1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2006 Rice University
5 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Alan L. Cox,
9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Physical memory system implementation
36 *
37 * Any external functions defined by this module are only to be used by the
38 * virtual memory system.
39 */
40
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/domainset.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/kthread.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sched.h>
58 #include <sys/sysctl.h>
59 #include <sys/tree.h>
60 #include <sys/tslog.h>
61 #include <sys/unistd.h>
62 #include <sys/vmmeter.h>
63
64 #include <ddb/ddb.h>
65
66 #include <vm/vm.h>
67 #include <vm/vm_extern.h>
68 #include <vm/vm_param.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_phys.h>
73 #include <vm/vm_pagequeue.h>
74
75 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
76 "Too many physsegs.");
77 _Static_assert(sizeof(long long) >= sizeof(vm_paddr_t),
78 "vm_paddr_t too big for ffsll, flsll.");
79
80 #ifdef NUMA
81 struct mem_affinity __read_mostly *mem_affinity;
82 int __read_mostly *mem_locality;
83
84 static int numa_disabled;
85 static SYSCTL_NODE(_vm, OID_AUTO, numa, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
86 "NUMA options");
87 SYSCTL_INT(_vm_numa, OID_AUTO, disabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
88 &numa_disabled, 0, "NUMA-awareness in the allocators is disabled");
89 #endif
90
91 int __read_mostly vm_ndomains = 1;
92 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
93
94 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
95 int __read_mostly vm_phys_nsegs;
96 static struct vm_phys_seg vm_phys_early_segs[8];
97 static int vm_phys_early_nsegs;
98
99 struct vm_phys_fictitious_seg;
100 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
101 struct vm_phys_fictitious_seg *);
102
103 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
104 RB_INITIALIZER(&vm_phys_fictitious_tree);
105
106 struct vm_phys_fictitious_seg {
107 RB_ENTRY(vm_phys_fictitious_seg) node;
108 /* Memory region data */
109 vm_paddr_t start;
110 vm_paddr_t end;
111 vm_page_t first_page;
112 };
113
114 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
115 vm_phys_fictitious_cmp);
116
117 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
118 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
119
120 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
121 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
122 [VM_NFREEORDER_MAX];
123
124 static int __read_mostly vm_nfreelists;
125
126 /*
127 * These "avail lists" are globals used to communicate boot-time physical
128 * memory layout to other parts of the kernel. Each physically contiguous
129 * region of memory is defined by a start address at an even index and an
130 * end address at the following odd index. Each list is terminated by a
131 * pair of zero entries.
132 *
133 * dump_avail tells the dump code what regions to include in a crash dump, and
134 * phys_avail is all of the remaining physical memory that is available for
135 * the vm system.
136 *
137 * Initially dump_avail and phys_avail are identical. Boot time memory
138 * allocations remove extents from phys_avail that may still be included
139 * in dumps.
140 */
141 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
142 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
143
144 /*
145 * Provides the mapping from VM_FREELIST_* to free list indices (flind).
146 */
147 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
148 static int __read_mostly vm_default_freepool;
149
150 CTASSERT(VM_FREELIST_DEFAULT == 0);
151
152 #ifdef VM_FREELIST_DMA32
153 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32)
154 #endif
155
156 /*
157 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
158 * the ordering of the free list boundaries.
159 */
160 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
161 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
162 #endif
163
164 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
165 SYSCTL_OID(_vm, OID_AUTO, phys_free,
166 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
167 sysctl_vm_phys_free, "A",
168 "Phys Free Info");
169
170 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
171 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
172 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
173 sysctl_vm_phys_segs, "A",
174 "Phys Seg Info");
175
176 #ifdef NUMA
177 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
178 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
179 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
180 sysctl_vm_phys_locality, "A",
181 "Phys Locality Info");
182 #endif
183
184 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
185 &vm_ndomains, 0, "Number of physical memory domains available.");
186
187 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
188 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
189 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
190 int order, int tail);
191
192 static bool __diagused
vm_phys_pool_valid(int pool)193 vm_phys_pool_valid(int pool)
194 {
195 #ifdef VM_FREEPOOL_LAZYINIT
196 if (pool == VM_FREEPOOL_LAZYINIT)
197 return (false);
198 #endif
199 return (pool >= 0 && pool < VM_NFREEPOOL);
200 }
201
202 /*
203 * Red-black tree helpers for vm fictitious range management.
204 */
205 static inline int
vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg * p,struct vm_phys_fictitious_seg * range)206 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
207 struct vm_phys_fictitious_seg *range)
208 {
209
210 KASSERT(range->start != 0 && range->end != 0,
211 ("Invalid range passed on search for vm_fictitious page"));
212 if (p->start >= range->end)
213 return (1);
214 if (p->start < range->start)
215 return (-1);
216
217 return (0);
218 }
219
220 static int
vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg * p1,struct vm_phys_fictitious_seg * p2)221 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
222 struct vm_phys_fictitious_seg *p2)
223 {
224
225 /* Check if this is a search for a page */
226 if (p1->end == 0)
227 return (vm_phys_fictitious_in_range(p1, p2));
228
229 KASSERT(p2->end != 0,
230 ("Invalid range passed as second parameter to vm fictitious comparison"));
231
232 /* Searching to add a new range */
233 if (p1->end <= p2->start)
234 return (-1);
235 if (p1->start >= p2->end)
236 return (1);
237
238 panic("Trying to add overlapping vm fictitious ranges:\n"
239 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
240 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
241 }
242
243 int
vm_phys_domain_match(int prefer __numa_used,vm_paddr_t low __numa_used,vm_paddr_t high __numa_used)244 vm_phys_domain_match(int prefer __numa_used, vm_paddr_t low __numa_used,
245 vm_paddr_t high __numa_used)
246 {
247 #ifdef NUMA
248 domainset_t mask;
249 int i;
250
251 if (vm_ndomains == 1 || mem_affinity == NULL)
252 return (0);
253
254 DOMAINSET_ZERO(&mask);
255 /*
256 * Check for any memory that overlaps low, high.
257 */
258 for (i = 0; mem_affinity[i].end != 0; i++)
259 if (mem_affinity[i].start <= high &&
260 mem_affinity[i].end >= low)
261 DOMAINSET_SET(mem_affinity[i].domain, &mask);
262 if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
263 return (prefer);
264 if (DOMAINSET_EMPTY(&mask))
265 panic("vm_phys_domain_match: Impossible constraint");
266 return (DOMAINSET_FFS(&mask) - 1);
267 #else
268 return (0);
269 #endif
270 }
271
272 /*
273 * Outputs the state of the physical memory allocator, specifically,
274 * the amount of physical memory in each free list.
275 */
276 static int
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)277 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
278 {
279 struct sbuf sbuf;
280 struct vm_freelist *fl;
281 int dom, error, flind, oind, pind;
282
283 error = sysctl_wire_old_buffer(req, 0);
284 if (error != 0)
285 return (error);
286 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
287 for (dom = 0; dom < vm_ndomains; dom++) {
288 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
289 for (flind = 0; flind < vm_nfreelists; flind++) {
290 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
291 "\n ORDER (SIZE) | NUMBER"
292 "\n ", flind);
293 for (pind = 0; pind < VM_NFREEPOOL; pind++)
294 sbuf_printf(&sbuf, " | POOL %d", pind);
295 sbuf_printf(&sbuf, "\n-- ");
296 for (pind = 0; pind < VM_NFREEPOOL; pind++)
297 sbuf_printf(&sbuf, "-- -- ");
298 sbuf_printf(&sbuf, "--\n");
299 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
300 sbuf_printf(&sbuf, " %2d (%6dK)", oind,
301 1 << (PAGE_SHIFT - 10 + oind));
302 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
303 fl = vm_phys_free_queues[dom][flind][pind];
304 sbuf_printf(&sbuf, " | %6d",
305 fl[oind].lcnt);
306 }
307 sbuf_printf(&sbuf, "\n");
308 }
309 }
310 }
311 error = sbuf_finish(&sbuf);
312 sbuf_delete(&sbuf);
313 return (error);
314 }
315
316 /*
317 * Outputs the set of physical memory segments.
318 */
319 static int
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)320 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
321 {
322 struct sbuf sbuf;
323 struct vm_phys_seg *seg;
324 int error, segind;
325
326 error = sysctl_wire_old_buffer(req, 0);
327 if (error != 0)
328 return (error);
329 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
330 for (segind = 0; segind < vm_phys_nsegs; segind++) {
331 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
332 seg = &vm_phys_segs[segind];
333 sbuf_printf(&sbuf, "start: %#jx\n",
334 (uintmax_t)seg->start);
335 sbuf_printf(&sbuf, "end: %#jx\n",
336 (uintmax_t)seg->end);
337 sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
338 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
339 }
340 error = sbuf_finish(&sbuf);
341 sbuf_delete(&sbuf);
342 return (error);
343 }
344
345 /*
346 * Return affinity, or -1 if there's no affinity information.
