1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2005 Yahoo! Technologies Norway AS
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * The Mach Operating System project at Carnegie-Mellon University.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
63 * School of Computer Science
64 * Carnegie Mellon University
65 * Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71 /*
72 * The proverbial page-out daemon.
73 */
74
75 #include <sys/cdefs.h>
76 #include "opt_vm.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/blockcount.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/sdt.h>
93 #include <sys/signalvar.h>
94 #include <sys/smp.h>
95 #include <sys/time.h>
96 #include <sys/vnode.h>
97 #include <sys/vmmeter.h>
98 #include <sys/rwlock.h>
99 #include <sys/sx.h>
100 #include <sys/sysctl.h>
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/vm_pagequeue.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114
115 /*
116 * System initialization
117 */
118
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
123 static int vm_pageout_cluster(vm_page_t m);
124 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
125 int starting_page_shortage);
126
127 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
128 NULL);
129
130 struct proc *pageproc;
131
132 static struct kproc_desc page_kp = {
133 "pagedaemon",
134 vm_pageout,
135 &pageproc
136 };
137 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
138 &page_kp);
139
140 SDT_PROVIDER_DEFINE(vm);
141 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
142
143 /* Pagedaemon activity rates, in subdivisions of one second. */
144 #define VM_LAUNDER_RATE 10
145 #define VM_INACT_SCAN_RATE 10
146
147 static int swapdev_enabled;
148 int vm_pageout_page_count = 32;
149
150 static int vm_panic_on_oom = 0;
151 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
152 CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
153 "Panic on the given number of out-of-memory errors instead of "
154 "killing the largest process");
155
156 static int vm_pageout_update_period;
157 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
158 CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
159 "Maximum active LRU update period");
160
161 static int pageout_cpus_per_thread = 16;
162 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
163 &pageout_cpus_per_thread, 0,
164 "Number of CPUs per pagedaemon worker thread");
165
166 static int lowmem_period = 10;
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168 "Low memory callback period");
169
170 static int disable_swap_pageouts;
171 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
172 CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
173 "Disallow swapout of dirty pages");
174
175 static int pageout_lock_miss;
176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
177 CTLFLAG_RD, &pageout_lock_miss, 0,
178 "vget() lock misses during pageout");
179
180 static int vm_pageout_oom_seq = 12;
181 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
182 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
183 "back-to-back calls to oom detector to start OOM");
184
185 static int act_scan_laundry_weight = 3;
186 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
187 &act_scan_laundry_weight, 0,
188 "weight given to clean vs. dirty pages in active queue scans");
189
190 static u_int vm_background_launder_rate = 4096;
191 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
192 &vm_background_launder_rate, 0,
193 "background laundering rate, in kilobytes per second");
194
195 static u_int vm_background_launder_max = 20 * 1024;
196 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
197 &vm_background_launder_max, 0,
198 "background laundering cap, in kilobytes");
199
200 u_long vm_page_max_user_wired;
201 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
202 &vm_page_max_user_wired, 0,
203 "system-wide limit to user-wired page count");
204
205 static u_int isqrt(u_int num);
206 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
207 bool in_shortfall);
208 static void vm_pageout_laundry_worker(void *arg);
209
210 struct scan_state {
211 struct vm_batchqueue bq;
212 struct vm_pagequeue *pq;
213 vm_page_t marker;
214 int maxscan;
215 int scanned;
216 };
217
218 static void
vm_pageout_init_scan(struct scan_state * ss,struct vm_pagequeue * pq,vm_page_t marker,vm_page_t after,int maxscan)219 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
220 vm_page_t marker, vm_page_t after, int maxscan)
221 {
222
223 vm_pagequeue_assert_locked(pq);
224 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
225 ("marker %p already enqueued", marker));
226
227 if (after == NULL)
228 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
229 else
230 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
231 vm_page_aflag_set(marker, PGA_ENQUEUED);
232
233 vm_batchqueue_init(&ss->bq);
234 ss->pq = pq;
235 ss->marker = marker;
236 ss->maxscan = maxscan;
237 ss->scanned = 0;
238 vm_pagequeue_unlock(pq);
239 }
240
241 static void
vm_pageout_end_scan(struct scan_state * ss)242 vm_pageout_end_scan(struct scan_state *ss)
243 {
244 struct vm_pagequeue *pq;
245
246 pq = ss->pq;
247 vm_pagequeue_assert_locked(pq);
248 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
249 ("marker %p not enqueued", ss->marker));
250
251 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
252 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
253 pq->pq_pdpages += ss->scanned;
254 }
255
256 /*
257 * Add a small number of queued pages to a batch queue for later processing
258 * without the corresponding queue lock held. The caller must have enqueued a
259 * marker page at the desired start point for the scan. Pages will be
260 * physically dequeued if the caller so requests. Otherwise, the returned
261 * batch may contain marker pages, and it is up to the caller to handle them.
262 *
263 * When processing the batch queue, vm_pageout_defer() must be used to
264 * determine whether the page has been logically dequeued since the batch was
265 * collected.
266 */
267 static __always_inline void
vm_pageout_collect_batch(struct scan_state * ss,const bool dequeue)268 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
269 {
270 struct vm_pagequeue *pq;
271 vm_page_t m, marker, n;
272
273 marker = ss->marker;
274 pq = ss->pq;
275
276 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
277 ("marker %p not enqueued", ss->marker));
278
279 vm_pagequeue_lock(pq);
280 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
281 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
282 m = n, ss->scanned++) {
283 n = TAILQ_NEXT(m, plinks.q);
284 if ((m->flags & PG_MARKER) == 0) {
285 KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
286 ("page %p not enqueued", m));
287 KASSERT((m->flags & PG_FICTITIOUS) == 0,
288 ("Fictitious page %p cannot be in page queue", m));
289 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
290 ("Unmanaged page %p cannot be in page queue", m));
291 } else if (dequeue)
292 continue;
293
294 (void)vm_batchqueue_insert(&ss->bq, m);
295 if (dequeue) {
296 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
297 vm_page_aflag_clear(m, PGA_ENQUEUED);
298 }
299 }
300 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
301 if (__predict_true(m != NULL))
302 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
303 else
304 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
305 if (dequeue)
306 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
307 vm_pagequeue_unlock(pq);
308 }
309
310 /*
311 * Return the next page to be scanned, or NULL if the scan is complete.
312 */
313 static __always_inline vm_page_t
vm_pageout_next(struct scan_state * ss,const bool dequeue)314 vm_pageout_next(struct scan_state *ss, const bool dequeue)
315 {
316
317 if (ss->bq.bq_cnt == 0)
318 vm_pageout_collect_batch(ss, dequeue);
319 return (vm_batchqueue_pop(&ss->bq));
320 }
321
322 /*
323 * Determine whether processing of a page should be deferred and ensure that any
324 * outstanding queue operations are processed.
325 */
326 static __always_inline bool
vm_pageout_defer(vm_page_t m,const uint8_t queue,const bool enqueued)327 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
328 {
329 vm_page_astate_t as;
330
331 as = vm_page_astate_load(m);
332 if (__predict_false(as.queue != queue ||
333 ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
334 return (true);
335 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
336 vm_page_pqbatch_submit(m, queue);
337 return (true);
338 }
339 return (false);
340 }
341
342 /*
343 * We can cluster only if the page is not clean, busy, or held, and the page is
344 * in the laundry queue.
345 */
346 static bool
vm_pageout_flushable(vm_page_t m)347 vm_pageout_flushable(vm_page_t m)
348 {
349 if (vm_page_tryxbusy(m) == 0)
350 return (false);
351 if (!vm_page_wired(m)) {
352 vm_page_test_dirty(m);
353 if (m->dirty != 0 && vm_page_in_laundry(m) &&
354 vm_page_try_remove_write(m))
355 return (true);
356 }
357 vm_page_xunbusy(m);
358 return (false);
359 }
360
361 /*
362 * Scan for pages at adjacent offsets within the given page's object that are
363 * eligible for laundering, form a cluster of these pages and the given page,
364 * and launder that cluster.
365 */
366 static int
vm_pageout_cluster(vm_page_t m)367 vm_pageout_cluster(vm_page_t m)
368 {
369 vm_page_t mc[2 * vm_pageout_page_count - 1];
370 int alignment, num_ends, page_base, pageout_count;
371
372 VM_OBJECT_ASSERT_WLOCKED(m->object);
373
374 vm_page_assert_xbusied(m);
375
376 alignment = m->pindex % vm_pageout_page_count;
377 num_ends = 0;
378 page_base = nitems(mc) / 2;
379 pageout_count = 1;
380 mc[page_base] = m;
381
382 /*
383 * During heavy mmap/modification loads the pageout
384 * daemon can really fragment the underlying file
385 * due to flushing pages out of order and not trying to
386 * align the clusters (which leaves sporadic out-of-order
387 * holes). To solve this problem we do the reverse scan
388 * first and attempt to align our cluster, then do a
389 * forward scan if room remains.
390 */
391 more:
392 m = mc[page_base];
393 while (pageout_count < vm_pageout_page_count) {
394 /*
395 * If we are at an alignment boundary, and haven't reached the
396 * last flushable page forward, stop here, and switch
397 * directions.
