xref: /freebsd/sys/vm/vm_phys.c (revision 1fee99800a79887b9037749a34d09f2acab082c0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/domainset.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/kthread.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sched.h>
58 #include <sys/sysctl.h>
59 #include <sys/tree.h>
60 #include <sys/tslog.h>
61 #include <sys/unistd.h>
62 #include <sys/vmmeter.h>
63 
64 #include <ddb/ddb.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_extern.h>
68 #include <vm/vm_param.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_page.h>
71 #include <vm/vm_phys.h>
72 #include <vm/vm_pagequeue.h>
73 
74 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
75     "Too many physsegs.");
76 _Static_assert(sizeof(long long) >= sizeof(vm_paddr_t),
77     "vm_paddr_t too big for ffsll, flsll.");
78 
79 #ifdef NUMA
80 struct mem_affinity __read_mostly *mem_affinity;
81 int __read_mostly *mem_locality;
82 
83 static int numa_disabled;
84 static SYSCTL_NODE(_vm, OID_AUTO, numa, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
85     "NUMA options");
86 SYSCTL_INT(_vm_numa, OID_AUTO, disabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
87     &numa_disabled, 0, "NUMA-awareness in the allocators is disabled");
88 #endif
89 
90 int __read_mostly vm_ndomains = 1;
91 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
92 
93 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
94 int __read_mostly vm_phys_nsegs;
95 static struct vm_phys_seg vm_phys_early_segs[8];
96 static int vm_phys_early_nsegs;
97 
98 struct vm_phys_fictitious_seg;
99 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
100     struct vm_phys_fictitious_seg *);
101 
102 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
103     RB_INITIALIZER(&vm_phys_fictitious_tree);
104 
105 struct vm_phys_fictitious_seg {
106 	RB_ENTRY(vm_phys_fictitious_seg) node;
107 	/* Memory region data */
108 	vm_paddr_t	start;
109 	vm_paddr_t	end;
110 	vm_page_t	first_page;
111 };
112 
113 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
114     vm_phys_fictitious_cmp);
115 
116 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
117 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
118 
119 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
120     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
121     [VM_NFREEORDER_MAX];
122 
123 static int __read_mostly vm_nfreelists;
124 
125 /*
126  * These "avail lists" are globals used to communicate boot-time physical
127  * memory layout to other parts of the kernel.  Each physically contiguous
128  * region of memory is defined by a start address at an even index and an
129  * end address at the following odd index.  Each list is terminated by a
130  * pair of zero entries.
131  *
132  * dump_avail tells the dump code what regions to include in a crash dump, and
133  * phys_avail is all of the remaining physical memory that is available for
134  * the vm system.
135  *
136  * Initially dump_avail and phys_avail are identical.  Boot time memory
137  * allocations remove extents from phys_avail that may still be included
138  * in dumps.
139  */
140 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
141 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
142 
143 /*
144  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
145  */
146 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
147 static int __read_mostly vm_default_freepool;
148 
149 CTASSERT(VM_FREELIST_DEFAULT == 0);
150 
151 #ifdef VM_FREELIST_DMA32
152 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
153 #endif
154 
155 /*
156  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
157  * the ordering of the free list boundaries.
158  */
159 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
160 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
161 #endif
162 
163 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
164 SYSCTL_OID(_vm, OID_AUTO, phys_free,
165     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
166     sysctl_vm_phys_free, "A",
167     "Phys Free Info");
168 
169 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
170 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
171     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
172     sysctl_vm_phys_segs, "A",
173     "Phys Seg Info");
174 
175 #ifdef NUMA
176 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
177 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
178     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
179     sysctl_vm_phys_locality, "A",
180     "Phys Locality Info");
181 #endif
182 
183 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
184     &vm_ndomains, 0, "Number of physical memory domains available.");
185 
186 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
187 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
188 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
189     int order, int pool, int tail);
190 
191 static bool __diagused
vm_phys_pool_valid(int pool)192 vm_phys_pool_valid(int pool)
193 {
194 #ifdef VM_FREEPOOL_LAZYINIT
195 	if (pool == VM_FREEPOOL_LAZYINIT)
196 		return (false);
197 #endif
198 	return (pool >= 0 && pool < VM_NFREEPOOL);
199 }
200 
201 /*
202  * Red-black tree helpers for vm fictitious range management.
203  */
204 static inline int
vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg * p,struct vm_phys_fictitious_seg * range)205 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
206     struct vm_phys_fictitious_seg *range)
207 {
208 
209 	KASSERT(range->start != 0 && range->end != 0,
210 	    ("Invalid range passed on search for vm_fictitious page"));
211 	if (p->start >= range->end)
212 		return (1);
213 	if (p->start < range->start)
214 		return (-1);
215 
216 	return (0);
217 }
218 
219 static int
vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg * p1,struct vm_phys_fictitious_seg * p2)220 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
221     struct vm_phys_fictitious_seg *p2)
222 {
223 
224 	/* Check if this is a search for a page */
225 	if (p1->end == 0)
226 		return (vm_phys_fictitious_in_range(p1, p2));
227 
228 	KASSERT(p2->end != 0,
229     ("Invalid range passed as second parameter to vm fictitious comparison"));
230 
231 	/* Searching to add a new range */
232 	if (p1->end <= p2->start)
233 		return (-1);
234 	if (p1->start >= p2->end)
235 		return (1);
236 
237 	panic("Trying to add overlapping vm fictitious ranges:\n"
238 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
239 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
240 }
241 
242 int
vm_phys_domain_match(int prefer __numa_used,vm_paddr_t low __numa_used,vm_paddr_t high __numa_used)243 vm_phys_domain_match(int prefer __numa_used, vm_paddr_t low __numa_used,
244     vm_paddr_t high __numa_used)
245 {
246 #ifdef NUMA
247 	domainset_t mask;
248 	int i;
249 
250 	if (vm_ndomains == 1 || mem_affinity == NULL)
251 		return (0);
252 
253 	DOMAINSET_ZERO(&mask);
254 	/*
255 	 * Check for any memory that overlaps low, high.
256 	 */
257 	for (i = 0; mem_affinity[i].end != 0; i++)
258 		if (mem_affinity[i].start <= high &&
259 		    mem_affinity[i].end >= low)
260 			DOMAINSET_SET(mem_affinity[i].domain, &mask);
261 	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
262 		return (prefer);
263 	if (DOMAINSET_EMPTY(&mask))
264 		panic("vm_phys_domain_match:  Impossible constraint");
265 	return (DOMAINSET_FFS(&mask) - 1);
266 #else
267 	return (0);
268 #endif
269 }
270 
271 /*
272  * Outputs the state of the physical memory allocator, specifically,
273  * the amount of physical memory in each free list.
274  */
275 static int
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)276 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
277 {
278 	struct sbuf sbuf;
279 	struct vm_freelist *fl;
280 	int dom, error, flind, oind, pind;
281 
282 	error = sysctl_wire_old_buffer(req, 0);
283 	if (error != 0)
284 		return (error);
285 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
286 	for (dom = 0; dom < vm_ndomains; dom++) {
287 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
288 		for (flind = 0; flind < vm_nfreelists; flind++) {
289 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
290 			    "\n  ORDER (SIZE)  |  NUMBER"
291 			    "\n              ", flind);
292 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
293 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
294 			sbuf_printf(&sbuf, "\n--            ");
295 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
296 				sbuf_printf(&sbuf, "-- --      ");
297 			sbuf_printf(&sbuf, "--\n");
298 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
299 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
300 				    1 << (PAGE_SHIFT - 10 + oind));
301 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
302 				fl = vm_phys_free_queues[dom][flind][pind];
303 					sbuf_printf(&sbuf, "  |  %6d",
304 					    fl[oind].lcnt);
305 				}
306 				sbuf_printf(&sbuf, "\n");
307 			}
308 		}
309 	}
310 	error = sbuf_finish(&sbuf);
311 	sbuf_delete(&sbuf);
312 	return (error);
313 }
314 
315 /*
316  * Outputs the set of physical memory segments.
317  */
318 static int
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)319 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
320 {
321 	struct sbuf sbuf;
322 	struct vm_phys_seg *seg;
323 	int error, segind;
324 
325 	error = sysctl_wire_old_buffer(req, 0);
326 	if (error != 0)
327 		return (error);
328 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
329 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
330 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
331 		seg = &vm_phys_segs[segind];
332 		sbuf_printf(&sbuf, "start:     %#jx\n",
333 		    (uintmax_t)seg->start);
334 		sbuf_printf(&sbuf, "end:       %#jx\n",
335 		    (uintmax_t)seg->end);
336 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
337 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
338 	}
339 	error = sbuf_finish(&sbuf);
340 	sbuf_delete(&sbuf);
341 	return (error);
342 }
343 
344 /*
345  * Return affinity, or -1 if there's no affinity information.
346  */
347 int
vm_phys_mem_affinity(int f __numa_used,int t __numa_used)348 vm_phys_mem_affinity(int f __numa_used, int t __numa_used)
349 {
350 
351 #ifdef NUMA
352 	if (mem_locality == NULL)
353 		return (-1);
354 	if (f >= vm_ndomains || t >= vm_ndomains)
355 		return (-1);
356 	return (mem_locality[f * vm_ndomains + t]);
357 #else
358 	return (-1);
359 #endif
360 }
361 
362 #ifdef NUMA
363 /*
364  * Outputs the VM locality table.
