xref: /freebsd/sys/vm/vm_pageout.c (revision d8b03c5904faff84656d3a84a25c2b37bcbf8075)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 #include "opt_vm.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/blockcount.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/sdt.h>
93 #include <sys/signalvar.h>
94 #include <sys/smp.h>
95 #include <sys/time.h>
96 #include <sys/vnode.h>
97 #include <sys/vmmeter.h>
98 #include <sys/rwlock.h>
99 #include <sys/sx.h>
100 #include <sys/sysctl.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/vm_pagequeue.h>
111 #include <vm/vm_radix.h>
112 #include <vm/swap_pager.h>
113 #include <vm/vm_extern.h>
114 #include <vm/uma.h>
115 
116 /*
117  * System initialization
118  */
119 
120 /* the kernel process "vm_pageout"*/
121 static void vm_pageout(void);
122 static void vm_pageout_init(void);
123 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
124 static int vm_pageout_cluster(vm_page_t m);
125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
126     int starting_page_shortage);
127 
128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
129     NULL);
130 
131 struct proc *pageproc;
132 
133 static struct kproc_desc page_kp = {
134 	"pagedaemon",
135 	vm_pageout,
136 	&pageproc
137 };
138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
139     &page_kp);
140 
141 SDT_PROVIDER_DEFINE(vm);
142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
143 
144 /* Pagedaemon activity rates, in subdivisions of one second. */
145 #define	VM_LAUNDER_RATE		10
146 #define	VM_INACT_SCAN_RATE	10
147 
148 static int swapdev_enabled;
149 int vm_pageout_page_count = 32;
150 
151 static int vm_panic_on_oom = 0;
152 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
153     CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
154     "Panic on the given number of out-of-memory errors instead of "
155     "killing the largest process");
156 
157 static int vm_pageout_update_period;
158 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
159     CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
160     "Maximum active LRU update period");
161 
162 static int pageout_cpus_per_thread = 16;
163 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
164     &pageout_cpus_per_thread, 0,
165     "Number of CPUs per pagedaemon worker thread");
166 
167 static int lowmem_period = 10;
168 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
169     "Low memory callback period");
170 
171 static int disable_swap_pageouts;
172 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
173     CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
174     "Disallow swapout of dirty pages");
175 
176 static int pageout_lock_miss;
177 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
178     CTLFLAG_RD, &pageout_lock_miss, 0,
179     "vget() lock misses during pageout");
180 
181 static int vm_pageout_oom_seq = 12;
182 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
183     CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
184     "back-to-back calls to oom detector to start OOM");
185 
186 static int act_scan_laundry_weight = 3;
187 
188 static int
sysctl_act_scan_laundry_weight(SYSCTL_HANDLER_ARGS)189 sysctl_act_scan_laundry_weight(SYSCTL_HANDLER_ARGS)
190 {
191 	int error, newval;
192 
193 	newval = act_scan_laundry_weight;
194 	error = sysctl_handle_int(oidp, &newval, 0, req);
195 	if (error || req->newptr == NULL)
196 		return (error);
197 	if (newval < 1)
198 		return (EINVAL);
199 	act_scan_laundry_weight = newval;
200 	return (0);
201 }
202 SYSCTL_PROC(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN | CTLTYPE_INT,
203     &act_scan_laundry_weight, 0, sysctl_act_scan_laundry_weight, "I",
204     "weight given to clean vs. dirty pages in active queue scans");
205 
206 static u_int vm_background_launder_rate = 4096;
207 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
208     &vm_background_launder_rate, 0,
209     "background laundering rate, in kilobytes per second");
210 
211 static u_int vm_background_launder_max = 20 * 1024;
212 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
213     &vm_background_launder_max, 0,
214     "background laundering cap, in kilobytes");
215 
216 u_long vm_page_max_user_wired;
217 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
218     &vm_page_max_user_wired, 0,
219     "system-wide limit to user-wired page count");
220 
221 static u_int isqrt(u_int num);
222 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
223     bool in_shortfall);
224 static void vm_pageout_laundry_worker(void *arg);
225 
226 struct scan_state {
227 	struct vm_batchqueue bq;
228 	struct vm_pagequeue *pq;
229 	vm_page_t	marker;
230 	int		maxscan;
231 	int		scanned;
232 };
233 
234 static void
vm_pageout_init_scan(struct scan_state * ss,struct vm_pagequeue * pq,vm_page_t marker,vm_page_t after,int maxscan)235 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
236     vm_page_t marker, vm_page_t after, int maxscan)
237 {
238 
239 	vm_pagequeue_assert_locked(pq);
240 	KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
241 	    ("marker %p already enqueued", marker));
242 
243 	if (after == NULL)
244 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
245 	else
246 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
247 	vm_page_aflag_set(marker, PGA_ENQUEUED);
248 
249 	vm_batchqueue_init(&ss->bq);
250 	ss->pq = pq;
251 	ss->marker = marker;
252 	ss->maxscan = maxscan;
253 	ss->scanned = 0;
254 	vm_pagequeue_unlock(pq);
255 }
256 
257 static void
vm_pageout_end_scan(struct scan_state * ss)258 vm_pageout_end_scan(struct scan_state *ss)
259 {
260 	struct vm_pagequeue *pq;
261 
262 	pq = ss->pq;
263 	vm_pagequeue_assert_locked(pq);
264 	KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
265 	    ("marker %p not enqueued", ss->marker));
266 
267 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
268 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
269 	pq->pq_pdpages += ss->scanned;
270 }
271 
272 /*
273  * Add a small number of queued pages to a batch queue for later processing
274  * without the corresponding queue lock held.  The caller must have enqueued a
275  * marker page at the desired start point for the scan.  Pages will be
276  * physically dequeued if the caller so requests.  Otherwise, the returned
277  * batch may contain marker pages, and it is up to the caller to handle them.
278  *
279  * When processing the batch queue, vm_pageout_defer() must be used to
280  * determine whether the page has been logically dequeued since the batch was
281  * collected.
282  */
283 static __always_inline void
vm_pageout_collect_batch(struct scan_state * ss,const bool dequeue)284 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
285 {
286 	struct vm_pagequeue *pq;
287 	vm_page_t m, marker, n;
288 
289 	marker = ss->marker;
290 	pq = ss->pq;
291 
292 	KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
293 	    ("marker %p not enqueued", ss->marker));
294 
295 	vm_pagequeue_lock(pq);
296 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
297 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
298 	    m = n, ss->scanned++) {
299 		n = TAILQ_NEXT(m, plinks.q);
300 		if ((m->flags & PG_MARKER) == 0) {
301 			KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
302 			    ("page %p not enqueued", m));
303 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
304 			    ("Fictitious page %p cannot be in page queue", m));
305 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
306 			    ("Unmanaged page %p cannot be in page queue", m));
307 		} else if (dequeue)
308 			continue;
309 
310 		(void)vm_batchqueue_insert(&ss->bq, m);
311 		if (dequeue) {
312 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
313 			vm_page_aflag_clear(m, PGA_ENQUEUED);
314 		}
315 	}
316 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
317 	if (__predict_true(m != NULL))
318 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
319 	else
320 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
321 	if (dequeue)
322 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
323 	vm_pagequeue_unlock(pq);
324 }
325 
326 /*
327  * Return the next page to be scanned, or NULL if the scan is complete.
328  */
329 static __always_inline vm_page_t
vm_pageout_next(struct scan_state * ss,const bool dequeue)330 vm_pageout_next(struct scan_state *ss, const bool dequeue)
331 {
332 
333 	if (ss->bq.bq_cnt == 0)
334 		vm_pageout_collect_batch(ss, dequeue);
335 	return (vm_batchqueue_pop(&ss->bq));
336 }
337 
338 /*
339  * Determine whether processing of a page should be deferred and ensure that any
340  * outstanding queue operations are processed.
341  */
342 static __always_inline bool
vm_pageout_defer(vm_page_t m,const uint8_t queue,const bool enqueued)343 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
344 {
345 	vm_page_astate_t as;
346 
347 	as = vm_page_astate_load(m);
348 	if (__predict_false(as.queue != queue ||
349 	    ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
350 		return (true);
351 	if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
352 		vm_page_pqbatch_submit(m, queue);
353 		return (true);
354 	}
355 	return (false);
356 }
357 
358 /*
359  * We can cluster only if the page is not clean, busy, or held, and the page is
360  * in the laundry queue.
361  */
362 static bool
vm_pageout_flushable(vm_page_t m)363 vm_pageout_flushable(vm_page_t m)
364 {
365 	if (vm_page_tryxbusy(m) == 0)
366 		return (false);
367 	if (!vm_page_wired(m)) {
368 		vm_page_test_dirty(m);
369 		if (m->dirty != 0 && vm_page_in_laundry(m) &&
370 		    vm_page_try_remove_write(m))
371 			return (true);
372 	}
373 	vm_page_xunbusy(m);
374 	return (false);
375 }
376 
377 /*
378  * Scan for pages at adjacent offsets within the given page's object that are
379  * eligible for laundering, form a cluster of these pages and the given page,
380  * and launder that cluster.
381  */
382 static int
vm_pageout_cluster(vm_page_t m)383 vm_pageout_cluster(vm_page_t m)
384 {
385 	struct pctrie_iter pages;
386 	vm_page_t mc[2 * vm_pageout_page_count - 1];
387 	int alignment, page_base, pageout_count;
388 
389 	VM_OBJECT_ASSERT_WLOCKED(m->object);
390 
391 	vm_page_assert_xbusied(m);
392 
393 	vm_page_iter_init(&pages, m->object);
394 	alignment = m->pindex % vm_pageout_page_count;
395 	page_base = nitems(mc) / 2;
396 	pageout_count = 1;
397 	mc[page_base] = m;
398 
399 	/*
400 	 * During heavy mmap/modification loads the pageout
401 	 * daemon can really fragment the underlying file
402 	 * due to flushing pages out of order and not trying to
403 	 * align the clusters (which leaves sporadic out-of-order
404 	 * holes).  To solve this problem we do the reverse scan
405 	 * first and attempt to align our cluster, then do a
406 	 * forward scan if room remains.
