1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2006 Rice University
5 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Alan L. Cox,
9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Superpage reservation management module
36 *
37 * Any external functions defined by this module are only to be used by the
38 * virtual memory system.
39 */
40
41 #include <sys/cdefs.h>
42 #include "opt_vm.h"
43
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mutex.h>
49 #include <sys/queue.h>
50 #include <sys/rwlock.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/bitstring.h>
55 #include <sys/counter.h>
56 #include <sys/ktr.h>
57 #include <sys/vmmeter.h>
58 #include <sys/smp.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_pagequeue.h>
67 #include <vm/vm_phys.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70
71 /*
72 * The reservation system supports the speculative allocation of large physical
73 * pages ("superpages"). Speculative allocation enables the fully automatic
74 * utilization of superpages by the virtual memory system. In other words, no
75 * programmatic directives are required to use superpages.
76 */
77
78 #if VM_NRESERVLEVEL > 0
79
80 /*
81 * Temporarily simulate two-level reservations. Effectively, VM_LEVEL_0_* is
82 * level 1, and VM_SUBLEVEL_0_* is level 0.
83 */
84 #if VM_NRESERVLEVEL == 2
85 #undef VM_NRESERVLEVEL
86 #define VM_NRESERVLEVEL 1
87 #if VM_LEVEL_0_ORDER == 4
88 #undef VM_LEVEL_0_ORDER
89 #define VM_LEVEL_0_ORDER (4 + VM_LEVEL_1_ORDER)
90 #define VM_SUBLEVEL_0_NPAGES (1 << 4)
91 #elif VM_LEVEL_0_ORDER == 7
92 #undef VM_LEVEL_0_ORDER
93 #define VM_LEVEL_0_ORDER (7 + VM_LEVEL_1_ORDER)
94 #define VM_SUBLEVEL_0_NPAGES (1 << 7)
95 #else
96 #error "Unsupported level 0 reservation size"
97 #endif
98 #define VM_LEVEL_0_PSIND 2
99 #else
100 #define VM_LEVEL_0_PSIND 1
101 #endif
102
103 #ifndef VM_LEVEL_0_ORDER_MAX
104 #define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER
105 #endif
106
107 /*
108 * The number of small pages that are contained in a level 0 reservation
109 */
110 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER)
111 #define VM_LEVEL_0_NPAGES_MAX (1 << VM_LEVEL_0_ORDER_MAX)
112
113 /*
114 * The number of bits by which a physical address is shifted to obtain the
115 * reservation number
116 */
117 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
118
119 /*
120 * The size of a level 0 reservation in bytes
121 */
122 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT)
123
124 /*
125 * Computes the index of the small page underlying the given (object, pindex)
126 * within the reservation's array of small pages.
127 */
128 #define VM_RESERV_INDEX(object, pindex) \
129 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
130
131 /*
132 * Number of elapsed ticks before we update the LRU queue position. Used
133 * to reduce contention and churn on the list.
134 */
135 #define PARTPOPSLOP 1
136
137 /*
138 * The reservation structure
139 *
140 * A reservation structure is constructed whenever a large physical page is
141 * speculatively allocated to an object. The reservation provides the small
142 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
143 * within that object. The reservation's "popcnt" tracks the number of these
144 * small physical pages that are in use at any given time. When and if the
145 * reservation is not fully utilized, it appears in the queue of partially
146 * populated reservations. The reservation always appears on the containing
147 * object's list of reservations.
148 *
149 * A partially populated reservation can be broken and reclaimed at any time.
150 *
151 * c - constant after boot
152 * d - vm_reserv_domain_lock
153 * o - vm_reserv_object_lock
154 * r - vm_reserv_lock
155 * s - vm_reserv_domain_scan_lock
156 */
157 struct vm_reserv {
158 struct mtx lock; /* reservation lock. */
159 TAILQ_ENTRY(vm_reserv) partpopq; /* (d, r) per-domain queue. */
160 LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */
161 vm_object_t object; /* (o, r) containing object */
162 vm_pindex_t pindex; /* (o, r) offset in object */
163 vm_page_t pages; /* (c) first page */
164 uint16_t popcnt; /* (r) # of pages in use */
165 uint8_t domain; /* (c) NUMA domain. */
166 char inpartpopq; /* (d, r) */
167 int lasttick; /* (r) last pop update tick. */
168 bitstr_t bit_decl(popmap, VM_LEVEL_0_NPAGES_MAX);
169 /* (r) bit vector, used pages */
170 };
171
172 TAILQ_HEAD(vm_reserv_queue, vm_reserv);
173
174 #define vm_reserv_lockptr(rv) (&(rv)->lock)
175 #define vm_reserv_assert_locked(rv) \
176 mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
177 #define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv))
178 #define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv))
179 #define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv))
180
181 /*
182 * The reservation array
183 *
184 * This array is analoguous in function to vm_page_array. It differs in the
185 * respect that it may contain a greater number of useful reservation
186 * structures than there are (physical) superpages. These "invalid"
187 * reservation structures exist to trade-off space for time in the
188 * implementation of vm_reserv_from_page(). Invalid reservation structures are
189 * distinguishable from "valid" reservation structures by inspecting the
190 * reservation's "pages" field. Invalid reservation structures have a NULL
191 * "pages" field.
192 *
193 * vm_reserv_from_page() maps a small (physical) page to an element of this
194 * array by computing a physical reservation number from the page's physical
195 * address. The physical reservation number is used as the array index.
196 *
197 * An "active" reservation is a valid reservation structure that has a non-NULL
198 * "object" field and a non-zero "popcnt" field. In other words, every active
199 * reservation belongs to a particular object. Moreover, every active
200 * reservation has an entry in the containing object's list of reservations.
201 */
202 static vm_reserv_t vm_reserv_array;
203
204 /*
205 * The per-domain partially populated reservation queues
206 *
207 * These queues enable the fast recovery of an unused free small page from a
208 * partially populated reservation. The reservation at the head of a queue
209 * is the least recently changed, partially populated reservation.
210 *
211 * Access to this queue is synchronized by the per-domain reservation lock.
212 * Threads reclaiming free pages from the queue must hold the per-domain scan
213 * lock.