398 */
399 if (alignment == pageout_count - 1 && num_ends == 0)
400 break;
401
402 m = vm_page_prev(m);
403 if (m == NULL || !vm_pageout_flushable(m)) {
404 num_ends++;
405 break;
406 }
407 mc[--page_base] = m;
408 ++pageout_count;
409 }
410 m = mc[page_base + pageout_count - 1];
411 while (num_ends != 2 && pageout_count < vm_pageout_page_count) {
412 m = vm_page_next(m);
413 if (m == NULL || !vm_pageout_flushable(m)) {
414 if (num_ends++ == 0)
415 /* Resume the reverse scan. */
416 goto more;
417 break;
418 }
419 mc[page_base + pageout_count] = m;
420 ++pageout_count;
421 }
422
423 return (vm_pageout_flush(&mc[page_base], pageout_count,
424 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
425 }
426
427 /*
428 * vm_pageout_flush() - launder the given pages
429 *
430 * The given pages are laundered. Note that we setup for the start of
431 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
432 * reference count all in here rather then in the parent. If we want
433 * the parent to do more sophisticated things we may have to change
434 * the ordering.
435 *
436 * Returned runlen is the count of pages between mreq and first
437 * page after mreq with status VM_PAGER_AGAIN.
438 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
439 * for any page in runlen set.
440 */
441 int
vm_pageout_flush(vm_page_t * mc,int count,int flags,int mreq,int * prunlen,boolean_t * eio)442 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
443 boolean_t *eio)
444 {
445 vm_object_t object = mc[0]->object;
446 int pageout_status[count];
447 int numpagedout = 0;
448 int i, runlen;
449
450 VM_OBJECT_ASSERT_WLOCKED(object);
451
452 /*
453 * Initiate I/O. Mark the pages shared busy and verify that they're
454 * valid and read-only.
455 *
456 * We do not have to fixup the clean/dirty bits here... we can
457 * allow the pager to do it after the I/O completes.
458 *
459 * NOTE! mc[i]->dirty may be partial or fragmented due to an
460 * edge case with file fragments.
461 */
462 for (i = 0; i < count; i++) {
463 KASSERT(vm_page_all_valid(mc[i]),
464 ("vm_pageout_flush: partially invalid page %p index %d/%d",
465 mc[i], i, count));
466 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
467 ("vm_pageout_flush: writeable page %p", mc[i]));
468 vm_page_busy_downgrade(mc[i]);
469 }
470 vm_object_pip_add(object, count);
471
472 vm_pager_put_pages(object, mc, count, flags, pageout_status);
473
474 runlen = count - mreq;
475 if (eio != NULL)
476 *eio = FALSE;
477 for (i = 0; i < count; i++) {
478 vm_page_t mt = mc[i];
479
480 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
481 !pmap_page_is_write_mapped(mt),
482 ("vm_pageout_flush: page %p is not write protected", mt));
483 switch (pageout_status[i]) {
484 case VM_PAGER_OK:
485 /*
486 * The page may have moved since laundering started, in
487 * which case it should be left alone.
488 */
489 if (vm_page_in_laundry(mt))
490 vm_page_deactivate_noreuse(mt);
491 /* FALLTHROUGH */
492 case VM_PAGER_PEND:
493 numpagedout++;
494 break;
495 case VM_PAGER_BAD:
496 /*
497 * The page is outside the object's range. We pretend
498 * that the page out worked and clean the page, so the
499 * changes will be lost if the page is reclaimed by
500 * the page daemon.
501 */
502 vm_page_undirty(mt);
503 if (vm_page_in_laundry(mt))
504 vm_page_deactivate_noreuse(mt);
505 break;
506 case VM_PAGER_ERROR:
507 case VM_PAGER_FAIL:
508 /*
509 * If the page couldn't be paged out to swap because the
510 * pager wasn't able to find space, place the page in
511 * the PQ_UNSWAPPABLE holding queue. This is an
512 * optimization that prevents the page daemon from
513 * wasting CPU cycles on pages that cannot be reclaimed
514 * because no swap device is configured.
515 *
516 * Otherwise, reactivate the page so that it doesn't
517 * clog the laundry and inactive queues. (We will try
518 * paging it out again later.)
519 */
520 if ((object->flags & OBJ_SWAP) != 0 &&
521 pageout_status[i] == VM_PAGER_FAIL) {
522 vm_page_unswappable(mt);
523 numpagedout++;
524 } else
525 vm_page_activate(mt);
526 if (eio != NULL && i >= mreq && i - mreq < runlen)
527 *eio = TRUE;
528 break;
529 case VM_PAGER_AGAIN:
530 if (i >= mreq && i - mreq < runlen)
531 runlen = i - mreq;
532 break;
533 }
534
535 /*
536 * If the operation is still going, leave the page busy to
537 * block all other accesses. Also, leave the paging in
538 * progress indicator set so that we don't attempt an object
539 * collapse.
540 */
541 if (pageout_status[i] != VM_PAGER_PEND) {
542 vm_object_pip_wakeup(object);
543 vm_page_sunbusy(mt);
544 }
545 }
546 if (prunlen != NULL)
547 *prunlen = runlen;
548 return (numpagedout);
549 }
550
551 static void
vm_pageout_swapon(void * arg __unused,struct swdevt * sp __unused)552 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
553 {
554
555 atomic_store_rel_int(&swapdev_enabled, 1);
556 }
557
558 static void
vm_pageout_swapoff(void * arg __unused,struct swdevt * sp __unused)559 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
560 {
561
562 if (swap_pager_nswapdev() == 1)
563 atomic_store_rel_int(&swapdev_enabled, 0);
564 }
565
566 /*
567 * Attempt to acquire all of the necessary locks to launder a page and
568 * then call through the clustering layer to PUTPAGES. Wait a short
569 * time for a vnode lock.
570 *
571 * Requires the page and object lock on entry, releases both before return.
572 * Returns 0 on success and an errno otherwise.
573 */
574 static int
vm_pageout_clean(vm_page_t m,int * numpagedout)575 vm_pageout_clean(vm_page_t m, int *numpagedout)
576 {
577 struct vnode *vp;
578 struct mount *mp;
579 vm_object_t object;
580 vm_pindex_t pindex;
581 int error;
582
583 object = m->object;
584 VM_OBJECT_ASSERT_WLOCKED(object);
585 error = 0;
586 vp = NULL;
587 mp = NULL;
588
589 /*
590 * The object is already known NOT to be dead. It
591 * is possible for the vget() to block the whole
592 * pageout daemon, but the new low-memory handling
593 * code should prevent it.
594 *
595 * We can't wait forever for the vnode lock, we might
596 * deadlock due to a vn_read() getting stuck in
597 * vm_wait while holding this vnode. We skip the
598 * vnode if we can't get it in a reasonable amount
599 * of time.
600 */
601 if (object->type == OBJT_VNODE) {
602 vm_page_xunbusy(m);
603 vp = object->handle;
604 if (vp->v_type == VREG &&
605 vn_start_write(vp, &mp, V_NOWAIT) != 0) {
606 mp = NULL;
607 error = EDEADLK;
608 goto unlock_all;
609 }
610 KASSERT(mp != NULL,
611 ("vp %p with NULL v_mount", vp));
612 vm_object_reference_locked(object);
613 pindex = m->pindex;
614 VM_OBJECT_WUNLOCK(object);
615 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
616 vp = NULL;
617 error = EDEADLK;
618 goto unlock_mp;
619 }
620 VM_OBJECT_WLOCK(object);
621
622 /*
623 * Ensure that the object and vnode were not disassociated
624 * while locks were dropped.
625 */
626 if (vp->v_object != object) {
627 error = ENOENT;
628 goto unlock_all;
629 }
630
631 /*
632 * While the object was unlocked, the page may have been:
633 * (1) moved to a different queue,
634 * (2) reallocated to a different object,
635 * (3) reallocated to a different offset, or
636 * (4) cleaned.
637 */
638 if (!vm_page_in_laundry(m) || m->object != object ||
639 m->pindex != pindex || m->dirty == 0) {
640 error = ENXIO;
641 goto unlock_all;
642 }
643
644 /*
645 * The page may have been busied while the object lock was
646 * released.
647 */
648 if (vm_page_tryxbusy(m) == 0) {
649 error = EBUSY;
650 goto unlock_all;
651 }
652 }
653
654 /*
655 * Remove all writeable mappings, failing if the page is wired.
656 */
657 if (!vm_page_try_remove_write(m)) {
658 vm_page_xunbusy(m);
659 error = EBUSY;
660 goto unlock_all;
661 }
662
663 /*
664 * If a page is dirty, then it is either being washed
665 * (but not yet cleaned) or it is still in the
666 * laundry. If it is still in the laundry, then we
667 * start the cleaning operation.
668 */
669 if ((*numpagedout = vm_pageout_cluster(m)) == 0)
670 error = EIO;
671
672 unlock_all:
673 VM_OBJECT_WUNLOCK(object);
674
675 unlock_mp:
676 if (mp != NULL) {
677 if (vp != NULL)
678 vput(vp);
679 vm_object_deallocate(object);
680 vn_finished_write(mp);
681 }
682
683 return (error);
684 }
685
686 /*
687 * Attempt to launder the specified number of pages.
688 *
689 * Returns the number of pages successfully laundered.
