1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/param.h>
30 #include <sys/capsicum.h>
31 #include <sys/cpuset.h>
32 #include <sys/domainset.h>
33 #include <sys/sysctl.h>
34 #include <sys/ioctl.h>
35 #include <sys/mman.h>
36 #include <sys/linker.h>
37 #include <sys/module.h>
38 #include <sys/_iovec.h>
39
40 #include <capsicum_helpers.h>
41 #include <err.h>
42 #include <errno.h>
43 #include <stdbool.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <assert.h>
47 #include <string.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50
51 #include <libutil.h>
52
53 #include <vm/vm.h>
54 #include <machine/vmm.h>
55 #ifdef WITH_VMMAPI_SNAPSHOT
56 #include <machine/vmm_snapshot.h>
57 #endif
58
59 #include <dev/vmm/vmm_dev.h>
60
61 #include "vmmapi.h"
62 #include "internal.h"
63
64 #define MB (1024 * 1024UL)
65 #define GB (1024 * 1024 * 1024UL)
66
67 #ifdef __amd64__
68 #define VM_LOWMEM_LIMIT (3 * GB)
69 #else
70 #define VM_LOWMEM_LIMIT 0
71 #endif
72 #define VM_HIGHMEM_BASE (4 * GB)
73
74 /*
75 * Size of the guard region before and after the virtual address space
76 * mapping the guest physical memory. This must be a multiple of the
77 * superpage size for performance reasons.
78 */
79 #define VM_MMAP_GUARD_SIZE (4 * MB)
80
81 #define PROT_RW (PROT_READ | PROT_WRITE)
82 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC)
83
84 static int
vm_device_open(const char * name)85 vm_device_open(const char *name)
86 {
87 char devpath[PATH_MAX];
88
89 assert(strlen(name) <= VM_MAX_NAMELEN);
90 (void)snprintf(devpath, sizeof(devpath), "/dev/vmm/%s", name);
91 return (open(devpath, O_RDWR));
92 }
93
94 static int
vm_ctl_open(void)95 vm_ctl_open(void)
96 {
97 if (modfind("vmm") < 0)
98 (void)kldload("vmm");
99 return (open("/dev/vmmctl", O_RDWR, 0));
100 }
101
102 static int
vm_ctl_create(const char * name,int ctlfd)103 vm_ctl_create(const char *name, int ctlfd)
104 {
105 struct vmmctl_vm_create vmc;
106
107 memset(&vmc, 0, sizeof(vmc));
108 if (strlcpy(vmc.name, name, sizeof(vmc.name)) >= sizeof(vmc.name)) {
109 errno = ENAMETOOLONG;
110 return (-1);
111 }
112 return (ioctl(ctlfd, VMMCTL_VM_CREATE, &vmc));
113 }
114
115 int
vm_create(const char * name)116 vm_create(const char *name)
117 {
118 int error, fd;
119
120 fd = vm_ctl_open();
121 if (fd < 0)
122 return (-1);
123
124 error = vm_ctl_create(name, fd);
125 if (error != 0) {
126 error = errno;
127 (void)close(fd);
128 errno = error;
129 return (-1);
130 }
131 (void)close(fd);
132 return (0);
133 }
134
135 struct vmctx *
vm_open(const char * name)136 vm_open(const char *name)
137 {
138 return (vm_openf(name, 0));
139 }
140
141 struct vmctx *
vm_openf(const char * name,int flags)142 vm_openf(const char *name, int flags)
143 {
144 struct vmctx *vm;
145 int saved_errno;
146 bool created;
147
148 created = false;
149
150 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
151 assert(vm != NULL);
152
153 vm->fd = vm->ctlfd = -1;
154 vm->memflags = 0;
155 vm->name = (char *)(vm + 1);
156 strcpy(vm->name, name);
157 memset(vm->memsegs, 0, sizeof(vm->memsegs));
158
159 if ((vm->ctlfd = vm_ctl_open()) < 0)
160 goto err;
161
162 vm->fd = vm_device_open(vm->name);
163 if (vm->fd < 0 && errno == ENOENT) {
164 if (flags & VMMAPI_OPEN_CREATE) {
165 if (vm_ctl_create(vm->name, vm->ctlfd) != 0)
166 goto err;
167 vm->fd = vm_device_open(vm->name);
168 created = true;
169 }
170 }
171 if (vm->fd < 0)
172 goto err;
173
174 if (!created && (flags & VMMAPI_OPEN_REINIT) != 0 && vm_reinit(vm) != 0)
175 goto err;
176
177 return (vm);
178 err:
179 saved_errno = errno;
180 if (created)
181 vm_destroy(vm);
182 else
183 vm_close(vm);
184 errno = saved_errno;
185 return (NULL);
186 }
187
188 void
vm_close(struct vmctx * vm)189 vm_close(struct vmctx *vm)
190 {
191 assert(vm != NULL);
192
193 if (vm->fd >= 0)
194 (void)close(vm->fd);
195 if (vm->ctlfd >= 0)
196 (void)close(vm->ctlfd);
197 free(vm);
198 }
199
200 void
vm_destroy(struct vmctx * vm)201 vm_destroy(struct vmctx *vm)
202 {
203 struct vmmctl_vm_destroy vmd;
204
205 memset(&vmd, 0, sizeof(vmd));
206 (void)strlcpy(vmd.name, vm->name, sizeof(vmd.name));
207 if (ioctl(vm->ctlfd, VMMCTL_VM_DESTROY, &vmd) != 0)
