1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Resident memory management module.
65 */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110
111 #include <machine/md_var.h>
112
113 struct vm_domain vm_dom[MAXMEMDOM];
114
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116
117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
118
119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
120 /* The following fields are protected by the domainset lock. */
121 domainset_t __exclusive_cache_line vm_min_domains;
122 domainset_t __exclusive_cache_line vm_severe_domains;
123 static int vm_min_waiters;
124 static int vm_severe_waiters;
125 static int vm_pageproc_waiters;
126
127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
128 "VM page statistics");
129
130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
132 CTLFLAG_RD, &pqstate_commit_retries,
133 "Number of failed per-page atomic queue state updates");
134
135 static COUNTER_U64_DEFINE_EARLY(queue_ops);
136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
137 CTLFLAG_RD, &queue_ops,
138 "Number of batched queue operations");
139
140 static COUNTER_U64_DEFINE_EARLY(queue_nops);
141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
142 CTLFLAG_RD, &queue_nops,
143 "Number of batched queue operations with no effects");
144
145 /*
146 * bogus page -- for I/O to/from partially complete buffers,
147 * or for paging into sparsely invalid regions.
148 */
149 vm_page_t bogus_page;
150
151 vm_page_t vm_page_array;
152 long vm_page_array_size;
153 long first_page;
154
155 struct bitset *vm_page_dump;
156 long vm_page_dump_pages;
157
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162
163 static uma_zone_t fakepg_zone;
164
165 static void vm_page_alloc_check(vm_page_t m);
166 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
167 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
168 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
169 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
170 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
171 static bool vm_page_free_prep(vm_page_t m);
172 static void vm_page_free_toq(vm_page_t m);
173 static void vm_page_init(void *dummy);
174 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
175 vm_pindex_t pindex, vm_page_t mpred);
176 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
177 vm_page_t mpred);
178 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
179 const uint16_t nflag);
180 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
181 vm_page_t m_run, vm_paddr_t high);
182 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
183 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
184 int req);
185 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
186 int flags);
187 static void vm_page_zone_release(void *arg, void **store, int cnt);
188
189 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
190
191 static void
vm_page_init(void * dummy)192 vm_page_init(void *dummy)
193 {
194
195 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
196 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
198 }
199
200 static int pgcache_zone_max_pcpu;
201 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
202 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
203 "Per-CPU page cache size");
204
205 /*
206 * The cache page zone is initialized later since we need to be able to allocate
207 * pages before UMA is fully initialized.
208 */
209 static void
vm_page_init_cache_zones(void * dummy __unused)210 vm_page_init_cache_zones(void *dummy __unused)
211 {
212 struct vm_domain *vmd;
213 struct vm_pgcache *pgcache;
214 int cache, domain, maxcache, pool;
215
216 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
217 maxcache = pgcache_zone_max_pcpu * mp_ncpus;
218 for (domain = 0; domain < vm_ndomains; domain++) {
219 vmd = VM_DOMAIN(domain);
220 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
221 pgcache = &vmd->vmd_pgcache[pool];
222 pgcache->domain = domain;
223 pgcache->pool = pool;
224 pgcache->zone = uma_zcache_create("vm pgcache",
225 PAGE_SIZE, NULL, NULL, NULL, NULL,
226 vm_page_zone_import, vm_page_zone_release, pgcache,
227 UMA_ZONE_VM);
228
229 /*
230 * Limit each pool's zone to 0.1% of the pages in the
231 * domain.
232 */
233 cache = maxcache != 0 ? maxcache :
234 vmd->vmd_page_count / 1000;
235 uma_zone_set_maxcache(pgcache->zone, cache);
236 }
237 }
238 }
239 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
240
241 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
242 #if PAGE_SIZE == 32768
243 #ifdef CTASSERT
244 CTASSERT(sizeof(u_long) >= 8);
245 #endif
246 #endif
247
248 /*
249 * vm_set_page_size:
250 *
251 * Sets the page size, perhaps based upon the memory
252 * size. Must be called before any use of page-size
253 * dependent functions.
254 */
255 void
vm_set_page_size(void)256 vm_set_page_size(void)
257 {
258 if (vm_cnt.v_page_size == 0)
259 vm_cnt.v_page_size = PAGE_SIZE;
260 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
261 panic("vm_set_page_size: page size not a power of two");
262 }
263
264 /*
265 * vm_page_blacklist_next:
266 *
267 * Find the next entry in the provided string of blacklist
268 * addresses. Entries are separated by space, comma, or newline.
269 * If an invalid integer is encountered then the rest of the
270 * string is skipped. Updates the list pointer to the next
271 * character, or NULL if the string is exhausted or invalid.
272 */
273 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)274 vm_page_blacklist_next(char **list, char *end)
275 {
276 vm_paddr_t bad;
277 char *cp, *pos;
278
279 if (list == NULL || *list == NULL)
280 return (0);
281 if (**list =='\0') {
282 *list = NULL;
283 return (0);
284 }
285
286 /*
287 * If there's no end pointer then the buffer is coming from
288 * the kenv and we know it's null-terminated.
289 */
290 if (end == NULL)
291 end = *list + strlen(*list);
292
293 /* Ensure that strtoq() won't walk off the end */
294 if (*end != '\0') {
295 if (*end == '\n' || *end == ' ' || *end == ',')
296 *end = '\0';
297 else {
298 printf("Blacklist not terminated, skipping\n");
299 *list = NULL;
300 return (0);
301 }
302 }
303
304 for (pos = *list; *pos != '\0'; pos = cp) {
305 bad = strtoq(pos, &cp, 0);
306 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
307 if (bad == 0) {
308 if (++cp < end)
309 continue;
310 else
311 break;
312 }
313 } else
314 break;
315 if (*cp == '\0' || ++cp >= end)
316 *list = NULL;
317 else
318 *list = cp;
319 return (trunc_page(bad));
320 }
321 printf("Garbage in RAM blacklist, skipping\n");
322 *list = NULL;
323 return (0);
324 }
325
326 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)327 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
328 {
329 struct vm_domain *vmd;
330 vm_page_t m;
331 bool found;
332
333 m = vm_phys_paddr_to_vm_page(pa);
334 if (m == NULL)
335 return (true); /* page does not exist, no failure */
336
337 vmd = VM_DOMAIN(vm_phys_domain(pa));
338 vm_domain_free_lock(vmd);
339 found = vm_phys_unfree_page(pa);
340 vm_domain_free_unlock(vmd);
341 if (found) {
342 vm_domain_freecnt_inc(vmd, -1);
343 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
344 if (verbose)
345 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
346 }
347 return (found);
348 }
349
350 /*
351 * vm_page_blacklist_check:
352 *
353 * Iterate through the provided string of blacklist addresses, pulling
354 * each entry out of the physical allocator free list and putting it
355 * onto a list for reporting via the vm.page_blacklist sysctl.
356 */
357 static void
vm_page_blacklist_check(char * list,char * end)358 vm_page_blacklist_check(char *list, char *end)
359 {
360 vm_paddr_t pa;
361 char *next;
362
363 next = list;
364 while (next != NULL) {
365 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
366 continue;
367 vm_page_blacklist_add(pa, bootverbose);
368 }
369 }
370
371 /*
372 * vm_page_blacklist_load:
373 *
374 * Search for a special module named "ram_blacklist". It'll be a
375 * plain text file provided by the user via the loader directive
376 * of the same name.
377 */
378 static void
vm_page_blacklist_load(char ** list,char ** end)379 vm_page_blacklist_load(char **list, char **end)
380 {
381 void *mod;
382 u_char *ptr;
383 u_int len;
384
385 mod = NULL;
386 ptr = NULL;
387
388 mod = preload_search_by_type("ram_blacklist");
389 if (mod != NULL) {
390 ptr = preload_fetch_addr(mod);
391 len = preload_fetch_size(mod);
392 }
393 *list = ptr;
394 if (ptr != NULL)
395 *end = ptr + len;
396 else
397 *end = NULL;
398 return;
399 }
400
401 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)402 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
403 {
404 vm_page_t m;
405 struct sbuf sbuf;
406 int error, first;
407
408 first = 1;
409 error = sysctl_wire_old_buffer(req, 0);
410 if (error != 0)
411 return (error);
412 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
413 TAILQ_FOREACH(m, &blacklist_head, listq) {
414 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
415 (uintmax_t)m->phys_addr);
416 first = 0;
417 }
418 error = sbuf_finish(&sbuf);
419 sbuf_delete(&sbuf);
420 return (error);
421 }
422
423 /*
424 * Initialize a dummy page for use in scans of the specified paging queue.
425 * In principle, this function only needs to set the flag PG_MARKER.
426 * Nonetheless, it write busies the page as a safety precaution.
427 */
428 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)429 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
430 {
431
432 bzero(marker, sizeof(*marker));
433 marker->flags = PG_MARKER;
434 marker->a.flags = aflags;
435 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
436 marker->a.queue = queue;
437 }
438
439 static void
vm_page_domain_init(int domain)440 vm_page_domain_init(int domain)
441 {
442 struct vm_domain *vmd;
443 struct vm_pagequeue *pq;
444 int i;
445
446 vmd = VM_DOMAIN(domain);
447 bzero(vmd, sizeof(*vmd));
448 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
449 "vm inactive pagequeue";
450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
451 "vm active pagequeue";
452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
453 "vm laundry pagequeue";
454 *__DECONST(const char **,
455 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
456 "vm unswappable pagequeue";
457 vmd->vmd_domain = domain;
458 vmd->vmd_page_count = 0;
459 vmd->vmd_free_count = 0;
460 vmd->vmd_segs = 0;
461 vmd->vmd_oom = false;
462 vmd->vmd_helper_threads_enabled = true;
463 for (i = 0; i < PQ_COUNT; i++) {
464 pq = &vmd->vmd_pagequeues[i];
465 TAILQ_INIT(&pq->pq_pl);
466 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
467 MTX_DEF | MTX_DUPOK);
468 pq->pq_pdpages = 0;
469 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
470 }
471 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
472 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
473 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
474
475 /*
476 * inacthead is used to provide FIFO ordering for LRU-bypassing
477 * insertions.
478 */
479 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
480 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
481 &vmd->vmd_inacthead, plinks.q);
482
483 /*
484 * The clock pages are used to implement active queue scanning without
485 * requeues. Scans start at clock[0], which is advanced after the scan
486 * ends. When the two clock hands meet, they are reset and scanning
487 * resumes from the head of the queue.
488 */
489 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
490 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
491 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
492 &vmd->vmd_clock[0], plinks.q);
493 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
494 &vmd->vmd_clock[1], plinks.q);
495 }
496
497 /*
498 * Initialize a physical page in preparation for adding it to the free
499 * lists.
500 */
501 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)502 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
503 {
504 m->object = NULL;
505 m->ref_count = 0;
506 m->busy_lock = VPB_FREED;
507 m->flags = m->a.flags = 0;
508 m->phys_addr = pa;
509 m->a.queue = PQ_NONE;
510 m->psind = 0;
511 m->segind = segind;
512 m->order = VM_NFREEORDER;
513 m->pool = pool;
514 m->valid = m->dirty = 0;
515 pmap_page_init(m);
516 }
517
518 #ifndef PMAP_HAS_PAGE_ARRAY
519 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)520 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
521 {
522 vm_paddr_t new_end;
523
524 /*
525 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
526 * However, because this page is allocated from KVM, out-of-bounds
527 * accesses using the direct map will not be trapped.
528 */
529 *vaddr += PAGE_SIZE;
530
531 /*
532 * Allocate physical memory for the page structures, and map it.
533 */
534 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
535 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
536 VM_PROT_READ | VM_PROT_WRITE);
537 vm_page_array_size = page_range;
538
539 return (new_end);
540 }
541 #endif
542
543 /*
544 * vm_page_startup:
545 *
546 * Initializes the resident memory module. Allocates physical memory for
547 * bootstrapping UMA and some data structures that are used to manage
548 * physical pages. Initializes these structures, and populates the free
549 * page queues.
550 */
551 vm_offset_t
vm_page_startup(vm_offset_t vaddr)552 vm_page_startup(vm_offset_t vaddr)
553 {
554 struct vm_phys_seg *seg;
555 struct vm_domain *vmd;
556 vm_page_t m;
557 char *list, *listend;
558 vm_paddr_t end, high_avail, low_avail, new_end, size;
559 vm_paddr_t page_range __unused;
560 vm_paddr_t last_pa, pa, startp, endp;
561 u_long pagecount;
562 #if MINIDUMP_PAGE_TRACKING
563 u_long vm_page_dump_size;
564 #endif
565 int biggestone, i, segind;
566 #ifdef WITNESS
567 vm_offset_t mapped;
568 int witness_size;
569 #endif
570 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
571 long ii;
572 #endif
573 int pool;
574 #ifdef VM_FREEPOOL_LAZYINIT
575 int lazyinit;
576 #endif
577
578 vaddr = round_page(vaddr);
579
580 vm_phys_early_startup();
581 biggestone = vm_phys_avail_largest();
582 end = phys_avail[biggestone+1];
583
584 /*
585 * Initialize the page and queue locks.
586 */
587 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
588 for (i = 0; i < PA_LOCK_COUNT; i++)
589 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
590 for (i = 0; i < vm_ndomains; i++)
591 vm_page_domain_init(i);
592
593 new_end = end;
594 #ifdef WITNESS
595 witness_size = round_page(witness_startup_count());
596 new_end -= witness_size;
597 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
598 VM_PROT_READ | VM_PROT_WRITE);
599 bzero((void *)mapped, witness_size);
600 witness_startup((void *)mapped);
601 #endif
602
603 #if MINIDUMP_PAGE_TRACKING
604 /*
605 * Allocate a bitmap to indicate that a random physical page
606 * needs to be included in a minidump.
607 *
608 * The amd64 port needs this to indicate which direct map pages
609 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
610 *
611 * However, i386 still needs this workspace internally within the
612 * minidump code. In theory, they are not needed on i386, but are
613 * included should the sf_buf code decide to use them.
614 */
615 last_pa = 0;
616 vm_page_dump_pages = 0;
617 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
618 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
619 dump_avail[i] / PAGE_SIZE;
620 if (dump_avail[i + 1] > last_pa)
621 last_pa = dump_avail[i + 1];
622 }
623 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
624 new_end -= vm_page_dump_size;
625 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
626 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
627 bzero((void *)vm_page_dump, vm_page_dump_size);
628 #if MINIDUMP_STARTUP_PAGE_TRACKING
629 /*
630 * Include the UMA bootstrap pages, witness pages and vm_page_dump
631 * in a crash dump. When pmap_map() uses the direct map, they are
632 * not automatically included.
633 */
634 for (pa = new_end; pa < end; pa += PAGE_SIZE)
635 dump_add_page(pa);
636 #endif
637 #else
638 (void)last_pa;
639 #endif
640 phys_avail[biggestone + 1] = new_end;
641 #ifdef __amd64__
642 /*
643 * Request that the physical pages underlying the message buffer be
644 * included in a crash dump. Since the message buffer is accessed
645 * through the direct map, they are not automatically included.
646 */
647 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
648 last_pa = pa + round_page(msgbufsize);
649 while (pa < last_pa) {
650 dump_add_page(pa);
651 pa += PAGE_SIZE;
652 }
653 #else
654 (void)pa;
655 #endif
656
657 /*
658 * Determine the lowest and highest physical addresses and, in the case
659 * of VM_PHYSSEG_SPARSE, the exact size of the available physical
660 * memory. vm_phys_early_startup() already checked that phys_avail[]
661 * has at least one element.
662 */
663 #ifdef VM_PHYSSEG_SPARSE
664 size = phys_avail[1] - phys_avail[0];
665 #endif
666 low_avail = phys_avail[0];
667 high_avail = phys_avail[1];
668 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
669 #ifdef VM_PHYSSEG_SPARSE
670 size += phys_avail[i + 1] - phys_avail[i];
671 #endif
672 if (phys_avail[i] < low_avail)
673 low_avail = phys_avail[i];
674 if (phys_avail[i + 1] > high_avail)
675 high_avail = phys_avail[i + 1];
676 }
677 for (i = 0; i < vm_phys_nsegs; i++) {
678 #ifdef VM_PHYSSEG_SPARSE
679 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
680 #endif
681 if (vm_phys_segs[i].start < low_avail)
682 low_avail = vm_phys_segs[i].start;
683 if (vm_phys_segs[i].end > high_avail)
684 high_avail = vm_phys_segs[i].end;
685 }
686 first_page = low_avail / PAGE_SIZE;
687 #ifdef VM_PHYSSEG_DENSE
688 size = high_avail - low_avail;
689 #endif
690
691 #ifdef PMAP_HAS_PAGE_ARRAY
692 pmap_page_array_startup(size / PAGE_SIZE);
693 biggestone = vm_phys_avail_largest();
694 end = new_end = phys_avail[biggestone + 1];
695 #else
696 #ifdef VM_PHYSSEG_DENSE
697 /*
698 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
699 * the overhead of a page structure per page only if vm_page_array is
700 * allocated from the last physical memory chunk. Otherwise, we must
701 * allocate page structures representing the physical memory
702 * underlying vm_page_array, even though they will not be used.
703 */
704 if (new_end != high_avail)
705 page_range = size / PAGE_SIZE;
706 else
707 #endif
708 {
709 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
710
711 /*
712 * If the partial bytes remaining are large enough for
713 * a page (PAGE_SIZE) without a corresponding
714 * 'struct vm_page', then new_end will contain an
715 * extra page after subtracting the length of the VM
716 * page array. Compensate by subtracting an extra
717 * page from new_end.
718 */
719 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
720 if (new_end == high_avail)
721 high_avail -= PAGE_SIZE;
722 new_end -= PAGE_SIZE;
723 }
724 }
725 end = new_end;
726 new_end = vm_page_array_alloc(&vaddr, end, page_range);
727 #endif
728
729 #if VM_NRESERVLEVEL > 0
730 /*
731 * Allocate physical memory for the reservation management system's
732 * data structures, and map it.
733 */
734 new_end = vm_reserv_startup(&vaddr, new_end);
735 #endif
736 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
737 /*
738 * Include vm_page_array and vm_reserv_array in a crash dump.