407 	 *
408 	 * If we are at an alignment boundary, stop here, and switch directions.
409 	 */
410 	if (alignment > 0) {
411 		pages.index = mc[page_base]->pindex;
412 		do {
413 			m = vm_radix_iter_prev(&pages);
414 			if (m == NULL || !vm_pageout_flushable(m))
415 				break;
416 			mc[--page_base] = m;
417 		} while (pageout_count++ < alignment);
418 	}
419 	if (pageout_count < vm_pageout_page_count) {
420 		pages.index = mc[page_base + pageout_count - 1]->pindex;
421 		do {
422 			m = vm_radix_iter_next(&pages);
423 			if (m == NULL || !vm_pageout_flushable(m))
424 				break;
425 			mc[page_base + pageout_count] = m;
426 		} while (++pageout_count < vm_pageout_page_count);
427 	}
428 	if (pageout_count < vm_pageout_page_count &&
429 	    alignment == nitems(mc) / 2 - page_base) {
430 		/* Resume the reverse scan. */
431 		pages.index = mc[page_base]->pindex;
432 		do {
433 			m = vm_radix_iter_prev(&pages);
434 			if (m == NULL || !vm_pageout_flushable(m))
435 				break;
436 			mc[--page_base] = m;
437 		} while (++pageout_count < vm_pageout_page_count);
438 	}
439 
440 	return (vm_pageout_flush(&mc[page_base], pageout_count,
441 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
442 }
443 
444 /*
445  * vm_pageout_flush() - launder the given pages
446  *
447  *	The given pages are laundered.  Note that we setup for the start of
448  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
449  *	reference count all in here rather then in the parent.  If we want
450  *	the parent to do more sophisticated things we may have to change
451  *	the ordering.
452  *
453  *	Returned runlen is the count of pages between mreq and first
454  *	page after mreq with status VM_PAGER_AGAIN.
455  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
456  *	for any page in runlen set.
457  */
458 int
vm_pageout_flush(vm_page_t * mc,int count,int flags,int mreq,int * prunlen,boolean_t * eio)459 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
460     boolean_t *eio)
461 {
462 	vm_object_t object = mc[0]->object;
463 	int pageout_status[count];
464 	int numpagedout = 0;
465 	int i, runlen;
466 
467 	VM_OBJECT_ASSERT_WLOCKED(object);
468 
469 	/*
470 	 * Initiate I/O.  Mark the pages shared busy and verify that they're
471 	 * valid and read-only.
472 	 *
473 	 * We do not have to fixup the clean/dirty bits here... we can
474 	 * allow the pager to do it after the I/O completes.
475 	 *
476 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
477 	 * edge case with file fragments.
478 	 */
479 	for (i = 0; i < count; i++) {
480 		KASSERT(vm_page_all_valid(mc[i]),
481 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
482 			mc[i], i, count));
483 		KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
484 		    ("vm_pageout_flush: writeable page %p", mc[i]));
485 		vm_page_busy_downgrade(mc[i]);
486 	}
487 	vm_object_pip_add(object, count);
488 
489 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
490 
491 	runlen = count - mreq;
492 	if (eio != NULL)
493 		*eio = FALSE;
494 	for (i = 0; i < count; i++) {
495 		vm_page_t mt = mc[i];
496 
497 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
498 		    !pmap_page_is_write_mapped(mt),
499 		    ("vm_pageout_flush: page %p is not write protected", mt));
500 		switch (pageout_status[i]) {
501 		case VM_PAGER_OK:
502 			/*
503 			 * The page may have moved since laundering started, in
504 			 * which case it should be left alone.
505 			 */
506 			if (vm_page_in_laundry(mt))
507 				vm_page_deactivate_noreuse(mt);
508 			/* FALLTHROUGH */
509 		case VM_PAGER_PEND:
510 			numpagedout++;
511 			break;
512 		case VM_PAGER_BAD:
513 			/*
514 			 * The page is outside the object's range.  We pretend
515 			 * that the page out worked and clean the page, so the
516 			 * changes will be lost if the page is reclaimed by
517 			 * the page daemon.
518 			 */
519 			vm_page_undirty(mt);
520 			if (vm_page_in_laundry(mt))
521 				vm_page_deactivate_noreuse(mt);
522 			break;
523 		case VM_PAGER_ERROR:
524 		case VM_PAGER_FAIL:
525 			/*
526 			 * If the page couldn't be paged out to swap because the
527 			 * pager wasn't able to find space, place the page in
528 			 * the PQ_UNSWAPPABLE holding queue.  This is an
529 			 * optimization that prevents the page daemon from
530 			 * wasting CPU cycles on pages that cannot be reclaimed
531 			 * because no swap device is configured.
532 			 *
533 			 * Otherwise, reactivate the page so that it doesn't
534 			 * clog the laundry and inactive queues.  (We will try
535 			 * paging it out again later.)
536 			 */
537 			if ((object->flags & OBJ_SWAP) != 0 &&
538 			    pageout_status[i] == VM_PAGER_FAIL) {
539 				vm_page_unswappable(mt);
540 				numpagedout++;
541 			} else
542 				vm_page_activate(mt);
543 			if (eio != NULL && i >= mreq && i - mreq < runlen)
544 				*eio = TRUE;
545 			break;
546 		case VM_PAGER_AGAIN:
547 			if (i >= mreq && i - mreq < runlen)
548 				runlen = i - mreq;
549 			break;
550 		}
551 
552 		/*
553 		 * If the operation is still going, leave the page busy to
554 		 * block all other accesses. Also, leave the paging in
555 		 * progress indicator set so that we don't attempt an object
556 		 * collapse.
557 		 */
558 		if (pageout_status[i] != VM_PAGER_PEND) {
559 			vm_object_pip_wakeup(object);
560 			vm_page_sunbusy(mt);
561 		}
562 	}
563 	if (prunlen != NULL)
564 		*prunlen = runlen;
565 	return (numpagedout);
566 }
567 
568 static void
vm_pageout_swapon(void * arg __unused,struct swdevt * sp __unused)569 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
570 {
571 
572 	atomic_store_rel_int(&swapdev_enabled, 1);
573 }
574 
575 static void
vm_pageout_swapoff(void * arg __unused,struct swdevt * sp __unused)576 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
577 {
578 
579 	if (swap_pager_nswapdev() == 1)
580 		atomic_store_rel_int(&swapdev_enabled, 0);
581 }
582 
583 /*
584  * Attempt to acquire all of the necessary locks to launder a page and
585  * then call through the clustering layer to PUTPAGES.  Wait a short
586  * time for a vnode lock.
587  *
588  * Requires the page and object lock on entry, releases both before return.
589  * Returns 0 on success and an errno otherwise.
590  */
591 static int
vm_pageout_clean(vm_page_t m,int * numpagedout)592 vm_pageout_clean(vm_page_t m, int *numpagedout)
593 {
594 	struct vnode *vp;
595 	struct mount *mp;
596 	vm_object_t object;
597 	vm_pindex_t pindex;
598 	int error;
599 
600 	object = m->object;
601 	VM_OBJECT_ASSERT_WLOCKED(object);
602 	error = 0;
603 	vp = NULL;
604 	mp = NULL;
605 
606 	/*
607 	 * The object is already known NOT to be dead.   It
608 	 * is possible for the vget() to block the whole
609 	 * pageout daemon, but the new low-memory handling
610 	 * code should prevent it.
611 	 *
612 	 * We can't wait forever for the vnode lock, we might
613 	 * deadlock due to a vn_read() getting stuck in
614 	 * vm_wait while holding this vnode.  We skip the
615 	 * vnode if we can't get it in a reasonable amount
616 	 * of time.
617 	 */
618 	if (object->type == OBJT_VNODE) {
619 		vm_page_xunbusy(m);
620 		vp = object->handle;
621 		if (vp->v_type == VREG &&
622 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
623 			mp = NULL;
624 			error = EDEADLK;
625 			goto unlock_all;
626 		}
627 		KASSERT(mp != NULL,
628 		    ("vp %p with NULL v_mount", vp));
629 		vm_object_reference_locked(object);
630 		pindex = m->pindex;
631 		VM_OBJECT_WUNLOCK(object);
632 		if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
633 			vp = NULL;
634 			error = EDEADLK;
635 			goto unlock_mp;
636 		}
637 		VM_OBJECT_WLOCK(object);
638 
639 		/*
640 		 * Ensure that the object and vnode were not disassociated
641 		 * while locks were dropped.
642 		 */
643 		if (vp->v_object != object) {
644 			error = ENOENT;
645 			goto unlock_all;
646 		}
647 
648 		/*
649 		 * While the object was unlocked, the page may have been:
650 		 * (1) moved to a different queue,
651 		 * (2) reallocated to a different object,
652 		 * (3) reallocated to a different offset, or
653 		 * (4) cleaned.
654 		 */
655 		if (!vm_page_in_laundry(m) || m->object != object ||
656 		    m->pindex != pindex || m->dirty == 0) {
657 			error = ENXIO;
658 			goto unlock_all;
659 		}
660 
661 		/*
662 		 * The page may have been busied while the object lock was
663 		 * released.
664 		 */
665 		if (vm_page_tryxbusy(m) == 0) {
666 			error = EBUSY;
667 			goto unlock_all;
668 		}
669 	}
670 
671 	/*
672 	 * Remove all writeable mappings, failing if the page is wired.
673 	 */
674 	if (!vm_page_try_remove_write(m)) {
675 		vm_page_xunbusy(m);
676 		error = EBUSY;
677 		goto unlock_all;
678 	}
679 
680 	/*
681 	 * If a page is dirty, then it is either being washed
682 	 * (but not yet cleaned) or it is still in the
683 	 * laundry.  If it is still in the laundry, then we
684 	 * start the cleaning operation.
