xref: /freebsd/sys/vm/vm_reserv.c (revision ee511f83b386299d9ad0b4e7b141eed128eddf2b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_vm.h"
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mutex.h>
49 #include <sys/queue.h>
50 #include <sys/rwlock.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/bitstring.h>
55 #include <sys/counter.h>
56 #include <sys/ktr.h>
57 #include <sys/vmmeter.h>
58 #include <sys/smp.h>
59 
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_pagequeue.h>
67 #include <vm/vm_phys.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70 
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77 
78 #if VM_NRESERVLEVEL > 0
79 
80 /*
81  * Temporarily simulate two-level reservations.  Effectively, VM_LEVEL_0_* is
82  * level 1, and VM_SUBLEVEL_0_* is level 0.
83  */
84 #if VM_NRESERVLEVEL == 2
85 #undef VM_NRESERVLEVEL
86 #define	VM_NRESERVLEVEL		1
87 #if VM_LEVEL_0_ORDER == 4
88 #undef VM_LEVEL_0_ORDER
89 #define	VM_LEVEL_0_ORDER	(4 + VM_LEVEL_1_ORDER)
90 #define	VM_SUBLEVEL_0_NPAGES	(1 << 4)
91 #elif VM_LEVEL_0_ORDER == 7
92 #undef VM_LEVEL_0_ORDER
93 #define	VM_LEVEL_0_ORDER	(7 + VM_LEVEL_1_ORDER)
94 #define	VM_SUBLEVEL_0_NPAGES	(1 << 7)
95 #else
96 #error "Unsupported level 0 reservation size"
97 #endif
98 #define	VM_LEVEL_0_PSIND	2
99 #else
100 #define	VM_LEVEL_0_PSIND	1
101 #endif
102 
103 #ifndef VM_LEVEL_0_ORDER_MAX
104 #define	VM_LEVEL_0_ORDER_MAX	VM_LEVEL_0_ORDER
105 #endif
106 
107 /*
108  * The number of small pages that are contained in a level 0 reservation
109  */
110 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
111 #define	VM_LEVEL_0_NPAGES_MAX	(1 << VM_LEVEL_0_ORDER_MAX)
112 
113 /*
114  * The number of bits by which a physical address is shifted to obtain the
115  * reservation number
116  */
117 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
118 
119 /*
120  * The size of a level 0 reservation in bytes
121  */
122 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
123 
124 /*
125  * Computes the index of the small page underlying the given (object, pindex)
126  * within the reservation's array of small pages.
127  */
128 #define	VM_RESERV_INDEX(object, pindex)	\
129     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
130 
131 /*
132  * Number of elapsed ticks before we update the LRU queue position.  Used
133  * to reduce contention and churn on the list.
134  */
135 #define	PARTPOPSLOP	1
136 
137 /*
138  * The reservation structure
139  *
140  * A reservation structure is constructed whenever a large physical page is
141  * speculatively allocated to an object.  The reservation provides the small
142  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
143  * within that object.  The reservation's "popcnt" tracks the number of these
144  * small physical pages that are in use at any given time.  When and if the
145  * reservation is not fully utilized, it appears in the queue of partially
146  * populated reservations.  The reservation always appears on the containing
147  * object's list of reservations.
148  *
149  * A partially populated reservation can be broken and reclaimed at any time.
150  *
151  * c - constant after boot
152  * d - vm_reserv_domain_lock
153  * o - vm_reserv_object_lock
154  * r - vm_reserv_lock
155  * s - vm_reserv_domain_scan_lock
156  */
157 struct vm_reserv {
158 	struct mtx	lock;			/* reservation lock. */
159 	TAILQ_ENTRY(vm_reserv) partpopq;	/* (d, r) per-domain queue. */
160 	LIST_ENTRY(vm_reserv) objq;		/* (o, r) object queue */
161 	vm_object_t	object;			/* (o, r) containing object */
162 	vm_pindex_t	pindex;			/* (o, r) offset in object */
163 	vm_page_t	pages;			/* (c) first page  */
164 	uint16_t	popcnt;			/* (r) # of pages in use */
165 	uint8_t		domain;			/* (c) NUMA domain. */
166 	char		inpartpopq;		/* (d, r) */
167 	int		lasttick;		/* (r) last pop update tick. */
168 	bitstr_t	bit_decl(popmap, VM_LEVEL_0_NPAGES_MAX);
169 						/* (r) bit vector, used pages */
170 };
171 
172 TAILQ_HEAD(vm_reserv_queue, vm_reserv);
173 
174 #define	vm_reserv_lockptr(rv)		(&(rv)->lock)
175 #define	vm_reserv_assert_locked(rv)					\
176 	    mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
177 #define	vm_reserv_lock(rv)		mtx_lock(vm_reserv_lockptr(rv))
178 #define	vm_reserv_trylock(rv)		mtx_trylock(vm_reserv_lockptr(rv))
179 #define	vm_reserv_unlock(rv)		mtx_unlock(vm_reserv_lockptr(rv))
180 
181 /*
182  * The reservation array
183  *
184  * This array is analoguous in function to vm_page_array.  It differs in the
185  * respect that it may contain a greater number of useful reservation
186  * structures than there are (physical) superpages.  These "invalid"
187  * reservation structures exist to trade-off space for time in the
188  * implementation of vm_reserv_from_page().  Invalid reservation structures are
189  * distinguishable from "valid" reservation structures by inspecting the
190  * reservation's "pages" field.  Invalid reservation structures have a NULL
191  * "pages" field.
192  *
193  * vm_reserv_from_page() maps a small (physical) page to an element of this
194  * array by computing a physical reservation number from the page's physical
195  * address.  The physical reservation number is used as the array index.
196  *
197  * An "active" reservation is a valid reservation structure that has a non-NULL
198  * "object" field and a non-zero "popcnt" field.  In other words, every active
199  * reservation belongs to a particular object.  Moreover, every active
200  * reservation has an entry in the containing object's list of reservations.
201  */
202 static vm_reserv_t vm_reserv_array;
203 
204 /*
205  * The per-domain partially populated reservation queues
206  *
207  * These queues enable the fast recovery of an unused free small page from a
208  * partially populated reservation.  The reservation at the head of a queue
209  * is the least recently changed, partially populated reservation.
210  *
211  * Access to this queue is synchronized by the per-domain reservation lock.
212  * Threads reclaiming free pages from the queue must hold the per-domain scan
213  * lock.