690 */
691 static int
vm_pageout_launder(struct vm_domain * vmd,int launder,bool in_shortfall)692 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
693 {
694 struct scan_state ss;
695 struct vm_pagequeue *pq;
696 vm_object_t object;
697 vm_page_t m, marker;
698 vm_page_astate_t new, old;
699 int act_delta, error, numpagedout, queue, refs, starting_target;
700 int vnodes_skipped;
701 bool pageout_ok;
702
703 object = NULL;
704 starting_target = launder;
705 vnodes_skipped = 0;
706
707 /*
708 * Scan the laundry queues for pages eligible to be laundered. We stop
709 * once the target number of dirty pages have been laundered, or once
710 * we've reached the end of the queue. A single iteration of this loop
711 * may cause more than one page to be laundered because of clustering.
712 *
713 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
714 * swap devices are configured.
715 */
716 if (atomic_load_acq_int(&swapdev_enabled))
717 queue = PQ_UNSWAPPABLE;
718 else
719 queue = PQ_LAUNDRY;
720
721 scan:
722 marker = &vmd->vmd_markers[queue];
723 pq = &vmd->vmd_pagequeues[queue];
724 vm_pagequeue_lock(pq);
725 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
726 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
727 if (__predict_false((m->flags & PG_MARKER) != 0))
728 continue;
729
730 /*
731 * Don't touch a page that was removed from the queue after the
732 * page queue lock was released. Otherwise, ensure that any
733 * pending queue operations, such as dequeues for wired pages,
734 * are handled.
735 */
736 if (vm_pageout_defer(m, queue, true))
737 continue;
738
739 /*
740 * Lock the page's object.
741 */
742 if (object == NULL || object != m->object) {
743 if (object != NULL)
744 VM_OBJECT_WUNLOCK(object);
745 object = atomic_load_ptr(&m->object);
746 if (__predict_false(object == NULL))
747 /* The page is being freed by another thread. */
748 continue;
749
750 /* Depends on type-stability. */
751 VM_OBJECT_WLOCK(object);
752 if (__predict_false(m->object != object)) {
753 VM_OBJECT_WUNLOCK(object);
754 object = NULL;
755 continue;
756 }
757 }
758
759 if (vm_page_tryxbusy(m) == 0)
760 continue;
761
762 /*
763 * Check for wirings now that we hold the object lock and have
764 * exclusively busied the page. If the page is mapped, it may
765 * still be wired by pmap lookups. The call to
766 * vm_page_try_remove_all() below atomically checks for such
767 * wirings and removes mappings. If the page is unmapped, the
768 * wire count is guaranteed not to increase after this check.
769 */
770 if (__predict_false(vm_page_wired(m)))
771 goto skip_page;
772
773 /*
774 * Invalid pages can be easily freed. They cannot be
775 * mapped; vm_page_free() asserts this.
776 */
777 if (vm_page_none_valid(m))
778 goto free_page;
779
780 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
781
782 for (old = vm_page_astate_load(m);;) {
783 /*
784 * Check to see if the page has been removed from the
785 * queue since the first such check. Leave it alone if
786 * so, discarding any references collected by
787 * pmap_ts_referenced().
788 */
789 if (__predict_false(_vm_page_queue(old) == PQ_NONE))
790 goto skip_page;
791
792 new = old;
793 act_delta = refs;
794 if ((old.flags & PGA_REFERENCED) != 0) {
795 new.flags &= ~PGA_REFERENCED;
796 act_delta++;
797 }
798 if (act_delta == 0) {
799 ;
800 } else if (object->ref_count != 0) {
801 /*
802 * Increase the activation count if the page was
803 * referenced while in the laundry queue. This
804 * makes it less likely that the page will be
805 * returned prematurely to the laundry queue.
806 */
807 new.act_count += ACT_ADVANCE +
808 act_delta;
809 if (new.act_count > ACT_MAX)
810 new.act_count = ACT_MAX;
811
812 new.flags &= ~PGA_QUEUE_OP_MASK;
813 new.flags |= PGA_REQUEUE;
814 new.queue = PQ_ACTIVE;
815 if (!vm_page_pqstate_commit(m, &old, new))
816 continue;
817
818 /*
819 * If this was a background laundering, count
820 * activated pages towards our target. The
821 * purpose of background laundering is to ensure
822 * that pages are eventually cycled through the
823 * laundry queue, and an activation is a valid
824 * way out.
825 */
826 if (!in_shortfall)
827 launder--;
828 VM_CNT_INC(v_reactivated);
829 goto skip_page;
830 } else if ((object->flags & OBJ_DEAD) == 0) {
831 new.flags |= PGA_REQUEUE;
832 if (!vm_page_pqstate_commit(m, &old, new))
833 continue;
834 goto skip_page;
835 }
836 break;
837 }
838
839 /*
840 * If the page appears to be clean at the machine-independent
841 * layer, then remove all of its mappings from the pmap in
842 * anticipation of freeing it. If, however, any of the page's
843 * mappings allow write access, then the page may still be
844 * modified until the last of those mappings are removed.
845 */
846 if (object->ref_count != 0) {
847 vm_page_test_dirty(m);
848 if (m->dirty == 0 && !vm_page_try_remove_all(m))
849 goto skip_page;
850 }
851
852 /*
853 * Clean pages are freed, and dirty pages are paged out unless
854 * they belong to a dead object. Requeueing dirty pages from
855 * dead objects is pointless, as they are being paged out and
856 * freed by the thread that destroyed the object.
857 */
858 if (m->dirty == 0) {
859 free_page:
860 /*
861 * Now we are guaranteed that no other threads are
862 * manipulating the page, check for a last-second
863 * reference.
864 */
865 if (vm_pageout_defer(m, queue, true))
866 goto skip_page;
867 vm_page_free(m);
868 VM_CNT_INC(v_dfree);
869 } else if ((object->flags & OBJ_DEAD) == 0) {
870 if ((object->flags & OBJ_SWAP) != 0)
871 pageout_ok = disable_swap_pageouts == 0;
872 else
873 pageout_ok = true;
874 if (!pageout_ok) {
875 vm_page_launder(m);
876 goto skip_page;
877 }
878
879 /*
880 * Form a cluster with adjacent, dirty pages from the
881 * same object, and page out that entire cluster.
882 *
883 * The adjacent, dirty pages must also be in the
884 * laundry. However, their mappings are not checked
885 * for new references. Consequently, a recently
886 * referenced page may be paged out. However, that
887 * page will not be prematurely reclaimed. After page
888 * out, the page will be placed in the inactive queue,
889 * where any new references will be detected and the
890 * page reactivated.
891 */
892 error = vm_pageout_clean(m, &numpagedout);
893 if (error == 0) {
894 launder -= numpagedout;
895 ss.scanned += numpagedout;
896 } else if (error == EDEADLK) {
897 pageout_lock_miss++;
898 vnodes_skipped++;
899 }
900 object = NULL;
901 } else {
902 skip_page:
903 vm_page_xunbusy(m);
904 }
905 }
906 if (object != NULL) {
907 VM_OBJECT_WUNLOCK(object);
908 object = NULL;
909 }
910 vm_pagequeue_lock(pq);
911 vm_pageout_end_scan(&ss);
912 vm_pagequeue_unlock(pq);
913
914 if (launder > 0 && queue == PQ_UNSWAPPABLE) {
915 queue = PQ_LAUNDRY;
916 goto scan;
917 }
918
919 /*
920 * Wakeup the sync daemon if we skipped a vnode in a writeable object
921 * and we didn't launder enough pages.
922 */
923 if (vnodes_skipped > 0 && launder > 0)
924 (void)speedup_syncer();
925
926 return (starting_target - launder);
927 }
928
929 /*
930 * Compute the integer square root.
931 */
932 static u_int
isqrt(u_int num)933 isqrt(u_int num)
934 {
935 u_int bit, root, tmp;
936
937 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
938 root = 0;
939 while (bit != 0) {
940 tmp = root + bit;
941 root >>= 1;
942 if (num >= tmp) {
943 num -= tmp;
944 root += bit;
945 }
946 bit >>= 2;
947 }
948 return (root);
949 }
950
951 /*
952 * Perform the work of the laundry thread: periodically wake up and determine
953 * whether any pages need to be laundered. If so, determine the number of pages
954 * that need to be laundered, and launder them.
955 */
956 static void
vm_pageout_laundry_worker(void * arg)957 vm_pageout_laundry_worker(void *arg)
958 {
959 struct vm_domain *vmd;
960 struct vm_pagequeue *pq;
961 uint64_t nclean, ndirty, nfreed;
962 int domain, last_target, launder, shortfall, shortfall_cycle, target;
963 bool in_shortfall;
964
965 domain = (uintptr_t)arg;
966 vmd = VM_DOMAIN(domain);
967 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
968 KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
969
970 shortfall = 0;
971 in_shortfall = false;
972 shortfall_cycle = 0;
973 last_target = target = 0;
974 nfreed = 0;
975
976 /*
977 * Calls to these handlers are serialized by the swap syscall lock.
978 */
979 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
980 EVENTHANDLER_PRI_ANY);
981 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
982 EVENTHANDLER_PRI_ANY);
983
984 /*
985 * The pageout laundry worker is never done, so loop forever.
986 */
987 for (;;) {
988 KASSERT(target >= 0, ("negative target %d", target));
989 KASSERT(shortfall_cycle >= 0,
990 ("negative cycle %d", shortfall_cycle));
991 launder = 0;
992
993 /*
994 * First determine whether we need to launder pages to meet a
995 * shortage of free pages.
