xref: /freebsd/sys/amd64/vmm/vmm.c (revision 4a46ece6c6a90f18effbfae7ddef79b41ef43eec)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bhyve_snapshot.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/sysctl.h>
37 #include <sys/malloc.h>
38 #include <sys/pcpu.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rwlock.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/sx.h>
46 #include <sys/vnode.h>
47 
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_extern.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_page.h>
53 #include <vm/pmap.h>
54 #include <vm/vm_map.h>
55 #include <vm/vm_pager.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vnode_pager.h>
58 #include <vm/swap_pager.h>
59 #include <vm/uma.h>
60 
61 #include <machine/cpu.h>
62 #include <machine/pcb.h>
63 #include <machine/smp.h>
64 #include <machine/md_var.h>
65 #include <x86/psl.h>
66 #include <x86/apicreg.h>
67 #include <x86/ifunc.h>
68 
69 #include <machine/vmm.h>
70 #include <machine/vmm_instruction_emul.h>
71 #include <machine/vmm_snapshot.h>
72 
73 #include <dev/vmm/vmm_dev.h>
74 #include <dev/vmm/vmm_ktr.h>
75 
76 #include "vmm_ioport.h"
77 #include "vmm_host.h"
78 #include "vmm_mem.h"
79 #include "vmm_util.h"
80 #include "vatpic.h"
81 #include "vatpit.h"
82 #include "vhpet.h"
83 #include "vioapic.h"
84 #include "vlapic.h"
85 #include "vpmtmr.h"
86 #include "vrtc.h"
87 #include "vmm_stat.h"
88 #include "vmm_lapic.h"
89 
90 #include "io/ppt.h"
91 #include "io/iommu.h"
92 
93 struct vlapic;
94 
95 /*
96  * Initialization:
97  * (a) allocated when vcpu is created
98  * (i) initialized when vcpu is created and when it is reinitialized
99  * (o) initialized the first time the vcpu is created
100  * (x) initialized before use
101  */
102 struct vcpu {
103 	struct mtx 	mtx;		/* (o) protects 'state' and 'hostcpu' */
104 	enum vcpu_state	state;		/* (o) vcpu state */
105 	int		vcpuid;		/* (o) */
106 	int		hostcpu;	/* (o) vcpu's host cpu */
107 	int		reqidle;	/* (i) request vcpu to idle */
108 	struct vm	*vm;		/* (o) */
109 	void		*cookie;	/* (i) cpu-specific data */
110 	struct vlapic	*vlapic;	/* (i) APIC device model */
111 	enum x2apic_state x2apic_state;	/* (i) APIC mode */
112 	uint64_t	exitintinfo;	/* (i) events pending at VM exit */
113 	int		nmi_pending;	/* (i) NMI pending */
114 	int		extint_pending;	/* (i) INTR pending */
115 	int	exception_pending;	/* (i) exception pending */
116 	int	exc_vector;		/* (x) exception collateral */
117 	int	exc_errcode_valid;
118 	uint32_t exc_errcode;
119 	struct savefpu	*guestfpu;	/* (a,i) guest fpu state */
120 	uint64_t	guest_xcr0;	/* (i) guest %xcr0 register */
121 	void		*stats;		/* (a,i) statistics */
122 	struct vm_exit	exitinfo;	/* (x) exit reason and collateral */
123 	cpuset_t	exitinfo_cpuset; /* (x) storage for vmexit handlers */
124 	uint64_t	nextrip;	/* (x) next instruction to execute */
125 	uint64_t	tsc_offset;	/* (o) TSC offsetting */
126 };
127 
128 #define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
129 #define	vcpu_lock_destroy(v)	mtx_destroy(&((v)->mtx))
130 #define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
131 #define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
132 #define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
133 
134 struct mem_seg {
135 	size_t	len;
136 	bool	sysmem;
137 	struct vm_object *object;
138 };
139 #define	VM_MAX_MEMSEGS	4
140 
141 struct mem_map {
142 	vm_paddr_t	gpa;
143 	size_t		len;
144 	vm_ooffset_t	segoff;
145 	int		segid;
146 	int		prot;
147 	int		flags;
148 };
149 #define	VM_MAX_MEMMAPS	8
150 
151 /*
152  * Initialization:
153  * (o) initialized the first time the VM is created
154  * (i) initialized when VM is created and when it is reinitialized
155  * (x) initialized before use
156  *
157  * Locking:
158  * [m] mem_segs_lock
159  * [r] rendezvous_mtx
160  * [v] reads require one frozen vcpu, writes require freezing all vcpus
161  */
162 struct vm {
163 	void		*cookie;		/* (i) cpu-specific data */
164 	void		*iommu;			/* (x) iommu-specific data */
165 	struct vhpet	*vhpet;			/* (i) virtual HPET */
166 	struct vioapic	*vioapic;		/* (i) virtual ioapic */
167 	struct vatpic	*vatpic;		/* (i) virtual atpic */
168 	struct vatpit	*vatpit;		/* (i) virtual atpit */
169 	struct vpmtmr	*vpmtmr;		/* (i) virtual ACPI PM timer */
170 	struct vrtc	*vrtc;			/* (o) virtual RTC */
171 	volatile cpuset_t active_cpus;		/* (i) active vcpus */
172 	volatile cpuset_t debug_cpus;		/* (i) vcpus stopped for debug */
173 	cpuset_t	startup_cpus;		/* (i) [r] waiting for startup */
174 	int		suspend;		/* (i) stop VM execution */
175 	bool		dying;			/* (o) is dying */
176 	volatile cpuset_t suspended_cpus; 	/* (i) suspended vcpus */
177 	volatile cpuset_t halted_cpus;		/* (x) cpus in a hard halt */
178 	cpuset_t	rendezvous_req_cpus;	/* (x) [r] rendezvous requested */
179 	cpuset_t	rendezvous_done_cpus;	/* (x) [r] rendezvous finished */
180 	void		*rendezvous_arg;	/* (x) [r] rendezvous func/arg */
181 	vm_rendezvous_func_t rendezvous_func;
182 	struct mtx	rendezvous_mtx;		/* (o) rendezvous lock */
183 	struct mem_map	mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */
184 	struct mem_seg	mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */
185 	struct vmspace	*vmspace;		/* (o) guest's address space */
186 	char		name[VM_MAX_NAMELEN+1];	/* (o) virtual machine name */
187 	struct vcpu	**vcpu;			/* (o) guest vcpus */
188 	/* The following describe the vm cpu topology */
189 	uint16_t	sockets;		/* (o) num of sockets */
190 	uint16_t	cores;			/* (o) num of cores/socket */
191 	uint16_t	threads;		/* (o) num of threads/core */
192 	uint16_t	maxcpus;		/* (o) max pluggable cpus */
193 	struct sx	mem_segs_lock;		/* (o) */
194 	struct sx	vcpus_init_lock;	/* (o) */
195 };
196 
197 #define	VMM_CTR0(vcpu, format)						\
198 	VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
199 
200 #define	VMM_CTR1(vcpu, format, p1)					\
201 	VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
202 
203 #define	VMM_CTR2(vcpu, format, p1, p2)					\
204 	VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
205 
206 #define	VMM_CTR3(vcpu, format, p1, p2, p3)				\
207 	VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
208 
209 #define	VMM_CTR4(vcpu, format, p1, p2, p3, p4)				\
210 	VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
211 
212 static int vmm_initialized;
213 
214 static void	vmmops_panic(void);
215 
216 static void
vmmops_panic(void)217 vmmops_panic(void)
218 {
219 	panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
220 }
221 
222 #define	DEFINE_VMMOPS_IFUNC(ret_type, opname, args)			\
223     DEFINE_IFUNC(static, ret_type, vmmops_##opname, args)		\
224     {									\
225     	if (vmm_is_intel())						\
226     		return (vmm_ops_intel.opname);				\
227     	else if (vmm_is_svm())						\
228     		return (vmm_ops_amd.opname);				\
229     	else								\
230     		return ((ret_type (*)args)vmmops_panic);		\
231     }
232 
233 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
234 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
235 DEFINE_VMMOPS_IFUNC(void, modsuspend, (void))
236 DEFINE_VMMOPS_IFUNC(void, modresume, (void))
237 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
238 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
239     struct vm_eventinfo *info))
240 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
241 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
242     int vcpu_id))
243 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
244 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
245 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
246 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
247 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
248 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
249 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
250 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
251     vm_offset_t max))
252 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
253 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
254 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
255 #ifdef BHYVE_SNAPSHOT
256 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
257     struct vm_snapshot_meta *meta))
258 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
259 #endif
260 
261 SDT_PROVIDER_DEFINE(vmm);
262 
263 static MALLOC_DEFINE(M_VM, "vm", "vm");
264 
265 /* statistics */
266 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
267 
268 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
269     NULL);
270 
271 /*
272  * Halt the guest if all vcpus are executing a HLT instruction with
273  * interrupts disabled.
274  */
275 static int halt_detection_enabled = 1;
276 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
277     &halt_detection_enabled, 0,
278     "Halt VM if all vcpus execute HLT with interrupts disabled");
279 
280 static int vmm_ipinum;
281 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
282     "IPI vector used for vcpu notifications");
283 
284 static int trace_guest_exceptions;
285 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
286     &trace_guest_exceptions, 0,
287     "Trap into hypervisor on all guest exceptions and reflect them back");
288 
289 static int trap_wbinvd;
290 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
291     "WBINVD triggers a VM-exit");
292 
293 u_int vm_maxcpu;
294 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
295     &vm_maxcpu, 0, "Maximum number of vCPUs");
296 
297 static void vm_free_memmap(struct vm *vm, int ident);
298 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
299 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
300 
301 /* global statistics */
302 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus");
303 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
304 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt");
305 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted");
306 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted");
307 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted");
308 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted");
309 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits");
310 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted");
311 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening");
312 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening");
313 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted");
314 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted");
315 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault");
316 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation");
317 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason");
318 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit");
319 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit");
320 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace");
321 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit");
322 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions");
323 
324 /*
325  * Upper limit on vm_maxcpu.  Limited by use of uint16_t types for CPU
326  * counts as well as range of vpid values for VT-x and by the capacity
327  * of cpuset_t masks.  The call to new_unrhdr() in vpid_init() in
328  * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below.