365  */
366 static int
sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)367 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
368 {
369 	struct sbuf sbuf;
370 	int error, i, j;
371 
372 	error = sysctl_wire_old_buffer(req, 0);
373 	if (error != 0)
374 		return (error);
375 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
376 
377 	sbuf_printf(&sbuf, "\n");
378 
379 	for (i = 0; i < vm_ndomains; i++) {
380 		sbuf_printf(&sbuf, "%d: ", i);
381 		for (j = 0; j < vm_ndomains; j++) {
382 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
383 		}
384 		sbuf_printf(&sbuf, "\n");
385 	}
386 	error = sbuf_finish(&sbuf);
387 	sbuf_delete(&sbuf);
388 	return (error);
389 }
390 #endif
391 
392 static void
vm_freelist_add(struct vm_freelist * fl,vm_page_t m,int order,int pool,int tail)393 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int pool,
394     int tail)
395 {
396 	/*
397 	 * The paging queues and the free page lists utilize the same field,
398 	 * plinks.q, within the vm_page structure.  When a physical page is
399 	 * freed, it is lazily removed from the paging queues to reduce the
400 	 * cost of removal through batching.  Here, we must ensure that any
401 	 * deferred dequeue on the physical page has completed before using
402 	 * its plinks.q field.
403 	 */
404 	if (__predict_false(vm_page_astate_load(m).queue != PQ_NONE))
405 		vm_page_dequeue(m);
406 
407 	m->order = order;
408 	m->pool = pool;
409 	if (tail)
410 		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
411 	else
412 		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
413 	fl[order].lcnt++;
414 }
415 
416 static void
vm_freelist_rem(struct vm_freelist * fl,vm_page_t m,int order)417 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
418 {
419 
420 	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
421 	fl[order].lcnt--;
422 	m->order = VM_NFREEORDER;
423 }
424 
425 /*
426  * Create a physical memory segment.
427  */
428 static void
_vm_phys_create_seg(vm_paddr_t start,vm_paddr_t end,int domain)429 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
430 {
431 	struct vm_phys_seg *seg;
432 
433 	if (!(0 <= domain && domain < vm_ndomains))
434 		panic("%s: Invalid domain %d ('vm_ndomains' is %d)",
435 		    __func__, domain, vm_ndomains);
436 	if (vm_phys_nsegs >= VM_PHYSSEG_MAX)
437 		panic("Not enough storage for physical segments, "
438 		    "increase VM_PHYSSEG_MAX");
439 
440 	seg = &vm_phys_segs[vm_phys_nsegs++];
441 	while (seg > vm_phys_segs && seg[-1].start >= end) {
442 		*seg = *(seg - 1);
443 		seg--;
444 	}
445 	seg->start = start;
446 	seg->end = end;
447 	seg->domain = domain;
448 	if (seg != vm_phys_segs && seg[-1].end > start)
449 		panic("Overlapping physical segments: Current [%#jx,%#jx) "
450 		    "at index %zu, previous [%#jx,%#jx)",
451 		    (uintmax_t)start, (uintmax_t)end, seg - vm_phys_segs,
452 		    (uintmax_t)seg[-1].start, (uintmax_t)seg[-1].end);
453 }
454 
455 static void
vm_phys_create_seg(vm_paddr_t start,vm_paddr_t end)456 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
457 {
458 #ifdef NUMA
459 	int i;
460 
461 	if (mem_affinity == NULL) {
462 		_vm_phys_create_seg(start, end, 0);
463 		return;
464 	}
465 
466 	for (i = 0;; i++) {
467 		if (mem_affinity[i].end == 0)
468 			panic("Reached end of affinity info");
469 		if (mem_affinity[i].end <= start)
470 			continue;
471 		if (mem_affinity[i].start > start)
472 			panic("No affinity info for start %jx",
473 			    (uintmax_t)start);
474 		if (mem_affinity[i].end >= end) {
475 			_vm_phys_create_seg(start, end,
476 			    mem_affinity[i].domain);
477 			break;
478 		}
479 		_vm_phys_create_seg(start, mem_affinity[i].end,
480 		    mem_affinity[i].domain);
481 		start = mem_affinity[i].end;
482 	}
483 #else
484 	_vm_phys_create_seg(start, end, 0);
485 #endif
486 }
487 
488 /*
489  * Add a physical memory segment.
490  */
491 void
vm_phys_add_seg(vm_paddr_t start,vm_paddr_t end)492 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
493 {
494 	vm_paddr_t paddr;
495 
496 	if ((start & PAGE_MASK) != 0)
497 		panic("%s: start (%jx) is not page aligned", __func__,
498 		    (uintmax_t)start);
499 	if ((end & PAGE_MASK) != 0)
500 		panic("%s: end (%jx) is not page aligned", __func__,
501 		    (uintmax_t)end);
502 	if (start > end)
503 		panic("%s: start (%jx) > end (%jx)!", __func__,
504 		    (uintmax_t)start, (uintmax_t)end);
505 
506 	if (start == end)
507 		return;
508 
509 	/*
510 	 * Split the physical memory segment if it spans two or more free
511 	 * list boundaries.
512 	 */
513 	paddr = start;
514 #ifdef	VM_FREELIST_LOWMEM
515 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
516 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
517 		paddr = VM_LOWMEM_BOUNDARY;
518 	}
519 #endif
520 #ifdef	VM_FREELIST_DMA32
521 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
522 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
523 		paddr = VM_DMA32_BOUNDARY;
524 	}
525 #endif
526 	vm_phys_create_seg(paddr, end);
527 }
528 
529 /*
530  * Initialize the physical memory allocator.
531  *
532  * Requires that vm_page_array is initialized!
533  */
534 void
vm_phys_init(void)535 vm_phys_init(void)
536 {
537 	struct vm_freelist *fl;
538 	struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
539 #if defined(VM_DMA32_NPAGES_THRESHOLD) || defined(VM_PHYSSEG_SPARSE)
540 	u_long npages;
541 #endif
542 	int dom, flind, freelist, oind, pind, segind;
543 
544 	/*
545 	 * Compute the number of free lists, and generate the mapping from the
546 	 * manifest constants VM_FREELIST_* to the free list indices.
547 	 *
548 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
549 	 * 0 or 1 to indicate which free lists should be created.
550 	 */
551 #ifdef	VM_DMA32_NPAGES_THRESHOLD
552 	npages = 0;
553 #endif
554 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
555 		seg = &vm_phys_segs[segind];
556 #ifdef	VM_FREELIST_LOWMEM
557 		if (seg->end <= VM_LOWMEM_BOUNDARY)
558 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
559 		else
560 #endif
561 #ifdef	VM_FREELIST_DMA32
562 		if (
563 #ifdef	VM_DMA32_NPAGES_THRESHOLD
564 		    /*
565 		     * Create the DMA32 free list only if the amount of
566 		     * physical memory above physical address 4G exceeds the
567 		     * given threshold.
568 		     */
569 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
570 #endif
571 		    seg->end <= VM_DMA32_BOUNDARY)
572 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
573 		else
574 #endif
575 		{
576 #ifdef	VM_DMA32_NPAGES_THRESHOLD
577 			npages += atop(seg->end - seg->start);
578 #endif
579 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
580 		}
581 	}
582 	/* Change each entry into a running total of the free lists. */
583 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
584 		vm_freelist_to_flind[freelist] +=
585 		    vm_freelist_to_flind[freelist - 1];
586 	}
587 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
588 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
589 	/* Change each entry into a free list index. */
590 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
591 		vm_freelist_to_flind[freelist]--;
592 
593 	/*
594 	 * Initialize the first_page and free_queues fields of each physical
595 	 * memory segment.
596 	 */
597 #ifdef VM_PHYSSEG_SPARSE
598 	npages = 0;
599 #endif
600 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
601 		seg = &vm_phys_segs[segind];
602 #ifdef VM_PHYSSEG_SPARSE
603 		seg->first_page = &vm_page_array[npages];
604 		npages += atop(seg->end - seg->start);
605 #else
606 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
607 #endif
608 #ifdef	VM_FREELIST_LOWMEM
609 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
610 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
611 			KASSERT(flind >= 0,
612 			    ("vm_phys_init: LOWMEM flind < 0"));
613 		} else
614 #endif
615 #ifdef	VM_FREELIST_DMA32
616 		if (seg->end <= VM_DMA32_BOUNDARY) {
617 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
618 			KASSERT(flind >= 0,
619 			    ("vm_phys_init: DMA32 flind < 0"));
620 		} else
621 #endif
622 		{
623 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
624 			KASSERT(flind >= 0,
625 			    ("vm_phys_init: DEFAULT flind < 0"));
626 		}
627 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
628 	}
629 
630 	/*
631 	 * Coalesce physical memory segments that are contiguous and share the
632 	 * same per-domain free queues.
