xref: /freebsd/lib/libvmmapi/vmmapi.c (revision 08c7dd2fbe4fb7ae5cd6943afef04bd4cb350c1f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/capsicum.h>
31 #include <sys/cpuset.h>
32 #include <sys/domainset.h>
33 #include <sys/sysctl.h>
34 #include <sys/ioctl.h>
35 #include <sys/mman.h>
36 #include <sys/linker.h>
37 #include <sys/module.h>
38 #include <sys/_iovec.h>
39 
40 #include <capsicum_helpers.h>
41 #include <err.h>
42 #include <errno.h>
43 #include <stdbool.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <assert.h>
47 #include <string.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 
51 #include <libutil.h>
52 
53 #include <vm/vm.h>
54 #include <machine/vmm.h>
55 #ifdef WITH_VMMAPI_SNAPSHOT
56 #include <machine/vmm_snapshot.h>
57 #endif
58 
59 #include <dev/vmm/vmm_dev.h>
60 
61 #include "vmmapi.h"
62 #include "internal.h"
63 
64 #define	MB	(1024 * 1024UL)
65 #define	GB	(1024 * 1024 * 1024UL)
66 
67 #ifdef __amd64__
68 #define	VM_LOWMEM_LIMIT	(3 * GB)
69 #else
70 #define	VM_LOWMEM_LIMIT	0
71 #endif
72 #define	VM_HIGHMEM_BASE	(4 * GB)
73 
74 /*
75  * Size of the guard region before and after the virtual address space
76  * mapping the guest physical memory. This must be a multiple of the
77  * superpage size for performance reasons.
78  */
79 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
80 
81 #define	PROT_RW		(PROT_READ | PROT_WRITE)
82 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
83 
84 static int
vm_device_open(const char * name)85 vm_device_open(const char *name)
86 {
87 	char devpath[PATH_MAX];
88 
89 	assert(strlen(name) <= VM_MAX_NAMELEN);
90 	(void)snprintf(devpath, sizeof(devpath), "/dev/vmm/%s", name);
91 	return (open(devpath, O_RDWR));
92 }
93 
94 static int
vm_ctl_open(void)95 vm_ctl_open(void)
96 {
97 	if (modfind("vmm") < 0)
98 		(void)kldload("vmm");
99 	return (open("/dev/vmmctl", O_RDWR, 0));
100 }
101 
102 static int
vm_ctl_create(const char * name,int ctlfd)103 vm_ctl_create(const char *name, int ctlfd)
104 {
105 	struct vmmctl_vm_create vmc;
106 
107 	memset(&vmc, 0, sizeof(vmc));
108 	if (strlcpy(vmc.name, name, sizeof(vmc.name)) >= sizeof(vmc.name)) {
109 		errno = ENAMETOOLONG;
110 		return (-1);
111 	}
112 	return (ioctl(ctlfd, VMMCTL_VM_CREATE, &vmc));
113 }
114 
115 int
vm_create(const char * name)116 vm_create(const char *name)
117 {
118 	int error, fd;
119 
120 	fd = vm_ctl_open();
121 	if (fd < 0)
122 		return (-1);
123 
124 	error = vm_ctl_create(name, fd);
125 	if (error != 0) {
126 		error = errno;
127 		(void)close(fd);
128 		errno = error;
129 		return (-1);
130 	}
131 	(void)close(fd);
132 	return (0);
133 }
134 
135 struct vmctx *
vm_open(const char * name)136 vm_open(const char *name)
137 {
138 	return (vm_openf(name, 0));
139 }
140 
141 struct vmctx *
vm_openf(const char * name,int flags)142 vm_openf(const char *name, int flags)
143 {
144 	struct vmctx *vm;
145 	int saved_errno;
146 	bool created;
147 
148 	created = false;
149 
150 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
151 	assert(vm != NULL);
152 
153 	vm->fd = vm->ctlfd = -1;
154 	vm->memflags = 0;
155 	vm->name = (char *)(vm + 1);
156 	strcpy(vm->name, name);
157 	memset(vm->memsegs, 0, sizeof(vm->memsegs));
158 
159 	if ((vm->ctlfd = vm_ctl_open()) < 0)
160 		goto err;
161 
162 	vm->fd = vm_device_open(vm->name);
163 	if (vm->fd < 0 && errno == ENOENT) {
164 		if (flags & VMMAPI_OPEN_CREATE) {
165 			if (vm_ctl_create(vm->name, vm->ctlfd) != 0)
166 				goto err;
167 			vm->fd = vm_device_open(vm->name);
168 			created = true;
169 		}
170 	}
171 	if (vm->fd < 0)
172 		goto err;
173 
174 	if (!created && (flags & VMMAPI_OPEN_REINIT) != 0 && vm_reinit(vm) != 0)
175 		goto err;
176 
177 	return (vm);
178 err:
179 	saved_errno = errno;
180 	if (created)
181 		vm_destroy(vm);
182 	else
183 		vm_close(vm);
184 	errno = saved_errno;
185 	return (NULL);
186 }
187 
188 void
vm_close(struct vmctx * vm)189 vm_close(struct vmctx *vm)
190 {
191 	assert(vm != NULL);
192 
193 	if (vm->fd >= 0)
194 		(void)close(vm->fd);
195 	if (vm->ctlfd >= 0)
196 		(void)close(vm->ctlfd);
197 	free(vm);
198 }
199 
200 void
vm_destroy(struct vmctx * vm)201 vm_destroy(struct vmctx *vm)
202 {
203 	struct vmmctl_vm_destroy vmd;
204 
205 	memset(&vmd, 0, sizeof(vmd));
206 	(void)strlcpy(vmd.name, vm->name, sizeof(vmd.name));
207 	if (ioctl(vm->ctlfd, VMMCTL_VM_DESTROY, &vmd) != 0)