208 warn("ioctl(VMMCTL_VM_DESTROY)");
209
210 vm_close(vm);
211 }
212
213 struct vcpu *
vm_vcpu_open(struct vmctx * ctx,int vcpuid)214 vm_vcpu_open(struct vmctx *ctx, int vcpuid)
215 {
216 struct vcpu *vcpu;
217
218 vcpu = malloc(sizeof(*vcpu));
219 vcpu->ctx = ctx;
220 vcpu->vcpuid = vcpuid;
221 return (vcpu);
222 }
223
224 void
vm_vcpu_close(struct vcpu * vcpu)225 vm_vcpu_close(struct vcpu *vcpu)
226 {
227 free(vcpu);
228 }
229
230 int
vcpu_id(struct vcpu * vcpu)231 vcpu_id(struct vcpu *vcpu)
232 {
233 return (vcpu->vcpuid);
234 }
235
236 int
vm_parse_memsize(const char * opt,size_t * ret_memsize)237 vm_parse_memsize(const char *opt, size_t *ret_memsize)
238 {
239 char *endptr;
240 size_t optval;
241 int error;
242
243 optval = strtoul(opt, &endptr, 0);
244 if (*opt != '\0' && *endptr == '\0') {
245 /*
246 * For the sake of backward compatibility if the memory size
247 * specified on the command line is less than a megabyte then
248 * it is interpreted as being in units of MB.
249 */
250 if (optval < MB)
251 optval *= MB;
252 *ret_memsize = optval;
253 error = 0;
254 } else
255 error = expand_number(opt, ret_memsize);
256
257 return (error);
258 }
259
260 uint32_t
vm_get_lowmem_limit(struct vmctx * ctx __unused)261 vm_get_lowmem_limit(struct vmctx *ctx __unused)
262 {
263
264 return (VM_LOWMEM_LIMIT);
265 }
266
267 void
vm_set_memflags(struct vmctx * ctx,int flags)268 vm_set_memflags(struct vmctx *ctx, int flags)
269 {
270
271 ctx->memflags = flags;
272 }
273
274 int
vm_get_memflags(struct vmctx * ctx)275 vm_get_memflags(struct vmctx *ctx)
276 {
277
278 return (ctx->memflags);
279 }
280
281 /*
282 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
283 */
284 int
vm_mmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,int segid,vm_ooffset_t off,size_t len,int prot)285 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
286 size_t len, int prot)
287 {
288 struct vm_memmap memmap;
289 int error, flags;
290
291 memmap.gpa = gpa;
292 memmap.segid = segid;
293 memmap.segoff = off;
294 memmap.len = len;
295 memmap.prot = prot;
296 memmap.flags = 0;
297
298 if (ctx->memflags & VM_MEM_F_WIRED)
299 memmap.flags |= VM_MEMMAP_F_WIRED;
300
301 /*
302 * If this mapping already exists then don't create it again. This
303 * is the common case for SYSMEM mappings created by bhyveload(8).
304 */
305 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
306 if (error == 0 && gpa == memmap.gpa) {
307 if (segid != memmap.segid || off != memmap.segoff ||
308 prot != memmap.prot || flags != memmap.flags) {
309 errno = EEXIST;
310 return (-1);
311 } else {
312 return (0);
313 }
314 }
315
316 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
317 return (error);
318 }
319
320 int
vm_get_guestmem_from_ctx(struct vmctx * ctx,char ** guest_baseaddr,size_t * lowmem_size,size_t * highmem_size)321 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr,
322 size_t *lowmem_size, size_t *highmem_size)
323 {
324
325 *guest_baseaddr = ctx->baseaddr;
326 *lowmem_size = ctx->lowmem_size;
327 *highmem_size = ctx->highmem_size;
328 return (0);
329 }
330
331 int
vm_munmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,size_t len)332 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
333 {
334 struct vm_munmap munmap;
335 int error;
336
337 munmap.gpa = gpa;
338 munmap.len = len;
339
340 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
341 return (error);
342 }
343
344 int
vm_mmap_getnext(struct vmctx * ctx,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)345 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
346 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
347 {
348 struct vm_memmap memmap;
349 int error;
350
351 bzero(&memmap, sizeof(struct vm_memmap));
352 memmap.gpa = *gpa;
353 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
354 if (error == 0) {
355 *gpa = memmap.gpa;
356 *segid = memmap.segid;
357 *segoff = memmap.segoff;
358 *len = memmap.len;
359 *prot = memmap.prot;
360 *flags = memmap.flags;
361 }
362 return (error);
363 }
364
365 /*
366 * Return 0 if the segments are identical and non-zero otherwise.
367 *
368 * This is slightly complicated by the fact that only device memory segments
369 * are named.