685 	 */
686 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
687 		error = EIO;
688 
689 unlock_all:
690 	VM_OBJECT_WUNLOCK(object);
691 
692 unlock_mp:
693 	if (mp != NULL) {
694 		if (vp != NULL)
695 			vput(vp);
696 		vm_object_deallocate(object);
697 		vn_finished_write(mp);
698 	}
699 
700 	return (error);
701 }
702 
703 /*
704  * Attempt to launder the specified number of pages.
705  *
706  * Returns the number of pages successfully laundered.
707  */
708 static int
vm_pageout_launder(struct vm_domain * vmd,int launder,bool in_shortfall)709 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
710 {
711 	struct scan_state ss;
712 	struct vm_pagequeue *pq;
713 	vm_object_t object;
714 	vm_page_t m, marker;
715 	vm_page_astate_t new, old;
716 	int act_delta, error, numpagedout, queue, refs, starting_target;
717 	int vnodes_skipped;
718 	bool pageout_ok;
719 
720 	object = NULL;
721 	starting_target = launder;
722 	vnodes_skipped = 0;
723 
724 	/*
725 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
726 	 * once the target number of dirty pages have been laundered, or once
727 	 * we've reached the end of the queue.  A single iteration of this loop
728 	 * may cause more than one page to be laundered because of clustering.
729 	 *
730 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
731 	 * swap devices are configured.
732 	 */
733 	if (atomic_load_acq_int(&swapdev_enabled))
734 		queue = PQ_UNSWAPPABLE;
735 	else
736 		queue = PQ_LAUNDRY;
737 
738 scan:
739 	marker = &vmd->vmd_markers[queue];
740 	pq = &vmd->vmd_pagequeues[queue];
741 	vm_pagequeue_lock(pq);
742 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
743 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
744 		if (__predict_false((m->flags & PG_MARKER) != 0))
745 			continue;
746 
747 		/*
748 		 * Don't touch a page that was removed from the queue after the
749 		 * page queue lock was released.  Otherwise, ensure that any
750 		 * pending queue operations, such as dequeues for wired pages,
751 		 * are handled.
752 		 */
753 		if (vm_pageout_defer(m, queue, true))
754 			continue;
755 
756 		/*
757 		 * Lock the page's object.
758 		 */
759 		if (object == NULL || object != m->object) {
760 			if (object != NULL)
761 				VM_OBJECT_WUNLOCK(object);
762 			object = atomic_load_ptr(&m->object);
763 			if (__predict_false(object == NULL))
764 				/* The page is being freed by another thread. */
765 				continue;
766 
767 			/* Depends on type-stability. */
768 			VM_OBJECT_WLOCK(object);
769 			if (__predict_false(m->object != object)) {
770 				VM_OBJECT_WUNLOCK(object);
771 				object = NULL;
772 				continue;
773 			}
774 		}
775 
776 		if (vm_page_tryxbusy(m) == 0)
777 			continue;
778 
779 		/*
780 		 * Check for wirings now that we hold the object lock and have
781 		 * exclusively busied the page.  If the page is mapped, it may
782 		 * still be wired by pmap lookups.  The call to
783 		 * vm_page_try_remove_all() below atomically checks for such
784 		 * wirings and removes mappings.  If the page is unmapped, the
785 		 * wire count is guaranteed not to increase after this check.
786 		 */
787 		if (__predict_false(vm_page_wired(m)))
788 			goto skip_page;
789 
790 		/*
791 		 * Invalid pages can be easily freed.  They cannot be
792 		 * mapped; vm_page_free() asserts this.
793 		 */
794 		if (vm_page_none_valid(m))
795 			goto free_page;
796 
797 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
798 
799 		for (old = vm_page_astate_load(m);;) {
800 			/*
801 			 * Check to see if the page has been removed from the
802 			 * queue since the first such check.  Leave it alone if
803 			 * so, discarding any references collected by
804 			 * pmap_ts_referenced().
805 			 */
806 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
807 				goto skip_page;
808 
809 			new = old;
810 			act_delta = refs;
811 			if ((old.flags & PGA_REFERENCED) != 0) {
812 				new.flags &= ~PGA_REFERENCED;
813 				act_delta++;
814 			}
815 			if (act_delta == 0) {
816 				;
817 			} else if (object->ref_count != 0) {
818 				/*
819 				 * Increase the activation count if the page was
820 				 * referenced while in the laundry queue.  This
821 				 * makes it less likely that the page will be
822 				 * returned prematurely to the laundry queue.
823 				 */
824 				new.act_count += ACT_ADVANCE +
825 				    act_delta;
826 				if (new.act_count > ACT_MAX)
827 					new.act_count = ACT_MAX;
828 
829 				new.flags &= ~PGA_QUEUE_OP_MASK;
830 				new.flags |= PGA_REQUEUE;
831 				new.queue = PQ_ACTIVE;
832 				if (!vm_page_pqstate_commit(m, &old, new))
833 					continue;
834 
835 				/*
836 				 * If this was a background laundering, count
837 				 * activated pages towards our target.  The
838 				 * purpose of background laundering is to ensure
839 				 * that pages are eventually cycled through the
840 				 * laundry queue, and an activation is a valid
841 				 * way out.
842 				 */
843 				if (!in_shortfall)
844 					launder--;
845 				VM_CNT_INC(v_reactivated);
846 				goto skip_page;
847 			} else if ((object->flags & OBJ_DEAD) == 0) {
848 				new.flags |= PGA_REQUEUE;
849 				if (!vm_page_pqstate_commit(m, &old, new))
850 					continue;
851 				goto skip_page;
852 			}
853 			break;
854 		}
855 
856 		/*
857 		 * If the page appears to be clean at the machine-independent
858 		 * layer, then remove all of its mappings from the pmap in
859 		 * anticipation of freeing it.  If, however, any of the page's
860 		 * mappings allow write access, then the page may still be
861 		 * modified until the last of those mappings are removed.
862 		 */
863 		if (object->ref_count != 0) {
864 			vm_page_test_dirty(m);
865 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
866 				goto skip_page;
867 		}
868 
869 		/*
870 		 * Clean pages are freed, and dirty pages are paged out unless
871 		 * they belong to a dead object.  Requeueing dirty pages from
872 		 * dead objects is pointless, as they are being paged out and
873 		 * freed by the thread that destroyed the object.
874 		 */
875 		if (m->dirty == 0) {
876 free_page:
877 			/*
878 			 * Now we are guaranteed that no other threads are
879 			 * manipulating the page, check for a last-second
880 			 * reference.
881 			 */
882 			if (vm_pageout_defer(m, queue, true))
883 				goto skip_page;
884 			vm_page_free(m);
885 			VM_CNT_INC(v_dfree);
886 		} else if ((object->flags & OBJ_DEAD) == 0) {
887 			if ((object->flags & OBJ_SWAP) != 0)
888 				pageout_ok = disable_swap_pageouts == 0;
889 			else
890 				pageout_ok = true;
891 			if (!pageout_ok) {
892 				vm_page_launder(m);
893 				goto skip_page;
894 			}
895 
896 			/*
897 			 * Form a cluster with adjacent, dirty pages from the
898 			 * same object, and page out that entire cluster.
899 			 *
900 			 * The adjacent, dirty pages must also be in the
901 			 * laundry.  However, their mappings are not checked
902 			 * for new references.  Consequently, a recently
903 			 * referenced page may be paged out.  However, that
904 			 * page will not be prematurely reclaimed.  After page
905 			 * out, the page will be placed in the inactive queue,
906 			 * where any new references will be detected and the
907 			 * page reactivated.
908 			 */
909 			error = vm_pageout_clean(m, &numpagedout);
910 			if (error == 0) {
911 				launder -= numpagedout;
912 				ss.scanned += numpagedout;
913 			} else if (error == EDEADLK) {
914 				pageout_lock_miss++;
915 				vnodes_skipped++;
916 			}
917 			object = NULL;
918 		} else {
919 skip_page:
920 			vm_page_xunbusy(m);
921 		}
922 	}
923 	if (object != NULL) {
924 		VM_OBJECT_WUNLOCK(object);
925 		object = NULL;
926 	}
927 	vm_pagequeue_lock(pq);
928 	vm_pageout_end_scan(&ss);
929 	vm_pagequeue_unlock(pq);
930 
931 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
932 		queue = PQ_LAUNDRY;
933 		goto scan;
934 	}
935 
936 	/*
937 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
938 	 * and we didn't launder enough pages.
939 	 */
940 	if (vnodes_skipped > 0 && launder > 0)
941 		(void)speedup_syncer();
942 
943 	return (starting_target - launder);
944 }
945 
946 /*
947  * Compute the integer square root.
948  */
949 static u_int
isqrt(u_int num)950 isqrt(u_int num)
951 {
952 	u_int bit, root, tmp;
953 
954 	bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
955 	root = 0;
956 	while (bit != 0) {
957 		tmp = root + bit;
958 		root >>= 1;
959 		if (num >= tmp) {
960 			num -= tmp;
961 			root += bit;
962 		}
963 		bit >>= 2;
964 	}
965 	return (root);
966 }
967 
968 /*
969  * Perform the work of the laundry thread: periodically wake up and determine
970  * whether any pages need to be laundered.  If so, determine the number of pages
971  * that need to be laundered, and launder them.
972  */
973 static void
vm_pageout_laundry_worker(void * arg)974 vm_pageout_laundry_worker(void *arg)
975 {
976 	struct vm_domain *vmd;
977 	struct vm_pagequeue *pq;
978 	uint64_t nclean, ndirty, nfreed;
979 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
980 	bool in_shortfall;
981 
982 	domain = (uintptr_t)arg;
983 	vmd = VM_DOMAIN(domain);
984 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
985 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
986 
987 	shortfall = 0;
988 	in_shortfall = false;
989 	shortfall_cycle = 0;
990 	last_target = target = 0;
991 	nfreed = 0;
992 
993 	/*
994 	 * Calls to these handlers are serialized by the swap syscall lock.
995 	 */
996 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
997 	    EVENTHANDLER_PRI_ANY);
998 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
999 	    EVENTHANDLER_PRI_ANY);
1000 
1001 	/*
1002 	 * The pageout laundry worker is never done, so loop forever.