329  */
330 #define	VM_MAXCPU	MIN(0xffff - 1, CPU_SETSIZE)
331 
332 #ifdef KTR
333 static const char *
vcpu_state2str(enum vcpu_state state)334 vcpu_state2str(enum vcpu_state state)
335 {
336 
337 	switch (state) {
338 	case VCPU_IDLE:
339 		return ("idle");
340 	case VCPU_FROZEN:
341 		return ("frozen");
342 	case VCPU_RUNNING:
343 		return ("running");
344 	case VCPU_SLEEPING:
345 		return ("sleeping");
346 	default:
347 		return ("unknown");
348 	}
349 }
350 #endif
351 
352 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)353 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
354 {
355 	vmmops_vlapic_cleanup(vcpu->vlapic);
356 	vmmops_vcpu_cleanup(vcpu->cookie);
357 	vcpu->cookie = NULL;
358 	if (destroy) {
359 		vmm_stat_free(vcpu->stats);
360 		fpu_save_area_free(vcpu->guestfpu);
361 		vcpu_lock_destroy(vcpu);
362 		free(vcpu, M_VM);
363 	}
364 }
365 
366 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)367 vcpu_alloc(struct vm *vm, int vcpu_id)
368 {
369 	struct vcpu *vcpu;
370 
371 	KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
372 	    ("vcpu_init: invalid vcpu %d", vcpu_id));
373 
374 	vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
375 	vcpu_lock_init(vcpu);
376 	vcpu->state = VCPU_IDLE;
377 	vcpu->hostcpu = NOCPU;
378 	vcpu->vcpuid = vcpu_id;
379 	vcpu->vm = vm;
380 	vcpu->guestfpu = fpu_save_area_alloc();
381 	vcpu->stats = vmm_stat_alloc();
382 	vcpu->tsc_offset = 0;
383 	return (vcpu);
384 }
385 
386 static void
vcpu_init(struct vcpu * vcpu)387 vcpu_init(struct vcpu *vcpu)
388 {
389 	vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
390 	vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
391 	vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
392 	vcpu->reqidle = 0;
393 	vcpu->exitintinfo = 0;
394 	vcpu->nmi_pending = 0;
395 	vcpu->extint_pending = 0;
396 	vcpu->exception_pending = 0;
397 	vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
398 	fpu_save_area_reset(vcpu->guestfpu);
399 	vmm_stat_init(vcpu->stats);
400 }
401 
402 int
vcpu_trace_exceptions(struct vcpu * vcpu)403 vcpu_trace_exceptions(struct vcpu *vcpu)
404 {
405 
406 	return (trace_guest_exceptions);
407 }
408 
409 int
vcpu_trap_wbinvd(struct vcpu * vcpu)410 vcpu_trap_wbinvd(struct vcpu *vcpu)
411 {
412 	return (trap_wbinvd);
413 }
414 
415 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)416 vm_exitinfo(struct vcpu *vcpu)
417 {
418 	return (&vcpu->exitinfo);
419 }
420 
421 cpuset_t *
vm_exitinfo_cpuset(struct vcpu * vcpu)422 vm_exitinfo_cpuset(struct vcpu *vcpu)
423 {
424 	return (&vcpu->exitinfo_cpuset);
425 }
426 
427 static int
vmm_init(void)428 vmm_init(void)
429 {
430 	if (!vmm_is_hw_supported())
431 		return (ENXIO);
432 
433 	vm_maxcpu = mp_ncpus;
434 	TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
435 
436 	if (vm_maxcpu > VM_MAXCPU) {
437 		printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
438 		vm_maxcpu = VM_MAXCPU;
439 	}
440 	if (vm_maxcpu == 0)
441 		vm_maxcpu = 1;
442 
443 	vmm_host_state_init();
444 
445 	vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
446 	    &IDTVEC(justreturn));
447 	if (vmm_ipinum < 0)
448 		vmm_ipinum = IPI_AST;
449 
450 	vmm_suspend_p = vmmops_modsuspend;
451 	vmm_resume_p = vmmops_modresume;
452 
453 	return (vmmops_modinit(vmm_ipinum));
454 }
455 
456 static int
vmm_handler(module_t mod,int what,void * arg)457 vmm_handler(module_t mod, int what, void *arg)
458 {
459 	int error;
460 
461 	switch (what) {
462 	case MOD_LOAD:
463 		if (vmm_is_hw_supported()) {
464 			error = vmmdev_init();
465 			if (error != 0)
466 				break;
467 			error = vmm_init();
468 			if (error == 0)
469 				vmm_initialized = 1;
470 			else
471 				(void)vmmdev_cleanup();
472 		} else {
473 			error = ENXIO;
474 		}
475 		break;
476 	case MOD_UNLOAD:
477 		if (vmm_is_hw_supported()) {
478 			error = vmmdev_cleanup();
479 			if (error == 0) {
480 				vmm_suspend_p = NULL;
481 				vmm_resume_p = NULL;
482 				iommu_cleanup();
483 				if (vmm_ipinum != IPI_AST)
484 					lapic_ipi_free(vmm_ipinum);
485 				error = vmmops_modcleanup();
486 				/*
487 				 * Something bad happened - prevent new
488 				 * VMs from being created
489 				 */
490 				if (error)
491 					vmm_initialized = 0;
492 			}
493 		} else {
494 			error = 0;
495 		}
496 		break;
497 	default:
498 		error = 0;
499 		break;
500 	}
501 	return (error);
502 }
503 
504 static moduledata_t vmm_kmod = {
505 	"vmm",
506 	vmm_handler,
507 	NULL
508 };
509 
510 /*
511  * vmm initialization has the following dependencies:
512  *
513  * - VT-x initialization requires smp_rendezvous() and therefore must happen
514  *   after SMP is fully functional (after SI_SUB_SMP).
515  * - vmm device initialization requires an initialized devfs.
516  */
517 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
518 MODULE_VERSION(vmm, 1);
519 
520 static void
vm_init(struct vm * vm,bool create)521 vm_init(struct vm *vm, bool create)
522 {
523 	vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace));
524 	vm->iommu = NULL;
525 	vm->vioapic = vioapic_init(vm);
526 	vm->vhpet = vhpet_init(vm);
527 	vm->vatpic = vatpic_init(vm);
528 	vm->vatpit = vatpit_init(vm);
529 	vm->vpmtmr = vpmtmr_init(vm);
530 	if (create)
531 		vm->vrtc = vrtc_init(vm);
532 
533 	CPU_ZERO(&vm->active_cpus);
534 	CPU_ZERO(&vm->debug_cpus);
535 	CPU_ZERO(&vm->startup_cpus);
536 
537 	vm->suspend = 0;
538 	CPU_ZERO(&vm->suspended_cpus);
539 
540 	if (!create) {
541 		for (int i = 0; i < vm->maxcpus; i++) {
542 			if (vm->vcpu[i] != NULL)
543 				vcpu_init(vm->vcpu[i]);
544 		}
545 	}
546 }
547 
548 void
vm_disable_vcpu_creation(struct vm * vm)549 vm_disable_vcpu_creation(struct vm *vm)
550 {
551 	sx_xlock(&vm->vcpus_init_lock);
552 	vm->dying = true;
553 	sx_xunlock(&vm->vcpus_init_lock);
554 }
555 
556 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)557 vm_alloc_vcpu(struct vm *vm, int vcpuid)
558 {
559 	struct vcpu *vcpu;
560 
561 	if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
562 		return (NULL);
563 
564 	vcpu = (struct vcpu *)
565 	    atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
566 	if (__predict_true(vcpu != NULL))
567 		return (vcpu);
568 
569 	sx_xlock(&vm->vcpus_init_lock);
570 	vcpu = vm->vcpu[vcpuid];
571 	if (vcpu == NULL && !vm->dying) {
572 		vcpu = vcpu_alloc(vm, vcpuid);
573 		vcpu_init(vcpu);
574 
575 		/*
576 		 * Ensure vCPU is fully created before updating pointer
577 		 * to permit unlocked reads above.
578 		 */
579 		atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
580 		    (uintptr_t)vcpu);
581 	}
582 	sx_xunlock(&vm->vcpus_init_lock);
583 	return (vcpu);
584 }
585 
586 void
vm_slock_vcpus(struct vm * vm)587 vm_slock_vcpus(struct vm *vm)
588 {
589 	sx_slock(&vm->vcpus_init_lock);
590 }
591 
592 void
vm_unlock_vcpus(struct vm * vm)593 vm_unlock_vcpus(struct vm *vm)
594 {
595 	sx_unlock(&vm->vcpus_init_lock);
596 }
597 
598 /*
599  * The default CPU topology is a single thread per package.
600  */
601 u_int cores_per_package = 1;
602 u_int threads_per_core = 1;
603 
604 int
vm_create(const char * name,struct vm ** retvm)605 vm_create(const char *name, struct vm **retvm)
606 {
607 	struct vm *vm;
608 	struct vmspace *vmspace;
609 
610 	/*
611 	 * If vmm.ko could not be successfully initialized then don't attempt
612 	 * to create the virtual machine.
613 	 */
614 	if (!vmm_initialized)
615 		return (ENXIO);
616 
617 	if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
618 	    VM_MAX_NAMELEN + 1)
619 		return (EINVAL);
620 
621 	vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48);
622 	if (vmspace == NULL)
623 		return (ENOMEM);
624 
625 	vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
626 	strcpy(vm->name, name);
627 	vm->vmspace = vmspace;
628 	mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
629 	sx_init(&vm->mem_segs_lock, "vm mem_segs");
630 	sx_init(&vm->vcpus_init_lock, "vm vcpus");
631 	vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
632 	    M_ZERO);
633 
634 	vm->sockets = 1;
635 	vm->cores = cores_per_package;	/* XXX backwards compatibility */
636 	vm->threads = threads_per_core;	/* XXX backwards compatibility */
637 	vm->maxcpus = vm_maxcpu;
638 
639 	vm_init(vm, true);
640 
641 	*retvm = vm;
642 	return (0);
643 }
644 
645 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)646 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
647     uint16_t *threads, uint16_t *maxcpus)
648 {
649 	*sockets = vm->sockets;
650 	*cores = vm->cores;
651 	*threads = vm->threads;
652 	*maxcpus = vm->maxcpus;
653 }
654 
655 uint16_t
vm_get_maxcpus(struct vm * vm)656 vm_get_maxcpus(struct vm *vm)
657 {
658 	return (vm->maxcpus);
659 }
660 
661 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus __unused)662 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
663     uint16_t threads, uint16_t maxcpus __unused)
664 {
665 	/* Ignore maxcpus. */
666 	if ((sockets * cores * threads) > vm->maxcpus)
667 		return (EINVAL);
668 	vm->sockets = sockets;
669 	vm->cores = cores;
670 	vm->threads = threads;
671 	return(0);
672 }
673 
674 static void
vm_cleanup(struct vm * vm,bool destroy)675 vm_cleanup(struct vm *vm, bool destroy)
676 {
677 	struct mem_map *mm;
678 	int i;
679 
680 	if (destroy)
681 		vm_xlock_memsegs(vm);
682 
683 	ppt_unassign_all(vm);
684 
685 	if (vm->iommu != NULL)
686 		iommu_destroy_domain(vm->iommu);
687 
688 	if (destroy)
689 		vrtc_cleanup(vm->vrtc);
690 	else
691 		vrtc_reset(vm->vrtc);
692 	vpmtmr_cleanup(vm->vpmtmr);
693 	vatpit_cleanup(vm->vatpit);
694 	vhpet_cleanup(vm->vhpet);
695 	vatpic_cleanup(vm->vatpic);
696 	vioapic_cleanup(vm->vioapic);
697 
698 	for (i = 0; i < vm->maxcpus; i++) {
699 		if (vm->vcpu[i] != NULL)
700 			vcpu_cleanup(vm->vcpu[i], destroy);
701 	}
702 
703 	vmmops_cleanup(vm->cookie);
704 
705 	/*
706 	 * System memory is removed from the guest address space only when
707 	 * the VM is destroyed. This is because the mapping remains the same
708 	 * across VM reset.
709 	 *
710 	 * Device memory can be relocated by the guest (e.g. using PCI BARs)
711 	 * so those mappings are removed on a VM reset.
712 	 */
713 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
714 		mm = &vm->mem_maps[i];
715 		if (destroy || !sysmem_mapping(vm, mm))
716 			vm_free_memmap(vm, i);
717 	}
718 
719 	if (destroy) {
720 		for (i = 0; i < VM_MAX_MEMSEGS; i++)
721 			vm_free_memseg(vm, i);
722 		vm_unlock_memsegs(vm);
723 
724 		vmmops_vmspace_free(vm->vmspace);
725 		vm->vmspace = NULL;
726 
727 		free(vm->vcpu, M_VM);
728 		sx_destroy(&vm->vcpus_init_lock);
729 		sx_destroy(&vm->mem_segs_lock);
730 		mtx_destroy(&vm->rendezvous_mtx);
731 	}
732 }
733 
734 void
vm_destroy(struct vm * vm)735 vm_destroy(struct vm *vm)
736 {
737 	vm_cleanup(vm, true);
738 	free(vm, M_VM);
739 }
740 
741 int
vm_reinit(struct vm * vm)742 vm_reinit(struct vm *vm)
743 {
744 	int error;
745 
746 	/*
747 	 * A virtual machine can be reset only if all vcpus are suspended.