633 	 */
634 	prev_seg = vm_phys_segs;
635 	seg = &vm_phys_segs[1];
636 	end_seg = &vm_phys_segs[vm_phys_nsegs];
637 	while (seg < end_seg) {
638 		if (prev_seg->end == seg->start &&
639 		    prev_seg->free_queues == seg->free_queues) {
640 			prev_seg->end = seg->end;
641 			KASSERT(prev_seg->domain == seg->domain,
642 			    ("vm_phys_init: free queues cannot span domains"));
643 			vm_phys_nsegs--;
644 			end_seg--;
645 			for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
646 				*tmp_seg = *(tmp_seg + 1);
647 		} else {
648 			prev_seg = seg;
649 			seg++;
650 		}
651 	}
652 
653 	/*
654 	 * Initialize the free queues.
655 	 */
656 	for (dom = 0; dom < vm_ndomains; dom++) {
657 		for (flind = 0; flind < vm_nfreelists; flind++) {
658 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
659 				fl = vm_phys_free_queues[dom][flind][pind];
660 				for (oind = 0; oind < VM_NFREEORDER; oind++)
661 					TAILQ_INIT(&fl[oind].pl);
662 			}
663 		}
664 	}
665 
666 #ifdef VM_FREEPOOL_LAZYINIT
667 	vm_default_freepool = VM_FREEPOOL_LAZYINIT;
668 #else
669 	vm_default_freepool = VM_FREEPOOL_DEFAULT;
670 #endif
671 
672 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
673 }
674 
675 /*
676  * Register info about the NUMA topology of the system.
677  *
678  * Invoked by platform-dependent code prior to vm_phys_init().
679  */
680 void
vm_phys_register_domains(int ndomains __numa_used,struct mem_affinity * affinity __numa_used,int * locality __numa_used)681 vm_phys_register_domains(int ndomains __numa_used,
682     struct mem_affinity *affinity __numa_used, int *locality __numa_used)
683 {
684 #ifdef NUMA
685 	int i;
686 
687 	/*
688 	 * For now the only override value that we support is 1, which
689 	 * effectively disables NUMA-awareness in the allocators.
690 	 */
691 	TUNABLE_INT_FETCH("vm.numa.disabled", &numa_disabled);
692 	if (numa_disabled)
693 		ndomains = 1;
694 
695 	if (ndomains > 1) {
696 		vm_ndomains = ndomains;
697 		mem_affinity = affinity;
698 		mem_locality = locality;
699 	}
700 
701 	for (i = 0; i < vm_ndomains; i++)
702 		DOMAINSET_SET(i, &all_domains);
703 #endif
704 }
705 
706 /*
707  * Split a contiguous, power of two-sized set of physical pages.
708  *
709  * When this function is called by a page allocation function, the caller
710  * should request insertion at the head unless the order [order, oind) queues
711  * are known to be empty.  The objective being to reduce the likelihood of
712  * long-term fragmentation by promoting contemporaneous allocation and
713  * (hopefully) deallocation.
714  */
715 static __inline void
vm_phys_split_pages(vm_page_t m,int oind,struct vm_freelist * fl,int order,int pool,int tail)716 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
717     int pool, int tail)
718 {
719 	vm_page_t m_buddy;
720 
721 	while (oind > order) {
722 		oind--;
723 		m_buddy = &m[1 << oind];
724 		KASSERT(m_buddy->order == VM_NFREEORDER,
725 		    ("vm_phys_split_pages: page %p has unexpected order %d",
726 		    m_buddy, m_buddy->order));
727 		vm_freelist_add(fl, m_buddy, oind, pool, tail);
728         }
729 }
730 
731 static void
vm_phys_enq_chunk(struct vm_freelist * fl,vm_page_t m,int order,int pool,int tail)732 vm_phys_enq_chunk(struct vm_freelist *fl, vm_page_t m, int order, int pool,
733     int tail)
734 {
735 	KASSERT(order >= 0 && order < VM_NFREEORDER,
736 	    ("%s: invalid order %d", __func__, order));
737 
738 	vm_freelist_add(fl, m, order, pool, tail);
739 #ifdef VM_FREEPOOL_LAZYINIT
740 	if (__predict_false(pool == VM_FREEPOOL_LAZYINIT)) {
741 		vm_page_t m_next;
742 		vm_paddr_t pa;
743 		int npages;
744 
745 		npages = 1 << order;
746 		m_next = m + npages;
747 		pa = m->phys_addr + ptoa(npages);
748 		if (pa < vm_phys_segs[m->segind].end) {
749 			vm_page_init_page(m_next, pa, m->segind,
750 			    VM_FREEPOOL_LAZYINIT);
751 		}
752 	}
753 #endif
754 }
755 
756 /*
757  * Add the physical pages [m, m + npages) at the beginning of a power-of-two
758  * aligned and sized set to the specified free list.
759  *
760  * When this function is called by a page allocation function, the caller
761  * should request insertion at the head unless the lower-order queues are
762  * known to be empty.  The objective being to reduce the likelihood of long-
763  * term fragmentation by promoting contemporaneous allocation and (hopefully)
764  * deallocation.
765  *
766  * The physical page m's buddy must not be free.
767  */
768 static void
vm_phys_enq_beg(vm_page_t m,u_int npages,struct vm_freelist * fl,int pool,int tail)769 vm_phys_enq_beg(vm_page_t m, u_int npages, struct vm_freelist *fl, int pool,
770     int tail)
771 {
772         int order;
773 
774 	KASSERT(npages == 0 ||
775 	    (VM_PAGE_TO_PHYS(m) &
776 	    ((PAGE_SIZE << ilog2(npages)) - 1)) == 0,
777 	    ("%s: page %p and npages %u are misaligned",
778 	    __func__, m, npages));
779         while (npages > 0) {
780 		KASSERT(m->order == VM_NFREEORDER,
781 		    ("%s: page %p has unexpected order %d",
782 		    __func__, m, m->order));
783 		order = ilog2(npages);
784 		KASSERT(order < VM_NFREEORDER,
785 		    ("%s: order %d is out of range", __func__, order));
786 		vm_phys_enq_chunk(fl, m, order, pool, tail);
787 		m += 1 << order;
788 		npages -= 1 << order;
789 	}
790 }
791 
792 /*
793  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
794  * and sized set to the specified free list.
795  *
796  * When this function is called by a page allocation function, the caller
797  * should request insertion at the head unless the lower-order queues are
798  * known to be empty.  The objective being to reduce the likelihood of long-
799  * term fragmentation by promoting contemporaneous allocation and (hopefully)
800  * deallocation.
801  *
802  * If npages is zero, this function does nothing and ignores the physical page
803  * parameter m.  Otherwise, the physical page m's buddy must not be free.
804  */
805 static vm_page_t
vm_phys_enq_range(vm_page_t m,u_int npages,struct vm_freelist * fl,int pool,int tail)806 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int pool,
807     int tail)
808 {
809 	int order;
810 
811 	KASSERT(npages == 0 ||
812 	    ((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
813 	    ((PAGE_SIZE << ilog2(npages)) - 1)) == 0,
814 	    ("vm_phys_enq_range: page %p and npages %u are misaligned",
815 	    m, npages));
816 	while (npages > 0) {
817 		KASSERT(m->order == VM_NFREEORDER,
818 		    ("vm_phys_enq_range: page %p has unexpected order %d",
819 		    m, m->order));
820 		order = ffs(npages) - 1;
821 		vm_phys_enq_chunk(fl, m, order, pool, tail);
822 		m += 1 << order;
823 		npages -= 1 << order;
824 	}
825 	return (m);
826 }
827 
828 /*
829  * Complete initialization a contiguous, power of two-sized set of physical
830  * pages.
831  *
832  * If the pages currently belong to the lazy init pool, then the corresponding
833  * page structures must be initialized.  In this case it is assumed that the
834  * first page in the run has already been initialized.
835  */
836 static void
vm_phys_finish_init(vm_page_t m,int order)837 vm_phys_finish_init(vm_page_t m, int order)
838 {
839 #ifdef VM_FREEPOOL_LAZYINIT
840 	if (__predict_false(m->pool == VM_FREEPOOL_LAZYINIT)) {
841 		vm_paddr_t pa;
842 		int segind;
843 
844 		TSENTER();
845 		pa = m->phys_addr + PAGE_SIZE;
846 		segind = m->segind;
847 		for (vm_page_t m_tmp = m + 1; m_tmp < &m[1 << order];
848 		    m_tmp++, pa += PAGE_SIZE)
849 			vm_page_init_page(m_tmp, pa, segind, VM_NFREEPOOL);
850 		TSEXIT();
851 	}
852 #endif
853 }
854 
855 /*
856  * Tries to allocate the specified number of pages from the specified pool
857  * within the specified domain.  Returns the actual number of allocated pages
858  * and a pointer to each page through the array ma[].
859  *
860  * The returned pages may not be physically contiguous.  However, in contrast
861  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
862  * calling this function once to allocate the desired number of pages will
863  * avoid wasted time in vm_phys_split_pages().  The allocated pages have no
864  * valid pool field set.
865  *
866  * The free page queues for the specified domain must be locked.