214 */
215 struct vm_reserv_domain {
216 struct mtx lock;
217 struct vm_reserv_queue partpop; /* (d) */
218 struct vm_reserv marker; /* (d, s) scan marker/lock */
219 } __aligned(CACHE_LINE_SIZE);
220
221 static struct vm_reserv_domain vm_rvd[MAXMEMDOM];
222
223 #define vm_reserv_domain_lockptr(d) (&vm_rvd[(d)].lock)
224 #define vm_reserv_domain_assert_locked(d) \
225 mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED)
226 #define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d))
227 #define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d))
228
229 #define vm_reserv_domain_scan_lock(d) mtx_lock(&vm_rvd[(d)].marker.lock)
230 #define vm_reserv_domain_scan_unlock(d) mtx_unlock(&vm_rvd[(d)].marker.lock)
231
232 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
233 "Reservation Info");
234
235 static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken);
236 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
237 &vm_reserv_broken, "Cumulative number of broken reservations");
238
239 static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed);
240 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
241 &vm_reserv_freed, "Cumulative number of freed reservations");
242
243 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
244
245 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD,
246 NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
247
248 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
249
250 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq,
251 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
252 sysctl_vm_reserv_partpopq, "A",
253 "Partially populated reservation queues");
254
255 static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed);
256 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
257 &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
258
259 /*
260 * The object lock pool is used to synchronize the rvq. We can not use a
261 * pool mutex because it is required before malloc works.
262 *
263 * The "hash" function could be made faster without divide and modulo.
264 */
265 #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU
266
267 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
268
269 #define vm_reserv_object_lock_idx(object) \
270 (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
271 #define vm_reserv_object_lock_ptr(object) \
272 &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
273 #define vm_reserv_object_lock(object) \
274 mtx_lock(vm_reserv_object_lock_ptr((object)))
275 #define vm_reserv_object_unlock(object) \
276 mtx_unlock(vm_reserv_object_lock_ptr((object)))
277
278 static void vm_reserv_break(vm_reserv_t rv);
279 static void vm_reserv_depopulate(vm_reserv_t rv, int index);
280 static vm_reserv_t vm_reserv_from_page(vm_page_t m);
281 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv,
282 vm_pindex_t pindex);
283 static void vm_reserv_populate(vm_reserv_t rv, int index);
284 static void vm_reserv_reclaim(vm_reserv_t rv);
285
286 /*
287 * Returns the current number of full reservations.
288 *
289 * Since the number of full reservations is computed without acquiring any
290 * locks, the returned value is inexact.
291 */
292 static int
sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)293 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
294 {
295 vm_paddr_t paddr;
296 struct vm_phys_seg *seg;
297 vm_reserv_t rv;
298 int fullpop, segind;
299
300 fullpop = 0;
301 for (segind = 0; segind < vm_phys_nsegs; segind++) {
302 seg = &vm_phys_segs[segind];
303 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
304 #ifdef VM_PHYSSEG_SPARSE
305 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
306 (seg->start >> VM_LEVEL_0_SHIFT);
307 #else
308 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
309 #endif
310 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
311 VM_LEVEL_0_SIZE <= seg->end) {
312 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
313 paddr += VM_LEVEL_0_SIZE;
314 rv++;
315 }
316 }
317 return (sysctl_handle_int(oidp, &fullpop, 0, req));
318 }
319
320 /*
321 * Describes the current state of the partially populated reservation queue.
322 */
323 static int
sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)324 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
325 {
326 struct sbuf sbuf;
327 vm_reserv_t rv;
328 int counter, error, domain, level, unused_pages;
329
330 error = sysctl_wire_old_buffer(req, 0);
331 if (error != 0)
332 return (error);
333 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
334 sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n");
335 for (domain = 0; domain < vm_ndomains; domain++) {
336 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
337 counter = 0;
338 unused_pages = 0;
339 vm_reserv_domain_lock(domain);
340 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
341 if (rv == &vm_rvd[domain].marker)
342 continue;
343 counter++;
344 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
345 }
346 vm_reserv_domain_unlock(domain);
347 sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
348 domain, level,
349 unused_pages * ((int)PAGE_SIZE / 1024), counter);
350 }
351 }
352 error = sbuf_finish(&sbuf);
353 sbuf_delete(&sbuf);
354 return (error);
355 }
356
357 /*
358 * Remove a reservation from the object's objq.
359 */
360 static void
vm_reserv_remove(vm_reserv_t rv)361 vm_reserv_remove(vm_reserv_t rv)
362 {
363 vm_object_t object;
364
365 vm_reserv_assert_locked(rv);
366 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
367 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
368 KASSERT(rv->object != NULL,
369 ("vm_reserv_remove: reserv %p is free", rv));
370 KASSERT(!rv->inpartpopq,
371 ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
372 object = rv->object;
373 vm_reserv_object_lock(object);
374 LIST_REMOVE(rv, objq);
375 rv->object = NULL;
376 vm_reserv_object_unlock(object);
377 }
378
379 /*
380 * Insert a new reservation into the object's objq.
381 */
382 static void
vm_reserv_insert(vm_reserv_t rv,vm_object_t object,vm_pindex_t pindex)383 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
384 {
385
386 vm_reserv_assert_locked(rv);
387 CTR6(KTR_VM,
388 "%s: rv %p(%p) object %p new %p popcnt %d",
389 __FUNCTION__, rv, rv->pages, rv->object, object,
390 rv->popcnt);
391 KASSERT(rv->object == NULL,
392 ("vm_reserv_insert: reserv %p isn't free", rv));
393 KASSERT(rv->popcnt == 0,
394 ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
395 KASSERT(!rv->inpartpopq,
396 ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
397 KASSERT(bit_ntest(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1, 0),
398 ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
399 vm_reserv_object_lock(object);
400 rv->pindex = pindex;
401 rv->object = object;
402 rv->lasttick = ticks;
403 LIST_INSERT_HEAD(&object->rvq, rv, objq);
404 vm_reserv_object_unlock(object);
405 }
406
407 #ifdef VM_SUBLEVEL_0_NPAGES
408 static inline bool
vm_reserv_is_sublevel_full(vm_reserv_t rv,int index)409 vm_reserv_is_sublevel_full(vm_reserv_t rv, int index)
410 {
411 _Static_assert(VM_SUBLEVEL_0_NPAGES == 16 ||
412 VM_SUBLEVEL_0_NPAGES == 128,
413 "vm_reserv_is_sublevel_full: unsupported VM_SUBLEVEL_0_NPAGES");
414 /* An equivalent bit_ntest() compiles to more instructions. */
415 switch (VM_SUBLEVEL_0_NPAGES) {
416 case 16:
417 return (((uint16_t *)rv->popmap)[index / 16] == UINT16_MAX);
418 case 128:
419 index = rounddown2(index, 128) / 64;
420 return (((uint64_t *)rv->popmap)[index] == UINT64_MAX &&
421 ((uint64_t *)rv->popmap)[index + 1] == UINT64_MAX);
422 default:
423 __unreachable();
424 }
425 }
426 #endif
427
428 /*
429 * Reduces the given reservation's population count. If the population count
430 * becomes zero, the reservation is destroyed. Additionally, moves the
431 * reservation to the tail of the partially populated reservation queue if the
432 * population count is non-zero.