739 */
740 for (pa = new_end; pa < end; pa += PAGE_SIZE)
741 dump_add_page(pa);
742 #endif
743 phys_avail[biggestone + 1] = new_end;
744
745 /*
746 * Add physical memory segments corresponding to the available
747 * physical pages.
748 */
749 for (i = 0; phys_avail[i + 1] != 0; i += 2)
750 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
751
752 /*
753 * Initialize the physical memory allocator.
754 */
755 vm_phys_init();
756
757 pool = VM_FREEPOOL_DEFAULT;
758 #ifdef VM_FREEPOOL_LAZYINIT
759 lazyinit = 1;
760 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
761 if (lazyinit)
762 pool = VM_FREEPOOL_LAZYINIT;
763 #endif
764
765 /*
766 * Initialize the page structures and add every available page to the
767 * physical memory allocator's free lists.
768 */
769 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
770 for (ii = 0; ii < vm_page_array_size; ii++) {
771 m = &vm_page_array[ii];
772 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
773 VM_FREEPOOL_DEFAULT);
774 m->flags = PG_FICTITIOUS;
775 }
776 #endif
777 vm_cnt.v_page_count = 0;
778 for (segind = 0; segind < vm_phys_nsegs; segind++) {
779 seg = &vm_phys_segs[segind];
780
781 /*
782 * Initialize pages not covered by phys_avail[], since they
783 * might be freed to the allocator at some future point, e.g.,
784 * by kmem_bootstrap_free().
785 */
786 startp = seg->start;
787 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
788 if (startp >= seg->end)
789 break;
790 if (phys_avail[i + 1] < startp)
791 continue;
792 if (phys_avail[i] <= startp) {
793 startp = phys_avail[i + 1];
794 continue;
795 }
796 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
797 for (endp = MIN(phys_avail[i], seg->end);
798 startp < endp; startp += PAGE_SIZE, m++) {
799 vm_page_init_page(m, startp, segind,
800 VM_FREEPOOL_DEFAULT);
801 }
802 }
803
804 /*
805 * Add the segment's pages that are covered by one of
806 * phys_avail's ranges to the free lists.
807 */
808 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
809 if (seg->end <= phys_avail[i] ||
810 seg->start >= phys_avail[i + 1])
811 continue;
812
813 startp = MAX(seg->start, phys_avail[i]);
814 endp = MIN(seg->end, phys_avail[i + 1]);
815 pagecount = (u_long)atop(endp - startp);
816 if (pagecount == 0)
817 continue;
818
819 /*
820 * If lazy vm_page initialization is not enabled, simply
821 * initialize all of the pages in the segment covered by
822 * phys_avail. Otherwise, initialize only the first
823 * page of each run of free pages handed to the vm_phys
824 * allocator, which in turn defers initialization of
825 * pages until they are needed.
826 *
827 * This avoids blocking the boot process for long
828 * periods, which may be relevant for VMs (which ought
829 * to boot as quickly as possible) and/or systems with
830 * large amounts of physical memory.
831 */
832 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
833 vm_page_init_page(m, startp, segind, pool);
834 if (pool == VM_FREEPOOL_DEFAULT) {
835 for (u_long j = 1; j < pagecount; j++) {
836 vm_page_init_page(&m[j],
837 startp + ptoa((vm_paddr_t)j),
838 segind, pool);
839 }
840 }
841 vmd = VM_DOMAIN(seg->domain);
842 vm_domain_free_lock(vmd);
843 vm_phys_enqueue_contig(m, pool, pagecount);
844 vm_domain_free_unlock(vmd);
845 vm_domain_freecnt_inc(vmd, pagecount);
846 vm_cnt.v_page_count += (u_int)pagecount;
847 vmd->vmd_page_count += (u_int)pagecount;
848 vmd->vmd_segs |= 1UL << segind;
849 }
850 }
851
852 /*
853 * Remove blacklisted pages from the physical memory allocator.
854 */
855 TAILQ_INIT(&blacklist_head);
856 vm_page_blacklist_load(&list, &listend);
857 vm_page_blacklist_check(list, listend);
858
859 list = kern_getenv("vm.blacklist");
860 vm_page_blacklist_check(list, NULL);
861
862 freeenv(list);
863 #if VM_NRESERVLEVEL > 0
864 /*
865 * Initialize the reservation management system.
866 */
867 vm_reserv_init();
868 #endif
869
870 return (vaddr);
871 }
872
873 void
vm_page_reference(vm_page_t m)874 vm_page_reference(vm_page_t m)
875 {
876
877 vm_page_aflag_set(m, PGA_REFERENCED);
878 }
879
880 /*
881 * vm_page_trybusy
882 *
883 * Helper routine for grab functions to trylock busy.
884 *
885 * Returns true on success and false on failure.
886 */
887 static bool
vm_page_trybusy(vm_page_t m,int allocflags)888 vm_page_trybusy(vm_page_t m, int allocflags)
889 {
890
891 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
892 return (vm_page_trysbusy(m));
893 else
894 return (vm_page_tryxbusy(m));
895 }
896
897 /*
898 * vm_page_tryacquire
899 *
900 * Helper routine for grab functions to trylock busy and wire.
901 *
902 * Returns true on success and false on failure.
903 */
904 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)905 vm_page_tryacquire(vm_page_t m, int allocflags)
906 {
907 bool locked;
908
909 locked = vm_page_trybusy(m, allocflags);
910 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
911 vm_page_wire(m);
912 return (locked);
913 }
914
915 /*
916 * vm_page_busy_acquire:
917 *
918 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
919 * and drop the object lock if necessary.
920 */
921 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)922 vm_page_busy_acquire(vm_page_t m, int allocflags)
923 {
924 vm_object_t obj;
925 bool locked;
926
927 /*
928 * The page-specific object must be cached because page
929 * identity can change during the sleep, causing the
930 * re-lock of a different object.
931 * It is assumed that a reference to the object is already
932 * held by the callers.
933 */
934 obj = atomic_load_ptr(&m->object);
935 for (;;) {
936 if (vm_page_tryacquire(m, allocflags))
937 return (true);
938 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
939 return (false);
940 if (obj != NULL)
941 locked = VM_OBJECT_WOWNED(obj);
942 else
943 locked = false;
944 MPASS(locked || vm_page_wired(m));
945 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
946 locked) && locked)
947 VM_OBJECT_WLOCK(obj);
948 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
949 return (false);
950 KASSERT(m->object == obj || m->object == NULL,
951 ("vm_page_busy_acquire: page %p does not belong to %p",
952 m, obj));
953 }
954 }
955
956 /*
957 * vm_page_busy_downgrade:
958 *
959 * Downgrade an exclusive busy page into a single shared busy page.
960 */
961 void
vm_page_busy_downgrade(vm_page_t m)962 vm_page_busy_downgrade(vm_page_t m)
963 {
964 u_int x;
965
966 vm_page_assert_xbusied(m);
967
968 x = vm_page_busy_fetch(m);
969 for (;;) {
970 if (atomic_fcmpset_rel_int(&m->busy_lock,
971 &x, VPB_SHARERS_WORD(1)))
972 break;
973 }
974 if ((x & VPB_BIT_WAITERS) != 0)
975 wakeup(m);
976 }
977
978 /*
979 *
980 * vm_page_busy_tryupgrade:
981 *
982 * Attempt to upgrade a single shared busy into an exclusive busy.
983 */
984 int
vm_page_busy_tryupgrade(vm_page_t m)985 vm_page_busy_tryupgrade(vm_page_t m)
986 {
987 u_int ce, x;
988
989 vm_page_assert_sbusied(m);
990
991 x = vm_page_busy_fetch(m);
992 ce = VPB_CURTHREAD_EXCLUSIVE;
993 for (;;) {
994 if (VPB_SHARERS(x) > 1)
995 return (0);
996 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
997 ("vm_page_busy_tryupgrade: invalid lock state"));
998 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
999 ce | (x & VPB_BIT_WAITERS)))
1000 continue;
1001 return (1);
1002 }
1003 }
1004
1005 /*
1006 * vm_page_sbusied:
1007 *
1008 * Return a positive value if the page is shared busied, 0 otherwise.
1009 */
1010 int
vm_page_sbusied(vm_page_t m)1011 vm_page_sbusied(vm_page_t m)
1012 {
1013 u_int x;
1014
1015 x = vm_page_busy_fetch(m);
1016 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1017 }
1018
1019 /*
1020 * vm_page_sunbusy:
1021 *
1022 * Shared unbusy a page.
1023 */
1024 void
vm_page_sunbusy(vm_page_t m)1025 vm_page_sunbusy(vm_page_t m)
1026 {
1027 u_int x;
1028
1029 vm_page_assert_sbusied(m);
1030
1031 x = vm_page_busy_fetch(m);
1032 for (;;) {
1033 KASSERT(x != VPB_FREED,
1034 ("vm_page_sunbusy: Unlocking freed page."));
1035 if (VPB_SHARERS(x) > 1) {
1036 if (atomic_fcmpset_int(&m->busy_lock, &x,
1037 x - VPB_ONE_SHARER))
1038 break;
1039 continue;
1040 }
1041 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1042 ("vm_page_sunbusy: invalid lock state"));
1043 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1044 continue;
1045 if ((x & VPB_BIT_WAITERS) == 0)
1046 break;
1047 wakeup(m);
1048 break;
1049 }
1050 }
1051
1052 /*
1053 * vm_page_busy_sleep:
1054 *
1055 * Sleep if the page is busy, using the page pointer as wchan.
1056 * This is used to implement the hard-path of the busying mechanism.
1057 *
1058 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1059 * will not sleep if the page is shared-busy.
1060 *
1061 * The object lock must be held on entry.
1062 *
1063 * Returns true if it slept and dropped the object lock, or false
1064 * if there was no sleep and the lock is still held.
1065 */
1066 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1067 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1068 {
1069 vm_object_t obj;
1070
1071 obj = m->object;
1072 VM_OBJECT_ASSERT_LOCKED(obj);
1073
1074 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1075 true));
1076 }
1077
1078 /*
1079 * vm_page_busy_sleep_unlocked:
1080 *
1081 * Sleep if the page is busy, using the page pointer as wchan.
1082 * This is used to implement the hard-path of busying mechanism.
1083 *
1084 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1085 * will not sleep if the page is shared-busy.
1086 *
1087 * The object lock must not be held on entry. The operation will
1088 * return if the page changes identity.
1089 */
1090 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1091 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1092 const char *wmesg, int allocflags)
1093 {
1094 VM_OBJECT_ASSERT_UNLOCKED(obj);
1095
1096 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1097 }
1098
1099 /*
1100 * _vm_page_busy_sleep:
1101 *
1102 * Internal busy sleep function. Verifies the page identity and
1103 * lockstate against parameters. Returns true if it sleeps and
1104 * false otherwise.
1105 *
1106 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1107 *
1108 * If locked is true the lock will be dropped for any true returns
1109 * and held for any false returns.
1110 */
1111 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1112 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1113 const char *wmesg, int allocflags, bool locked)
1114 {
1115 bool xsleep;
1116 u_int x;
1117
1118 /*
1119 * If the object is busy we must wait for that to drain to zero
1120 * before trying the page again.
1121 */
1122 if (obj != NULL && vm_object_busied(obj)) {
1123 if (locked)
1124 VM_OBJECT_DROP(obj);
1125 vm_object_busy_wait(obj, wmesg);
1126 return (true);
1127 }
1128
1129 if (!vm_page_busied(m))
1130 return (false);
1131
1132 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1133 sleepq_lock(m);
1134 x = vm_page_busy_fetch(m);
1135 do {
1136 /*
1137 * If the page changes objects or becomes unlocked we can
1138 * simply return.
1139 */
1140 if (x == VPB_UNBUSIED ||
1141 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1142 m->object != obj || m->pindex != pindex) {
1143 sleepq_release(m);
1144 return (false);
1145 }
1146 if ((x & VPB_BIT_WAITERS) != 0)
1147 break;
1148 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1149 if (locked)
1150 VM_OBJECT_DROP(obj);
1151 DROP_GIANT();
1152 sleepq_add(m, NULL, wmesg, 0, 0);
1153 sleepq_wait(m, PVM);
1154 PICKUP_GIANT();
1155 return (true);
1156 }
1157
1158 /*
1159 * vm_page_trysbusy:
1160 *
1161 * Try to shared busy a page.
1162 * If the operation succeeds 1 is returned otherwise 0.
1163 * The operation never sleeps.
1164 */
1165 int
vm_page_trysbusy(vm_page_t m)1166 vm_page_trysbusy(vm_page_t m)
1167 {
1168 vm_object_t obj;
1169 u_int x;
1170
1171 obj = m->object;
1172 x = vm_page_busy_fetch(m);
1173 for (;;) {
1174 if ((x & VPB_BIT_SHARED) == 0)
1175 return (0);
1176 /*
1177 * Reduce the window for transient busies that will trigger
1178 * false negatives in vm_page_ps_test().
1179 */
1180 if (obj != NULL && vm_object_busied(obj))
1181 return (0);
1182 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1183 x + VPB_ONE_SHARER))
1184 break;
1185 }
1186
1187 /* Refetch the object now that we're guaranteed that it is stable. */
1188 obj = m->object;
1189 if (obj != NULL && vm_object_busied(obj)) {
1190 vm_page_sunbusy(m);
1191 return (0);
1192 }
1193 return (1);
1194 }
1195
1196 /*
1197 * vm_page_tryxbusy:
1198 *
1199 * Try to exclusive busy a page.
1200 * If the operation succeeds 1 is returned otherwise 0.
1201 * The operation never sleeps.
1202 */
1203 int
vm_page_tryxbusy(vm_page_t m)1204 vm_page_tryxbusy(vm_page_t m)
1205 {
1206 vm_object_t obj;
1207
1208 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1209 VPB_CURTHREAD_EXCLUSIVE) == 0)
1210 return (0);
1211
1212 obj = m->object;
1213 if (obj != NULL && vm_object_busied(obj)) {
1214 vm_page_xunbusy(m);
1215 return (0);
1216 }
1217 return (1);
1218 }
1219
1220 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1221 vm_page_xunbusy_hard_tail(vm_page_t m)
1222 {
1223 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1224 /* Wake the waiter. */
1225 wakeup(m);
1226 }
1227
1228 /*
1229 * vm_page_xunbusy_hard:
1230 *
1231 * Called when unbusy has failed because there is a waiter.
1232 */
1233 void
vm_page_xunbusy_hard(vm_page_t m)1234 vm_page_xunbusy_hard(vm_page_t m)
1235 {
1236 vm_page_assert_xbusied(m);
1237 vm_page_xunbusy_hard_tail(m);
1238 }
1239
1240 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1241 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1242 {
1243 vm_page_assert_xbusied_unchecked(m);
1244 vm_page_xunbusy_hard_tail(m);
1245 }
1246
1247 static void
vm_page_busy_free(vm_page_t m)1248 vm_page_busy_free(vm_page_t m)
1249 {
1250 u_int x;
1251
1252 atomic_thread_fence_rel();
1253 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1254 if ((x & VPB_BIT_WAITERS) != 0)
1255 wakeup(m);
1256 }
1257
1258 /*
1259 * vm_page_unhold_pages:
1260 *
1261 * Unhold each of the pages that is referenced by the given array.
1262 */
1263 void
vm_page_unhold_pages(vm_page_t * ma,int count)1264 vm_page_unhold_pages(vm_page_t *ma, int count)
1265 {
1266
1267 for (; count != 0; count--) {
1268 vm_page_unwire(*ma, PQ_ACTIVE);
1269 ma++;
1270 }
1271 }
1272
1273 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1274 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1275 {
1276 vm_page_t m;
1277
1278 #ifdef VM_PHYSSEG_SPARSE
1279 m = vm_phys_paddr_to_vm_page(pa);
1280 if (m == NULL)
1281 m = vm_phys_fictitious_to_vm_page(pa);
1282 return (m);
1283 #elif defined(VM_PHYSSEG_DENSE)
1284 long pi;
1285
1286 pi = atop(pa);
1287 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1288 m = &vm_page_array[pi - first_page];
1289 return (m);
1290 }
1291 return (vm_phys_fictitious_to_vm_page(pa));
1292 #else
1293 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1294 #endif
1295 }
1296
1297 /*
1298 * vm_page_getfake:
1299 *
1300 * Create a fictitious page with the specified physical address and
1301 * memory attribute. The memory attribute is the only the machine-
1302 * dependent aspect of a fictitious page that must be initialized.
1303 */
1304 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1305 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1306 {
1307 vm_page_t m;
1308
1309 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1310 vm_page_initfake(m, paddr, memattr);
1311 return (m);
1312 }
1313
1314 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1315 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1316 {
1317
1318 if ((m->flags & PG_FICTITIOUS) != 0) {
1319 /*
1320 * The page's memattr might have changed since the
1321 * previous initialization. Update the pmap to the
1322 * new memattr.
1323 */
1324 goto memattr;
1325 }
1326 m->phys_addr = paddr;
1327 m->a.queue = PQ_NONE;
1328 /* Fictitious pages don't use "segind". */
1329 m->flags = PG_FICTITIOUS;
1330 /* Fictitious pages don't use "order" or "pool". */
1331 m->oflags = VPO_UNMANAGED;
1332 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1333 /* Fictitious pages are unevictable. */
1334 m->ref_count = 1;
1335 pmap_page_init(m);
1336 memattr:
1337 pmap_page_set_memattr(m, memattr);
1338 }
1339
1340 /*
1341 * vm_page_putfake:
1342 *
1343 * Release a fictitious page.
1344 */
1345 void
vm_page_putfake(vm_page_t m)1346 vm_page_putfake(vm_page_t m)
1347 {
1348
1349 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1350 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1351 ("vm_page_putfake: bad page %p", m));
1352 vm_page_assert_xbusied(m);
1353 vm_page_busy_free(m);
1354 uma_zfree(fakepg_zone, m);
1355 }
1356
1357 /*
1358 * vm_page_updatefake:
1359 *
1360 * Update the given fictitious page to the specified physical address and
1361 * memory attribute.
1362 */
1363 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1364 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1365 {
1366
1367 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1368 ("vm_page_updatefake: bad page %p", m));
1369 m->phys_addr = paddr;
1370 pmap_page_set_memattr(m, memattr);
1371 }
1372
1373 /*
1374 * vm_page_free:
1375 *
1376 * Free a page.