867  */
868 int
vm_phys_alloc_npages(int domain,int pool,int npages,vm_page_t ma[])869 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
870 {
871 	struct vm_freelist *alt, *fl;
872 	vm_page_t m;
873 	int avail, end, flind, freelist, i, oind, pind;
874 
875 	KASSERT(domain >= 0 && domain < vm_ndomains,
876 	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
877 	KASSERT(vm_phys_pool_valid(pool),
878 	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
879 	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
880 	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
881 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
882 	i = 0;
883 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
884 		flind = vm_freelist_to_flind[freelist];
885 		if (flind < 0)
886 			continue;
887 		fl = vm_phys_free_queues[domain][flind][pool];
888 		for (oind = 0; oind < VM_NFREEORDER; oind++) {
889 			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
890 				vm_freelist_rem(fl, m, oind);
891 				avail = i + (1 << oind);
892 				end = imin(npages, avail);
893 				while (i < end)
894 					ma[i++] = m++;
895 				if (i == npages) {
896 					/*
897 					 * Return excess pages to fl.  Its order
898 					 * [0, oind) queues are empty.
899 					 */
900 					vm_phys_enq_range(m, avail - i, fl,
901 					    pool, 1);
902 					return (npages);
903 				}
904 			}
905 		}
906 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
907 			for (pind = vm_default_freepool; pind < VM_NFREEPOOL;
908 			    pind++) {
909 				alt = vm_phys_free_queues[domain][flind][pind];
910 				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
911 				    NULL) {
912 					vm_freelist_rem(alt, m, oind);
913 					vm_phys_finish_init(m, oind);
914 					avail = i + (1 << oind);
915 					end = imin(npages, avail);
916 					while (i < end)
917 						ma[i++] = m++;
918 					if (i == npages) {
919 						/*
920 						 * Return excess pages to fl.
921 						 * Its order [0, oind) queues
922 						 * are empty.
923 						 */
924 						vm_phys_enq_range(m, avail - i,
925 						    fl, pool, 1);
926 						return (npages);
927 					}
928 				}
929 			}
930 		}
931 	}
932 	return (i);
933 }
934 
935 /*
936  * Allocate a contiguous, power of two-sized set of physical pages from the
937  * specified free list.  The free list must be specified using one of the
938  * manifest constants VM_FREELIST_*.
939  *
940  * The free page queues must be locked.
941  */
942 static vm_page_t
vm_phys_alloc_freelist_pages(int domain,int freelist,int pool,int order)943 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
944 {
945 	struct vm_freelist *alt, *fl;
946 	vm_page_t m;
947 	int oind, pind, flind;
948 
949 	KASSERT(domain >= 0 && domain < vm_ndomains,
950 	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
951 	    domain));
952 	KASSERT(freelist < VM_NFREELIST,
953 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
954 	    freelist));
955 	KASSERT(vm_phys_pool_valid(pool),
956 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
957 	KASSERT(order < VM_NFREEORDER,
958 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
959 
960 	flind = vm_freelist_to_flind[freelist];
961 	/* Check if freelist is present */
962 	if (flind < 0)
963 		return (NULL);
964 
965 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
966 	fl = &vm_phys_free_queues[domain][flind][pool][0];
967 	for (oind = order; oind < VM_NFREEORDER; oind++) {
968 		m = TAILQ_FIRST(&fl[oind].pl);
969 		if (m != NULL) {
970 			vm_freelist_rem(fl, m, oind);
971 			/* The order [order, oind) queues are empty. */
972 			vm_phys_split_pages(m, oind, fl, order, pool, 1);
973 			return (m);
974 		}
975 	}
976 
977 	/*
978 	 * The given pool was empty.  Find the largest
979 	 * contiguous, power-of-two-sized set of pages in any
980 	 * pool.  Transfer these pages to the given pool, and
981 	 * use them to satisfy the allocation.
982 	 */
983 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
984 		for (pind = vm_default_freepool; pind < VM_NFREEPOOL; pind++) {
985 			alt = &vm_phys_free_queues[domain][flind][pind][0];
986 			m = TAILQ_FIRST(&alt[oind].pl);
987 			if (m != NULL) {
988 				vm_freelist_rem(alt, m, oind);
989 				vm_phys_finish_init(m, oind);
990 				/* The order [order, oind) queues are empty. */
991 				vm_phys_split_pages(m, oind, fl, order, pool, 1);
992 				return (m);
993 			}
994 		}
995 	}
996 	return (NULL);
997 }
998 
999 /*
1000  * Allocate a contiguous, power of two-sized set of physical pages
1001  * from the free lists.
1002  *
1003  * The free page queues must be locked.
1004  */
1005 vm_page_t
vm_phys_alloc_pages(int domain,int pool,int order)1006 vm_phys_alloc_pages(int domain, int pool, int order)
1007 {
1008 	vm_page_t m;
1009 	int freelist;
1010 
1011 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
1012 		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
1013 		if (m != NULL)
1014 			return (m);
1015 	}
1016 	return (NULL);
1017 }
1018 
1019 /*
1020  * Find the vm_page corresponding to the given physical address, which must lie
1021  * within the given physical memory segment.
1022  */
1023 vm_page_t
vm_phys_seg_paddr_to_vm_page(struct vm_phys_seg * seg,vm_paddr_t pa)1024 vm_phys_seg_paddr_to_vm_page(struct vm_phys_seg *seg, vm_paddr_t pa)
1025 {
1026 	KASSERT(pa >= seg->start && pa < seg->end,
1027 	    ("%s: pa %#jx is out of range", __func__, (uintmax_t)pa));
1028 
1029 	return (&seg->first_page[atop(pa - seg->start)]);
1030 }
1031 
1032 /*
1033  * Find the vm_page corresponding to the given physical address.
1034  */
1035 vm_page_t
vm_phys_paddr_to_vm_page(vm_paddr_t pa)1036 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
1037 {
1038 	struct vm_phys_seg *seg;
1039 
1040 	if ((seg = vm_phys_paddr_to_seg(pa)) != NULL)
1041 		return (vm_phys_seg_paddr_to_vm_page(seg, pa));
1042 	return (NULL);
1043 }
1044 
1045 vm_page_t
vm_phys_fictitious_to_vm_page(vm_paddr_t pa)1046 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
1047 {
1048 	struct vm_phys_fictitious_seg tmp, *seg;
1049 	vm_page_t m;
1050 
1051 	m = NULL;
1052 	tmp.start = pa;
1053 	tmp.end = 0;
1054 
1055 	rw_rlock(&vm_phys_fictitious_reg_lock);
1056 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1057 	rw_runlock(&vm_phys_fictitious_reg_lock);
1058 	if (seg == NULL)
1059 		return (NULL);
1060 
1061 	m = &seg->first_page[atop(pa - seg->start)];
1062 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
1063 
1064 	return (m);
1065 }
1066 
1067 static inline void
vm_phys_fictitious_init_range(vm_page_t range,vm_paddr_t start,long page_count,vm_memattr_t memattr)1068 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
1069     long page_count, vm_memattr_t memattr)
1070 {
1071 	long i;
1072 
1073 	bzero(range, page_count * sizeof(*range));
1074 	for (i = 0; i < page_count; i++) {
1075 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
1076 		range[i].oflags &= ~VPO_UNMANAGED;
1077 		range[i].busy_lock = VPB_UNBUSIED;
1078 	}
1079 }
1080 
1081 int
vm_phys_fictitious_reg_range(vm_paddr_t start,vm_paddr_t end,vm_memattr_t memattr)1082 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
1083     vm_memattr_t memattr)
1084 {
1085 	struct vm_phys_fictitious_seg *seg;
1086 	vm_page_t fp;
1087 	long page_count;
1088 #ifdef VM_PHYSSEG_DENSE
1089 	long pi, pe;
1090 	long dpage_count;
1091 #endif
1092 
1093 	KASSERT(start < end,
1094 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1095 	    (uintmax_t)start, (uintmax_t)end));
1096 
1097 	page_count = (end - start) / PAGE_SIZE;
1098 
1099 #ifdef VM_PHYSSEG_DENSE
1100 	pi = atop(start);
1101 	pe = atop(end);
1102 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1103 		fp = &vm_page_array[pi - first_page];
1104 		if ((pe - first_page) > vm_page_array_size) {
1105 			/*
1106 			 * We have a segment that starts inside
1107 			 * of vm_page_array, but ends outside of it.
1108 			 *
1109 			 * Use vm_page_array pages for those that are
1110 			 * inside of the vm_page_array range, and
1111 			 * allocate the remaining ones.
1112 			 */
1113 			dpage_count = vm_page_array_size - (pi - first_page);
1114 			vm_phys_fictitious_init_range(fp, start, dpage_count,
1115 			    memattr);
1116 			page_count -= dpage_count;
1117 			start += ptoa(dpage_count);
1118 			goto alloc;
1119 		}
1120 		/*
1121 		 * We can allocate the full range from vm_page_array,
1122 		 * so there's no need to register the range in the tree.
1123 		 */
1124 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1125 		return (0);
1126 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1127 		/*
1128 		 * We have a segment that ends inside of vm_page_array,
1129 		 * but starts outside of it.
1130 		 */
1131 		fp = &vm_page_array[0];
1132 		dpage_count = pe - first_page;
1133 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
1134 		    memattr);
1135 		end -= ptoa(dpage_count);
1136 		page_count -= dpage_count;
1137 		goto alloc;
1138 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1139 		/*
1140 		 * Trying to register a fictitious range that expands before
1141 		 * and after vm_page_array.