433 */
434 static void
vm_reserv_depopulate(vm_reserv_t rv,int index)435 vm_reserv_depopulate(vm_reserv_t rv, int index)
436 {
437 struct vm_domain *vmd;
438
439 vm_reserv_assert_locked(rv);
440 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
441 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
442 KASSERT(rv->object != NULL,
443 ("vm_reserv_depopulate: reserv %p is free", rv));
444 KASSERT(bit_test(rv->popmap, index),
445 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
446 index));
447 KASSERT(rv->popcnt > 0,
448 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
449 KASSERT(rv->domain < vm_ndomains,
450 ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
451 rv, rv->domain));
452 if (rv->popcnt == VM_LEVEL_0_NPAGES) {
453 KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND,
454 ("vm_reserv_depopulate: reserv %p is already demoted",
455 rv));
456 rv->pages->psind = VM_LEVEL_0_PSIND - 1;
457 }
458 #ifdef VM_SUBLEVEL_0_NPAGES
459 if (vm_reserv_is_sublevel_full(rv, index))
460 rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 0;
461 #endif
462 bit_clear(rv->popmap, index);
463 rv->popcnt--;
464 if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
465 rv->popcnt == 0) {
466 vm_reserv_domain_lock(rv->domain);
467 if (rv->inpartpopq) {
468 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
469 rv->inpartpopq = FALSE;
470 }
471 if (rv->popcnt != 0) {
472 rv->inpartpopq = TRUE;
473 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv,
474 partpopq);
475 }
476 vm_reserv_domain_unlock(rv->domain);
477 rv->lasttick = ticks;
478 }
479 vmd = VM_DOMAIN(rv->domain);
480 if (rv->popcnt == 0) {
481 vm_reserv_remove(rv);
482 vm_domain_free_lock(vmd);
483 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
484 vm_domain_free_unlock(vmd);
485 counter_u64_add(vm_reserv_freed, 1);
486 }
487 vm_domain_freecnt_inc(vmd, 1);
488 }
489
490 /*
491 * Returns the reservation to which the given page might belong.
492 */
493 static __inline vm_reserv_t
vm_reserv_from_page(vm_page_t m)494 vm_reserv_from_page(vm_page_t m)
495 {
496 #ifdef VM_PHYSSEG_SPARSE
497 struct vm_phys_seg *seg;
498
499 seg = &vm_phys_segs[m->segind];
500 return (seg->first_reserv + (VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT) -
501 (seg->start >> VM_LEVEL_0_SHIFT));
502 #else
503 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
504 #endif
505 }
506
507 /*
508 * Returns an existing reservation or NULL and initialized successor pointer.
509 */
510 static vm_reserv_t
vm_reserv_from_object(vm_object_t object,vm_pindex_t pindex,vm_page_t mpred,vm_page_t * msuccp)511 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
512 vm_page_t mpred, vm_page_t *msuccp)
513 {
514 vm_reserv_t rv;
515 vm_page_t msucc;
516
517 msucc = NULL;
518 if (mpred != NULL) {
519 KASSERT(mpred->object == object,
520 ("vm_reserv_from_object: object doesn't contain mpred"));
521 KASSERT(mpred->pindex < pindex,
522 ("vm_reserv_from_object: mpred doesn't precede pindex"));
523 rv = vm_reserv_from_page(mpred);
524 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
525 goto found;
526 msucc = TAILQ_NEXT(mpred, listq);
527 } else
528 msucc = TAILQ_FIRST(&object->memq);
529 if (msucc != NULL) {
530 KASSERT(msucc->pindex > pindex,
531 ("vm_reserv_from_object: msucc doesn't succeed pindex"));
532 rv = vm_reserv_from_page(msucc);
533 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
534 goto found;
535 }
536 rv = NULL;
537
538 found:
539 *msuccp = msucc;
540
541 return (rv);
542 }
543
544 /*
545 * Returns TRUE if the given reservation contains the given page index and
546 * FALSE otherwise.
547 */
548 static __inline boolean_t
vm_reserv_has_pindex(vm_reserv_t rv,vm_pindex_t pindex)549 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
550 {
551
552 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
553 }
554
555 /*
556 * Increases the given reservation's population count. Moves the reservation
557 * to the tail of the partially populated reservation queue.
558 */
559 static void
vm_reserv_populate(vm_reserv_t rv,int index)560 vm_reserv_populate(vm_reserv_t rv, int index)
561 {
562
563 vm_reserv_assert_locked(rv);
564 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
565 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
566 KASSERT(rv->object != NULL,
567 ("vm_reserv_populate: reserv %p is free", rv));
568 KASSERT(!bit_test(rv->popmap, index),
569 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
570 index));
571 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
572 ("vm_reserv_populate: reserv %p is already full", rv));
573 KASSERT(rv->pages->psind >= 0 &&
574 rv->pages->psind < VM_LEVEL_0_PSIND,
575 ("vm_reserv_populate: reserv %p is already promoted", rv));
576 KASSERT(rv->domain < vm_ndomains,
577 ("vm_reserv_populate: reserv %p's domain is corrupted %d",
578 rv, rv->domain));
579 bit_set(rv->popmap, index);
580 #ifdef VM_SUBLEVEL_0_NPAGES
581 if (vm_reserv_is_sublevel_full(rv, index))
582 rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 1;
583 #endif
584 rv->popcnt++;
585 if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
586 rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
587 return;
588 rv->lasttick = ticks;
589 vm_reserv_domain_lock(rv->domain);
590 if (rv->inpartpopq) {
591 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
592 rv->inpartpopq = FALSE;
593 }
594 if (rv->popcnt < VM_LEVEL_0_NPAGES) {
595 rv->inpartpopq = TRUE;
596 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq);
597 } else {
598 KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND - 1,
599 ("vm_reserv_populate: reserv %p is already promoted",
600 rv));
601 rv->pages->psind = VM_LEVEL_0_PSIND;
602 }
603 vm_reserv_domain_unlock(rv->domain);
604 }
605
606 /*
607 * Allocates a contiguous set of physical pages of the given size "npages"
608 * from existing or newly created reservations. All of the physical pages
609 * must be at or above the given physical address "low" and below the given
610 * physical address "high". The given value "alignment" determines the
611 * alignment of the first physical page in the set. If the given value
612 * "boundary" is non-zero, then the set of physical pages cannot cross any
613 * physical address boundary that is a multiple of that value. Both
614 * "alignment" and "boundary" must be a power of two.
615 *
616 * The page "mpred" must immediately precede the offset "pindex" within the
617 * specified object.