347 */
348 int
vm_phys_mem_affinity(int f __numa_used,int t __numa_used)349 vm_phys_mem_affinity(int f __numa_used, int t __numa_used)
350 {
351
352 #ifdef NUMA
353 if (mem_locality == NULL)
354 return (-1);
355 if (f >= vm_ndomains || t >= vm_ndomains)
356 return (-1);
357 return (mem_locality[f * vm_ndomains + t]);
358 #else
359 return (-1);
360 #endif
361 }
362
363 #ifdef NUMA
364 /*
365 * Outputs the VM locality table.
366 */
367 static int
sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)368 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
369 {
370 struct sbuf sbuf;
371 int error, i, j;
372
373 error = sysctl_wire_old_buffer(req, 0);
374 if (error != 0)
375 return (error);
376 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
377
378 sbuf_printf(&sbuf, "\n");
379
380 for (i = 0; i < vm_ndomains; i++) {
381 sbuf_printf(&sbuf, "%d: ", i);
382 for (j = 0; j < vm_ndomains; j++) {
383 sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
384 }
385 sbuf_printf(&sbuf, "\n");
386 }
387 error = sbuf_finish(&sbuf);
388 sbuf_delete(&sbuf);
389 return (error);
390 }
391 #endif
392
393 static void
vm_freelist_add(struct vm_freelist * fl,vm_page_t m,int order,int tail)394 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
395 {
396
397 m->order = order;
398 if (tail)
399 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
400 else
401 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
402 fl[order].lcnt++;
403 }
404
405 static void
vm_freelist_rem(struct vm_freelist * fl,vm_page_t m,int order)406 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
407 {
408
409 TAILQ_REMOVE(&fl[order].pl, m, listq);
410 fl[order].lcnt--;
411 m->order = VM_NFREEORDER;
412 }
413
414 /*
415 * Create a physical memory segment.
416 */
417 static void
_vm_phys_create_seg(vm_paddr_t start,vm_paddr_t end,int domain)418 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
419 {
420 struct vm_phys_seg *seg;
421
422 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
423 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
424 KASSERT(domain >= 0 && domain < vm_ndomains,
425 ("vm_phys_create_seg: invalid domain provided"));
426 seg = &vm_phys_segs[vm_phys_nsegs++];
427 while (seg > vm_phys_segs && (seg - 1)->start >= end) {
428 *seg = *(seg - 1);
429 seg--;
430 }
431 seg->start = start;
432 seg->end = end;
433 seg->domain = domain;
434 }
435
436 static void
vm_phys_create_seg(vm_paddr_t start,vm_paddr_t end)437 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
438 {
439 #ifdef NUMA
440 int i;
441
442 if (mem_affinity == NULL) {
443 _vm_phys_create_seg(start, end, 0);
444 return;
445 }
446
447 for (i = 0;; i++) {
448 if (mem_affinity[i].end == 0)
449 panic("Reached end of affinity info");
450 if (mem_affinity[i].end <= start)
451 continue;
452 if (mem_affinity[i].start > start)
453 panic("No affinity info for start %jx",
454 (uintmax_t)start);
455 if (mem_affinity[i].end >= end) {
456 _vm_phys_create_seg(start, end,
457 mem_affinity[i].domain);
458 break;
459 }
460 _vm_phys_create_seg(start, mem_affinity[i].end,
461 mem_affinity[i].domain);
462 start = mem_affinity[i].end;
463 }
464 #else
465 _vm_phys_create_seg(start, end, 0);
466 #endif
467 }
468
469 /*
470 * Add a physical memory segment.
471 */
472 void
vm_phys_add_seg(vm_paddr_t start,vm_paddr_t end)473 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
474 {
475 vm_paddr_t paddr;
476
477 KASSERT((start & PAGE_MASK) == 0,
478 ("vm_phys_define_seg: start is not page aligned"));
479 KASSERT((end & PAGE_MASK) == 0,
480 ("vm_phys_define_seg: end is not page aligned"));
481
482 /*
483 * Split the physical memory segment if it spans two or more free
484 * list boundaries.
485 */
486 paddr = start;
487 #ifdef VM_FREELIST_LOWMEM
488 if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
489 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
490 paddr = VM_LOWMEM_BOUNDARY;
491 }
492 #endif
493 #ifdef VM_FREELIST_DMA32
494 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
495 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
496 paddr = VM_DMA32_BOUNDARY;
497 }
498 #endif
499 vm_phys_create_seg(paddr, end);
500 }
501
502 /*
503 * Initialize the physical memory allocator.
504 *
505 * Requires that vm_page_array is initialized!
506 */
507 void
vm_phys_init(void)508 vm_phys_init(void)
509 {
510 struct vm_freelist *fl;
511 struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
512 #if defined(VM_DMA32_NPAGES_THRESHOLD) || defined(VM_PHYSSEG_SPARSE)
513 u_long npages;
514 #endif
515 int dom, flind, freelist, oind, pind, segind;
516
517 /*
518 * Compute the number of free lists, and generate the mapping from the
519 * manifest constants VM_FREELIST_* to the free list indices.
520 *
521 * Initially, the entries of vm_freelist_to_flind[] are set to either
522 * 0 or 1 to indicate which free lists should be created.
523 */
524 #ifdef VM_DMA32_NPAGES_THRESHOLD
525 npages = 0;
526 #endif
527 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
528 seg = &vm_phys_segs[segind];
529 #ifdef VM_FREELIST_LOWMEM
530 if (seg->end <= VM_LOWMEM_BOUNDARY)
531 vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
532 else
533 #endif
534 #ifdef VM_FREELIST_DMA32
535 if (
536 #ifdef VM_DMA32_NPAGES_THRESHOLD
537 /*
538 * Create the DMA32 free list only if the amount of
539 * physical memory above physical address 4G exceeds the
540 * given threshold.
541 */
542 npages > VM_DMA32_NPAGES_THRESHOLD &&
543 #endif
544 seg->end <= VM_DMA32_BOUNDARY)
545 vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
546 else
547 #endif
548 {
549 #ifdef VM_DMA32_NPAGES_THRESHOLD
550 npages += atop(seg->end - seg->start);
551 #endif
552 vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
553 }
554 }
555 /* Change each entry into a running total of the free lists. */
556 for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
557 vm_freelist_to_flind[freelist] +=
558 vm_freelist_to_flind[freelist - 1];
559 }
560 vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
561 KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
562 /* Change each entry into a free list index. */
563 for (freelist = 0; freelist < VM_NFREELIST; freelist++)
564 vm_freelist_to_flind[freelist]--;
565
566 /*
567 * Initialize the first_page and free_queues fields of each physical
568 * memory segment.
569 */
570 #ifdef VM_PHYSSEG_SPARSE
571 npages = 0;
572 #endif
573 for (segind = 0; segind < vm_phys_nsegs; segind++) {
574 seg = &vm_phys_segs[segind];
575 #ifdef VM_PHYSSEG_SPARSE
576 seg->first_page = &vm_page_array[npages];
577 npages += atop(seg->end - seg->start);
578 #else
579 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
580 #endif
581 #ifdef VM_FREELIST_LOWMEM
582 if (seg->end <= VM_LOWMEM_BOUNDARY) {
583 flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
584 KASSERT(flind >= 0,
585 ("vm_phys_init: LOWMEM flind < 0"));
586 } else
587 #endif
588 #ifdef VM_FREELIST_DMA32
589 if (seg->end <= VM_DMA32_BOUNDARY) {
590 flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
591 KASSERT(flind >= 0,
592 ("vm_phys_init: DMA32 flind < 0"));
593 } else
594 #endif
595 {
596 flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
597 KASSERT(flind >= 0,
598 ("vm_phys_init: DEFAULT flind < 0"));
599 }
600 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
601 }
602
603 /*
604 * Coalesce physical memory segments that are contiguous and share the
605 * same per-domain free queues.
606 */
607 prev_seg = vm_phys_segs;
608 seg = &vm_phys_segs[1];
609 end_seg = &vm_phys_segs[vm_phys_nsegs];
610 while (seg < end_seg) {
611 if (prev_seg->end == seg->start &&
612 prev_seg->free_queues == seg->free_queues) {
613 prev_seg->end = seg->end;
614 KASSERT(prev_seg->domain == seg->domain,
615 ("vm_phys_init: free queues cannot span domains"));
616 vm_phys_nsegs--;
617 end_seg--;
618 for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
619 *tmp_seg = *(tmp_seg + 1);
620 } else {
621 prev_seg = seg;
622 seg++;
623 }
624 }
625
626 /*
627 * Initialize the free queues.