1142 		 */
1143 		return (EINVAL);
1144 	} else {
1145 alloc:
1146 #endif
1147 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1148 		    M_WAITOK);
1149 #ifdef VM_PHYSSEG_DENSE
1150 	}
1151 #endif
1152 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1153 
1154 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1155 	seg->start = start;
1156 	seg->end = end;
1157 	seg->first_page = fp;
1158 
1159 	rw_wlock(&vm_phys_fictitious_reg_lock);
1160 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1161 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1162 
1163 	return (0);
1164 }
1165 
1166 void
vm_phys_fictitious_unreg_range(vm_paddr_t start,vm_paddr_t end)1167 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1168 {
1169 	struct vm_phys_fictitious_seg *seg, tmp;
1170 #ifdef VM_PHYSSEG_DENSE
1171 	long pi, pe;
1172 #endif
1173 
1174 	KASSERT(start < end,
1175 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1176 	    (uintmax_t)start, (uintmax_t)end));
1177 
1178 #ifdef VM_PHYSSEG_DENSE
1179 	pi = atop(start);
1180 	pe = atop(end);
1181 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1182 		if ((pe - first_page) <= vm_page_array_size) {
1183 			/*
1184 			 * This segment was allocated using vm_page_array
1185 			 * only, there's nothing to do since those pages
1186 			 * were never added to the tree.
1187 			 */
1188 			return;
1189 		}
1190 		/*
1191 		 * We have a segment that starts inside
1192 		 * of vm_page_array, but ends outside of it.
1193 		 *
1194 		 * Calculate how many pages were added to the
1195 		 * tree and free them.
1196 		 */
1197 		start = ptoa(first_page + vm_page_array_size);
1198 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1199 		/*
1200 		 * We have a segment that ends inside of vm_page_array,
1201 		 * but starts outside of it.
1202 		 */
1203 		end = ptoa(first_page);
1204 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1205 		/* Since it's not possible to register such a range, panic. */
1206 		panic(
1207 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1208 		    (uintmax_t)start, (uintmax_t)end);
1209 	}
1210 #endif
1211 	tmp.start = start;
1212 	tmp.end = 0;
1213 
1214 	rw_wlock(&vm_phys_fictitious_reg_lock);
1215 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1216 	if (seg->start != start || seg->end != end) {
1217 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1218 		panic(
1219 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1220 		    (uintmax_t)start, (uintmax_t)end);
1221 	}
1222 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1223 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1224 	free(seg->first_page, M_FICT_PAGES);
1225 	free(seg, M_FICT_PAGES);
1226 }
1227 
1228 /*
1229  * Free a contiguous, power of two-sized set of physical pages.
1230  * The pool field in the first page determines the destination pool.
1231  *
1232  * The free page queues must be locked.
1233  */
1234 void
vm_phys_free_pages(vm_page_t m,int pool,int order)1235 vm_phys_free_pages(vm_page_t m, int pool, int order)
1236 {
1237 	struct vm_freelist *fl;
1238 	struct vm_phys_seg *seg;
1239 	vm_paddr_t pa;
1240 	vm_page_t m_buddy;
1241 
1242 	KASSERT(m->order == VM_NFREEORDER,
1243 	    ("%s: page %p has unexpected order %d",
1244 	    __func__, m, m->order));
1245 	KASSERT(vm_phys_pool_valid(pool),
1246 	    ("%s: unexpected pool param %d", __func__, pool));
1247 	KASSERT(order < VM_NFREEORDER,
1248 	    ("%s: order %d is out of range", __func__, order));
1249 	seg = &vm_phys_segs[m->segind];
1250 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1251 	if (order < VM_NFREEORDER - 1) {
1252 		pa = VM_PAGE_TO_PHYS(m);
1253 		do {
1254 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1255 			if (pa < seg->start || pa >= seg->end)
1256 				break;
1257 			m_buddy = vm_phys_seg_paddr_to_vm_page(seg, pa);
1258 			if (m_buddy->order != order)
1259 				break;
1260 			fl = (*seg->free_queues)[m_buddy->pool];
1261 			vm_freelist_rem(fl, m_buddy, order);
1262 			vm_phys_finish_init(m_buddy, order);
1263 			order++;
1264 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1265 			m = vm_phys_seg_paddr_to_vm_page(seg, pa);
1266 		} while (order < VM_NFREEORDER - 1);
1267 	}
1268 	fl = (*seg->free_queues)[pool];
1269 	vm_freelist_add(fl, m, order, pool, 1);
1270 }
1271 
1272 #ifdef VM_FREEPOOL_LAZYINIT
1273 /*
1274  * Initialize all pages lingering in the lazy init pool of a NUMA domain, moving
1275  * them to the default pool.  This is a prerequisite for some rare operations
1276  * which need to scan the page array and thus depend on all pages being
1277  * initialized.
1278  */
1279 static void
vm_phys_lazy_init_domain(int domain,bool locked)1280 vm_phys_lazy_init_domain(int domain, bool locked)
1281 {
1282 	static bool initdone[MAXMEMDOM];
1283 	struct vm_domain *vmd;
1284 	struct vm_freelist *fl;
1285 	vm_page_t m;
1286 	int pind;
1287 	bool unlocked;
1288 
1289 	if (__predict_true(atomic_load_bool(&initdone[domain])))
1290 		return;
1291 
1292 	vmd = VM_DOMAIN(domain);
1293 	if (locked)
1294 		vm_domain_free_assert_locked(vmd);
1295 	else
1296 		vm_domain_free_lock(vmd);
1297 	if (atomic_load_bool(&initdone[domain]))
1298 		goto out;
1299 	pind = VM_FREEPOOL_LAZYINIT;
1300 	for (int freelist = 0; freelist < VM_NFREELIST; freelist++) {
1301 		int flind;
1302 
1303 		flind = vm_freelist_to_flind[freelist];
1304 		if (flind < 0)
1305 			continue;
1306 		fl = vm_phys_free_queues[domain][flind][pind];
1307 		for (int oind = 0; oind < VM_NFREEORDER; oind++) {
1308 			if (atomic_load_int(&fl[oind].lcnt) == 0)
1309 				continue;
1310 			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
1311 				/*
1312 				 * Avoid holding the lock across the
1313 				 * initialization unless there's a free page
1314 				 * shortage.
1315 				 */
1316 				vm_freelist_rem(fl, m, oind);
1317 				unlocked = vm_domain_allocate(vmd,
1318 				    VM_ALLOC_NORMAL, 1 << oind);
1319 				if (unlocked)
1320 					vm_domain_free_unlock(vmd);
1321 				vm_phys_finish_init(m, oind);
1322 				if (unlocked) {
1323 					vm_domain_freecnt_inc(vmd, 1 << oind);
1324 					vm_domain_free_lock(vmd);
1325 				}
1326 				vm_phys_free_pages(m, VM_FREEPOOL_DEFAULT,
1327 				    oind);
1328 			}
1329 		}
1330 	}
1331 	atomic_store_bool(&initdone[domain], true);
1332 out:
1333 	if (!locked)
1334 		vm_domain_free_unlock(vmd);
1335 }
1336 
1337 static void
vm_phys_lazy_init(void)1338 vm_phys_lazy_init(void)
1339 {
1340 	for (int domain = 0; domain < vm_ndomains; domain++)
1341 		vm_phys_lazy_init_domain(domain, false);
1342 	atomic_store_int(&vm_default_freepool, VM_FREEPOOL_DEFAULT);
1343 }
1344 
1345 static void
vm_phys_lazy_init_kthr(void * arg __unused)1346 vm_phys_lazy_init_kthr(void *arg __unused)
1347 {
1348 	vm_phys_lazy_init();
1349 	kthread_exit();
1350 }
1351 
1352 static void
vm_phys_lazy_sysinit(void * arg __unused)1353 vm_phys_lazy_sysinit(void *arg __unused)
1354 {
1355 	struct thread *td;
1356 	int error;
1357 
1358 	error = kthread_add(vm_phys_lazy_init_kthr, NULL, curproc, &td,
1359 	    RFSTOPPED, 0, "vmlazyinit");
1360 	if (error == 0) {
1361 		thread_lock(td);
1362 		sched_prio(td, PRI_MIN_IDLE);
1363 		sched_add(td, SRQ_BORING);
1364 	} else {
1365 		printf("%s: could not create lazy init thread: %d\n",
1366 		    __func__, error);
1367 		vm_phys_lazy_init();
1368 	}
1369 }
1370 SYSINIT(vm_phys_lazy_init, SI_SUB_SMP, SI_ORDER_ANY, vm_phys_lazy_sysinit,
1371     NULL);
1372 #endif /* VM_FREEPOOL_LAZYINIT */
1373 
1374 /*
1375  * Free a contiguous, arbitrarily sized set of physical pages, without
1376  * merging across set boundaries.  Assumes no pages have a valid pool field.
1377  *
1378  * The free page queues must be locked.
1379  */
1380 void
vm_phys_enqueue_contig(vm_page_t m,int pool,u_long npages)1381 vm_phys_enqueue_contig(vm_page_t m, int pool, u_long npages)
1382 {
1383 	struct vm_freelist *fl;
1384 	struct vm_phys_seg *seg;
1385 	vm_page_t m_end;
1386 	vm_paddr_t diff, lo;
1387 	int order;
1388 
1389 	/*
1390 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1391 	 * possible power-of-two-sized subsets.