618 *
619 * The object must be locked.
620 */
621 vm_page_t
vm_reserv_alloc_contig(vm_object_t object,vm_pindex_t pindex,int domain,int req,vm_page_t mpred,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)622 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain,
623 int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high,
624 u_long alignment, vm_paddr_t boundary)
625 {
626 struct vm_domain *vmd;
627 vm_paddr_t pa, size;
628 vm_page_t m, m_ret, msucc;
629 vm_pindex_t first, leftcap, rightcap;
630 vm_reserv_t rv;
631 u_long allocpages, maxpages, minpages;
632 int i, index, n;
633
634 VM_OBJECT_ASSERT_WLOCKED(object);
635 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
636
637 /*
638 * Is a reservation fundamentally impossible?
639 */
640 if (pindex < VM_RESERV_INDEX(object, pindex) ||
641 pindex + npages > object->size)
642 return (NULL);
643
644 /*
645 * All reservations of a particular size have the same alignment.
646 * Assuming that the first page is allocated from a reservation, the
647 * least significant bits of its physical address can be determined
648 * from its offset from the beginning of the reservation and the size
649 * of the reservation.
650 *
651 * Could the specified index within a reservation of the smallest
652 * possible size satisfy the alignment and boundary requirements?
653 */
654 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
655 size = npages << PAGE_SHIFT;
656 if (!vm_addr_ok(pa, size, alignment, boundary))
657 return (NULL);
658
659 /*
660 * Look for an existing reservation.
661 */
662 rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
663 if (rv != NULL) {
664 KASSERT(object != kernel_object || rv->domain == domain,
665 ("vm_reserv_alloc_contig: domain mismatch"));
666 index = VM_RESERV_INDEX(object, pindex);
667 /* Does the allocation fit within the reservation? */
668 if (index + npages > VM_LEVEL_0_NPAGES)
669 return (NULL);
670 domain = rv->domain;
671 vmd = VM_DOMAIN(domain);
672 vm_reserv_lock(rv);
673 /* Handle reclaim race. */
674 if (rv->object != object)
675 goto out;
676 m = &rv->pages[index];
677 pa = VM_PAGE_TO_PHYS(m);
678 if (pa < low || pa + size > high ||
679 !vm_addr_ok(pa, size, alignment, boundary))
680 goto out;
681 /* Handle vm_page_rename(m, new_object, ...). */
682 if (!bit_ntest(rv->popmap, index, index + npages - 1, 0))
683 goto out;
684 if (!vm_domain_allocate(vmd, req, npages))
685 goto out;
686 for (i = 0; i < npages; i++)
687 vm_reserv_populate(rv, index + i);
688 vm_reserv_unlock(rv);
689 return (m);
690 out:
691 vm_reserv_unlock(rv);
692 return (NULL);
693 }
694
695 /*
696 * Could at least one reservation fit between the first index to the
697 * left that can be used ("leftcap") and the first index to the right
698 * that cannot be used ("rightcap")?
699 *
700 * We must synchronize with the reserv object lock to protect the
701 * pindex/object of the resulting reservations against rename while
702 * we are inspecting.
703 */
704 first = pindex - VM_RESERV_INDEX(object, pindex);
705 minpages = VM_RESERV_INDEX(object, pindex) + npages;
706 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
707 allocpages = maxpages;
708 vm_reserv_object_lock(object);
709 if (mpred != NULL) {
710 if ((rv = vm_reserv_from_page(mpred))->object != object)
711 leftcap = mpred->pindex + 1;
712 else
713 leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
714 if (leftcap > first) {
715 vm_reserv_object_unlock(object);
716 return (NULL);
717 }
718 }
719 if (msucc != NULL) {
720 if ((rv = vm_reserv_from_page(msucc))->object != object)
721 rightcap = msucc->pindex;
722 else
723 rightcap = rv->pindex;
724 if (first + maxpages > rightcap) {
725 if (maxpages == VM_LEVEL_0_NPAGES) {
726 vm_reserv_object_unlock(object);
727 return (NULL);
728 }
729
730 /*
731 * At least one reservation will fit between "leftcap"
732 * and "rightcap". However, a reservation for the
733 * last of the requested pages will not fit. Reduce
734 * the size of the upcoming allocation accordingly.
735 */
736 allocpages = minpages;
737 }
738 }
739 vm_reserv_object_unlock(object);
740
741 /*
742 * Would the last new reservation extend past the end of the object?
743 *
744 * If the object is unlikely to grow don't allocate a reservation for
745 * the tail.
746 */
747 if ((object->flags & OBJ_ANON) == 0 &&
748 first + maxpages > object->size) {
749 if (maxpages == VM_LEVEL_0_NPAGES)
750 return (NULL);
751 allocpages = minpages;
752 }
753
754 /*
755 * Allocate the physical pages. The alignment and boundary specified
756 * for this allocation may be different from the alignment and
757 * boundary specified for the requested pages. For instance, the
758 * specified index may not be the first page within the first new
759 * reservation.
760 */
761 m = NULL;
762 vmd = VM_DOMAIN(domain);
763 if (vm_domain_allocate(vmd, req, npages)) {
764 vm_domain_free_lock(vmd);
765 m = vm_phys_alloc_contig(domain, allocpages, low, high,
766 ulmax(alignment, VM_LEVEL_0_SIZE),
767 boundary > VM_LEVEL_0_SIZE ? boundary : 0);
768 vm_domain_free_unlock(vmd);
769 if (m == NULL) {
770 vm_domain_freecnt_inc(vmd, npages);
771 return (NULL);
772 }
773 } else
774 return (NULL);
775 KASSERT(vm_page_domain(m) == domain,
776 ("vm_reserv_alloc_contig: Page domain does not match requested."));
777
778 /*
779 * The allocated physical pages always begin at a reservation
780 * boundary, but they do not always end at a reservation boundary.
781 * Initialize every reservation that is completely covered by the
782 * allocated physical pages.
783 */
784 m_ret = NULL;
785 index = VM_RESERV_INDEX(object, pindex);
786 do {
787 rv = vm_reserv_from_page(m);
788 KASSERT(rv->pages == m,
789 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
790 rv));
791 vm_reserv_lock(rv);
792 vm_reserv_insert(rv, object, first);
793 n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
794 for (i = 0; i < n; i++)
795 vm_reserv_populate(rv, index + i);
796 npages -= n;
797 if (m_ret == NULL) {
798 m_ret = &rv->pages[index];
799 index = 0;
800 }
801 vm_reserv_unlock(rv);
802 m += VM_LEVEL_0_NPAGES;
803 first += VM_LEVEL_0_NPAGES;
804 allocpages -= VM_LEVEL_0_NPAGES;
805 } while (allocpages >= VM_LEVEL_0_NPAGES);
806 return (m_ret);
807 }
808
809 /*
810 * Allocate a physical page from an existing or newly created reservation.