628 */
629 for (dom = 0; dom < vm_ndomains; dom++) {
630 for (flind = 0; flind < vm_nfreelists; flind++) {
631 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
632 fl = vm_phys_free_queues[dom][flind][pind];
633 for (oind = 0; oind < VM_NFREEORDER; oind++)
634 TAILQ_INIT(&fl[oind].pl);
635 }
636 }
637 }
638
639 #ifdef VM_FREEPOOL_LAZYINIT
640 vm_default_freepool = VM_FREEPOOL_LAZYINIT;
641 #else
642 vm_default_freepool = VM_FREEPOOL_DEFAULT;
643 #endif
644
645 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
646 }
647
648 /*
649 * Register info about the NUMA topology of the system.
650 *
651 * Invoked by platform-dependent code prior to vm_phys_init().
652 */
653 void
vm_phys_register_domains(int ndomains __numa_used,struct mem_affinity * affinity __numa_used,int * locality __numa_used)654 vm_phys_register_domains(int ndomains __numa_used,
655 struct mem_affinity *affinity __numa_used, int *locality __numa_used)
656 {
657 #ifdef NUMA
658 int i;
659
660 /*
661 * For now the only override value that we support is 1, which
662 * effectively disables NUMA-awareness in the allocators.
663 */
664 TUNABLE_INT_FETCH("vm.numa.disabled", &numa_disabled);
665 if (numa_disabled)
666 ndomains = 1;
667
668 if (ndomains > 1) {
669 vm_ndomains = ndomains;
670 mem_affinity = affinity;
671 mem_locality = locality;
672 }
673
674 for (i = 0; i < vm_ndomains; i++)
675 DOMAINSET_SET(i, &all_domains);
676 #endif
677 }
678
679 /*
680 * Split a contiguous, power of two-sized set of physical pages.
681 *
682 * When this function is called by a page allocation function, the caller
683 * should request insertion at the head unless the order [order, oind) queues
684 * are known to be empty. The objective being to reduce the likelihood of
685 * long-term fragmentation by promoting contemporaneous allocation and
686 * (hopefully) deallocation.
687 */
688 static __inline void
vm_phys_split_pages(vm_page_t m,int oind,struct vm_freelist * fl,int order,int tail)689 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
690 int tail)
691 {
692 vm_page_t m_buddy;
693
694 while (oind > order) {
695 oind--;
696 m_buddy = &m[1 << oind];
697 KASSERT(m_buddy->order == VM_NFREEORDER,
698 ("vm_phys_split_pages: page %p has unexpected order %d",
699 m_buddy, m_buddy->order));
700 vm_freelist_add(fl, m_buddy, oind, tail);
701 }
702 }
703
704 static void
vm_phys_enq_chunk(struct vm_freelist * fl,vm_page_t m,int order,int tail)705 vm_phys_enq_chunk(struct vm_freelist *fl, vm_page_t m, int order, int tail)
706 {
707 KASSERT(order >= 0 && order < VM_NFREEORDER,
708 ("%s: invalid order %d", __func__, order));
709
710 vm_freelist_add(fl, m, order, tail);
711 #ifdef VM_FREEPOOL_LAZYINIT
712 if (__predict_false(m->pool == VM_FREEPOOL_LAZYINIT)) {
713 vm_page_t m_next;
714 vm_paddr_t pa;
715 int npages;
716
717 npages = 1 << order;
718 m_next = m + npages;
719 pa = m->phys_addr + ptoa(npages);
720 if (pa < vm_phys_segs[m->segind].end) {
721 vm_page_init_page(m_next, pa, m->segind,
722 VM_FREEPOOL_LAZYINIT);
723 }
724 }
725 #endif
726 }
727
728 /*
729 * Add the physical pages [m, m + npages) at the beginning of a power-of-two
730 * aligned and sized set to the specified free list.
731 *
732 * When this function is called by a page allocation function, the caller
733 * should request insertion at the head unless the lower-order queues are
734 * known to be empty. The objective being to reduce the likelihood of long-
735 * term fragmentation by promoting contemporaneous allocation and (hopefully)
736 * deallocation.
737 *
738 * The physical page m's buddy must not be free.
739 */
740 static void
vm_phys_enq_beg(vm_page_t m,u_int npages,struct vm_freelist * fl,int tail)741 vm_phys_enq_beg(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
742 {
743 int order;
744
745 KASSERT(npages == 0 ||
746 (VM_PAGE_TO_PHYS(m) &
747 ((PAGE_SIZE << ilog2(npages)) - 1)) == 0,
748 ("%s: page %p and npages %u are misaligned",
749 __func__, m, npages));
750 while (npages > 0) {
751 KASSERT(m->order == VM_NFREEORDER,
752 ("%s: page %p has unexpected order %d",
753 __func__, m, m->order));
754 order = ilog2(npages);
755 KASSERT(order < VM_NFREEORDER,
756 ("%s: order %d is out of range", __func__, order));
757 vm_phys_enq_chunk(fl, m, order, tail);
758 m += 1 << order;
759 npages -= 1 << order;
760 }
761 }
762
763 /*
764 * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
765 * and sized set to the specified free list.
766 *
767 * When this function is called by a page allocation function, the caller
768 * should request insertion at the head unless the lower-order queues are
769 * known to be empty. The objective being to reduce the likelihood of long-
770 * term fragmentation by promoting contemporaneous allocation and (hopefully)
771 * deallocation.
772 *
773 * If npages is zero, this function does nothing and ignores the physical page
774 * parameter m. Otherwise, the physical page m's buddy must not be free.
775 */
776 static vm_page_t
vm_phys_enq_range(vm_page_t m,u_int npages,struct vm_freelist * fl,int tail)777 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
778 {
779 int order;
780
781 KASSERT(npages == 0 ||
782 ((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
783 ((PAGE_SIZE << ilog2(npages)) - 1)) == 0,
784 ("vm_phys_enq_range: page %p and npages %u are misaligned",
785 m, npages));
786 while (npages > 0) {
787 KASSERT(m->order == VM_NFREEORDER,
788 ("vm_phys_enq_range: page %p has unexpected order %d",
789 m, m->order));
790 order = ffs(npages) - 1;
791 vm_phys_enq_chunk(fl, m, order, tail);
792 m += 1 << order;
793 npages -= 1 << order;
794 }
795 return (m);
796 }
797
798 /*
799 * Set the pool for a contiguous, power of two-sized set of physical pages.
800 *
801 * If the pages currently belong to the lazy init pool, then the corresponding
802 * page structures must be initialized. In this case it is assumed that the
803 * first page in the run has already been initialized.
804 */
805 static void
vm_phys_set_pool(int pool,vm_page_t m,int order)806 vm_phys_set_pool(int pool, vm_page_t m, int order)
807 {
808 #ifdef VM_FREEPOOL_LAZYINIT
809 if (__predict_false(m->pool == VM_FREEPOOL_LAZYINIT)) {
810 vm_paddr_t pa;
811 int segind;
812
813 m->pool = pool;
814
815 TSENTER();
816 pa = m->phys_addr + PAGE_SIZE;
817 segind = m->segind;
818 for (vm_page_t m_tmp = m + 1; m_tmp < &m[1 << order];
819 m_tmp++, pa += PAGE_SIZE)
820 vm_page_init_page(m_tmp, pa, segind, pool);
821 TSEXIT();
822 } else
823 #endif
824 for (vm_page_t m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
825 m_tmp->pool = pool;
826 }
827
828 /*
829 * Tries to allocate the specified number of pages from the specified pool
830 * within the specified domain. Returns the actual number of allocated pages
831 * and a pointer to each page through the array ma[].
832 *
833 * The returned pages may not be physically contiguous. However, in contrast
834 * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
835 * calling this function once to allocate the desired number of pages will
836 * avoid wasted time in vm_phys_split_pages().
837 *
838 * The free page queues for the specified domain must be locked.