1392 	 */
1393 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1394 	seg = &vm_phys_segs[m->segind];
1395 	fl = (*seg->free_queues)[pool];
1396 	m_end = m + npages;
1397 	/* Free blocks of increasing size. */
1398 	lo = atop(VM_PAGE_TO_PHYS(m));
1399 	if (m < m_end &&
1400 	    (diff = lo ^ (lo + npages - 1)) != 0) {
1401 		order = min(ilog2(diff), VM_NFREEORDER - 1);
1402 		m = vm_phys_enq_range(m, roundup2(lo, 1 << order) - lo, fl,
1403 		    pool, 1);
1404 	}
1405 
1406 	/* Free blocks of maximum size. */
1407 	order = VM_NFREEORDER - 1;
1408 	while (m + (1 << order) <= m_end) {
1409 		KASSERT(seg == &vm_phys_segs[m->segind],
1410 		    ("%s: page range [%p,%p) spans multiple segments",
1411 		    __func__, m_end - npages, m));
1412 		vm_phys_enq_chunk(fl, m, order, pool, 1);
1413 		m += 1 << order;
1414 	}
1415 	/* Free blocks of diminishing size. */
1416 	vm_phys_enq_beg(m, m_end - m, fl, pool, 1);
1417 }
1418 
1419 /*
1420  * Free a contiguous, arbitrarily sized set of physical pages.
1421  * Assumes that every page but the first has no valid pool field.
1422  * Uses the pool value in the first page if valid, otherwise default.
1423  *
1424  * The free page queues must be locked.
1425  */
1426 void
vm_phys_free_contig(vm_page_t m,int pool,u_long npages)1427 vm_phys_free_contig(vm_page_t m, int pool, u_long npages)
1428 {
1429 	vm_paddr_t lo;
1430 	vm_page_t m_start, m_end;
1431 	unsigned max_order, order_start, order_end;
1432 
1433 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1434 
1435 	lo = atop(VM_PAGE_TO_PHYS(m));
1436 	max_order = min(ilog2(lo ^ (lo + npages)), VM_NFREEORDER - 1);
1437 
1438 	m_start = m;
1439 	order_start = ffsll(lo) - 1;
1440 	if (order_start < max_order)
1441 		m_start += 1 << order_start;
1442 	m_end = m + npages;
1443 	order_end = ffsll(lo + npages) - 1;
1444 	if (order_end < max_order)
1445 		m_end -= 1 << order_end;
1446 	/*
1447 	 * Avoid unnecessary coalescing by freeing the pages at the start and
1448 	 * end of the range last.
1449 	 */
1450 	if (m_start < m_end)
1451 		vm_phys_enqueue_contig(m_start, pool, m_end - m_start);
1452 	if (order_start < max_order)
1453 		vm_phys_free_pages(m, pool, order_start);
1454 	if (order_end < max_order)
1455 		vm_phys_free_pages(m_end, pool, order_end);
1456 }
1457 
1458 /*
1459  * Identify the first address range within segment segind or greater
1460  * that matches the domain, lies within the low/high range, and has
1461  * enough pages.  Return -1 if there is none.
1462  */
1463 int
vm_phys_find_range(vm_page_t bounds[],int segind,int domain,u_long npages,vm_paddr_t low,vm_paddr_t high)1464 vm_phys_find_range(vm_page_t bounds[], int segind, int domain,
1465     u_long npages, vm_paddr_t low, vm_paddr_t high)
1466 {
1467 	vm_paddr_t pa_end, pa_start;
1468 	struct vm_phys_seg *end_seg, *seg;
1469 
1470 	KASSERT(npages > 0, ("npages is zero"));
1471 	KASSERT(domain >= 0 && domain < vm_ndomains, ("domain out of range"));
1472 	end_seg = &vm_phys_segs[vm_phys_nsegs];
1473 	for (seg = &vm_phys_segs[segind]; seg < end_seg; seg++) {
1474 		if (seg->domain != domain)
1475 			continue;
1476 		if (seg->start >= high)
1477 			return (-1);
1478 		pa_start = MAX(low, seg->start);
1479 		pa_end = MIN(high, seg->end);
1480 		if (pa_end - pa_start < ptoa(npages))
1481 			continue;
1482 #ifdef VM_FREEPOOL_LAZYINIT
1483 		/*
1484 		 * The pages on the free lists must be initialized.
1485 		 */
1486 		vm_phys_lazy_init_domain(domain, false);
1487 #endif
1488 		bounds[0] = vm_phys_seg_paddr_to_vm_page(seg, pa_start);
1489 		bounds[1] = &seg->first_page[atop(pa_end - seg->start)];
1490 		return (seg - vm_phys_segs);
1491 	}
1492 	return (-1);
1493 }
1494 
1495 /*
1496  * Search for the given physical page "m" in the free lists.  If the search
1497  * succeeds, remove "m" from the free lists and return true.  Otherwise, return
1498  * false, indicating that "m" is not in the free lists.
1499  *
1500  * The free page queues must be locked.
1501  */
1502 bool
vm_phys_unfree_page(vm_paddr_t pa)1503 vm_phys_unfree_page(vm_paddr_t pa)
1504 {
1505 	struct vm_freelist *fl;
1506 	struct vm_phys_seg *seg;
1507 	vm_paddr_t pa_half;
1508 	vm_page_t m, m_set, m_tmp;
1509 	int order, pool;
1510 
1511 	seg = vm_phys_paddr_to_seg(pa);
1512 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1513 
1514 #ifdef VM_FREEPOOL_LAZYINIT
1515 	/*
1516 	 * The pages on the free lists must be initialized.
1517 	 */
1518 	vm_phys_lazy_init_domain(seg->domain, true);
1519 #endif
1520 
1521 	/*
1522 	 * First, find the contiguous, power of two-sized set of free
1523 	 * physical pages containing the given physical page "m" and
1524 	 * assign it to "m_set".
1525 	 */
1526 	m = vm_phys_paddr_to_vm_page(pa);
1527 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1528 	    order < VM_NFREEORDER - 1; ) {
1529 		order++;
1530 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1531 		if (pa >= seg->start)
1532 			m_set = vm_phys_seg_paddr_to_vm_page(seg, pa);
1533 		else
1534 			return (false);
1535 	}
1536 	if (m_set->order < order)
1537 		return (false);
1538 	if (m_set->order == VM_NFREEORDER)
1539 		return (false);
1540 	KASSERT(m_set->order < VM_NFREEORDER,
1541 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1542 	    m_set, m_set->order));
1543 
1544 	/*
1545 	 * Next, remove "m_set" from the free lists.  Finally, extract
1546 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1547 	 * is larger than a page, shrink "m_set" by returning the half
1548 	 * of "m_set" that does not contain "m" to the free lists.
1549 	 */
1550 	pool = m_set->pool;
1551 	fl = (*seg->free_queues)[pool];
1552 	order = m_set->order;
1553 	vm_freelist_rem(fl, m_set, order);
1554 	while (order > 0) {
1555 		order--;
1556 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1557 		if (m->phys_addr < pa_half)
1558 			m_tmp = vm_phys_seg_paddr_to_vm_page(seg, pa_half);
1559 		else {
1560 			m_tmp = m_set;
1561 			m_set = vm_phys_seg_paddr_to_vm_page(seg, pa_half);
1562 		}
1563 		vm_freelist_add(fl, m_tmp, order, pool, 0);
1564 	}
1565 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1566 	return (true);
1567 }
1568 
1569 /*
1570  * Find a run of contiguous physical pages, meeting alignment requirements, from
1571  * a list of max-sized page blocks, where we need at least two consecutive
1572  * blocks to satisfy the (large) page request.
1573  */
1574 static vm_page_t
vm_phys_find_freelist_contig(struct vm_freelist * fl,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1575 vm_phys_find_freelist_contig(struct vm_freelist *fl, u_long npages,
1576     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1577 {
1578 	struct vm_phys_seg *seg;
1579 	vm_page_t m, m_iter, m_ret;
1580 	vm_paddr_t max_size, size;
1581 	int max_order;
1582 
1583 	max_order = VM_NFREEORDER - 1;
1584 	size = npages << PAGE_SHIFT;
1585 	max_size = (vm_paddr_t)1 << (PAGE_SHIFT + max_order);
1586 	KASSERT(size > max_size, ("size is too small"));
1587 
1588 	/*
1589 	 * In order to avoid examining any free max-sized page block more than
1590 	 * twice, identify the ones that are first in a physically-contiguous
1591 	 * sequence of such blocks, and only for those walk the sequence to
1592 	 * check if there are enough free blocks starting at a properly aligned
1593 	 * block.  Thus, no block is checked for free-ness more than twice.
1594 	 */
1595 	TAILQ_FOREACH(m, &fl[max_order].pl, plinks.q) {
1596 		/*
1597 		 * Skip m unless it is first in a sequence of free max page
1598 		 * blocks >= low in its segment.
1599 		 */
1600 		seg = &vm_phys_segs[m->segind];
1601 		if (VM_PAGE_TO_PHYS(m) < MAX(low, seg->start))
1602 			continue;
1603 		if (VM_PAGE_TO_PHYS(m) >= max_size &&
1604 		    VM_PAGE_TO_PHYS(m) - max_size >= MAX(low, seg->start) &&
1605 		    max_order == m[-1 << max_order].order)
1606 			continue;
1607 
1608 		/*
1609 		 * Advance m_ret from m to the first of the sequence, if any,
1610 		 * that satisfies alignment conditions and might leave enough
1611 		 * space.