370 */
371 static int
cmpseg(size_t len,const char * str,size_t len2,const char * str2)372 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
373 {
374
375 if (len == len2) {
376 if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
377 return (0);
378 }
379 return (-1);
380 }
381
382 static int
vm_alloc_memseg(struct vmctx * ctx,int segid,size_t len,const char * name,int ds_policy,domainset_t * ds_mask,size_t ds_size)383 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name,
384 int ds_policy, domainset_t *ds_mask, size_t ds_size)
385 {
386 struct vm_memseg memseg;
387 size_t n;
388 int error;
389
390 /*
391 * If the memory segment has already been created then just return.
392 * This is the usual case for the SYSMEM segment created by userspace
393 * loaders like bhyveload(8).
394 */
395 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
396 sizeof(memseg.name));
397 if (error)
398 return (error);
399
400 if (memseg.len != 0) {
401 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
402 errno = EINVAL;
403 return (-1);
404 } else {
405 return (0);
406 }
407 }
408
409 bzero(&memseg, sizeof(struct vm_memseg));
410 memseg.segid = segid;
411 memseg.len = len;
412 if (ds_mask == NULL) {
413 memseg.ds_policy = DOMAINSET_POLICY_INVALID;
414 } else {
415 memseg.ds_policy = ds_policy;
416 memseg.ds_mask = ds_mask;
417 memseg.ds_mask_size = ds_size;
418 }
419 if (name != NULL) {
420 n = strlcpy(memseg.name, name, sizeof(memseg.name));
421 if (n >= sizeof(memseg.name)) {
422 errno = ENAMETOOLONG;
423 return (-1);
424 }
425 }
426
427 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
428 return (error);
429 }
430
431 int
vm_get_memseg(struct vmctx * ctx,int segid,size_t * lenp,char * namebuf,size_t bufsize)432 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
433 size_t bufsize)
434 {
435 struct vm_memseg memseg;
436 size_t n;
437 int error;
438
439 bzero(&memseg, sizeof(memseg));
440 memseg.segid = segid;
441 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
442 if (error == 0) {
443 *lenp = memseg.len;
444 n = strlcpy(namebuf, memseg.name, bufsize);
445 if (n >= bufsize) {
446 errno = ENAMETOOLONG;
447 error = -1;
448 }
449 }
450 return (error);
451 }
452
453 static int
map_memory_segment(struct vmctx * ctx,int segid,vm_paddr_t gpa,size_t len,size_t segoff,char * base)454 map_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len,
455 size_t segoff, char *base)
456 {
457 char *ptr;
458 int error, flags;
459
460 /* Map 'len' bytes starting at 'gpa' in the guest address space */
461 error = vm_mmap_memseg(ctx, gpa, segid, segoff, len, PROT_ALL);
462 if (error)
463 return (error);
464
465 flags = MAP_SHARED | MAP_FIXED;
466 if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
467 flags |= MAP_NOCORE;
468
469 /* mmap into the process address space on the host */
470 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
471 if (ptr == MAP_FAILED)
472 return (-1);
473
474 return (0);
475 }
476
477 /*
478 * Allocates and maps virtual machine memory segments according
479 * to the NUMA topology specified by the 'doms' array.
480 *
481 * The domains are laid out sequentially in the guest's physical address space.
482 * The [VM_LOWMEM_LIMIT, VM_HIGHMEM_BASE) address range is skipped and
483 * left unmapped.
484 */
485 int
vm_setup_memory_domains(struct vmctx * ctx,enum vm_mmap_style vms,struct vm_mem_domain * doms,int ndoms)486 vm_setup_memory_domains(struct vmctx *ctx, enum vm_mmap_style vms,
487 struct vm_mem_domain *doms, int ndoms)
488 {
489 size_t low_len, len, totalsize;
490 struct vm_mem_domain *dom;
491 struct vm_memseg memseg;
492 char *baseaddr, *ptr;
493 int error, i, segid;
494 vm_paddr_t gpa;
495
496 /* Sanity checks. */
497 assert(vms == VM_MMAP_ALL);
498 if (doms == NULL || ndoms <= 0 || ndoms > VM_MAXMEMDOM) {
499 errno = EINVAL;
500 return (-1);
501 }
502
503 /* Calculate total memory size. */
504 totalsize = 0;
505 for (i = 0; i < ndoms; i++)
506 totalsize += doms[i].size;
507
508 if (totalsize > VM_LOWMEM_LIMIT)
509 totalsize = VM_HIGHMEM_BASE + (totalsize - VM_LOWMEM_LIMIT);
510
511 /*
512 * Stake out a contiguous region covering the guest physical memory
513 * and the adjoining guard regions.
514 */
515 len = VM_MMAP_GUARD_SIZE + totalsize + VM_MMAP_GUARD_SIZE;
516 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
517 if (ptr == MAP_FAILED)
518 return (-1);
519 baseaddr = ptr + VM_MMAP_GUARD_SIZE;
520
521 /*
522 * Allocate and map memory segments for the virtual machine.
523 */
524 gpa = VM_LOWMEM_LIMIT > 0 ? 0 : VM_HIGHMEM_BASE;
525 ctx->lowmem_size = 0;
526 ctx->highmem_size = 0;
527 for (i = 0; i < ndoms; i++) {
528 segid = VM_SYSMEM + i;
529 dom = &doms[i];
530
531 /*
532 * Check if the memory segment already exists.