748 	 */
749 	if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
750 		vm_cleanup(vm, false);
751 		vm_init(vm, false);
752 		error = 0;
753 	} else {
754 		error = EBUSY;
755 	}
756 
757 	return (error);
758 }
759 
760 const char *
vm_name(struct vm * vm)761 vm_name(struct vm *vm)
762 {
763 	return (vm->name);
764 }
765 
766 void
vm_slock_memsegs(struct vm * vm)767 vm_slock_memsegs(struct vm *vm)
768 {
769 	sx_slock(&vm->mem_segs_lock);
770 }
771 
772 void
vm_xlock_memsegs(struct vm * vm)773 vm_xlock_memsegs(struct vm *vm)
774 {
775 	sx_xlock(&vm->mem_segs_lock);
776 }
777 
778 void
vm_unlock_memsegs(struct vm * vm)779 vm_unlock_memsegs(struct vm *vm)
780 {
781 	sx_unlock(&vm->mem_segs_lock);
782 }
783 
784 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)785 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
786 {
787 	vm_object_t obj;
788 
789 	if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
790 		return (ENOMEM);
791 	else
792 		return (0);
793 }
794 
795 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)796 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
797 {
798 
799 	vmm_mmio_free(vm->vmspace, gpa, len);
800 	return (0);
801 }
802 
803 /*
804  * Return 'true' if 'gpa' is allocated in the guest address space.
805  *
806  * This function is called in the context of a running vcpu which acts as
807  * an implicit lock on 'vm->mem_maps[]'.
808  */
809 bool
vm_mem_allocated(struct vcpu * vcpu,vm_paddr_t gpa)810 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa)
811 {
812 	struct vm *vm = vcpu->vm;
813 	struct mem_map *mm;
814 	int i;
815 
816 #ifdef INVARIANTS
817 	int hostcpu, state;
818 	state = vcpu_get_state(vcpu, &hostcpu);
819 	KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
820 	    ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
821 #endif
822 
823 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
824 		mm = &vm->mem_maps[i];
825 		if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
826 			return (true);		/* 'gpa' is sysmem or devmem */
827 	}
828 
829 	if (ppt_is_mmio(vm, gpa))
830 		return (true);			/* 'gpa' is pci passthru mmio */
831 
832 	return (false);
833 }
834 
835 int
vm_alloc_memseg(struct vm * vm,int ident,size_t len,bool sysmem)836 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
837 {
838 	struct mem_seg *seg;
839 	vm_object_t obj;
840 
841 	sx_assert(&vm->mem_segs_lock, SX_XLOCKED);
842 
843 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
844 		return (EINVAL);
845 
846 	if (len == 0 || (len & PAGE_MASK))
847 		return (EINVAL);
848 
849 	seg = &vm->mem_segs[ident];
850 	if (seg->object != NULL) {
851 		if (seg->len == len && seg->sysmem == sysmem)
852 			return (EEXIST);
853 		else
854 			return (EINVAL);
855 	}
856 
857 	obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT);
858 	if (obj == NULL)
859 		return (ENOMEM);
860 
861 	seg->len = len;
862 	seg->object = obj;
863 	seg->sysmem = sysmem;
864 	return (0);
865 }
866 
867 int
vm_get_memseg(struct vm * vm,int ident,size_t * len,bool * sysmem,vm_object_t * objptr)868 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
869     vm_object_t *objptr)
870 {
871 	struct mem_seg *seg;
872 
873 	sx_assert(&vm->mem_segs_lock, SX_LOCKED);
874 
875 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
876 		return (EINVAL);
877 
878 	seg = &vm->mem_segs[ident];
879 	if (len)
880 		*len = seg->len;
881 	if (sysmem)
882 		*sysmem = seg->sysmem;
883 	if (objptr)
884 		*objptr = seg->object;
885 	return (0);
886 }
887 
888 void
vm_free_memseg(struct vm * vm,int ident)889 vm_free_memseg(struct vm *vm, int ident)
890 {
891 	struct mem_seg *seg;
892 
893 	KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
894 	    ("%s: invalid memseg ident %d", __func__, ident));
895 
896 	seg = &vm->mem_segs[ident];
897 	if (seg->object != NULL) {
898 		vm_object_deallocate(seg->object);
899 		bzero(seg, sizeof(struct mem_seg));
900 	}
901 }
902 
903 int
vm_mmap_memseg(struct vm * vm,vm_paddr_t gpa,int segid,vm_ooffset_t first,size_t len,int prot,int flags)904 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
905     size_t len, int prot, int flags)
906 {
907 	struct mem_seg *seg;
908 	struct mem_map *m, *map;
909 	vm_ooffset_t last;
910 	int i, error;
911 
912 	if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
913 		return (EINVAL);
914 
915 	if (flags & ~VM_MEMMAP_F_WIRED)
916 		return (EINVAL);
917 
918 	if (segid < 0 || segid >= VM_MAX_MEMSEGS)
919 		return (EINVAL);
920 
921 	seg = &vm->mem_segs[segid];
922 	if (seg->object == NULL)
923 		return (EINVAL);
924 
925 	last = first + len;
926 	if (first < 0 || first >= last || last > seg->len)
927 		return (EINVAL);
928 
929 	if ((gpa | first | last) & PAGE_MASK)
930 		return (EINVAL);
931 
932 	map = NULL;
933 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
934 		m = &vm->mem_maps[i];
935 		if (m->len == 0) {
936 			map = m;
937 			break;
938 		}
939 	}
940 
941 	if (map == NULL)
942 		return (ENOSPC);
943 
944 	error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
945 	    len, 0, VMFS_NO_SPACE, prot, prot, 0);
946 	if (error != KERN_SUCCESS)
947 		return (EFAULT);
948 
949 	vm_object_reference(seg->object);
950 
951 	if (flags & VM_MEMMAP_F_WIRED) {
952 		error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
953 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
954 		if (error != KERN_SUCCESS) {
955 			vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
956 			return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM :
957 			    EFAULT);
958 		}
959 	}
960 
961 	map->gpa = gpa;
962 	map->len = len;
963 	map->segoff = first;
964 	map->segid = segid;
965 	map->prot = prot;
966 	map->flags = flags;
967 	return (0);
968 }
969 
970 int
vm_munmap_memseg(struct vm * vm,vm_paddr_t gpa,size_t len)971 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len)
972 {
973 	struct mem_map *m;
974 	int i;
975 
976 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
977 		m = &vm->mem_maps[i];
978 		if (m->gpa == gpa && m->len == len &&
979 		    (m->flags & VM_MEMMAP_F_IOMMU) == 0) {
980 			vm_free_memmap(vm, i);
981 			return (0);
982 		}
983 	}
984 
985 	return (EINVAL);
986 }
987 
988 int
vm_mmap_getnext(struct vm * vm,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)989 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
990     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
991 {
992 	struct mem_map *mm, *mmnext;
993 	int i;
994 
995 	mmnext = NULL;
996 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
997 		mm = &vm->mem_maps[i];
998 		if (mm->len == 0 || mm->gpa < *gpa)
999 			continue;
1000 		if (mmnext == NULL || mm->gpa < mmnext->gpa)
1001 			mmnext = mm;
1002 	}
1003 
1004 	if (mmnext != NULL) {
1005 		*gpa = mmnext->gpa;
1006 		if (segid)
1007 			*segid = mmnext->segid;
1008 		if (segoff)
1009 			*segoff = mmnext->segoff;
1010 		if (len)
1011 			*len = mmnext->len;
1012 		if (prot)
1013 			*prot = mmnext->prot;
1014 		if (flags)
1015 			*flags = mmnext->flags;
1016 		return (0);
1017 	} else {
1018 		return (ENOENT);
1019 	}
1020 }
1021 
1022 static void
vm_free_memmap(struct vm * vm,int ident)1023 vm_free_memmap(struct vm *vm, int ident)
1024 {
1025 	struct mem_map *mm;
1026 	int error __diagused;
1027 
1028 	mm = &vm->mem_maps[ident];
1029 	if (mm->len) {
1030 		error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
1031 		    mm->gpa + mm->len);
1032 		KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
1033 		    __func__, error));
1034 		bzero(mm, sizeof(struct mem_map));
1035 	}
1036 }
1037 
1038 static __inline bool
sysmem_mapping(struct vm * vm,struct mem_map * mm)1039 sysmem_mapping(struct vm *vm, struct mem_map *mm)
1040 {
1041 
1042 	if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
1043 		return (true);
1044 	else
1045 		return (false);
1046 }
1047 
1048 vm_paddr_t
vmm_sysmem_maxaddr(struct vm * vm)1049 vmm_sysmem_maxaddr(struct vm *vm)
1050 {
1051 	struct mem_map *mm;
1052 	vm_paddr_t maxaddr;
1053 	int i;
1054 
1055 	maxaddr = 0;
1056 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1057 		mm = &vm->mem_maps[i];
1058 		if (sysmem_mapping(vm, mm)) {
1059 			if (maxaddr < mm->gpa + mm->len)
1060 				maxaddr = mm->gpa + mm->len;
1061 		}
1062 	}
1063 	return (maxaddr);
1064 }
1065 
1066 static void
vm_iommu_map(struct vm * vm)1067 vm_iommu_map(struct vm *vm)
1068 {
1069 	vm_paddr_t gpa, hpa;
1070 	struct mem_map *mm;
1071 	int i;
1072 
1073 	sx_assert(&vm->mem_segs_lock, SX_LOCKED);
1074 
1075 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1076 		mm = &vm->mem_maps[i];
1077 		if (!sysmem_mapping(vm, mm))
1078 			continue;
1079 
1080 		KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
1081 		    ("iommu map found invalid memmap %#lx/%#lx/%#x",
1082 		    mm->gpa, mm->len, mm->flags));
1083 		if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
1084 			continue;
1085 		mm->flags |= VM_MEMMAP_F_IOMMU;
1086 
1087 		for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
1088 			hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa);
1089 
1090 			/*
1091 			 * All mappings in the vmm vmspace must be
1092 			 * present since they are managed by vmm in this way.
1093 			 * Because we are in pass-through mode, the
1094 			 * mappings must also be wired.  This implies
1095 			 * that all pages must be mapped and wired,
1096 			 * allowing to use pmap_extract() and avoiding the
1097 			 * need to use vm_gpa_hold_global().
1098 			 *
1099 			 * This could change if/when we start
1100 			 * supporting page faults on IOMMU maps.
1101 			 */
1102 			KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)),
1103 			    ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired",
1104 			    vm, (uintmax_t)gpa, (uintmax_t)hpa));
1105 
1106 			iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE);
1107 		}
1108 	}
1109 
1110 	iommu_invalidate_tlb(iommu_host_domain());
1111 }
1112 
1113 static void
vm_iommu_unmap(struct vm * vm)1114 vm_iommu_unmap(struct vm *vm)
1115 {
1116 	vm_paddr_t gpa;
1117 	struct mem_map *mm;
1118 	int i;
1119 
1120 	sx_assert(&vm->mem_segs_lock, SX_LOCKED);
1121 
1122 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1123 		mm = &vm->mem_maps[i];
1124 		if (!sysmem_mapping(vm, mm))
1125 			continue;
1126 
1127 		if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
1128 			continue;
1129 		mm->flags &= ~VM_MEMMAP_F_IOMMU;
1130 		KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
1131 		    ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
1132 		    mm->gpa, mm->len, mm->flags));
1133 
1134 		for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
1135 			KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract(
1136 			    vmspace_pmap(vm->vmspace), gpa))),
1137 			    ("vm_iommu_unmap: vm %p gpa %jx not wired",
1138 			    vm, (uintmax_t)gpa));
1139 			iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE);
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * Invalidate the cached translations associated with the domain
1145 	 * from which pages were removed.