1612 		 */
1613 		m_ret = m;
1614 		while (!vm_addr_ok(VM_PAGE_TO_PHYS(m_ret),
1615 		    size, alignment, boundary) &&
1616 		    VM_PAGE_TO_PHYS(m_ret) + size <= MIN(high, seg->end) &&
1617 		    max_order == m_ret[1 << max_order].order)
1618 			m_ret += 1 << max_order;
1619 
1620 		/*
1621 		 * Skip m unless some block m_ret in the sequence is properly
1622 		 * aligned, and begins a sequence of enough pages less than
1623 		 * high, and in the same segment.
1624 		 */
1625 		if (VM_PAGE_TO_PHYS(m_ret) + size > MIN(high, seg->end))
1626 			continue;
1627 
1628 		/*
1629 		 * Skip m unless the blocks to allocate starting at m_ret are
1630 		 * all free.
1631 		 */
1632 		for (m_iter = m_ret;
1633 		    m_iter < m_ret + npages && max_order == m_iter->order;
1634 		    m_iter += 1 << max_order) {
1635 		}
1636 		if (m_iter < m_ret + npages)
1637 			continue;
1638 		return (m_ret);
1639 	}
1640 	return (NULL);
1641 }
1642 
1643 /*
1644  * Find a run of contiguous physical pages from the specified free list
1645  * table.
1646  */
1647 static vm_page_t
vm_phys_find_queues_contig(struct vm_freelist (* queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1648 vm_phys_find_queues_contig(
1649     struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
1650     u_long npages, vm_paddr_t low, vm_paddr_t high,
1651     u_long alignment, vm_paddr_t boundary)
1652 {
1653 	struct vm_freelist *fl;
1654 	vm_page_t m_ret;
1655 	vm_paddr_t pa, pa_end, size;
1656 	int oind, order, pind;
1657 
1658 	KASSERT(npages > 0, ("npages is 0"));
1659 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1660 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1661 	/* Compute the queue that is the best fit for npages. */
1662 	order = flsl(npages - 1);
1663 	/* Search for a large enough free block. */
1664 	size = npages << PAGE_SHIFT;
1665 	for (oind = order; oind < VM_NFREEORDER; oind++) {
1666 		for (pind = vm_default_freepool; pind < VM_NFREEPOOL; pind++) {
1667 			fl = (*queues)[pind];
1668 			TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1669 				/*
1670 				 * Determine if the address range starting at pa
1671 				 * is within the given range, satisfies the
1672 				 * given alignment, and does not cross the given
1673 				 * boundary.
1674 				 */
1675 				pa = VM_PAGE_TO_PHYS(m_ret);
1676 				pa_end = pa + size;
1677 				if (low <= pa && pa_end <= high &&
1678 				    vm_addr_ok(pa, size, alignment, boundary))
1679 					return (m_ret);
1680 			}
1681 		}
1682 	}
1683 	if (order < VM_NFREEORDER)
1684 		return (NULL);
1685 	/* Search for a long-enough sequence of max-order blocks. */
1686 	for (pind = vm_default_freepool; pind < VM_NFREEPOOL; pind++) {
1687 		fl = (*queues)[pind];
1688 		m_ret = vm_phys_find_freelist_contig(fl, npages,
1689 		    low, high, alignment, boundary);
1690 		if (m_ret != NULL)
1691 			return (m_ret);
1692 	}
1693 	return (NULL);
1694 }
1695 
1696 /*
1697  * Allocate a contiguous set of physical pages of the given size
1698  * "npages" from the free lists.  All of the physical pages must be at
1699  * or above the given physical address "low" and below the given
1700  * physical address "high".  The given value "alignment" determines the
1701  * alignment of the first physical page in the set.  If the given value
1702  * "boundary" is non-zero, then the set of physical pages cannot cross
1703  * any physical address boundary that is a multiple of that value.  Both
1704  * "alignment" and "boundary" must be a power of two.  Sets the pool
1705  * field to DEFAULT in the first allocated page.
1706  */
1707 vm_page_t
vm_phys_alloc_contig(int domain,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1708 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1709     u_long alignment, vm_paddr_t boundary)
1710 {
1711 	vm_paddr_t pa_end, pa_start;
1712 	struct vm_freelist *fl;
1713 	vm_page_t m, m_run;
1714 	struct vm_phys_seg *seg;
1715 	struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
1716 	int oind, segind;
1717 
1718 	KASSERT(npages > 0, ("npages is 0"));
1719 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1720 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1721 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
1722 	if (low >= high)
1723 		return (NULL);
1724 	queues = NULL;
1725 	m_run = NULL;
1726 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1727 		seg = &vm_phys_segs[segind];
1728 		if (seg->start >= high || seg->domain != domain)
1729 			continue;
1730 		if (low >= seg->end)
1731 			break;
1732 		if (low <= seg->start)
1733 			pa_start = seg->start;
1734 		else
1735 			pa_start = low;
1736 		if (high < seg->end)
1737 			pa_end = high;
1738 		else
1739 			pa_end = seg->end;
1740 		if (pa_end - pa_start < ptoa(npages))
1741 			continue;
1742 		/*
1743 		 * If a previous segment led to a search using
1744 		 * the same free lists as would this segment, then
1745 		 * we've actually already searched within this
1746 		 * too.  So skip it.
1747 		 */
1748 		if (seg->free_queues == queues)
1749 			continue;
1750 		queues = seg->free_queues;
1751 		m_run = vm_phys_find_queues_contig(queues, npages,
1752 		    low, high, alignment, boundary);
1753 		if (m_run != NULL)
1754 			break;
1755 	}
1756 	if (m_run == NULL)
1757 		return (NULL);
1758 
1759 	/* Allocate pages from the page-range found. */
1760 	for (m = m_run; m < &m_run[npages]; m = &m[1 << oind]) {
1761 		fl = (*queues)[m->pool];
1762 		oind = m->order;
1763 		vm_freelist_rem(fl, m, oind);
1764 		vm_phys_finish_init(m, oind);
1765 	}
1766 	/* Return excess pages to the free lists. */
1767 	fl = (*queues)[VM_FREEPOOL_DEFAULT];
1768 	vm_phys_enq_range(&m_run[npages], m - &m_run[npages], fl,
1769 	    VM_FREEPOOL_DEFAULT, 0);
1770 
1771 	/* Return page verified to satisfy conditions of request. */
1772 	pa_start = VM_PAGE_TO_PHYS(m_run);
1773 	KASSERT(low <= pa_start,
1774 	    ("memory allocated below minimum requested range"));
1775 	KASSERT(pa_start + ptoa(npages) <= high,
1776 	    ("memory allocated above maximum requested range"));
1777 	seg = &vm_phys_segs[m_run->segind];
1778 	KASSERT(seg->domain == domain,
1779 	    ("memory not allocated from specified domain"));
1780 	KASSERT(vm_addr_ok(pa_start, ptoa(npages), alignment, boundary),
1781 	    ("memory alignment/boundary constraints not satisfied"));
1782 	return (m_run);
1783 }
1784 
1785 /*
1786  * Return the index of the first unused slot which may be the terminating
1787  * entry.
1788  */
1789 static int
vm_phys_avail_count(void)1790 vm_phys_avail_count(void)
1791 {
1792 	int i;
1793 
1794 	for (i = 0; i < PHYS_AVAIL_COUNT; i += 2)
1795 		if (phys_avail[i] == 0 && phys_avail[i + 1] == 0)
1796 			return (i);
1797 	panic("Improperly terminated phys_avail[]");
1798 }
1799 
1800 /*
1801  * Assert that a phys_avail entry is valid.
1802  */
1803 static void
vm_phys_avail_check(int i)1804 vm_phys_avail_check(int i)
1805 {
1806 	if (i % 2 != 0)
1807 		panic("Chunk start index %d is not even.", i);
1808 	if (phys_avail[i] & PAGE_MASK)
1809 		panic("Unaligned phys_avail[%d]: %#jx", i,
1810 		    (intmax_t)phys_avail[i]);
1811 	if (phys_avail[i + 1] & PAGE_MASK)
1812 		panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1813 		    (intmax_t)phys_avail[i + 1]);
1814 	if (phys_avail[i + 1] < phys_avail[i])
1815 		panic("phys_avail[%d]: start %#jx > end %#jx", i,
1816 		    (intmax_t)phys_avail[i], (intmax_t)phys_avail[i + 1]);
1817 }
1818 
1819 /*
1820  * Return the index of an overlapping phys_avail entry or -1.
1821  */
1822 #ifdef NUMA
1823 static int
vm_phys_avail_find(vm_paddr_t pa)1824 vm_phys_avail_find(vm_paddr_t pa)
1825 {
1826 	int i;
1827 
1828 	for (i = 0; phys_avail[i + 1]; i += 2)
1829 		if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1830 			return (i);
1831 	return (-1);
1832 }
1833 #endif
1834 
1835 /*
1836  * Return the index of the largest entry.