996 */
997 if (shortfall > 0) {
998 in_shortfall = true;
999 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1000 target = shortfall;
1001 } else if (!in_shortfall)
1002 goto trybackground;
1003 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1004 /*
1005 * We recently entered shortfall and began laundering
1006 * pages. If we have completed that laundering run
1007 * (and we are no longer in shortfall) or we have met
1008 * our laundry target through other activity, then we
1009 * can stop laundering pages.
1010 */
1011 in_shortfall = false;
1012 target = 0;
1013 goto trybackground;
1014 }
1015 launder = target / shortfall_cycle--;
1016 goto dolaundry;
1017
1018 /*
1019 * There's no immediate need to launder any pages; see if we
1020 * meet the conditions to perform background laundering:
1021 *
1022 * 1. The ratio of dirty to clean inactive pages exceeds the
1023 * background laundering threshold, or
1024 * 2. we haven't yet reached the target of the current
1025 * background laundering run.
1026 *
1027 * The background laundering threshold is not a constant.
1028 * Instead, it is a slowly growing function of the number of
1029 * clean pages freed by the page daemon since the last
1030 * background laundering. Thus, as the ratio of dirty to
1031 * clean inactive pages grows, the amount of memory pressure
1032 * required to trigger laundering decreases. We ensure
1033 * that the threshold is non-zero after an inactive queue
1034 * scan, even if that scan failed to free a single clean page.
1035 */
1036 trybackground:
1037 nclean = vmd->vmd_free_count +
1038 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1039 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1040 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1041 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1042 target = vmd->vmd_background_launder_target;
1043 }
1044
1045 /*
1046 * We have a non-zero background laundering target. If we've
1047 * laundered up to our maximum without observing a page daemon
1048 * request, just stop. This is a safety belt that ensures we
1049 * don't launder an excessive amount if memory pressure is low
1050 * and the ratio of dirty to clean pages is large. Otherwise,
1051 * proceed at the background laundering rate.
1052 */
1053 if (target > 0) {
1054 if (nfreed > 0) {
1055 nfreed = 0;
1056 last_target = target;
1057 } else if (last_target - target >=
1058 vm_background_launder_max * PAGE_SIZE / 1024) {
1059 target = 0;
1060 }
1061 launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1062 launder /= VM_LAUNDER_RATE;
1063 if (launder > target)
1064 launder = target;
1065 }
1066
1067 dolaundry:
1068 if (launder > 0) {
1069 /*
1070 * Because of I/O clustering, the number of laundered
1071 * pages could exceed "target" by the maximum size of
1072 * a cluster minus one.
1073 */
1074 target -= min(vm_pageout_launder(vmd, launder,
1075 in_shortfall), target);
1076 pause("laundp", hz / VM_LAUNDER_RATE);
1077 }
1078
1079 /*
1080 * If we're not currently laundering pages and the page daemon
1081 * hasn't posted a new request, sleep until the page daemon
1082 * kicks us.
1083 */
1084 vm_pagequeue_lock(pq);
1085 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1086 (void)mtx_sleep(&vmd->vmd_laundry_request,
1087 vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1088
1089 /*
1090 * If the pagedaemon has indicated that it's in shortfall, start
1091 * a shortfall laundering unless we're already in the middle of
1092 * one. This may preempt a background laundering.
1093 */
1094 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1095 (!in_shortfall || shortfall_cycle == 0)) {
1096 shortfall = vm_laundry_target(vmd) +
1097 vmd->vmd_pageout_deficit;
1098 target = 0;
1099 } else
1100 shortfall = 0;
1101
1102 if (target == 0)
1103 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1104 nfreed += vmd->vmd_clean_pages_freed;
1105 vmd->vmd_clean_pages_freed = 0;
1106 vm_pagequeue_unlock(pq);
1107 }
1108 }
1109
1110 /*
1111 * Compute the number of pages we want to try to move from the
1112 * active queue to either the inactive or laundry queue.
1113 *
1114 * When scanning active pages during a shortage, we make clean pages
1115 * count more heavily towards the page shortage than dirty pages.
1116 * This is because dirty pages must be laundered before they can be
1117 * reused and thus have less utility when attempting to quickly
1118 * alleviate a free page shortage. However, this weighting also
1119 * causes the scan to deactivate dirty pages more aggressively,
1120 * improving the effectiveness of clustering.
1121 */
1122 static int
vm_pageout_active_target(struct vm_domain * vmd)1123 vm_pageout_active_target(struct vm_domain *vmd)
1124 {
1125 int shortage;
1126
1127 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1128 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1129 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1130 shortage *= act_scan_laundry_weight;
1131 return (shortage);
1132 }
1133
1134 /*
1135 * Scan the active queue. If there is no shortage of inactive pages, scan a
1136 * small portion of the queue in order to maintain quasi-LRU.
1137 */
1138 static void
vm_pageout_scan_active(struct vm_domain * vmd,int page_shortage)1139 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1140 {
1141 struct scan_state ss;
1142 vm_object_t object;
1143 vm_page_t m, marker;
1144 struct vm_pagequeue *pq;
1145 vm_page_astate_t old, new;
1146 long min_scan;
1147 int act_delta, max_scan, ps_delta, refs, scan_tick;
1148 uint8_t nqueue;
1149
1150 marker = &vmd->vmd_markers[PQ_ACTIVE];
1151 pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1152 vm_pagequeue_lock(pq);
1153
1154 /*
1155 * If we're just idle polling attempt to visit every
1156 * active page within 'update_period' seconds.
1157 */
1158 scan_tick = ticks;
1159 if (vm_pageout_update_period != 0) {
1160 min_scan = pq->pq_cnt;
1161 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1162 min_scan /= hz * vm_pageout_update_period;
1163 } else
1164 min_scan = 0;
1165 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1166 vmd->vmd_last_active_scan = scan_tick;
1167
1168 /*
1169 * Scan the active queue for pages that can be deactivated. Update
1170 * the per-page activity counter and use it to identify deactivation
1171 * candidates. Held pages may be deactivated.
1172 *
1173 * To avoid requeuing each page that remains in the active queue, we
1174 * implement the CLOCK algorithm. To keep the implementation of the
1175 * enqueue operation consistent for all page queues, we use two hands,
1176 * represented by marker pages. Scans begin at the first hand, which
1177 * precedes the second hand in the queue. When the two hands meet,
1178 * they are moved back to the head and tail of the queue, respectively,
1179 * and scanning resumes.
1180 */
1181 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1182 act_scan:
1183 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1184 while ((m = vm_pageout_next(&ss, false)) != NULL) {
1185 if (__predict_false(m == &vmd->vmd_clock[1])) {
1186 vm_pagequeue_lock(pq);
1187 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1188 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1189 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1190 plinks.q);
1191 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1192 plinks.q);
1193 max_scan -= ss.scanned;
1194 vm_pageout_end_scan(&ss);
1195 goto act_scan;
1196 }
1197 if (__predict_false((m->flags & PG_MARKER) != 0))
1198 continue;
1199
1200 /*
1201 * Don't touch a page that was removed from the queue after the
1202 * page queue lock was released. Otherwise, ensure that any
1203 * pending queue operations, such as dequeues for wired pages,
1204 * are handled.
1205 */
1206 if (vm_pageout_defer(m, PQ_ACTIVE, true))
1207 continue;
1208
1209 /*
1210 * A page's object pointer may be set to NULL before
1211 * the object lock is acquired.
1212 */
1213 object = atomic_load_ptr(&m->object);
1214 if (__predict_false(object == NULL))
1215 /*
1216 * The page has been removed from its object.
1217 */
1218 continue;
1219
1220 /* Deferred free of swap space. */
1221 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1222 VM_OBJECT_TRYWLOCK(object)) {
1223 if (m->object == object)
1224 vm_pager_page_unswapped(m);
1225 VM_OBJECT_WUNLOCK(object);
1226 }
1227
1228 /*
1229 * Check to see "how much" the page has been used.
1230 *
1231 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1232 * that a reference from a concurrently destroyed mapping is
1233 * observed here and now.
1234 *
1235 * Perform an unsynchronized object ref count check. While
1236 * the page lock ensures that the page is not reallocated to
1237 * another object, in particular, one with unmanaged mappings
1238 * that cannot support pmap_ts_referenced(), two races are,
1239 * nonetheless, possible:
1240 * 1) The count was transitioning to zero, but we saw a non-
1241 * zero value. pmap_ts_referenced() will return zero
1242 * because the page is not mapped.
1243 * 2) The count was transitioning to one, but we saw zero.
1244 * This race delays the detection of a new reference. At
1245 * worst, we will deactivate and reactivate the page.
1246 */
1247 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1248
1249 old = vm_page_astate_load(m);
1250 do {
1251 /*
1252 * Check to see if the page has been removed from the
1253 * queue since the first such check. Leave it alone if
1254 * so, discarding any references collected by
1255 * pmap_ts_referenced().
1256 */
1257 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1258 ps_delta = 0;
1259 break;
1260 }
1261
1262 /*
1263 * Advance or decay the act_count based on recent usage.