811 *
812 * The page "mpred" must immediately precede the offset "pindex" within the
813 * specified object.
814 *
815 * The object must be locked.
816 */
817 vm_page_t
vm_reserv_alloc_page(vm_object_t object,vm_pindex_t pindex,int domain,int req,vm_page_t mpred)818 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain,
819 int req, vm_page_t mpred)
820 {
821 struct vm_domain *vmd;
822 vm_page_t m, msucc;
823 vm_pindex_t first, leftcap, rightcap;
824 vm_reserv_t rv;
825 int index;
826
827 VM_OBJECT_ASSERT_WLOCKED(object);
828
829 /*
830 * Is a reservation fundamentally impossible?
831 */
832 if (pindex < VM_RESERV_INDEX(object, pindex) ||
833 pindex >= object->size)
834 return (NULL);
835
836 /*
837 * Look for an existing reservation.
838 */
839 rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
840 if (rv != NULL) {
841 KASSERT(object != kernel_object || rv->domain == domain,
842 ("vm_reserv_alloc_page: domain mismatch"));
843 domain = rv->domain;
844 vmd = VM_DOMAIN(domain);
845 index = VM_RESERV_INDEX(object, pindex);
846 m = &rv->pages[index];
847 vm_reserv_lock(rv);
848 /* Handle reclaim race. */
849 if (rv->object != object ||
850 /* Handle vm_page_rename(m, new_object, ...). */
851 bit_test(rv->popmap, index)) {
852 m = NULL;
853 goto out;
854 }
855 if (vm_domain_allocate(vmd, req, 1) == 0)
856 m = NULL;
857 else
858 vm_reserv_populate(rv, index);
859 out:
860 vm_reserv_unlock(rv);
861 return (m);
862 }
863
864 /*
865 * Could a reservation fit between the first index to the left that
866 * can be used and the first index to the right that cannot be used?
867 *
868 * We must synchronize with the reserv object lock to protect the
869 * pindex/object of the resulting reservations against rename while
870 * we are inspecting.
871 */
872 first = pindex - VM_RESERV_INDEX(object, pindex);
873 vm_reserv_object_lock(object);
874 if (mpred != NULL) {
875 if ((rv = vm_reserv_from_page(mpred))->object != object)
876 leftcap = mpred->pindex + 1;
877 else
878 leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
879 if (leftcap > first) {
880 vm_reserv_object_unlock(object);
881 return (NULL);
882 }
883 }
884 if (msucc != NULL) {
885 if ((rv = vm_reserv_from_page(msucc))->object != object)
886 rightcap = msucc->pindex;
887 else
888 rightcap = rv->pindex;
889 if (first + VM_LEVEL_0_NPAGES > rightcap) {
890 vm_reserv_object_unlock(object);
891 return (NULL);
892 }
893 }
894 vm_reserv_object_unlock(object);
895
896 /*
897 * Would the last new reservation extend past the end of the object?
898 *
899 * If the object is unlikely to grow don't allocate a reservation for
900 * the tail.
901 */
902 if ((object->flags & OBJ_ANON) == 0 &&
903 first + VM_LEVEL_0_NPAGES > object->size)
904 return (NULL);
905
906 /*
907 * Allocate and populate the new reservation.
908 */
909 m = NULL;
910 vmd = VM_DOMAIN(domain);
911 if (vm_domain_allocate(vmd, req, 1)) {
912 vm_domain_free_lock(vmd);
913 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
914 VM_LEVEL_0_ORDER);
915 vm_domain_free_unlock(vmd);
916 if (m == NULL) {
917 vm_domain_freecnt_inc(vmd, 1);
918 return (NULL);
919 }
920 } else
921 return (NULL);
922 rv = vm_reserv_from_page(m);
923 vm_reserv_lock(rv);
924 KASSERT(rv->pages == m,
925 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
926 vm_reserv_insert(rv, object, first);
927 index = VM_RESERV_INDEX(object, pindex);
928 vm_reserv_populate(rv, index);
929 vm_reserv_unlock(rv);
930
931 return (&rv->pages[index]);
932 }
933
934 /*
935 * Breaks the given reservation. All free pages in the reservation
936 * are returned to the physical memory allocator. The reservation's
937 * population count and map are reset to their initial state.
938 *
939 * The given reservation must not be in the partially populated reservation
940 * queue.
941 */
942 static void
vm_reserv_break(vm_reserv_t rv)943 vm_reserv_break(vm_reserv_t rv)
944 {
945 vm_page_t m;
946 int hi, lo, pos;
947
948 vm_reserv_assert_locked(rv);
949 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
950 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
951 vm_reserv_remove(rv);
952 m = rv->pages;
953 #ifdef VM_SUBLEVEL_0_NPAGES
954 for (; m < rv->pages + VM_LEVEL_0_NPAGES; m += VM_SUBLEVEL_0_NPAGES)
955 #endif
956 m->psind = 0;
957 hi = lo = -1;
958 pos = 0;
959 for (;;) {
960 bit_ff_at(rv->popmap, pos, VM_LEVEL_0_NPAGES, lo != hi, &pos);
961 if (lo == hi) {
962 if (pos == -1)
963 break;
964 lo = pos;
965 continue;
966 }
967 if (pos == -1)
968 pos = VM_LEVEL_0_NPAGES;
969 hi = pos;
970 vm_domain_free_lock(VM_DOMAIN(rv->domain));
971 vm_phys_enqueue_contig(&rv->pages[lo], hi - lo);
972 vm_domain_free_unlock(VM_DOMAIN(rv->domain));
973 lo = hi;
974 }
975 bit_nclear(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1);
976 rv->popcnt = 0;
977 counter_u64_add(vm_reserv_broken, 1);
978 }
979
980 /*
981 * Breaks all reservations belonging to the given object.
982 */
983 void
vm_reserv_break_all(vm_object_t object)984 vm_reserv_break_all(vm_object_t object)
985 {
986 vm_reserv_t rv;
987
988 /*
989 * This access of object->rvq is unsynchronized so that the
990 * object rvq lock can nest after the domain_free lock. We
991 * must check for races in the results. However, the object
992 * lock prevents new additions, so we are guaranteed that when
993 * it returns NULL the object is properly empty.