1003 	 */
1004 	for (;;) {
1005 		KASSERT(target >= 0, ("negative target %d", target));
1006 		KASSERT(shortfall_cycle >= 0,
1007 		    ("negative cycle %d", shortfall_cycle));
1008 		launder = 0;
1009 
1010 		/*
1011 		 * First determine whether we need to launder pages to meet a
1012 		 * shortage of free pages.
1013 		 */
1014 		if (shortfall > 0) {
1015 			in_shortfall = true;
1016 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1017 			target = shortfall;
1018 		} else if (!in_shortfall)
1019 			goto trybackground;
1020 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1021 			/*
1022 			 * We recently entered shortfall and began laundering
1023 			 * pages.  If we have completed that laundering run
1024 			 * (and we are no longer in shortfall) or we have met
1025 			 * our laundry target through other activity, then we
1026 			 * can stop laundering pages.
1027 			 */
1028 			in_shortfall = false;
1029 			target = 0;
1030 			goto trybackground;
1031 		}
1032 		launder = target / shortfall_cycle--;
1033 		goto dolaundry;
1034 
1035 		/*
1036 		 * There's no immediate need to launder any pages; see if we
1037 		 * meet the conditions to perform background laundering:
1038 		 *
1039 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1040 		 *    background laundering threshold, or
1041 		 * 2. we haven't yet reached the target of the current
1042 		 *    background laundering run.
1043 		 *
1044 		 * The background laundering threshold is not a constant.
1045 		 * Instead, it is a slowly growing function of the number of
1046 		 * clean pages freed by the page daemon since the last
1047 		 * background laundering.  Thus, as the ratio of dirty to
1048 		 * clean inactive pages grows, the amount of memory pressure
1049 		 * required to trigger laundering decreases.  We ensure
1050 		 * that the threshold is non-zero after an inactive queue
1051 		 * scan, even if that scan failed to free a single clean page.
1052 		 */
1053 trybackground:
1054 		nclean = vmd->vmd_free_count +
1055 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1056 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1057 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1058 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1059 			target = vmd->vmd_background_launder_target;
1060 		}
1061 
1062 		/*
1063 		 * We have a non-zero background laundering target.  If we've
1064 		 * laundered up to our maximum without observing a page daemon
1065 		 * request, just stop.  This is a safety belt that ensures we
1066 		 * don't launder an excessive amount if memory pressure is low
1067 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1068 		 * proceed at the background laundering rate.
1069 		 */
1070 		if (target > 0) {
1071 			if (nfreed > 0) {
1072 				nfreed = 0;
1073 				last_target = target;
1074 			} else if (last_target - target >=
1075 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1076 				target = 0;
1077 			}
1078 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1079 			launder /= VM_LAUNDER_RATE;
1080 			if (launder > target)
1081 				launder = target;
1082 		}
1083 
1084 dolaundry:
1085 		if (launder > 0) {
1086 			/*
1087 			 * Because of I/O clustering, the number of laundered
1088 			 * pages could exceed "target" by the maximum size of
1089 			 * a cluster minus one.
1090 			 */
1091 			target -= min(vm_pageout_launder(vmd, launder,
1092 			    in_shortfall), target);
1093 			pause("laundp", hz / VM_LAUNDER_RATE);
1094 		}
1095 
1096 		/*
1097 		 * If we're not currently laundering pages and the page daemon
1098 		 * hasn't posted a new request, sleep until the page daemon
1099 		 * kicks us.
1100 		 */
1101 		vm_pagequeue_lock(pq);
1102 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1103 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1104 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1105 
1106 		/*
1107 		 * If the pagedaemon has indicated that it's in shortfall, start
1108 		 * a shortfall laundering unless we're already in the middle of
1109 		 * one.  This may preempt a background laundering.
1110 		 */
1111 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1112 		    (!in_shortfall || shortfall_cycle == 0)) {
1113 			shortfall = vm_laundry_target(vmd) +
1114 			    vmd->vmd_pageout_deficit;
1115 			target = 0;
1116 		} else
1117 			shortfall = 0;
1118 
1119 		if (target == 0)
1120 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1121 		nfreed += vmd->vmd_clean_pages_freed;
1122 		vmd->vmd_clean_pages_freed = 0;
1123 		vm_pagequeue_unlock(pq);
1124 	}
1125 }
1126 
1127 /*
1128  * Compute the number of pages we want to try to move from the
1129  * active queue to either the inactive or laundry queue.
1130  *
1131  * When scanning active pages during a shortage, we make clean pages
1132  * count more heavily towards the page shortage than dirty pages.
1133  * This is because dirty pages must be laundered before they can be
1134  * reused and thus have less utility when attempting to quickly
1135  * alleviate a free page shortage.  However, this weighting also
1136  * causes the scan to deactivate dirty pages more aggressively,
1137  * improving the effectiveness of clustering.
1138  */
1139 static int
vm_pageout_active_target(struct vm_domain * vmd)1140 vm_pageout_active_target(struct vm_domain *vmd)
1141 {
1142 	int shortage;
1143 
1144 	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1145 	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1146 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1147 	shortage *= act_scan_laundry_weight;
1148 	return (shortage);
1149 }
1150 
1151 /*
1152  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1153  * small portion of the queue in order to maintain quasi-LRU.
1154  */
1155 static void
vm_pageout_scan_active(struct vm_domain * vmd,int page_shortage)1156 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1157 {
1158 	struct scan_state ss;
1159 	vm_object_t object;
1160 	vm_page_t m, marker;
1161 	struct vm_pagequeue *pq;
1162 	vm_page_astate_t old, new;
1163 	long min_scan;
1164 	int act_delta, max_scan, ps_delta, refs, scan_tick;
1165 	uint8_t nqueue;
1166 
1167 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1168 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1169 	vm_pagequeue_lock(pq);
1170 
1171 	/*
1172 	 * If we're just idle polling attempt to visit every
1173 	 * active page within 'update_period' seconds.
1174 	 */
1175 	scan_tick = ticks;
1176 	if (vm_pageout_update_period != 0) {
1177 		min_scan = pq->pq_cnt;
1178 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1179 		min_scan /= hz * vm_pageout_update_period;
1180 	} else
1181 		min_scan = 0;
1182 	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1183 		vmd->vmd_last_active_scan = scan_tick;
1184 
1185 	/*
1186 	 * Scan the active queue for pages that can be deactivated.  Update
1187 	 * the per-page activity counter and use it to identify deactivation
1188 	 * candidates.  Held pages may be deactivated.
1189 	 *
1190 	 * To avoid requeuing each page that remains in the active queue, we
1191 	 * implement the CLOCK algorithm.  To keep the implementation of the
1192 	 * enqueue operation consistent for all page queues, we use two hands,
1193 	 * represented by marker pages. Scans begin at the first hand, which
1194 	 * precedes the second hand in the queue.  When the two hands meet,
1195 	 * they are moved back to the head and tail of the queue, respectively,
1196 	 * and scanning resumes.
1197 	 */
1198 	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1199 act_scan:
1200 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1201 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1202 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1203 			vm_pagequeue_lock(pq);
1204 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1205 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1206 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1207 			    plinks.q);
1208 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1209 			    plinks.q);
1210 			max_scan -= ss.scanned;
1211 			vm_pageout_end_scan(&ss);
1212 			goto act_scan;
1213 		}
1214 		if (__predict_false((m->flags & PG_MARKER) != 0))
1215 			continue;
1216 
1217 		/*
1218 		 * Don't touch a page that was removed from the queue after the
1219 		 * page queue lock was released.  Otherwise, ensure that any
1220 		 * pending queue operations, such as dequeues for wired pages,
1221 		 * are handled.
1222 		 */
1223 		if (vm_pageout_defer(m, PQ_ACTIVE, true))
1224 			continue;
1225 
1226 		/*
1227 		 * A page's object pointer may be set to NULL before
1228 		 * the object lock is acquired.
1229 		 */
1230 		object = atomic_load_ptr(&m->object);
1231 		if (__predict_false(object == NULL))
1232 			/*
1233 			 * The page has been removed from its object.
1234 			 */
1235 			continue;
1236 
1237 		/* Deferred free of swap space. */
1238 		if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1239 		    VM_OBJECT_TRYWLOCK(object)) {
1240 			if (m->object == object)
1241 				vm_pager_page_unswapped(m);
1242 			VM_OBJECT_WUNLOCK(object);
1243 		}
1244 
1245 		/*
1246 		 * Check to see "how much" the page has been used.
1247 		 *
1248 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1249 		 * that a reference from a concurrently destroyed mapping is
1250 		 * observed here and now.
1251 		 *
1252 		 * Perform an unsynchronized object ref count check.  While
1253 		 * the page lock ensures that the page is not reallocated to
1254 		 * another object, in particular, one with unmanaged mappings
1255 		 * that cannot support pmap_ts_referenced(), two races are,
1256 		 * nonetheless, possible:
1257 		 * 1) The count was transitioning to zero, but we saw a non-
1258 		 *    zero value.  pmap_ts_referenced() will return zero
1259 		 *    because the page is not mapped.
1260 		 * 2) The count was transitioning to one, but we saw zero.
1261 		 *    This race delays the detection of a new reference.  At
1262 		 *    worst, we will deactivate and reactivate the page.
1263 		 */
1264 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1265 
1266 		old = vm_page_astate_load(m);
1267 		do {
1268 			/*
1269 			 * Check to see if the page has been removed from the
1270 			 * queue since the first such check.  Leave it alone if
1271 			 * so, discarding any references collected by
1272 			 * pmap_ts_referenced().
1273 			 */
1274 			if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1275 				ps_delta = 0;
1276 				break;
1277 			}
1278 
1279 			/*
1280 			 * Advance or decay the act_count based on recent usage.