214  */
215 struct vm_reserv_domain {
216 	struct mtx 		lock;
217 	struct vm_reserv_queue	partpop;	/* (d) */
218 	struct vm_reserv	marker;		/* (d, s) scan marker/lock */
219 } __aligned(CACHE_LINE_SIZE);
220 
221 static struct vm_reserv_domain vm_rvd[MAXMEMDOM];
222 
223 #define	vm_reserv_domain_lockptr(d)	(&vm_rvd[(d)].lock)
224 #define	vm_reserv_domain_assert_locked(d)	\
225 	mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED)
226 #define	vm_reserv_domain_lock(d)	mtx_lock(vm_reserv_domain_lockptr(d))
227 #define	vm_reserv_domain_unlock(d)	mtx_unlock(vm_reserv_domain_lockptr(d))
228 
229 #define	vm_reserv_domain_scan_lock(d)	mtx_lock(&vm_rvd[(d)].marker.lock)
230 #define	vm_reserv_domain_scan_unlock(d)	mtx_unlock(&vm_rvd[(d)].marker.lock)
231 
232 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
233     "Reservation Info");
234 
235 static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken);
236 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
237     &vm_reserv_broken, "Cumulative number of broken reservations");
238 
239 static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed);
240 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
241     &vm_reserv_freed, "Cumulative number of freed reservations");
242 
243 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
244 
245 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD,
246     NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
247 
248 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
249 
250 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq,
251     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
252     sysctl_vm_reserv_partpopq, "A",
253     "Partially populated reservation queues");
254 
255 static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed);
256 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
257     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
258 
259 /*
260  * The object lock pool is used to synchronize the rvq.  We can not use a
261  * pool mutex because it is required before malloc works.
262  *
263  * The "hash" function could be made faster without divide and modulo.
264  */
265 #define	VM_RESERV_OBJ_LOCK_COUNT	MAXCPU
266 
267 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
268 
269 #define	vm_reserv_object_lock_idx(object)			\
270 	    (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
271 #define	vm_reserv_object_lock_ptr(object)			\
272 	    &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
273 #define	vm_reserv_object_lock(object)				\
274 	    mtx_lock(vm_reserv_object_lock_ptr((object)))
275 #define	vm_reserv_object_unlock(object)				\
276 	    mtx_unlock(vm_reserv_object_lock_ptr((object)))
277 
278 static void		vm_reserv_break(vm_reserv_t rv);
279 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
280 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
281 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
282 			    vm_pindex_t pindex);
283 static void		vm_reserv_populate(vm_reserv_t rv, int index);
284 static void		vm_reserv_reclaim(vm_reserv_t rv);
285 
286 /*
287  * Returns the current number of full reservations.
288  *
289  * Since the number of full reservations is computed without acquiring any
290  * locks, the returned value is inexact.
291  */
292 static int
sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)293 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
294 {
295 	vm_paddr_t paddr;
296 	struct vm_phys_seg *seg;
297 	vm_reserv_t rv;
298 	int fullpop, segind;
299 
300 	fullpop = 0;
301 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
302 		seg = &vm_phys_segs[segind];
303 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
304 #ifdef VM_PHYSSEG_SPARSE
305 		rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
306 		    (seg->start >> VM_LEVEL_0_SHIFT);
307 #else
308 		rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
309 #endif
310 		while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
311 		    VM_LEVEL_0_SIZE <= seg->end) {
312 			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
313 			paddr += VM_LEVEL_0_SIZE;
314 			rv++;
315 		}
316 	}
317 	return (sysctl_handle_int(oidp, &fullpop, 0, req));
318 }
319 
320 /*
321  * Describes the current state of the partially populated reservation queue.
322  */
323 static int
sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)324 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
325 {
326 	struct sbuf sbuf;
327 	vm_reserv_t rv;
328 	int counter, error, domain, level, unused_pages;
329 
330 	error = sysctl_wire_old_buffer(req, 0);
331 	if (error != 0)
332 		return (error);
333 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
334 	sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
335 	for (domain = 0; domain < vm_ndomains; domain++) {
336 		for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
337 			counter = 0;
338 			unused_pages = 0;
339 			vm_reserv_domain_lock(domain);
340 			TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
341 				if (rv == &vm_rvd[domain].marker)
342 					continue;
343 				counter++;
344 				unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
345 			}
346 			vm_reserv_domain_unlock(domain);
347 			sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
348 			    domain, level,
349 			    unused_pages * ((int)PAGE_SIZE / 1024), counter);
350 		}
351 	}
352 	error = sbuf_finish(&sbuf);
353 	sbuf_delete(&sbuf);
354 	return (error);
355 }
356 
357 /*
358  * Remove a reservation from the object's objq.
359  */
360 static void
vm_reserv_remove(vm_reserv_t rv)361 vm_reserv_remove(vm_reserv_t rv)
362 {
363 	vm_object_t object;
364 
365 	vm_reserv_assert_locked(rv);
366 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
367 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
368 	KASSERT(rv->object != NULL,
369 	    ("vm_reserv_remove: reserv %p is free", rv));
370 	KASSERT(!rv->inpartpopq,
371 	    ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
372 	object = rv->object;
373 	vm_reserv_object_lock(object);
374 	LIST_REMOVE(rv, objq);
375 	rv->object = NULL;
376 	vm_reserv_object_unlock(object);
377 }
378 
379 /*
380  * Insert a new reservation into the object's objq.
381  */
382 static void
vm_reserv_insert(vm_reserv_t rv,vm_object_t object,vm_pindex_t pindex)383 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
384 {
385 
386 	vm_reserv_assert_locked(rv);
387 	CTR6(KTR_VM,
388 	    "%s: rv %p(%p) object %p new %p popcnt %d",
389 	    __FUNCTION__, rv, rv->pages, rv->object, object,
390 	   rv->popcnt);
391 	KASSERT(rv->object == NULL,
392 	    ("vm_reserv_insert: reserv %p isn't free", rv));
393 	KASSERT(rv->popcnt == 0,
394 	    ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
395 	KASSERT(!rv->inpartpopq,
396 	    ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
397 	KASSERT(bit_ntest(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1, 0),
398 	    ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
399 	vm_reserv_object_lock(object);
400 	rv->pindex = pindex;
401 	rv->object = object;
402 	rv->lasttick = ticks;
403 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
404 	vm_reserv_object_unlock(object);
405 }
406 
407 #ifdef VM_SUBLEVEL_0_NPAGES
408 static inline bool
vm_reserv_is_sublevel_full(vm_reserv_t rv,int index)409 vm_reserv_is_sublevel_full(vm_reserv_t rv, int index)
410 {
411 	_Static_assert(VM_SUBLEVEL_0_NPAGES == 16 ||
412 	    VM_SUBLEVEL_0_NPAGES == 128,
413 	    "vm_reserv_is_sublevel_full: unsupported VM_SUBLEVEL_0_NPAGES");
414 	/* An equivalent bit_ntest() compiles to more instructions. */
415 	switch (VM_SUBLEVEL_0_NPAGES) {
416 	case 16:
417 		return (((uint16_t *)rv->popmap)[index / 16] == UINT16_MAX);
418 	case 128:
419 		index = rounddown2(index, 128) / 64;
420 		return (((uint64_t *)rv->popmap)[index] == UINT64_MAX &&
421 		    ((uint64_t *)rv->popmap)[index + 1] == UINT64_MAX);
422 	default:
423 		__unreachable();
424 	}
425 }
426 #endif
427 
428 /*
429  * Reduces the given reservation's population count.  If the population count
430  * becomes zero, the reservation is destroyed.  Additionally, moves the
431  * reservation to the tail of the partially populated reservation queue if the
432  * population count is non-zero.