994 */
995 while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
996 vm_reserv_lock(rv);
997 /* Reclaim race. */
998 if (rv->object != object) {
999 vm_reserv_unlock(rv);
1000 continue;
1001 }
1002 vm_reserv_domain_lock(rv->domain);
1003 if (rv->inpartpopq) {
1004 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1005 rv->inpartpopq = FALSE;
1006 }
1007 vm_reserv_domain_unlock(rv->domain);
1008 vm_reserv_break(rv);
1009 vm_reserv_unlock(rv);
1010 }
1011 }
1012
1013 /*
1014 * Frees the given page if it belongs to a reservation. Returns TRUE if the
1015 * page is freed and FALSE otherwise.
1016 */
1017 boolean_t
vm_reserv_free_page(vm_page_t m)1018 vm_reserv_free_page(vm_page_t m)
1019 {
1020 vm_reserv_t rv;
1021 boolean_t ret;
1022
1023 rv = vm_reserv_from_page(m);
1024 if (rv->object == NULL)
1025 return (FALSE);
1026 vm_reserv_lock(rv);
1027 /* Re-validate after lock. */
1028 if (rv->object != NULL) {
1029 vm_reserv_depopulate(rv, m - rv->pages);
1030 ret = TRUE;
1031 } else
1032 ret = FALSE;
1033 vm_reserv_unlock(rv);
1034
1035 return (ret);
1036 }
1037
1038 /*
1039 * Initializes the reservation management system. Specifically, initializes
1040 * the reservation array.
1041 *
1042 * Requires that vm_page_array and first_page are initialized!
1043 */
1044 void
vm_reserv_init(void)1045 vm_reserv_init(void)
1046 {
1047 vm_paddr_t paddr;
1048 struct vm_phys_seg *seg;
1049 struct vm_reserv *rv;
1050 struct vm_reserv_domain *rvd;
1051 #ifdef VM_PHYSSEG_SPARSE
1052 vm_pindex_t used;
1053 #endif
1054 int i, segind;
1055
1056 /*
1057 * Initialize the reservation array. Specifically, initialize the
1058 * "pages" field for every element that has an underlying superpage.
1059 */
1060 #ifdef VM_PHYSSEG_SPARSE
1061 used = 0;
1062 #endif
1063 for (segind = 0; segind < vm_phys_nsegs; segind++) {
1064 seg = &vm_phys_segs[segind];
1065 #ifdef VM_PHYSSEG_SPARSE
1066 seg->first_reserv = &vm_reserv_array[used];
1067 used += howmany(seg->end, VM_LEVEL_0_SIZE) -
1068 seg->start / VM_LEVEL_0_SIZE;
1069 #else
1070 seg->first_reserv =
1071 &vm_reserv_array[seg->start >> VM_LEVEL_0_SHIFT];
1072 #endif
1073 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1074 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
1075 (seg->start >> VM_LEVEL_0_SHIFT);
1076 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
1077 VM_LEVEL_0_SIZE <= seg->end) {
1078 rv->pages = PHYS_TO_VM_PAGE(paddr);
1079 rv->domain = seg->domain;
1080 mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1081 paddr += VM_LEVEL_0_SIZE;
1082 rv++;
1083 }
1084 }
1085 for (i = 0; i < MAXMEMDOM; i++) {
1086 rvd = &vm_rvd[i];
1087 mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF);
1088 TAILQ_INIT(&rvd->partpop);
1089 mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF);
1090
1091 /*
1092 * Fully populated reservations should never be present in the
1093 * partially populated reservation queues.
1094 */
1095 rvd->marker.popcnt = VM_LEVEL_0_NPAGES;
1096 bit_nset(rvd->marker.popmap, 0, VM_LEVEL_0_NPAGES - 1);
1097 }
1098
1099 for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1100 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1101 MTX_DEF);
1102 }
1103
1104 /*
1105 * Returns true if the given page belongs to a reservation and that page is
1106 * free. Otherwise, returns false.
1107 */
1108 bool
vm_reserv_is_page_free(vm_page_t m)1109 vm_reserv_is_page_free(vm_page_t m)
1110 {
1111 vm_reserv_t rv;
1112
1113 rv = vm_reserv_from_page(m);
1114 if (rv->object == NULL)
1115 return (false);
1116 return (!bit_test(rv->popmap, m - rv->pages));
1117 }
1118
1119 /*
1120 * Returns true if the given page is part of a block of npages, starting at a
1121 * multiple of npages, that are all allocated. Otherwise, returns false.
1122 */
1123 bool
vm_reserv_is_populated(vm_page_t m,int npages)1124 vm_reserv_is_populated(vm_page_t m, int npages)
1125 {
1126 vm_reserv_t rv;
1127 int index;
1128
1129 KASSERT(npages <= VM_LEVEL_0_NPAGES,
1130 ("%s: npages %d exceeds VM_LEVEL_0_NPAGES", __func__, npages));
1131 KASSERT(powerof2(npages),
1132 ("%s: npages %d is not a power of 2", __func__, npages));
1133 rv = vm_reserv_from_page(m);
1134 if (rv->object == NULL)
1135 return (false);
1136 index = rounddown2(m - rv->pages, npages);
1137 return (bit_ntest(rv->popmap, index, index + npages - 1, 1));
1138 }
1139
1140 /*
1141 * If the given page belongs to a reservation, returns the level of that
1142 * reservation. Otherwise, returns -1.
1143 */
1144 int
vm_reserv_level(vm_page_t m)1145 vm_reserv_level(vm_page_t m)
1146 {
1147 vm_reserv_t rv;
1148
1149 rv = vm_reserv_from_page(m);
1150 #ifdef VM_SUBLEVEL_0_NPAGES
1151 return (rv->object != NULL ? 1 : -1);
1152 #else
1153 return (rv->object != NULL ? 0 : -1);
1154 #endif
1155 }
1156
1157 /*
1158 * Returns a reservation level if the given page belongs to a fully populated
1159 * reservation and -1 otherwise.
1160 */
1161 int
vm_reserv_level_iffullpop(vm_page_t m)1162 vm_reserv_level_iffullpop(vm_page_t m)
1163 {
1164 vm_reserv_t rv;
1165
1166 rv = vm_reserv_from_page(m);
1167 if (rv->popcnt == VM_LEVEL_0_NPAGES) {
1168 #ifdef VM_SUBLEVEL_0_NPAGES
1169 return (1);
1170 } else if (rv->pages != NULL &&
1171 vm_reserv_is_sublevel_full(rv, m - rv->pages)) {
1172 #endif
1173 return (0);
1174 }
1175 return (-1);
1176 }
1177
1178 /*
1179 * Remove a partially populated reservation from the queue.
