1410  */
1411 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1412 		struct vm_area_struct *vma)
1413 {
1414 	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1415 }
1416 
1417 static inline void vma_iter_clear(struct vma_iterator *vmi)
1418 {
1419 	mas_store_prealloc(&vmi->mas, NULL);
1420 }
1421 
1422 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1423 {
1424 	return mas_walk(&vmi->mas);
1425 }
1426 
1427 /* Store a VMA with preallocated memory */
1428 static inline void vma_iter_store(struct vma_iterator *vmi,
1429 				  struct vm_area_struct *vma)
1430 {
1431 
1432 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1433 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1434 			vmi->mas.index > vma->vm_start)) {
1435 		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1436 			vmi->mas.index, vma->vm_start, vma->vm_start,
1437 			vma->vm_end, vmi->mas.index, vmi->mas.last);
1438 	}
1439 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1440 			vmi->mas.last <  vma->vm_start)) {
1441 		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1442 		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1443 		       vmi->mas.index, vmi->mas.last);
1444 	}
1445 #endif
1446 
1447 	if (vmi->mas.status != ma_start &&
1448 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1449 		vma_iter_invalidate(vmi);
1450 
1451 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1452 	mas_store_prealloc(&vmi->mas, vma);
1453 }
1454 
1455 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1456 			struct vm_area_struct *vma, gfp_t gfp)
1457 {
1458 	if (vmi->mas.status != ma_start &&
1459 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1460 		vma_iter_invalidate(vmi);
1461 
1462 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1463 	mas_store_gfp(&vmi->mas, vma, gfp);
1464 	if (unlikely(mas_is_err(&vmi->mas)))
1465 		return -ENOMEM;
1466 
1467 	return 0;
1468 }
1469 
1470 /*
1471  * VMA lock generalization
1472  */
1473 struct vma_prepare {
1474 	struct vm_area_struct *vma;
1475 	struct vm_area_struct *adj_next;
1476 	struct file *file;
1477 	struct address_space *mapping;
1478 	struct anon_vma *anon_vma;
1479 	struct vm_area_struct *insert;
1480 	struct vm_area_struct *remove;
1481 	struct vm_area_struct *remove2;
1482 };
1483 
1484 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1485 				unsigned long zone, int nid);
1486 
1487 /* shrinker related functions */
1488 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1489 			  int priority);
1490 
1491 #ifdef CONFIG_64BIT
1492 static inline int can_do_mseal(unsigned long flags)
1493 {
1494 	if (flags)
1495 		return -EINVAL;
1496 
1497 	return 0;
1498 }
1499 
1500 bool can_modify_mm(struct mm_struct *mm, unsigned long start,
1501 		unsigned long end);
1502 bool can_modify_mm_madv(struct mm_struct *mm, unsigned long start,
1503 		unsigned long end, int behavior);
1504 #else
1505 static inline int can_do_mseal(unsigned long flags)
1506 {
1507 	return -EPERM;
1508 }
1509 
1510 static inline bool can_modify_mm(struct mm_struct *mm, unsigned long start,
1511 		unsigned long end)
1512 {
1513 	return true;
1514 }
1515 
1516 static inline bool can_modify_mm_madv(struct mm_struct *mm, unsigned long start,
1517 		unsigned long end, int behavior)
1518 {
1519 	return true;
1520 }
1521 #endif
1522 
1523 #ifdef CONFIG_SHRINKER_DEBUG
1524 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1525 			struct shrinker *shrinker, const char *fmt, va_list ap)
1526 {
1527 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1528 
1529 	return shrinker->name ? 0 : -ENOMEM;
1530 }
1531 
1532 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1533 {
1534 	kfree_const(shrinker->name);
1535 	shrinker->name = NULL;
1536 }
1537 
1538 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1539 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1540 					      int *debugfs_id);
1541 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1542 				    int debugfs_id);
1543 #else /* CONFIG_SHRINKER_DEBUG */
1544 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1545 {
1546 	return 0;
1547 }
1548 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1549 					      const char *fmt, va_list ap)
1550 {
1551 	return 0;
1552 }
1553 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1554 {
1555 }
1556 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1557 						     int *debugfs_id)
1558 {
1559 	*debugfs_id = -1;
1560 	return NULL;
1561 }
1562 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1563 					   int debugfs_id)
1564 {
1565 }
1566 #endif /* CONFIG_SHRINKER_DEBUG */
1567 
1568 /* Only track the nodes of mappings with shadow entries */
1569 void workingset_update_node(struct xa_node *node);
1570 extern struct list_lru shadow_nodes;
1571 
1572 struct unlink_vma_file_batch {
1573 	int count;
1574 	struct vm_area_struct *vmas[8];
1575 };
1576 
1577 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *);
1578 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *, struct vm_area_struct *);
1579 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *);
1580 
1581 #endif	/* __MM_INTERNAL_H */
1582