433  */
434 static void
vm_reserv_depopulate(vm_reserv_t rv,int index)435 vm_reserv_depopulate(vm_reserv_t rv, int index)
436 {
437 	struct vm_domain *vmd;
438 
439 	vm_reserv_assert_locked(rv);
440 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
441 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
442 	KASSERT(rv->object != NULL,
443 	    ("vm_reserv_depopulate: reserv %p is free", rv));
444 	KASSERT(bit_test(rv->popmap, index),
445 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
446 	    index));
447 	KASSERT(rv->popcnt > 0,
448 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
449 	KASSERT(rv->domain < vm_ndomains,
450 	    ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
451 	    rv, rv->domain));
452 	if (rv->popcnt == VM_LEVEL_0_NPAGES) {
453 		KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND,
454 		    ("vm_reserv_depopulate: reserv %p is already demoted",
455 		    rv));
456 		rv->pages->psind = VM_LEVEL_0_PSIND - 1;
457 	}
458 #ifdef VM_SUBLEVEL_0_NPAGES
459 	if (vm_reserv_is_sublevel_full(rv, index))
460 		rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 0;
461 #endif
462 	bit_clear(rv->popmap, index);
463 	rv->popcnt--;
464 	if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
465 	    rv->popcnt == 0) {
466 		vm_reserv_domain_lock(rv->domain);
467 		if (rv->inpartpopq) {
468 			TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
469 			rv->inpartpopq = FALSE;
470 		}
471 		if (rv->popcnt != 0) {
472 			rv->inpartpopq = TRUE;
473 			TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv,
474 			    partpopq);
475 		}
476 		vm_reserv_domain_unlock(rv->domain);
477 		rv->lasttick = ticks;
478 	}
479 	vmd = VM_DOMAIN(rv->domain);
480 	if (rv->popcnt == 0) {
481 		vm_reserv_remove(rv);
482 		vm_domain_free_lock(vmd);
483 		vm_phys_free_pages(rv->pages, VM_FREEPOOL_DEFAULT,
484 		    VM_LEVEL_0_ORDER);
485 		vm_domain_free_unlock(vmd);
486 		counter_u64_add(vm_reserv_freed, 1);
487 	}
488 	vm_domain_freecnt_inc(vmd, 1);
489 }
490 
491 /*
492  * Returns the reservation to which the given page might belong.
493  */
494 static __inline vm_reserv_t
vm_reserv_from_page(vm_page_t m)495 vm_reserv_from_page(vm_page_t m)
496 {
497 #ifdef VM_PHYSSEG_SPARSE
498 	struct vm_phys_seg *seg;
499 
500 	seg = &vm_phys_segs[m->segind];
501 	return (seg->first_reserv + (VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT) -
502 	    (seg->start >> VM_LEVEL_0_SHIFT));
503 #else
504 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
505 #endif
506 }
507 
508 /*
509  * Returns an existing reservation or NULL and initialized successor pointer.
510  */
511 static vm_reserv_t
vm_reserv_from_object(vm_object_t object,vm_pindex_t pindex,vm_page_t mpred,vm_page_t * msuccp)512 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
513     vm_page_t mpred, vm_page_t *msuccp)
514 {
515 	vm_reserv_t rv;
516 	vm_page_t msucc;
517 
518 	msucc = NULL;
519 	if (mpred != NULL) {
520 		KASSERT(mpred->object == object,
521 		    ("vm_reserv_from_object: object doesn't contain mpred"));
522 		KASSERT(mpred->pindex < pindex,
523 		    ("vm_reserv_from_object: mpred doesn't precede pindex"));
524 		rv = vm_reserv_from_page(mpred);
525 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
526 			goto found;
527 		msucc = TAILQ_NEXT(mpred, listq);
528 	} else
529 		msucc = TAILQ_FIRST(&object->memq);
530 	if (msucc != NULL) {
531 		KASSERT(msucc->pindex > pindex,
532 		    ("vm_reserv_from_object: msucc doesn't succeed pindex"));
533 		rv = vm_reserv_from_page(msucc);
534 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
535 			goto found;
536 	}
537 	rv = NULL;
538 
539 found:
540 	*msuccp = msucc;
541 
542 	return (rv);
543 }
544 
545 /*
546  * Returns TRUE if the given reservation contains the given page index and
547  * FALSE otherwise.
548  */
549 static __inline boolean_t
vm_reserv_has_pindex(vm_reserv_t rv,vm_pindex_t pindex)550 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
551 {
552 
553 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
554 }
555 
556 /*
557  * Increases the given reservation's population count.  Moves the reservation
558  * to the tail of the partially populated reservation queue.
559  */
560 static void
vm_reserv_populate(vm_reserv_t rv,int index)561 vm_reserv_populate(vm_reserv_t rv, int index)
562 {
563 
564 	vm_reserv_assert_locked(rv);
565 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
566 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
567 	KASSERT(rv->object != NULL,
568 	    ("vm_reserv_populate: reserv %p is free", rv));
569 	KASSERT(!bit_test(rv->popmap, index),
570 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
571 	    index));
572 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
573 	    ("vm_reserv_populate: reserv %p is already full", rv));
574 	KASSERT(rv->pages->psind >= 0 &&
575 	    rv->pages->psind < VM_LEVEL_0_PSIND,
576 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
577 	KASSERT(rv->domain < vm_ndomains,
578 	    ("vm_reserv_populate: reserv %p's domain is corrupted %d",
579 	    rv, rv->domain));
580 	bit_set(rv->popmap, index);
581 #ifdef VM_SUBLEVEL_0_NPAGES
582 	if (vm_reserv_is_sublevel_full(rv, index))
583 		rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 1;
584 #endif
585 	rv->popcnt++;
586 	if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
587 	    rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
588 		return;
589 	rv->lasttick = ticks;
590 	vm_reserv_domain_lock(rv->domain);
591 	if (rv->inpartpopq) {
592 		TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
593 		rv->inpartpopq = FALSE;
594 	}
595 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
596 		rv->inpartpopq = TRUE;
597 		TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq);
598 	} else {
599 		KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND - 1,
600 		    ("vm_reserv_populate: reserv %p is already promoted",
601 		    rv));
602 		rv->pages->psind = VM_LEVEL_0_PSIND;
603 	}
604 	vm_reserv_domain_unlock(rv->domain);
605 }
606 
607 /*
608  * Allocates a contiguous set of physical pages of the given size "npages"
609  * from existing or newly created reservations.  All of the physical pages
610  * must be at or above the given physical address "low" and below the given
611  * physical address "high".  The given value "alignment" determines the
612  * alignment of the first physical page in the set.  If the given value
613  * "boundary" is non-zero, then the set of physical pages cannot cross any
614  * physical address boundary that is a multiple of that value.  Both
615  * "alignment" and "boundary" must be a power of two.
616  *
617  * The page "mpred" must immediately precede the offset "pindex" within the
618  * specified object.
619  *
620  * The object must be locked.