1837  */
1838 int
vm_phys_avail_largest(void)1839 vm_phys_avail_largest(void)
1840 {
1841 	vm_paddr_t sz, largesz;
1842 	int largest;
1843 	int i;
1844 
1845 	largest = 0;
1846 	largesz = 0;
1847 	for (i = 0; phys_avail[i + 1]; i += 2) {
1848 		sz = vm_phys_avail_size(i);
1849 		if (sz > largesz) {
1850 			largesz = sz;
1851 			largest = i;
1852 		}
1853 	}
1854 
1855 	return (largest);
1856 }
1857 
1858 vm_paddr_t
vm_phys_avail_size(int i)1859 vm_phys_avail_size(int i)
1860 {
1861 
1862 	return (phys_avail[i + 1] - phys_avail[i]);
1863 }
1864 
1865 /*
1866  * Split a chunk in phys_avail[] at the address 'pa'.
1867  *
1868  * 'pa' must be within a chunk (slots i and i + 1) or one of its boundaries.
1869  * Returns zero on actual split, in which case the two new chunks occupy slots
1870  * i to i + 3, else EJUSTRETURN if 'pa' was one of the boundaries (and no split
1871  * actually occurred) else ENOSPC if there are not enough slots in phys_avail[]
1872  * to represent the additional chunk caused by the split.
1873  */
1874 static int
vm_phys_avail_split(vm_paddr_t pa,int i)1875 vm_phys_avail_split(vm_paddr_t pa, int i)
1876 {
1877 	int cnt;
1878 
1879 	vm_phys_avail_check(i);
1880 	if (pa < phys_avail[i] || pa > phys_avail[i + 1])
1881 		panic("%s: Address %#jx not in range at slot %d [%#jx;%#jx].",
1882 		    __func__, (uintmax_t)pa, i,
1883 		    (uintmax_t)phys_avail[i], (uintmax_t)phys_avail[i + 1]);
1884 	if (pa == phys_avail[i] || pa == phys_avail[i + 1])
1885 		return (EJUSTRETURN);
1886 	cnt = vm_phys_avail_count();
1887 	if (cnt >= PHYS_AVAIL_ENTRIES)
1888 		return (ENOSPC);
1889 	memmove(&phys_avail[i + 2], &phys_avail[i],
1890 	    (cnt - i) * sizeof(phys_avail[0]));
1891 	phys_avail[i + 1] = pa;
1892 	phys_avail[i + 2] = pa;
1893 	vm_phys_avail_check(i);
1894 	vm_phys_avail_check(i+2);
1895 
1896 	return (0);
1897 }
1898 
1899 /*
1900  * Check if a given physical address can be included as part of a crash dump.
1901  */
1902 bool
vm_phys_is_dumpable(vm_paddr_t pa)1903 vm_phys_is_dumpable(vm_paddr_t pa)
1904 {
1905 	vm_page_t m;
1906 	int i;
1907 
1908 	if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
1909 		return ((m->flags & PG_NODUMP) == 0);
1910 
1911 	for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
1912 		if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
1913 			return (true);
1914 	}
1915 	return (false);
1916 }
1917 
1918 void
vm_phys_early_add_seg(vm_paddr_t start,vm_paddr_t end)1919 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1920 {
1921 	struct vm_phys_seg *seg;
1922 
1923 	if (vm_phys_early_nsegs == -1)
1924 		panic("%s: called after initialization", __func__);
1925 	if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1926 		panic("%s: ran out of early segments", __func__);
1927 
1928 	seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1929 	seg->start = start;
1930 	seg->end = end;
1931 }
1932 
1933 /*
1934  * This routine allocates NUMA node specific memory before the page
1935  * allocator is bootstrapped.
1936  */
1937 vm_paddr_t
vm_phys_early_alloc(int domain,size_t alloc_size)1938 vm_phys_early_alloc(int domain, size_t alloc_size)
1939 {
1940 #ifdef NUMA
1941 	int mem_index;
1942 #endif
1943 	int i, biggestone;
1944 	vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1945 
1946 	KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1947 	    ("%s: invalid domain index %d", __func__, domain));
1948 
1949 	/*
1950 	 * Search the mem_affinity array for the biggest address
1951 	 * range in the desired domain.  This is used to constrain
1952 	 * the phys_avail selection below.
1953 	 */
1954 	biggestsize = 0;
1955 	mem_start = 0;
1956 	mem_end = -1;
1957 #ifdef NUMA
1958 	mem_index = 0;
1959 	if (mem_affinity != NULL) {
1960 		for (i = 0;; i++) {
1961 			size = mem_affinity[i].end - mem_affinity[i].start;
1962 			if (size == 0)
1963 				break;
1964 			if (domain != -1 && mem_affinity[i].domain != domain)
1965 				continue;
1966 			if (size > biggestsize) {
1967 				mem_index = i;
1968 				biggestsize = size;
1969 			}
1970 		}
1971 		mem_start = mem_affinity[mem_index].start;
1972 		mem_end = mem_affinity[mem_index].end;
1973 	}
1974 #endif
1975 
1976 	/*
1977 	 * Now find biggest physical segment in within the desired
1978 	 * numa domain.
1979 	 */
1980 	biggestsize = 0;
1981 	biggestone = 0;
1982 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1983 		/* skip regions that are out of range */
1984 		if (phys_avail[i+1] - alloc_size < mem_start ||
1985 		    phys_avail[i+1] > mem_end)
1986 			continue;
1987 		size = vm_phys_avail_size(i);
1988 		if (size > biggestsize) {
1989 			biggestone = i;
1990 			biggestsize = size;
1991 		}
1992 	}
1993 	alloc_size = round_page(alloc_size);
1994 
1995 	/*
1996 	 * Grab single pages from the front to reduce fragmentation.
1997 	 */
1998 	if (alloc_size == PAGE_SIZE) {
1999 		pa = phys_avail[biggestone];
2000 		phys_avail[biggestone] += PAGE_SIZE;
2001 		vm_phys_avail_check(biggestone);
2002 		return (pa);
2003 	}
2004 
2005 	/*
2006 	 * Naturally align large allocations.
2007 	 */
2008 	align = phys_avail[biggestone + 1] & (alloc_size - 1);
2009 	if (alloc_size + align > biggestsize)
2010 		panic("cannot find a large enough size\n");
2011 	if (align != 0 &&
2012 	    vm_phys_avail_split(phys_avail[biggestone + 1] - align,
2013 	    biggestone) != 0)
2014 		/* Wasting memory. */
2015 		phys_avail[biggestone + 1] -= align;
2016 
2017 	phys_avail[biggestone + 1] -= alloc_size;
2018 	vm_phys_avail_check(biggestone);
2019 	pa = phys_avail[biggestone + 1];
2020 	return (pa);
2021 }
2022 
2023 void
vm_phys_early_startup(void)2024 vm_phys_early_startup(void)
2025 {
2026 	struct vm_phys_seg *seg;
2027 	int i;
2028 
2029 	if (phys_avail[1] == 0)
2030 		panic("phys_avail[] is empty");
2031 
2032 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2033 		phys_avail[i] = round_page(phys_avail[i]);
2034 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
2035 	}
2036 
2037 	for (i = 0; i < vm_phys_early_nsegs; i++) {
2038 		seg = &vm_phys_early_segs[i];
2039 		vm_phys_add_seg(seg->start, seg->end);
2040 	}
2041 	vm_phys_early_nsegs = -1;
2042 
2043 #ifdef NUMA
2044 	/* Force phys_avail to be split by domain. */
2045 	if (mem_affinity != NULL) {
2046 		int idx;
2047 
2048 		for (i = 0; mem_affinity[i].end != 0; i++) {
2049 			idx = vm_phys_avail_find(mem_affinity[i].start);
2050 			if (idx != -1)
2051 				vm_phys_avail_split(mem_affinity[i].start, idx);
2052 			idx = vm_phys_avail_find(mem_affinity[i].end);
2053 			if (idx != -1)
2054 				vm_phys_avail_split(mem_affinity[i].end, idx);
2055 		}
2056 	}
2057 #endif
2058 }
2059 
2060 #ifdef DDB
2061 /*
2062  * Show the number of physical pages in each of the free lists.
2063  */
DB_SHOW_COMMAND_FLAGS(freepages,db_show_freepages,DB_CMD_MEMSAFE)2064 DB_SHOW_COMMAND_FLAGS(freepages, db_show_freepages, DB_CMD_MEMSAFE)
2065 {
2066 	struct vm_freelist *fl;
2067 	int flind, oind, pind, dom;
2068 
2069 	for (dom = 0; dom < vm_ndomains; dom++) {
2070 		db_printf("DOMAIN: %d\n", dom);
2071 		for (flind = 0; flind < vm_nfreelists; flind++) {
2072 			db_printf("FREE LIST %d:\n"
2073 			    "\n  ORDER (SIZE)  |  NUMBER"
2074 			    "\n              ", flind);
2075 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
2076 				db_printf("  |  POOL %d", pind);
2077 			db_printf("\n--            ");
2078 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
2079 				db_printf("-- --      ");
2080 			db_printf("--\n");
2081 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
2082 				db_printf("  %2.2d (%6.6dK)", oind,
2083 				    1 << (PAGE_SHIFT - 10 + oind));
2084 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
2085 				fl = vm_phys_free_queues[dom][flind][pind];
2086 					db_printf("  |  %6.6d", fl[oind].lcnt);
2087 				}
2088 				db_printf("\n");
2089 			}
2090 			db_printf("\n");
2091 		}
2092 		db_printf("\n");
2093 	}
2094 }
2095 #endif
2096