1264 */
1265 new = old;
1266 act_delta = refs;
1267 if ((old.flags & PGA_REFERENCED) != 0) {
1268 new.flags &= ~PGA_REFERENCED;
1269 act_delta++;
1270 }
1271 if (act_delta != 0) {
1272 new.act_count += ACT_ADVANCE + act_delta;
1273 if (new.act_count > ACT_MAX)
1274 new.act_count = ACT_MAX;
1275 } else {
1276 new.act_count -= min(new.act_count,
1277 ACT_DECLINE);
1278 }
1279
1280 if (new.act_count > 0) {
1281 /*
1282 * Adjust the activation count and keep the page
1283 * in the active queue. The count might be left
1284 * unchanged if it is saturated. The page may
1285 * have been moved to a different queue since we
1286 * started the scan, in which case we move it
1287 * back.
1288 */
1289 ps_delta = 0;
1290 if (old.queue != PQ_ACTIVE) {
1291 new.flags &= ~PGA_QUEUE_OP_MASK;
1292 new.flags |= PGA_REQUEUE;
1293 new.queue = PQ_ACTIVE;
1294 }
1295 } else {
1296 /*
1297 * When not short for inactive pages, let dirty
1298 * pages go through the inactive queue before
1299 * moving to the laundry queue. This gives them
1300 * some extra time to be reactivated,
1301 * potentially avoiding an expensive pageout.
1302 * However, during a page shortage, the inactive
1303 * queue is necessarily small, and so dirty
1304 * pages would only spend a trivial amount of
1305 * time in the inactive queue. Therefore, we
1306 * might as well place them directly in the
1307 * laundry queue to reduce queuing overhead.
1308 *
1309 * Calling vm_page_test_dirty() here would
1310 * require acquisition of the object's write
1311 * lock. However, during a page shortage,
1312 * directing dirty pages into the laundry queue
1313 * is only an optimization and not a
1314 * requirement. Therefore, we simply rely on
1315 * the opportunistic updates to the page's dirty
1316 * field by the pmap.
1317 */
1318 if (page_shortage <= 0) {
1319 nqueue = PQ_INACTIVE;
1320 ps_delta = 0;
1321 } else if (m->dirty == 0) {
1322 nqueue = PQ_INACTIVE;
1323 ps_delta = act_scan_laundry_weight;
1324 } else {
1325 nqueue = PQ_LAUNDRY;
1326 ps_delta = 1;
1327 }
1328
1329 new.flags &= ~PGA_QUEUE_OP_MASK;
1330 new.flags |= PGA_REQUEUE;
1331 new.queue = nqueue;
1332 }
1333 } while (!vm_page_pqstate_commit(m, &old, new));
1334
1335 page_shortage -= ps_delta;
1336 }
1337 vm_pagequeue_lock(pq);
1338 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1339 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1340 vm_pageout_end_scan(&ss);
1341 vm_pagequeue_unlock(pq);
1342 }
1343
1344 static int
vm_pageout_reinsert_inactive_page(struct vm_pagequeue * pq,vm_page_t marker,vm_page_t m)1345 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1346 vm_page_t m)
1347 {
1348 vm_page_astate_t as;
1349
1350 vm_pagequeue_assert_locked(pq);
1351
1352 as = vm_page_astate_load(m);
1353 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1354 return (0);
1355 vm_page_aflag_set(m, PGA_ENQUEUED);
1356 TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1357 return (1);
1358 }
1359
1360 /*
1361 * Re-add stuck pages to the inactive queue. We will examine them again
1362 * during the next scan. If the queue state of a page has changed since
1363 * it was physically removed from the page queue in
1364 * vm_pageout_collect_batch(), don't do anything with that page.
1365 */
1366 static void
vm_pageout_reinsert_inactive(struct scan_state * ss,struct vm_batchqueue * bq,vm_page_t m)1367 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1368 vm_page_t m)
1369 {
1370 struct vm_pagequeue *pq;
1371 vm_page_t marker;
1372 int delta;
1373
1374 delta = 0;
1375 marker = ss->marker;
1376 pq = ss->pq;
1377
1378 if (m != NULL) {
1379 if (vm_batchqueue_insert(bq, m) != 0)
1380 return;
1381 vm_pagequeue_lock(pq);
1382 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1383 } else
1384 vm_pagequeue_lock(pq);
1385 while ((m = vm_batchqueue_pop(bq)) != NULL)
1386 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1387 vm_pagequeue_cnt_add(pq, delta);
1388 vm_pagequeue_unlock(pq);
1389 vm_batchqueue_init(bq);
1390 }
1391
1392 static void
vm_pageout_scan_inactive(struct vm_domain * vmd,int page_shortage)1393 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1394 {
1395 struct timeval start, end;
1396 struct scan_state ss;
1397 struct vm_batchqueue rq;
1398 struct vm_page marker_page;
1399 vm_page_t m, marker;
1400 struct vm_pagequeue *pq;
1401 vm_object_t object;
1402 vm_page_astate_t old, new;
1403 int act_delta, addl_page_shortage, starting_page_shortage, refs;
1404
1405 object = NULL;
1406 vm_batchqueue_init(&rq);
1407 getmicrouptime(&start);
1408
1409 /*
1410 * The addl_page_shortage is an estimate of the number of temporarily
1411 * stuck pages in the inactive queue. In other words, the
1412 * number of pages from the inactive count that should be
1413 * discounted in setting the target for the active queue scan.
1414 */
1415 addl_page_shortage = 0;
1416
1417 /*
1418 * Start scanning the inactive queue for pages that we can free. The
1419 * scan will stop when we reach the target or we have scanned the
1420 * entire queue. (Note that m->a.act_count is not used to make
1421 * decisions for the inactive queue, only for the active queue.)
1422 */
1423 starting_page_shortage = page_shortage;
1424 marker = &marker_page;
1425 vm_page_init_marker(marker, PQ_INACTIVE, 0);
1426 pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1427 vm_pagequeue_lock(pq);
1428 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1429 while (page_shortage > 0) {
1430 /*
1431 * If we need to refill the scan batch queue, release any
1432 * optimistically held object lock. This gives someone else a
1433 * chance to grab the lock, and also avoids holding it while we
1434 * do unrelated work.
1435 */
1436 if (object != NULL && vm_batchqueue_empty(&ss.bq)) {
1437 VM_OBJECT_WUNLOCK(object);
1438 object = NULL;
1439 }
1440
1441 m = vm_pageout_next(&ss, true);
1442 if (m == NULL)
1443 break;
1444 KASSERT((m->flags & PG_MARKER) == 0,
1445 ("marker page %p was dequeued", m));
1446
1447 /*
1448 * Don't touch a page that was removed from the queue after the
1449 * page queue lock was released. Otherwise, ensure that any
1450 * pending queue operations, such as dequeues for wired pages,
1451 * are handled.
1452 */
1453 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1454 continue;
1455
1456 /*
1457 * Lock the page's object.
1458 */
1459 if (object == NULL || object != m->object) {
1460 if (object != NULL)
1461 VM_OBJECT_WUNLOCK(object);
1462 object = atomic_load_ptr(&m->object);
1463 if (__predict_false(object == NULL))
1464 /* The page is being freed by another thread. */
1465 continue;
1466
1467 /* Depends on type-stability. */
1468 VM_OBJECT_WLOCK(object);
1469 if (__predict_false(m->object != object)) {
1470 VM_OBJECT_WUNLOCK(object);
1471 object = NULL;
1472 goto reinsert;
1473 }
1474 }
1475
1476 if (vm_page_tryxbusy(m) == 0) {
1477 /*
1478 * Don't mess with busy pages. Leave them at
1479 * the front of the queue. Most likely, they
1480 * are being paged out and will leave the
1481 * queue shortly after the scan finishes. So,
1482 * they ought to be discounted from the
1483 * inactive count.
1484 */
1485 addl_page_shortage++;
1486 goto reinsert;
1487 }
1488
1489 /* Deferred free of swap space. */
1490 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1491 vm_pager_page_unswapped(m);
1492
1493 /*
1494 * Check for wirings now that we hold the object lock and have
1495 * exclusively busied the page. If the page is mapped, it may
1496 * still be wired by pmap lookups. The call to
1497 * vm_page_try_remove_all() below atomically checks for such
1498 * wirings and removes mappings. If the page is unmapped, the
1499 * wire count is guaranteed not to increase after this check.
1500 */
1501 if (__predict_false(vm_page_wired(m)))
1502 goto skip_page;
1503
1504 /*
1505 * Invalid pages can be easily freed. They cannot be
1506 * mapped, vm_page_free() asserts this.
1507 */
1508 if (vm_page_none_valid(m))
1509 goto free_page;
1510
1511 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1512
1513 for (old = vm_page_astate_load(m);;) {
1514 /*
1515 * Check to see if the page has been removed from the
1516 * queue since the first such check. Leave it alone if
1517 * so, discarding any references collected by
1518 * pmap_ts_referenced().
1519 */
1520 if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1521 goto skip_page;
1522
1523 new = old;
1524 act_delta = refs;
1525 if ((old.flags & PGA_REFERENCED) != 0) {
1526 new.flags &= ~PGA_REFERENCED;
1527 act_delta++;
1528 }
1529 if (act_delta == 0) {
1530 ;
1531 } else if (object->ref_count != 0) {
1532 /*
1533 * Increase the activation count if the
1534 * page was referenced while in the
1535 * inactive queue. This makes it less
1536 * likely that the page will be returned
1537 * prematurely to the inactive queue.