1146 	 */
1147 	iommu_invalidate_tlb(vm->iommu);
1148 }
1149 
1150 int
vm_unassign_pptdev(struct vm * vm,int bus,int slot,int func)1151 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
1152 {
1153 	int error;
1154 
1155 	error = ppt_unassign_device(vm, bus, slot, func);
1156 	if (error)
1157 		return (error);
1158 
1159 	if (ppt_assigned_devices(vm) == 0)
1160 		vm_iommu_unmap(vm);
1161 
1162 	return (0);
1163 }
1164 
1165 int
vm_assign_pptdev(struct vm * vm,int bus,int slot,int func)1166 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
1167 {
1168 	int error;
1169 	vm_paddr_t maxaddr;
1170 
1171 	/* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
1172 	if (ppt_assigned_devices(vm) == 0) {
1173 		KASSERT(vm->iommu == NULL,
1174 		    ("vm_assign_pptdev: iommu must be NULL"));
1175 		maxaddr = vmm_sysmem_maxaddr(vm);
1176 		vm->iommu = iommu_create_domain(maxaddr);
1177 		if (vm->iommu == NULL)
1178 			return (ENXIO);
1179 		vm_iommu_map(vm);
1180 	}
1181 
1182 	error = ppt_assign_device(vm, bus, slot, func);
1183 	return (error);
1184 }
1185 
1186 static void *
_vm_gpa_hold(struct vm * vm,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)1187 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
1188     void **cookie)
1189 {
1190 	int i, count, pageoff;
1191 	struct mem_map *mm;
1192 	vm_page_t m;
1193 
1194 	pageoff = gpa & PAGE_MASK;
1195 	if (len > PAGE_SIZE - pageoff)
1196 		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
1197 
1198 	count = 0;
1199 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1200 		mm = &vm->mem_maps[i];
1201 		if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) {
1202 			count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
1203 			    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
1204 			break;
1205 		}
1206 	}
1207 
1208 	if (count == 1) {
1209 		*cookie = m;
1210 		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
1211 	} else {
1212 		*cookie = NULL;
1213 		return (NULL);
1214 	}
1215 }
1216 
1217 void *
vm_gpa_hold(struct vcpu * vcpu,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)1218 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot,
1219     void **cookie)
1220 {
1221 #ifdef INVARIANTS
1222 	/*
1223 	 * The current vcpu should be frozen to ensure 'vm_memmap[]'
1224 	 * stability.
1225 	 */
1226 	int state = vcpu_get_state(vcpu, NULL);
1227 	KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
1228 	    __func__, state));
1229 #endif
1230 	return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie));
1231 }
1232 
1233 void *
vm_gpa_hold_global(struct vm * vm,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)1234 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
1235     void **cookie)
1236 {
1237 	sx_assert(&vm->mem_segs_lock, SX_LOCKED);
1238 	return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie));
1239 }
1240 
1241 void
vm_gpa_release(void * cookie)1242 vm_gpa_release(void *cookie)
1243 {
1244 	vm_page_t m = cookie;
1245 
1246 	vm_page_unwire(m, PQ_ACTIVE);
1247 }
1248 
1249 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)1250 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
1251 {
1252 
1253 	if (reg >= VM_REG_LAST)
1254 		return (EINVAL);
1255 
1256 	return (vmmops_getreg(vcpu->cookie, reg, retval));
1257 }
1258 
1259 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)1260 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
1261 {
1262 	int error;
1263 
1264 	if (reg >= VM_REG_LAST)
1265 		return (EINVAL);
1266 
1267 	error = vmmops_setreg(vcpu->cookie, reg, val);
1268 	if (error || reg != VM_REG_GUEST_RIP)
1269 		return (error);
1270 
1271 	/* Set 'nextrip' to match the value of %rip */
1272 	VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
1273 	vcpu->nextrip = val;
1274 	return (0);
1275 }
1276 
1277 static bool
is_descriptor_table(int reg)1278 is_descriptor_table(int reg)
1279 {
1280 
1281 	switch (reg) {
1282 	case VM_REG_GUEST_IDTR:
1283 	case VM_REG_GUEST_GDTR:
1284 		return (true);
1285 	default:
1286 		return (false);
1287 	}
1288 }
1289 
1290 static bool
is_segment_register(int reg)1291 is_segment_register(int reg)
1292 {
1293 
1294 	switch (reg) {
1295 	case VM_REG_GUEST_ES:
1296 	case VM_REG_GUEST_CS:
1297 	case VM_REG_GUEST_SS:
1298 	case VM_REG_GUEST_DS:
1299 	case VM_REG_GUEST_FS:
1300 	case VM_REG_GUEST_GS:
1301 	case VM_REG_GUEST_TR:
1302 	case VM_REG_GUEST_LDTR:
1303 		return (true);
1304 	default:
1305 		return (false);
1306 	}
1307 }
1308 
1309 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)1310 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
1311 {
1312 
1313 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1314 		return (EINVAL);
1315 
1316 	return (vmmops_getdesc(vcpu->cookie, reg, desc));
1317 }
1318 
1319 int
vm_set_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)1320 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
1321 {
1322 
1323 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1324 		return (EINVAL);
1325 
1326 	return (vmmops_setdesc(vcpu->cookie, reg, desc));
1327 }
1328 
1329 static void
restore_guest_fpustate(struct vcpu * vcpu)1330 restore_guest_fpustate(struct vcpu *vcpu)
1331 {
1332 
1333 	/* flush host state to the pcb */
1334 	fpuexit(curthread);
1335 
1336 	/* restore guest FPU state */
1337 	fpu_enable();
1338 	fpurestore(vcpu->guestfpu);
1339 
1340 	/* restore guest XCR0 if XSAVE is enabled in the host */
1341 	if (rcr4() & CR4_XSAVE)
1342 		load_xcr(0, vcpu->guest_xcr0);
1343 
1344 	/*
1345 	 * The FPU is now "dirty" with the guest's state so disable
1346 	 * the FPU to trap any access by the host.
1347 	 */
1348 	fpu_disable();
1349 }
1350 
1351 static void
save_guest_fpustate(struct vcpu * vcpu)1352 save_guest_fpustate(struct vcpu *vcpu)
1353 {
1354 
1355 	if ((rcr0() & CR0_TS) == 0)
1356 		panic("fpu emulation not enabled in host!");
1357 
1358 	/* save guest XCR0 and restore host XCR0 */
1359 	if (rcr4() & CR4_XSAVE) {
1360 		vcpu->guest_xcr0 = rxcr(0);
1361 		load_xcr(0, vmm_get_host_xcr0());
1362 	}
1363 
1364 	/* save guest FPU state */
1365 	fpu_enable();
1366 	fpusave(vcpu->guestfpu);
1367 	fpu_disable();
1368 }
1369 
1370 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
1371 
1372 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1373 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
1374     bool from_idle)
1375 {
1376 	int error;
1377 
1378 	vcpu_assert_locked(vcpu);
1379 
1380 	/*
1381 	 * State transitions from the vmmdev_ioctl() must always begin from
1382 	 * the VCPU_IDLE state. This guarantees that there is only a single
1383 	 * ioctl() operating on a vcpu at any point.
1384 	 */
1385 	if (from_idle) {
1386 		while (vcpu->state != VCPU_IDLE) {
1387 			vcpu->reqidle = 1;
1388 			vcpu_notify_event_locked(vcpu, false);
1389 			VMM_CTR1(vcpu, "vcpu state change from %s to "
1390 			    "idle requested", vcpu_state2str(vcpu->state));
1391 			msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1392 		}
1393 	} else {
1394 		KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1395 		    "vcpu idle state"));
1396 	}
1397 
1398 	if (vcpu->state == VCPU_RUNNING) {
1399 		KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1400 		    "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1401 	} else {
1402 		KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1403 		    "vcpu that is not running", vcpu->hostcpu));
1404 	}
1405 
1406 	/*
1407 	 * The following state transitions are allowed:
1408 	 * IDLE -> FROZEN -> IDLE
1409 	 * FROZEN -> RUNNING -> FROZEN
1410 	 * FROZEN -> SLEEPING -> FROZEN
1411 	 */
1412 	switch (vcpu->state) {
1413 	case VCPU_IDLE:
1414 	case VCPU_RUNNING:
1415 	case VCPU_SLEEPING:
1416 		error = (newstate != VCPU_FROZEN);
1417 		break;
1418 	case VCPU_FROZEN:
1419 		error = (newstate == VCPU_FROZEN);
1420 		break;
1421 	default:
1422 		error = 1;
1423 		break;
1424 	}
1425 
1426 	if (error)
1427 		return (EBUSY);
1428 
1429 	VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
1430 	    vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1431 
1432 	vcpu->state = newstate;
1433 	if (newstate == VCPU_RUNNING)
1434 		vcpu->hostcpu = curcpu;
1435 	else
1436 		vcpu->hostcpu = NOCPU;
1437 
1438 	if (newstate == VCPU_IDLE)
1439 		wakeup(&vcpu->state);
1440 
1441 	return (0);
1442 }
1443 
1444 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1445 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1446 {
1447 	int error;
1448 
1449 	if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1450 		panic("Error %d setting state to %d\n", error, newstate);
1451 }
1452 
1453 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1454 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1455 {
1456 	int error;
1457 
1458 	if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1459 		panic("Error %d setting state to %d", error, newstate);
1460 }
1461 
1462 static int
vm_handle_rendezvous(struct vcpu * vcpu)1463 vm_handle_rendezvous(struct vcpu *vcpu)
1464 {
1465 	struct vm *vm = vcpu->vm;
1466 	struct thread *td;
1467 	int error, vcpuid;
1468 
1469 	error = 0;
1470 	vcpuid = vcpu->vcpuid;
1471 	td = curthread;
1472 	mtx_lock(&vm->rendezvous_mtx);
1473 	while (vm->rendezvous_func != NULL) {
1474 		/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1475 		CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus);
1476 
1477 		if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1478 		    !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1479 			VMM_CTR0(vcpu, "Calling rendezvous func");
1480 			(*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
1481 			CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1482 		}
1483 		if (CPU_CMP(&vm->rendezvous_req_cpus,
1484 		    &vm->rendezvous_done_cpus) == 0) {
1485 			VMM_CTR0(vcpu, "Rendezvous completed");
1486 			CPU_ZERO(&vm->rendezvous_req_cpus);
1487 			vm->rendezvous_func = NULL;
1488 			wakeup(&vm->rendezvous_func);
1489 			break;
1490 		}
1491 		VMM_CTR0(vcpu, "Wait for rendezvous completion");
1492 		mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1493 		    "vmrndv", hz);
1494 		if (td_ast_pending(td, TDA_SUSPEND)) {
1495 			mtx_unlock(&vm->rendezvous_mtx);
1496 			error = thread_check_susp(td, true);
1497 			if (error != 0)
1498 				return (error);
1499 			mtx_lock(&vm->rendezvous_mtx);
1500 		}
1501 	}
1502 	mtx_unlock(&vm->rendezvous_mtx);
1503 	return (0);
1504 }
1505 
1506 /*
1507  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1508  */
1509 static int
vm_handle_hlt(struct vcpu * vcpu,bool intr_disabled,bool * retu)1510 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
1511 {
1512 	struct vm *vm = vcpu->vm;
1513 	const char *wmesg;
1514 	struct thread *td;
1515 	int error, t, vcpuid, vcpu_halted, vm_halted;
1516 
1517 	vcpuid = vcpu->vcpuid;
1518 	vcpu_halted = 0;
1519 	vm_halted = 0;
1520 	error = 0;
1521 	td = curthread;
1522 
1523 	KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1524 
1525 	vcpu_lock(vcpu);
1526 	while (1) {
1527 		/*
1528 		 * Do a final check for pending NMI or interrupts before
1529 		 * really putting this thread to sleep. Also check for
1530 		 * software events that would cause this vcpu to wakeup.
1531 		 *
1532 		 * These interrupts/events could have happened after the
1533 		 * vcpu returned from vmmops_run() and before it acquired the
1534 		 * vcpu lock above.
1535 		 */
1536 		if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1537 			break;
1538 		if (vm_nmi_pending(vcpu))
1539 			break;
1540 		if (!intr_disabled) {
1541 			if (vm_extint_pending(vcpu) ||
1542 			    vlapic_pending_intr(vcpu->vlapic, NULL)) {
1543 				break;
1544 			}
1545 		}
1546 
1547 		/* Don't go to sleep if the vcpu thread needs to yield */
1548 		if (vcpu_should_yield(vcpu))
1549 			break;
1550 
1551 		if (vcpu_debugged(vcpu))
1552 			break;
1553 
1554 		/*
1555 		 * Some Linux guests implement "halt" by having all vcpus
1556 		 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1557 		 * track of the vcpus that have entered this state. When all
1558 		 * vcpus enter the halted state the virtual machine is halted.