621  */
622 vm_page_t
vm_reserv_alloc_contig(vm_object_t object,vm_pindex_t pindex,int domain,int req,vm_page_t mpred,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)623 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain,
624     int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high,
625     u_long alignment, vm_paddr_t boundary)
626 {
627 	struct vm_domain *vmd;
628 	vm_paddr_t pa, size;
629 	vm_page_t m, m_ret, msucc;
630 	vm_pindex_t first, leftcap, rightcap;
631 	vm_reserv_t rv;
632 	u_long allocpages, maxpages, minpages;
633 	int i, index, n;
634 
635 	VM_OBJECT_ASSERT_WLOCKED(object);
636 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
637 
638 	/*
639 	 * Is a reservation fundamentally impossible?
640 	 */
641 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
642 	    pindex + npages > object->size)
643 		return (NULL);
644 
645 	/*
646 	 * All reservations of a particular size have the same alignment.
647 	 * Assuming that the first page is allocated from a reservation, the
648 	 * least significant bits of its physical address can be determined
649 	 * from its offset from the beginning of the reservation and the size
650 	 * of the reservation.
651 	 *
652 	 * Could the specified index within a reservation of the smallest
653 	 * possible size satisfy the alignment and boundary requirements?
654 	 */
655 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
656 	size = npages << PAGE_SHIFT;
657 	if (!vm_addr_ok(pa, size, alignment, boundary))
658 		return (NULL);
659 
660 	/*
661 	 * Look for an existing reservation.
662 	 */
663 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
664 	if (rv != NULL) {
665 		KASSERT(object != kernel_object || rv->domain == domain,
666 		    ("vm_reserv_alloc_contig: domain mismatch"));
667 		index = VM_RESERV_INDEX(object, pindex);
668 		/* Does the allocation fit within the reservation? */
669 		if (index + npages > VM_LEVEL_0_NPAGES)
670 			return (NULL);
671 		domain = rv->domain;
672 		vmd = VM_DOMAIN(domain);
673 		vm_reserv_lock(rv);
674 		/* Handle reclaim race. */
675 		if (rv->object != object)
676 			goto out;
677 		m = &rv->pages[index];
678 		pa = VM_PAGE_TO_PHYS(m);
679 		if (pa < low || pa + size > high ||
680 		    !vm_addr_ok(pa, size, alignment, boundary))
681 			goto out;
682 		/* Handle vm_page_iter_rename(..., m, new_object, ...). */
683 		if (!bit_ntest(rv->popmap, index, index + npages - 1, 0))
684 			goto out;
685 		if (!vm_domain_allocate(vmd, req, npages))
686 			goto out;
687 		for (i = 0; i < npages; i++)
688 			vm_reserv_populate(rv, index + i);
689 		vm_reserv_unlock(rv);
690 		return (m);
691 out:
692 		vm_reserv_unlock(rv);
693 		return (NULL);
694 	}
695 
696 	/*
697 	 * Could at least one reservation fit between the first index to the
698 	 * left that can be used ("leftcap") and the first index to the right
699 	 * that cannot be used ("rightcap")?
700 	 *
701 	 * We must synchronize with the reserv object lock to protect the
702 	 * pindex/object of the resulting reservations against rename while
703 	 * we are inspecting.
704 	 */
705 	first = pindex - VM_RESERV_INDEX(object, pindex);
706 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
707 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
708 	allocpages = maxpages;
709 	vm_reserv_object_lock(object);
710 	if (mpred != NULL) {
711 		if ((rv = vm_reserv_from_page(mpred))->object != object)
712 			leftcap = mpred->pindex + 1;
713 		else
714 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
715 		if (leftcap > first) {
716 			vm_reserv_object_unlock(object);
717 			return (NULL);
718 		}
719 	}
720 	if (msucc != NULL) {
721 		if ((rv = vm_reserv_from_page(msucc))->object != object)
722 			rightcap = msucc->pindex;
723 		else
724 			rightcap = rv->pindex;
725 		if (first + maxpages > rightcap) {
726 			if (maxpages == VM_LEVEL_0_NPAGES) {
727 				vm_reserv_object_unlock(object);
728 				return (NULL);
729 			}
730 
731 			/*
732 			 * At least one reservation will fit between "leftcap"
733 			 * and "rightcap".  However, a reservation for the
734 			 * last of the requested pages will not fit.  Reduce
735 			 * the size of the upcoming allocation accordingly.
736 			 */
737 			allocpages = minpages;
738 		}
739 	}
740 	vm_reserv_object_unlock(object);
741 
742 	/*
743 	 * Would the last new reservation extend past the end of the object?
744 	 *
745 	 * If the object is unlikely to grow don't allocate a reservation for
746 	 * the tail.
747 	 */
748 	if ((object->flags & OBJ_ANON) == 0 &&
749 	    first + maxpages > object->size) {
750 		if (maxpages == VM_LEVEL_0_NPAGES)
751 			return (NULL);
752 		allocpages = minpages;
753 	}
754 
755 	/*
756 	 * Allocate the physical pages.  The alignment and boundary specified
757 	 * for this allocation may be different from the alignment and
758 	 * boundary specified for the requested pages.  For instance, the
759 	 * specified index may not be the first page within the first new
760 	 * reservation.
761 	 */
762 	m = NULL;
763 	vmd = VM_DOMAIN(domain);
764 	if (vm_domain_allocate(vmd, req, npages)) {
765 		vm_domain_free_lock(vmd);
766 		m = vm_phys_alloc_contig(domain, allocpages, low, high,
767 		    ulmax(alignment, VM_LEVEL_0_SIZE),
768 		    boundary > VM_LEVEL_0_SIZE ? boundary : 0);
769 		vm_domain_free_unlock(vmd);
770 		if (m == NULL) {
771 			vm_domain_freecnt_inc(vmd, npages);
772 			return (NULL);
773 		}
774 	} else
775 		return (NULL);
776 	KASSERT(vm_page_domain(m) == domain,
777 	    ("vm_reserv_alloc_contig: Page domain does not match requested."));
778 
779 	/*
780 	 * The allocated physical pages always begin at a reservation
781 	 * boundary, but they do not always end at a reservation boundary.
782 	 * Initialize every reservation that is completely covered by the
783 	 * allocated physical pages.
784 	 */
785 	m_ret = NULL;
786 	index = VM_RESERV_INDEX(object, pindex);
787 	do {
788 		rv = vm_reserv_from_page(m);
789 		KASSERT(rv->pages == m,
790 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
791 		    rv));
792 		vm_reserv_lock(rv);
793 		vm_reserv_insert(rv, object, first);
794 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
795 		for (i = 0; i < n; i++)
796 			vm_reserv_populate(rv, index + i);
797 		npages -= n;
798 		if (m_ret == NULL) {
799 			m_ret = &rv->pages[index];
800 			index = 0;
801 		}
802 		vm_reserv_unlock(rv);
803 		m += VM_LEVEL_0_NPAGES;
804 		first += VM_LEVEL_0_NPAGES;
805 		allocpages -= VM_LEVEL_0_NPAGES;
806 	} while (allocpages >= VM_LEVEL_0_NPAGES);
807 	return (m_ret);
808 }
809 
810 /*
811  * Allocate a physical page from an existing or newly created reservation.