208 		warn("ioctl(VMMCTL_VM_DESTROY)");
209 
210 	vm_close(vm);
211 }
212 
213 struct vcpu *
vm_vcpu_open(struct vmctx * ctx,int vcpuid)214 vm_vcpu_open(struct vmctx *ctx, int vcpuid)
215 {
216 	struct vcpu *vcpu;
217 
218 	vcpu = malloc(sizeof(*vcpu));
219 	vcpu->ctx = ctx;
220 	vcpu->vcpuid = vcpuid;
221 	return (vcpu);
222 }
223 
224 void
vm_vcpu_close(struct vcpu * vcpu)225 vm_vcpu_close(struct vcpu *vcpu)
226 {
227 	free(vcpu);
228 }
229 
230 int
vcpu_id(struct vcpu * vcpu)231 vcpu_id(struct vcpu *vcpu)
232 {
233 	return (vcpu->vcpuid);
234 }
235 
236 int
vm_parse_memsize(const char * opt,size_t * ret_memsize)237 vm_parse_memsize(const char *opt, size_t *ret_memsize)
238 {
239 	char *endptr;
240 	size_t optval;
241 	int error;
242 
243 	optval = strtoul(opt, &endptr, 0);
244 	if (*opt != '\0' && *endptr == '\0') {
245 		/*
246 		 * For the sake of backward compatibility if the memory size
247 		 * specified on the command line is less than a megabyte then
248 		 * it is interpreted as being in units of MB.
249 		 */
250 		if (optval < MB)
251 			optval *= MB;
252 		*ret_memsize = optval;
253 		error = 0;
254 	} else
255 		error = expand_number(opt, ret_memsize);
256 
257 	return (error);
258 }
259 
260 uint32_t
vm_get_lowmem_limit(struct vmctx * ctx __unused)261 vm_get_lowmem_limit(struct vmctx *ctx __unused)
262 {
263 
264 	return (VM_LOWMEM_LIMIT);
265 }
266 
267 void
vm_set_memflags(struct vmctx * ctx,int flags)268 vm_set_memflags(struct vmctx *ctx, int flags)
269 {
270 
271 	ctx->memflags = flags;
272 }
273 
274 int
vm_get_memflags(struct vmctx * ctx)275 vm_get_memflags(struct vmctx *ctx)
276 {
277 
278 	return (ctx->memflags);
279 }
280 
281 /*
282  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
283  */
284 int
vm_mmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,int segid,vm_ooffset_t off,size_t len,int prot)285 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
286     size_t len, int prot)
287 {
288 	struct vm_memmap memmap;
289 	int error, flags;
290 
291 	memmap.gpa = gpa;
292 	memmap.segid = segid;
293 	memmap.segoff = off;
294 	memmap.len = len;
295 	memmap.prot = prot;
296 	memmap.flags = 0;
297 
298 	if (ctx->memflags & VM_MEM_F_WIRED)
299 		memmap.flags |= VM_MEMMAP_F_WIRED;
300 
301 	/*
302 	 * If this mapping already exists then don't create it again. This
303 	 * is the common case for SYSMEM mappings created by bhyveload(8).
304 	 */
305 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
306 	if (error == 0 && gpa == memmap.gpa) {
307 		if (segid != memmap.segid || off != memmap.segoff ||
308 		    prot != memmap.prot || flags != memmap.flags) {
309 			errno = EEXIST;
310 			return (-1);
311 		} else {
312 			return (0);
313 		}
314 	}
315 
316 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
317 	return (error);
318 }
319 
320 int
vm_get_guestmem_from_ctx(struct vmctx * ctx,char ** guest_baseaddr,size_t * lowmem_size,size_t * highmem_size)321 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr,
322     size_t *lowmem_size, size_t *highmem_size)
323 {
324 
325 	*guest_baseaddr = ctx->baseaddr;
326 	*lowmem_size = ctx->lowmem_size;
327 	*highmem_size = ctx->highmem_size;
328 	return (0);
329 }
330 
331 int
vm_munmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,size_t len)332 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
333 {
334 	struct vm_munmap munmap;
335 	int error;
336 
337 	munmap.gpa = gpa;
338 	munmap.len = len;
339 
340 	error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
341 	return (error);
342 }
343 
344 int
vm_mmap_getnext(struct vmctx * ctx,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)345 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
346     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
347 {
348 	struct vm_memmap memmap;
349 	int error;
350 
351 	bzero(&memmap, sizeof(struct vm_memmap));
352 	memmap.gpa = *gpa;
353 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
354 	if (error == 0) {
355 		*gpa = memmap.gpa;
356 		*segid = memmap.segid;
357 		*segoff = memmap.segoff;
358 		*len = memmap.len;
359 		*prot = memmap.prot;
360 		*flags = memmap.flags;
361 	}
362 	return (error);
363 }
364 
365 /*
366  * Return 0 if the segments are identical and non-zero otherwise.
367  *
368  * This is slightly complicated by the fact that only device memory segments
369  * are named.