1559 		 */
1560 		if (intr_disabled) {
1561 			wmesg = "vmhalt";
1562 			VMM_CTR0(vcpu, "Halted");
1563 			if (!vcpu_halted && halt_detection_enabled) {
1564 				vcpu_halted = 1;
1565 				CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1566 			}
1567 			if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1568 				vm_halted = 1;
1569 				break;
1570 			}
1571 		} else {
1572 			wmesg = "vmidle";
1573 		}
1574 
1575 		t = ticks;
1576 		vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1577 		/*
1578 		 * XXX msleep_spin() cannot be interrupted by signals so
1579 		 * wake up periodically to check pending signals.
1580 		 */
1581 		msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1582 		vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1583 		vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
1584 		if (td_ast_pending(td, TDA_SUSPEND)) {
1585 			vcpu_unlock(vcpu);
1586 			error = thread_check_susp(td, false);
1587 			if (error != 0) {
1588 				if (vcpu_halted) {
1589 					CPU_CLR_ATOMIC(vcpuid,
1590 					    &vm->halted_cpus);
1591 				}
1592 				return (error);
1593 			}
1594 			vcpu_lock(vcpu);
1595 		}
1596 	}
1597 
1598 	if (vcpu_halted)
1599 		CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1600 
1601 	vcpu_unlock(vcpu);
1602 
1603 	if (vm_halted)
1604 		vm_suspend(vm, VM_SUSPEND_HALT);
1605 
1606 	return (0);
1607 }
1608 
1609 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1610 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1611 {
1612 	struct vm *vm = vcpu->vm;
1613 	int rv, ftype;
1614 	struct vm_map *map;
1615 	struct vm_exit *vme;
1616 
1617 	vme = &vcpu->exitinfo;
1618 
1619 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1620 	    __func__, vme->inst_length));
1621 
1622 	ftype = vme->u.paging.fault_type;
1623 	KASSERT(ftype == VM_PROT_READ ||
1624 	    ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1625 	    ("vm_handle_paging: invalid fault_type %d", ftype));
1626 
1627 	if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1628 		rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1629 		    vme->u.paging.gpa, ftype);
1630 		if (rv == 0) {
1631 			VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
1632 			    ftype == VM_PROT_READ ? "accessed" : "dirty",
1633 			    vme->u.paging.gpa);
1634 			goto done;
1635 		}
1636 	}
1637 
1638 	map = &vm->vmspace->vm_map;
1639 	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1640 
1641 	VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
1642 	    "ftype = %d", rv, vme->u.paging.gpa, ftype);
1643 
1644 	if (rv != KERN_SUCCESS)
1645 		return (EFAULT);
1646 done:
1647 	return (0);
1648 }
1649 
1650 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)1651 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1652 {
1653 	struct vie *vie;
1654 	struct vm_exit *vme;
1655 	uint64_t gla, gpa, cs_base;
1656 	struct vm_guest_paging *paging;
1657 	mem_region_read_t mread;
1658 	mem_region_write_t mwrite;
1659 	enum vm_cpu_mode cpu_mode;
1660 	int cs_d, error, fault;
1661 
1662 	vme = &vcpu->exitinfo;
1663 
1664 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1665 	    __func__, vme->inst_length));
1666 
1667 	gla = vme->u.inst_emul.gla;
1668 	gpa = vme->u.inst_emul.gpa;
1669 	cs_base = vme->u.inst_emul.cs_base;
1670 	cs_d = vme->u.inst_emul.cs_d;
1671 	vie = &vme->u.inst_emul.vie;
1672 	paging = &vme->u.inst_emul.paging;
1673 	cpu_mode = paging->cpu_mode;
1674 
1675 	VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
1676 
1677 	/* Fetch, decode and emulate the faulting instruction */
1678 	if (vie->num_valid == 0) {
1679 		error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
1680 		    VIE_INST_SIZE, vie, &fault);
1681 	} else {
1682 		/*
1683 		 * The instruction bytes have already been copied into 'vie'
1684 		 */
1685 		error = fault = 0;
1686 	}
1687 	if (error || fault)
1688 		return (error);
1689 
1690 	if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
1691 		VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
1692 		    vme->rip + cs_base);
1693 		*retu = true;	    /* dump instruction bytes in userspace */
1694 		return (0);
1695 	}
1696 
1697 	/*
1698 	 * Update 'nextrip' based on the length of the emulated instruction.
1699 	 */
1700 	vme->inst_length = vie->num_processed;
1701 	vcpu->nextrip += vie->num_processed;
1702 	VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
1703 	    vcpu->nextrip);
1704 
1705 	/* return to userland unless this is an in-kernel emulated device */
1706 	if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1707 		mread = lapic_mmio_read;
1708 		mwrite = lapic_mmio_write;
1709 	} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1710 		mread = vioapic_mmio_read;
1711 		mwrite = vioapic_mmio_write;
1712 	} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1713 		mread = vhpet_mmio_read;
1714 		mwrite = vhpet_mmio_write;
1715 	} else {
1716 		*retu = true;
1717 		return (0);
1718 	}
1719 
1720 	error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
1721 	    retu);
1722 
1723 	return (error);
1724 }
1725 
1726 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1727 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1728 {
1729 	struct vm *vm = vcpu->vm;
1730 	int error, i;
1731 	struct thread *td;
1732 
1733 	error = 0;
1734 	td = curthread;
1735 
1736 	CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1737 
1738 	/*
1739 	 * Wait until all 'active_cpus' have suspended themselves.
1740 	 *
1741 	 * Since a VM may be suspended at any time including when one or
1742 	 * more vcpus are doing a rendezvous we need to call the rendezvous
1743 	 * handler while we are waiting to prevent a deadlock.
1744 	 */
1745 	vcpu_lock(vcpu);
1746 	while (error == 0) {
1747 		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1748 			VMM_CTR0(vcpu, "All vcpus suspended");
1749 			break;
1750 		}
1751 
1752 		if (vm->rendezvous_func == NULL) {
1753 			VMM_CTR0(vcpu, "Sleeping during suspend");
1754 			vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1755 			msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1756 			vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1757 			if (td_ast_pending(td, TDA_SUSPEND)) {
1758 				vcpu_unlock(vcpu);
1759 				error = thread_check_susp(td, false);
1760 				vcpu_lock(vcpu);
1761 			}
1762 		} else {
1763 			VMM_CTR0(vcpu, "Rendezvous during suspend");
1764 			vcpu_unlock(vcpu);
1765 			error = vm_handle_rendezvous(vcpu);
1766 			vcpu_lock(vcpu);
1767 		}
1768 	}
1769 	vcpu_unlock(vcpu);
1770 
1771 	/*
1772 	 * Wakeup the other sleeping vcpus and return to userspace.
1773 	 */
1774 	for (i = 0; i < vm->maxcpus; i++) {
1775 		if (CPU_ISSET(i, &vm->suspended_cpus)) {
1776 			vcpu_notify_event(vm_vcpu(vm, i), false);
1777 		}
1778 	}
1779 
1780 	*retu = true;
1781 	return (error);
1782 }
1783 
1784 static int
vm_handle_reqidle(struct vcpu * vcpu,bool * retu)1785 vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
1786 {
1787 	vcpu_lock(vcpu);
1788 	KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1789 	vcpu->reqidle = 0;
1790 	vcpu_unlock(vcpu);
1791 	*retu = true;
1792 	return (0);
1793 }
1794 
1795 static int
vm_handle_db(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1796 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1797 {
1798 	int error, fault;
1799 	uint64_t rsp;
1800 	uint64_t rflags;
1801 	struct vm_copyinfo copyinfo[2];
1802 
1803 	*retu = true;
1804 	if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) {
1805 		return (0);
1806 	}
1807 
1808 	vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
1809 	error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
1810 	    VM_PROT_RW, copyinfo, nitems(copyinfo), &fault);
1811 	if (error != 0 || fault != 0) {
1812 		*retu = false;
1813 		return (EINVAL);
1814 	}
1815 
1816 	/* Read pushed rflags value from top of stack. */
1817 	vm_copyin(copyinfo, &rflags, sizeof(uint64_t));
1818 
1819 	/* Clear TF bit. */
1820 	rflags &= ~(PSL_T);
1821 
1822 	/* Write updated value back to memory. */
1823 	vm_copyout(&rflags, copyinfo, sizeof(uint64_t));
1824 	vm_copy_teardown(copyinfo, nitems(copyinfo));
1825 
1826 	return (0);
1827 }
1828 
1829 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1830 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1831 {
1832 	int i;
1833 
1834 	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1835 		return (EINVAL);
1836 
1837 	if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1838 		VM_CTR2(vm, "virtual machine already suspended %d/%d",
1839 		    vm->suspend, how);
1840 		return (EALREADY);
1841 	}
1842 
1843 	VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1844 
1845 	/*
1846 	 * Notify all active vcpus that they are now suspended.
1847 	 */
1848 	for (i = 0; i < vm->maxcpus; i++) {
1849 		if (CPU_ISSET(i, &vm->active_cpus))
1850 			vcpu_notify_event(vm_vcpu(vm, i), false);
1851 	}
1852 
1853 	return (0);
1854 }
1855 
1856 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t rip)1857 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
1858 {
1859 	struct vm *vm = vcpu->vm;
1860 	struct vm_exit *vmexit;
1861 
1862 	KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1863 	    ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1864 
1865 	vmexit = vm_exitinfo(vcpu);
1866 	vmexit->rip = rip;
1867 	vmexit->inst_length = 0;
1868 	vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1869 	vmexit->u.suspended.how = vm->suspend;
1870 }
1871 
1872 void
vm_exit_debug(struct vcpu * vcpu,uint64_t rip)1873 vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
1874 {
1875 	struct vm_exit *vmexit;
1876 
1877 	vmexit = vm_exitinfo(vcpu);
1878 	vmexit->rip = rip;
1879 	vmexit->inst_length = 0;
1880 	vmexit->exitcode = VM_EXITCODE_DEBUG;
1881 }
1882 
1883 void
vm_exit_rendezvous(struct vcpu * vcpu,uint64_t rip)1884 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
1885 {
1886 	struct vm_exit *vmexit;
1887 
1888 	vmexit = vm_exitinfo(vcpu);
1889 	vmexit->rip = rip;
1890 	vmexit->inst_length = 0;
1891 	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1892 	vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
1893 }
1894 
1895 void
vm_exit_reqidle(struct vcpu * vcpu,uint64_t rip)1896 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
1897 {
1898 	struct vm_exit *vmexit;
1899 
1900 	vmexit = vm_exitinfo(vcpu);
1901 	vmexit->rip = rip;
1902 	vmexit->inst_length = 0;
1903 	vmexit->exitcode = VM_EXITCODE_REQIDLE;
1904 	vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
1905 }
1906 
1907 void
vm_exit_astpending(struct vcpu * vcpu,uint64_t rip)1908 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
1909 {
1910 	struct vm_exit *vmexit;
1911 
1912 	vmexit = vm_exitinfo(vcpu);
1913 	vmexit->rip = rip;
1914 	vmexit->inst_length = 0;
1915 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1916 	vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
1917 }
1918 
1919 int
vm_run(struct vcpu * vcpu)1920 vm_run(struct vcpu *vcpu)
1921 {
1922 	struct vm *vm = vcpu->vm;
1923 	struct vm_eventinfo evinfo;
1924 	int error, vcpuid;
1925 	struct pcb *pcb;
1926 	uint64_t tscval;
1927 	struct vm_exit *vme;
1928 	bool retu, intr_disabled;
1929 	pmap_t pmap;
1930 
1931 	vcpuid = vcpu->vcpuid;
1932 
1933 	if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1934 		return (EINVAL);
1935 
1936 	if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1937 		return (EINVAL);
1938 
1939 	pmap = vmspace_pmap(vm->vmspace);
1940 	vme = &vcpu->exitinfo;
1941 	evinfo.rptr = &vm->rendezvous_req_cpus;
1942 	evinfo.sptr = &vm->suspend;
1943 	evinfo.iptr = &vcpu->reqidle;
1944 restart:
1945 	critical_enter();
1946 
1947 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1948 	    ("vm_run: absurd pm_active"));
1949 
1950 	tscval = rdtsc();
1951 
1952 	pcb = PCPU_GET(curpcb);
1953 	set_pcb_flags(pcb, PCB_FULL_IRET);
1954 
1955 	restore_guest_fpustate(vcpu);
1956 
1957 	vcpu_require_state(vcpu, VCPU_RUNNING);
1958 	error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
1959 	vcpu_require_state(vcpu, VCPU_FROZEN);
1960 
1961 	save_guest_fpustate(vcpu);
1962 
1963 	vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1964 
1965 	critical_exit();
1966 
1967 	if (error == 0) {
1968 		retu = false;
1969 		vcpu->nextrip = vme->rip + vme->inst_length;
1970 		switch (vme->exitcode) {
1971 		case VM_EXITCODE_REQIDLE:
1972 			error = vm_handle_reqidle(vcpu, &retu);
1973 			break;
1974 		case VM_EXITCODE_SUSPENDED:
1975 			error = vm_handle_suspend(vcpu, &retu);
1976 			break;
1977 		case VM_EXITCODE_IOAPIC_EOI:
1978 			vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
1979 			break;
1980 		case VM_EXITCODE_RENDEZVOUS:
1981 			error = vm_handle_rendezvous(vcpu);
1982 			break;
1983 		case VM_EXITCODE_HLT:
1984 			intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1985 			error = vm_handle_hlt(vcpu, intr_disabled, &retu);
1986 			break;
1987 		case VM_EXITCODE_PAGING:
1988 			error = vm_handle_paging(vcpu, &retu);
1989 			break;
1990 		case VM_EXITCODE_INST_EMUL:
1991 			error = vm_handle_inst_emul(vcpu, &retu);
1992 			break;
1993 		case VM_EXITCODE_INOUT:
1994 		case VM_EXITCODE_INOUT_STR:
1995 			error = vm_handle_inout(vcpu, vme, &retu);
1996 			break;
1997 		case VM_EXITCODE_DB:
1998 			error = vm_handle_db(vcpu, vme, &retu);
1999 			break;
2000 		case VM_EXITCODE_MONITOR:
2001 		case VM_EXITCODE_MWAIT:
2002 		case VM_EXITCODE_VMINSN:
2003 			vm_inject_ud(vcpu);
2004 			break;
2005 		default:
2006 			retu = true;	/* handled in userland */
2007 			break;
2008 		}
2009 	}
2010 
2011 	/*
2012 	 * VM_EXITCODE_INST_EMUL could access the apic which could transform the
2013 	 * exit code into VM_EXITCODE_IPI.