1538 */
1539 new.act_count += ACT_ADVANCE +
1540 act_delta;
1541 if (new.act_count > ACT_MAX)
1542 new.act_count = ACT_MAX;
1543
1544 new.flags &= ~PGA_QUEUE_OP_MASK;
1545 new.flags |= PGA_REQUEUE;
1546 new.queue = PQ_ACTIVE;
1547 if (!vm_page_pqstate_commit(m, &old, new))
1548 continue;
1549
1550 VM_CNT_INC(v_reactivated);
1551 goto skip_page;
1552 } else if ((object->flags & OBJ_DEAD) == 0) {
1553 new.queue = PQ_INACTIVE;
1554 new.flags |= PGA_REQUEUE;
1555 if (!vm_page_pqstate_commit(m, &old, new))
1556 continue;
1557 goto skip_page;
1558 }
1559 break;
1560 }
1561
1562 /*
1563 * If the page appears to be clean at the machine-independent
1564 * layer, then remove all of its mappings from the pmap in
1565 * anticipation of freeing it. If, however, any of the page's
1566 * mappings allow write access, then the page may still be
1567 * modified until the last of those mappings are removed.
1568 */
1569 if (object->ref_count != 0) {
1570 vm_page_test_dirty(m);
1571 if (m->dirty == 0 && !vm_page_try_remove_all(m))
1572 goto skip_page;
1573 }
1574
1575 /*
1576 * Clean pages can be freed, but dirty pages must be sent back
1577 * to the laundry, unless they belong to a dead object.
1578 * Requeueing dirty pages from dead objects is pointless, as
1579 * they are being paged out and freed by the thread that
1580 * destroyed the object.
1581 */
1582 if (m->dirty == 0) {
1583 free_page:
1584 /*
1585 * Now we are guaranteed that no other threads are
1586 * manipulating the page, check for a last-second
1587 * reference that would save it from doom.
1588 */
1589 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1590 goto skip_page;
1591
1592 /*
1593 * Because we dequeued the page and have already checked
1594 * for pending dequeue and enqueue requests, we can
1595 * safely disassociate the page from the inactive queue
1596 * without holding the queue lock.
1597 */
1598 m->a.queue = PQ_NONE;
1599 vm_page_free(m);
1600 page_shortage--;
1601 continue;
1602 }
1603 if ((object->flags & OBJ_DEAD) == 0)
1604 vm_page_launder(m);
1605 skip_page:
1606 vm_page_xunbusy(m);
1607 continue;
1608 reinsert:
1609 vm_pageout_reinsert_inactive(&ss, &rq, m);
1610 }
1611 if (object != NULL)
1612 VM_OBJECT_WUNLOCK(object);
1613 vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1614 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1615 vm_pagequeue_lock(pq);
1616 vm_pageout_end_scan(&ss);
1617 vm_pagequeue_unlock(pq);
1618
1619 /*
1620 * Record the remaining shortage and the progress and rate it was made.
1621 */
1622 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1623 getmicrouptime(&end);
1624 timevalsub(&end, &start);
1625 atomic_add_int(&vmd->vmd_inactive_us,
1626 end.tv_sec * 1000000 + end.tv_usec);
1627 atomic_add_int(&vmd->vmd_inactive_freed,
1628 starting_page_shortage - page_shortage);
1629 }
1630
1631 /*
1632 * Dispatch a number of inactive threads according to load and collect the
1633 * results to present a coherent view of paging activity on this domain.
1634 */
1635 static int
vm_pageout_inactive_dispatch(struct vm_domain * vmd,int shortage)1636 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1637 {
1638 u_int freed, pps, slop, threads, us;
1639
1640 vmd->vmd_inactive_shortage = shortage;
1641 slop = 0;
1642
1643 /*
1644 * If we have more work than we can do in a quarter of our interval, we
1645 * fire off multiple threads to process it.
1646 */
1647 threads = vmd->vmd_inactive_threads;
1648 if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
1649 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1650 vmd->vmd_inactive_shortage /= threads;
1651 slop = shortage % threads;
1652 vm_domain_pageout_lock(vmd);
1653 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1654 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1655 wakeup(&vmd->vmd_inactive_shortage);
1656 vm_domain_pageout_unlock(vmd);
1657 }
1658
1659 /* Run the local thread scan. */
1660 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1661
1662 /*
1663 * Block until helper threads report results and then accumulate
1664 * totals.
1665 */
1666 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1667 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1668 VM_CNT_ADD(v_dfree, freed);
1669
1670 /*
1671 * Calculate the per-thread paging rate with an exponential decay of
1672 * prior results. Careful to avoid integer rounding errors with large
1673 * us values.
1674 */
1675 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1676 if (us > 1000000)
1677 /* Keep rounding to tenths */
1678 pps = (freed * 10) / ((us * 10) / 1000000);
1679 else
1680 pps = (1000000 / us) * freed;
1681 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1682
1683 return (shortage - freed);
1684 }
1685
1686 /*
1687 * Attempt to reclaim the requested number of pages from the inactive queue.
1688 * Returns true if the shortage was addressed.
1689 */
1690 static int
vm_pageout_inactive(struct vm_domain * vmd,int shortage,int * addl_shortage)1691 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1692 {
1693 struct vm_pagequeue *pq;
1694 u_int addl_page_shortage, deficit, page_shortage;
1695 u_int starting_page_shortage;
1696
1697 /*
1698 * vmd_pageout_deficit counts the number of pages requested in
1699 * allocations that failed because of a free page shortage. We assume
1700 * that the allocations will be reattempted and thus include the deficit
1701 * in our scan target.
1702 */
1703 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1704 starting_page_shortage = shortage + deficit;
1705
1706 /*
1707 * Run the inactive scan on as many threads as is necessary.
1708 */
1709 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1710 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1711
1712 /*
1713 * Wake up the laundry thread so that it can perform any needed
1714 * laundering. If we didn't meet our target, we're in shortfall and
1715 * need to launder more aggressively. If PQ_LAUNDRY is empty and no
1716 * swap devices are configured, the laundry thread has no work to do, so
1717 * don't bother waking it up.
1718 *
1719 * The laundry thread uses the number of inactive queue scans elapsed
1720 * since the last laundering to determine whether to launder again, so
1721 * keep count.
1722 */
1723 if (starting_page_shortage > 0) {
1724 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1725 vm_pagequeue_lock(pq);
1726 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1727 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1728 if (page_shortage > 0) {
1729 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1730 VM_CNT_INC(v_pdshortfalls);
1731 } else if (vmd->vmd_laundry_request !=
1732 VM_LAUNDRY_SHORTFALL)
1733 vmd->vmd_laundry_request =
1734 VM_LAUNDRY_BACKGROUND;
1735 wakeup(&vmd->vmd_laundry_request);
1736 }
1737 vmd->vmd_clean_pages_freed +=
1738 starting_page_shortage - page_shortage;
1739 vm_pagequeue_unlock(pq);
1740 }
1741
1742 /*
1743 * If the inactive queue scan fails repeatedly to meet its
1744 * target, kill the largest process.
1745 */
1746 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1747
1748 /*
1749 * See the description of addl_page_shortage above.
1750 */
1751 *addl_shortage = addl_page_shortage + deficit;
1752
1753 return (page_shortage <= 0);
1754 }
1755
1756 static int vm_pageout_oom_vote;
1757
1758 /*
1759 * The pagedaemon threads randlomly select one to perform the
1760 * OOM. Trying to kill processes before all pagedaemons
1761 * failed to reach free target is premature.
1762 */
1763 static void
vm_pageout_mightbe_oom(struct vm_domain * vmd,int page_shortage,int starting_page_shortage)1764 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1765 int starting_page_shortage)
1766 {
1767 int old_vote;
1768
1769 if (starting_page_shortage <= 0 || starting_page_shortage !=
1770 page_shortage)
1771 vmd->vmd_oom_seq = 0;
1772 else
1773 vmd->vmd_oom_seq++;
1774 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1775 if (vmd->vmd_oom) {
1776 vmd->vmd_oom = FALSE;
1777 atomic_subtract_int(&vm_pageout_oom_vote, 1);
1778 }
1779 return;
1780 }
1781
1782 /*
1783 * Do not follow the call sequence until OOM condition is
1784 * cleared.
1785 */
1786 vmd->vmd_oom_seq = 0;
1787
1788 if (vmd->vmd_oom)
1789 return;
1790
1791 vmd->vmd_oom = TRUE;
1792 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1793 if (old_vote != vm_ndomains - 1)
1794 return;
1795
1796 /*
1797 * The current pagedaemon thread is the last in the quorum to
1798 * start OOM. Initiate the selection and signaling of the
1799 * victim.
1800 */
1801 vm_pageout_oom(VM_OOM_MEM);
1802
1803 /*
1804 * After one round of OOM terror, recall our vote. On the
1805 * next pass, current pagedaemon would vote again if the low
1806 * memory condition is still there, due to vmd_oom being
1807 * false.
1808 */
1809 vmd->vmd_oom = FALSE;
1810 atomic_subtract_int(&vm_pageout_oom_vote, 1);
1811 }
1812
1813 /*
1814 * The OOM killer is the page daemon's action of last resort when
1815 * memory allocation requests have been stalled for a prolonged period
1816 * of time because it cannot reclaim memory. This function computes
1817 * the approximate number of physical pages that could be reclaimed if
1818 * the specified address space is destroyed.