839 */
840 int
vm_phys_alloc_npages(int domain,int pool,int npages,vm_page_t ma[])841 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
842 {
843 struct vm_freelist *alt, *fl;
844 vm_page_t m;
845 int avail, end, flind, freelist, i, oind, pind;
846
847 KASSERT(domain >= 0 && domain < vm_ndomains,
848 ("vm_phys_alloc_npages: domain %d is out of range", domain));
849 KASSERT(vm_phys_pool_valid(pool),
850 ("vm_phys_alloc_npages: pool %d is out of range", pool));
851 KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
852 ("vm_phys_alloc_npages: npages %d is out of range", npages));
853 vm_domain_free_assert_locked(VM_DOMAIN(domain));
854 i = 0;
855 for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
856 flind = vm_freelist_to_flind[freelist];
857 if (flind < 0)
858 continue;
859 fl = vm_phys_free_queues[domain][flind][pool];
860 for (oind = 0; oind < VM_NFREEORDER; oind++) {
861 while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
862 vm_freelist_rem(fl, m, oind);
863 avail = i + (1 << oind);
864 end = imin(npages, avail);
865 while (i < end)
866 ma[i++] = m++;
867 if (i == npages) {
868 /*
869 * Return excess pages to fl. Its order
870 * [0, oind) queues are empty.
871 */
872 vm_phys_enq_range(m, avail - i, fl, 1);
873 return (npages);
874 }
875 }
876 }
877 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
878 for (pind = vm_default_freepool; pind < VM_NFREEPOOL;
879 pind++) {
880 alt = vm_phys_free_queues[domain][flind][pind];
881 while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
882 NULL) {
883 vm_freelist_rem(alt, m, oind);
884 vm_phys_set_pool(pool, m, oind);
885 avail = i + (1 << oind);
886 end = imin(npages, avail);
887 while (i < end)
888 ma[i++] = m++;
889 if (i == npages) {
890 /*
891 * Return excess pages to fl.
892 * Its order [0, oind) queues
893 * are empty.
894 */
895 vm_phys_enq_range(m, avail - i,
896 fl, 1);
897 return (npages);
898 }
899 }
900 }
901 }
902 }
903 return (i);
904 }
905
906 /*
907 * Allocate a contiguous, power of two-sized set of physical pages from the
908 * specified free list. The free list must be specified using one of the
909 * manifest constants VM_FREELIST_*.
910 *
911 * The free page queues must be locked.
912 */
913 static vm_page_t
vm_phys_alloc_freelist_pages(int domain,int freelist,int pool,int order)914 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
915 {
916 struct vm_freelist *alt, *fl;
917 vm_page_t m;
918 int oind, pind, flind;
919
920 KASSERT(domain >= 0 && domain < vm_ndomains,
921 ("vm_phys_alloc_freelist_pages: domain %d is out of range",
922 domain));
923 KASSERT(freelist < VM_NFREELIST,
924 ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
925 freelist));
926 KASSERT(vm_phys_pool_valid(pool),
927 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
928 KASSERT(order < VM_NFREEORDER,
929 ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
930
931 flind = vm_freelist_to_flind[freelist];
932 /* Check if freelist is present */
933 if (flind < 0)
934 return (NULL);
935
936 vm_domain_free_assert_locked(VM_DOMAIN(domain));
937 fl = &vm_phys_free_queues[domain][flind][pool][0];
938 for (oind = order; oind < VM_NFREEORDER; oind++) {
939 m = TAILQ_FIRST(&fl[oind].pl);
940 if (m != NULL) {
941 vm_freelist_rem(fl, m, oind);
942 /* The order [order, oind) queues are empty. */
943 vm_phys_split_pages(m, oind, fl, order, 1);
944 return (m);
945 }
946 }
947
948 /*
949 * The given pool was empty. Find the largest
950 * contiguous, power-of-two-sized set of pages in any
951 * pool. Transfer these pages to the given pool, and
952 * use them to satisfy the allocation.
953 */
954 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
955 for (pind = vm_default_freepool; pind < VM_NFREEPOOL; pind++) {
956 alt = &vm_phys_free_queues[domain][flind][pind][0];
957 m = TAILQ_FIRST(&alt[oind].pl);
958 if (m != NULL) {
959 vm_freelist_rem(alt, m, oind);
960 vm_phys_set_pool(pool, m, oind);
961 /* The order [order, oind) queues are empty. */
962 vm_phys_split_pages(m, oind, fl, order, 1);
963 return (m);
964 }
965 }
966 }
967 return (NULL);
968 }
969
970 /*
971 * Allocate a contiguous, power of two-sized set of physical pages
972 * from the free lists.
973 *
974 * The free page queues must be locked.
975 */
976 vm_page_t
vm_phys_alloc_pages(int domain,int pool,int order)977 vm_phys_alloc_pages(int domain, int pool, int order)
978 {
979 vm_page_t m;
980 int freelist;
981
982 for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
983 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
984 if (m != NULL)
985 return (m);
986 }
987 return (NULL);
988 }
989
990 /*
991 * Find the vm_page corresponding to the given physical address, which must lie
992 * within the given physical memory segment.
993 */
994 vm_page_t
vm_phys_seg_paddr_to_vm_page(struct vm_phys_seg * seg,vm_paddr_t pa)995 vm_phys_seg_paddr_to_vm_page(struct vm_phys_seg *seg, vm_paddr_t pa)
996 {
997 KASSERT(pa >= seg->start && pa < seg->end,
998 ("%s: pa %#jx is out of range", __func__, (uintmax_t)pa));
999
1000 return (&seg->first_page[atop(pa - seg->start)]);
1001 }
1002
1003 /*
1004 * Find the vm_page corresponding to the given physical address.
1005 */
1006 vm_page_t
vm_phys_paddr_to_vm_page(vm_paddr_t pa)1007 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
1008 {
1009 struct vm_phys_seg *seg;
1010
1011 if ((seg = vm_phys_paddr_to_seg(pa)) != NULL)
1012 return (vm_phys_seg_paddr_to_vm_page(seg, pa));
1013 return (NULL);
1014 }
1015
1016 vm_page_t
vm_phys_fictitious_to_vm_page(vm_paddr_t pa)1017 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
1018 {
1019 struct vm_phys_fictitious_seg tmp, *seg;
1020 vm_page_t m;
1021
1022 m = NULL;
1023 tmp.start = pa;
1024 tmp.end = 0;
1025
1026 rw_rlock(&vm_phys_fictitious_reg_lock);
1027 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1028 rw_runlock(&vm_phys_fictitious_reg_lock);
1029 if (seg == NULL)
1030 return (NULL);
1031
1032 m = &seg->first_page[atop(pa - seg->start)];
1033 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
1034
1035 return (m);
1036 }
1037
1038 static inline void
vm_phys_fictitious_init_range(vm_page_t range,vm_paddr_t start,long page_count,vm_memattr_t memattr)1039 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
1040 long page_count, vm_memattr_t memattr)
1041 {
1042 long i;
1043
1044 bzero(range, page_count * sizeof(*range));
1045 for (i = 0; i < page_count; i++) {
1046 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
1047 range[i].oflags &= ~VPO_UNMANAGED;
1048 range[i].busy_lock = VPB_UNBUSIED;
1049 }
1050 }
1051
1052 int
vm_phys_fictitious_reg_range(vm_paddr_t start,vm_paddr_t end,vm_memattr_t memattr)1053 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
1054 vm_memattr_t memattr)
1055 {
1056 struct vm_phys_fictitious_seg *seg;
1057 vm_page_t fp;
1058 long page_count;
1059 #ifdef VM_PHYSSEG_DENSE
1060 long pi, pe;
1061 long dpage_count;
1062 #endif
1063
1064 KASSERT(start < end,
1065 ("Start of segment isn't less than end (start: %jx end: %jx)",
1066 (uintmax_t)start, (uintmax_t)end));
1067
1068 page_count = (end - start) / PAGE_SIZE;
1069
1070 #ifdef VM_PHYSSEG_DENSE
1071 pi = atop(start);
1072 pe = atop(end);
1073 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1074 fp = &vm_page_array[pi - first_page];
1075 if ((pe - first_page) > vm_page_array_size) {
1076 /*
1077 * We have a segment that starts inside
1078 * of vm_page_array, but ends outside of it.
1079 *
1080 * Use vm_page_array pages for those that are
1081 * inside of the vm_page_array range, and
1082 * allocate the remaining ones.
1083 */
1084 dpage_count = vm_page_array_size - (pi - first_page);
1085 vm_phys_fictitious_init_range(fp, start, dpage_count,
1086 memattr);
1087 page_count -= dpage_count;
1088 start += ptoa(dpage_count);
1089 goto alloc;
1090 }
1091 /*
1092 * We can allocate the full range from vm_page_array,
1093 * so there's no need to register the range in the tree.
1094 */
1095 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1096 return (0);
1097 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1098 /*
1099 * We have a segment that ends inside of vm_page_array,
1100 * but starts outside of it.
1101 */
1102 fp = &vm_page_array[0];
1103 dpage_count = pe - first_page;
1104 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
1105 memattr);
1106 end -= ptoa(dpage_count);
1107 page_count -= dpage_count;
1108 goto alloc;
1109 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1110 /*
1111 * Trying to register a fictitious range that expands before
1112 * and after vm_page_array.