2014 	 */
2015 	if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
2016 		error = vm_handle_ipi(vcpu, vme, &retu);
2017 
2018 	if (error == 0 && retu == false)
2019 		goto restart;
2020 
2021 	vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
2022 	VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
2023 
2024 	return (error);
2025 }
2026 
2027 int
vm_restart_instruction(struct vcpu * vcpu)2028 vm_restart_instruction(struct vcpu *vcpu)
2029 {
2030 	enum vcpu_state state;
2031 	uint64_t rip;
2032 	int error __diagused;
2033 
2034 	state = vcpu_get_state(vcpu, NULL);
2035 	if (state == VCPU_RUNNING) {
2036 		/*
2037 		 * When a vcpu is "running" the next instruction is determined
2038 		 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
2039 		 * Thus setting 'inst_length' to zero will cause the current
2040 		 * instruction to be restarted.
2041 		 */
2042 		vcpu->exitinfo.inst_length = 0;
2043 		VMM_CTR1(vcpu, "restarting instruction at %#lx by "
2044 		    "setting inst_length to zero", vcpu->exitinfo.rip);
2045 	} else if (state == VCPU_FROZEN) {
2046 		/*
2047 		 * When a vcpu is "frozen" it is outside the critical section
2048 		 * around vmmops_run() and 'nextrip' points to the next
2049 		 * instruction. Thus instruction restart is achieved by setting
2050 		 * 'nextrip' to the vcpu's %rip.
2051 		 */
2052 		error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
2053 		KASSERT(!error, ("%s: error %d getting rip", __func__, error));
2054 		VMM_CTR2(vcpu, "restarting instruction by updating "
2055 		    "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
2056 		vcpu->nextrip = rip;
2057 	} else {
2058 		panic("%s: invalid state %d", __func__, state);
2059 	}
2060 	return (0);
2061 }
2062 
2063 int
vm_exit_intinfo(struct vcpu * vcpu,uint64_t info)2064 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
2065 {
2066 	int type, vector;
2067 
2068 	if (info & VM_INTINFO_VALID) {
2069 		type = info & VM_INTINFO_TYPE;
2070 		vector = info & 0xff;
2071 		if (type == VM_INTINFO_NMI && vector != IDT_NMI)
2072 			return (EINVAL);
2073 		if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
2074 			return (EINVAL);
2075 		if (info & VM_INTINFO_RSVD)
2076 			return (EINVAL);
2077 	} else {
2078 		info = 0;
2079 	}
2080 	VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
2081 	vcpu->exitintinfo = info;
2082 	return (0);
2083 }
2084 
2085 enum exc_class {
2086 	EXC_BENIGN,
2087 	EXC_CONTRIBUTORY,
2088 	EXC_PAGEFAULT
2089 };
2090 
2091 #define	IDT_VE	20	/* Virtualization Exception (Intel specific) */
2092 
2093 static enum exc_class
exception_class(uint64_t info)2094 exception_class(uint64_t info)
2095 {
2096 	int type, vector;
2097 
2098 	KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
2099 	type = info & VM_INTINFO_TYPE;
2100 	vector = info & 0xff;
2101 
2102 	/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
2103 	switch (type) {
2104 	case VM_INTINFO_HWINTR:
2105 	case VM_INTINFO_SWINTR:
2106 	case VM_INTINFO_NMI:
2107 		return (EXC_BENIGN);
2108 	default:
2109 		/*
2110 		 * Hardware exception.
2111 		 *
2112 		 * SVM and VT-x use identical type values to represent NMI,
2113 		 * hardware interrupt and software interrupt.
2114 		 *
2115 		 * SVM uses type '3' for all exceptions. VT-x uses type '3'
2116 		 * for exceptions except #BP and #OF. #BP and #OF use a type
2117 		 * value of '5' or '6'. Therefore we don't check for explicit
2118 		 * values of 'type' to classify 'intinfo' into a hardware
2119 		 * exception.
2120 		 */
2121 		break;
2122 	}
2123 
2124 	switch (vector) {
2125 	case IDT_PF:
2126 	case IDT_VE:
2127 		return (EXC_PAGEFAULT);
2128 	case IDT_DE:
2129 	case IDT_TS:
2130 	case IDT_NP:
2131 	case IDT_SS:
2132 	case IDT_GP:
2133 		return (EXC_CONTRIBUTORY);
2134 	default:
2135 		return (EXC_BENIGN);
2136 	}
2137 }
2138 
2139 static int
nested_fault(struct vcpu * vcpu,uint64_t info1,uint64_t info2,uint64_t * retinfo)2140 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
2141     uint64_t *retinfo)
2142 {
2143 	enum exc_class exc1, exc2;
2144 	int type1, vector1;
2145 
2146 	KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
2147 	KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
2148 
2149 	/*
2150 	 * If an exception occurs while attempting to call the double-fault
2151 	 * handler the processor enters shutdown mode (aka triple fault).
2152 	 */
2153 	type1 = info1 & VM_INTINFO_TYPE;
2154 	vector1 = info1 & 0xff;
2155 	if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
2156 		VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
2157 		    info1, info2);
2158 		vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
2159 		*retinfo = 0;
2160 		return (0);
2161 	}
2162 
2163 	/*
2164 	 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
2165 	 */
2166 	exc1 = exception_class(info1);
2167 	exc2 = exception_class(info2);
2168 	if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
2169 	    (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
2170 		/* Convert nested fault into a double fault. */
2171 		*retinfo = IDT_DF;
2172 		*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
2173 		*retinfo |= VM_INTINFO_DEL_ERRCODE;
2174 	} else {
2175 		/* Handle exceptions serially */
2176 		*retinfo = info2;
2177 	}
2178 	return (1);
2179 }
2180 
2181 static uint64_t
vcpu_exception_intinfo(struct vcpu * vcpu)2182 vcpu_exception_intinfo(struct vcpu *vcpu)
2183 {
2184 	uint64_t info = 0;
2185 
2186 	if (vcpu->exception_pending) {
2187 		info = vcpu->exc_vector & 0xff;
2188 		info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
2189 		if (vcpu->exc_errcode_valid) {
2190 			info |= VM_INTINFO_DEL_ERRCODE;
2191 			info |= (uint64_t)vcpu->exc_errcode << 32;
2192 		}
2193 	}
2194 	return (info);
2195 }
2196 
2197 int
vm_entry_intinfo(struct vcpu * vcpu,uint64_t * retinfo)2198 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
2199 {
2200 	uint64_t info1, info2;
2201 	int valid;
2202 
2203 	info1 = vcpu->exitintinfo;
2204 	vcpu->exitintinfo = 0;
2205 
2206 	info2 = 0;
2207 	if (vcpu->exception_pending) {
2208 		info2 = vcpu_exception_intinfo(vcpu);
2209 		vcpu->exception_pending = 0;
2210 		VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
2211 		    vcpu->exc_vector, info2);
2212 	}
2213 
2214 	if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
2215 		valid = nested_fault(vcpu, info1, info2, retinfo);
2216 	} else if (info1 & VM_INTINFO_VALID) {
2217 		*retinfo = info1;
2218 		valid = 1;
2219 	} else if (info2 & VM_INTINFO_VALID) {
2220 		*retinfo = info2;
2221 		valid = 1;
2222 	} else {
2223 		valid = 0;
2224 	}
2225 
2226 	if (valid) {
2227 		VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
2228 		    "retinfo(%#lx)", __func__, info1, info2, *retinfo);
2229 	}
2230 
2231 	return (valid);
2232 }
2233 
2234 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)2235 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
2236 {
2237 	*info1 = vcpu->exitintinfo;
2238 	*info2 = vcpu_exception_intinfo(vcpu);
2239 	return (0);
2240 }
2241 
2242 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)2243 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
2244     uint32_t errcode, int restart_instruction)
2245 {
2246 	uint64_t regval;
2247 	int error __diagused;
2248 
2249 	if (vector < 0 || vector >= 32)
2250 		return (EINVAL);
2251 
2252 	/*
2253 	 * A double fault exception should never be injected directly into
2254 	 * the guest. It is a derived exception that results from specific
2255 	 * combinations of nested faults.
2256 	 */
2257 	if (vector == IDT_DF)
2258 		return (EINVAL);
2259 
2260 	if (vcpu->exception_pending) {
2261 		VMM_CTR2(vcpu, "Unable to inject exception %d due to "
2262 		    "pending exception %d", vector, vcpu->exc_vector);
2263 		return (EBUSY);
2264 	}
2265 
2266 	if (errcode_valid) {
2267 		/*
2268 		 * Exceptions don't deliver an error code in real mode.
2269 		 */
2270 		error = vm_get_register(vcpu, VM_REG_GUEST_CR0, &regval);
2271 		KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
2272 		if (!(regval & CR0_PE))
2273 			errcode_valid = 0;
2274 	}
2275 
2276 	/*
2277 	 * From section 26.6.1 "Interruptibility State" in Intel SDM:
2278 	 *
2279 	 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
2280 	 * one instruction or incurs an exception.