812  *
813  * The page "mpred" must immediately precede the offset "pindex" within the
814  * specified object.
815  *
816  * The object must be locked.
817  */
818 vm_page_t
vm_reserv_alloc_page(vm_object_t object,vm_pindex_t pindex,int domain,int req,vm_page_t mpred)819 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain,
820     int req, vm_page_t mpred)
821 {
822 	struct vm_domain *vmd;
823 	vm_page_t m, msucc;
824 	vm_pindex_t first, leftcap, rightcap;
825 	vm_reserv_t rv;
826 	int index;
827 
828 	VM_OBJECT_ASSERT_WLOCKED(object);
829 
830 	/*
831 	 * Is a reservation fundamentally impossible?
832 	 */
833 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
834 	    pindex >= object->size)
835 		return (NULL);
836 
837 	/*
838 	 * Look for an existing reservation.
839 	 */
840 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
841 	if (rv != NULL) {
842 		KASSERT(object != kernel_object || rv->domain == domain,
843 		    ("vm_reserv_alloc_page: domain mismatch"));
844 		domain = rv->domain;
845 		vmd = VM_DOMAIN(domain);
846 		index = VM_RESERV_INDEX(object, pindex);
847 		m = &rv->pages[index];
848 		vm_reserv_lock(rv);
849 		/* Handle reclaim race. */
850 		if (rv->object != object ||
851 		    /* Handle vm_page_iter_rename(..., m, new_object, ...). */
852 		    bit_test(rv->popmap, index)) {
853 			m = NULL;
854 			goto out;
855 		}
856 		if (vm_domain_allocate(vmd, req, 1) == 0)
857 			m = NULL;
858 		else
859 			vm_reserv_populate(rv, index);
860 out:
861 		vm_reserv_unlock(rv);
862 		return (m);
863 	}
864 
865 	/*
866 	 * Could a reservation fit between the first index to the left that
867 	 * can be used and the first index to the right that cannot be used?
868 	 *
869 	 * We must synchronize with the reserv object lock to protect the
870 	 * pindex/object of the resulting reservations against rename while
871 	 * we are inspecting.
872 	 */
873 	first = pindex - VM_RESERV_INDEX(object, pindex);
874 	vm_reserv_object_lock(object);
875 	if (mpred != NULL) {
876 		if ((rv = vm_reserv_from_page(mpred))->object != object)
877 			leftcap = mpred->pindex + 1;
878 		else
879 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
880 		if (leftcap > first) {
881 			vm_reserv_object_unlock(object);
882 			return (NULL);
883 		}
884 	}
885 	if (msucc != NULL) {
886 		if ((rv = vm_reserv_from_page(msucc))->object != object)
887 			rightcap = msucc->pindex;
888 		else
889 			rightcap = rv->pindex;
890 		if (first + VM_LEVEL_0_NPAGES > rightcap) {
891 			vm_reserv_object_unlock(object);
892 			return (NULL);
893 		}
894 	}
895 	vm_reserv_object_unlock(object);
896 
897 	/*
898 	 * Would the last new reservation extend past the end of the object?
899 	 *
900 	 * If the object is unlikely to grow don't allocate a reservation for
901 	 * the tail.
902 	 */
903 	if ((object->flags & OBJ_ANON) == 0 &&
904 	    first + VM_LEVEL_0_NPAGES > object->size)
905 		return (NULL);
906 
907 	/*
908 	 * Allocate and populate the new reservation.
909 	 */
910 	m = NULL;
911 	vmd = VM_DOMAIN(domain);
912 	if (vm_domain_allocate(vmd, req, 1)) {
913 		vm_domain_free_lock(vmd);
914 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
915 		    VM_LEVEL_0_ORDER);
916 		vm_domain_free_unlock(vmd);
917 		if (m == NULL) {
918 			vm_domain_freecnt_inc(vmd, 1);
919 			return (NULL);
920 		}
921 	} else
922 		return (NULL);
923 	rv = vm_reserv_from_page(m);
924 	vm_reserv_lock(rv);
925 	KASSERT(rv->pages == m,
926 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
927 	vm_reserv_insert(rv, object, first);
928 	index = VM_RESERV_INDEX(object, pindex);
929 	vm_reserv_populate(rv, index);
930 	vm_reserv_unlock(rv);
931 
932 	return (&rv->pages[index]);
933 }
934 
935 /*
936  * Breaks the given reservation.  All free pages in the reservation
937  * are returned to the physical memory allocator.  The reservation's
938  * population count and map are reset to their initial state.
939  *
940  * The given reservation must not be in the partially populated reservation
941  * queue.
942  */
943 static void
vm_reserv_break(vm_reserv_t rv)944 vm_reserv_break(vm_reserv_t rv)
945 {
946 	vm_page_t m;
947 	int pos, pos0, pos1;
948 
949 	vm_reserv_assert_locked(rv);
950 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
951 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
952 	vm_reserv_remove(rv);
953 	m = rv->pages;
954 #ifdef VM_SUBLEVEL_0_NPAGES
955 	for (; m < rv->pages + VM_LEVEL_0_NPAGES; m += VM_SUBLEVEL_0_NPAGES)
956 #endif
957 		m->psind = 0;
958 	pos0 = bit_test(rv->popmap, 0) ? -1 : 0;
959 	pos1 = -1 - pos0;
960 	for (pos = 0; pos < VM_LEVEL_0_NPAGES; ) {
961 		/* Find the first different bit after pos. */
962 		bit_ff_at(rv->popmap, pos + 1, VM_LEVEL_0_NPAGES,
963 		    pos1 < pos0, &pos);
964 		if (pos == -1)
965 			pos = VM_LEVEL_0_NPAGES;
966 		if (pos0 < pos1) {
967 			pos0 = pos;
968 			continue;
969 		}
970 		/* Free unused pages from pos0 to pos. */
971 		pos1 = pos;
972 		vm_domain_free_lock(VM_DOMAIN(rv->domain));
973 		vm_phys_enqueue_contig(&rv->pages[pos0], VM_FREEPOOL_DEFAULT,
974 		    pos1 - pos0);
975 		vm_domain_free_unlock(VM_DOMAIN(rv->domain));
976 	}
977 	bit_nclear(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1);
978 	rv->popcnt = 0;
979 	counter_u64_add(vm_reserv_broken, 1);
980 }
981 
982 /*
983  * Breaks all reservations belonging to the given object.
984  */
985 void
vm_reserv_break_all(vm_object_t object)986 vm_reserv_break_all(vm_object_t object)
987 {
988 	vm_reserv_t rv;
989 
990 	/*
991 	 * This access of object->rvq is unsynchronized so that the
992 	 * object rvq lock can nest after the domain_free lock.  We
993 	 * must check for races in the results.  However, the object
994 	 * lock prevents new additions, so we are guaranteed that when
995 	 * it returns NULL the object is properly empty.