533 * If 'ndoms' is greater than one, refuse to proceed if the
534 * memseg already exists. If only one domain was requested, use
535 * the existing segment to preserve the behaviour of the previous
536 * implementation.
537 *
538 * Splitting existing memory segments is tedious and
539 * error-prone, which is why we don't support NUMA
540 * domains for bhyveload(8)-loaded VMs.
541 */
542 error = vm_get_memseg(ctx, segid, &len, memseg.name,
543 sizeof(memseg.name));
544 if (error == 0 && len != 0) {
545 if (ndoms != 1) {
546 errno = EEXIST;
547 return (-1);
548 } else
549 doms[0].size = len;
550 } else {
551 error = vm_alloc_memseg(ctx, segid, dom->size, NULL,
552 dom->ds_policy, dom->ds_mask, dom->ds_size);
553 if (error)
554 return (error);
555 }
556
557 /*
558 * If a domain is split by VM_LOWMEM_LIMIT then break
559 * its segment mapping into two parts, one below VM_LOWMEM_LIMIT
560 * and one above VM_HIGHMEM_BASE.
561 */
562 if (gpa <= VM_LOWMEM_LIMIT &&
563 gpa + dom->size > VM_LOWMEM_LIMIT) {
564 low_len = VM_LOWMEM_LIMIT - gpa;
565 error = map_memory_segment(ctx, segid, gpa, low_len, 0,
566 baseaddr);
567 if (error)
568 return (error);
569 ctx->lowmem_size = VM_LOWMEM_LIMIT;
570 /* Map the remainder. */
571 gpa = VM_HIGHMEM_BASE;
572 len = dom->size - low_len;
573 error = map_memory_segment(ctx, segid, gpa, len,
574 low_len, baseaddr);
575 if (error)
576 return (error);
577 } else {
578 len = dom->size;
579 error = map_memory_segment(ctx, segid, gpa, len, 0,
580 baseaddr);
581 if (error)
582 return (error);
583 }
584 if (gpa <= VM_LOWMEM_LIMIT)
585 ctx->lowmem_size += len;
586 else
587 ctx->highmem_size += len;
588 gpa += len;
589 }
590 ctx->baseaddr = baseaddr;
591
592 return (0);
593 }
594
595 int
vm_setup_memory(struct vmctx * ctx,size_t memsize,enum vm_mmap_style vms)596 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
597 {
598 struct vm_mem_domain dom0;
599
600 memset(&dom0, 0, sizeof(dom0));
601 dom0.ds_policy = DOMAINSET_POLICY_INVALID;
602 dom0.size = memsize;
603
604 return (vm_setup_memory_domains(ctx, vms, &dom0, 1));
605 }
606
607 /*
608 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
609 * the lowmem or highmem regions.
610 *
611 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
612 * The instruction emulation code depends on this behavior.
613 */
614 void *
vm_map_gpa(struct vmctx * ctx,vm_paddr_t gaddr,size_t len)615 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
616 {
617 vm_size_t lowsize, highsize;
618
619 lowsize = ctx->lowmem_size;
620 if (lowsize > 0) {
621 if (gaddr < lowsize && len <= lowsize && gaddr + len <= lowsize)
622 return (ctx->baseaddr + gaddr);
623 }
624
625 highsize = ctx->highmem_size;
626 if (highsize > 0 && gaddr >= VM_HIGHMEM_BASE) {
627 if (gaddr < VM_HIGHMEM_BASE + highsize && len <= highsize &&
628 gaddr + len <= VM_HIGHMEM_BASE + highsize)
629 return (ctx->baseaddr + gaddr);
630 }
631
632 return (NULL);
633 }
634
635 vm_paddr_t
vm_rev_map_gpa(struct vmctx * ctx,void * addr)636 vm_rev_map_gpa(struct vmctx *ctx, void *addr)
637 {
638 vm_paddr_t offaddr;
639 vm_size_t lowsize, highsize;
640
641 offaddr = (char *)addr - ctx->baseaddr;
642
643 lowsize = ctx->lowmem_size;
644 if (lowsize > 0)
645 if (offaddr <= lowsize)
646 return (offaddr);
647
648 highsize = ctx->highmem_size;
649 if (highsize > 0)
650 if (offaddr >= VM_HIGHMEM_BASE &&
651 offaddr < VM_HIGHMEM_BASE + highsize)
652 return (offaddr);
653
654 return ((vm_paddr_t)-1);
655 }
656
657 const char *
vm_get_name(struct vmctx * ctx)658 vm_get_name(struct vmctx *ctx)
659 {
660
661 return (ctx->name);
662 }
663
664 size_t
vm_get_lowmem_size(struct vmctx * ctx)665 vm_get_lowmem_size(struct vmctx *ctx)
666 {
667 return (ctx->lowmem_size);
668 }
669
670 vm_paddr_t
vm_get_highmem_base(struct vmctx * ctx __unused)671 vm_get_highmem_base(struct vmctx *ctx __unused)
672 {
673
674 return (VM_HIGHMEM_BASE);
675 }
676
677 size_t
vm_get_highmem_size(struct vmctx * ctx)678 vm_get_highmem_size(struct vmctx *ctx)
679 {
680 return (ctx->highmem_size);
681 }
682
683 void *
vm_create_devmem(struct vmctx * ctx,int segid,const char * name,size_t len)684 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
685 {
686 char pathname[MAXPATHLEN];
687 size_t len2;
688 char *base, *ptr;
689 int fd, error, flags;
690
691 fd = -1;
692 ptr = MAP_FAILED;
693 if (name == NULL || strlen(name) == 0) {
694 errno = EINVAL;
695 goto done;
696 }
697
698 error = vm_alloc_memseg(ctx, segid, len, name, 0, NULL, 0);
699 if (error)
700 goto done;
701
702 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
703 strlcat(pathname, ctx->name, sizeof(pathname));
704 strlcat(pathname, ".", sizeof(pathname));
705 strlcat(pathname, name, sizeof(pathname));
706
707 fd = open(pathname, O_RDWR);
708 if (fd < 0)
709 goto done;
710
711 /*
712 * Stake out a contiguous region covering the device memory and the
713 * adjoining guard regions.