2281 	 */
2282 	error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
2283 	KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
2284 	    __func__, error));
2285 
2286 	if (restart_instruction)
2287 		vm_restart_instruction(vcpu);
2288 
2289 	vcpu->exception_pending = 1;
2290 	vcpu->exc_vector = vector;
2291 	vcpu->exc_errcode = errcode;
2292 	vcpu->exc_errcode_valid = errcode_valid;
2293 	VMM_CTR1(vcpu, "Exception %d pending", vector);
2294 	return (0);
2295 }
2296 
2297 void
vm_inject_fault(struct vcpu * vcpu,int vector,int errcode_valid,int errcode)2298 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
2299 {
2300 	int error __diagused, restart_instruction;
2301 
2302 	restart_instruction = 1;
2303 
2304 	error = vm_inject_exception(vcpu, vector, errcode_valid,
2305 	    errcode, restart_instruction);
2306 	KASSERT(error == 0, ("vm_inject_exception error %d", error));
2307 }
2308 
2309 void
vm_inject_pf(struct vcpu * vcpu,int error_code,uint64_t cr2)2310 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
2311 {
2312 	int error __diagused;
2313 
2314 	VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
2315 	    error_code, cr2);
2316 
2317 	error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
2318 	KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2319 
2320 	vm_inject_fault(vcpu, IDT_PF, 1, error_code);
2321 }
2322 
2323 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2324 
2325 int
vm_inject_nmi(struct vcpu * vcpu)2326 vm_inject_nmi(struct vcpu *vcpu)
2327 {
2328 
2329 	vcpu->nmi_pending = 1;
2330 	vcpu_notify_event(vcpu, false);
2331 	return (0);
2332 }
2333 
2334 int
vm_nmi_pending(struct vcpu * vcpu)2335 vm_nmi_pending(struct vcpu *vcpu)
2336 {
2337 	return (vcpu->nmi_pending);
2338 }
2339 
2340 void
vm_nmi_clear(struct vcpu * vcpu)2341 vm_nmi_clear(struct vcpu *vcpu)
2342 {
2343 	if (vcpu->nmi_pending == 0)
2344 		panic("vm_nmi_clear: inconsistent nmi_pending state");
2345 
2346 	vcpu->nmi_pending = 0;
2347 	vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
2348 }
2349 
2350 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2351 
2352 int
vm_inject_extint(struct vcpu * vcpu)2353 vm_inject_extint(struct vcpu *vcpu)
2354 {
2355 
2356 	vcpu->extint_pending = 1;
2357 	vcpu_notify_event(vcpu, false);
2358 	return (0);
2359 }
2360 
2361 int
vm_extint_pending(struct vcpu * vcpu)2362 vm_extint_pending(struct vcpu *vcpu)
2363 {
2364 	return (vcpu->extint_pending);
2365 }
2366 
2367 void
vm_extint_clear(struct vcpu * vcpu)2368 vm_extint_clear(struct vcpu *vcpu)
2369 {
2370 	if (vcpu->extint_pending == 0)
2371 		panic("vm_extint_clear: inconsistent extint_pending state");
2372 
2373 	vcpu->extint_pending = 0;
2374 	vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
2375 }
2376 
2377 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)2378 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
2379 {
2380 	if (type < 0 || type >= VM_CAP_MAX)
2381 		return (EINVAL);
2382 
2383 	return (vmmops_getcap(vcpu->cookie, type, retval));
2384 }
2385 
2386 int
vm_set_capability(struct vcpu * vcpu,int type,int val)2387 vm_set_capability(struct vcpu *vcpu, int type, int val)
2388 {
2389 	if (type < 0 || type >= VM_CAP_MAX)
2390 		return (EINVAL);
2391 
2392 	return (vmmops_setcap(vcpu->cookie, type, val));
2393 }
2394 
2395 struct vm *
vcpu_vm(struct vcpu * vcpu)2396 vcpu_vm(struct vcpu *vcpu)
2397 {
2398 	return (vcpu->vm);
2399 }
2400 
2401 int
vcpu_vcpuid(struct vcpu * vcpu)2402 vcpu_vcpuid(struct vcpu *vcpu)
2403 {
2404 	return (vcpu->vcpuid);
2405 }
2406 
2407 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)2408 vm_vcpu(struct vm *vm, int vcpuid)
2409 {
2410 	return (vm->vcpu[vcpuid]);
2411 }
2412 
2413 struct vlapic *
vm_lapic(struct vcpu * vcpu)2414 vm_lapic(struct vcpu *vcpu)
2415 {
2416 	return (vcpu->vlapic);
2417 }
2418 
2419 struct vioapic *
vm_ioapic(struct vm * vm)2420 vm_ioapic(struct vm *vm)
2421 {
2422 
2423 	return (vm->vioapic);
2424 }
2425 
2426 struct vhpet *
vm_hpet(struct vm * vm)2427 vm_hpet(struct vm *vm)
2428 {
2429 
2430 	return (vm->vhpet);
2431 }
2432 
2433 bool
vmm_is_pptdev(int bus,int slot,int func)2434 vmm_is_pptdev(int bus, int slot, int func)
2435 {
2436 	int b, f, i, n, s;
2437 	char *val, *cp, *cp2;
2438 	bool found;
2439 
2440 	/*
2441 	 * XXX
2442 	 * The length of an environment variable is limited to 128 bytes which
2443 	 * puts an upper limit on the number of passthru devices that may be
2444 	 * specified using a single environment variable.
2445 	 *
2446 	 * Work around this by scanning multiple environment variable
2447 	 * names instead of a single one - yuck!
2448 	 */
2449 	const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2450 
2451 	/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2452 	found = false;
2453 	for (i = 0; names[i] != NULL && !found; i++) {
2454 		cp = val = kern_getenv(names[i]);
2455 		while (cp != NULL && *cp != '\0') {
2456 			if ((cp2 = strchr(cp, ' ')) != NULL)
2457 				*cp2 = '\0';
2458 
2459 			n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2460 			if (n == 3 && bus == b && slot == s && func == f) {
2461 				found = true;
2462 				break;
2463 			}
2464 
2465 			if (cp2 != NULL)
2466 				*cp2++ = ' ';
2467 
2468 			cp = cp2;
2469 		}
2470 		freeenv(val);
2471 	}
2472 	return (found);
2473 }
2474 
2475 void *
vm_iommu_domain(struct vm * vm)2476 vm_iommu_domain(struct vm *vm)
2477 {
2478 
2479 	return (vm->iommu);
2480 }
2481 
2482 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)2483 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
2484 {
2485 	int error;
2486 
2487 	vcpu_lock(vcpu);
2488 	error = vcpu_set_state_locked(vcpu, newstate, from_idle);
2489 	vcpu_unlock(vcpu);
2490 
2491 	return (error);
2492 }
2493 
2494 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)2495 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
2496 {
2497 	enum vcpu_state state;
2498 
2499 	vcpu_lock(vcpu);
2500 	state = vcpu->state;
2501 	if (hostcpu != NULL)
2502 		*hostcpu = vcpu->hostcpu;
2503 	vcpu_unlock(vcpu);
2504 
2505 	return (state);
2506 }
2507 
2508 int
vm_activate_cpu(struct vcpu * vcpu)2509 vm_activate_cpu(struct vcpu *vcpu)
2510 {
2511 	struct vm *vm = vcpu->vm;
2512 
2513 	if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2514 		return (EBUSY);
2515 
2516 	VMM_CTR0(vcpu, "activated");
2517 	CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
2518 	return (0);
2519 }
2520 
2521 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)2522 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
2523 {
2524 	if (vcpu == NULL) {
2525 		vm->debug_cpus = vm->active_cpus;
2526 		for (int i = 0; i < vm->maxcpus; i++) {
2527 			if (CPU_ISSET(i, &vm->active_cpus))
2528 				vcpu_notify_event(vm_vcpu(vm, i), false);
2529 		}
2530 	} else {
2531 		if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2532 			return (EINVAL);
2533 
2534 		CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2535 		vcpu_notify_event(vcpu, false);
2536 	}
2537 	return (0);
2538 }
2539 
2540 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)2541 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
2542 {
2543 
2544 	if (vcpu == NULL) {
2545 		CPU_ZERO(&vm->debug_cpus);
2546 	} else {
2547 		if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
2548 			return (EINVAL);
2549 
2550 		CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2551 	}
2552 	return (0);
2553 }
2554 
2555 int
vcpu_debugged(struct vcpu * vcpu)2556 vcpu_debugged(struct vcpu *vcpu)
2557 {
2558 
2559 	return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
2560 }
2561 
2562 cpuset_t
vm_active_cpus(struct vm * vm)2563 vm_active_cpus(struct vm *vm)
2564 {
2565 
2566 	return (vm->active_cpus);
2567 }
2568 
2569 cpuset_t
vm_debug_cpus(struct vm * vm)2570 vm_debug_cpus(struct vm *vm)
2571 {
2572 
2573 	return (vm->debug_cpus);
2574 }
2575 
2576 cpuset_t
vm_suspended_cpus(struct vm * vm)2577 vm_suspended_cpus(struct vm *vm)
2578 {
2579 
2580 	return (vm->suspended_cpus);
2581 }
2582 
2583 /*
2584  * Returns the subset of vCPUs in tostart that are awaiting startup.
2585  * These vCPUs are also marked as no longer awaiting startup.
2586  */
2587 cpuset_t
vm_start_cpus(struct vm * vm,const cpuset_t * tostart)2588 vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
2589 {
2590 	cpuset_t set;
2591 
2592 	mtx_lock(&vm->rendezvous_mtx);
2593 	CPU_AND(&set, &vm->startup_cpus, tostart);
2594 	CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
2595 	mtx_unlock(&vm->rendezvous_mtx);
2596 	return (set);
2597 }
2598 
2599 void
vm_await_start(struct vm * vm,const cpuset_t * waiting)2600 vm_await_start(struct vm *vm, const cpuset_t *waiting)
2601 {
2602 	mtx_lock(&vm->rendezvous_mtx);
2603 	CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
2604 	mtx_unlock(&vm->rendezvous_mtx);
2605 }
2606 
2607 void *
vcpu_stats(struct vcpu * vcpu)2608 vcpu_stats(struct vcpu *vcpu)
2609 {
2610 
2611 	return (vcpu->stats);
2612 }
2613 
2614 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)2615 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
2616 {
2617 	*state = vcpu->x2apic_state;
2618 
2619 	return (0);
2620 }
2621 
2622 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)2623 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
2624 {
2625 	if (state >= X2APIC_STATE_LAST)
2626 		return (EINVAL);
2627 
2628 	vcpu->x2apic_state = state;
2629 
2630 	vlapic_set_x2apic_state(vcpu, state);
2631 
2632 	return (0);
2633 }
2634 
2635 /*
2636  * This function is called to ensure that a vcpu "sees" a pending event
2637  * as soon as possible:
2638  * - If the vcpu thread is sleeping then it is woken up.
2639  * - If the vcpu is running on a different host_cpu then an IPI will be directed
2640  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
2641  */
2642 static void
vcpu_notify_event_locked(struct vcpu * vcpu,bool lapic_intr)2643 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2644 {
2645 	int hostcpu;
2646 
2647 	hostcpu = vcpu->hostcpu;
2648 	if (vcpu->state == VCPU_RUNNING) {
2649 		KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2650 		if (hostcpu != curcpu) {
2651 			if (lapic_intr) {
2652 				vlapic_post_intr(vcpu->vlapic, hostcpu,
2653 				    vmm_ipinum);
2654 			} else {
2655 				ipi_cpu(hostcpu, vmm_ipinum);
2656 			}
2657 		} else {
2658 			/*
2659 			 * If the 'vcpu' is running on 'curcpu' then it must
2660 			 * be sending a notification to itself (e.g. SELF_IPI).
2661 			 * The pending event will be picked up when the vcpu
2662 			 * transitions back to guest context.