1377 */
1378 void
vm_page_free(vm_page_t m)1379 vm_page_free(vm_page_t m)
1380 {
1381
1382 m->flags &= ~PG_ZERO;
1383 vm_page_free_toq(m);
1384 }
1385
1386 /*
1387 * vm_page_free_zero:
1388 *
1389 * Free a page to the zerod-pages queue
1390 */
1391 void
vm_page_free_zero(vm_page_t m)1392 vm_page_free_zero(vm_page_t m)
1393 {
1394
1395 m->flags |= PG_ZERO;
1396 vm_page_free_toq(m);
1397 }
1398
1399 /*
1400 * Unbusy and handle the page queueing for a page from a getpages request that
1401 * was optionally read ahead or behind.
1402 */
1403 void
vm_page_readahead_finish(vm_page_t m)1404 vm_page_readahead_finish(vm_page_t m)
1405 {
1406
1407 /* We shouldn't put invalid pages on queues. */
1408 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1409
1410 /*
1411 * Since the page is not the actually needed one, whether it should
1412 * be activated or deactivated is not obvious. Empirical results
1413 * have shown that deactivating the page is usually the best choice,
1414 * unless the page is wanted by another thread.
1415 */
1416 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1417 vm_page_activate(m);
1418 else
1419 vm_page_deactivate(m);
1420 vm_page_xunbusy_unchecked(m);
1421 }
1422
1423 /*
1424 * Destroy the identity of an invalid page and free it if possible.
1425 * This is intended to be used when reading a page from backing store fails.
1426 */
1427 void
vm_page_free_invalid(vm_page_t m)1428 vm_page_free_invalid(vm_page_t m)
1429 {
1430
1431 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1432 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1433 KASSERT(m->object != NULL, ("page %p has no object", m));
1434 VM_OBJECT_ASSERT_WLOCKED(m->object);
1435
1436 /*
1437 * We may be attempting to free the page as part of the handling for an
1438 * I/O error, in which case the page was xbusied by a different thread.
1439 */
1440 vm_page_xbusy_claim(m);
1441
1442 /*
1443 * If someone has wired this page while the object lock
1444 * was not held, then the thread that unwires is responsible
1445 * for freeing the page. Otherwise just free the page now.
1446 * The wire count of this unmapped page cannot change while
1447 * we have the page xbusy and the page's object wlocked.
1448 */
1449 if (vm_page_remove(m))
1450 vm_page_free(m);
1451 }
1452
1453 /*
1454 * vm_page_dirty_KBI: [ internal use only ]
1455 *
1456 * Set all bits in the page's dirty field.
1457 *
1458 * The object containing the specified page must be locked if the
1459 * call is made from the machine-independent layer.
1460 *
1461 * See vm_page_clear_dirty_mask().
1462 *
1463 * This function should only be called by vm_page_dirty().
1464 */
1465 void
vm_page_dirty_KBI(vm_page_t m)1466 vm_page_dirty_KBI(vm_page_t m)
1467 {
1468
1469 /* Refer to this operation by its public name. */
1470 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1471 m->dirty = VM_PAGE_BITS_ALL;
1472 }
1473
1474 /*
1475 * Insert the given page into the given object at the given pindex. mpred is
1476 * used for memq linkage. From vm_page_insert, lookup is true, mpred is
1477 * initially NULL, and this procedure looks it up. From vm_page_insert_after
1478 * and vm_page_iter_insert, lookup is false and mpred is known to the caller
1479 * to be valid, and may be NULL if this will be the page with the lowest
1480 * pindex.
1481 *
1482 * The procedure is marked __always_inline to suggest to the compiler to
1483 * eliminate the lookup parameter and the associated alternate branch.
1484 */
1485 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages,bool iter,vm_page_t mpred,bool lookup)1486 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1487 struct pctrie_iter *pages, bool iter, vm_page_t mpred, bool lookup)
1488 {
1489 int error;
1490
1491 VM_OBJECT_ASSERT_WLOCKED(object);
1492 KASSERT(m->object == NULL,
1493 ("vm_page_insert: page %p already inserted", m));
1494
1495 /*
1496 * Record the object/offset pair in this page.
1497 */
1498 m->object = object;
1499 m->pindex = pindex;
1500 m->ref_count |= VPRC_OBJREF;
1501
1502 /*
1503 * Add this page to the object's radix tree, and look up mpred if
1504 * needed.
1505 */
1506 if (iter) {
1507 KASSERT(!lookup, ("%s: cannot lookup mpred", __func__));
1508 error = vm_radix_iter_insert(pages, m);
1509 } else if (lookup)
1510 error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred);
1511 else
1512 error = vm_radix_insert(&object->rtree, m);
1513 if (__predict_false(error != 0)) {
1514 m->object = NULL;
1515 m->pindex = 0;
1516 m->ref_count &= ~VPRC_OBJREF;
1517 return (1);
1518 }
1519
1520 /*
1521 * Now link into the object's ordered list of backed pages.
1522 */
1523 vm_page_insert_radixdone(m, object, mpred);
1524 vm_pager_page_inserted(object, m);
1525 return (0);
1526 }
1527
1528 /*
1529 * vm_page_insert: [ internal use only ]
1530 *
1531 * Inserts the given mem entry into the object and object list.
1532 *
1533 * The object must be locked.
1534 */
1535 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1536 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1537 {
1538 return (vm_page_insert_lookup(m, object, pindex, NULL, false, NULL,
1539 true));
1540 }
1541
1542 /*
1543 * vm_page_insert_after:
1544 *
1545 * Inserts the page "m" into the specified object at offset "pindex".
1546 *
1547 * The page "mpred" must immediately precede the offset "pindex" within
1548 * the specified object.
1549 *
1550 * The object must be locked.
1551 */
1552 static int
vm_page_insert_after(vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1553 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1554 vm_page_t mpred)
1555 {
1556 return (vm_page_insert_lookup(m, object, pindex, NULL, false, mpred,
1557 false));
1558 }
1559
1560 /*
1561 * vm_page_iter_insert:
1562 *
1563 * Tries to insert the page "m" into the specified object at offset
1564 * "pindex" using the iterator "pages". Returns 0 if the insertion was
1565 * successful.
1566 *
1567 * The page "mpred" must immediately precede the offset "pindex" within
1568 * the specified object.
1569 *
1570 * The object must be locked.
1571 */
1572 static int
vm_page_iter_insert(struct pctrie_iter * pages,vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1573 vm_page_iter_insert(struct pctrie_iter *pages, vm_page_t m, vm_object_t object,
1574 vm_pindex_t pindex, vm_page_t mpred)
1575 {
1576 return (vm_page_insert_lookup(m, object, pindex, pages, true, mpred,
1577 false));
1578 }
1579
1580 /*
1581 * vm_page_insert_radixdone:
1582 *
1583 * Complete page "m" insertion into the specified object after the
1584 * radix trie hooking.
1585 *
1586 * The page "mpred" must precede the offset "m->pindex" within the
1587 * specified object.
1588 *
1589 * The object must be locked.
1590 */
1591 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object,vm_page_t mpred)1592 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1593 {
1594
1595 VM_OBJECT_ASSERT_WLOCKED(object);
1596 KASSERT(object != NULL && m->object == object,
1597 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1598 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1599 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1600 if (mpred != NULL) {
1601 KASSERT(mpred->object == object,
1602 ("vm_page_insert_radixdone: object doesn't contain mpred"));
1603 KASSERT(mpred->pindex < m->pindex,
1604 ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1605 KASSERT(TAILQ_NEXT(mpred, listq) == NULL ||
1606 m->pindex < TAILQ_NEXT(mpred, listq)->pindex,
1607 ("vm_page_insert_radixdone: pindex doesn't precede msucc"));
1608 } else {
1609 KASSERT(TAILQ_EMPTY(&object->memq) ||
1610 m->pindex < TAILQ_FIRST(&object->memq)->pindex,
1611 ("vm_page_insert_radixdone: no mpred but not first page"));
1612 }
1613
1614 if (mpred != NULL)
1615 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1616 else
1617 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1618
1619 /*
1620 * Show that the object has one more resident page.
1621 */
1622 object->resident_page_count++;
1623
1624 /*
1625 * Hold the vnode until the last page is released.
1626 */
1627 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1628 vhold(object->handle);
1629
1630 /*
1631 * Since we are inserting a new and possibly dirty page,
1632 * update the object's generation count.
1633 */
1634 if (pmap_page_is_write_mapped(m))
1635 vm_object_set_writeable_dirty(object);
1636 }
1637
1638 /*
1639 * vm_page_remove_radixdone
1640 *
1641 * Complete page "m" removal from the specified object after the radix trie
1642 * unhooking.
1643 *
1644 * The caller is responsible for updating the page's fields to reflect this
1645 * removal.
1646 */
1647 static void
vm_page_remove_radixdone(vm_page_t m)1648 vm_page_remove_radixdone(vm_page_t m)
1649 {
1650 vm_object_t object;
1651
1652 vm_page_assert_xbusied(m);
1653 object = m->object;
1654 VM_OBJECT_ASSERT_WLOCKED(object);
1655 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1656 ("page %p is missing its object ref", m));
1657
1658 /* Deferred free of swap space. */
1659 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1660 vm_pager_page_unswapped(m);
1661
1662 vm_pager_page_removed(object, m);
1663 m->object = NULL;
1664
1665 /*
1666 * Now remove from the object's list of backed pages.
1667 */
1668 TAILQ_REMOVE(&object->memq, m, listq);
1669
1670 /*
1671 * And show that the object has one fewer resident page.
1672 */
1673 object->resident_page_count--;
1674
1675 /*
1676 * The vnode may now be recycled.
1677 */
1678 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1679 vdrop(object->handle);
1680 }
1681
1682 /*
1683 * vm_page_free_object_prep:
1684 *
1685 * Disassociates the given page from its VM object.
1686 *
1687 * The object must be locked, and the page must be xbusy.
1688 */
1689 static void
vm_page_free_object_prep(vm_page_t m)1690 vm_page_free_object_prep(vm_page_t m)
1691 {
1692 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1693 ((m->object->flags & OBJ_UNMANAGED) != 0),
1694 ("%s: managed flag mismatch for page %p",
1695 __func__, m));
1696 vm_page_assert_xbusied(m);
1697
1698 /*
1699 * The object reference can be released without an atomic
1700 * operation.
1701 */
1702 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1703 m->ref_count == VPRC_OBJREF,
1704 ("%s: page %p has unexpected ref_count %u",
1705 __func__, m, m->ref_count));
1706 vm_page_remove_radixdone(m);
1707 m->ref_count -= VPRC_OBJREF;
1708 }
1709
1710 /*
1711 * vm_page_iter_free:
1712 *
1713 * Free the given page, and use the iterator to remove it from the radix
1714 * tree.
1715 */
1716 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1717 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1718 {
1719 vm_radix_iter_remove(pages);
1720 vm_page_free_object_prep(m);
1721 vm_page_xunbusy(m);
1722 m->flags &= ~PG_ZERO;
1723 vm_page_free_toq(m);
1724 }
1725
1726 /*
1727 * vm_page_remove:
1728 *
1729 * Removes the specified page from its containing object, but does not
1730 * invalidate any backing storage. Returns true if the object's reference
1731 * was the last reference to the page, and false otherwise.
1732 *
1733 * The object must be locked and the page must be exclusively busied.
1734 * The exclusive busy will be released on return. If this is not the
1735 * final ref and the caller does not hold a wire reference it may not
1736 * continue to access the page.
1737 */
1738 bool
vm_page_remove(vm_page_t m)1739 vm_page_remove(vm_page_t m)
1740 {
1741 bool dropped;
1742
1743 dropped = vm_page_remove_xbusy(m);
1744 vm_page_xunbusy(m);
1745
1746 return (dropped);
1747 }
1748
1749 /*
1750 * vm_page_iter_remove:
1751 *
1752 * Remove the current page, and use the iterator to remove it from the
1753 * radix tree.
1754 */
1755 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1756 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1757 {
1758 bool dropped;
1759
1760 vm_radix_iter_remove(pages);
1761 vm_page_remove_radixdone(m);
1762 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1763 vm_page_xunbusy(m);
1764
1765 return (dropped);
1766 }
1767
1768 /*
1769 * vm_page_radix_remove
1770 *
1771 * Removes the specified page from the radix tree.
1772 */
1773 static void
vm_page_radix_remove(vm_page_t m)1774 vm_page_radix_remove(vm_page_t m)
1775 {
1776 vm_page_t mrem __diagused;
1777
1778 mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1779 KASSERT(mrem == m,
1780 ("removed page %p, expected page %p", mrem, m));
1781 }
1782
1783 /*
1784 * vm_page_remove_xbusy
1785 *
1786 * Removes the page but leaves the xbusy held. Returns true if this
1787 * removed the final ref and false otherwise.
1788 */
1789 bool
vm_page_remove_xbusy(vm_page_t m)1790 vm_page_remove_xbusy(vm_page_t m)
1791 {
1792
1793 vm_page_radix_remove(m);
1794 vm_page_remove_radixdone(m);
1795 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1796 }
1797
1798 /*
1799 * vm_page_lookup:
1800 *
1801 * Returns the page associated with the object/offset
1802 * pair specified; if none is found, NULL is returned.
1803 *
1804 * The object must be locked.
1805 */
1806 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1807 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1808 {
1809
1810 VM_OBJECT_ASSERT_LOCKED(object);
1811 return (vm_radix_lookup(&object->rtree, pindex));
1812 }
1813
1814 /*
1815 * vm_page_iter_init:
1816 *
1817 * Initialize iterator for vm pages.
1818 */
1819 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1820 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1821 {
1822
1823 vm_radix_iter_init(pages, &object->rtree);
1824 }
1825
1826 /*
1827 * vm_page_iter_init:
1828 *
1829 * Initialize iterator for vm pages.
1830 */
1831 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1832 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1833 vm_pindex_t limit)
1834 {
1835
1836 vm_radix_iter_limit_init(pages, &object->rtree, limit);
1837 }
1838
1839 /*
1840 * vm_page_lookup_unlocked:
1841 *
1842 * Returns the page associated with the object/offset pair specified;
1843 * if none is found, NULL is returned. The page may be no longer be
1844 * present in the object at the time that this function returns. Only
1845 * useful for opportunistic checks such as inmem().
1846 */
1847 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1848 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1849 {
1850
1851 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1852 }
1853
1854 /*
1855 * vm_page_relookup:
1856 *
1857 * Returns a page that must already have been busied by
1858 * the caller. Used for bogus page replacement.
1859 */
1860 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1861 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1862 {
1863 vm_page_t m;
1864
1865 m = vm_page_lookup_unlocked(object, pindex);
1866 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1867 m->object == object && m->pindex == pindex,
1868 ("vm_page_relookup: Invalid page %p", m));
1869 return (m);
1870 }
1871
1872 /*
1873 * This should only be used by lockless functions for releasing transient
1874 * incorrect acquires. The page may have been freed after we acquired a
1875 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1876 * further to do.
1877 */
1878 static void
vm_page_busy_release(vm_page_t m)1879 vm_page_busy_release(vm_page_t m)
1880 {
1881 u_int x;
1882
1883 x = vm_page_busy_fetch(m);
1884 for (;;) {
1885 if (x == VPB_FREED)
1886 break;
1887 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1888 if (atomic_fcmpset_int(&m->busy_lock, &x,
1889 x - VPB_ONE_SHARER))
1890 break;
1891 continue;
1892 }
1893 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1894 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1895 ("vm_page_busy_release: %p xbusy not owned.", m));
1896 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1897 continue;
1898 if ((x & VPB_BIT_WAITERS) != 0)
1899 wakeup(m);
1900 break;
1901 }
1902 }
1903
1904 /*
1905 * vm_page_find_least:
1906 *
1907 * Returns the page associated with the object with least pindex
1908 * greater than or equal to the parameter pindex, or NULL.
1909 *
1910 * The object must be locked.
1911 */
1912 vm_page_t
vm_page_find_least(vm_object_t object,vm_pindex_t pindex)1913 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1914 {
1915 vm_page_t m;
1916
1917 VM_OBJECT_ASSERT_LOCKED(object);
1918 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1919 m = vm_radix_lookup_ge(&object->rtree, pindex);
1920 return (m);
1921 }
1922
1923 /*
1924 * Returns the given page's successor (by pindex) within the object if it is
1925 * resident; if none is found, NULL is returned.
1926 *
1927 * The object must be locked.
1928 */
1929 vm_page_t
vm_page_next(vm_page_t m)1930 vm_page_next(vm_page_t m)
1931 {
1932 vm_page_t next;
1933
1934 VM_OBJECT_ASSERT_LOCKED(m->object);
1935 if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1936 MPASS(next->object == m->object);
1937 if (next->pindex != m->pindex + 1)
1938 next = NULL;
1939 }
1940 return (next);
1941 }
1942
1943 /*
1944 * Returns the given page's predecessor (by pindex) within the object if it is
1945 * resident; if none is found, NULL is returned.
1946 *
1947 * The object must be locked.
1948 */
1949 vm_page_t
vm_page_prev(vm_page_t m)1950 vm_page_prev(vm_page_t m)
1951 {
1952 vm_page_t prev;
1953
1954 VM_OBJECT_ASSERT_LOCKED(m->object);
1955 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1956 MPASS(prev->object == m->object);
1957 if (prev->pindex != m->pindex - 1)
1958 prev = NULL;
1959 }
1960 return (prev);
1961 }
1962
1963 /*
1964 * Uses the page mnew as a replacement for an existing page at index
1965 * pindex which must be already present in the object.
1966 *
1967 * Both pages must be exclusively busied on enter. The old page is
1968 * unbusied on exit.
1969 *
1970 * A return value of true means mold is now free. If this is not the
1971 * final ref and the caller does not hold a wire reference it may not
1972 * continue to access the page.
1973 */
1974 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1975 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1976 vm_page_t mold)
1977 {
1978 vm_page_t mret __diagused;
1979 bool dropped;
1980
1981 VM_OBJECT_ASSERT_WLOCKED(object);
1982 vm_page_assert_xbusied(mold);
1983 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1984 ("vm_page_replace: page %p already in object", mnew));
1985
1986 /*
1987 * This function mostly follows vm_page_insert() and
1988 * vm_page_remove() without the radix, object count and vnode
1989 * dance. Double check such functions for more comments.