1113 */
1114 return (EINVAL);
1115 } else {
1116 alloc:
1117 #endif
1118 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1119 M_WAITOK);
1120 #ifdef VM_PHYSSEG_DENSE
1121 }
1122 #endif
1123 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1124
1125 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1126 seg->start = start;
1127 seg->end = end;
1128 seg->first_page = fp;
1129
1130 rw_wlock(&vm_phys_fictitious_reg_lock);
1131 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1132 rw_wunlock(&vm_phys_fictitious_reg_lock);
1133
1134 return (0);
1135 }
1136
1137 void
vm_phys_fictitious_unreg_range(vm_paddr_t start,vm_paddr_t end)1138 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1139 {
1140 struct vm_phys_fictitious_seg *seg, tmp;
1141 #ifdef VM_PHYSSEG_DENSE
1142 long pi, pe;
1143 #endif
1144
1145 KASSERT(start < end,
1146 ("Start of segment isn't less than end (start: %jx end: %jx)",
1147 (uintmax_t)start, (uintmax_t)end));
1148
1149 #ifdef VM_PHYSSEG_DENSE
1150 pi = atop(start);
1151 pe = atop(end);
1152 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1153 if ((pe - first_page) <= vm_page_array_size) {
1154 /*
1155 * This segment was allocated using vm_page_array
1156 * only, there's nothing to do since those pages
1157 * were never added to the tree.
1158 */
1159 return;
1160 }
1161 /*
1162 * We have a segment that starts inside
1163 * of vm_page_array, but ends outside of it.
1164 *
1165 * Calculate how many pages were added to the
1166 * tree and free them.
1167 */
1168 start = ptoa(first_page + vm_page_array_size);
1169 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1170 /*
1171 * We have a segment that ends inside of vm_page_array,
1172 * but starts outside of it.
1173 */
1174 end = ptoa(first_page);
1175 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1176 /* Since it's not possible to register such a range, panic. */
1177 panic(
1178 "Unregistering not registered fictitious range [%#jx:%#jx]",
1179 (uintmax_t)start, (uintmax_t)end);
1180 }
1181 #endif
1182 tmp.start = start;
1183 tmp.end = 0;
1184
1185 rw_wlock(&vm_phys_fictitious_reg_lock);
1186 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1187 if (seg->start != start || seg->end != end) {
1188 rw_wunlock(&vm_phys_fictitious_reg_lock);
1189 panic(
1190 "Unregistering not registered fictitious range [%#jx:%#jx]",
1191 (uintmax_t)start, (uintmax_t)end);
1192 }
1193 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1194 rw_wunlock(&vm_phys_fictitious_reg_lock);
1195 free(seg->first_page, M_FICT_PAGES);
1196 free(seg, M_FICT_PAGES);
1197 }
1198
1199 /*
1200 * Free a contiguous, power of two-sized set of physical pages.
1201 *
1202 * The free page queues must be locked.
1203 */
1204 void
vm_phys_free_pages(vm_page_t m,int order)1205 vm_phys_free_pages(vm_page_t m, int order)
1206 {
1207 struct vm_freelist *fl;
1208 struct vm_phys_seg *seg;
1209 vm_paddr_t pa;
1210 vm_page_t m_buddy;
1211
1212 KASSERT(m->order == VM_NFREEORDER,
1213 ("vm_phys_free_pages: page %p has unexpected order %d",
1214 m, m->order));
1215 KASSERT(vm_phys_pool_valid(m->pool),
1216 ("vm_phys_free_pages: page %p has unexpected pool %d",
1217 m, m->pool));
1218 KASSERT(order < VM_NFREEORDER,
1219 ("vm_phys_free_pages: order %d is out of range", order));
1220 seg = &vm_phys_segs[m->segind];
1221 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1222 if (order < VM_NFREEORDER - 1) {
1223 pa = VM_PAGE_TO_PHYS(m);
1224 do {
1225 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1226 if (pa < seg->start || pa >= seg->end)
1227 break;
1228 m_buddy = vm_phys_seg_paddr_to_vm_page(seg, pa);
1229 if (m_buddy->order != order)
1230 break;
1231 fl = (*seg->free_queues)[m_buddy->pool];
1232 vm_freelist_rem(fl, m_buddy, order);
1233 if (m_buddy->pool != m->pool)
1234 vm_phys_set_pool(m->pool, m_buddy, order);
1235 order++;
1236 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1237 m = vm_phys_seg_paddr_to_vm_page(seg, pa);
1238 } while (order < VM_NFREEORDER - 1);
1239 }
1240 fl = (*seg->free_queues)[m->pool];
1241 vm_freelist_add(fl, m, order, 1);
1242 }
1243
1244 #ifdef VM_FREEPOOL_LAZYINIT
1245 /*
1246 * Initialize all pages lingering in the lazy init pool of a NUMA domain, moving
1247 * them to the default pool. This is a prerequisite for some rare operations
1248 * which need to scan the page array and thus depend on all pages being
1249 * initialized.
1250 */
1251 static void
vm_phys_lazy_init_domain(int domain,bool locked)1252 vm_phys_lazy_init_domain(int domain, bool locked)
1253 {
1254 static bool initdone[MAXMEMDOM];
1255 struct vm_domain *vmd;
1256 struct vm_freelist *fl;
1257 vm_page_t m;
1258 int pind;
1259 bool unlocked;
1260
1261 if (__predict_true(atomic_load_bool(&initdone[domain])))
1262 return;
1263
1264 vmd = VM_DOMAIN(domain);
1265 if (locked)
1266 vm_domain_free_assert_locked(vmd);
1267 else
1268 vm_domain_free_lock(vmd);
1269 if (atomic_load_bool(&initdone[domain]))
1270 goto out;
1271 pind = VM_FREEPOOL_LAZYINIT;
1272 for (int freelist = 0; freelist < VM_NFREELIST; freelist++) {
1273 int flind;
1274
1275 flind = vm_freelist_to_flind[freelist];
1276 if (flind < 0)
1277 continue;
1278 fl = vm_phys_free_queues[domain][flind][pind];
1279 for (int oind = 0; oind < VM_NFREEORDER; oind++) {
1280 if (atomic_load_int(&fl[oind].lcnt) == 0)
1281 continue;
1282 while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
1283 /*
1284 * Avoid holding the lock across the
1285 * initialization unless there's a free page
1286 * shortage.
1287 */
1288 vm_freelist_rem(fl, m, oind);
1289 unlocked = vm_domain_allocate(vmd,
1290 VM_ALLOC_NORMAL, 1 << oind);
1291 if (unlocked)
1292 vm_domain_free_unlock(vmd);
1293 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1294 if (unlocked) {
1295 vm_domain_freecnt_inc(vmd, 1 << oind);
1296 vm_domain_free_lock(vmd);
1297 }
1298 vm_phys_free_pages(m, oind);
1299 }
1300 }
1301 }
1302 atomic_store_bool(&initdone[domain], true);
1303 out:
1304 if (!locked)
1305 vm_domain_free_unlock(vmd);
1306 }
1307
1308 static void
vm_phys_lazy_init(void)1309 vm_phys_lazy_init(void)
1310 {
1311 for (int domain = 0; domain < vm_ndomains; domain++)
1312 vm_phys_lazy_init_domain(domain, false);
1313 atomic_store_int(&vm_default_freepool, VM_FREEPOOL_DEFAULT);
1314 }
1315
1316 static void
vm_phys_lazy_init_kthr(void * arg __unused)1317 vm_phys_lazy_init_kthr(void *arg __unused)
1318 {
1319 vm_phys_lazy_init();
1320 kthread_exit();
1321 }
1322
1323 static void
vm_phys_lazy_sysinit(void * arg __unused)1324 vm_phys_lazy_sysinit(void *arg __unused)
1325 {
1326 struct thread *td;
1327 int error;
1328
1329 error = kthread_add(vm_phys_lazy_init_kthr, NULL, curproc, &td,
1330 RFSTOPPED, 0, "vmlazyinit");
1331 if (error == 0) {
1332 thread_lock(td);
1333 sched_prio(td, PRI_MIN_IDLE);
1334 sched_add(td, SRQ_BORING);
1335 } else {
1336 printf("%s: could not create lazy init thread: %d\n",
1337 __func__, error);
1338 vm_phys_lazy_init();
1339 }
1340 }
1341 SYSINIT(vm_phys_lazy_init, SI_SUB_SMP, SI_ORDER_ANY, vm_phys_lazy_sysinit,
1342 NULL);
1343 #endif /* VM_FREEPOOL_LAZYINIT */
1344
1345 /*
1346 * Free a contiguous, arbitrarily sized set of physical pages, without
1347 * merging across set boundaries.