996 	 */
997 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
998 		vm_reserv_lock(rv);
999 		/* Reclaim race. */
1000 		if (rv->object != object) {
1001 			vm_reserv_unlock(rv);
1002 			continue;
1003 		}
1004 		vm_reserv_domain_lock(rv->domain);
1005 		if (rv->inpartpopq) {
1006 			TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1007 			rv->inpartpopq = FALSE;
1008 		}
1009 		vm_reserv_domain_unlock(rv->domain);
1010 		vm_reserv_break(rv);
1011 		vm_reserv_unlock(rv);
1012 	}
1013 }
1014 
1015 /*
1016  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1017  * page is freed and FALSE otherwise.
1018  */
1019 boolean_t
vm_reserv_free_page(vm_page_t m)1020 vm_reserv_free_page(vm_page_t m)
1021 {
1022 	vm_reserv_t rv;
1023 	boolean_t ret;
1024 
1025 	rv = vm_reserv_from_page(m);
1026 	if (rv->object == NULL)
1027 		return (FALSE);
1028 	vm_reserv_lock(rv);
1029 	/* Re-validate after lock. */
1030 	if (rv->object != NULL) {
1031 		vm_reserv_depopulate(rv, m - rv->pages);
1032 		ret = TRUE;
1033 	} else
1034 		ret = FALSE;
1035 	vm_reserv_unlock(rv);
1036 
1037 	return (ret);
1038 }
1039 
1040 /*
1041  * Initializes the reservation management system.  Specifically, initializes
1042  * the reservation array.
1043  *
1044  * Requires that vm_page_array and first_page are initialized!
1045  */
1046 void
vm_reserv_init(void)1047 vm_reserv_init(void)
1048 {
1049 	vm_paddr_t paddr;
1050 	struct vm_phys_seg *seg;
1051 	struct vm_reserv *rv;
1052 	struct vm_reserv_domain *rvd;
1053 #ifdef VM_PHYSSEG_SPARSE
1054 	vm_pindex_t used;
1055 #endif
1056 	int i, segind;
1057 
1058 	/*
1059 	 * Initialize the reservation array.  Specifically, initialize the
1060 	 * "pages" field for every element that has an underlying superpage.
1061 	 */
1062 #ifdef VM_PHYSSEG_SPARSE
1063 	used = 0;
1064 #endif
1065 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1066 		seg = &vm_phys_segs[segind];
1067 #ifdef VM_PHYSSEG_SPARSE
1068 		seg->first_reserv = &vm_reserv_array[used];
1069 		used += howmany(seg->end, VM_LEVEL_0_SIZE) -
1070 		    seg->start / VM_LEVEL_0_SIZE;
1071 #else
1072 		seg->first_reserv =
1073 		    &vm_reserv_array[seg->start >> VM_LEVEL_0_SHIFT];
1074 #endif
1075 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1076 		rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
1077 		    (seg->start >> VM_LEVEL_0_SHIFT);
1078 		while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
1079 		    VM_LEVEL_0_SIZE <= seg->end) {
1080 			rv->pages = PHYS_TO_VM_PAGE(paddr);
1081 			rv->domain = seg->domain;
1082 			mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1083 			paddr += VM_LEVEL_0_SIZE;
1084 			rv++;
1085 		}
1086 	}
1087 	for (i = 0; i < MAXMEMDOM; i++) {
1088 		rvd = &vm_rvd[i];
1089 		mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF);
1090 		TAILQ_INIT(&rvd->partpop);
1091 		mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF);
1092 
1093 		/*
1094 		 * Fully populated reservations should never be present in the
1095 		 * partially populated reservation queues.
1096 		 */
1097 		rvd->marker.popcnt = VM_LEVEL_0_NPAGES;
1098 		bit_nset(rvd->marker.popmap, 0, VM_LEVEL_0_NPAGES - 1);
1099 	}
1100 
1101 	for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1102 		mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1103 		    MTX_DEF);
1104 }
1105 
1106 /*
1107  * Returns true if the given page belongs to a reservation and that page is
1108  * free.  Otherwise, returns false.
1109  */
1110 bool
vm_reserv_is_page_free(vm_page_t m)1111 vm_reserv_is_page_free(vm_page_t m)
1112 {
1113 	vm_reserv_t rv;
1114 
1115 	rv = vm_reserv_from_page(m);
1116 	if (rv->object == NULL)
1117 		return (false);
1118 	return (!bit_test(rv->popmap, m - rv->pages));
1119 }
1120 
1121 /*
1122  * Returns true if the given page is part of a block of npages, starting at a
1123  * multiple of npages, that are all allocated.  Otherwise, returns false.
1124  */
1125 bool
vm_reserv_is_populated(vm_page_t m,int npages)1126 vm_reserv_is_populated(vm_page_t m, int npages)
1127 {
1128 	vm_reserv_t rv;
1129 	int index;
1130 
1131 	KASSERT(npages <= VM_LEVEL_0_NPAGES,
1132 	    ("%s: npages %d exceeds VM_LEVEL_0_NPAGES", __func__, npages));
1133 	KASSERT(powerof2(npages),
1134 	    ("%s: npages %d is not a power of 2", __func__, npages));
1135 	rv = vm_reserv_from_page(m);
1136 	if (rv->object == NULL)
1137 		return (false);
1138 	index = rounddown2(m - rv->pages, npages);
1139 	return (bit_ntest(rv->popmap, index, index + npages - 1, 1));
1140 }
1141 
1142 /*
1143  * If the given page belongs to a reservation, returns the level of that
1144  * reservation.  Otherwise, returns -1.
1145  */
1146 int
vm_reserv_level(vm_page_t m)1147 vm_reserv_level(vm_page_t m)
1148 {
1149 	vm_reserv_t rv;
1150 
1151 	rv = vm_reserv_from_page(m);
1152 #ifdef VM_SUBLEVEL_0_NPAGES
1153 	return (rv->object != NULL ? 1 : -1);
1154 #else
1155 	return (rv->object != NULL ? 0 : -1);
1156 #endif
1157 }
1158 
1159 /*
1160  * Returns a reservation level if the given page belongs to a fully populated
1161  * reservation and -1 otherwise.
1162  */
1163 int
vm_reserv_level_iffullpop(vm_page_t m)1164 vm_reserv_level_iffullpop(vm_page_t m)
1165 {
1166 	vm_reserv_t rv;
1167 
1168 	rv = vm_reserv_from_page(m);
1169 	if (rv->popcnt == VM_LEVEL_0_NPAGES) {
1170 #ifdef VM_SUBLEVEL_0_NPAGES
1171 		return (1);
1172 	} else if (rv->pages != NULL &&
1173 	    vm_reserv_is_sublevel_full(rv, m - rv->pages)) {
1174 #endif
1175 		return (0);
1176 	}
1177 	return (-1);
1178 }
1179 
1180 /*
1181  * Remove a partially populated reservation from the queue.