370  */
371 static int
cmpseg(size_t len,const char * str,size_t len2,const char * str2)372 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
373 {
374 
375 	if (len == len2) {
376 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
377 			return (0);
378 	}
379 	return (-1);
380 }
381 
382 static int
vm_alloc_memseg(struct vmctx * ctx,int segid,size_t len,const char * name,int ds_policy,domainset_t * ds_mask,size_t ds_size)383 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name,
384     int ds_policy, domainset_t *ds_mask, size_t ds_size)
385 {
386 	struct vm_memseg memseg;
387 	size_t n;
388 	int error;
389 
390 	/*
391 	 * If the memory segment has already been created then just return.
392 	 * This is the usual case for the SYSMEM segment created by userspace
393 	 * loaders like bhyveload(8).
394 	 */
395 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
396 	    sizeof(memseg.name));
397 	if (error)
398 		return (error);
399 
400 	if (memseg.len != 0) {
401 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
402 			errno = EINVAL;
403 			return (-1);
404 		} else {
405 			return (0);
406 		}
407 	}
408 
409 	bzero(&memseg, sizeof(struct vm_memseg));
410 	memseg.segid = segid;
411 	memseg.len = len;
412 	if (ds_mask == NULL) {
413 		memseg.ds_policy = DOMAINSET_POLICY_INVALID;
414 	} else {
415 		memseg.ds_policy = ds_policy;
416 		memseg.ds_mask = ds_mask;
417 		memseg.ds_mask_size = ds_size;
418 	}
419 	if (name != NULL) {
420 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
421 		if (n >= sizeof(memseg.name)) {
422 			errno = ENAMETOOLONG;
423 			return (-1);
424 		}
425 	}
426 
427 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
428 	return (error);
429 }
430 
431 int
vm_get_memseg(struct vmctx * ctx,int segid,size_t * lenp,char * namebuf,size_t bufsize)432 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
433     size_t bufsize)
434 {
435 	struct vm_memseg memseg;
436 	size_t n;
437 	int error;
438 
439 	bzero(&memseg, sizeof(memseg));
440 	memseg.segid = segid;
441 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
442 	if (error == 0) {
443 		*lenp = memseg.len;
444 		n = strlcpy(namebuf, memseg.name, bufsize);
445 		if (n >= bufsize) {
446 			errno = ENAMETOOLONG;
447 			error = -1;
448 		}
449 	}
450 	return (error);
451 }
452 
453 static int
map_memory_segment(struct vmctx * ctx,int segid,vm_paddr_t gpa,size_t len,size_t segoff,char * base)454 map_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len,
455     size_t segoff, char *base)
456 {
457 	char *ptr;
458 	int error, flags;
459 
460 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
461 	error = vm_mmap_memseg(ctx, gpa, segid, segoff, len, PROT_ALL);
462 	if (error)
463 		return (error);
464 
465 	flags = MAP_SHARED | MAP_FIXED;
466 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
467 		flags |= MAP_NOCORE;
468 
469 	/* mmap into the process address space on the host */
470 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
471 	if (ptr == MAP_FAILED)
472 		return (-1);
473 
474 	return (0);
475 }
476 
477 /*
478  * Allocates and maps virtual machine memory segments according
479  * to the NUMA topology specified by the 'doms' array.
480  *
481  * The domains are laid out sequentially in the guest's physical address space.
482  * The [VM_LOWMEM_LIMIT, VM_HIGHMEM_BASE) address range is skipped and
483  * left unmapped.
484  */
485 int
vm_setup_memory_domains(struct vmctx * ctx,enum vm_mmap_style vms,struct vm_mem_domain * doms,int ndoms)486 vm_setup_memory_domains(struct vmctx *ctx, enum vm_mmap_style vms,
487     struct vm_mem_domain *doms, int ndoms)
488 {
489 	size_t low_len, len, totalsize;
490 	struct vm_mem_domain *dom;
491 	struct vm_memseg memseg;
492 	char *baseaddr, *ptr;
493 	int error, i, segid;
494 	vm_paddr_t gpa;
495 
496 	/* Sanity checks. */
497 	assert(vms == VM_MMAP_ALL);
498 	if (doms == NULL || ndoms <= 0 || ndoms > VM_MAXMEMDOM) {
499 		errno = EINVAL;
500 		return (-1);
501 	}
502 
503 	/* Calculate total memory size. */
504 	totalsize = 0;
505 	for (i = 0; i < ndoms; i++)
506 		totalsize += doms[i].size;
507 
508 	if (totalsize > VM_LOWMEM_LIMIT)
509 		totalsize = VM_HIGHMEM_BASE + (totalsize - VM_LOWMEM_LIMIT);
510 
511 	/*
512 	 * Stake out a contiguous region covering the guest physical memory
513 	 * and the adjoining guard regions.
514 	 */
515 	len = VM_MMAP_GUARD_SIZE + totalsize + VM_MMAP_GUARD_SIZE;
516 	ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
517 	if (ptr == MAP_FAILED)
518 		return (-1);
519 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
520 
521 	/*
522 	 * Allocate and map memory segments for the virtual machine.
523 	 */
524 	gpa = VM_LOWMEM_LIMIT > 0 ? 0 : VM_HIGHMEM_BASE;
525 	ctx->lowmem_size = 0;
526 	ctx->highmem_size = 0;
527 	for (i = 0; i < ndoms; i++) {
528 		segid = VM_SYSMEM + i;
529 		dom = &doms[i];
530 
531 		/*
532 		 * Check if the memory segment already exists.