714 */
715 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
716 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
717 0);
718 if (base == MAP_FAILED)
719 goto done;
720
721 flags = MAP_SHARED | MAP_FIXED;
722 if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
723 flags |= MAP_NOCORE;
724
725 /* mmap the devmem region in the host address space */
726 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
727 done:
728 if (fd >= 0)
729 close(fd);
730 return (ptr);
731 }
732
733 int
vcpu_ioctl(struct vcpu * vcpu,u_long cmd,void * arg)734 vcpu_ioctl(struct vcpu *vcpu, u_long cmd, void *arg)
735 {
736 /*
737 * XXX: fragile, handle with care
738 * Assumes that the first field of the ioctl data
739 * is the vcpuid.
740 */
741 *(int *)arg = vcpu->vcpuid;
742 return (ioctl(vcpu->ctx->fd, cmd, arg));
743 }
744
745 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)746 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
747 {
748 int error;
749 struct vm_register vmreg;
750
751 bzero(&vmreg, sizeof(vmreg));
752 vmreg.regnum = reg;
753 vmreg.regval = val;
754
755 error = vcpu_ioctl(vcpu, VM_SET_REGISTER, &vmreg);
756 return (error);
757 }
758
759 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * ret_val)760 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *ret_val)
761 {
762 int error;
763 struct vm_register vmreg;
764
765 bzero(&vmreg, sizeof(vmreg));
766 vmreg.regnum = reg;
767
768 error = vcpu_ioctl(vcpu, VM_GET_REGISTER, &vmreg);
769 *ret_val = vmreg.regval;
770 return (error);
771 }
772
773 int
vm_set_register_set(struct vcpu * vcpu,unsigned int count,const int * regnums,uint64_t * regvals)774 vm_set_register_set(struct vcpu *vcpu, unsigned int count,
775 const int *regnums, uint64_t *regvals)
776 {
777 int error;
778 struct vm_register_set vmregset;
779
780 bzero(&vmregset, sizeof(vmregset));
781 vmregset.count = count;
782 vmregset.regnums = regnums;
783 vmregset.regvals = regvals;
784
785 error = vcpu_ioctl(vcpu, VM_SET_REGISTER_SET, &vmregset);
786 return (error);
787 }
788
789 int
vm_get_register_set(struct vcpu * vcpu,unsigned int count,const int * regnums,uint64_t * regvals)790 vm_get_register_set(struct vcpu *vcpu, unsigned int count,
791 const int *regnums, uint64_t *regvals)
792 {
793 int error;
794 struct vm_register_set vmregset;
795
796 bzero(&vmregset, sizeof(vmregset));
797 vmregset.count = count;
798 vmregset.regnums = regnums;
799 vmregset.regvals = regvals;
800
801 error = vcpu_ioctl(vcpu, VM_GET_REGISTER_SET, &vmregset);
802 return (error);
803 }
804
805 int
vm_run(struct vcpu * vcpu,struct vm_run * vmrun)806 vm_run(struct vcpu *vcpu, struct vm_run *vmrun)
807 {
808 return (vcpu_ioctl(vcpu, VM_RUN, vmrun));
809 }
810
811 int
vm_suspend(struct vmctx * ctx,enum vm_suspend_how how)812 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
813 {
814 struct vm_suspend vmsuspend;
815
816 bzero(&vmsuspend, sizeof(vmsuspend));
817 vmsuspend.how = how;
818 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
819 }
820
821 int
vm_reinit(struct vmctx * ctx)822 vm_reinit(struct vmctx *ctx)
823 {
824
825 return (ioctl(ctx->fd, VM_REINIT, 0));
826 }
827
828 int
vm_capability_name2type(const char * capname)829 vm_capability_name2type(const char *capname)
830 {
831 int i;
832
833 for (i = 0; i < VM_CAP_MAX; i++) {
834 if (vm_capstrmap[i] != NULL &&
835 strcmp(vm_capstrmap[i], capname) == 0)
836 return (i);
837 }
838
839 return (-1);
840 }
841
842 const char *
vm_capability_type2name(int type)843 vm_capability_type2name(int type)
844 {
845 if (type >= 0 && type < VM_CAP_MAX)
846 return (vm_capstrmap[type]);
847
848 return (NULL);
849 }
850
851 int
vm_get_capability(struct vcpu * vcpu,enum vm_cap_type cap,int * retval)852 vm_get_capability(struct vcpu *vcpu, enum vm_cap_type cap, int *retval)
853 {
854 int error;
855 struct vm_capability vmcap;
856
857 bzero(&vmcap, sizeof(vmcap));
858 vmcap.captype = cap;
859
860 error = vcpu_ioctl(vcpu, VM_GET_CAPABILITY, &vmcap);
861 *retval = vmcap.capval;
862 return (error);
863 }
864
865 int
vm_set_capability(struct vcpu * vcpu,enum vm_cap_type cap,int val)866 vm_set_capability(struct vcpu *vcpu, enum vm_cap_type cap, int val)
867 {
868 struct vm_capability vmcap;
869
870 bzero(&vmcap, sizeof(vmcap));
871 vmcap.captype = cap;
872 vmcap.capval = val;
873
874 return (vcpu_ioctl(vcpu, VM_SET_CAPABILITY, &vmcap));
875 }
876