1182  */
1183 static void
vm_reserv_dequeue(vm_reserv_t rv)1184 vm_reserv_dequeue(vm_reserv_t rv)
1185 {
1186 
1187 	vm_reserv_domain_assert_locked(rv->domain);
1188 	vm_reserv_assert_locked(rv);
1189 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1190 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1191 	KASSERT(rv->inpartpopq,
1192 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1193 
1194 	TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1195 	rv->inpartpopq = FALSE;
1196 }
1197 
1198 /*
1199  * Breaks the given partially populated reservation, releasing its free pages
1200  * to the physical memory allocator.
1201  */
1202 static void
vm_reserv_reclaim(vm_reserv_t rv)1203 vm_reserv_reclaim(vm_reserv_t rv)
1204 {
1205 
1206 	vm_reserv_assert_locked(rv);
1207 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1208 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1209 	if (rv->inpartpopq) {
1210 		vm_reserv_domain_lock(rv->domain);
1211 		vm_reserv_dequeue(rv);
1212 		vm_reserv_domain_unlock(rv->domain);
1213 	}
1214 	vm_reserv_break(rv);
1215 	counter_u64_add(vm_reserv_reclaimed, 1);
1216 }
1217 
1218 /*
1219  * Breaks a reservation near the head of the partially populated reservation
1220  * queue, releasing its free pages to the physical memory allocator.  Returns
1221  * TRUE if a reservation is broken and FALSE otherwise.
1222  */
1223 bool
vm_reserv_reclaim_inactive(int domain)1224 vm_reserv_reclaim_inactive(int domain)
1225 {
1226 	vm_reserv_t rv;
1227 
1228 	vm_reserv_domain_lock(domain);
1229 	TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
1230 		/*
1231 		 * A locked reservation is likely being updated or reclaimed,
1232 		 * so just skip ahead.
1233 		 */
1234 		if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) {
1235 			vm_reserv_dequeue(rv);
1236 			break;
1237 		}
1238 	}
1239 	vm_reserv_domain_unlock(domain);
1240 	if (rv != NULL) {
1241 		vm_reserv_reclaim(rv);
1242 		vm_reserv_unlock(rv);
1243 		return (true);
1244 	}
1245 	return (false);
1246 }
1247 
1248 /*
1249  * Determine whether this reservation has free pages that satisfy the given
1250  * request for contiguous physical memory.  Start searching from the lower
1251  * bound, defined by lo, and stop at the upper bound, hi.  Return the index
1252  * of the first satisfactory free page, or -1 if none is found.
1253  */
1254 static int
vm_reserv_find_contig(vm_reserv_t rv,int npages,int lo,int hi,int ppn_align,int ppn_bound)1255 vm_reserv_find_contig(vm_reserv_t rv, int npages, int lo,
1256     int hi, int ppn_align, int ppn_bound)
1257 {
1258 
1259 	vm_reserv_assert_locked(rv);
1260 	KASSERT(npages <= VM_LEVEL_0_NPAGES - 1,
1261 	    ("%s: Too many pages", __func__));
1262 	KASSERT(ppn_bound <= VM_LEVEL_0_NPAGES,
1263 	    ("%s: Too big a boundary for reservation size", __func__));
1264 	KASSERT(npages <= ppn_bound,
1265 	    ("%s: Too many pages for given boundary", __func__));
1266 	KASSERT(ppn_align != 0 && powerof2(ppn_align),
1267 	    ("ppn_align is not a positive power of 2"));
1268 	KASSERT(ppn_bound != 0 && powerof2(ppn_bound),
1269 	    ("ppn_bound is not a positive power of 2"));
1270 	while (bit_ffc_area_at(rv->popmap, lo, hi, npages, &lo), lo != -1) {
1271 		if (lo < roundup2(lo, ppn_align)) {
1272 			/* Skip to next aligned page. */
1273 			lo = roundup2(lo, ppn_align);
1274 		} else if (roundup2(lo + 1, ppn_bound) >= lo + npages)
1275 			return (lo);
1276 		if (roundup2(lo + 1, ppn_bound) < lo + npages) {
1277 			/* Skip to next boundary-matching page. */
1278 			lo = roundup2(lo + 1, ppn_bound);
1279 		}
1280 	}
1281 	return (-1);
1282 }
1283 
1284 /*
1285  * Searches the partially populated reservation queue for the least recently
1286  * changed reservation with free pages that satisfy the given request for
1287  * contiguous physical memory.  If a satisfactory reservation is found, it is
1288  * broken.  Returns a page if a reservation is broken and NULL otherwise.
1289  */
1290 vm_page_t
vm_reserv_reclaim_contig(int domain,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1291 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1292     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1293 {
1294 	struct vm_reserv_queue *queue;
1295 	vm_paddr_t pa, size;
1296 	vm_page_t m_ret;
1297 	vm_reserv_t marker, rv, rvn;
1298 	int hi, lo, posn, ppn_align, ppn_bound;
1299 
1300 	KASSERT(npages > 0, ("npages is 0"));
1301 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1302 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1303 	if (npages > VM_LEVEL_0_NPAGES - 1)
1304 		return (NULL);
1305 	size = npages << PAGE_SHIFT;
1306 	/*
1307 	 * Ensure that a free range starting at a boundary-multiple
1308 	 * doesn't include a boundary-multiple within it.  Otherwise,
1309 	 * no boundary-constrained allocation is possible.
1310 	 */
1311 	if (!vm_addr_bound_ok(0, size, boundary))
1312 		return (NULL);
1313 	marker = &vm_rvd[domain].marker;
1314 	queue = &vm_rvd[domain].partpop;
1315 	/*
1316 	 * Compute shifted alignment, boundary values for page-based
1317 	 * calculations.  Constrain to range [1, VM_LEVEL_0_NPAGES] to
1318 	 * avoid overflow.