533 		 * If 'ndoms' is greater than one, refuse to proceed if the
534 		 * memseg already exists. If only one domain was requested, use
535 		 * the existing segment to preserve the behaviour of the previous
536 		 * implementation.
537 		 *
538 		 * Splitting existing memory segments is tedious and
539 		 * error-prone, which is why we don't support NUMA
540 		 * domains for bhyveload(8)-loaded VMs.
541 		 */
542 		error = vm_get_memseg(ctx, segid, &len, memseg.name,
543 		    sizeof(memseg.name));
544 		if (error == 0 && len != 0) {
545 			if (ndoms != 1) {
546 				errno = EEXIST;
547 				return (-1);
548 			} else
549 				doms[0].size = len;
550 		} else {
551 			error = vm_alloc_memseg(ctx, segid, dom->size, NULL,
552 			    dom->ds_policy, dom->ds_mask, dom->ds_size);
553 			if (error)
554 				return (error);
555 		}
556 
557 		/*
558 		 * If a domain is split by VM_LOWMEM_LIMIT then break
559 		 * its segment mapping into two parts, one below VM_LOWMEM_LIMIT
560 		 * and one above VM_HIGHMEM_BASE.
561 		 */
562 		if (gpa <= VM_LOWMEM_LIMIT &&
563 		    gpa + dom->size > VM_LOWMEM_LIMIT) {
564 			low_len = VM_LOWMEM_LIMIT - gpa;
565 			error = map_memory_segment(ctx, segid, gpa, low_len, 0,
566 			    baseaddr);
567 			if (error)
568 				return (error);
569 			ctx->lowmem_size = VM_LOWMEM_LIMIT;
570 			/* Map the remainder. */
571 			gpa = VM_HIGHMEM_BASE;
572 			len = dom->size - low_len;
573 			error = map_memory_segment(ctx, segid, gpa, len,
574 			    low_len, baseaddr);
575 			if (error)
576 				return (error);
577 		} else {
578 			len = dom->size;
579 			error = map_memory_segment(ctx, segid, gpa, len, 0,
580 			    baseaddr);
581 			if (error)
582 				return (error);
583 		}
584 		if (gpa <= VM_LOWMEM_LIMIT)
585 			ctx->lowmem_size += len;
586 		else
587 			ctx->highmem_size += len;
588 		gpa += len;
589 	}
590 	ctx->baseaddr = baseaddr;
591 
592 	return (0);
593 }
594 
595 int
vm_setup_memory(struct vmctx * ctx,size_t memsize,enum vm_mmap_style vms)596 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
597 {
598 	struct vm_mem_domain dom0;
599 
600 	memset(&dom0, 0, sizeof(dom0));
601 	dom0.ds_policy = DOMAINSET_POLICY_INVALID;
602 	dom0.size = memsize;
603 
604 	return (vm_setup_memory_domains(ctx, vms, &dom0, 1));
605 }
606 
607 /*
608  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
609  * the lowmem or highmem regions.
610  *
611  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
612  * The instruction emulation code depends on this behavior.
613  */
614 void *
vm_map_gpa(struct vmctx * ctx,vm_paddr_t gaddr,size_t len)615 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
616 {
617 	vm_size_t lowsize, highsize;
618 
619 	lowsize = ctx->lowmem_size;
620 	if (lowsize > 0) {
621 		if (gaddr < lowsize && len <= lowsize && gaddr + len <= lowsize)
622 			return (ctx->baseaddr + gaddr);
623 	}
624 
625 	highsize = ctx->highmem_size;
626 	if (highsize > 0 && gaddr >= VM_HIGHMEM_BASE) {
627 		if (gaddr < VM_HIGHMEM_BASE + highsize && len <= highsize &&
628 		    gaddr + len <= VM_HIGHMEM_BASE + highsize)
629 			return (ctx->baseaddr + gaddr);
630 	}
631 
632 	return (NULL);
633 }
634 
635 vm_paddr_t
vm_rev_map_gpa(struct vmctx * ctx,void * addr)636 vm_rev_map_gpa(struct vmctx *ctx, void *addr)
637 {
638 	vm_paddr_t offaddr;
639 	vm_size_t lowsize, highsize;
640 
641 	offaddr = (char *)addr - ctx->baseaddr;
642 
643 	lowsize = ctx->lowmem_size;
644 	if (lowsize > 0)
645 		if (offaddr <= lowsize)
646 			return (offaddr);
647 
648 	highsize = ctx->highmem_size;
649 	if (highsize > 0)
650 		if (offaddr >= VM_HIGHMEM_BASE &&
651 		    offaddr < VM_HIGHMEM_BASE + highsize)
652 			return (offaddr);
653 
654 	return ((vm_paddr_t)-1);
655 }
656 
657 const char *
vm_get_name(struct vmctx * ctx)658 vm_get_name(struct vmctx *ctx)
659 {
660 
661 	return (ctx->name);
662 }
663 
664 size_t
vm_get_lowmem_size(struct vmctx * ctx)665 vm_get_lowmem_size(struct vmctx *ctx)
666 {
667 	return (ctx->lowmem_size);
668 }
669 
670 vm_paddr_t
vm_get_highmem_base(struct vmctx * ctx __unused)671 vm_get_highmem_base(struct vmctx *ctx __unused)
672 {
673 
674 	return (VM_HIGHMEM_BASE);
675 }
676 
677 size_t
vm_get_highmem_size(struct vmctx * ctx)678 vm_get_highmem_size(struct vmctx *ctx)
679 {
680 	return (ctx->highmem_size);
681 }
682 
683 void *
vm_create_devmem(struct vmctx * ctx,int segid,const char * name,size_t len)684 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
685 {
686 	char pathname[MAXPATHLEN];
687 	size_t len2;
688 	char *base, *ptr;
689 	int fd, error, flags;
690 
691 	fd = -1;
692 	ptr = MAP_FAILED;
693 	if (name == NULL || strlen(name) == 0) {
694 		errno = EINVAL;
695 		goto done;
696 	}
697 
698 	error = vm_alloc_memseg(ctx, segid, len, name, 0, NULL, 0);
699 	if (error)
700 		goto done;
701 
702 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
703 	strlcat(pathname, ctx->name, sizeof(pathname));
704 	strlcat(pathname, ".", sizeof(pathname));
705 	strlcat(pathname, name, sizeof(pathname));
706 
707 	fd = open(pathname, O_RDWR);
708 	if (fd < 0)
709 		goto done;
710 
711 	/*
712 	 * Stake out a contiguous region covering the device memory and the
713 	 * adjoining guard regions.