1819 *
1820 * Private, anonymous memory owned by the address space is the
1821 * principal resource that we expect to recover after an OOM kill.
1822 * Since the physical pages mapped by the address space's COW entries
1823 * are typically shared pages, they are unlikely to be released and so
1824 * they are not counted.
1825 *
1826 * To get to the point where the page daemon runs the OOM killer, its
1827 * efforts to write-back vnode-backed pages may have stalled. This
1828 * could be caused by a memory allocation deadlock in the write path
1829 * that might be resolved by an OOM kill. Therefore, physical pages
1830 * belonging to vnode-backed objects are counted, because they might
1831 * be freed without being written out first if the address space holds
1832 * the last reference to an unlinked vnode.
1833 *
1834 * Similarly, physical pages belonging to OBJT_PHYS objects are
1835 * counted because the address space might hold the last reference to
1836 * the object.
1837 */
1838 static long
vm_pageout_oom_pagecount(struct vmspace * vmspace)1839 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1840 {
1841 vm_map_t map;
1842 vm_map_entry_t entry;
1843 vm_object_t obj;
1844 long res;
1845
1846 map = &vmspace->vm_map;
1847 KASSERT(!map->system_map, ("system map"));
1848 sx_assert(&map->lock, SA_LOCKED);
1849 res = 0;
1850 VM_MAP_ENTRY_FOREACH(entry, map) {
1851 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1852 continue;
1853 obj = entry->object.vm_object;
1854 if (obj == NULL)
1855 continue;
1856 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1857 obj->ref_count != 1)
1858 continue;
1859 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
1860 (obj->flags & OBJ_SWAP) != 0)
1861 res += obj->resident_page_count;
1862 }
1863 return (res);
1864 }
1865
1866 static int vm_oom_ratelim_last;
1867 static int vm_oom_pf_secs = 10;
1868 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1869 "");
1870 static struct mtx vm_oom_ratelim_mtx;
1871
1872 void
vm_pageout_oom(int shortage)1873 vm_pageout_oom(int shortage)
1874 {
1875 const char *reason;
1876 struct proc *p, *bigproc;
1877 vm_offset_t size, bigsize;
1878 struct thread *td;
1879 struct vmspace *vm;
1880 int now;
1881 bool breakout;
1882
1883 /*
1884 * For OOM requests originating from vm_fault(), there is a high
1885 * chance that a single large process faults simultaneously in
1886 * several threads. Also, on an active system running many
1887 * processes of middle-size, like buildworld, all of them
1888 * could fault almost simultaneously as well.
1889 *
1890 * To avoid killing too many processes, rate-limit OOMs
1891 * initiated by vm_fault() time-outs on the waits for free
1892 * pages.
1893 */
1894 mtx_lock(&vm_oom_ratelim_mtx);
1895 now = ticks;
1896 if (shortage == VM_OOM_MEM_PF &&
1897 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1898 mtx_unlock(&vm_oom_ratelim_mtx);
1899 return;
1900 }
1901 vm_oom_ratelim_last = now;
1902 mtx_unlock(&vm_oom_ratelim_mtx);
1903
1904 /*
1905 * We keep the process bigproc locked once we find it to keep anyone
1906 * from messing with it; however, there is a possibility of
1907 * deadlock if process B is bigproc and one of its child processes
1908 * attempts to propagate a signal to B while we are waiting for A's
1909 * lock while walking this list. To avoid this, we don't block on
1910 * the process lock but just skip a process if it is already locked.
1911 */
1912 bigproc = NULL;
1913 bigsize = 0;
1914 sx_slock(&allproc_lock);
1915 FOREACH_PROC_IN_SYSTEM(p) {
1916 PROC_LOCK(p);
1917
1918 /*
1919 * If this is a system, protected or killed process, skip it.
1920 */
1921 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1922 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1923 p->p_pid == 1 || P_KILLED(p) ||
1924 (p->p_pid < 48 && swap_pager_avail != 0)) {
1925 PROC_UNLOCK(p);
1926 continue;
1927 }
1928 /*
1929 * If the process is in a non-running type state,
1930 * don't touch it. Check all the threads individually.
1931 */
1932 breakout = false;
1933 FOREACH_THREAD_IN_PROC(p, td) {
1934 thread_lock(td);
1935 if (!TD_ON_RUNQ(td) &&
1936 !TD_IS_RUNNING(td) &&
1937 !TD_IS_SLEEPING(td) &&
1938 !TD_IS_SUSPENDED(td)) {
1939 thread_unlock(td);
1940 breakout = true;
1941 break;
1942 }
1943 thread_unlock(td);
1944 }
1945 if (breakout) {
1946 PROC_UNLOCK(p);
1947 continue;
1948 }
1949 /*
1950 * get the process size
1951 */
1952 vm = vmspace_acquire_ref(p);
1953 if (vm == NULL) {
1954 PROC_UNLOCK(p);
1955 continue;
1956 }
1957 _PHOLD(p);
1958 PROC_UNLOCK(p);
1959 sx_sunlock(&allproc_lock);
1960 if (!vm_map_trylock_read(&vm->vm_map)) {
1961 vmspace_free(vm);
1962 sx_slock(&allproc_lock);
1963 PRELE(p);
1964 continue;
1965 }
1966 size = vmspace_swap_count(vm);
1967 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1968 size += vm_pageout_oom_pagecount(vm);
1969 vm_map_unlock_read(&vm->vm_map);
1970 vmspace_free(vm);
1971 sx_slock(&allproc_lock);
1972
1973 /*
1974 * If this process is bigger than the biggest one,
1975 * remember it.
1976 */
1977 if (size > bigsize) {
1978 if (bigproc != NULL)
1979 PRELE(bigproc);
1980 bigproc = p;
1981 bigsize = size;
1982 } else {
1983 PRELE(p);
1984 }
1985 }
1986 sx_sunlock(&allproc_lock);
1987
1988 if (bigproc != NULL) {
1989 switch (shortage) {
1990 case VM_OOM_MEM:
1991 reason = "failed to reclaim memory";
1992 break;
1993 case VM_OOM_MEM_PF:
1994 reason = "a thread waited too long to allocate a page";
1995 break;
1996 case VM_OOM_SWAPZ:
1997 reason = "out of swap space";
1998 break;
1999 default:
2000 panic("unknown OOM reason %d", shortage);
2001 }
2002 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2003 panic("%s", reason);
2004 PROC_LOCK(bigproc);
2005 killproc(bigproc, reason);
2006 sched_nice(bigproc, PRIO_MIN);
2007 _PRELE(bigproc);
2008 PROC_UNLOCK(bigproc);
2009 }
2010 }
2011
2012 /*
2013 * Signal a free page shortage to subsystems that have registered an event
2014 * handler. Reclaim memory from UMA in the event of a severe shortage.
2015 * Return true if the free page count should be re-evaluated.
2016 */
2017 static bool
vm_pageout_lowmem(void)2018 vm_pageout_lowmem(void)
2019 {
2020 static int lowmem_ticks = 0;
2021 int last;
2022 bool ret;
2023
2024 ret = false;
2025
2026 last = atomic_load_int(&lowmem_ticks);
2027 while ((u_int)(ticks - last) / hz >= lowmem_period) {
2028 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2029 continue;
2030
2031 /*
2032 * Decrease registered cache sizes.
2033 */
2034 SDT_PROBE0(vm, , , vm__lowmem_scan);
2035 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2036
2037 /*
2038 * We do this explicitly after the caches have been
2039 * drained above.
2040 */
2041 uma_reclaim(UMA_RECLAIM_TRIM);
2042 ret = true;
2043 break;
2044 }
2045
2046 /*
2047 * Kick off an asynchronous reclaim of cached memory if one of the
2048 * page daemons is failing to keep up with demand. Use the "severe"
2049 * threshold instead of "min" to ensure that we do not blow away the
2050 * caches if a subset of the NUMA domains are depleted by kernel memory
2051 * allocations; the domainset iterators automatically skip domains
2052 * below the "min" threshold on the first pass.
2053 *
2054 * UMA reclaim worker has its own rate-limiting mechanism, so don't
2055 * worry about kicking it too often.
2056 */
2057 if (vm_page_count_severe())
2058 uma_reclaim_wakeup();
2059
2060 return (ret);
2061 }
2062
2063 static void
vm_pageout_worker(void * arg)2064 vm_pageout_worker(void *arg)
2065 {
2066 struct vm_domain *vmd;
2067 u_int ofree;
2068 int addl_shortage, domain, shortage;
2069 bool target_met;
2070
2071 domain = (uintptr_t)arg;
2072 vmd = VM_DOMAIN(domain);
2073 shortage = 0;
2074 target_met = true;
2075
2076 /*
2077 * XXXKIB It could be useful to bind pageout daemon threads to
2078 * the cores belonging to the domain, from which vm_page_array
2079 * is allocated.
2080 */
2081
2082 KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2083 vmd->vmd_last_active_scan = ticks;
2084
2085 /*
2086 * The pageout daemon worker is never done, so loop forever.
2087 */
2088 while (TRUE) {
2089 vm_domain_pageout_lock(vmd);
2090
2091 /*
2092 * We need to clear wanted before we check the limits. This
2093 * prevents races with wakers who will check wanted after they
2094 * reach the limit.