1348 *
1349 * The free page queues must be locked.
1350 */
1351 void
vm_phys_enqueue_contig(vm_page_t m,u_long npages)1352 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1353 {
1354 struct vm_freelist *fl;
1355 struct vm_phys_seg *seg;
1356 vm_page_t m_end;
1357 vm_paddr_t diff, lo;
1358 int order;
1359
1360 /*
1361 * Avoid unnecessary coalescing by freeing the pages in the largest
1362 * possible power-of-two-sized subsets.
1363 */
1364 vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1365 seg = &vm_phys_segs[m->segind];
1366 fl = (*seg->free_queues)[m->pool];
1367 m_end = m + npages;
1368 /* Free blocks of increasing size. */
1369 lo = atop(VM_PAGE_TO_PHYS(m));
1370 if (m < m_end &&
1371 (diff = lo ^ (lo + npages - 1)) != 0) {
1372 order = min(ilog2(diff), VM_NFREEORDER - 1);
1373 m = vm_phys_enq_range(m, roundup2(lo, 1 << order) - lo, fl, 1);
1374 }
1375
1376 /* Free blocks of maximum size. */
1377 order = VM_NFREEORDER - 1;
1378 while (m + (1 << order) <= m_end) {
1379 KASSERT(seg == &vm_phys_segs[m->segind],
1380 ("%s: page range [%p,%p) spans multiple segments",
1381 __func__, m_end - npages, m));
1382 vm_phys_enq_chunk(fl, m, order, 1);
1383 m += 1 << order;
1384 }
1385 /* Free blocks of diminishing size. */
1386 vm_phys_enq_beg(m, m_end - m, fl, 1);
1387 }
1388
1389 /*
1390 * Free a contiguous, arbitrarily sized set of physical pages.
1391 *
1392 * The free page queues must be locked.
1393 */
1394 void
vm_phys_free_contig(vm_page_t m,u_long npages)1395 vm_phys_free_contig(vm_page_t m, u_long npages)
1396 {
1397 vm_paddr_t lo;
1398 vm_page_t m_start, m_end;
1399 unsigned max_order, order_start, order_end;
1400
1401 vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1402
1403 lo = atop(VM_PAGE_TO_PHYS(m));
1404 max_order = min(ilog2(lo ^ (lo + npages)), VM_NFREEORDER - 1);
1405
1406 m_start = m;
1407 order_start = ffsll(lo) - 1;
1408 if (order_start < max_order)
1409 m_start += 1 << order_start;
1410 m_end = m + npages;
1411 order_end = ffsll(lo + npages) - 1;
1412 if (order_end < max_order)
1413 m_end -= 1 << order_end;
1414 /*
1415 * Avoid unnecessary coalescing by freeing the pages at the start and
1416 * end of the range last.
1417 */
1418 if (m_start < m_end)
1419 vm_phys_enqueue_contig(m_start, m_end - m_start);
1420 if (order_start < max_order)
1421 vm_phys_free_pages(m, order_start);
1422 if (order_end < max_order)
1423 vm_phys_free_pages(m_end, order_end);
1424 }
1425
1426 /*
1427 * Identify the first address range within segment segind or greater
1428 * that matches the domain, lies within the low/high range, and has
1429 * enough pages. Return -1 if there is none.
1430 */
1431 int
vm_phys_find_range(vm_page_t bounds[],int segind,int domain,u_long npages,vm_paddr_t low,vm_paddr_t high)1432 vm_phys_find_range(vm_page_t bounds[], int segind, int domain,
1433 u_long npages, vm_paddr_t low, vm_paddr_t high)
1434 {
1435 vm_paddr_t pa_end, pa_start;
1436 struct vm_phys_seg *end_seg, *seg;
1437
1438 KASSERT(npages > 0, ("npages is zero"));
1439 KASSERT(domain >= 0 && domain < vm_ndomains, ("domain out of range"));
1440 end_seg = &vm_phys_segs[vm_phys_nsegs];
1441 for (seg = &vm_phys_segs[segind]; seg < end_seg; seg++) {
1442 if (seg->domain != domain)
1443 continue;
1444 if (seg->start >= high)
1445 return (-1);
1446 pa_start = MAX(low, seg->start);
1447 pa_end = MIN(high, seg->end);
1448 if (pa_end - pa_start < ptoa(npages))
1449 continue;
1450 #ifdef VM_FREEPOOL_LAZYINIT
1451 /*
1452 * The pages on the free lists must be initialized.
1453 */
1454 vm_phys_lazy_init_domain(domain, false);
1455 #endif
1456 bounds[0] = vm_phys_seg_paddr_to_vm_page(seg, pa_start);
1457 bounds[1] = &seg->first_page[atop(pa_end - seg->start)];
1458 return (seg - vm_phys_segs);
1459 }
1460 return (-1);
1461 }
1462
1463 /*
1464 * Search for the given physical page "m" in the free lists. If the search
1465 * succeeds, remove "m" from the free lists and return true. Otherwise, return
1466 * false, indicating that "m" is not in the free lists.
1467 *
1468 * The free page queues must be locked.
1469 */
1470 bool
vm_phys_unfree_page(vm_paddr_t pa)1471 vm_phys_unfree_page(vm_paddr_t pa)
1472 {
1473 struct vm_freelist *fl;
1474 struct vm_phys_seg *seg;
1475 vm_paddr_t pa_half;
1476 vm_page_t m, m_set, m_tmp;
1477 int order;
1478
1479 seg = vm_phys_paddr_to_seg(pa);
1480 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1481
1482 /*
1483 * The pages on the free lists must be initialized.
1484 */
1485 #ifdef VM_FREEPOOL_LAZYINIT
1486 vm_phys_lazy_init_domain(seg->domain, true);
1487 #endif
1488
1489 /*
1490 * First, find the contiguous, power of two-sized set of free
1491 * physical pages containing the given physical page "m" and
1492 * assign it to "m_set".
1493 */
1494 m = vm_phys_paddr_to_vm_page(pa);
1495 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1496 order < VM_NFREEORDER - 1; ) {
1497 order++;
1498 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1499 if (pa >= seg->start)
1500 m_set = vm_phys_seg_paddr_to_vm_page(seg, pa);
1501 else
1502 return (false);
1503 }
1504 if (m_set->order < order)
1505 return (false);
1506 if (m_set->order == VM_NFREEORDER)
1507 return (false);
1508 KASSERT(m_set->order < VM_NFREEORDER,
1509 ("vm_phys_unfree_page: page %p has unexpected order %d",
1510 m_set, m_set->order));
1511
1512 /*
1513 * Next, remove "m_set" from the free lists. Finally, extract
1514 * "m" from "m_set" using an iterative algorithm: While "m_set"
1515 * is larger than a page, shrink "m_set" by returning the half
1516 * of "m_set" that does not contain "m" to the free lists.
1517 */
1518 fl = (*seg->free_queues)[m_set->pool];
1519 order = m_set->order;
1520 vm_freelist_rem(fl, m_set, order);
1521 while (order > 0) {
1522 order--;
1523 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1524 if (m->phys_addr < pa_half)
1525 m_tmp = vm_phys_seg_paddr_to_vm_page(seg, pa_half);
1526 else {
1527 m_tmp = m_set;
1528 m_set = vm_phys_seg_paddr_to_vm_page(seg, pa_half);
1529 }
1530 vm_freelist_add(fl, m_tmp, order, 0);
1531 }
1532 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1533 return (true);
1534 }
1535
1536 /*
1537 * Find a run of contiguous physical pages, meeting alignment requirements, from
1538 * a list of max-sized page blocks, where we need at least two consecutive
1539 * blocks to satisfy the (large) page request.
1540 */
1541 static vm_page_t
vm_phys_find_freelist_contig(struct vm_freelist * fl,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1542 vm_phys_find_freelist_contig(struct vm_freelist *fl, u_long npages,
1543 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1544 {
1545 struct vm_phys_seg *seg;
1546 vm_page_t m, m_iter, m_ret;
1547 vm_paddr_t max_size, size;
1548 int max_order;
1549
1550 max_order = VM_NFREEORDER - 1;
1551 size = npages << PAGE_SHIFT;
1552 max_size = (vm_paddr_t)1 << (PAGE_SHIFT + max_order);
1553 KASSERT(size > max_size, ("size is too small"));
1554
1555 /*
1556 * In order to avoid examining any free max-sized page block more than
1557 * twice, identify the ones that are first in a physically-contiguous
1558 * sequence of such blocks, and only for those walk the sequence to
1559 * check if there are enough free blocks starting at a properly aligned
1560 * block. Thus, no block is checked for free-ness more than twice.