1990 */
1991
1992 mnew->object = object;
1993 mnew->pindex = pindex;
1994 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1995 mret = vm_radix_replace(&object->rtree, mnew);
1996 KASSERT(mret == mold,
1997 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1998 KASSERT((mold->oflags & VPO_UNMANAGED) ==
1999 (mnew->oflags & VPO_UNMANAGED),
2000 ("vm_page_replace: mismatched VPO_UNMANAGED"));
2001
2002 /* Keep the resident page list in sorted order. */
2003 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
2004 TAILQ_REMOVE(&object->memq, mold, listq);
2005 mold->object = NULL;
2006
2007 /*
2008 * The object's resident_page_count does not change because we have
2009 * swapped one page for another, but the generation count should
2010 * change if the page is dirty.
2011 */
2012 if (pmap_page_is_write_mapped(mnew))
2013 vm_object_set_writeable_dirty(object);
2014 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
2015 vm_page_xunbusy(mold);
2016
2017 return (dropped);
2018 }
2019
2020 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)2021 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2022 vm_page_t mold)
2023 {
2024
2025 vm_page_assert_xbusied(mnew);
2026
2027 if (vm_page_replace_hold(mnew, object, pindex, mold))
2028 vm_page_free(mold);
2029 }
2030
2031 /*
2032 * vm_page_iter_rename:
2033 *
2034 * Tries to move the specified page from its current object to a new object
2035 * and pindex, using the given iterator to remove the page from its current
2036 * object. Returns true if the move was successful, and false if the move
2037 * was aborted due to a failed memory allocation.
2038 *
2039 * Panics if a page already resides in the new object at the new pindex.
2040 *
2041 * This routine dirties the page if it is valid, as callers are expected to
2042 * transfer backing storage only after moving the page. Dirtying the page
2043 * ensures that the destination object retains the most recent copy of the
2044 * page.
2045 *
2046 * The objects must be locked.
2047 */
2048 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)2049 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
2050 vm_object_t new_object, vm_pindex_t new_pindex)
2051 {
2052 vm_page_t mpred;
2053 vm_pindex_t opidx;
2054
2055 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
2056 ("%s: page %p is missing object ref", __func__, m));
2057 VM_OBJECT_ASSERT_WLOCKED(m->object);
2058 VM_OBJECT_ASSERT_WLOCKED(new_object);
2059
2060 /*
2061 * Create a custom version of vm_page_insert() which does not depend
2062 * by m_prev and can cheat on the implementation aspects of the
2063 * function.
2064 */
2065 opidx = m->pindex;
2066 m->pindex = new_pindex;
2067 if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) {
2068 m->pindex = opidx;
2069 return (false);
2070 }
2071
2072 /*
2073 * The operation cannot fail anymore. The removal must happen before
2074 * the listq iterator is tainted.
2075 */
2076 m->pindex = opidx;
2077 vm_radix_iter_remove(old_pages);
2078 vm_page_remove_radixdone(m);
2079
2080 /* Return back to the new pindex to complete vm_page_insert(). */
2081 m->pindex = new_pindex;
2082 m->object = new_object;
2083
2084 vm_page_insert_radixdone(m, new_object, mpred);
2085 if (vm_page_any_valid(m))
2086 vm_page_dirty(m);
2087 vm_pager_page_inserted(new_object, m);
2088 return (true);
2089 }
2090
2091 /*
2092 * vm_page_mpred:
2093 *
2094 * Return the greatest page of the object with index <= pindex,
2095 * or NULL, if there is none. Assumes object lock is held.
2096 */
2097 vm_page_t
vm_page_mpred(vm_object_t object,vm_pindex_t pindex)2098 vm_page_mpred(vm_object_t object, vm_pindex_t pindex)
2099 {
2100 return (vm_radix_lookup_le(&object->rtree, pindex));
2101 }
2102
2103 /*
2104 * vm_page_alloc:
2105 *
2106 * Allocate and return a page that is associated with the specified
2107 * object and offset pair. By default, this page is exclusive busied.
2108 *
2109 * The caller must always specify an allocation class.
2110 *
2111 * allocation classes:
2112 * VM_ALLOC_NORMAL normal process request
2113 * VM_ALLOC_SYSTEM system *really* needs a page
2114 * VM_ALLOC_INTERRUPT interrupt time request
2115 *
2116 * optional allocation flags:
2117 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
2118 * intends to allocate
2119 * VM_ALLOC_NOBUSY do not exclusive busy the page
2120 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2121 * VM_ALLOC_SBUSY shared busy the allocated page
2122 * VM_ALLOC_WIRED wire the allocated page
2123 * VM_ALLOC_ZERO prefer a zeroed page
2124 */
2125 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)2126 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
2127 {
2128
2129 return (vm_page_alloc_after(object, pindex, req,
2130 vm_page_mpred(object, pindex)));
2131 }
2132
2133 /*
2134 * Allocate a page in the specified object with the given page index. To
2135 * optimize insertion of the page into the object, the caller must also specify
2136 * the resident page in the object with largest index smaller than the given
2137 * page index, or NULL if no such page exists.
2138 */
2139 vm_page_t
vm_page_alloc_after(vm_object_t object,vm_pindex_t pindex,int req,vm_page_t mpred)2140 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
2141 int req, vm_page_t mpred)
2142 {
2143 struct vm_domainset_iter di;
2144 vm_page_t m;
2145 int domain;
2146
2147 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2148 do {
2149 m = vm_page_alloc_domain_after(object, pindex, domain, req,
2150 mpred);
2151 if (m != NULL)
2152 break;
2153 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2154
2155 return (m);
2156 }
2157
2158 /*
2159 * Returns true if the number of free pages exceeds the minimum
2160 * for the request class and false otherwise.
2161 */
2162 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2163 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2164 {
2165 u_int limit, old, new;
2166
2167 if (req_class == VM_ALLOC_INTERRUPT)
2168 limit = 0;
2169 else if (req_class == VM_ALLOC_SYSTEM)
2170 limit = vmd->vmd_interrupt_free_min;
2171 else
2172 limit = vmd->vmd_free_reserved;
2173
2174 /*
2175 * Attempt to reserve the pages. Fail if we're below the limit.
2176 */
2177 limit += npages;
2178 old = atomic_load_int(&vmd->vmd_free_count);
2179 do {
2180 if (old < limit)
2181 return (0);
2182 new = old - npages;
2183 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2184
2185 /* Wake the page daemon if we've crossed the threshold. */
2186 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2187 pagedaemon_wakeup(vmd->vmd_domain);
2188
2189 /* Only update bitsets on transitions. */
2190 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2191 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2192 vm_domain_set(vmd);
2193
2194 return (1);
2195 }
2196
2197 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2198 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2199 {
2200 int req_class;
2201
2202 /*
2203 * The page daemon is allowed to dig deeper into the free page list.
2204 */
2205 req_class = req & VM_ALLOC_CLASS_MASK;
2206 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2207 req_class = VM_ALLOC_SYSTEM;
2208 return (_vm_domain_allocate(vmd, req_class, npages));
2209 }
2210
2211 vm_page_t
vm_page_alloc_domain_after(vm_object_t object,vm_pindex_t pindex,int domain,int req,vm_page_t mpred)2212 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2213 int req, vm_page_t mpred)
2214 {
2215 struct vm_domain *vmd;
2216 vm_page_t m;
2217 int flags;
2218
2219 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2220 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \
2221 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \
2222 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2223 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2224 KASSERT((req & ~VPA_FLAGS) == 0,
2225 ("invalid request %#x", req));
2226 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2227 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2228 ("invalid request %#x", req));
2229 KASSERT(mpred == NULL || mpred->pindex < pindex,
2230 ("mpred %p doesn't precede pindex 0x%jx", mpred,
2231 (uintmax_t)pindex));
2232 VM_OBJECT_ASSERT_WLOCKED(object);
2233
2234 flags = 0;
2235 m = NULL;
2236 if (!vm_pager_can_alloc_page(object, pindex))
2237 return (NULL);
2238 again:
2239 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2240 m = vm_page_alloc_nofree_domain(domain, req);
2241 if (m != NULL)
2242 goto found;
2243 }
2244 #if VM_NRESERVLEVEL > 0
2245 /*
2246 * Can we allocate the page from a reservation?
2247 */
2248 if (vm_object_reserv(object) &&
2249 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2250 NULL) {
2251 goto found;
2252 }
2253 #endif
2254 vmd = VM_DOMAIN(domain);
2255 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2256 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2257 M_NOWAIT | M_NOVM);
2258 if (m != NULL) {
2259 flags |= PG_PCPU_CACHE;
2260 goto found;
2261 }
2262 }
2263 if (vm_domain_allocate(vmd, req, 1)) {
2264 /*
2265 * If not, allocate it from the free page queues.
2266 */
2267 vm_domain_free_lock(vmd);
2268 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2269 vm_domain_free_unlock(vmd);
2270 if (m == NULL) {
2271 vm_domain_freecnt_inc(vmd, 1);
2272 #if VM_NRESERVLEVEL > 0
2273 if (vm_reserv_reclaim_inactive(domain))
2274 goto again;
2275 #endif
2276 }
2277 }
2278 if (m == NULL) {
2279 /*
2280 * Not allocatable, give up.
2281 */
2282 if (vm_domain_alloc_fail(vmd, object, req))
2283 goto again;
2284 return (NULL);
2285 }
2286
2287 /*
2288 * At this point we had better have found a good page.
2289 */
2290 found:
2291 vm_page_dequeue(m);
2292 vm_page_alloc_check(m);
2293
2294 /*
2295 * Initialize the page. Only the PG_ZERO flag is inherited.
2296 */
2297 flags |= m->flags & PG_ZERO;
2298 if ((req & VM_ALLOC_NODUMP) != 0)
2299 flags |= PG_NODUMP;
2300 if ((req & VM_ALLOC_NOFREE) != 0)
2301 flags |= PG_NOFREE;
2302 m->flags = flags;
2303 m->a.flags = 0;
2304 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2305 m->pool = VM_FREEPOOL_DEFAULT;
2306 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2307 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2308 else if ((req & VM_ALLOC_SBUSY) != 0)
2309 m->busy_lock = VPB_SHARERS_WORD(1);
2310 else
2311 m->busy_lock = VPB_UNBUSIED;
2312 if (req & VM_ALLOC_WIRED) {
2313 vm_wire_add(1);
2314 m->ref_count = 1;
2315 }
2316 m->a.act_count = 0;
2317
2318 if (vm_page_insert_after(m, object, pindex, mpred)) {
2319 if (req & VM_ALLOC_WIRED) {
2320 vm_wire_sub(1);
2321 m->ref_count = 0;
2322 }
2323 KASSERT(m->object == NULL, ("page %p has object", m));
2324 m->oflags = VPO_UNMANAGED;
2325 m->busy_lock = VPB_UNBUSIED;
2326 /* Don't change PG_ZERO. */
2327 vm_page_free_toq(m);
2328 if (req & VM_ALLOC_WAITFAIL) {
2329 VM_OBJECT_WUNLOCK(object);
2330 vm_radix_wait();
2331 VM_OBJECT_WLOCK(object);
2332 }
2333 return (NULL);
2334 }
2335
2336 /* Ignore device objects; the pager sets "memattr" for them. */
2337 if (object->memattr != VM_MEMATTR_DEFAULT &&
2338 (object->flags & OBJ_FICTITIOUS) == 0)
2339 pmap_page_set_memattr(m, object->memattr);
2340
2341 return (m);
2342 }
2343
2344 /*
2345 * vm_page_alloc_contig:
2346 *
2347 * Allocate a contiguous set of physical pages of the given size "npages"
2348 * from the free lists. All of the physical pages must be at or above
2349 * the given physical address "low" and below the given physical address
2350 * "high". The given value "alignment" determines the alignment of the
2351 * first physical page in the set. If the given value "boundary" is
2352 * non-zero, then the set of physical pages cannot cross any physical
2353 * address boundary that is a multiple of that value. Both "alignment"
2354 * and "boundary" must be a power of two.
2355 *
2356 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2357 * then the memory attribute setting for the physical pages is configured
2358 * to the object's memory attribute setting. Otherwise, the memory
2359 * attribute setting for the physical pages is configured to "memattr",
2360 * overriding the object's memory attribute setting. However, if the
2361 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2362 * memory attribute setting for the physical pages cannot be configured
2363 * to VM_MEMATTR_DEFAULT.
2364 *
2365 * The specified object may not contain fictitious pages.
2366 *
2367 * The caller must always specify an allocation class.
2368 *
2369 * allocation classes:
2370 * VM_ALLOC_NORMAL normal process request
2371 * VM_ALLOC_SYSTEM system *really* needs a page
2372 * VM_ALLOC_INTERRUPT interrupt time request
2373 *
2374 * optional allocation flags:
2375 * VM_ALLOC_NOBUSY do not exclusive busy the page
2376 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2377 * VM_ALLOC_SBUSY shared busy the allocated page
2378 * VM_ALLOC_WIRED wire the allocated page
2379 * VM_ALLOC_ZERO prefer a zeroed page
2380 */
2381 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2382 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2383 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2384 vm_paddr_t boundary, vm_memattr_t memattr)
2385 {
2386 struct vm_domainset_iter di;
2387 vm_page_t bounds[2];
2388 vm_page_t m;
2389 int domain;
2390 int start_segind;
2391
2392 start_segind = -1;
2393
2394 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2395 do {
2396 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2397 npages, low, high, alignment, boundary, memattr);
2398 if (m != NULL)
2399 break;
2400 if (start_segind == -1)
2401 start_segind = vm_phys_lookup_segind(low);
2402 if (vm_phys_find_range(bounds, start_segind, domain,
2403 npages, low, high) == -1) {
2404 vm_domainset_iter_ignore(&di, domain);
2405 }
2406 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2407
2408 return (m);
2409 }
2410
2411 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2412 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2413 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2414 {
2415 struct vm_domain *vmd;
2416 vm_page_t m_ret;
2417
2418 /*
2419 * Can we allocate the pages without the number of free pages falling
2420 * below the lower bound for the allocation class?
2421 */
2422 vmd = VM_DOMAIN(domain);
2423 if (!vm_domain_allocate(vmd, req, npages))
2424 return (NULL);
2425 /*
2426 * Try to allocate the pages from the free page queues.
2427 */
2428 vm_domain_free_lock(vmd);
2429 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2430 alignment, boundary);
2431 vm_domain_free_unlock(vmd);
2432 if (m_ret != NULL)
2433 return (m_ret);
2434 #if VM_NRESERVLEVEL > 0
2435 /*
2436 * Try to break a reservation to allocate the pages.
2437 */
2438 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2439 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2440 high, alignment, boundary);
2441 if (m_ret != NULL)
2442 return (m_ret);
2443 }
2444 #endif
2445 vm_domain_freecnt_inc(vmd, npages);
2446 return (NULL);
2447 }
2448
2449 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2450 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2451 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2452 vm_paddr_t boundary, vm_memattr_t memattr)
2453 {
2454 struct pctrie_iter pages;
2455 vm_page_t m, m_ret, mpred;
2456 u_int busy_lock, flags, oflags;
2457
2458 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM)
2459 KASSERT((req & ~VPAC_FLAGS) == 0,
2460 ("invalid request %#x", req));
2461 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2462 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2463 ("invalid request %#x", req));
2464 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2465 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2466 ("invalid request %#x", req));
2467 VM_OBJECT_ASSERT_WLOCKED(object);
2468 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2469 ("vm_page_alloc_contig: object %p has fictitious pages",
2470 object));
2471 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2472
2473 vm_page_iter_init(&pages, object);
2474 mpred = vm_radix_iter_lookup_le(&pages, pindex);
2475 KASSERT(mpred == NULL || mpred->pindex != pindex,
2476 ("vm_page_alloc_contig: pindex already allocated"));
2477 for (;;) {
2478 #if VM_NRESERVLEVEL > 0
2479 /*
2480 * Can we allocate the pages from a reservation?
2481 */
2482 if (vm_object_reserv(object) &&
2483 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2484 mpred, npages, low, high, alignment, boundary)) != NULL) {
2485 break;
2486 }
2487 #endif
2488 if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2489 low, high, alignment, boundary)) != NULL)
2490 break;
2491 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2492 return (NULL);
2493 }
2494
2495 /*
2496 * Initialize the pages. Only the PG_ZERO flag is inherited.
2497 */
2498 flags = PG_ZERO;
2499 if ((req & VM_ALLOC_NODUMP) != 0)
2500 flags |= PG_NODUMP;
2501 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2502 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2503 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2504 else if ((req & VM_ALLOC_SBUSY) != 0)
2505 busy_lock = VPB_SHARERS_WORD(1);
2506 else
2507 busy_lock = VPB_UNBUSIED;
2508 if ((req & VM_ALLOC_WIRED) != 0)
2509 vm_wire_add(npages);
2510 if (object->memattr != VM_MEMATTR_DEFAULT &&
2511 memattr == VM_MEMATTR_DEFAULT)
2512 memattr = object->memattr;
2513 for (m = m_ret; m < &m_ret[npages]; m++) {
2514 vm_page_dequeue(m);
2515 vm_page_alloc_check(m);
2516 m->a.flags = 0;
2517 m->flags = (m->flags | PG_NODUMP) & flags;
2518 m->busy_lock = busy_lock;
2519 if ((req & VM_ALLOC_WIRED) != 0)
2520 m->ref_count = 1;
2521 m->a.act_count = 0;
2522 m->oflags = oflags;
2523 m->pool = VM_FREEPOOL_DEFAULT;
2524 if (vm_page_iter_insert(&pages, m, object, pindex, mpred)) {
2525 if ((req & VM_ALLOC_WIRED) != 0)
2526 vm_wire_sub(npages);
2527 KASSERT(m->object == NULL,
2528 ("page %p has object", m));
2529 mpred = m;
2530 for (m = m_ret; m < &m_ret[npages]; m++) {
2531 if (m <= mpred &&
2532 (req & VM_ALLOC_WIRED) != 0)
2533 m->ref_count = 0;
2534 m->oflags = VPO_UNMANAGED;
2535 m->busy_lock = VPB_UNBUSIED;
2536 /* Don't change PG_ZERO. */
2537 vm_page_free_toq(m);
2538 }
2539 if (req & VM_ALLOC_WAITFAIL) {
2540 VM_OBJECT_WUNLOCK(object);
2541 vm_radix_wait();
2542 VM_OBJECT_WLOCK(object);
2543 }
2544 return (NULL);
2545 }
2546 mpred = m;
2547 if (memattr != VM_MEMATTR_DEFAULT)
2548 pmap_page_set_memattr(m, memattr);
2549 pindex++;
2550 }
2551 return (m_ret);
2552 }
2553
2554 /*
2555 * Allocate a physical page that is not intended to be inserted into a VM
2556 * object.