1281 			 */
1282 			new = old;
1283 			act_delta = refs;
1284 			if ((old.flags & PGA_REFERENCED) != 0) {
1285 				new.flags &= ~PGA_REFERENCED;
1286 				act_delta++;
1287 			}
1288 			if (act_delta != 0) {
1289 				new.act_count += ACT_ADVANCE + act_delta;
1290 				if (new.act_count > ACT_MAX)
1291 					new.act_count = ACT_MAX;
1292 			} else {
1293 				new.act_count -= min(new.act_count,
1294 				    ACT_DECLINE);
1295 			}
1296 
1297 			if (new.act_count > 0) {
1298 				/*
1299 				 * Adjust the activation count and keep the page
1300 				 * in the active queue.  The count might be left
1301 				 * unchanged if it is saturated.  The page may
1302 				 * have been moved to a different queue since we
1303 				 * started the scan, in which case we move it
1304 				 * back.
1305 				 */
1306 				ps_delta = 0;
1307 				if (old.queue != PQ_ACTIVE) {
1308 					new.flags &= ~PGA_QUEUE_OP_MASK;
1309 					new.flags |= PGA_REQUEUE;
1310 					new.queue = PQ_ACTIVE;
1311 				}
1312 			} else {
1313 				/*
1314 				 * When not short for inactive pages, let dirty
1315 				 * pages go through the inactive queue before
1316 				 * moving to the laundry queue.  This gives them
1317 				 * some extra time to be reactivated,
1318 				 * potentially avoiding an expensive pageout.
1319 				 * However, during a page shortage, the inactive
1320 				 * queue is necessarily small, and so dirty
1321 				 * pages would only spend a trivial amount of
1322 				 * time in the inactive queue.  Therefore, we
1323 				 * might as well place them directly in the
1324 				 * laundry queue to reduce queuing overhead.
1325 				 *
1326 				 * Calling vm_page_test_dirty() here would
1327 				 * require acquisition of the object's write
1328 				 * lock.  However, during a page shortage,
1329 				 * directing dirty pages into the laundry queue
1330 				 * is only an optimization and not a
1331 				 * requirement.  Therefore, we simply rely on
1332 				 * the opportunistic updates to the page's dirty
1333 				 * field by the pmap.
1334 				 */
1335 				if (page_shortage <= 0) {
1336 					nqueue = PQ_INACTIVE;
1337 					ps_delta = 0;
1338 				} else if (m->dirty == 0) {
1339 					nqueue = PQ_INACTIVE;
1340 					ps_delta = act_scan_laundry_weight;
1341 				} else {
1342 					nqueue = PQ_LAUNDRY;
1343 					ps_delta = 1;
1344 				}
1345 
1346 				new.flags &= ~PGA_QUEUE_OP_MASK;
1347 				new.flags |= PGA_REQUEUE;
1348 				new.queue = nqueue;
1349 			}
1350 		} while (!vm_page_pqstate_commit(m, &old, new));
1351 
1352 		page_shortage -= ps_delta;
1353 	}
1354 	vm_pagequeue_lock(pq);
1355 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1356 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1357 	vm_pageout_end_scan(&ss);
1358 	vm_pagequeue_unlock(pq);
1359 }
1360 
1361 static int
vm_pageout_reinsert_inactive_page(struct vm_pagequeue * pq,vm_page_t marker,vm_page_t m)1362 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1363     vm_page_t m)
1364 {
1365 	vm_page_astate_t as;
1366 
1367 	vm_pagequeue_assert_locked(pq);
1368 
1369 	as = vm_page_astate_load(m);
1370 	if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1371 		return (0);
1372 	vm_page_aflag_set(m, PGA_ENQUEUED);
1373 	TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1374 	return (1);
1375 }
1376 
1377 /*
1378  * Re-add stuck pages to the inactive queue.  We will examine them again
1379  * during the next scan.  If the queue state of a page has changed since
1380  * it was physically removed from the page queue in
1381  * vm_pageout_collect_batch(), don't do anything with that page.
1382  */
1383 static void
vm_pageout_reinsert_inactive(struct scan_state * ss,struct vm_batchqueue * bq,vm_page_t m)1384 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1385     vm_page_t m)
1386 {
1387 	struct vm_pagequeue *pq;
1388 	vm_page_t marker;
1389 	int delta;
1390 
1391 	delta = 0;
1392 	marker = ss->marker;
1393 	pq = ss->pq;
1394 
1395 	if (m != NULL) {
1396 		if (vm_batchqueue_insert(bq, m) != 0)
1397 			return;
1398 		vm_pagequeue_lock(pq);
1399 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1400 	} else
1401 		vm_pagequeue_lock(pq);
1402 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1403 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1404 	vm_pagequeue_cnt_add(pq, delta);
1405 	vm_pagequeue_unlock(pq);
1406 	vm_batchqueue_init(bq);
1407 }
1408 
1409 static void
vm_pageout_scan_inactive(struct vm_domain * vmd,int page_shortage)1410 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1411 {
1412 	struct timeval start, end;
1413 	struct scan_state ss;
1414 	struct vm_batchqueue rq;
1415 	struct vm_page marker_page;
1416 	vm_page_t m, marker;
1417 	struct vm_pagequeue *pq;
1418 	vm_object_t object;
1419 	vm_page_astate_t old, new;
1420 	int act_delta, addl_page_shortage, starting_page_shortage, refs;
1421 
1422 	object = NULL;
1423 	vm_batchqueue_init(&rq);
1424 	getmicrouptime(&start);
1425 
1426 	/*
1427 	 * The addl_page_shortage is an estimate of the number of temporarily
1428 	 * stuck pages in the inactive queue.  In other words, the
1429 	 * number of pages from the inactive count that should be
1430 	 * discounted in setting the target for the active queue scan.
1431 	 */
1432 	addl_page_shortage = 0;
1433 
1434 	/*
1435 	 * Start scanning the inactive queue for pages that we can free.  The
1436 	 * scan will stop when we reach the target or we have scanned the
1437 	 * entire queue.  (Note that m->a.act_count is not used to make
1438 	 * decisions for the inactive queue, only for the active queue.)
1439 	 */
1440 	starting_page_shortage = page_shortage;
1441 	marker = &marker_page;
1442 	vm_page_init_marker(marker, PQ_INACTIVE, 0);
1443 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1444 	vm_pagequeue_lock(pq);
1445 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1446 	while (page_shortage > 0) {
1447 		/*
1448 		 * If we need to refill the scan batch queue, release any
1449 		 * optimistically held object lock.  This gives someone else a
1450 		 * chance to grab the lock, and also avoids holding it while we
1451 		 * do unrelated work.
1452 		 */
1453 		if (object != NULL && vm_batchqueue_empty(&ss.bq)) {
1454 			VM_OBJECT_WUNLOCK(object);
1455 			object = NULL;
1456 		}
1457 
1458 		m = vm_pageout_next(&ss, true);
1459 		if (m == NULL)
1460 			break;
1461 		KASSERT((m->flags & PG_MARKER) == 0,
1462 		    ("marker page %p was dequeued", m));
1463 
1464 		/*
1465 		 * Don't touch a page that was removed from the queue after the
1466 		 * page queue lock was released.  Otherwise, ensure that any
1467 		 * pending queue operations, such as dequeues for wired pages,
1468 		 * are handled.
1469 		 */
1470 		if (vm_pageout_defer(m, PQ_INACTIVE, false))
1471 			continue;
1472 
1473 		/*
1474 		 * Lock the page's object.
1475 		 */
1476 		if (object == NULL || object != m->object) {
1477 			if (object != NULL)
1478 				VM_OBJECT_WUNLOCK(object);
1479 			object = atomic_load_ptr(&m->object);
1480 			if (__predict_false(object == NULL))
1481 				/* The page is being freed by another thread. */
1482 				continue;
1483 
1484 			/* Depends on type-stability. */
1485 			VM_OBJECT_WLOCK(object);
1486 			if (__predict_false(m->object != object)) {
1487 				VM_OBJECT_WUNLOCK(object);
1488 				object = NULL;
1489 				goto reinsert;
1490 			}
1491 		}
1492 
1493 		if (vm_page_tryxbusy(m) == 0) {
1494 			/*
1495 			 * Don't mess with busy pages.  Leave them at
1496 			 * the front of the queue.  Most likely, they
1497 			 * are being paged out and will leave the
1498 			 * queue shortly after the scan finishes.  So,
1499 			 * they ought to be discounted from the
1500 			 * inactive count.
1501 			 */
1502 			addl_page_shortage++;
1503 			goto reinsert;
1504 		}
1505 
1506 		/* Deferred free of swap space. */
1507 		if ((m->a.flags & PGA_SWAP_FREE) != 0)
1508 			vm_pager_page_unswapped(m);
1509 
1510 		/*
1511 		 * Check for wirings now that we hold the object lock and have
1512 		 * exclusively busied the page.  If the page is mapped, it may
1513 		 * still be wired by pmap lookups.  The call to
1514 		 * vm_page_try_remove_all() below atomically checks for such
1515 		 * wirings and removes mappings.  If the page is unmapped, the
1516 		 * wire count is guaranteed not to increase after this check.
1517 		 */
1518 		if (__predict_false(vm_page_wired(m)))
1519 			goto skip_page;
1520 
1521 		/*
1522 		 * Invalid pages can be easily freed. They cannot be
1523 		 * mapped, vm_page_free() asserts this.
1524 		 */
1525 		if (vm_page_none_valid(m))
1526 			goto free_page;
1527 
1528 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1529 
1530 		for (old = vm_page_astate_load(m);;) {
1531 			/*
1532 			 * Check to see if the page has been removed from the
1533 			 * queue since the first such check.  Leave it alone if
1534 			 * so, discarding any references collected by
1535 			 * pmap_ts_referenced().
1536 			 */
1537 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1538 				goto skip_page;
1539 
1540 			new = old;
1541 			act_delta = refs;
1542 			if ((old.flags & PGA_REFERENCED) != 0) {
1543 				new.flags &= ~PGA_REFERENCED;
1544 				act_delta++;
1545 			}
1546 			if (act_delta == 0) {
1547 				;
1548 			} else if (object->ref_count != 0) {
1549 				/*
1550 				 * Increase the activation count if the
1551 				 * page was referenced while in the
1552 				 * inactive queue.  This makes it less
1553 				 * likely that the page will be returned
1554 				 * prematurely to the inactive queue.