877 uint64_t *
vm_get_stats(struct vcpu * vcpu,struct timeval * ret_tv,int * ret_entries)878 vm_get_stats(struct vcpu *vcpu, struct timeval *ret_tv,
879 int *ret_entries)
880 {
881 static _Thread_local uint64_t *stats_buf;
882 static _Thread_local u_int stats_count;
883 uint64_t *new_stats;
884 struct vm_stats vmstats;
885 u_int count, index;
886 bool have_stats;
887
888 have_stats = false;
889 count = 0;
890 for (index = 0;; index += nitems(vmstats.statbuf)) {
891 vmstats.index = index;
892 if (vcpu_ioctl(vcpu, VM_STATS, &vmstats) != 0)
893 break;
894 if (stats_count < index + vmstats.num_entries) {
895 new_stats = realloc(stats_buf,
896 (index + vmstats.num_entries) * sizeof(uint64_t));
897 if (new_stats == NULL) {
898 errno = ENOMEM;
899 return (NULL);
900 }
901 stats_count = index + vmstats.num_entries;
902 stats_buf = new_stats;
903 }
904 memcpy(stats_buf + index, vmstats.statbuf,
905 vmstats.num_entries * sizeof(uint64_t));
906 count += vmstats.num_entries;
907 have_stats = true;
908
909 if (vmstats.num_entries != nitems(vmstats.statbuf))
910 break;
911 }
912 if (have_stats) {
913 if (ret_entries)
914 *ret_entries = count;
915 if (ret_tv)
916 *ret_tv = vmstats.tv;
917 return (stats_buf);
918 } else
919 return (NULL);
920 }
921
922 const char *
vm_get_stat_desc(struct vmctx * ctx,int index)923 vm_get_stat_desc(struct vmctx *ctx, int index)
924 {
925 static struct vm_stat_desc statdesc;
926
927 statdesc.index = index;
928 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
929 return (statdesc.desc);
930 else
931 return (NULL);
932 }
933
934 #ifdef __amd64__
935 int
vm_get_gpa_pmap(struct vmctx * ctx,uint64_t gpa,uint64_t * pte,int * num)936 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
937 {
938 int error, i;
939 struct vm_gpa_pte gpapte;
940
941 bzero(&gpapte, sizeof(gpapte));
942 gpapte.gpa = gpa;
943
944 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
945
946 if (error == 0) {
947 *num = gpapte.ptenum;
948 for (i = 0; i < gpapte.ptenum; i++)
949 pte[i] = gpapte.pte[i];
950 }
951
952 return (error);
953 }
954
955 int
vm_gla2gpa(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)956 vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
957 uint64_t gla, int prot, uint64_t *gpa, int *fault)
958 {
959 struct vm_gla2gpa gg;
960 int error;
961
962 bzero(&gg, sizeof(struct vm_gla2gpa));
963 gg.prot = prot;
964 gg.gla = gla;
965 gg.paging = *paging;
966
967 error = vcpu_ioctl(vcpu, VM_GLA2GPA, &gg);
968 if (error == 0) {
969 *fault = gg.fault;
970 *gpa = gg.gpa;
971 }
972 return (error);
973 }
974 #endif
975
976 int
vm_gla2gpa_nofault(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)977 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
978 uint64_t gla, int prot, uint64_t *gpa, int *fault)
979 {
980 struct vm_gla2gpa gg;
981 int error;
982
983 bzero(&gg, sizeof(struct vm_gla2gpa));
984 gg.prot = prot;
985 gg.gla = gla;
986 gg.paging = *paging;
987
988 error = vcpu_ioctl(vcpu, VM_GLA2GPA_NOFAULT, &gg);
989 if (error == 0) {
990 *fault = gg.fault;
991 *gpa = gg.gpa;
992 }
993 return (error);
994 }
995
996 #ifndef min
997 #define min(a,b) (((a) < (b)) ? (a) : (b))
998 #endif
999
1000 #ifdef __amd64__
1001 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct iovec * iov,int iovcnt,int * fault)1002 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
1003 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1004 int *fault)
1005 {
1006 void *va;
1007 uint64_t gpa, off;
1008 int error, i, n;
1009
1010 for (i = 0; i < iovcnt; i++) {
1011 iov[i].iov_base = 0;
1012 iov[i].iov_len = 0;
1013 }
1014
1015 while (len) {
1016 assert(iovcnt > 0);
1017 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
1018 if (error || *fault)
1019 return (error);
1020
1021 off = gpa & PAGE_MASK;
1022 n = MIN(len, PAGE_SIZE - off);
1023
1024 va = vm_map_gpa(vcpu->ctx, gpa, n);
1025 if (va == NULL)
1026 return (EFAULT);
1027
1028 iov->iov_base = va;
1029 iov->iov_len = n;
1030 iov++;
1031 iovcnt--;
1032
1033 gla += n;
1034 len -= n;
1035 }
1036 return (0);
1037 }
1038 #endif
1039
1040 void
vm_copy_teardown(struct iovec * iov __unused,int iovcnt __unused)1041 vm_copy_teardown(struct iovec *iov __unused, int iovcnt __unused)
1042 {
1043 /*
1044 * Intentionally empty. This is used by the instruction
1045 * emulation code shared with the kernel. The in-kernel
1046 * version of this is non-empty.