2557 */
2558 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2559 vm_page_alloc_noobj_domain(int domain, int req)
2560 {
2561 struct vm_domain *vmd;
2562 vm_page_t m;
2563 int flags;
2564
2565 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2566 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \
2567 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \
2568 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2569 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2570 KASSERT((req & ~VPAN_FLAGS) == 0,
2571 ("invalid request %#x", req));
2572
2573 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2574 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2575 vmd = VM_DOMAIN(domain);
2576 again:
2577 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2578 m = vm_page_alloc_nofree_domain(domain, req);
2579 if (m != NULL)
2580 goto found;
2581 }
2582
2583 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2584 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2585 M_NOWAIT | M_NOVM);
2586 if (m != NULL) {
2587 flags |= PG_PCPU_CACHE;
2588 goto found;
2589 }
2590 }
2591
2592 if (vm_domain_allocate(vmd, req, 1)) {
2593 vm_domain_free_lock(vmd);
2594 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2595 vm_domain_free_unlock(vmd);
2596 if (m == NULL) {
2597 vm_domain_freecnt_inc(vmd, 1);
2598 #if VM_NRESERVLEVEL > 0
2599 if (vm_reserv_reclaim_inactive(domain))
2600 goto again;
2601 #endif
2602 }
2603 }
2604 if (m == NULL) {
2605 if (vm_domain_alloc_fail(vmd, NULL, req))
2606 goto again;
2607 return (NULL);
2608 }
2609
2610 found:
2611 vm_page_dequeue(m);
2612 vm_page_alloc_check(m);
2613
2614 /*
2615 * Consumers should not rely on a useful default pindex value.
2616 */
2617 m->pindex = 0xdeadc0dedeadc0de;
2618 m->flags = (m->flags & PG_ZERO) | flags;
2619 m->a.flags = 0;
2620 m->oflags = VPO_UNMANAGED;
2621 m->pool = VM_FREEPOOL_DIRECT;
2622 m->busy_lock = VPB_UNBUSIED;
2623 if ((req & VM_ALLOC_WIRED) != 0) {
2624 vm_wire_add(1);
2625 m->ref_count = 1;
2626 }
2627
2628 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2629 pmap_zero_page(m);
2630
2631 return (m);
2632 }
2633
2634 #if VM_NRESERVLEVEL > 1
2635 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2636 #elif VM_NRESERVLEVEL > 0
2637 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER
2638 #else
2639 #define VM_NOFREE_IMPORT_ORDER 8
2640 #endif
2641
2642 /*
2643 * Allocate a single NOFREE page.
2644 *
2645 * This routine hands out NOFREE pages from higher-order
2646 * physical memory blocks in order to reduce memory fragmentation.
2647 * When a NOFREE for a given domain chunk is used up,
2648 * the routine will try to fetch a new one from the freelists
2649 * and discard the old one.
2650 */
2651 static vm_page_t
vm_page_alloc_nofree_domain(int domain,int req)2652 vm_page_alloc_nofree_domain(int domain, int req)
2653 {
2654 vm_page_t m;
2655 struct vm_domain *vmd;
2656 struct vm_nofreeq *nqp;
2657
2658 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2659
2660 vmd = VM_DOMAIN(domain);
2661 nqp = &vmd->vmd_nofreeq;
2662 vm_domain_free_lock(vmd);
2663 if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) {
2664 if (!vm_domain_allocate(vmd, req,
2665 1 << VM_NOFREE_IMPORT_ORDER)) {
2666 vm_domain_free_unlock(vmd);
2667 return (NULL);
2668 }
2669 nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2670 VM_NOFREE_IMPORT_ORDER);
2671 if (nqp->ma == NULL) {
2672 vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER);
2673 vm_domain_free_unlock(vmd);
2674 return (NULL);
2675 }
2676 nqp->offs = 0;
2677 }
2678 m = &nqp->ma[nqp->offs++];
2679 vm_domain_free_unlock(vmd);
2680 VM_CNT_ADD(v_nofree_count, 1);
2681
2682 return (m);
2683 }
2684
2685 vm_page_t
vm_page_alloc_noobj(int req)2686 vm_page_alloc_noobj(int req)
2687 {
2688 struct vm_domainset_iter di;
2689 vm_page_t m;
2690 int domain;
2691
2692 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2693 do {
2694 m = vm_page_alloc_noobj_domain(domain, req);
2695 if (m != NULL)
2696 break;
2697 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2698
2699 return (m);
2700 }
2701
2702 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2703 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2704 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2705 vm_memattr_t memattr)
2706 {
2707 struct vm_domainset_iter di;
2708 vm_page_t m;
2709 int domain;
2710
2711 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2712 do {
2713 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2714 high, alignment, boundary, memattr);
2715 if (m != NULL)
2716 break;
2717 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2718
2719 return (m);
2720 }
2721
2722 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2723 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2724 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2725 vm_memattr_t memattr)
2726 {
2727 vm_page_t m, m_ret;
2728 u_int flags;
2729
2730 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2731 KASSERT((req & ~VPANC_FLAGS) == 0,
2732 ("invalid request %#x", req));
2733 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2734 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2735 ("invalid request %#x", req));
2736 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2737 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2738 ("invalid request %#x", req));
2739 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2740
2741 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2742 low, high, alignment, boundary)) == NULL) {
2743 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2744 return (NULL);
2745 }
2746
2747 /*
2748 * Initialize the pages. Only the PG_ZERO flag is inherited.
2749 */
2750 flags = PG_ZERO;
2751 if ((req & VM_ALLOC_NODUMP) != 0)
2752 flags |= PG_NODUMP;
2753 if ((req & VM_ALLOC_WIRED) != 0)
2754 vm_wire_add(npages);
2755 for (m = m_ret; m < &m_ret[npages]; m++) {
2756 vm_page_dequeue(m);
2757 vm_page_alloc_check(m);
2758
2759 /*
2760 * Consumers should not rely on a useful default pindex value.
2761 */
2762 m->pindex = 0xdeadc0dedeadc0de;
2763 m->a.flags = 0;
2764 m->flags = (m->flags | PG_NODUMP) & flags;
2765 m->busy_lock = VPB_UNBUSIED;
2766 if ((req & VM_ALLOC_WIRED) != 0)
2767 m->ref_count = 1;
2768 m->a.act_count = 0;
2769 m->oflags = VPO_UNMANAGED;
2770 m->pool = VM_FREEPOOL_DIRECT;
2771
2772 /*
2773 * Zero the page before updating any mappings since the page is
2774 * not yet shared with any devices which might require the
2775 * non-default memory attribute. pmap_page_set_memattr()
2776 * flushes data caches before returning.
2777 */
2778 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2779 pmap_zero_page(m);
2780 if (memattr != VM_MEMATTR_DEFAULT)
2781 pmap_page_set_memattr(m, memattr);
2782 }
2783 return (m_ret);
2784 }
2785
2786 /*
2787 * Check a page that has been freshly dequeued from a freelist.
2788 */
2789 static void
vm_page_alloc_check(vm_page_t m)2790 vm_page_alloc_check(vm_page_t m)
2791 {
2792
2793 KASSERT(m->object == NULL, ("page %p has object", m));
2794 KASSERT(m->a.queue == PQ_NONE &&
2795 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2796 ("page %p has unexpected queue %d, flags %#x",
2797 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2798 KASSERT(m->ref_count == 0, ("page %p has references", m));
2799 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2800 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2801 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2802 ("page %p has unexpected memattr %d",
2803 m, pmap_page_get_memattr(m)));
2804 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2805 pmap_vm_page_alloc_check(m);
2806 }
2807
2808 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2809 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2810 {
2811 struct vm_domain *vmd;
2812 struct vm_pgcache *pgcache;
2813 int i;
2814
2815 pgcache = arg;
2816 vmd = VM_DOMAIN(pgcache->domain);
2817
2818 /*
2819 * The page daemon should avoid creating extra memory pressure since its
2820 * main purpose is to replenish the store of free pages.
2821 */
2822 if (vmd->vmd_severeset || curproc == pageproc ||
2823 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2824 return (0);
2825 domain = vmd->vmd_domain;
2826 vm_domain_free_lock(vmd);
2827 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2828 (vm_page_t *)store);
2829 vm_domain_free_unlock(vmd);
2830 if (cnt != i)
2831 vm_domain_freecnt_inc(vmd, cnt - i);
2832
2833 return (i);
2834 }
2835
2836 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2837 vm_page_zone_release(void *arg, void **store, int cnt)
2838 {
2839 struct vm_domain *vmd;
2840 struct vm_pgcache *pgcache;
2841 vm_page_t m;
2842 int i;
2843
2844 pgcache = arg;
2845 vmd = VM_DOMAIN(pgcache->domain);
2846 vm_domain_free_lock(vmd);
2847 for (i = 0; i < cnt; i++) {
2848 m = (vm_page_t)store[i];
2849 vm_phys_free_pages(m, pgcache->pool, 0);
2850 }
2851 vm_domain_free_unlock(vmd);
2852 vm_domain_freecnt_inc(vmd, cnt);
2853 }
2854
2855 #define VPSC_ANY 0 /* No restrictions. */
2856 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2857 #define VPSC_NOSUPER 2 /* Skip superpages. */
2858
2859 /*
2860 * vm_page_scan_contig:
2861 *
2862 * Scan vm_page_array[] between the specified entries "m_start" and
2863 * "m_end" for a run of contiguous physical pages that satisfy the
2864 * specified conditions, and return the lowest page in the run. The
2865 * specified "alignment" determines the alignment of the lowest physical
2866 * page in the run. If the specified "boundary" is non-zero, then the
2867 * run of physical pages cannot span a physical address that is a
2868 * multiple of "boundary".
2869 *
2870 * "m_end" is never dereferenced, so it need not point to a vm_page
2871 * structure within vm_page_array[].
2872 *
2873 * "npages" must be greater than zero. "m_start" and "m_end" must not
2874 * span a hole (or discontiguity) in the physical address space. Both
2875 * "alignment" and "boundary" must be a power of two.
2876 */
2877 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2878 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2879 u_long alignment, vm_paddr_t boundary, int options)
2880 {
2881 vm_object_t object;
2882 vm_paddr_t pa;
2883 vm_page_t m, m_run;
2884 #if VM_NRESERVLEVEL > 0
2885 int level;
2886 #endif
2887 int m_inc, order, run_ext, run_len;
2888
2889 KASSERT(npages > 0, ("npages is 0"));
2890 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2891 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2892 m_run = NULL;
2893 run_len = 0;
2894 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2895 KASSERT((m->flags & PG_MARKER) == 0,
2896 ("page %p is PG_MARKER", m));
2897 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2898 ("fictitious page %p has invalid ref count", m));
2899
2900 /*
2901 * If the current page would be the start of a run, check its
2902 * physical address against the end, alignment, and boundary
2903 * conditions. If it doesn't satisfy these conditions, either
2904 * terminate the scan or advance to the next page that
2905 * satisfies the failed condition.
2906 */
2907 if (run_len == 0) {
2908 KASSERT(m_run == NULL, ("m_run != NULL"));
2909 if (m + npages > m_end)
2910 break;
2911 pa = VM_PAGE_TO_PHYS(m);
2912 if (!vm_addr_align_ok(pa, alignment)) {
2913 m_inc = atop(roundup2(pa, alignment) - pa);
2914 continue;
2915 }
2916 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2917 m_inc = atop(roundup2(pa, boundary) - pa);
2918 continue;
2919 }
2920 } else
2921 KASSERT(m_run != NULL, ("m_run == NULL"));
2922
2923 retry:
2924 m_inc = 1;
2925 if (vm_page_wired(m))
2926 run_ext = 0;
2927 #if VM_NRESERVLEVEL > 0
2928 else if ((level = vm_reserv_level(m)) >= 0 &&
2929 (options & VPSC_NORESERV) != 0) {
2930 run_ext = 0;
2931 /* Advance to the end of the reservation. */
2932 pa = VM_PAGE_TO_PHYS(m);
2933 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2934 pa);
2935 }
2936 #endif
2937 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2938 /*
2939 * The page is considered eligible for relocation if
2940 * and only if it could be laundered or reclaimed by
2941 * the page daemon.
2942 */
2943 VM_OBJECT_RLOCK(object);
2944 if (object != m->object) {
2945 VM_OBJECT_RUNLOCK(object);
2946 goto retry;
2947 }
2948 /* Don't care: PG_NODUMP, PG_ZERO. */
2949 if ((object->flags & OBJ_SWAP) == 0 &&
2950 object->type != OBJT_VNODE) {
2951 run_ext = 0;
2952 #if VM_NRESERVLEVEL > 0
2953 } else if ((options & VPSC_NOSUPER) != 0 &&
2954 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2955 run_ext = 0;
2956 /* Advance to the end of the superpage. */
2957 pa = VM_PAGE_TO_PHYS(m);
2958 m_inc = atop(roundup2(pa + 1,
2959 vm_reserv_size(level)) - pa);
2960 #endif
2961 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2962 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2963 /*
2964 * The page is allocated but eligible for
2965 * relocation. Extend the current run by one
2966 * page.
2967 */
2968 KASSERT(pmap_page_get_memattr(m) ==
2969 VM_MEMATTR_DEFAULT,
2970 ("page %p has an unexpected memattr", m));
2971 KASSERT((m->oflags & (VPO_SWAPINPROG |
2972 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2973 ("page %p has unexpected oflags", m));
2974 /* Don't care: PGA_NOSYNC. */
2975 run_ext = 1;
2976 } else
2977 run_ext = 0;
2978 VM_OBJECT_RUNLOCK(object);
2979 #if VM_NRESERVLEVEL > 0
2980 } else if (level >= 0) {
2981 /*
2982 * The page is reserved but not yet allocated. In
2983 * other words, it is still free. Extend the current
2984 * run by one page.
2985 */
2986 run_ext = 1;
2987 #endif
2988 } else if ((order = m->order) < VM_NFREEORDER) {
2989 /*
2990 * The page is enqueued in the physical memory
2991 * allocator's free page queues. Moreover, it is the
2992 * first page in a power-of-two-sized run of
2993 * contiguous free pages. Add these pages to the end
2994 * of the current run, and jump ahead.
2995 */
2996 run_ext = 1 << order;
2997 m_inc = 1 << order;
2998 } else {
2999 /*
3000 * Skip the page for one of the following reasons: (1)
3001 * It is enqueued in the physical memory allocator's
3002 * free page queues. However, it is not the first
3003 * page in a run of contiguous free pages. (This case
3004 * rarely occurs because the scan is performed in
3005 * ascending order.) (2) It is not reserved, and it is
3006 * transitioning from free to allocated. (Conversely,
3007 * the transition from allocated to free for managed
3008 * pages is blocked by the page busy lock.) (3) It is
3009 * allocated but not contained by an object and not
3010 * wired, e.g., allocated by Xen's balloon driver.
3011 */
3012 run_ext = 0;
3013 }
3014
3015 /*
3016 * Extend or reset the current run of pages.
3017 */
3018 if (run_ext > 0) {
3019 if (run_len == 0)
3020 m_run = m;
3021 run_len += run_ext;
3022 } else {
3023 if (run_len > 0) {
3024 m_run = NULL;
3025 run_len = 0;
3026 }
3027 }
3028 }
3029 if (run_len >= npages)
3030 return (m_run);
3031 return (NULL);
3032 }
3033
3034 /*
3035 * vm_page_reclaim_run:
3036 *
3037 * Try to relocate each of the allocated virtual pages within the
3038 * specified run of physical pages to a new physical address. Free the
3039 * physical pages underlying the relocated virtual pages. A virtual page
3040 * is relocatable if and only if it could be laundered or reclaimed by
3041 * the page daemon. Whenever possible, a virtual page is relocated to a
3042 * physical address above "high".
3043 *
3044 * Returns 0 if every physical page within the run was already free or
3045 * just freed by a successful relocation. Otherwise, returns a non-zero
3046 * value indicating why the last attempt to relocate a virtual page was
3047 * unsuccessful.
3048 *
3049 * "req_class" must be an allocation class.
3050 */
3051 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)3052 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
3053 vm_paddr_t high)
3054 {
3055 struct vm_domain *vmd;
3056 struct spglist free;
3057 vm_object_t object;
3058 vm_paddr_t pa;
3059 vm_page_t m, m_end, m_new;
3060 int error, order, req;
3061
3062 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
3063 ("req_class is not an allocation class"));
3064 SLIST_INIT(&free);
3065 error = 0;
3066 m = m_run;
3067 m_end = m_run + npages;
3068 for (; error == 0 && m < m_end; m++) {
3069 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
3070 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
3071
3072 /*
3073 * Racily check for wirings. Races are handled once the object
3074 * lock is held and the page is unmapped.
3075 */
3076 if (vm_page_wired(m))
3077 error = EBUSY;
3078 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
3079 /*
3080 * The page is relocated if and only if it could be
3081 * laundered or reclaimed by the page daemon.
3082 */
3083 VM_OBJECT_WLOCK(object);
3084 /* Don't care: PG_NODUMP, PG_ZERO. */
3085 if (m->object != object ||
3086 ((object->flags & OBJ_SWAP) == 0 &&
3087 object->type != OBJT_VNODE))
3088 error = EINVAL;
3089 else if (object->memattr != VM_MEMATTR_DEFAULT)
3090 error = EINVAL;
3091 else if (vm_page_queue(m) != PQ_NONE &&
3092 vm_page_tryxbusy(m) != 0) {
3093 if (vm_page_wired(m)) {
3094 vm_page_xunbusy(m);
3095 error = EBUSY;
3096 goto unlock;
3097 }
3098 KASSERT(pmap_page_get_memattr(m) ==
3099 VM_MEMATTR_DEFAULT,
3100 ("page %p has an unexpected memattr", m));
3101 KASSERT(m->oflags == 0,
3102 ("page %p has unexpected oflags", m));
3103 /* Don't care: PGA_NOSYNC. */
3104 if (!vm_page_none_valid(m)) {
3105 /*
3106 * First, try to allocate a new page
3107 * that is above "high". Failing
3108 * that, try to allocate a new page
3109 * that is below "m_run". Allocate
3110 * the new page between the end of
3111 * "m_run" and "high" only as a last
3112 * resort.