1561 */
1562 TAILQ_FOREACH(m, &fl[max_order].pl, listq) {
1563 /*
1564 * Skip m unless it is first in a sequence of free max page
1565 * blocks >= low in its segment.
1566 */
1567 seg = &vm_phys_segs[m->segind];
1568 if (VM_PAGE_TO_PHYS(m) < MAX(low, seg->start))
1569 continue;
1570 if (VM_PAGE_TO_PHYS(m) >= max_size &&
1571 VM_PAGE_TO_PHYS(m) - max_size >= MAX(low, seg->start) &&
1572 max_order == m[-1 << max_order].order)
1573 continue;
1574
1575 /*
1576 * Advance m_ret from m to the first of the sequence, if any,
1577 * that satisfies alignment conditions and might leave enough
1578 * space.
1579 */
1580 m_ret = m;
1581 while (!vm_addr_ok(VM_PAGE_TO_PHYS(m_ret),
1582 size, alignment, boundary) &&
1583 VM_PAGE_TO_PHYS(m_ret) + size <= MIN(high, seg->end) &&
1584 max_order == m_ret[1 << max_order].order)
1585 m_ret += 1 << max_order;
1586
1587 /*
1588 * Skip m unless some block m_ret in the sequence is properly
1589 * aligned, and begins a sequence of enough pages less than
1590 * high, and in the same segment.
1591 */
1592 if (VM_PAGE_TO_PHYS(m_ret) + size > MIN(high, seg->end))
1593 continue;
1594
1595 /*
1596 * Skip m unless the blocks to allocate starting at m_ret are
1597 * all free.
1598 */
1599 for (m_iter = m_ret;
1600 m_iter < m_ret + npages && max_order == m_iter->order;
1601 m_iter += 1 << max_order) {
1602 }
1603 if (m_iter < m_ret + npages)
1604 continue;
1605 return (m_ret);
1606 }
1607 return (NULL);
1608 }
1609
1610 /*
1611 * Find a run of contiguous physical pages from the specified free list
1612 * table.
1613 */
1614 static vm_page_t
vm_phys_find_queues_contig(struct vm_freelist (* queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1615 vm_phys_find_queues_contig(
1616 struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
1617 u_long npages, vm_paddr_t low, vm_paddr_t high,
1618 u_long alignment, vm_paddr_t boundary)
1619 {
1620 struct vm_freelist *fl;
1621 vm_page_t m_ret;
1622 vm_paddr_t pa, pa_end, size;
1623 int oind, order, pind;
1624
1625 KASSERT(npages > 0, ("npages is 0"));
1626 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1627 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1628 /* Compute the queue that is the best fit for npages. */
1629 order = flsl(npages - 1);
1630 /* Search for a large enough free block. */
1631 size = npages << PAGE_SHIFT;
1632 for (oind = order; oind < VM_NFREEORDER; oind++) {
1633 for (pind = vm_default_freepool; pind < VM_NFREEPOOL; pind++) {
1634 fl = (*queues)[pind];
1635 TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1636 /*
1637 * Determine if the address range starting at pa
1638 * is within the given range, satisfies the
1639 * given alignment, and does not cross the given
1640 * boundary.
1641 */
1642 pa = VM_PAGE_TO_PHYS(m_ret);
1643 pa_end = pa + size;
1644 if (low <= pa && pa_end <= high &&
1645 vm_addr_ok(pa, size, alignment, boundary))
1646 return (m_ret);
1647 }
1648 }
1649 }
1650 if (order < VM_NFREEORDER)
1651 return (NULL);
1652 /* Search for a long-enough sequence of max-order blocks. */
1653 for (pind = vm_default_freepool; pind < VM_NFREEPOOL; pind++) {
1654 fl = (*queues)[pind];
1655 m_ret = vm_phys_find_freelist_contig(fl, npages,
1656 low, high, alignment, boundary);
1657 if (m_ret != NULL)
1658 return (m_ret);
1659 }
1660 return (NULL);
1661 }
1662
1663 /*
1664 * Allocate a contiguous set of physical pages of the given size
1665 * "npages" from the free lists. All of the physical pages must be at
1666 * or above the given physical address "low" and below the given
1667 * physical address "high". The given value "alignment" determines the
1668 * alignment of the first physical page in the set. If the given value
1669 * "boundary" is non-zero, then the set of physical pages cannot cross
1670 * any physical address boundary that is a multiple of that value. Both
1671 * "alignment" and "boundary" must be a power of two.
1672 */
1673 vm_page_t
vm_phys_alloc_contig(int domain,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1674 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1675 u_long alignment, vm_paddr_t boundary)
1676 {
1677 vm_paddr_t pa_end, pa_start;
1678 struct vm_freelist *fl;
1679 vm_page_t m, m_run;
1680 struct vm_phys_seg *seg;
1681 struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
1682 int oind, segind;
1683
1684 KASSERT(npages > 0, ("npages is 0"));
1685 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1686 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1687 vm_domain_free_assert_locked(VM_DOMAIN(domain));
1688 if (low >= high)
1689 return (NULL);
1690 queues = NULL;
1691 m_run = NULL;
1692 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1693 seg = &vm_phys_segs[segind];
1694 if (seg->start >= high || seg->domain != domain)
1695 continue;
1696 if (low >= seg->end)
1697 break;
1698 if (low <= seg->start)
1699 pa_start = seg->start;
1700 else
1701 pa_start = low;
1702 if (high < seg->end)
1703 pa_end = high;
1704 else
1705 pa_end = seg->end;
1706 if (pa_end - pa_start < ptoa(npages))
1707 continue;
1708 /*
1709 * If a previous segment led to a search using
1710 * the same free lists as would this segment, then
1711 * we've actually already searched within this
1712 * too. So skip it.
1713 */
1714 if (seg->free_queues == queues)
1715 continue;
1716 queues = seg->free_queues;
1717 m_run = vm_phys_find_queues_contig(queues, npages,
1718 low, high, alignment, boundary);
1719 if (m_run != NULL)
1720 break;
1721 }
1722 if (m_run == NULL)
1723 return (NULL);
1724
1725 /* Allocate pages from the page-range found. */
1726 for (m = m_run; m < &m_run[npages]; m = &m[1 << oind]) {
1727 fl = (*queues)[m->pool];
1728 oind = m->order;
1729 vm_freelist_rem(fl, m, oind);
1730 if (m->pool != VM_FREEPOOL_DEFAULT)
1731 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1732 }
1733 /* Return excess pages to the free lists. */
1734 fl = (*queues)[VM_FREEPOOL_DEFAULT];
1735 vm_phys_enq_range(&m_run[npages], m - &m_run[npages], fl, 0);
1736
1737 /* Return page verified to satisfy conditions of request. */
1738 pa_start = VM_PAGE_TO_PHYS(m_run);
1739 KASSERT(low <= pa_start,
1740 ("memory allocated below minimum requested range"));
1741 KASSERT(pa_start + ptoa(npages) <= high,
1742 ("memory allocated above maximum requested range"));
1743 seg = &vm_phys_segs[m_run->segind];
1744 KASSERT(seg->domain == domain,
1745 ("memory not allocated from specified domain"));
1746 KASSERT(vm_addr_ok(pa_start, ptoa(npages), alignment, boundary),
1747 ("memory alignment/boundary constraints not satisfied"));
1748 return (m_run);
1749 }
1750
1751 /*
1752 * Return the index of the first unused slot which may be the terminating
1753 * entry.
1754 */
1755 static int
vm_phys_avail_count(void)1756 vm_phys_avail_count(void)
1757 {
1758 int i;
1759
1760 for (i = 0; phys_avail[i + 1]; i += 2)
1761 continue;
1762 if (i > PHYS_AVAIL_ENTRIES)
1763 panic("Improperly terminated phys_avail %d entries", i);
1764
1765 return (i);
1766 }
1767
1768 /*
1769 * Assert that a phys_avail entry is valid.
1770 */
1771 static void
vm_phys_avail_check(int i)1772 vm_phys_avail_check(int i)
1773 {
1774 if (phys_avail[i] & PAGE_MASK)
1775 panic("Unaligned phys_avail[%d]: %#jx", i,
1776 (intmax_t)phys_avail[i]);
1777 if (phys_avail[i+1] & PAGE_MASK)
1778 panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1779 (intmax_t)phys_avail[i]);
1780 if (phys_avail[i + 1] < phys_avail[i])
1781 panic("phys_avail[%d] start %#jx < end %#jx", i,
1782 (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1783 }
1784
1785 /*
1786 * Return the index of an overlapping phys_avail entry or -1.