1047 */
1048 }
1049
1050 void
vm_copyin(struct iovec * iov,void * vp,size_t len)1051 vm_copyin(struct iovec *iov, void *vp, size_t len)
1052 {
1053 const char *src;
1054 char *dst;
1055 size_t n;
1056
1057 dst = vp;
1058 while (len) {
1059 assert(iov->iov_len);
1060 n = min(len, iov->iov_len);
1061 src = iov->iov_base;
1062 bcopy(src, dst, n);
1063
1064 iov++;
1065 dst += n;
1066 len -= n;
1067 }
1068 }
1069
1070 void
vm_copyout(const void * vp,struct iovec * iov,size_t len)1071 vm_copyout(const void *vp, struct iovec *iov, size_t len)
1072 {
1073 const char *src;
1074 char *dst;
1075 size_t n;
1076
1077 src = vp;
1078 while (len) {
1079 assert(iov->iov_len);
1080 n = min(len, iov->iov_len);
1081 dst = iov->iov_base;
1082 bcopy(src, dst, n);
1083
1084 iov++;
1085 src += n;
1086 len -= n;
1087 }
1088 }
1089
1090 static int
vm_get_cpus(struct vmctx * ctx,int which,cpuset_t * cpus)1091 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1092 {
1093 struct vm_cpuset vm_cpuset;
1094 int error;
1095
1096 bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1097 vm_cpuset.which = which;
1098 vm_cpuset.cpusetsize = sizeof(cpuset_t);
1099 vm_cpuset.cpus = cpus;
1100
1101 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1102 return (error);
1103 }
1104
1105 int
vm_active_cpus(struct vmctx * ctx,cpuset_t * cpus)1106 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1107 {
1108
1109 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1110 }
1111
1112 int
vm_suspended_cpus(struct vmctx * ctx,cpuset_t * cpus)1113 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1114 {
1115
1116 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1117 }
1118
1119 int
vm_debug_cpus(struct vmctx * ctx,cpuset_t * cpus)1120 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1121 {
1122
1123 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1124 }
1125
1126 int
vm_activate_cpu(struct vcpu * vcpu)1127 vm_activate_cpu(struct vcpu *vcpu)
1128 {
1129 struct vm_activate_cpu ac;
1130 int error;
1131
1132 bzero(&ac, sizeof(struct vm_activate_cpu));
1133 error = vcpu_ioctl(vcpu, VM_ACTIVATE_CPU, &ac);
1134 return (error);
1135 }
1136
1137 int
vm_suspend_all_cpus(struct vmctx * ctx)1138 vm_suspend_all_cpus(struct vmctx *ctx)
1139 {
1140 struct vm_activate_cpu ac;
1141 int error;
1142
1143 bzero(&ac, sizeof(struct vm_activate_cpu));
1144 ac.vcpuid = -1;
1145 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1146 return (error);
1147 }
1148
1149 int
vm_suspend_cpu(struct vcpu * vcpu)1150 vm_suspend_cpu(struct vcpu *vcpu)
1151 {
1152 struct vm_activate_cpu ac;
1153 int error;
1154
1155 bzero(&ac, sizeof(struct vm_activate_cpu));
1156 error = vcpu_ioctl(vcpu, VM_SUSPEND_CPU, &ac);
1157 return (error);
1158 }
1159
1160 int
vm_resume_cpu(struct vcpu * vcpu)1161 vm_resume_cpu(struct vcpu *vcpu)
1162 {
1163 struct vm_activate_cpu ac;
1164 int error;
1165
1166 bzero(&ac, sizeof(struct vm_activate_cpu));
1167 error = vcpu_ioctl(vcpu, VM_RESUME_CPU, &ac);
1168 return (error);
1169 }
1170
1171 int
vm_resume_all_cpus(struct vmctx * ctx)1172 vm_resume_all_cpus(struct vmctx *ctx)
1173 {
1174 struct vm_activate_cpu ac;
1175 int error;
1176
1177 bzero(&ac, sizeof(struct vm_activate_cpu));
1178 ac.vcpuid = -1;
1179 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1180 return (error);
1181 }
1182
1183 #ifdef __amd64__
1184 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)1185 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1186 {
1187 struct vm_intinfo vmii;
1188 int error;
1189
1190 bzero(&vmii, sizeof(struct vm_intinfo));