1180 */
1181 static void
vm_reserv_dequeue(vm_reserv_t rv)1182 vm_reserv_dequeue(vm_reserv_t rv)
1183 {
1184
1185 vm_reserv_domain_assert_locked(rv->domain);
1186 vm_reserv_assert_locked(rv);
1187 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1188 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1189 KASSERT(rv->inpartpopq,
1190 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1191
1192 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1193 rv->inpartpopq = FALSE;
1194 }
1195
1196 /*
1197 * Breaks the given partially populated reservation, releasing its free pages
1198 * to the physical memory allocator.
1199 */
1200 static void
vm_reserv_reclaim(vm_reserv_t rv)1201 vm_reserv_reclaim(vm_reserv_t rv)
1202 {
1203
1204 vm_reserv_assert_locked(rv);
1205 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1206 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1207 if (rv->inpartpopq) {
1208 vm_reserv_domain_lock(rv->domain);
1209 vm_reserv_dequeue(rv);
1210 vm_reserv_domain_unlock(rv->domain);
1211 }
1212 vm_reserv_break(rv);
1213 counter_u64_add(vm_reserv_reclaimed, 1);
1214 }
1215
1216 /*
1217 * Breaks a reservation near the head of the partially populated reservation
1218 * queue, releasing its free pages to the physical memory allocator. Returns
1219 * TRUE if a reservation is broken and FALSE otherwise.
1220 */
1221 bool
vm_reserv_reclaim_inactive(int domain)1222 vm_reserv_reclaim_inactive(int domain)
1223 {
1224 vm_reserv_t rv;
1225
1226 vm_reserv_domain_lock(domain);
1227 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
1228 /*
1229 * A locked reservation is likely being updated or reclaimed,
1230 * so just skip ahead.
1231 */
1232 if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) {
1233 vm_reserv_dequeue(rv);
1234 break;
1235 }
1236 }
1237 vm_reserv_domain_unlock(domain);
1238 if (rv != NULL) {
1239 vm_reserv_reclaim(rv);
1240 vm_reserv_unlock(rv);
1241 return (true);
1242 }
1243 return (false);
1244 }
1245
1246 /*
1247 * Determine whether this reservation has free pages that satisfy the given
1248 * request for contiguous physical memory. Start searching from the lower
1249 * bound, defined by lo, and stop at the upper bound, hi. Return the index
1250 * of the first satisfactory free page, or -1 if none is found.
1251 */
1252 static int
vm_reserv_find_contig(vm_reserv_t rv,int npages,int lo,int hi,int ppn_align,int ppn_bound)1253 vm_reserv_find_contig(vm_reserv_t rv, int npages, int lo,
1254 int hi, int ppn_align, int ppn_bound)
1255 {
1256
1257 vm_reserv_assert_locked(rv);
1258 KASSERT(npages <= VM_LEVEL_0_NPAGES - 1,
1259 ("%s: Too many pages", __func__));
1260 KASSERT(ppn_bound <= VM_LEVEL_0_NPAGES,
1261 ("%s: Too big a boundary for reservation size", __func__));
1262 KASSERT(npages <= ppn_bound,
1263 ("%s: Too many pages for given boundary", __func__));
1264 KASSERT(ppn_align != 0 && powerof2(ppn_align),
1265 ("ppn_align is not a positive power of 2"));
1266 KASSERT(ppn_bound != 0 && powerof2(ppn_bound),
1267 ("ppn_bound is not a positive power of 2"));
1268 while (bit_ffc_area_at(rv->popmap, lo, hi, npages, &lo), lo != -1) {
1269 if (lo < roundup2(lo, ppn_align)) {
1270 /* Skip to next aligned page. */
1271 lo = roundup2(lo, ppn_align);
1272 } else if (roundup2(lo + 1, ppn_bound) >= lo + npages)
1273 return (lo);
1274 if (roundup2(lo + 1, ppn_bound) < lo + npages) {
1275 /* Skip to next boundary-matching page. */
1276 lo = roundup2(lo + 1, ppn_bound);
1277 }
1278 }
1279 return (-1);
1280 }
1281
1282 /*
1283 * Searches the partially populated reservation queue for the least recently
1284 * changed reservation with free pages that satisfy the given request for
1285 * contiguous physical memory. If a satisfactory reservation is found, it is
1286 * broken. Returns a page if a reservation is broken and NULL otherwise.
1287 */
1288 vm_page_t
vm_reserv_reclaim_contig(int domain,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1289 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1290 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1291 {
1292 struct vm_reserv_queue *queue;
1293 vm_paddr_t pa, size;
1294 vm_page_t m_ret;
1295 vm_reserv_t marker, rv, rvn;
1296 int hi, lo, posn, ppn_align, ppn_bound;
1297
1298 KASSERT(npages > 0, ("npages is 0"));
1299 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1300 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1301 if (npages > VM_LEVEL_0_NPAGES - 1)
1302 return (NULL);
1303 size = npages << PAGE_SHIFT;
1304 /*
1305 * Ensure that a free range starting at a boundary-multiple
1306 * doesn't include a boundary-multiple within it. Otherwise,
1307 * no boundary-constrained allocation is possible.
1308 */
1309 if (!vm_addr_bound_ok(0, size, boundary))
1310 return (NULL);
1311 marker = &vm_rvd[domain].marker;
1312 queue = &vm_rvd[domain].partpop;
1313 /*
1314 * Compute shifted alignment, boundary values for page-based
1315 * calculations. Constrain to range [1, VM_LEVEL_0_NPAGES] to
1316 * avoid overflow.