714 	 */
715 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
716 	base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
717 	    0);
718 	if (base == MAP_FAILED)
719 		goto done;
720 
721 	flags = MAP_SHARED | MAP_FIXED;
722 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
723 		flags |= MAP_NOCORE;
724 
725 	/* mmap the devmem region in the host address space */
726 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
727 done:
728 	if (fd >= 0)
729 		close(fd);
730 	return (ptr);
731 }
732 
733 int
vcpu_ioctl(struct vcpu * vcpu,u_long cmd,void * arg)734 vcpu_ioctl(struct vcpu *vcpu, u_long cmd, void *arg)
735 {
736 	/*
737 	 * XXX: fragile, handle with care
738 	 * Assumes that the first field of the ioctl data
739 	 * is the vcpuid.
740 	 */
741 	*(int *)arg = vcpu->vcpuid;
742 	return (ioctl(vcpu->ctx->fd, cmd, arg));
743 }
744 
745 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)746 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
747 {
748 	int error;
749 	struct vm_register vmreg;
750 
751 	bzero(&vmreg, sizeof(vmreg));
752 	vmreg.regnum = reg;
753 	vmreg.regval = val;
754 
755 	error = vcpu_ioctl(vcpu, VM_SET_REGISTER, &vmreg);
756 	return (error);
757 }
758 
759 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * ret_val)760 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *ret_val)
761 {
762 	int error;
763 	struct vm_register vmreg;
764 
765 	bzero(&vmreg, sizeof(vmreg));
766 	vmreg.regnum = reg;
767 
768 	error = vcpu_ioctl(vcpu, VM_GET_REGISTER, &vmreg);
769 	*ret_val = vmreg.regval;
770 	return (error);
771 }
772 
773 int
vm_set_register_set(struct vcpu * vcpu,unsigned int count,const int * regnums,uint64_t * regvals)774 vm_set_register_set(struct vcpu *vcpu, unsigned int count,
775     const int *regnums, uint64_t *regvals)
776 {
777 	int error;
778 	struct vm_register_set vmregset;
779 
780 	bzero(&vmregset, sizeof(vmregset));
781 	vmregset.count = count;
782 	vmregset.regnums = regnums;
783 	vmregset.regvals = regvals;
784 
785 	error = vcpu_ioctl(vcpu, VM_SET_REGISTER_SET, &vmregset);
786 	return (error);
787 }
788 
789 int
vm_get_register_set(struct vcpu * vcpu,unsigned int count,const int * regnums,uint64_t * regvals)790 vm_get_register_set(struct vcpu *vcpu, unsigned int count,
791     const int *regnums, uint64_t *regvals)
792 {
793 	int error;
794 	struct vm_register_set vmregset;
795 
796 	bzero(&vmregset, sizeof(vmregset));
797 	vmregset.count = count;
798 	vmregset.regnums = regnums;
799 	vmregset.regvals = regvals;
800 
801 	error = vcpu_ioctl(vcpu, VM_GET_REGISTER_SET, &vmregset);
802 	return (error);
803 }
804 
805 int
vm_run(struct vcpu * vcpu,struct vm_run * vmrun)806 vm_run(struct vcpu *vcpu, struct vm_run *vmrun)
807 {
808 	return (vcpu_ioctl(vcpu, VM_RUN, vmrun));
809 }
810 
811 int
vm_suspend(struct vmctx * ctx,enum vm_suspend_how how)812 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
813 {
814 	struct vm_suspend vmsuspend;
815 
816 	bzero(&vmsuspend, sizeof(vmsuspend));
817 	vmsuspend.how = how;
818 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
819 }
820 
821 int
vm_reinit(struct vmctx * ctx)822 vm_reinit(struct vmctx *ctx)
823 {
824 
825 	return (ioctl(ctx->fd, VM_REINIT, 0));
826 }
827 
828 int
vm_capability_name2type(const char * capname)829 vm_capability_name2type(const char *capname)
830 {
831 	int i;
832 
833 	for (i = 0; i < VM_CAP_MAX; i++) {
834 		if (vm_capstrmap[i] != NULL &&
835 		    strcmp(vm_capstrmap[i], capname) == 0)
836 			return (i);
837 	}
838 
839 	return (-1);
840 }
841 
842 const char *
vm_capability_type2name(int type)843 vm_capability_type2name(int type)
844 {
845 	if (type >= 0 && type < VM_CAP_MAX)
846 		return (vm_capstrmap[type]);
847 
848 	return (NULL);
849 }
850 
851 int
vm_get_capability(struct vcpu * vcpu,enum vm_cap_type cap,int * retval)852 vm_get_capability(struct vcpu *vcpu, enum vm_cap_type cap, int *retval)
853 {
854 	int error;
855 	struct vm_capability vmcap;
856 
857 	bzero(&vmcap, sizeof(vmcap));
858 	vmcap.captype = cap;
859 
860 	error = vcpu_ioctl(vcpu, VM_GET_CAPABILITY, &vmcap);
861 	*retval = vmcap.capval;
862 	return (error);
863 }
864 
865 int
vm_set_capability(struct vcpu * vcpu,enum vm_cap_type cap,int val)866 vm_set_capability(struct vcpu *vcpu, enum vm_cap_type cap, int val)
867 {
868 	struct vm_capability vmcap;
869 
870 	bzero(&vmcap, sizeof(vmcap));
871 	vmcap.captype = cap;
872 	vmcap.capval = val;
873 
874 	return (vcpu_ioctl(vcpu, VM_SET_CAPABILITY, &vmcap));
875 }
876 
877 uint64_t *