1555 				 */
1556 				new.act_count += ACT_ADVANCE +
1557 				    act_delta;
1558 				if (new.act_count > ACT_MAX)
1559 					new.act_count = ACT_MAX;
1560 
1561 				new.flags &= ~PGA_QUEUE_OP_MASK;
1562 				new.flags |= PGA_REQUEUE;
1563 				new.queue = PQ_ACTIVE;
1564 				if (!vm_page_pqstate_commit(m, &old, new))
1565 					continue;
1566 
1567 				VM_CNT_INC(v_reactivated);
1568 				goto skip_page;
1569 			} else if ((object->flags & OBJ_DEAD) == 0) {
1570 				new.queue = PQ_INACTIVE;
1571 				new.flags |= PGA_REQUEUE;
1572 				if (!vm_page_pqstate_commit(m, &old, new))
1573 					continue;
1574 				goto skip_page;
1575 			}
1576 			break;
1577 		}
1578 
1579 		/*
1580 		 * If the page appears to be clean at the machine-independent
1581 		 * layer, then remove all of its mappings from the pmap in
1582 		 * anticipation of freeing it.  If, however, any of the page's
1583 		 * mappings allow write access, then the page may still be
1584 		 * modified until the last of those mappings are removed.
1585 		 */
1586 		if (object->ref_count != 0) {
1587 			vm_page_test_dirty(m);
1588 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
1589 				goto skip_page;
1590 		}
1591 
1592 		/*
1593 		 * Clean pages can be freed, but dirty pages must be sent back
1594 		 * to the laundry, unless they belong to a dead object.
1595 		 * Requeueing dirty pages from dead objects is pointless, as
1596 		 * they are being paged out and freed by the thread that
1597 		 * destroyed the object.
1598 		 */
1599 		if (m->dirty == 0) {
1600 free_page:
1601 			/*
1602 			 * Now we are guaranteed that no other threads are
1603 			 * manipulating the page, check for a last-second
1604 			 * reference that would save it from doom.
1605 			 */
1606 			if (vm_pageout_defer(m, PQ_INACTIVE, false))
1607 				goto skip_page;
1608 
1609 			/*
1610 			 * Because we dequeued the page and have already checked
1611 			 * for pending dequeue and enqueue requests, we can
1612 			 * safely disassociate the page from the inactive queue
1613 			 * without holding the queue lock.
1614 			 */
1615 			m->a.queue = PQ_NONE;
1616 			vm_page_free(m);
1617 			page_shortage--;
1618 			continue;
1619 		}
1620 		if ((object->flags & OBJ_DEAD) == 0)
1621 			vm_page_launder(m);
1622 skip_page:
1623 		vm_page_xunbusy(m);
1624 		continue;
1625 reinsert:
1626 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1627 	}
1628 	if (object != NULL)
1629 		VM_OBJECT_WUNLOCK(object);
1630 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1631 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1632 	vm_pagequeue_lock(pq);
1633 	vm_pageout_end_scan(&ss);
1634 	vm_pagequeue_unlock(pq);
1635 
1636 	/*
1637 	 * Record the remaining shortage and the progress and rate it was made.
1638 	 */
1639 	atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1640 	getmicrouptime(&end);
1641 	timevalsub(&end, &start);
1642 	atomic_add_int(&vmd->vmd_inactive_us,
1643 	    end.tv_sec * 1000000 + end.tv_usec);
1644 	atomic_add_int(&vmd->vmd_inactive_freed,
1645 	    starting_page_shortage - page_shortage);
1646 }
1647 
1648 /*
1649  * Dispatch a number of inactive threads according to load and collect the
1650  * results to present a coherent view of paging activity on this domain.
1651  */
1652 static int
vm_pageout_inactive_dispatch(struct vm_domain * vmd,int shortage)1653 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1654 {
1655 	u_int freed, pps, slop, threads, us;
1656 
1657 	vmd->vmd_inactive_shortage = shortage;
1658 	slop = 0;
1659 
1660 	/*
1661 	 * If we have more work than we can do in a quarter of our interval, we
1662 	 * fire off multiple threads to process it.
1663 	 */
1664 	if ((threads = vmd->vmd_inactive_threads) > 1 &&
1665 	    vmd->vmd_helper_threads_enabled &&
1666 	    vmd->vmd_inactive_pps != 0 &&
1667 	    shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1668 		vmd->vmd_inactive_shortage /= threads;
1669 		slop = shortage % threads;
1670 		vm_domain_pageout_lock(vmd);
1671 		blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1672 		blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1673 		wakeup(&vmd->vmd_inactive_shortage);
1674 		vm_domain_pageout_unlock(vmd);
1675 	}
1676 
1677 	/* Run the local thread scan. */
1678 	vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1679 
1680 	/*
1681 	 * Block until helper threads report results and then accumulate
1682 	 * totals.
1683 	 */
1684 	blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1685 	freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1686 	VM_CNT_ADD(v_dfree, freed);
1687 
1688 	/*
1689 	 * Calculate the per-thread paging rate with an exponential decay of
1690 	 * prior results.  Careful to avoid integer rounding errors with large
1691 	 * us values.
1692 	 */
1693 	us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1694 	if (us > 1000000)
1695 		/* Keep rounding to tenths */
1696 		pps = (freed * 10) / ((us * 10) / 1000000);
1697 	else
1698 		pps = (1000000 / us) * freed;
1699 	vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1700 
1701 	return (shortage - freed);
1702 }
1703 
1704 /*
1705  * Attempt to reclaim the requested number of pages from the inactive queue.
1706  * Returns true if the shortage was addressed.
1707  */
1708 static int
vm_pageout_inactive(struct vm_domain * vmd,int shortage,int * addl_shortage)1709 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1710 {
1711 	struct vm_pagequeue *pq;
1712 	u_int addl_page_shortage, deficit, page_shortage;
1713 	u_int starting_page_shortage;
1714 
1715 	/*
1716 	 * vmd_pageout_deficit counts the number of pages requested in
1717 	 * allocations that failed because of a free page shortage.  We assume
1718 	 * that the allocations will be reattempted and thus include the deficit
1719 	 * in our scan target.
1720 	 */
1721 	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1722 	starting_page_shortage = shortage + deficit;
1723 
1724 	/*
1725 	 * Run the inactive scan on as many threads as is necessary.
1726 	 */
1727 	page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1728 	addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1729 
1730 	/*
1731 	 * Wake up the laundry thread so that it can perform any needed
1732 	 * laundering.  If we didn't meet our target, we're in shortfall and
1733 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1734 	 * swap devices are configured, the laundry thread has no work to do, so
1735 	 * don't bother waking it up.
1736 	 *
1737 	 * The laundry thread uses the number of inactive queue scans elapsed
1738 	 * since the last laundering to determine whether to launder again, so
1739 	 * keep count.
1740 	 */
1741 	if (starting_page_shortage > 0) {
1742 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1743 		vm_pagequeue_lock(pq);
1744 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1745 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1746 			if (page_shortage > 0) {
1747 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1748 				VM_CNT_INC(v_pdshortfalls);
1749 			} else if (vmd->vmd_laundry_request !=
1750 			    VM_LAUNDRY_SHORTFALL)
1751 				vmd->vmd_laundry_request =
1752 				    VM_LAUNDRY_BACKGROUND;
1753 			wakeup(&vmd->vmd_laundry_request);
1754 		}
1755 		vmd->vmd_clean_pages_freed +=
1756 		    starting_page_shortage - page_shortage;
1757 		vm_pagequeue_unlock(pq);
1758 	}
1759 
1760 	/*
1761 	 * If the inactive queue scan fails repeatedly to meet its
1762 	 * target, kill the largest process.
1763 	 */
1764 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1765 
1766 	/*
1767 	 * See the description of addl_page_shortage above.
1768 	 */
1769 	*addl_shortage = addl_page_shortage + deficit;
1770 
1771 	return (page_shortage <= 0);
1772 }
1773 
1774 static int vm_pageout_oom_vote;
1775 
1776 /*
1777  * The pagedaemon threads randlomly select one to perform the
1778  * OOM.  Trying to kill processes before all pagedaemons
1779  * failed to reach free target is premature.
1780  */
1781 static void
vm_pageout_mightbe_oom(struct vm_domain * vmd,int page_shortage,int starting_page_shortage)1782 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1783     int starting_page_shortage)
1784 {
1785 	int old_vote;
1786 
1787 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1788 	    page_shortage)
1789 		vmd->vmd_oom_seq = 0;
1790 	else
1791 		vmd->vmd_oom_seq++;
1792 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1793 		if (vmd->vmd_oom) {
1794 			vmd->vmd_oom = false;
1795 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1796 		}
1797 		return;
1798 	}
1799 
1800 	/*
1801 	 * Do not follow the call sequence until OOM condition is
1802 	 * cleared.
1803 	 */
1804 	vmd->vmd_oom_seq = 0;
1805 
1806 	if (vmd->vmd_oom)
1807 		return;
1808 
1809 	vmd->vmd_oom = true;
1810 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1811 	if (old_vote != vm_ndomains - 1)
1812 		return;
1813 
1814 	/*
1815 	 * The current pagedaemon thread is the last in the quorum to
1816 	 * start OOM.  Initiate the selection and signaling of the
1817 	 * victim.
1818 	 */
1819 	vm_pageout_oom(VM_OOM_MEM);
1820 
1821 	/*
1822 	 * After one round of OOM terror, recall our vote.  On the
1823 	 * next pass, current pagedaemon would vote again if the low
1824 	 * memory condition is still there, due to vmd_oom being
1825 	 * false.
1826 	 */
1827 	vmd->vmd_oom = false;
1828 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1829 }
1830 
1831 /*
1832  * The OOM killer is the page daemon's action of last resort when
1833  * memory allocation requests have been stalled for a prolonged period
1834  * of time because it cannot reclaim memory.  This function computes
1835  * the approximate number of physical pages that could be reclaimed if
1836  * the specified address space is destroyed.