1319 	 */
1320 	ppn_align = (int)(ulmin(ulmax(PAGE_SIZE, alignment),
1321 	    VM_LEVEL_0_SIZE) >> PAGE_SHIFT);
1322 	ppn_bound = boundary == 0 ? VM_LEVEL_0_NPAGES :
1323 	    (int)(MIN(MAX(PAGE_SIZE, boundary),
1324             VM_LEVEL_0_SIZE) >> PAGE_SHIFT);
1325 
1326 	vm_reserv_domain_scan_lock(domain);
1327 	vm_reserv_domain_lock(domain);
1328 	TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) {
1329 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1330 		if (pa + VM_LEVEL_0_SIZE - size < low) {
1331 			/* This entire reservation is too low; go to next. */
1332 			continue;
1333 		}
1334 		if (pa + size > high) {
1335 			/* This entire reservation is too high; go to next. */
1336 			continue;
1337 		}
1338 		if (!vm_addr_align_ok(pa, alignment)) {
1339 			/* This entire reservation is unaligned; go to next. */
1340 			continue;
1341 		}
1342 
1343 		if (vm_reserv_trylock(rv) == 0) {
1344 			TAILQ_INSERT_AFTER(queue, rv, marker, partpopq);
1345 			vm_reserv_domain_unlock(domain);
1346 			vm_reserv_lock(rv);
1347 			if (TAILQ_PREV(marker, vm_reserv_queue, partpopq) !=
1348 			    rv) {
1349 				vm_reserv_unlock(rv);
1350 				vm_reserv_domain_lock(domain);
1351 				rvn = TAILQ_NEXT(marker, partpopq);
1352 				TAILQ_REMOVE(queue, marker, partpopq);
1353 				continue;
1354 			}
1355 			vm_reserv_domain_lock(domain);
1356 			TAILQ_REMOVE(queue, marker, partpopq);
1357 		}
1358 		vm_reserv_domain_unlock(domain);
1359 		lo = (pa >= low) ? 0 :
1360 		    (int)((low + PAGE_MASK - pa) >> PAGE_SHIFT);
1361 		hi = (pa + VM_LEVEL_0_SIZE <= high) ? VM_LEVEL_0_NPAGES :
1362 		    (int)((high - pa) >> PAGE_SHIFT);
1363 		posn = vm_reserv_find_contig(rv, (int)npages, lo, hi,
1364 		    ppn_align, ppn_bound);
1365 		if (posn >= 0) {
1366 			vm_reserv_domain_scan_unlock(domain);
1367 			/* Allocate requested space */
1368 			rv->popcnt += npages;
1369 			bit_nset(rv->popmap, posn, posn + npages - 1);
1370 			vm_reserv_reclaim(rv);
1371 			vm_reserv_unlock(rv);
1372 			m_ret = &rv->pages[posn];
1373 			pa = VM_PAGE_TO_PHYS(m_ret);
1374 			KASSERT(vm_addr_ok(pa, size, alignment, boundary),
1375 			    ("%s: adjusted address not aligned/bounded to "
1376 			     "%lx/%jx",
1377 			     __func__, alignment, (uintmax_t)boundary));
1378 			return (m_ret);
1379 		}
1380 		vm_reserv_domain_lock(domain);
1381 		rvn = TAILQ_NEXT(rv, partpopq);
1382 		vm_reserv_unlock(rv);
1383 	}
1384 	vm_reserv_domain_unlock(domain);
1385 	vm_reserv_domain_scan_unlock(domain);
1386 	return (NULL);
1387 }
1388 
1389 /*
1390  * Transfers the reservation underlying the given page to a new object.
1391  *
1392  * The object must be locked.
1393  */
1394 void
vm_reserv_rename(vm_page_t m,vm_object_t new_object,vm_object_t old_object,vm_pindex_t old_object_offset)1395 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1396     vm_pindex_t old_object_offset)
1397 {
1398 	vm_reserv_t rv;
1399 
1400 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1401 	rv = vm_reserv_from_page(m);
1402 	if (rv->object == old_object) {
1403 		vm_reserv_lock(rv);
1404 		CTR6(KTR_VM,
1405 		    "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1406 		    __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1407 		    rv->inpartpopq);
1408 		if (rv->object == old_object) {
1409 			vm_reserv_object_lock(old_object);
1410 			rv->object = NULL;
1411 			LIST_REMOVE(rv, objq);
1412 			vm_reserv_object_unlock(old_object);
1413 			vm_reserv_object_lock(new_object);
1414 			rv->object = new_object;
1415 			rv->pindex -= old_object_offset;
1416 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1417 			vm_reserv_object_unlock(new_object);
1418 		}
1419 		vm_reserv_unlock(rv);
1420 	}
1421 }
1422 
1423 /*
1424  * Returns the size (in bytes) of a reservation of the specified level.
1425  */
1426 int
vm_reserv_size(int level)1427 vm_reserv_size(int level)
1428 {
1429 
1430 	switch (level) {
1431 	case 0:
1432 #ifdef VM_SUBLEVEL_0_NPAGES
1433 		return (VM_SUBLEVEL_0_NPAGES * PAGE_SIZE);
1434 	case 1:
1435 #endif
1436 		return (VM_LEVEL_0_SIZE);
1437 	case -1:
1438 		return (PAGE_SIZE);
1439 	default:
1440 		return (0);
1441 	}
1442 }
1443 
1444 /*
1445  * Allocates the virtual and physical memory required by the reservation
1446  * management system's data structures, in particular, the reservation array.
1447  */
1448 vm_paddr_t
vm_reserv_startup(vm_offset_t * vaddr,vm_paddr_t end)1449 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end)
1450 {
1451 	vm_paddr_t new_end;
1452 	vm_pindex_t count;
1453 	size_t size;
1454 	int i;
1455 
1456 	count = 0;
1457 	for (i = 0; i < vm_phys_nsegs; i++) {
1458 #ifdef VM_PHYSSEG_SPARSE
1459 		count += howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE) -
1460 		    vm_phys_segs[i].start / VM_LEVEL_0_SIZE;
1461 #else
1462 		count = MAX(count,
1463 		    howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE));
1464 #endif
1465 	}
1466 
1467 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1468 #ifdef VM_PHYSSEG_SPARSE
1469 		count += howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE) -
1470 		    phys_avail[i] / VM_LEVEL_0_SIZE;
1471 #else
1472 		count = MAX(count,
1473 		    howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE));
1474 #endif
1475 	}
1476 
1477 	/*
1478 	 * Calculate the size (in bytes) of the reservation array.  Rounding up
1479 	 * for partial superpages at boundaries, as every small page is mapped
1480 	 * to an element in the reservation array based on its physical address.
1481 	 * Thus, the number of elements in the reservation array can be greater
1482 	 * than the number of superpages.
1483 	 */
1484 	size = count * sizeof(struct vm_reserv);
1485 
1486 	/*
1487 	 * Allocate and map the physical memory for the reservation array.  The
1488 	 * next available virtual address is returned by reference.
1489 	 */
1490 	new_end = end - round_page(size);
1491 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1492 	    VM_PROT_READ | VM_PROT_WRITE);
1493 	bzero(vm_reserv_array, size);
1494 
1495 	/*
1496 	 * Return the next available physical address.
1497 	 */
1498 	return (new_end);
1499 }
1500 
1501 /*
1502  * Returns the superpage containing the given page.
1503  */
1504 vm_page_t
vm_reserv_to_superpage(vm_page_t m)1505 vm_reserv_to_superpage(vm_page_t m)
1506 {
1507 	vm_reserv_t rv;
1508 
1509 	VM_OBJECT_ASSERT_LOCKED(m->object);
1510 	rv = vm_reserv_from_page(m);
1511 	if (rv->object == m->object) {
1512 		if (rv->popcnt == VM_LEVEL_0_NPAGES)
1513 			return (rv->pages);
1514 #ifdef VM_SUBLEVEL_0_NPAGES
1515 		if (vm_reserv_is_sublevel_full(rv, m - rv->pages))
1516 			return (rv->pages + rounddown2(m - rv->pages,
1517 			    VM_SUBLEVEL_0_NPAGES));
1518 #endif
1519 	}
1520 	return (NULL);
1521 }
1522 
1523 #endif	/* VM_NRESERVLEVEL > 0 */
1524