1317 */
1318 ppn_align = (int)(ulmin(ulmax(PAGE_SIZE, alignment),
1319 VM_LEVEL_0_SIZE) >> PAGE_SHIFT);
1320 ppn_bound = boundary == 0 ? VM_LEVEL_0_NPAGES :
1321 (int)(MIN(MAX(PAGE_SIZE, boundary),
1322 VM_LEVEL_0_SIZE) >> PAGE_SHIFT);
1323
1324 vm_reserv_domain_scan_lock(domain);
1325 vm_reserv_domain_lock(domain);
1326 TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) {
1327 pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1328 if (pa + VM_LEVEL_0_SIZE - size < low) {
1329 /* This entire reservation is too low; go to next. */
1330 continue;
1331 }
1332 if (pa + size > high) {
1333 /* This entire reservation is too high; go to next. */
1334 continue;
1335 }
1336 if (!vm_addr_align_ok(pa, alignment)) {
1337 /* This entire reservation is unaligned; go to next. */
1338 continue;
1339 }
1340
1341 if (vm_reserv_trylock(rv) == 0) {
1342 TAILQ_INSERT_AFTER(queue, rv, marker, partpopq);
1343 vm_reserv_domain_unlock(domain);
1344 vm_reserv_lock(rv);
1345 if (TAILQ_PREV(marker, vm_reserv_queue, partpopq) !=
1346 rv) {
1347 vm_reserv_unlock(rv);
1348 vm_reserv_domain_lock(domain);
1349 rvn = TAILQ_NEXT(marker, partpopq);
1350 TAILQ_REMOVE(queue, marker, partpopq);
1351 continue;
1352 }
1353 vm_reserv_domain_lock(domain);
1354 TAILQ_REMOVE(queue, marker, partpopq);
1355 }
1356 vm_reserv_domain_unlock(domain);
1357 lo = (pa >= low) ? 0 :
1358 (int)((low + PAGE_MASK - pa) >> PAGE_SHIFT);
1359 hi = (pa + VM_LEVEL_0_SIZE <= high) ? VM_LEVEL_0_NPAGES :
1360 (int)((high - pa) >> PAGE_SHIFT);
1361 posn = vm_reserv_find_contig(rv, (int)npages, lo, hi,
1362 ppn_align, ppn_bound);
1363 if (posn >= 0) {
1364 vm_reserv_domain_scan_unlock(domain);
1365 /* Allocate requested space */
1366 rv->popcnt += npages;
1367 bit_nset(rv->popmap, posn, posn + npages - 1);
1368 vm_reserv_reclaim(rv);
1369 vm_reserv_unlock(rv);
1370 m_ret = &rv->pages[posn];
1371 pa = VM_PAGE_TO_PHYS(m_ret);
1372 KASSERT(vm_addr_ok(pa, size, alignment, boundary),
1373 ("%s: adjusted address not aligned/bounded to "
1374 "%lx/%jx",
1375 __func__, alignment, (uintmax_t)boundary));
1376 return (m_ret);
1377 }
1378 vm_reserv_domain_lock(domain);
1379 rvn = TAILQ_NEXT(rv, partpopq);
1380 vm_reserv_unlock(rv);
1381 }
1382 vm_reserv_domain_unlock(domain);
1383 vm_reserv_domain_scan_unlock(domain);
1384 return (NULL);
1385 }
1386
1387 /*
1388 * Transfers the reservation underlying the given page to a new object.
1389 *
1390 * The object must be locked.
1391 */
1392 void
vm_reserv_rename(vm_page_t m,vm_object_t new_object,vm_object_t old_object,vm_pindex_t old_object_offset)1393 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1394 vm_pindex_t old_object_offset)
1395 {
1396 vm_reserv_t rv;
1397
1398 VM_OBJECT_ASSERT_WLOCKED(new_object);
1399 rv = vm_reserv_from_page(m);
1400 if (rv->object == old_object) {
1401 vm_reserv_lock(rv);
1402 CTR6(KTR_VM,
1403 "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1404 __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1405 rv->inpartpopq);
1406 if (rv->object == old_object) {
1407 vm_reserv_object_lock(old_object);
1408 rv->object = NULL;
1409 LIST_REMOVE(rv, objq);
1410 vm_reserv_object_unlock(old_object);
1411 vm_reserv_object_lock(new_object);
1412 rv->object = new_object;
1413 rv->pindex -= old_object_offset;
1414 LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1415 vm_reserv_object_unlock(new_object);
1416 }
1417 vm_reserv_unlock(rv);
1418 }
1419 }
1420
1421 /*
1422 * Returns the size (in bytes) of a reservation of the specified level.
1423 */
1424 int
vm_reserv_size(int level)1425 vm_reserv_size(int level)
1426 {
1427
1428 switch (level) {
1429 case 0:
1430 #ifdef VM_SUBLEVEL_0_NPAGES
1431 return (VM_SUBLEVEL_0_NPAGES * PAGE_SIZE);
1432 case 1:
1433 #endif
1434 return (VM_LEVEL_0_SIZE);
1435 case -1:
1436 return (PAGE_SIZE);
1437 default:
1438 return (0);
1439 }
1440 }
1441
1442 /*
1443 * Allocates the virtual and physical memory required by the reservation
1444 * management system's data structures, in particular, the reservation array.
1445 */
1446 vm_paddr_t
vm_reserv_startup(vm_offset_t * vaddr,vm_paddr_t end)1447 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end)
1448 {
1449 vm_paddr_t new_end;
1450 vm_pindex_t count;
1451 size_t size;
1452 int i;
1453
1454 count = 0;
1455 for (i = 0; i < vm_phys_nsegs; i++) {
1456 #ifdef VM_PHYSSEG_SPARSE
1457 count += howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE) -
1458 vm_phys_segs[i].start / VM_LEVEL_0_SIZE;
1459 #else
1460 count = MAX(count,
1461 howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE));
1462 #endif
1463 }
1464
1465 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1466 #ifdef VM_PHYSSEG_SPARSE
1467 count += howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE) -
1468 phys_avail[i] / VM_LEVEL_0_SIZE;
1469 #else
1470 count = MAX(count,
1471 howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE));
1472 #endif
1473 }
1474
1475 /*
1476 * Calculate the size (in bytes) of the reservation array. Rounding up
1477 * for partial superpages at boundaries, as every small page is mapped
1478 * to an element in the reservation array based on its physical address.
1479 * Thus, the number of elements in the reservation array can be greater
1480 * than the number of superpages.
1481 */
1482 size = count * sizeof(struct vm_reserv);
1483
1484 /*
1485 * Allocate and map the physical memory for the reservation array. The
1486 * next available virtual address is returned by reference.
1487 */
1488 new_end = end - round_page(size);
1489 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1490 VM_PROT_READ | VM_PROT_WRITE);
1491 bzero(vm_reserv_array, size);
1492
1493 /*
1494 * Return the next available physical address.
1495 */
1496 return (new_end);
1497 }
1498
1499 /*
1500 * Returns the superpage containing the given page.
1501 */
1502 vm_page_t
vm_reserv_to_superpage(vm_page_t m)1503 vm_reserv_to_superpage(vm_page_t m)
1504 {
1505 vm_reserv_t rv;
1506
1507 VM_OBJECT_ASSERT_LOCKED(m->object);
1508 rv = vm_reserv_from_page(m);
1509 if (rv->object == m->object) {
1510 if (rv->popcnt == VM_LEVEL_0_NPAGES)
1511 return (rv->pages);
1512 #ifdef VM_SUBLEVEL_0_NPAGES
1513 if (vm_reserv_is_sublevel_full(rv, m - rv->pages))
1514 return (rv->pages + rounddown2(m - rv->pages,
1515 VM_SUBLEVEL_0_NPAGES));
1516 #endif
1517 }
1518 return (NULL);
1519 }
1520
1521 #endif /* VM_NRESERVLEVEL > 0 */
1522