3113 */
3114 req = req_class;
3115 if ((m->flags & PG_NODUMP) != 0)
3116 req |= VM_ALLOC_NODUMP;
3117 if (trunc_page(high) !=
3118 ~(vm_paddr_t)PAGE_MASK) {
3119 m_new =
3120 vm_page_alloc_noobj_contig(
3121 req, 1, round_page(high),
3122 ~(vm_paddr_t)0, PAGE_SIZE,
3123 0, VM_MEMATTR_DEFAULT);
3124 } else
3125 m_new = NULL;
3126 if (m_new == NULL) {
3127 pa = VM_PAGE_TO_PHYS(m_run);
3128 m_new =
3129 vm_page_alloc_noobj_contig(
3130 req, 1, 0, pa - 1,
3131 PAGE_SIZE, 0,
3132 VM_MEMATTR_DEFAULT);
3133 }
3134 if (m_new == NULL) {
3135 pa += ptoa(npages);
3136 m_new =
3137 vm_page_alloc_noobj_contig(
3138 req, 1, pa, high, PAGE_SIZE,
3139 0, VM_MEMATTR_DEFAULT);
3140 }
3141 if (m_new == NULL) {
3142 vm_page_xunbusy(m);
3143 error = ENOMEM;
3144 goto unlock;
3145 }
3146
3147 /*
3148 * Unmap the page and check for new
3149 * wirings that may have been acquired
3150 * through a pmap lookup.
3151 */
3152 if (object->ref_count != 0 &&
3153 !vm_page_try_remove_all(m)) {
3154 vm_page_xunbusy(m);
3155 vm_page_free(m_new);
3156 error = EBUSY;
3157 goto unlock;
3158 }
3159
3160 /*
3161 * Replace "m" with the new page. For
3162 * vm_page_replace(), "m" must be busy
3163 * and dequeued. Finally, change "m"
3164 * as if vm_page_free() was called.
3165 */
3166 m_new->a.flags = m->a.flags &
3167 ~PGA_QUEUE_STATE_MASK;
3168 KASSERT(m_new->oflags == VPO_UNMANAGED,
3169 ("page %p is managed", m_new));
3170 m_new->oflags = 0;
3171 pmap_copy_page(m, m_new);
3172 m_new->valid = m->valid;
3173 m_new->dirty = m->dirty;
3174 m->flags &= ~PG_ZERO;
3175 vm_page_dequeue(m);
3176 if (vm_page_replace_hold(m_new, object,
3177 m->pindex, m) &&
3178 vm_page_free_prep(m))
3179 SLIST_INSERT_HEAD(&free, m,
3180 plinks.s.ss);
3181
3182 /*
3183 * The new page must be deactivated
3184 * before the object is unlocked.
3185 */
3186 vm_page_deactivate(m_new);
3187 } else {
3188 m->flags &= ~PG_ZERO;
3189 vm_page_dequeue(m);
3190 if (vm_page_free_prep(m))
3191 SLIST_INSERT_HEAD(&free, m,
3192 plinks.s.ss);
3193 KASSERT(m->dirty == 0,
3194 ("page %p is dirty", m));
3195 }
3196 } else
3197 error = EBUSY;
3198 unlock:
3199 VM_OBJECT_WUNLOCK(object);
3200 } else {
3201 MPASS(vm_page_domain(m) == domain);
3202 vmd = VM_DOMAIN(domain);
3203 vm_domain_free_lock(vmd);
3204 order = m->order;
3205 if (order < VM_NFREEORDER) {
3206 /*
3207 * The page is enqueued in the physical memory
3208 * allocator's free page queues. Moreover, it
3209 * is the first page in a power-of-two-sized
3210 * run of contiguous free pages. Jump ahead
3211 * to the last page within that run, and
3212 * continue from there.
3213 */
3214 m += (1 << order) - 1;
3215 }
3216 #if VM_NRESERVLEVEL > 0
3217 else if (vm_reserv_is_page_free(m))
3218 order = 0;
3219 #endif
3220 vm_domain_free_unlock(vmd);
3221 if (order == VM_NFREEORDER)
3222 error = EINVAL;
3223 }
3224 }
3225 if ((m = SLIST_FIRST(&free)) != NULL) {
3226 int cnt;
3227
3228 vmd = VM_DOMAIN(domain);
3229 cnt = 0;
3230 vm_domain_free_lock(vmd);
3231 do {
3232 MPASS(vm_page_domain(m) == domain);
3233 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3234 vm_phys_free_pages(m, m->pool, 0);
3235 cnt++;
3236 } while ((m = SLIST_FIRST(&free)) != NULL);
3237 vm_domain_free_unlock(vmd);
3238 vm_domain_freecnt_inc(vmd, cnt);
3239 }
3240 return (error);
3241 }
3242
3243 #define NRUNS 16
3244
3245 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3246
3247 #define MIN_RECLAIM 8
3248
3249 /*
3250 * vm_page_reclaim_contig:
3251 *
3252 * Reclaim allocated, contiguous physical memory satisfying the specified
3253 * conditions by relocating the virtual pages using that physical memory.
3254 * Returns 0 if reclamation is successful, ERANGE if the specified domain
3255 * can't possibly satisfy the reclamation request, or ENOMEM if not
3256 * currently able to reclaim the requested number of pages. Since
3257 * relocation requires the allocation of physical pages, reclamation may
3258 * fail with ENOMEM due to a shortage of free pages. When reclamation
3259 * fails in this manner, callers are expected to perform vm_wait() before
3260 * retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3261 *
3262 * The caller must always specify an allocation class through "req".
3263 *
3264 * allocation classes:
3265 * VM_ALLOC_NORMAL normal process request
3266 * VM_ALLOC_SYSTEM system *really* needs a page
3267 * VM_ALLOC_INTERRUPT interrupt time request
3268 *
3269 * The optional allocation flags are ignored.
3270 *
3271 * "npages" must be greater than zero. Both "alignment" and "boundary"
3272 * must be a power of two.
3273 */
3274 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3275 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3276 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3277 int desired_runs)
3278 {
3279 struct vm_domain *vmd;
3280 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3281 u_long count, minalign, reclaimed;
3282 int error, i, min_reclaim, nruns, options, req_class;
3283 int segind, start_segind;
3284 int ret;
3285
3286 KASSERT(npages > 0, ("npages is 0"));
3287 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3288 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3289
3290 ret = ENOMEM;
3291
3292 /*
3293 * If the caller wants to reclaim multiple runs, try to allocate
3294 * space to store the runs. If that fails, fall back to the old
3295 * behavior of just reclaiming MIN_RECLAIM pages.
3296 */
3297 if (desired_runs > 1)
3298 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3299 M_TEMP, M_NOWAIT);
3300 else
3301 m_runs = NULL;
3302
3303 if (m_runs == NULL) {
3304 m_runs = _m_runs;
3305 nruns = NRUNS;
3306 } else {
3307 nruns = NRUNS + desired_runs - 1;
3308 }
3309 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3310
3311 /*
3312 * The caller will attempt an allocation after some runs have been
3313 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3314 * of vm_phys_alloc_contig(), round up the requested length to the next
3315 * power of two or maximum chunk size, and ensure that each run is
3316 * suitably aligned.
3317 */
3318 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3319 npages = roundup2(npages, minalign);
3320 if (alignment < ptoa(minalign))
3321 alignment = ptoa(minalign);
3322
3323 /*
3324 * The page daemon is allowed to dig deeper into the free page list.
3325 */
3326 req_class = req & VM_ALLOC_CLASS_MASK;
3327 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3328 req_class = VM_ALLOC_SYSTEM;
3329
3330 start_segind = vm_phys_lookup_segind(low);
3331
3332 /*
3333 * Return if the number of free pages cannot satisfy the requested
3334 * allocation.
3335 */
3336 vmd = VM_DOMAIN(domain);
3337 count = vmd->vmd_free_count;
3338 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3339 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3340 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3341 goto done;
3342
3343 /*
3344 * Scan up to three times, relaxing the restrictions ("options") on
3345 * the reclamation of reservations and superpages each time.
3346 */
3347 for (options = VPSC_NORESERV;;) {
3348 bool phys_range_exists = false;
3349
3350 /*
3351 * Find the highest runs that satisfy the given constraints
3352 * and restrictions, and record them in "m_runs".
3353 */
3354 count = 0;
3355 segind = start_segind;
3356 while ((segind = vm_phys_find_range(bounds, segind, domain,
3357 npages, low, high)) != -1) {
3358 phys_range_exists = true;
3359 while ((m_run = vm_page_scan_contig(npages, bounds[0],
3360 bounds[1], alignment, boundary, options))) {
3361 bounds[0] = m_run + npages;
3362 m_runs[RUN_INDEX(count, nruns)] = m_run;
3363 count++;
3364 }
3365 segind++;
3366 }
3367
3368 if (!phys_range_exists) {
3369 ret = ERANGE;
3370 goto done;
3371 }
3372
3373 /*
3374 * Reclaim the highest runs in LIFO (descending) order until
3375 * the number of reclaimed pages, "reclaimed", is at least
3376 * "min_reclaim". Reset "reclaimed" each time because each
3377 * reclamation is idempotent, and runs will (likely) recur
3378 * from one scan to the next as restrictions are relaxed.
3379 */
3380 reclaimed = 0;
3381 for (i = 0; count > 0 && i < nruns; i++) {
3382 count--;
3383 m_run = m_runs[RUN_INDEX(count, nruns)];
3384 error = vm_page_reclaim_run(req_class, domain, npages,
3385 m_run, high);
3386 if (error == 0) {
3387 reclaimed += npages;
3388 if (reclaimed >= min_reclaim) {
3389 ret = 0;
3390 goto done;
3391 }
3392 }
3393 }
3394
3395 /*
3396 * Either relax the restrictions on the next scan or return if
3397 * the last scan had no restrictions.
3398 */
3399 if (options == VPSC_NORESERV)
3400 options = VPSC_NOSUPER;
3401 else if (options == VPSC_NOSUPER)
3402 options = VPSC_ANY;
3403 else if (options == VPSC_ANY) {
3404 if (reclaimed != 0)
3405 ret = 0;
3406 goto done;
3407 }
3408 }
3409 done:
3410 if (m_runs != _m_runs)
3411 free(m_runs, M_TEMP);
3412 return (ret);
3413 }
3414
3415 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3416 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3417 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3418 {
3419 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3420 alignment, boundary, 1));
3421 }
3422
3423 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3424 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3425 u_long alignment, vm_paddr_t boundary)
3426 {
3427 struct vm_domainset_iter di;
3428 int domain, ret, status;
3429
3430 ret = ERANGE;
3431
3432 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3433 do {
3434 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3435 high, alignment, boundary);
3436 if (status == 0)
3437 return (0);
3438 else if (status == ERANGE)
3439 vm_domainset_iter_ignore(&di, domain);
3440 else {
3441 KASSERT(status == ENOMEM, ("Unrecognized error %d "
3442 "from vm_page_reclaim_contig_domain()", status));
3443 ret = ENOMEM;
3444 }
3445 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3446
3447 return (ret);
3448 }
3449
3450 /*
3451 * Set the domain in the appropriate page level domainset.
3452 */
3453 void
vm_domain_set(struct vm_domain * vmd)3454 vm_domain_set(struct vm_domain *vmd)
3455 {
3456
3457 mtx_lock(&vm_domainset_lock);
3458 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3459 vmd->vmd_minset = 1;
3460 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3461 }
3462 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3463 vmd->vmd_severeset = 1;
3464 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3465 }
3466 mtx_unlock(&vm_domainset_lock);
3467 }
3468
3469 /*
3470 * Clear the domain from the appropriate page level domainset.
3471 */
3472 void
vm_domain_clear(struct vm_domain * vmd)3473 vm_domain_clear(struct vm_domain *vmd)
3474 {
3475
3476 mtx_lock(&vm_domainset_lock);
3477 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3478 vmd->vmd_minset = 0;
3479 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3480 if (vm_min_waiters != 0) {
3481 vm_min_waiters = 0;
3482 wakeup(&vm_min_domains);
3483 }
3484 }
3485 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3486 vmd->vmd_severeset = 0;
3487 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3488 if (vm_severe_waiters != 0) {
3489 vm_severe_waiters = 0;
3490 wakeup(&vm_severe_domains);
3491 }
3492 }
3493
3494 /*
3495 * If pageout daemon needs pages, then tell it that there are
3496 * some free.
3497 */
3498 if (vmd->vmd_pageout_pages_needed &&
3499 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3500 wakeup(&vmd->vmd_pageout_pages_needed);
3501 vmd->vmd_pageout_pages_needed = 0;
3502 }
3503
3504 /* See comments in vm_wait_doms(). */
3505 if (vm_pageproc_waiters) {
3506 vm_pageproc_waiters = 0;
3507 wakeup(&vm_pageproc_waiters);
3508 }
3509 mtx_unlock(&vm_domainset_lock);
3510 }
3511
3512 /*
3513 * Wait for free pages to exceed the min threshold globally.
3514 */
3515 void
vm_wait_min(void)3516 vm_wait_min(void)
3517 {
3518
3519 mtx_lock(&vm_domainset_lock);
3520 while (vm_page_count_min()) {
3521 vm_min_waiters++;
3522 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3523 }
3524 mtx_unlock(&vm_domainset_lock);
3525 }
3526
3527 /*
3528 * Wait for free pages to exceed the severe threshold globally.
3529 */
3530 void
vm_wait_severe(void)3531 vm_wait_severe(void)
3532 {
3533
3534 mtx_lock(&vm_domainset_lock);
3535 while (vm_page_count_severe()) {
3536 vm_severe_waiters++;
3537 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3538 "vmwait", 0);
3539 }
3540 mtx_unlock(&vm_domainset_lock);
3541 }
3542
3543 u_int
vm_wait_count(void)3544 vm_wait_count(void)
3545 {
3546
3547 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3548 }
3549
3550 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3551 vm_wait_doms(const domainset_t *wdoms, int mflags)
3552 {
3553 int error;
3554
3555 error = 0;
3556
3557 /*
3558 * We use racey wakeup synchronization to avoid expensive global
3559 * locking for the pageproc when sleeping with a non-specific vm_wait.
3560 * To handle this, we only sleep for one tick in this instance. It
3561 * is expected that most allocations for the pageproc will come from
3562 * kmem or vm_page_grab* which will use the more specific and
3563 * race-free vm_wait_domain().
3564 */
3565 if (curproc == pageproc) {
3566 mtx_lock(&vm_domainset_lock);
3567 vm_pageproc_waiters++;
3568 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3569 PVM | PDROP | mflags, "pageprocwait", 1);
3570 } else {
3571 /*
3572 * XXX Ideally we would wait only until the allocation could
3573 * be satisfied. This condition can cause new allocators to
3574 * consume all freed pages while old allocators wait.
3575 */
3576 mtx_lock(&vm_domainset_lock);
3577 if (vm_page_count_min_set(wdoms)) {
3578 if (pageproc == NULL)
3579 panic("vm_wait in early boot");
3580 vm_min_waiters++;
3581 error = msleep(&vm_min_domains, &vm_domainset_lock,
3582 PVM | PDROP | mflags, "vmwait", 0);
3583 } else
3584 mtx_unlock(&vm_domainset_lock);
3585 }
3586 return (error);
3587 }
3588
3589 /*
3590 * vm_wait_domain:
3591 *
3592 * Sleep until free pages are available for allocation.
3593 * - Called in various places after failed memory allocations.
3594 */
3595 void
vm_wait_domain(int domain)3596 vm_wait_domain(int domain)
3597 {
3598 struct vm_domain *vmd;
3599 domainset_t wdom;
3600
3601 vmd = VM_DOMAIN(domain);
3602 vm_domain_free_assert_unlocked(vmd);
3603
3604 if (curproc == pageproc) {
3605 mtx_lock(&vm_domainset_lock);
3606 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3607 vmd->vmd_pageout_pages_needed = 1;
3608 msleep(&vmd->vmd_pageout_pages_needed,
3609 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3610 } else
3611 mtx_unlock(&vm_domainset_lock);
3612 } else {
3613 DOMAINSET_ZERO(&wdom);
3614 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3615 vm_wait_doms(&wdom, 0);
3616 }
3617 }
3618
3619 static int
vm_wait_flags(vm_object_t obj,int mflags)3620 vm_wait_flags(vm_object_t obj, int mflags)
3621 {
3622 struct domainset *d;
3623
3624 d = NULL;
3625
3626 /*
3627 * Carefully fetch pointers only once: the struct domainset
3628 * itself is ummutable but the pointer might change.
3629 */
3630 if (obj != NULL)
3631 d = obj->domain.dr_policy;
3632 if (d == NULL)
3633 d = curthread->td_domain.dr_policy;
3634
3635 return (vm_wait_doms(&d->ds_mask, mflags));
3636 }
3637
3638 /*
3639 * vm_wait:
3640 *
3641 * Sleep until free pages are available for allocation in the
3642 * affinity domains of the obj. If obj is NULL, the domain set
3643 * for the calling thread is used.
3644 * Called in various places after failed memory allocations.
3645 */
3646 void
vm_wait(vm_object_t obj)3647 vm_wait(vm_object_t obj)
3648 {
3649 (void)vm_wait_flags(obj, 0);
3650 }
3651
3652 int
vm_wait_intr(vm_object_t obj)3653 vm_wait_intr(vm_object_t obj)
3654 {
3655 return (vm_wait_flags(obj, PCATCH));
3656 }
3657
3658 /*
3659 * vm_domain_alloc_fail:
3660 *
3661 * Called when a page allocation function fails. Informs the
3662 * pagedaemon and performs the requested wait. Requires the
3663 * domain_free and object lock on entry. Returns with the
3664 * object lock held and free lock released. Returns an error when
3665 * retry is necessary.