vm_get_stats(struct vcpu * vcpu,struct timeval * ret_tv,int * ret_entries)878 vm_get_stats(struct vcpu *vcpu, struct timeval *ret_tv,
879 	     int *ret_entries)
880 {
881 	static _Thread_local uint64_t *stats_buf;
882 	static _Thread_local u_int stats_count;
883 	uint64_t *new_stats;
884 	struct vm_stats vmstats;
885 	u_int count, index;
886 	bool have_stats;
887 
888 	have_stats = false;
889 	count = 0;
890 	for (index = 0;; index += nitems(vmstats.statbuf)) {
891 		vmstats.index = index;
892 		if (vcpu_ioctl(vcpu, VM_STATS, &vmstats) != 0)
893 			break;
894 		if (stats_count < index + vmstats.num_entries) {
895 			new_stats = realloc(stats_buf,
896 			    (index + vmstats.num_entries) * sizeof(uint64_t));
897 			if (new_stats == NULL) {
898 				errno = ENOMEM;
899 				return (NULL);
900 			}
901 			stats_count = index + vmstats.num_entries;
902 			stats_buf = new_stats;
903 		}
904 		memcpy(stats_buf + index, vmstats.statbuf,
905 		    vmstats.num_entries * sizeof(uint64_t));
906 		count += vmstats.num_entries;
907 		have_stats = true;
908 
909 		if (vmstats.num_entries != nitems(vmstats.statbuf))
910 			break;
911 	}
912 	if (have_stats) {
913 		if (ret_entries)
914 			*ret_entries = count;
915 		if (ret_tv)
916 			*ret_tv = vmstats.tv;
917 		return (stats_buf);
918 	} else
919 		return (NULL);
920 }
921 
922 const char *
vm_get_stat_desc(struct vmctx * ctx,int index)923 vm_get_stat_desc(struct vmctx *ctx, int index)
924 {
925 	static struct vm_stat_desc statdesc;
926 
927 	statdesc.index = index;
928 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
929 		return (statdesc.desc);
930 	else
931 		return (NULL);
932 }
933 
934 #ifdef __amd64__
935 int
vm_get_gpa_pmap(struct vmctx * ctx,uint64_t gpa,uint64_t * pte,int * num)936 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
937 {
938 	int error, i;
939 	struct vm_gpa_pte gpapte;
940 
941 	bzero(&gpapte, sizeof(gpapte));
942 	gpapte.gpa = gpa;
943 
944 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
945 
946 	if (error == 0) {
947 		*num = gpapte.ptenum;
948 		for (i = 0; i < gpapte.ptenum; i++)
949 			pte[i] = gpapte.pte[i];
950 	}
951 
952 	return (error);
953 }
954 
955 int
vm_gla2gpa(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)956 vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
957     uint64_t gla, int prot, uint64_t *gpa, int *fault)
958 {
959 	struct vm_gla2gpa gg;
960 	int error;
961 
962 	bzero(&gg, sizeof(struct vm_gla2gpa));
963 	gg.prot = prot;
964 	gg.gla = gla;
965 	gg.paging = *paging;
966 
967 	error = vcpu_ioctl(vcpu, VM_GLA2GPA, &gg);
968 	if (error == 0) {
969 		*fault = gg.fault;
970 		*gpa = gg.gpa;
971 	}
972 	return (error);
973 }
974 #endif
975 
976 int
vm_gla2gpa_nofault(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)977 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
978     uint64_t gla, int prot, uint64_t *gpa, int *fault)
979 {
980 	struct vm_gla2gpa gg;
981 	int error;
982 
983 	bzero(&gg, sizeof(struct vm_gla2gpa));
984 	gg.prot = prot;
985 	gg.gla = gla;
986 	gg.paging = *paging;
987 
988 	error = vcpu_ioctl(vcpu, VM_GLA2GPA_NOFAULT, &gg);
989 	if (error == 0) {
990 		*fault = gg.fault;
991 		*gpa = gg.gpa;
992 	}
993 	return (error);
994 }
995 
996 #ifndef min
997 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
998 #endif
999 
1000 #ifdef __amd64__
1001 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct iovec * iov,int iovcnt,int * fault)1002 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
1003     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1004     int *fault)
1005 {
1006 	void *va;
1007 	uint64_t gpa, off;
1008 	int error, i, n;
1009 
1010 	for (i = 0; i < iovcnt; i++) {
1011 		iov[i].iov_base = 0;
1012 		iov[i].iov_len = 0;
1013 	}
1014 
1015 	while (len) {
1016 		assert(iovcnt > 0);
1017 		error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
1018 		if (error || *fault)
1019 			return (error);
1020 
1021 		off = gpa & PAGE_MASK;
1022 		n = MIN(len, PAGE_SIZE - off);
1023 
1024 		va = vm_map_gpa(vcpu->ctx, gpa, n);
1025 		if (va == NULL)
1026 			return (EFAULT);
1027 
1028 		iov->iov_base = va;
1029 		iov->iov_len = n;
1030 		iov++;
1031 		iovcnt--;
1032 
1033 		gla += n;
1034 		len -= n;
1035 	}
1036 	return (0);
1037 }
1038 #endif
1039 
1040 void
vm_copy_teardown(struct iovec * iov __unused,int iovcnt __unused)1041 vm_copy_teardown(struct iovec *iov __unused, int iovcnt __unused)
1042 {
1043 	/*
1044 	 * Intentionally empty.  This is used by the instruction
1045 	 * emulation code shared with the kernel.  The in-kernel
1046 	 * version of this is non-empty.