1191 error = vcpu_ioctl(vcpu, VM_GET_INTINFO, &vmii);
1192 if (error == 0) {
1193 *info1 = vmii.info1;
1194 *info2 = vmii.info2;
1195 }
1196 return (error);
1197 }
1198
1199 int
vm_set_intinfo(struct vcpu * vcpu,uint64_t info1)1200 vm_set_intinfo(struct vcpu *vcpu, uint64_t info1)
1201 {
1202 struct vm_intinfo vmii;
1203 int error;
1204
1205 bzero(&vmii, sizeof(struct vm_intinfo));
1206 vmii.info1 = info1;
1207 error = vcpu_ioctl(vcpu, VM_SET_INTINFO, &vmii);
1208 return (error);
1209 }
1210 #endif
1211
1212 #ifdef WITH_VMMAPI_SNAPSHOT
1213 int
vm_restart_instruction(struct vcpu * vcpu)1214 vm_restart_instruction(struct vcpu *vcpu)
1215 {
1216 int arg;
1217
1218 return (vcpu_ioctl(vcpu, VM_RESTART_INSTRUCTION, &arg));
1219 }
1220
1221 int
vm_snapshot_req(struct vmctx * ctx,struct vm_snapshot_meta * meta)1222 vm_snapshot_req(struct vmctx *ctx, struct vm_snapshot_meta *meta)
1223 {
1224
1225 if (ioctl(ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) {
1226 #ifdef SNAPSHOT_DEBUG
1227 fprintf(stderr, "%s: snapshot failed for %s: %d\r\n",
1228 __func__, meta->dev_name, errno);
1229 #endif
1230 return (-1);
1231 }
1232 return (0);
1233 }
1234
1235 int
vm_restore_time(struct vmctx * ctx)1236 vm_restore_time(struct vmctx *ctx)
1237 {
1238 int dummy;
1239
1240 dummy = 0;
1241 return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy));
1242 }
1243 #endif
1244
1245 int
vm_set_topology(struct vmctx * ctx,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)1246 vm_set_topology(struct vmctx *ctx,
1247 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1248 {
1249 struct vm_cpu_topology topology;
1250
1251 bzero(&topology, sizeof (struct vm_cpu_topology));
1252 topology.sockets = sockets;
1253 topology.cores = cores;
1254 topology.threads = threads;
1255 topology.maxcpus = maxcpus;
1256 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1257 }
1258
1259 int
vm_get_topology(struct vmctx * ctx,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)1260 vm_get_topology(struct vmctx *ctx,
1261 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1262 {
1263 struct vm_cpu_topology topology;
1264 int error;
1265
1266 bzero(&topology, sizeof (struct vm_cpu_topology));
1267 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1268 if (error == 0) {
1269 *sockets = topology.sockets;
1270 *cores = topology.cores;
1271 *threads = topology.threads;
1272 *maxcpus = topology.maxcpus;
1273 }
1274 return (error);
1275 }
1276
1277 int
vm_limit_rights(struct vmctx * ctx)1278 vm_limit_rights(struct vmctx *ctx)
1279 {
1280 cap_rights_t rights;
1281
1282 cap_rights_init(&rights, CAP_IOCTL, CAP_MMAP_RW);
1283 if (caph_rights_limit(ctx->fd, &rights) != 0)
1284 return (-1);
1285 if (caph_ioctls_limit(ctx->fd, vm_ioctl_cmds, vm_ioctl_ncmds) != 0)
1286 return (-1);
1287 return (0);
1288 }
1289
1290 /*
1291 * Avoid using in new code. Operations on the fd should be wrapped here so that
1292 * capability rights can be kept in sync.
1293 */
1294 int
vm_get_device_fd(struct vmctx * ctx)1295 vm_get_device_fd(struct vmctx *ctx)
1296 {
1297
1298 return (ctx->fd);
1299 }
1300
1301 /* Legacy interface, do not use. */
1302 const cap_ioctl_t *
vm_get_ioctls(size_t * len)1303 vm_get_ioctls(size_t *len)
1304 {
1305 cap_ioctl_t *cmds;
1306 size_t sz;
1307
1308 if (len == NULL) {
1309 sz = vm_ioctl_ncmds * sizeof(vm_ioctl_cmds[0]);
1310 cmds = malloc(sz);
1311 if (cmds == NULL)
1312 return (NULL);
1313 bcopy(vm_ioctl_cmds, cmds, sz);
1314 return (cmds);
1315 }
1316
1317 *len = vm_ioctl_ncmds;
1318 return (NULL);
1319 }
1320