1837  *
1838  * Private, anonymous memory owned by the address space is the
1839  * principal resource that we expect to recover after an OOM kill.
1840  * Since the physical pages mapped by the address space's COW entries
1841  * are typically shared pages, they are unlikely to be released and so
1842  * they are not counted.
1843  *
1844  * To get to the point where the page daemon runs the OOM killer, its
1845  * efforts to write-back vnode-backed pages may have stalled.  This
1846  * could be caused by a memory allocation deadlock in the write path
1847  * that might be resolved by an OOM kill.  Therefore, physical pages
1848  * belonging to vnode-backed objects are counted, because they might
1849  * be freed without being written out first if the address space holds
1850  * the last reference to an unlinked vnode.
1851  *
1852  * Similarly, physical pages belonging to OBJT_PHYS objects are
1853  * counted because the address space might hold the last reference to
1854  * the object.
1855  */
1856 static long
vm_pageout_oom_pagecount(struct vmspace * vmspace)1857 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1858 {
1859 	vm_map_t map;
1860 	vm_map_entry_t entry;
1861 	vm_object_t obj;
1862 	long res;
1863 
1864 	map = &vmspace->vm_map;
1865 	KASSERT(!vm_map_is_system(map), ("system map"));
1866 	sx_assert(&map->lock, SA_LOCKED);
1867 	res = 0;
1868 	VM_MAP_ENTRY_FOREACH(entry, map) {
1869 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1870 			continue;
1871 		obj = entry->object.vm_object;
1872 		if (obj == NULL)
1873 			continue;
1874 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1875 		    obj->ref_count != 1)
1876 			continue;
1877 		if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
1878 		    (obj->flags & OBJ_SWAP) != 0)
1879 			res += obj->resident_page_count;
1880 	}
1881 	return (res);
1882 }
1883 
1884 static int vm_oom_ratelim_last;
1885 static int vm_oom_pf_secs = 10;
1886 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1887     "");
1888 static struct mtx vm_oom_ratelim_mtx;
1889 
1890 void
vm_pageout_oom(int shortage)1891 vm_pageout_oom(int shortage)
1892 {
1893 	const char *reason;
1894 	struct proc *p, *bigproc;
1895 	vm_offset_t size, bigsize;
1896 	struct thread *td;
1897 	struct vmspace *vm;
1898 	int now;
1899 	bool breakout;
1900 
1901 	/*
1902 	 * For OOM requests originating from vm_fault(), there is a high
1903 	 * chance that a single large process faults simultaneously in
1904 	 * several threads.  Also, on an active system running many
1905 	 * processes of middle-size, like buildworld, all of them
1906 	 * could fault almost simultaneously as well.
1907 	 *
1908 	 * To avoid killing too many processes, rate-limit OOMs
1909 	 * initiated by vm_fault() time-outs on the waits for free
1910 	 * pages.
1911 	 */
1912 	mtx_lock(&vm_oom_ratelim_mtx);
1913 	now = ticks;
1914 	if (shortage == VM_OOM_MEM_PF &&
1915 	    (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1916 		mtx_unlock(&vm_oom_ratelim_mtx);
1917 		return;
1918 	}
1919 	vm_oom_ratelim_last = now;
1920 	mtx_unlock(&vm_oom_ratelim_mtx);
1921 
1922 	/*
1923 	 * We keep the process bigproc locked once we find it to keep anyone
1924 	 * from messing with it; however, there is a possibility of
1925 	 * deadlock if process B is bigproc and one of its child processes
1926 	 * attempts to propagate a signal to B while we are waiting for A's
1927 	 * lock while walking this list.  To avoid this, we don't block on
1928 	 * the process lock but just skip a process if it is already locked.
1929 	 */
1930 	bigproc = NULL;
1931 	bigsize = 0;
1932 	sx_slock(&allproc_lock);
1933 	FOREACH_PROC_IN_SYSTEM(p) {
1934 		PROC_LOCK(p);
1935 
1936 		/*
1937 		 * If this is a system, protected or killed process, skip it.
1938 		 */
1939 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1940 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1941 		    p->p_pid == 1 || P_KILLED(p) ||
1942 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1943 			PROC_UNLOCK(p);
1944 			continue;
1945 		}
1946 		/*
1947 		 * If the process is in a non-running type state,
1948 		 * don't touch it.  Check all the threads individually.
1949 		 */
1950 		breakout = false;
1951 		FOREACH_THREAD_IN_PROC(p, td) {
1952 			thread_lock(td);
1953 			if (!TD_ON_RUNQ(td) &&
1954 			    !TD_IS_RUNNING(td) &&
1955 			    !TD_IS_SLEEPING(td) &&
1956 			    !TD_IS_SUSPENDED(td)) {
1957 				thread_unlock(td);
1958 				breakout = true;
1959 				break;
1960 			}
1961 			thread_unlock(td);
1962 		}
1963 		if (breakout) {
1964 			PROC_UNLOCK(p);
1965 			continue;
1966 		}
1967 		/*
1968 		 * get the process size
1969 		 */
1970 		vm = vmspace_acquire_ref(p);
1971 		if (vm == NULL) {
1972 			PROC_UNLOCK(p);
1973 			continue;
1974 		}
1975 		_PHOLD(p);
1976 		PROC_UNLOCK(p);
1977 		sx_sunlock(&allproc_lock);
1978 		if (!vm_map_trylock_read(&vm->vm_map)) {
1979 			vmspace_free(vm);
1980 			sx_slock(&allproc_lock);
1981 			PRELE(p);
1982 			continue;
1983 		}
1984 		size = vmspace_swap_count(vm);
1985 		if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1986 			size += vm_pageout_oom_pagecount(vm);
1987 		vm_map_unlock_read(&vm->vm_map);
1988 		vmspace_free(vm);
1989 		sx_slock(&allproc_lock);
1990 
1991 		/*
1992 		 * If this process is bigger than the biggest one,
1993 		 * remember it.
1994 		 */
1995 		if (size > bigsize) {
1996 			if (bigproc != NULL)
1997 				PRELE(bigproc);
1998 			bigproc = p;
1999 			bigsize = size;
2000 		} else {
2001 			PRELE(p);
2002 		}
2003 	}
2004 	sx_sunlock(&allproc_lock);
2005 
2006 	if (bigproc != NULL) {
2007 		switch (shortage) {
2008 		case VM_OOM_MEM:
2009 			reason = "failed to reclaim memory";
2010 			break;
2011 		case VM_OOM_MEM_PF:
2012 			reason = "a thread waited too long to allocate a page";
2013 			break;
2014 		case VM_OOM_SWAPZ:
2015 			reason = "out of swap space";
2016 			break;
2017 		default:
2018 			panic("unknown OOM reason %d", shortage);
2019 		}
2020 		if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2021 			panic("%s", reason);
2022 		PROC_LOCK(bigproc);
2023 		killproc(bigproc, reason);
2024 		sched_nice(bigproc, PRIO_MIN);
2025 		_PRELE(bigproc);
2026 		PROC_UNLOCK(bigproc);
2027 	}
2028 }
2029 
2030 /*
2031  * Signal a free page shortage to subsystems that have registered an event
2032  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2033  * Return true if the free page count should be re-evaluated.
2034  */
2035 static bool
vm_pageout_lowmem(void)2036 vm_pageout_lowmem(void)
2037 {
2038 	static int lowmem_ticks = 0;
2039 	int last;
2040 	bool ret;
2041 
2042 	ret = false;
2043 
2044 	last = atomic_load_int(&lowmem_ticks);
2045 	while ((u_int)(ticks - last) / hz >= lowmem_period) {
2046 		if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2047 			continue;
2048 
2049 		/*
2050 		 * Decrease registered cache sizes.
2051 		 */
2052 		SDT_PROBE0(vm, , , vm__lowmem_scan);
2053 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2054 
2055 		/*
2056 		 * We do this explicitly after the caches have been
2057 		 * drained above.
2058 		 */
2059 		uma_reclaim(UMA_RECLAIM_TRIM);
2060 		ret = true;
2061 		break;
2062 	}
2063 
2064 	/*
2065 	 * Kick off an asynchronous reclaim of cached memory if one of the
2066 	 * page daemons is failing to keep up with demand.  Use the "severe"
2067 	 * threshold instead of "min" to ensure that we do not blow away the
2068 	 * caches if a subset of the NUMA domains are depleted by kernel memory
2069 	 * allocations; the domainset iterators automatically skip domains
2070 	 * below the "min" threshold on the first pass.
2071 	 *
2072 	 * UMA reclaim worker has its own rate-limiting mechanism, so don't
2073 	 * worry about kicking it too often.
2074 	 */
2075 	if (vm_page_count_severe())
2076 		uma_reclaim_wakeup();
2077 
2078 	return (ret);
2079 }
2080 
2081 static void
vm_pageout_worker(void * arg)2082 vm_pageout_worker(void *arg)
2083 {
2084 	struct vm_domain *vmd;
2085 	u_int ofree;
2086 	int addl_shortage, domain, shortage;
2087 	bool target_met;
2088 
2089 	domain = (uintptr_t)arg;
2090 	vmd = VM_DOMAIN(domain);
2091 	shortage = 0;
2092 	target_met = true;
2093 
2094 	/*
2095 	 * XXXKIB It could be useful to bind pageout daemon threads to
2096 	 * the cores belonging to the domain, from which vm_page_array
2097 	 * is allocated.
2098 	 */
2099 
2100 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2101 	vmd->vmd_last_active_scan = ticks;
2102 
2103 	/*
2104 	 * The pageout daemon worker is never done, so loop forever.
2105 	 */
2106 	while (TRUE) {
2107 		vm_domain_pageout_lock(vmd);
2108 
2109 		/*
2110 		 * We need to clear wanted before we check the limits.  This
2111 		 * prevents races with wakers who will check wanted after they
2112 		 * reach the limit.
2113 		 */
2114 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2115 
2116 		/*
2117 		 * Might the page daemon need to run again?