3666 *
3667 */
3668 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3669 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3670 {
3671
3672 vm_domain_free_assert_unlocked(vmd);
3673
3674 atomic_add_int(&vmd->vmd_pageout_deficit,
3675 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3676 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3677 if (object != NULL)
3678 VM_OBJECT_WUNLOCK(object);
3679 vm_wait_domain(vmd->vmd_domain);
3680 if (object != NULL)
3681 VM_OBJECT_WLOCK(object);
3682 if (req & VM_ALLOC_WAITOK)
3683 return (EAGAIN);
3684 }
3685
3686 return (0);
3687 }
3688
3689 /*
3690 * vm_waitpfault:
3691 *
3692 * Sleep until free pages are available for allocation.
3693 * - Called only in vm_fault so that processes page faulting
3694 * can be easily tracked.
3695 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3696 * processes will be able to grab memory first. Do not change
3697 * this balance without careful testing first.
3698 */
3699 void
vm_waitpfault(struct domainset * dset,int timo)3700 vm_waitpfault(struct domainset *dset, int timo)
3701 {
3702
3703 /*
3704 * XXX Ideally we would wait only until the allocation could
3705 * be satisfied. This condition can cause new allocators to
3706 * consume all freed pages while old allocators wait.
3707 */
3708 mtx_lock(&vm_domainset_lock);
3709 if (vm_page_count_min_set(&dset->ds_mask)) {
3710 vm_min_waiters++;
3711 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3712 "pfault", timo);
3713 } else
3714 mtx_unlock(&vm_domainset_lock);
3715 }
3716
3717 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3718 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3719 {
3720
3721 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3722 }
3723
3724 #ifdef INVARIANTS
3725 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3726 vm_page_pagequeue(vm_page_t m)
3727 {
3728
3729 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3730 }
3731 #endif
3732
3733 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3734 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3735 {
3736 vm_page_astate_t tmp;
3737
3738 tmp = *old;
3739 do {
3740 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3741 return (true);
3742 counter_u64_add(pqstate_commit_retries, 1);
3743 } while (old->_bits == tmp._bits);
3744
3745 return (false);
3746 }
3747
3748 /*
3749 * Do the work of committing a queue state update that moves the page out of
3750 * its current queue.
3751 */
3752 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3753 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3754 vm_page_astate_t *old, vm_page_astate_t new)
3755 {
3756 vm_page_t next;
3757
3758 vm_pagequeue_assert_locked(pq);
3759 KASSERT(vm_page_pagequeue(m) == pq,
3760 ("%s: queue %p does not match page %p", __func__, pq, m));
3761 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3762 ("%s: invalid queue indices %d %d",
3763 __func__, old->queue, new.queue));
3764
3765 /*
3766 * Once the queue index of the page changes there is nothing
3767 * synchronizing with further updates to the page's physical
3768 * queue state. Therefore we must speculatively remove the page
3769 * from the queue now and be prepared to roll back if the queue
3770 * state update fails. If the page is not physically enqueued then
3771 * we just update its queue index.
3772 */
3773 if ((old->flags & PGA_ENQUEUED) != 0) {
3774 new.flags &= ~PGA_ENQUEUED;
3775 next = TAILQ_NEXT(m, plinks.q);
3776 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3777 vm_pagequeue_cnt_dec(pq);
3778 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3779 if (next == NULL)
3780 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3781 else
3782 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3783 vm_pagequeue_cnt_inc(pq);
3784 return (false);
3785 } else {
3786 return (true);
3787 }
3788 } else {
3789 return (vm_page_pqstate_fcmpset(m, old, new));
3790 }
3791 }
3792
3793 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3794 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3795 vm_page_astate_t new)
3796 {
3797 struct vm_pagequeue *pq;
3798 vm_page_astate_t as;
3799 bool ret;
3800
3801 pq = _vm_page_pagequeue(m, old->queue);
3802
3803 /*
3804 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3805 * corresponding page queue lock is held.
3806 */
3807 vm_pagequeue_lock(pq);
3808 as = vm_page_astate_load(m);
3809 if (__predict_false(as._bits != old->_bits)) {
3810 *old = as;
3811 ret = false;
3812 } else {
3813 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3814 }
3815 vm_pagequeue_unlock(pq);
3816 return (ret);
3817 }
3818
3819 /*
3820 * Commit a queue state update that enqueues or requeues a page.
3821 */
3822 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3823 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3824 vm_page_astate_t *old, vm_page_astate_t new)
3825 {
3826 struct vm_domain *vmd;
3827
3828 vm_pagequeue_assert_locked(pq);
3829 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3830 ("%s: invalid queue indices %d %d",
3831 __func__, old->queue, new.queue));
3832
3833 new.flags |= PGA_ENQUEUED;
3834 if (!vm_page_pqstate_fcmpset(m, old, new))
3835 return (false);
3836
3837 if ((old->flags & PGA_ENQUEUED) != 0)
3838 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3839 else
3840 vm_pagequeue_cnt_inc(pq);
3841
3842 /*
3843 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3844 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3845 * applied, even if it was set first.
3846 */
3847 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3848 vmd = vm_pagequeue_domain(m);
3849 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3850 ("%s: invalid page queue for page %p", __func__, m));
3851 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3852 } else {
3853 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3854 }
3855 return (true);
3856 }
3857
3858 /*
3859 * Commit a queue state update that encodes a request for a deferred queue
3860 * operation.
3861 */
3862 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3863 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3864 vm_page_astate_t new)
3865 {
3866
3867 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3868 ("%s: invalid state, queue %d flags %x",
3869 __func__, new.queue, new.flags));
3870
3871 if (old->_bits != new._bits &&
3872 !vm_page_pqstate_fcmpset(m, old, new))
3873 return (false);
3874 vm_page_pqbatch_submit(m, new.queue);
3875 return (true);
3876 }
3877
3878 /*
3879 * A generic queue state update function. This handles more cases than the
3880 * specialized functions above.
3881 */
3882 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3883 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3884 {
3885
3886 if (old->_bits == new._bits)
3887 return (true);
3888
3889 if (old->queue != PQ_NONE && new.queue != old->queue) {
3890 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3891 return (false);
3892 if (new.queue != PQ_NONE)
3893 vm_page_pqbatch_submit(m, new.queue);
3894 } else {
3895 if (!vm_page_pqstate_fcmpset(m, old, new))
3896 return (false);
3897 if (new.queue != PQ_NONE &&
3898 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3899 vm_page_pqbatch_submit(m, new.queue);
3900 }
3901 return (true);
3902 }
3903
3904 /*
3905 * Apply deferred queue state updates to a page.
3906 */
3907 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3908 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3909 {
3910 vm_page_astate_t new, old;
3911
3912 CRITICAL_ASSERT(curthread);
3913 vm_pagequeue_assert_locked(pq);
3914 KASSERT(queue < PQ_COUNT,
3915 ("%s: invalid queue index %d", __func__, queue));
3916 KASSERT(pq == _vm_page_pagequeue(m, queue),
3917 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3918
3919 for (old = vm_page_astate_load(m);;) {
3920 if (__predict_false(old.queue != queue ||
3921 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3922 counter_u64_add(queue_nops, 1);
3923 break;
3924 }
3925 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3926 ("%s: page %p is unmanaged", __func__, m));
3927
3928 new = old;
3929 if ((old.flags & PGA_DEQUEUE) != 0) {
3930 new.flags &= ~PGA_QUEUE_OP_MASK;
3931 new.queue = PQ_NONE;
3932 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3933 m, &old, new))) {
3934 counter_u64_add(queue_ops, 1);
3935 break;
3936 }
3937 } else {
3938 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3939 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3940 m, &old, new))) {
3941 counter_u64_add(queue_ops, 1);
3942 break;
3943 }
3944 }
3945 }
3946 }
3947
3948 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3949 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3950 uint8_t queue)
3951 {
3952 int i;
3953
3954 for (i = 0; i < bq->bq_cnt; i++)
3955 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3956 vm_batchqueue_init(bq);
3957 }
3958
3959 /*
3960 * vm_page_pqbatch_submit: [ internal use only ]
3961 *
3962 * Enqueue a page in the specified page queue's batched work queue.
3963 * The caller must have encoded the requested operation in the page
3964 * structure's a.flags field.
3965 */
3966 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3967 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3968 {
3969 struct vm_batchqueue *bq;
3970 struct vm_pagequeue *pq;
3971 int domain, slots_remaining;
3972
3973 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3974
3975 domain = vm_page_domain(m);
3976 critical_enter();
3977 bq = DPCPU_PTR(pqbatch[domain][queue]);
3978 slots_remaining = vm_batchqueue_insert(bq, m);
3979 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3980 /* keep building the bq */
3981 critical_exit();
3982 return;
3983 } else if (slots_remaining > 0 ) {
3984 /* Try to process the bq if we can get the lock */
3985 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3986 if (vm_pagequeue_trylock(pq)) {
3987 vm_pqbatch_process(pq, bq, queue);
3988 vm_pagequeue_unlock(pq);
3989 }
3990 critical_exit();
3991 return;
3992 }
3993 critical_exit();
3994
3995 /* if we make it here, the bq is full so wait for the lock */
3996
3997 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3998 vm_pagequeue_lock(pq);
3999 critical_enter();
4000 bq = DPCPU_PTR(pqbatch[domain][queue]);
4001 vm_pqbatch_process(pq, bq, queue);
4002 vm_pqbatch_process_page(pq, m, queue);
4003 vm_pagequeue_unlock(pq);
4004 critical_exit();
4005 }
4006
4007 /*
4008 * vm_page_pqbatch_drain: [ internal use only ]
4009 *
4010 * Force all per-CPU page queue batch queues to be drained. This is
4011 * intended for use in severe memory shortages, to ensure that pages
4012 * do not remain stuck in the batch queues.
4013 */
4014 void
vm_page_pqbatch_drain(void)4015 vm_page_pqbatch_drain(void)
4016 {
4017 struct thread *td;
4018 struct vm_domain *vmd;
4019 struct vm_pagequeue *pq;
4020 int cpu, domain, queue;
4021
4022 td = curthread;
4023 CPU_FOREACH(cpu) {
4024 thread_lock(td);
4025 sched_bind(td, cpu);
4026 thread_unlock(td);
4027
4028 for (domain = 0; domain < vm_ndomains; domain++) {
4029 vmd = VM_DOMAIN(domain);
4030 for (queue = 0; queue < PQ_COUNT; queue++) {
4031 pq = &vmd->vmd_pagequeues[queue];
4032 vm_pagequeue_lock(pq);
4033 critical_enter();
4034 vm_pqbatch_process(pq,
4035 DPCPU_PTR(pqbatch[domain][queue]), queue);
4036 critical_exit();
4037 vm_pagequeue_unlock(pq);
4038 }
4039 }
4040 }
4041 thread_lock(td);
4042 sched_unbind(td);
4043 thread_unlock(td);
4044 }
4045
4046 /*
4047 * vm_page_dequeue_deferred: [ internal use only ]
4048 *
4049 * Request removal of the given page from its current page
4050 * queue. Physical removal from the queue may be deferred
4051 * indefinitely.
4052 */
4053 void
vm_page_dequeue_deferred(vm_page_t m)4054 vm_page_dequeue_deferred(vm_page_t m)
4055 {
4056 vm_page_astate_t new, old;
4057
4058 old = vm_page_astate_load(m);
4059 do {
4060 if (old.queue == PQ_NONE) {
4061 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4062 ("%s: page %p has unexpected queue state",
4063 __func__, m));
4064 break;
4065 }
4066 new = old;
4067 new.flags |= PGA_DEQUEUE;
4068 } while (!vm_page_pqstate_commit_request(m, &old, new));
4069 }
4070
4071 /*
4072 * vm_page_dequeue:
4073 *
4074 * Remove the page from whichever page queue it's in, if any, before
4075 * returning.
4076 */
4077 void
vm_page_dequeue(vm_page_t m)4078 vm_page_dequeue(vm_page_t m)
4079 {
4080 vm_page_astate_t new, old;
4081
4082 old = vm_page_astate_load(m);
4083 do {
4084 if (old.queue == PQ_NONE) {
4085 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4086 ("%s: page %p has unexpected queue state",
4087 __func__, m));
4088 break;
4089 }
4090 new = old;
4091 new.flags &= ~PGA_QUEUE_OP_MASK;
4092 new.queue = PQ_NONE;
4093 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4094
4095 }
4096
4097 /*
4098 * Schedule the given page for insertion into the specified page queue.
4099 * Physical insertion of the page may be deferred indefinitely.
4100 */
4101 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4102 vm_page_enqueue(vm_page_t m, uint8_t queue)
4103 {
4104
4105 KASSERT(m->a.queue == PQ_NONE &&
4106 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4107 ("%s: page %p is already enqueued", __func__, m));
4108 KASSERT(m->ref_count > 0,
4109 ("%s: page %p does not carry any references", __func__, m));
4110
4111 m->a.queue = queue;
4112 if ((m->a.flags & PGA_REQUEUE) == 0)
4113 vm_page_aflag_set(m, PGA_REQUEUE);
4114 vm_page_pqbatch_submit(m, queue);
4115 }
4116
4117 /*
4118 * vm_page_free_prep:
4119 *
4120 * Prepares the given page to be put on the free list,
4121 * disassociating it from any VM object. The caller may return
4122 * the page to the free list only if this function returns true.
4123 *
4124 * The object, if it exists, must be locked, and then the page must
4125 * be xbusy. Otherwise the page must be not busied. A managed
4126 * page must be unmapped.
4127 */
4128 static bool
vm_page_free_prep(vm_page_t m)4129 vm_page_free_prep(vm_page_t m)
4130 {
4131
4132 /*
4133 * Synchronize with threads that have dropped a reference to this
4134 * page.
4135 */
4136 atomic_thread_fence_acq();
4137
4138 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4139 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4140 uint64_t *p;
4141 int i;
4142 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4143 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4144 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4145 m, i, (uintmax_t)*p));
4146 }
4147 #endif
4148 KASSERT((m->flags & PG_NOFREE) == 0,
4149 ("%s: attempting to free a PG_NOFREE page", __func__));
4150 if ((m->oflags & VPO_UNMANAGED) == 0) {
4151 KASSERT(!pmap_page_is_mapped(m),
4152 ("vm_page_free_prep: freeing mapped page %p", m));
4153 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4154 ("vm_page_free_prep: mapping flags set in page %p", m));
4155 } else {
4156 KASSERT(m->a.queue == PQ_NONE,
4157 ("vm_page_free_prep: unmanaged page %p is queued", m));
4158 }
4159 VM_CNT_INC(v_tfree);
4160
4161 if (m->object != NULL) {
4162 vm_page_radix_remove(m);
4163 vm_page_free_object_prep(m);
4164 } else
4165 vm_page_assert_unbusied(m);
4166
4167 vm_page_busy_free(m);
4168
4169 /*
4170 * If fictitious remove object association and
4171 * return.
4172 */
4173 if ((m->flags & PG_FICTITIOUS) != 0) {
4174 KASSERT(m->ref_count == 1,
4175 ("fictitious page %p is referenced", m));
4176 KASSERT(m->a.queue == PQ_NONE,
4177 ("fictitious page %p is queued", m));
4178 return (false);
4179 }
4180
4181 /*
4182 * Pages need not be dequeued before they are returned to the physical
4183 * memory allocator, but they must at least be marked for a deferred
4184 * dequeue.
4185 */
4186 if ((m->oflags & VPO_UNMANAGED) == 0)
4187 vm_page_dequeue_deferred(m);
4188
4189 m->valid = 0;
4190 vm_page_undirty(m);
4191
4192 if (m->ref_count != 0)
4193 panic("vm_page_free_prep: page %p has references", m);
4194
4195 /*
4196 * Restore the default memory attribute to the page.
4197 */
4198 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4199 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4200
4201 #if VM_NRESERVLEVEL > 0
4202 /*
4203 * Determine whether the page belongs to a reservation. If the page was
4204 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4205 * as an optimization, we avoid the check in that case.
4206 */
4207 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4208 return (false);
4209 #endif
4210
4211 return (true);
4212 }
4213
4214 /*
4215 * vm_page_free_toq:
4216 *
4217 * Returns the given page to the free list, disassociating it
4218 * from any VM object.
4219 *
4220 * The object must be locked. The page must be exclusively busied if it
4221 * belongs to an object.
4222 */
4223 static void
vm_page_free_toq(vm_page_t m)4224 vm_page_free_toq(vm_page_t m)
4225 {
4226 struct vm_domain *vmd;
4227 uma_zone_t zone;
4228
4229 if (!vm_page_free_prep(m))
4230 return;
4231
4232 vmd = vm_pagequeue_domain(m);
4233 zone = vmd->vmd_pgcache[m->pool].zone;
4234 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4235 uma_zfree(zone, m);
4236 return;
4237 }
4238 vm_domain_free_lock(vmd);
4239 vm_phys_free_pages(m, m->pool, 0);
4240 vm_domain_free_unlock(vmd);
4241 vm_domain_freecnt_inc(vmd, 1);
4242 }
4243
4244 /*
4245 * vm_page_free_pages_toq:
4246 *
4247 * Returns a list of pages to the free list, disassociating it
4248 * from any VM object. In other words, this is equivalent to
4249 * calling vm_page_free_toq() for each page of a list of VM objects.
4250 */
4251 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4252 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4253 {
4254 vm_page_t m;
4255 int count;
4256
4257 if (SLIST_EMPTY(free))
4258 return (0);
4259
4260 count = 0;
4261 while ((m = SLIST_FIRST(free)) != NULL) {
4262 count++;
4263 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4264 vm_page_free_toq(m);
4265 }
4266
4267 if (update_wire_count)
4268 vm_wire_sub(count);
4269 return (count);
4270 }
4271
4272 /*
4273 * Mark this page as wired down. For managed pages, this prevents reclamation
4274 * by the page daemon, or when the containing object, if any, is destroyed.