2095 */
2096 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2097
2098 /*
2099 * Might the page daemon need to run again?
2100 */
2101 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2102 /*
2103 * Yes. If the scan failed to produce enough free
2104 * pages, sleep uninterruptibly for some time in the
2105 * hope that the laundry thread will clean some pages.
2106 */
2107 vm_domain_pageout_unlock(vmd);
2108 if (!target_met)
2109 pause("pwait", hz / VM_INACT_SCAN_RATE);
2110 } else {
2111 /*
2112 * No, sleep until the next wakeup or until pages
2113 * need to have their reference stats updated.
2114 */
2115 if (mtx_sleep(&vmd->vmd_pageout_wanted,
2116 vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2117 "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2118 VM_CNT_INC(v_pdwakeups);
2119 }
2120
2121 /* Prevent spurious wakeups by ensuring that wanted is set. */
2122 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2123
2124 /*
2125 * Use the controller to calculate how many pages to free in
2126 * this interval, and scan the inactive queue. If the lowmem
2127 * handlers appear to have freed up some pages, subtract the
2128 * difference from the inactive queue scan target.
2129 */
2130 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2131 if (shortage > 0) {
2132 ofree = vmd->vmd_free_count;
2133 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2134 shortage -= min(vmd->vmd_free_count - ofree,
2135 (u_int)shortage);
2136 target_met = vm_pageout_inactive(vmd, shortage,
2137 &addl_shortage);
2138 } else
2139 addl_shortage = 0;
2140
2141 /*
2142 * Scan the active queue. A positive value for shortage
2143 * indicates that we must aggressively deactivate pages to avoid
2144 * a shortfall.
2145 */
2146 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2147 vm_pageout_scan_active(vmd, shortage);
2148 }
2149 }
2150
2151 /*
2152 * vm_pageout_helper runs additional pageout daemons in times of high paging
2153 * activity.
2154 */
2155 static void
vm_pageout_helper(void * arg)2156 vm_pageout_helper(void *arg)
2157 {
2158 struct vm_domain *vmd;
2159 int domain;
2160
2161 domain = (uintptr_t)arg;
2162 vmd = VM_DOMAIN(domain);
2163
2164 vm_domain_pageout_lock(vmd);
2165 for (;;) {
2166 msleep(&vmd->vmd_inactive_shortage,
2167 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2168 blockcount_release(&vmd->vmd_inactive_starting, 1);
2169
2170 vm_domain_pageout_unlock(vmd);
2171 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2172 vm_domain_pageout_lock(vmd);
2173
2174 /*
2175 * Release the running count while the pageout lock is held to
2176 * prevent wakeup races.
2177 */
2178 blockcount_release(&vmd->vmd_inactive_running, 1);
2179 }
2180 }
2181
2182 static int
get_pageout_threads_per_domain(const struct vm_domain * vmd)2183 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2184 {
2185 unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2186
2187 if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2188 return (0);
2189
2190 /*
2191 * Semi-arbitrarily constrain pagedaemon threads to less than half the
2192 * total number of CPUs in the system as an upper limit.
2193 */
2194 if (pageout_cpus_per_thread < 2)
2195 pageout_cpus_per_thread = 2;
2196 else if (pageout_cpus_per_thread > mp_ncpus)
2197 pageout_cpus_per_thread = mp_ncpus;
2198
2199 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2200 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2201
2202 /* Pagedaemons are not run in empty domains. */
2203 eligible_cpus = mp_ncpus;
2204 for (unsigned i = 0; i < vm_ndomains; i++)
2205 if (VM_DOMAIN_EMPTY(i))
2206 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2207
2208 /*
2209 * Assign a portion of the total pageout threads to this domain
2210 * corresponding to the fraction of pagedaemon-eligible CPUs in the
2211 * domain. In asymmetric NUMA systems, domains with more CPUs may be
2212 * allocated more threads than domains with fewer CPUs.
2213 */
2214 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2215 }
2216
2217 /*
2218 * Initialize basic pageout daemon settings. See the comment above the
2219 * definition of vm_domain for some explanation of how these thresholds are
2220 * used.
2221 */
2222 static void
vm_pageout_init_domain(int domain)2223 vm_pageout_init_domain(int domain)
2224 {
2225 struct vm_domain *vmd;
2226 struct sysctl_oid *oid;
2227
2228 vmd = VM_DOMAIN(domain);
2229 vmd->vmd_interrupt_free_min = 2;
2230
2231 /*
2232 * v_free_reserved needs to include enough for the largest
2233 * swap pager structures plus enough for any pv_entry structs
2234 * when paging.
2235 */
2236 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2237 vmd->vmd_interrupt_free_min;
2238 vmd->vmd_free_reserved = vm_pageout_page_count +
2239 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2240 vmd->vmd_free_min = vmd->vmd_page_count / 200;
2241 vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2242 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2243 vmd->vmd_free_min += vmd->vmd_free_reserved;
2244 vmd->vmd_free_severe += vmd->vmd_free_reserved;
2245 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2246 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2247 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2248
2249 /*
2250 * Set the default wakeup threshold to be 10% below the paging
2251 * target. This keeps the steady state out of shortfall.
2252 */
2253 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2254
2255 /*
2256 * Target amount of memory to move out of the laundry queue during a
2257 * background laundering. This is proportional to the amount of system
2258 * memory.
2259 */
2260 vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2261 vmd->vmd_free_min) / 10;
2262
2263 /* Initialize the pageout daemon pid controller. */
2264 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2265 vmd->vmd_free_target, PIDCTRL_BOUND,
2266 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2267 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2268 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2269 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2270
2271 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2272 }
2273
2274 static void
vm_pageout_init(void)2275 vm_pageout_init(void)
2276 {
2277 u_long freecount;
2278 int i;
2279
2280 /*
2281 * Initialize some paging parameters.
2282 */
2283 freecount = 0;
2284 for (i = 0; i < vm_ndomains; i++) {
2285 struct vm_domain *vmd;
2286
2287 vm_pageout_init_domain(i);
2288 vmd = VM_DOMAIN(i);
2289 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2290 vm_cnt.v_free_target += vmd->vmd_free_target;
2291 vm_cnt.v_free_min += vmd->vmd_free_min;
2292 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2293 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2294 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2295 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2296 freecount += vmd->vmd_free_count;
2297 }
2298
2299 /*
2300 * Set interval in seconds for active scan. We want to visit each
2301 * page at least once every ten minutes. This is to prevent worst
2302 * case paging behaviors with stale active LRU.
2303 */
2304 if (vm_pageout_update_period == 0)
2305 vm_pageout_update_period = 600;
2306
2307 /*
2308 * Set the maximum number of user-wired virtual pages. Historically the
2309 * main source of such pages was mlock(2) and mlockall(2). Hypervisors
2310 * may also request user-wired memory.
2311 */
2312 if (vm_page_max_user_wired == 0)
2313 vm_page_max_user_wired = 4 * freecount / 5;
2314 }
2315
2316 /*
2317 * vm_pageout is the high level pageout daemon.
2318 */
2319 static void
vm_pageout(void)2320 vm_pageout(void)
2321 {
2322 struct proc *p;
2323 struct thread *td;
2324 int error, first, i, j, pageout_threads;
2325
2326 p = curproc;
2327 td = curthread;
2328
2329 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2330 swap_pager_swap_init();
2331 for (first = -1, i = 0; i < vm_ndomains; i++) {
2332 if (VM_DOMAIN_EMPTY(i)) {
2333 if (bootverbose)
2334 printf("domain %d empty; skipping pageout\n",
2335 i);
2336 continue;
2337 }
2338 if (first == -1)
2339 first = i;
2340 else {
2341 error = kthread_add(vm_pageout_worker,
2342 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2343 if (error != 0)
2344 panic("starting pageout for domain %d: %d\n",
2345 i, error);
2346 }
2347 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2348 for (j = 0; j < pageout_threads - 1; j++) {
2349 error = kthread_add(vm_pageout_helper,
2350 (void *)(uintptr_t)i, p, NULL, 0, 0,
2351 "dom%d helper%d", i, j);
2352 if (error != 0)
2353 panic("starting pageout helper %d for domain "
2354 "%d: %d\n", j, i, error);
2355 }
2356 error = kthread_add(vm_pageout_laundry_worker,
2357 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2358 if (error != 0)
2359 panic("starting laundry for domain %d: %d", i, error);
2360 }
2361 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2362 if (error != 0)
2363 panic("starting uma_reclaim helper, error %d\n", error);
2364
2365 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2366 vm_pageout_worker((void *)(uintptr_t)first);
2367 }
2368
2369 /*
2370 * Perform an advisory wakeup of the page daemon.
2371 */
2372 void
pagedaemon_wakeup(int domain)2373 pagedaemon_wakeup(int domain)
2374 {
2375 struct vm_domain *vmd;
2376
2377 vmd = VM_DOMAIN(domain);
2378 vm_domain_pageout_assert_unlocked(vmd);
2379 if (curproc == pageproc)
2380 return;
2381
2382 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2383 vm_domain_pageout_lock(vmd);
2384 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2385 wakeup(&vmd->vmd_pageout_wanted);
2386 vm_domain_pageout_unlock(vmd);
2387 }
2388 }
2389