1047 	 */
1048 }
1049 
1050 void
vm_copyin(struct iovec * iov,void * vp,size_t len)1051 vm_copyin(struct iovec *iov, void *vp, size_t len)
1052 {
1053 	const char *src;
1054 	char *dst;
1055 	size_t n;
1056 
1057 	dst = vp;
1058 	while (len) {
1059 		assert(iov->iov_len);
1060 		n = min(len, iov->iov_len);
1061 		src = iov->iov_base;
1062 		bcopy(src, dst, n);
1063 
1064 		iov++;
1065 		dst += n;
1066 		len -= n;
1067 	}
1068 }
1069 
1070 void
vm_copyout(const void * vp,struct iovec * iov,size_t len)1071 vm_copyout(const void *vp, struct iovec *iov, size_t len)
1072 {
1073 	const char *src;
1074 	char *dst;
1075 	size_t n;
1076 
1077 	src = vp;
1078 	while (len) {
1079 		assert(iov->iov_len);
1080 		n = min(len, iov->iov_len);
1081 		dst = iov->iov_base;
1082 		bcopy(src, dst, n);
1083 
1084 		iov++;
1085 		src += n;
1086 		len -= n;
1087 	}
1088 }
1089 
1090 static int
vm_get_cpus(struct vmctx * ctx,int which,cpuset_t * cpus)1091 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1092 {
1093 	struct vm_cpuset vm_cpuset;
1094 	int error;
1095 
1096 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1097 	vm_cpuset.which = which;
1098 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1099 	vm_cpuset.cpus = cpus;
1100 
1101 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1102 	return (error);
1103 }
1104 
1105 int
vm_active_cpus(struct vmctx * ctx,cpuset_t * cpus)1106 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1107 {
1108 
1109 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1110 }
1111 
1112 int
vm_suspended_cpus(struct vmctx * ctx,cpuset_t * cpus)1113 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1114 {
1115 
1116 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1117 }
1118 
1119 int
vm_debug_cpus(struct vmctx * ctx,cpuset_t * cpus)1120 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1121 {
1122 
1123 	return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1124 }
1125 
1126 int
vm_activate_cpu(struct vcpu * vcpu)1127 vm_activate_cpu(struct vcpu *vcpu)
1128 {
1129 	struct vm_activate_cpu ac;
1130 	int error;
1131 
1132 	bzero(&ac, sizeof(struct vm_activate_cpu));
1133 	error = vcpu_ioctl(vcpu, VM_ACTIVATE_CPU, &ac);
1134 	return (error);
1135 }
1136 
1137 int
vm_suspend_all_cpus(struct vmctx * ctx)1138 vm_suspend_all_cpus(struct vmctx *ctx)
1139 {
1140 	struct vm_activate_cpu ac;
1141 	int error;
1142 
1143 	bzero(&ac, sizeof(struct vm_activate_cpu));
1144 	ac.vcpuid = -1;
1145 	error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1146 	return (error);
1147 }
1148 
1149 int
vm_suspend_cpu(struct vcpu * vcpu)1150 vm_suspend_cpu(struct vcpu *vcpu)
1151 {
1152 	struct vm_activate_cpu ac;
1153 	int error;
1154 
1155 	bzero(&ac, sizeof(struct vm_activate_cpu));
1156 	error = vcpu_ioctl(vcpu, VM_SUSPEND_CPU, &ac);
1157 	return (error);
1158 }
1159 
1160 int
vm_resume_cpu(struct vcpu * vcpu)1161 vm_resume_cpu(struct vcpu *vcpu)
1162 {
1163 	struct vm_activate_cpu ac;
1164 	int error;
1165 
1166 	bzero(&ac, sizeof(struct vm_activate_cpu));
1167 	error = vcpu_ioctl(vcpu, VM_RESUME_CPU, &ac);
1168 	return (error);
1169 }
1170 
1171 int
vm_resume_all_cpus(struct vmctx * ctx)1172 vm_resume_all_cpus(struct vmctx *ctx)
1173 {
1174 	struct vm_activate_cpu ac;
1175 	int error;
1176 
1177 	bzero(&ac, sizeof(struct vm_activate_cpu));
1178 	ac.vcpuid = -1;
1179 	error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1180 	return (error);
1181 }
1182 
1183 #ifdef __amd64__
1184 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)1185 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1186 {
1187 	struct vm_intinfo vmii;
1188 	int error;
1189 
1190 	bzero(&vmii, sizeof(struct vm_intinfo));