1787 */
1788 #ifdef NUMA
1789 static int
vm_phys_avail_find(vm_paddr_t pa)1790 vm_phys_avail_find(vm_paddr_t pa)
1791 {
1792 int i;
1793
1794 for (i = 0; phys_avail[i + 1]; i += 2)
1795 if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1796 return (i);
1797 return (-1);
1798 }
1799 #endif
1800
1801 /*
1802 * Return the index of the largest entry.
1803 */
1804 int
vm_phys_avail_largest(void)1805 vm_phys_avail_largest(void)
1806 {
1807 vm_paddr_t sz, largesz;
1808 int largest;
1809 int i;
1810
1811 largest = 0;
1812 largesz = 0;
1813 for (i = 0; phys_avail[i + 1]; i += 2) {
1814 sz = vm_phys_avail_size(i);
1815 if (sz > largesz) {
1816 largesz = sz;
1817 largest = i;
1818 }
1819 }
1820
1821 return (largest);
1822 }
1823
1824 vm_paddr_t
vm_phys_avail_size(int i)1825 vm_phys_avail_size(int i)
1826 {
1827
1828 return (phys_avail[i + 1] - phys_avail[i]);
1829 }
1830
1831 /*
1832 * Split an entry at the address 'pa'. Return zero on success or errno.
1833 */
1834 static int
vm_phys_avail_split(vm_paddr_t pa,int i)1835 vm_phys_avail_split(vm_paddr_t pa, int i)
1836 {
1837 int cnt;
1838
1839 vm_phys_avail_check(i);
1840 if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1841 panic("vm_phys_avail_split: invalid address");
1842 cnt = vm_phys_avail_count();
1843 if (cnt >= PHYS_AVAIL_ENTRIES)
1844 return (ENOSPC);
1845 memmove(&phys_avail[i + 2], &phys_avail[i],
1846 (cnt - i) * sizeof(phys_avail[0]));
1847 phys_avail[i + 1] = pa;
1848 phys_avail[i + 2] = pa;
1849 vm_phys_avail_check(i);
1850 vm_phys_avail_check(i+2);
1851
1852 return (0);
1853 }
1854
1855 /*
1856 * Check if a given physical address can be included as part of a crash dump.
1857 */
1858 bool
vm_phys_is_dumpable(vm_paddr_t pa)1859 vm_phys_is_dumpable(vm_paddr_t pa)
1860 {
1861 vm_page_t m;
1862 int i;
1863
1864 if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
1865 return ((m->flags & PG_NODUMP) == 0);
1866
1867 for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
1868 if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
1869 return (true);
1870 }
1871 return (false);
1872 }
1873
1874 void
vm_phys_early_add_seg(vm_paddr_t start,vm_paddr_t end)1875 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1876 {
1877 struct vm_phys_seg *seg;
1878
1879 if (vm_phys_early_nsegs == -1)
1880 panic("%s: called after initialization", __func__);
1881 if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1882 panic("%s: ran out of early segments", __func__);
1883
1884 seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1885 seg->start = start;
1886 seg->end = end;
1887 }
1888
1889 /*
1890 * This routine allocates NUMA node specific memory before the page
1891 * allocator is bootstrapped.
1892 */
1893 vm_paddr_t
vm_phys_early_alloc(int domain,size_t alloc_size)1894 vm_phys_early_alloc(int domain, size_t alloc_size)
1895 {
1896 #ifdef NUMA
1897 int mem_index;
1898 #endif
1899 int i, biggestone;
1900 vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1901
1902 KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1903 ("%s: invalid domain index %d", __func__, domain));
1904
1905 /*
1906 * Search the mem_affinity array for the biggest address
1907 * range in the desired domain. This is used to constrain
1908 * the phys_avail selection below.
1909 */
1910 biggestsize = 0;
1911 mem_start = 0;
1912 mem_end = -1;
1913 #ifdef NUMA
1914 mem_index = 0;
1915 if (mem_affinity != NULL) {
1916 for (i = 0;; i++) {
1917 size = mem_affinity[i].end - mem_affinity[i].start;
1918 if (size == 0)
1919 break;
1920 if (domain != -1 && mem_affinity[i].domain != domain)
1921 continue;
1922 if (size > biggestsize) {
1923 mem_index = i;
1924 biggestsize = size;
1925 }
1926 }
1927 mem_start = mem_affinity[mem_index].start;
1928 mem_end = mem_affinity[mem_index].end;
1929 }
1930 #endif
1931
1932 /*
1933 * Now find biggest physical segment in within the desired
1934 * numa domain.
1935 */
1936 biggestsize = 0;
1937 biggestone = 0;
1938 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1939 /* skip regions that are out of range */
1940 if (phys_avail[i+1] - alloc_size < mem_start ||
1941 phys_avail[i+1] > mem_end)
1942 continue;
1943 size = vm_phys_avail_size(i);
1944 if (size > biggestsize) {
1945 biggestone = i;
1946 biggestsize = size;
1947 }
1948 }
1949 alloc_size = round_page(alloc_size);
1950
1951 /*
1952 * Grab single pages from the front to reduce fragmentation.
1953 */
1954 if (alloc_size == PAGE_SIZE) {
1955 pa = phys_avail[biggestone];
1956 phys_avail[biggestone] += PAGE_SIZE;
1957 vm_phys_avail_check(biggestone);
1958 return (pa);
1959 }
1960
1961 /*
1962 * Naturally align large allocations.
1963 */
1964 align = phys_avail[biggestone + 1] & (alloc_size - 1);
1965 if (alloc_size + align > biggestsize)
1966 panic("cannot find a large enough size\n");
1967 if (align != 0 &&
1968 vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1969 biggestone) != 0)
1970 /* Wasting memory. */
1971 phys_avail[biggestone + 1] -= align;
1972
1973 phys_avail[biggestone + 1] -= alloc_size;
1974 vm_phys_avail_check(biggestone);
1975 pa = phys_avail[biggestone + 1];
1976 return (pa);
1977 }
1978
1979 void
vm_phys_early_startup(void)1980 vm_phys_early_startup(void)
1981 {
1982 struct vm_phys_seg *seg;
1983 int i;
1984
1985 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1986 phys_avail[i] = round_page(phys_avail[i]);
1987 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1988 }
1989
1990 for (i = 0; i < vm_phys_early_nsegs; i++) {
1991 seg = &vm_phys_early_segs[i];
1992 vm_phys_add_seg(seg->start, seg->end);
1993 }
1994 vm_phys_early_nsegs = -1;
1995
1996 #ifdef NUMA
1997 /* Force phys_avail to be split by domain. */
1998 if (mem_affinity != NULL) {
1999 int idx;
2000
2001 for (i = 0; mem_affinity[i].end != 0; i++) {
2002 idx = vm_phys_avail_find(mem_affinity[i].start);
2003 if (idx != -1 &&
2004 phys_avail[idx] != mem_affinity[i].start)
2005 vm_phys_avail_split(mem_affinity[i].start, idx);
2006 idx = vm_phys_avail_find(mem_affinity[i].end);
2007 if (idx != -1 &&
2008 phys_avail[idx] != mem_affinity[i].end)
2009 vm_phys_avail_split(mem_affinity[i].end, idx);
2010 }
2011 }
2012 #endif
2013 }
2014
2015 #ifdef DDB
2016 /*
2017 * Show the number of physical pages in each of the free lists.
2018 */
DB_SHOW_COMMAND_FLAGS(freepages,db_show_freepages,DB_CMD_MEMSAFE)2019 DB_SHOW_COMMAND_FLAGS(freepages, db_show_freepages, DB_CMD_MEMSAFE)
2020 {
2021 struct vm_freelist *fl;
2022 int flind, oind, pind, dom;
2023
2024 for (dom = 0; dom < vm_ndomains; dom++) {
2025 db_printf("DOMAIN: %d\n", dom);
2026 for (flind = 0; flind < vm_nfreelists; flind++) {
2027 db_printf("FREE LIST %d:\n"
2028 "\n ORDER (SIZE) | NUMBER"
2029 "\n ", flind);
2030 for (pind = 0; pind < VM_NFREEPOOL; pind++)
2031 db_printf(" | POOL %d", pind);
2032 db_printf("\n-- ");
2033 for (pind = 0; pind < VM_NFREEPOOL; pind++)
2034 db_printf("-- -- ");
2035 db_printf("--\n");
2036 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
2037 db_printf(" %2.2d (%6.6dK)", oind,
2038 1 << (PAGE_SHIFT - 10 + oind));
2039 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
2040 fl = vm_phys_free_queues[dom][flind][pind];
2041 db_printf(" | %6.6d", fl[oind].lcnt);
2042 }
2043 db_printf("\n");
2044 }
2045 db_printf("\n");
2046 }
2047 db_printf("\n");
2048 }
2049 }
2050 #endif
2051