2663 			 */
2664 		}
2665 	} else {
2666 		KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2667 		    "with hostcpu %d", vcpu->state, hostcpu));
2668 		if (vcpu->state == VCPU_SLEEPING)
2669 			wakeup_one(vcpu);
2670 	}
2671 }
2672 
2673 void
vcpu_notify_event(struct vcpu * vcpu,bool lapic_intr)2674 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr)
2675 {
2676 	vcpu_lock(vcpu);
2677 	vcpu_notify_event_locked(vcpu, lapic_intr);
2678 	vcpu_unlock(vcpu);
2679 }
2680 
2681 struct vmspace *
vm_vmspace(struct vm * vm)2682 vm_vmspace(struct vm *vm)
2683 {
2684 	return (vm->vmspace);
2685 }
2686 
2687 int
vm_apicid2vcpuid(struct vm * vm,int apicid)2688 vm_apicid2vcpuid(struct vm *vm, int apicid)
2689 {
2690 	/*
2691 	 * XXX apic id is assumed to be numerically identical to vcpu id
2692 	 */
2693 	return (apicid);
2694 }
2695 
2696 int
vm_smp_rendezvous(struct vcpu * vcpu,cpuset_t dest,vm_rendezvous_func_t func,void * arg)2697 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
2698     vm_rendezvous_func_t func, void *arg)
2699 {
2700 	struct vm *vm = vcpu->vm;
2701 	int error, i;
2702 
2703 	/*
2704 	 * Enforce that this function is called without any locks
2705 	 */
2706 	WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2707 
2708 restart:
2709 	mtx_lock(&vm->rendezvous_mtx);
2710 	if (vm->rendezvous_func != NULL) {
2711 		/*
2712 		 * If a rendezvous is already in progress then we need to
2713 		 * call the rendezvous handler in case this 'vcpu' is one
2714 		 * of the targets of the rendezvous.
2715 		 */
2716 		VMM_CTR0(vcpu, "Rendezvous already in progress");
2717 		mtx_unlock(&vm->rendezvous_mtx);
2718 		error = vm_handle_rendezvous(vcpu);
2719 		if (error != 0)
2720 			return (error);
2721 		goto restart;
2722 	}
2723 	KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2724 	    "rendezvous is still in progress"));
2725 
2726 	VMM_CTR0(vcpu, "Initiating rendezvous");
2727 	vm->rendezvous_req_cpus = dest;
2728 	CPU_ZERO(&vm->rendezvous_done_cpus);
2729 	vm->rendezvous_arg = arg;
2730 	vm->rendezvous_func = func;
2731 	mtx_unlock(&vm->rendezvous_mtx);
2732 
2733 	/*
2734 	 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2735 	 * vcpus so they handle the rendezvous as soon as possible.
2736 	 */
2737 	for (i = 0; i < vm->maxcpus; i++) {
2738 		if (CPU_ISSET(i, &dest))
2739 			vcpu_notify_event(vm_vcpu(vm, i), false);
2740 	}
2741 
2742 	return (vm_handle_rendezvous(vcpu));
2743 }
2744 
2745 struct vatpic *
vm_atpic(struct vm * vm)2746 vm_atpic(struct vm *vm)
2747 {
2748 	return (vm->vatpic);
2749 }
2750 
2751 struct vatpit *
vm_atpit(struct vm * vm)2752 vm_atpit(struct vm *vm)
2753 {
2754 	return (vm->vatpit);
2755 }
2756 
2757 struct vpmtmr *
vm_pmtmr(struct vm * vm)2758 vm_pmtmr(struct vm *vm)
2759 {
2760 
2761 	return (vm->vpmtmr);
2762 }
2763 
2764 struct vrtc *
vm_rtc(struct vm * vm)2765 vm_rtc(struct vm *vm)
2766 {
2767 
2768 	return (vm->vrtc);
2769 }
2770 
2771 enum vm_reg_name
vm_segment_name(int seg)2772 vm_segment_name(int seg)
2773 {
2774 	static enum vm_reg_name seg_names[] = {
2775 		VM_REG_GUEST_ES,
2776 		VM_REG_GUEST_CS,
2777 		VM_REG_GUEST_SS,
2778 		VM_REG_GUEST_DS,
2779 		VM_REG_GUEST_FS,
2780 		VM_REG_GUEST_GS
2781 	};
2782 
2783 	KASSERT(seg >= 0 && seg < nitems(seg_names),
2784 	    ("%s: invalid segment encoding %d", __func__, seg));
2785 	return (seg_names[seg]);
2786 }
2787 
2788 void
vm_copy_teardown(struct vm_copyinfo * copyinfo,int num_copyinfo)2789 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
2790 {
2791 	int idx;
2792 
2793 	for (idx = 0; idx < num_copyinfo; idx++) {
2794 		if (copyinfo[idx].cookie != NULL)
2795 			vm_gpa_release(copyinfo[idx].cookie);
2796 	}
2797 	bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2798 }
2799 
2800 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,int num_copyinfo,int * fault)2801 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
2802     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2803     int num_copyinfo, int *fault)
2804 {
2805 	int error, idx, nused;
2806 	size_t n, off, remaining;
2807 	void *hva, *cookie;
2808 	uint64_t gpa;
2809 
2810 	bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2811 
2812 	nused = 0;
2813 	remaining = len;
2814 	while (remaining > 0) {
2815 		if (nused >= num_copyinfo)
2816 			return (EFAULT);
2817 		error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
2818 		if (error || *fault)
2819 			return (error);
2820 		off = gpa & PAGE_MASK;
2821 		n = min(remaining, PAGE_SIZE - off);
2822 		copyinfo[nused].gpa = gpa;
2823 		copyinfo[nused].len = n;
2824 		remaining -= n;
2825 		gla += n;
2826 		nused++;
2827 	}
2828 
2829 	for (idx = 0; idx < nused; idx++) {
2830 		hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
2831 		    copyinfo[idx].len, prot, &cookie);
2832 		if (hva == NULL)
2833 			break;
2834 		copyinfo[idx].hva = hva;
2835 		copyinfo[idx].cookie = cookie;
2836 	}
2837 
2838 	if (idx != nused) {
2839 		vm_copy_teardown(copyinfo, num_copyinfo);
2840 		return (EFAULT);
2841 	} else {
2842 		*fault = 0;
2843 		return (0);
2844 	}
2845 }
2846 
2847 void
vm_copyin(struct vm_copyinfo * copyinfo,void * kaddr,size_t len)2848 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
2849 {
2850 	char *dst;
2851 	int idx;
2852 
2853 	dst = kaddr;
2854 	idx = 0;
2855 	while (len > 0) {
2856 		bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2857 		len -= copyinfo[idx].len;
2858 		dst += copyinfo[idx].len;
2859 		idx++;
2860 	}
2861 }
2862 
2863 void
vm_copyout(const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)2864 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
2865 {
2866 	const char *src;
2867 	int idx;
2868 
2869 	src = kaddr;
2870 	idx = 0;
2871 	while (len > 0) {
2872 		bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2873 		len -= copyinfo[idx].len;
2874 		src += copyinfo[idx].len;
2875 		idx++;
2876 	}
2877 }
2878 
2879 /*
2880  * Return the amount of in-use and wired memory for the VM. Since
2881  * these are global stats, only return the values with for vCPU 0
2882  */
2883 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2884 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2885 
2886 static void
vm_get_rescnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2887 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2888 {
2889 
2890 	if (vcpu->vcpuid == 0) {
2891 		vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
2892 		    vmspace_resident_count(vcpu->vm->vmspace));
2893 	}
2894 }
2895 
2896 static void
vm_get_wiredcnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2897 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2898 {
2899 
2900 	if (vcpu->vcpuid == 0) {
2901 		vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
2902 		    pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace)));
2903 	}
2904 }
2905 
2906 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2907 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2908 
2909 #ifdef BHYVE_SNAPSHOT
2910 static int
vm_snapshot_vcpus(struct vm * vm,struct vm_snapshot_meta * meta)2911 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
2912 {
2913 	uint64_t tsc, now;
2914 	int ret;
2915 	struct vcpu *vcpu;
2916 	uint16_t i, maxcpus;
2917 
2918 	now = rdtsc();
2919 	maxcpus = vm_get_maxcpus(vm);
2920 	for (i = 0; i < maxcpus; i++) {
2921 		vcpu = vm->vcpu[i];
2922 		if (vcpu == NULL)
2923 			continue;
2924 
2925 		SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
2926 		SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
2927 		SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
2928 		SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
2929 		SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
2930 		SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
2931 		SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
2932 		SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2933 
2934 		/*
2935 		 * Save the absolute TSC value by adding now to tsc_offset.
2936 		 *
2937 		 * It will be turned turned back into an actual offset when the
2938 		 * TSC restore function is called
2939 		 */
2940 		tsc = now + vcpu->tsc_offset;
2941 		SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
2942 		if (meta->op == VM_SNAPSHOT_RESTORE)
2943 			vcpu->tsc_offset = tsc;
2944 	}
2945 
2946 done:
2947 	return (ret);
2948 }
2949 
2950 static int
vm_snapshot_vm(struct vm * vm,struct vm_snapshot_meta * meta)2951 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
2952 {
2953 	int ret;
2954 
2955 	ret = vm_snapshot_vcpus(vm, meta);
2956 	if (ret != 0)
2957 		goto done;
2958 
2959 	SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
2960 done:
2961 	return (ret);
2962 }
2963 
2964 static int
vm_snapshot_vcpu(struct vm * vm,struct vm_snapshot_meta * meta)2965 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
2966 {
2967 	int error;
2968 	struct vcpu *vcpu;
2969 	uint16_t i, maxcpus;
2970 
2971 	error = 0;
2972 
2973 	maxcpus = vm_get_maxcpus(vm);
2974 	for (i = 0; i < maxcpus; i++) {
2975 		vcpu = vm->vcpu[i];
2976 		if (vcpu == NULL)
2977 			continue;
2978 
2979 		error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
2980 		if (error != 0) {
2981 			printf("%s: failed to snapshot vmcs/vmcb data for "
2982 			       "vCPU: %d; error: %d\n", __func__, i, error);
2983 			goto done;
2984 		}
2985 	}
2986 
2987 done:
2988 	return (error);
2989 }
2990 
2991 /*
2992  * Save kernel-side structures to user-space for snapshotting.
2993  */
2994 int
vm_snapshot_req(struct vm * vm,struct vm_snapshot_meta * meta)2995 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
2996 {
2997 	int ret = 0;
2998 
2999 	switch (meta->dev_req) {
3000 	case STRUCT_VMCX:
3001 		ret = vm_snapshot_vcpu(vm, meta);
3002 		break;
3003 	case STRUCT_VM:
3004 		ret = vm_snapshot_vm(vm, meta);
3005 		break;
3006 	case STRUCT_VIOAPIC:
3007 		ret = vioapic_snapshot(vm_ioapic(vm), meta);
3008 		break;
3009 	case STRUCT_VLAPIC:
3010 		ret = vlapic_snapshot(vm, meta);
3011 		break;
3012 	case STRUCT_VHPET:
3013 		ret = vhpet_snapshot(vm_hpet(vm), meta);
3014 		break;
3015 	case STRUCT_VATPIC:
3016 		ret = vatpic_snapshot(vm_atpic(vm), meta);
3017 		break;
3018 	case STRUCT_VATPIT:
3019 		ret = vatpit_snapshot(vm_atpit(vm), meta);
3020 		break;
3021 	case STRUCT_VPMTMR:
3022 		ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
3023 		break;
3024 	case STRUCT_VRTC:
3025 		ret = vrtc_snapshot(vm_rtc(vm), meta);
3026 		break;
3027 	default:
3028 		printf("%s: failed to find the requested type %#x\n",
3029 		       __func__, meta->dev_req);
3030 		ret = (EINVAL);
3031 	}
3032 	return (ret);
3033 }
3034 
3035 void
vm_set_tsc_offset(struct vcpu * vcpu,uint64_t offset)3036 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
3037 {
3038 	vcpu->tsc_offset = offset;
3039 }
3040 
3041 int
vm_restore_time(struct vm * vm)3042 vm_restore_time(struct vm *vm)
3043 {
3044 	int error;
3045 	uint64_t now;
3046 	struct vcpu *vcpu;
3047 	uint16_t i, maxcpus;
3048 
3049 	now = rdtsc();
3050 
3051 	error = vhpet_restore_time(vm_hpet(vm));
3052 	if (error)
3053 		return (error);
3054 
3055 	maxcpus = vm_get_maxcpus(vm);
3056 	for (i = 0; i < maxcpus; i++) {
3057 		vcpu = vm->vcpu[i];
3058 		if (vcpu == NULL)
3059 			continue;
3060 
3061 		error = vmmops_restore_tsc(vcpu->cookie,
3062 		    vcpu->tsc_offset - now);
3063 		if (error)
3064 			return (error);
3065 	}
3066 
3067 	return (0);
3068 }
3069 #endif
3070