1191 	error = vcpu_ioctl(vcpu, VM_GET_INTINFO, &vmii);
1192 	if (error == 0) {
1193 		*info1 = vmii.info1;
1194 		*info2 = vmii.info2;
1195 	}
1196 	return (error);
1197 }
1198 
1199 int
vm_set_intinfo(struct vcpu * vcpu,uint64_t info1)1200 vm_set_intinfo(struct vcpu *vcpu, uint64_t info1)
1201 {
1202 	struct vm_intinfo vmii;
1203 	int error;
1204 
1205 	bzero(&vmii, sizeof(struct vm_intinfo));
1206 	vmii.info1 = info1;
1207 	error = vcpu_ioctl(vcpu, VM_SET_INTINFO, &vmii);
1208 	return (error);
1209 }
1210 #endif
1211 
1212 #ifdef WITH_VMMAPI_SNAPSHOT
1213 int
vm_restart_instruction(struct vcpu * vcpu)1214 vm_restart_instruction(struct vcpu *vcpu)
1215 {
1216 	int arg;
1217 
1218 	return (vcpu_ioctl(vcpu, VM_RESTART_INSTRUCTION, &arg));
1219 }
1220 
1221 int
vm_snapshot_req(struct vmctx * ctx,struct vm_snapshot_meta * meta)1222 vm_snapshot_req(struct vmctx *ctx, struct vm_snapshot_meta *meta)
1223 {
1224 
1225 	if (ioctl(ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) {
1226 #ifdef SNAPSHOT_DEBUG
1227 		fprintf(stderr, "%s: snapshot failed for %s: %d\r\n",
1228 		    __func__, meta->dev_name, errno);
1229 #endif
1230 		return (-1);
1231 	}
1232 	return (0);
1233 }
1234 
1235 int
vm_restore_time(struct vmctx * ctx)1236 vm_restore_time(struct vmctx *ctx)
1237 {
1238 	int dummy;
1239 
1240 	dummy = 0;
1241 	return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy));
1242 }
1243 #endif
1244 
1245 int
vm_set_topology(struct vmctx * ctx,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)1246 vm_set_topology(struct vmctx *ctx,
1247     uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1248 {
1249 	struct vm_cpu_topology topology;
1250 
1251 	bzero(&topology, sizeof (struct vm_cpu_topology));
1252 	topology.sockets = sockets;
1253 	topology.cores = cores;
1254 	topology.threads = threads;
1255 	topology.maxcpus = maxcpus;
1256 	return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1257 }
1258 
1259 int
vm_get_topology(struct vmctx * ctx,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)1260 vm_get_topology(struct vmctx *ctx,
1261     uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1262 {
1263 	struct vm_cpu_topology topology;
1264 	int error;
1265 
1266 	bzero(&topology, sizeof (struct vm_cpu_topology));
1267 	error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1268 	if (error == 0) {
1269 		*sockets = topology.sockets;
1270 		*cores = topology.cores;
1271 		*threads = topology.threads;
1272 		*maxcpus = topology.maxcpus;
1273 	}
1274 	return (error);
1275 }
1276 
1277 int
vm_limit_rights(struct vmctx * ctx)1278 vm_limit_rights(struct vmctx *ctx)
1279 {
1280 	cap_rights_t rights;
1281 
1282 	cap_rights_init(&rights, CAP_IOCTL, CAP_MMAP_RW);
1283 	if (caph_rights_limit(ctx->fd, &rights) != 0)
1284 		return (-1);
1285 	if (caph_ioctls_limit(ctx->fd, vm_ioctl_cmds, vm_ioctl_ncmds) != 0)
1286 		return (-1);
1287 	return (0);
1288 }
1289 
1290 /*
1291  * Avoid using in new code.  Operations on the fd should be wrapped here so that
1292  * capability rights can be kept in sync.
1293  */
1294 int
vm_get_device_fd(struct vmctx * ctx)1295 vm_get_device_fd(struct vmctx *ctx)
1296 {
1297 
1298 	return (ctx->fd);
1299 }
1300 
1301 /* Legacy interface, do not use. */
1302 const cap_ioctl_t *
vm_get_ioctls(size_t * len)1303 vm_get_ioctls(size_t *len)
1304 {
1305 	cap_ioctl_t *cmds;
1306 	size_t sz;
1307 
1308 	if (len == NULL) {
1309 		sz = vm_ioctl_ncmds * sizeof(vm_ioctl_cmds[0]);
1310 		cmds = malloc(sz);
1311 		if (cmds == NULL)
1312 			return (NULL);
1313 		bcopy(vm_ioctl_cmds, cmds, sz);
1314 		return (cmds);
1315 	}
1316 
1317 	*len = vm_ioctl_ncmds;
1318 	return (NULL);
1319 }
1320