2118 		 */
2119 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2120 			/*
2121 			 * Yes.  If the scan failed to produce enough free
2122 			 * pages, sleep uninterruptibly for some time in the
2123 			 * hope that the laundry thread will clean some pages.
2124 			 */
2125 			vm_domain_pageout_unlock(vmd);
2126 			if (!target_met)
2127 				pause("pwait", hz / VM_INACT_SCAN_RATE);
2128 		} else {
2129 			/*
2130 			 * No, sleep until the next wakeup or until pages
2131 			 * need to have their reference stats updated.
2132 			 */
2133 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
2134 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2135 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2136 				VM_CNT_INC(v_pdwakeups);
2137 		}
2138 
2139 		/* Prevent spurious wakeups by ensuring that wanted is set. */
2140 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2141 
2142 		/*
2143 		 * Use the controller to calculate how many pages to free in
2144 		 * this interval, and scan the inactive queue.  If the lowmem
2145 		 * handlers appear to have freed up some pages, subtract the
2146 		 * difference from the inactive queue scan target.
2147 		 */
2148 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2149 		if (shortage > 0) {
2150 			ofree = vmd->vmd_free_count;
2151 			if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2152 				shortage -= min(vmd->vmd_free_count - ofree,
2153 				    (u_int)shortage);
2154 			target_met = vm_pageout_inactive(vmd, shortage,
2155 			    &addl_shortage);
2156 		} else
2157 			addl_shortage = 0;
2158 
2159 		/*
2160 		 * Scan the active queue.  A positive value for shortage
2161 		 * indicates that we must aggressively deactivate pages to avoid
2162 		 * a shortfall.
2163 		 */
2164 		shortage = vm_pageout_active_target(vmd) + addl_shortage;
2165 		vm_pageout_scan_active(vmd, shortage);
2166 	}
2167 }
2168 
2169 /*
2170  * vm_pageout_helper runs additional pageout daemons in times of high paging
2171  * activity.
2172  */
2173 static void
vm_pageout_helper(void * arg)2174 vm_pageout_helper(void *arg)
2175 {
2176 	struct vm_domain *vmd;
2177 	int domain;
2178 
2179 	domain = (uintptr_t)arg;
2180 	vmd = VM_DOMAIN(domain);
2181 
2182 	vm_domain_pageout_lock(vmd);
2183 	for (;;) {
2184 		msleep(&vmd->vmd_inactive_shortage,
2185 		    vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2186 		blockcount_release(&vmd->vmd_inactive_starting, 1);
2187 
2188 		vm_domain_pageout_unlock(vmd);
2189 		vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2190 		vm_domain_pageout_lock(vmd);
2191 
2192 		/*
2193 		 * Release the running count while the pageout lock is held to
2194 		 * prevent wakeup races.
2195 		 */
2196 		blockcount_release(&vmd->vmd_inactive_running, 1);
2197 	}
2198 }
2199 
2200 static int
get_pageout_threads_per_domain(const struct vm_domain * vmd)2201 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2202 {
2203 	unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2204 
2205 	if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2206 		return (0);
2207 
2208 	/*
2209 	 * Semi-arbitrarily constrain pagedaemon threads to less than half the
2210 	 * total number of CPUs in the system as an upper limit.
2211 	 */
2212 	if (pageout_cpus_per_thread < 2)
2213 		pageout_cpus_per_thread = 2;
2214 	else if (pageout_cpus_per_thread > mp_ncpus)
2215 		pageout_cpus_per_thread = mp_ncpus;
2216 
2217 	total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2218 	domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2219 
2220 	/* Pagedaemons are not run in empty domains. */
2221 	eligible_cpus = mp_ncpus;
2222 	for (unsigned i = 0; i < vm_ndomains; i++)
2223 		if (VM_DOMAIN_EMPTY(i))
2224 			eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2225 
2226 	/*
2227 	 * Assign a portion of the total pageout threads to this domain
2228 	 * corresponding to the fraction of pagedaemon-eligible CPUs in the
2229 	 * domain.  In asymmetric NUMA systems, domains with more CPUs may be
2230 	 * allocated more threads than domains with fewer CPUs.
2231 	 */
2232 	return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2233 }
2234 
2235 /*
2236  * Initialize basic pageout daemon settings.  See the comment above the
2237  * definition of vm_domain for some explanation of how these thresholds are
2238  * used.
2239  */
2240 static void
vm_pageout_init_domain(int domain)2241 vm_pageout_init_domain(int domain)
2242 {
2243 	struct vm_domain *vmd;
2244 	struct sysctl_oid *oid;
2245 
2246 	vmd = VM_DOMAIN(domain);
2247 	vmd->vmd_interrupt_free_min = 2;
2248 
2249 	/*
2250 	 * v_free_reserved needs to include enough for the largest
2251 	 * swap pager structures plus enough for any pv_entry structs
2252 	 * when paging.
2253 	 */
2254 	vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2255 	    vmd->vmd_interrupt_free_min;
2256 	vmd->vmd_free_reserved = vm_pageout_page_count +
2257 	    vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2258 	vmd->vmd_free_min = vmd->vmd_page_count / 200;
2259 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2260 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2261 	vmd->vmd_free_min += vmd->vmd_free_reserved;
2262 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
2263 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2264 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2265 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2266 
2267 	/*
2268 	 * Set the default wakeup threshold to be 10% below the paging
2269 	 * target.  This keeps the steady state out of shortfall.
2270 	 */
2271 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2272 
2273 	/*
2274 	 * Target amount of memory to move out of the laundry queue during a
2275 	 * background laundering.  This is proportional to the amount of system
2276 	 * memory.
2277 	 */
2278 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2279 	    vmd->vmd_free_min) / 10;
2280 
2281 	/* Initialize the pageout daemon pid controller. */
2282 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2283 	    vmd->vmd_free_target, PIDCTRL_BOUND,
2284 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2285 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2286 	    "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2287 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2288 
2289 	vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2290 	SYSCTL_ADD_BOOL(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2291 	    "pageout_helper_threads_enabled", CTLFLAG_RWTUN,
2292 	    &vmd->vmd_helper_threads_enabled, 0,
2293 	    "Enable multi-threaded inactive queue scanning");
2294 }
2295 
2296 static void
vm_pageout_init(void)2297 vm_pageout_init(void)
2298 {
2299 	u_long freecount;
2300 	int i;
2301 
2302 	/*
2303 	 * Initialize some paging parameters.
2304 	 */
2305 	freecount = 0;
2306 	for (i = 0; i < vm_ndomains; i++) {
2307 		struct vm_domain *vmd;
2308 
2309 		vm_pageout_init_domain(i);
2310 		vmd = VM_DOMAIN(i);
2311 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2312 		vm_cnt.v_free_target += vmd->vmd_free_target;
2313 		vm_cnt.v_free_min += vmd->vmd_free_min;
2314 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2315 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2316 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2317 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2318 		freecount += vmd->vmd_free_count;
2319 	}
2320 
2321 	/*
2322 	 * Set interval in seconds for active scan.  We want to visit each
2323 	 * page at least once every ten minutes.  This is to prevent worst
2324 	 * case paging behaviors with stale active LRU.
2325 	 */
2326 	if (vm_pageout_update_period == 0)
2327 		vm_pageout_update_period = 600;
2328 
2329 	/*
2330 	 * Set the maximum number of user-wired virtual pages.  Historically the
2331 	 * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
2332 	 * may also request user-wired memory.
2333 	 */
2334 	if (vm_page_max_user_wired == 0)
2335 		vm_page_max_user_wired = 4 * freecount / 5;
2336 }
2337 
2338 /*
2339  *     vm_pageout is the high level pageout daemon.
2340  */
2341 static void
vm_pageout(void)2342 vm_pageout(void)
2343 {
2344 	struct proc *p;
2345 	struct thread *td;
2346 	int error, first, i, j, pageout_threads;
2347 
2348 	p = curproc;
2349 	td = curthread;
2350 
2351 	mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2352 	swap_pager_swap_init();
2353 	for (first = -1, i = 0; i < vm_ndomains; i++) {
2354 		if (VM_DOMAIN_EMPTY(i)) {
2355 			if (bootverbose)
2356 				printf("domain %d empty; skipping pageout\n",
2357 				    i);
2358 			continue;
2359 		}
2360 		if (first == -1)
2361 			first = i;
2362 		else {
2363 			error = kthread_add(vm_pageout_worker,
2364 			    (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2365 			if (error != 0)
2366 				panic("starting pageout for domain %d: %d\n",
2367 				    i, error);
2368 		}
2369 		pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2370 		for (j = 0; j < pageout_threads - 1; j++) {
2371 			error = kthread_add(vm_pageout_helper,
2372 			    (void *)(uintptr_t)i, p, NULL, 0, 0,
2373 			    "dom%d helper%d", i, j);
2374 			if (error != 0)
2375 				panic("starting pageout helper %d for domain "
2376 				    "%d: %d\n", j, i, error);
2377 		}
2378 		error = kthread_add(vm_pageout_laundry_worker,
2379 		    (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2380 		if (error != 0)
2381 			panic("starting laundry for domain %d: %d", i, error);
2382 	}
2383 	error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2384 	if (error != 0)
2385 		panic("starting uma_reclaim helper, error %d\n", error);
2386 
2387 	snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2388 	vm_pageout_worker((void *)(uintptr_t)first);
2389 }
2390 
2391 /*
2392  * Perform an advisory wakeup of the page daemon.
2393  */
2394 void
pagedaemon_wakeup(int domain)2395 pagedaemon_wakeup(int domain)
2396 {
2397 	struct vm_domain *vmd;
2398 
2399 	vmd = VM_DOMAIN(domain);
2400 	vm_domain_pageout_assert_unlocked(vmd);
2401 	if (curproc == pageproc)
2402 		return;
2403 
2404 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2405 		vm_domain_pageout_lock(vmd);
2406 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2407 		wakeup(&vmd->vmd_pageout_wanted);
2408 		vm_domain_pageout_unlock(vmd);
2409 	}
2410 }
2411