4275 */
4276 void
vm_page_wire(vm_page_t m)4277 vm_page_wire(vm_page_t m)
4278 {
4279 u_int old;
4280
4281 #ifdef INVARIANTS
4282 if (m->object != NULL && !vm_page_busied(m) &&
4283 !vm_object_busied(m->object))
4284 VM_OBJECT_ASSERT_LOCKED(m->object);
4285 #endif
4286 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4287 VPRC_WIRE_COUNT(m->ref_count) >= 1,
4288 ("vm_page_wire: fictitious page %p has zero wirings", m));
4289
4290 old = atomic_fetchadd_int(&m->ref_count, 1);
4291 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4292 ("vm_page_wire: counter overflow for page %p", m));
4293 if (VPRC_WIRE_COUNT(old) == 0) {
4294 if ((m->oflags & VPO_UNMANAGED) == 0)
4295 vm_page_aflag_set(m, PGA_DEQUEUE);
4296 vm_wire_add(1);
4297 }
4298 }
4299
4300 /*
4301 * Attempt to wire a mapped page following a pmap lookup of that page.
4302 * This may fail if a thread is concurrently tearing down mappings of the page.
4303 * The transient failure is acceptable because it translates to the
4304 * failure of the caller pmap_extract_and_hold(), which should be then
4305 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4306 */
4307 bool
vm_page_wire_mapped(vm_page_t m)4308 vm_page_wire_mapped(vm_page_t m)
4309 {
4310 u_int old;
4311
4312 old = atomic_load_int(&m->ref_count);
4313 do {
4314 KASSERT(old > 0,
4315 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4316 if ((old & VPRC_BLOCKED) != 0)
4317 return (false);
4318 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4319
4320 if (VPRC_WIRE_COUNT(old) == 0) {
4321 if ((m->oflags & VPO_UNMANAGED) == 0)
4322 vm_page_aflag_set(m, PGA_DEQUEUE);
4323 vm_wire_add(1);
4324 }
4325 return (true);
4326 }
4327
4328 /*
4329 * Release a wiring reference to a managed page. If the page still belongs to
4330 * an object, update its position in the page queues to reflect the reference.
4331 * If the wiring was the last reference to the page, free the page.
4332 */
4333 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4334 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4335 {
4336 u_int old;
4337
4338 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4339 ("%s: page %p is unmanaged", __func__, m));
4340
4341 /*
4342 * Update LRU state before releasing the wiring reference.
4343 * Use a release store when updating the reference count to
4344 * synchronize with vm_page_free_prep().
4345 */
4346 old = atomic_load_int(&m->ref_count);
4347 do {
4348 u_int count;
4349
4350 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4351 ("vm_page_unwire: wire count underflow for page %p", m));
4352
4353 count = old & ~VPRC_BLOCKED;
4354 if (count > VPRC_OBJREF + 1) {
4355 /*
4356 * The page has at least one other wiring reference. An
4357 * earlier iteration of this loop may have called
4358 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4359 * re-set it if necessary.
4360 */
4361 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4362 vm_page_aflag_set(m, PGA_DEQUEUE);
4363 } else if (count == VPRC_OBJREF + 1) {
4364 /*
4365 * This is the last wiring. Clear PGA_DEQUEUE and
4366 * update the page's queue state to reflect the
4367 * reference. If the page does not belong to an object
4368 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4369 * clear leftover queue state.
4370 */
4371 vm_page_release_toq(m, nqueue, noreuse);
4372 } else if (count == 1) {
4373 vm_page_aflag_clear(m, PGA_DEQUEUE);
4374 }
4375 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4376
4377 if (VPRC_WIRE_COUNT(old) == 1) {
4378 vm_wire_sub(1);
4379 if (old == 1)
4380 vm_page_free(m);
4381 }
4382 }
4383
4384 /*
4385 * Release one wiring of the specified page, potentially allowing it to be
4386 * paged out.
4387 *
4388 * Only managed pages belonging to an object can be paged out. If the number
4389 * of wirings transitions to zero and the page is eligible for page out, then
4390 * the page is added to the specified paging queue. If the released wiring
4391 * represented the last reference to the page, the page is freed.
4392 */
4393 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4394 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4395 {
4396
4397 KASSERT(nqueue < PQ_COUNT,
4398 ("vm_page_unwire: invalid queue %u request for page %p",
4399 nqueue, m));
4400
4401 if ((m->oflags & VPO_UNMANAGED) != 0) {
4402 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4403 vm_page_free(m);
4404 return;
4405 }
4406 vm_page_unwire_managed(m, nqueue, false);
4407 }
4408
4409 /*
4410 * Unwire a page without (re-)inserting it into a page queue. It is up
4411 * to the caller to enqueue, requeue, or free the page as appropriate.
4412 * In most cases involving managed pages, vm_page_unwire() should be used
4413 * instead.
4414 */
4415 bool
vm_page_unwire_noq(vm_page_t m)4416 vm_page_unwire_noq(vm_page_t m)
4417 {
4418 u_int old;
4419
4420 old = vm_page_drop(m, 1);
4421 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4422 ("%s: counter underflow for page %p", __func__, m));
4423 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4424 ("%s: missing ref on fictitious page %p", __func__, m));
4425
4426 if (VPRC_WIRE_COUNT(old) > 1)
4427 return (false);
4428 if ((m->oflags & VPO_UNMANAGED) == 0)
4429 vm_page_aflag_clear(m, PGA_DEQUEUE);
4430 vm_wire_sub(1);
4431 return (true);
4432 }
4433
4434 /*
4435 * Ensure that the page ends up in the specified page queue. If the page is
4436 * active or being moved to the active queue, ensure that its act_count is
4437 * at least ACT_INIT but do not otherwise mess with it.
4438 */
4439 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4440 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4441 {
4442 vm_page_astate_t old, new;
4443
4444 KASSERT(m->ref_count > 0,
4445 ("%s: page %p does not carry any references", __func__, m));
4446 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4447 ("%s: invalid flags %x", __func__, nflag));
4448
4449 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4450 return;
4451
4452 old = vm_page_astate_load(m);
4453 do {
4454 if ((old.flags & PGA_DEQUEUE) != 0)
4455 break;
4456 new = old;
4457 new.flags &= ~PGA_QUEUE_OP_MASK;
4458 if (nqueue == PQ_ACTIVE)
4459 new.act_count = max(old.act_count, ACT_INIT);
4460 if (old.queue == nqueue) {
4461 /*
4462 * There is no need to requeue pages already in the
4463 * active queue.
4464 */
4465 if (nqueue != PQ_ACTIVE ||
4466 (old.flags & PGA_ENQUEUED) == 0)
4467 new.flags |= nflag;
4468 } else {
4469 new.flags |= nflag;
4470 new.queue = nqueue;
4471 }
4472 } while (!vm_page_pqstate_commit(m, &old, new));
4473 }
4474
4475 /*
4476 * Put the specified page on the active list (if appropriate).
4477 */
4478 void
vm_page_activate(vm_page_t m)4479 vm_page_activate(vm_page_t m)
4480 {
4481
4482 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4483 }
4484
4485 /*
4486 * Move the specified page to the tail of the inactive queue, or requeue
4487 * the page if it is already in the inactive queue.
4488 */
4489 void
vm_page_deactivate(vm_page_t m)4490 vm_page_deactivate(vm_page_t m)
4491 {
4492
4493 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4494 }
4495
4496 void
vm_page_deactivate_noreuse(vm_page_t m)4497 vm_page_deactivate_noreuse(vm_page_t m)
4498 {
4499
4500 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4501 }
4502
4503 /*
4504 * Put a page in the laundry, or requeue it if it is already there.
4505 */
4506 void
vm_page_launder(vm_page_t m)4507 vm_page_launder(vm_page_t m)
4508 {
4509
4510 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4511 }
4512
4513 /*
4514 * Put a page in the PQ_UNSWAPPABLE holding queue.
4515 */
4516 void
vm_page_unswappable(vm_page_t m)4517 vm_page_unswappable(vm_page_t m)
4518 {
4519
4520 VM_OBJECT_ASSERT_LOCKED(m->object);
4521 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4522 ("page %p already unswappable", m));
4523
4524 vm_page_dequeue(m);
4525 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4526 }
4527
4528 /*
4529 * Release a page back to the page queues in preparation for unwiring.
4530 */
4531 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4532 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4533 {
4534 vm_page_astate_t old, new;
4535 uint16_t nflag;
4536
4537 /*
4538 * Use a check of the valid bits to determine whether we should
4539 * accelerate reclamation of the page. The object lock might not be
4540 * held here, in which case the check is racy. At worst we will either
4541 * accelerate reclamation of a valid page and violate LRU, or
4542 * unnecessarily defer reclamation of an invalid page.
4543 *
4544 * If we were asked to not cache the page, place it near the head of the
4545 * inactive queue so that is reclaimed sooner.
4546 */
4547 if (noreuse || vm_page_none_valid(m)) {
4548 nqueue = PQ_INACTIVE;
4549 nflag = PGA_REQUEUE_HEAD;
4550 } else {
4551 nflag = PGA_REQUEUE;
4552 }
4553
4554 old = vm_page_astate_load(m);
4555 do {
4556 new = old;
4557
4558 /*
4559 * If the page is already in the active queue and we are not
4560 * trying to accelerate reclamation, simply mark it as
4561 * referenced and avoid any queue operations.
4562 */
4563 new.flags &= ~PGA_QUEUE_OP_MASK;
4564 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4565 (old.flags & PGA_ENQUEUED) != 0)
4566 new.flags |= PGA_REFERENCED;
4567 else {
4568 new.flags |= nflag;
4569 new.queue = nqueue;
4570 }
4571 } while (!vm_page_pqstate_commit(m, &old, new));
4572 }
4573
4574 /*
4575 * Unwire a page and either attempt to free it or re-add it to the page queues.
4576 */
4577 void
vm_page_release(vm_page_t m,int flags)4578 vm_page_release(vm_page_t m, int flags)
4579 {
4580 vm_object_t object;
4581
4582 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4583 ("vm_page_release: page %p is unmanaged", m));
4584
4585 if ((flags & VPR_TRYFREE) != 0) {
4586 for (;;) {
4587 object = atomic_load_ptr(&m->object);
4588 if (object == NULL)
4589 break;
4590 /* Depends on type-stability. */
4591 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4592 break;
4593 if (object == m->object) {
4594 vm_page_release_locked(m, flags);
4595 VM_OBJECT_WUNLOCK(object);
4596 return;
4597 }
4598 VM_OBJECT_WUNLOCK(object);
4599 }
4600 }
4601 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4602 }
4603
4604 /* See vm_page_release(). */
4605 void
vm_page_release_locked(vm_page_t m,int flags)4606 vm_page_release_locked(vm_page_t m, int flags)
4607 {
4608
4609 VM_OBJECT_ASSERT_WLOCKED(m->object);
4610 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4611 ("vm_page_release_locked: page %p is unmanaged", m));
4612
4613 if (vm_page_unwire_noq(m)) {
4614 if ((flags & VPR_TRYFREE) != 0 &&
4615 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4616 m->dirty == 0 && vm_page_tryxbusy(m)) {
4617 /*
4618 * An unlocked lookup may have wired the page before the
4619 * busy lock was acquired, in which case the page must
4620 * not be freed.
4621 */
4622 if (__predict_true(!vm_page_wired(m))) {
4623 vm_page_free(m);
4624 return;
4625 }
4626 vm_page_xunbusy(m);
4627 } else {
4628 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4629 }
4630 }
4631 }
4632
4633 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4634 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4635 {
4636 u_int old;
4637
4638 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4639 ("vm_page_try_blocked_op: page %p has no object", m));
4640 KASSERT(vm_page_busied(m),
4641 ("vm_page_try_blocked_op: page %p is not busy", m));
4642 VM_OBJECT_ASSERT_LOCKED(m->object);
4643
4644 old = atomic_load_int(&m->ref_count);
4645 do {
4646 KASSERT(old != 0,
4647 ("vm_page_try_blocked_op: page %p has no references", m));
4648 KASSERT((old & VPRC_BLOCKED) == 0,
4649 ("vm_page_try_blocked_op: page %p blocks wirings", m));
4650 if (VPRC_WIRE_COUNT(old) != 0)
4651 return (false);
4652 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4653
4654 (op)(m);
4655
4656 /*
4657 * If the object is read-locked, new wirings may be created via an
4658 * object lookup.
4659 */
4660 old = vm_page_drop(m, VPRC_BLOCKED);
4661 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4662 old == (VPRC_BLOCKED | VPRC_OBJREF),
4663 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4664 old, m));
4665 return (true);
4666 }
4667
4668 /*
4669 * Atomically check for wirings and remove all mappings of the page.
4670 */
4671 bool
vm_page_try_remove_all(vm_page_t m)4672 vm_page_try_remove_all(vm_page_t m)
4673 {
4674
4675 return (vm_page_try_blocked_op(m, pmap_remove_all));
4676 }
4677
4678 /*
4679 * Atomically check for wirings and remove all writeable mappings of the page.
4680 */
4681 bool
vm_page_try_remove_write(vm_page_t m)4682 vm_page_try_remove_write(vm_page_t m)
4683 {
4684
4685 return (vm_page_try_blocked_op(m, pmap_remove_write));
4686 }
4687
4688 /*
4689 * vm_page_advise
4690 *
4691 * Apply the specified advice to the given page.
4692 */
4693 void
vm_page_advise(vm_page_t m,int advice)4694 vm_page_advise(vm_page_t m, int advice)
4695 {
4696
4697 VM_OBJECT_ASSERT_WLOCKED(m->object);
4698 vm_page_assert_xbusied(m);
4699
4700 if (advice == MADV_FREE)
4701 /*
4702 * Mark the page clean. This will allow the page to be freed
4703 * without first paging it out. MADV_FREE pages are often
4704 * quickly reused by malloc(3), so we do not do anything that
4705 * would result in a page fault on a later access.
4706 */
4707 vm_page_undirty(m);
4708 else if (advice != MADV_DONTNEED) {
4709 if (advice == MADV_WILLNEED)
4710 vm_page_activate(m);
4711 return;
4712 }
4713
4714 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4715 vm_page_dirty(m);
4716
4717 /*
4718 * Clear any references to the page. Otherwise, the page daemon will
4719 * immediately reactivate the page.
4720 */
4721 vm_page_aflag_clear(m, PGA_REFERENCED);
4722
4723 /*
4724 * Place clean pages near the head of the inactive queue rather than
4725 * the tail, thus defeating the queue's LRU operation and ensuring that
4726 * the page will be reused quickly. Dirty pages not already in the
4727 * laundry are moved there.
4728 */
4729 if (m->dirty == 0)
4730 vm_page_deactivate_noreuse(m);
4731 else if (!vm_page_in_laundry(m))
4732 vm_page_launder(m);
4733 }
4734
4735 /*
4736 * vm_page_grab_release
4737 *
4738 * Helper routine for grab functions to release busy on return.
4739 */
4740 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4741 vm_page_grab_release(vm_page_t m, int allocflags)
4742 {
4743
4744 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4745 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4746 vm_page_sunbusy(m);
4747 else
4748 vm_page_xunbusy(m);
4749 }
4750 }
4751
4752 /*
4753 * vm_page_grab_sleep
4754 *
4755 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4756 * if the caller should retry and false otherwise.
4757 *
4758 * If the object is locked on entry the object will be unlocked with
4759 * false returns and still locked but possibly having been dropped
4760 * with true returns.
4761 */
4762 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4763 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4764 const char *wmesg, int allocflags, bool locked)
4765 {
4766
4767 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4768 return (false);
4769
4770 /*
4771 * Reference the page before unlocking and sleeping so that
4772 * the page daemon is less likely to reclaim it.
4773 */
4774 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4775 vm_page_reference(m);
4776
4777 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4778 locked)
4779 VM_OBJECT_WLOCK(object);
4780 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4781 return (false);
4782
4783 return (true);
4784 }
4785
4786 /*
4787 * Assert that the grab flags are valid.
4788 */
4789 static inline void
vm_page_grab_check(int allocflags)4790 vm_page_grab_check(int allocflags)
4791 {
4792
4793 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4794 (allocflags & VM_ALLOC_WIRED) != 0,
4795 ("vm_page_grab*: the pages must be busied or wired"));
4796
4797 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4798 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4799 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4800 }
4801
4802 /*
4803 * Calculate the page allocation flags for grab.
4804 */
4805 static inline int
vm_page_grab_pflags(int allocflags)4806 vm_page_grab_pflags(int allocflags)
4807 {
4808 int pflags;
4809
4810 pflags = allocflags &
4811 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4812 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4813 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4814 pflags |= VM_ALLOC_WAITFAIL;
4815 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4816 pflags |= VM_ALLOC_SBUSY;
4817
4818 return (pflags);
4819 }
4820
4821 /*
4822 * Grab a page, waiting until we are woken up due to the page changing state.
4823 * We keep on waiting, if the page continues to be in the object, unless
4824 * allocflags forbid waiting.
4825 *
4826 * The object must be locked on entry. This routine may sleep. The lock will,
4827 * however, be released and reacquired if the routine sleeps.
4828 *
4829 * Return a grabbed page, or NULL. Set *found if a page was found, whether or
4830 * not it was grabbed.
4831 */
4832 static inline vm_page_t
vm_page_grab_lookup(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t pindex,int allocflags,bool * found)4833 vm_page_grab_lookup(struct pctrie_iter *pages, vm_object_t object,
4834 vm_pindex_t pindex, int allocflags, bool *found)
4835 {
4836 vm_page_t m;
4837
4838 while ((*found = (m = vm_radix_iter_lookup(pages, pindex)) != NULL) &&
4839 !vm_page_tryacquire(m, allocflags)) {
4840 if (!vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4841 allocflags, true))
4842 return (NULL);
4843 pctrie_iter_reset(pages);
4844 }
4845 return (m);
4846 }
4847
4848 /*
4849 * Grab a page. Keep on waiting, as long as the page exists in the object. If
4850 * the page doesn't exist, first allocate it and then conditionally zero it.
4851 *
4852 * The object must be locked on entry. This routine may sleep. The lock will,
4853 * however, be released and reacquired if the routine sleeps.
4854 */
4855 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4856 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4857 {
4858 struct pctrie_iter pages;
4859 vm_page_t m, mpred;
4860 bool found;
4861
4862 VM_OBJECT_ASSERT_WLOCKED(object);
4863 vm_page_grab_check(allocflags);
4864
4865 vm_page_iter_init(&pages, object);
4866 while ((m = vm_page_grab_lookup(
4867 &pages, object, pindex, allocflags, &found)) == NULL) {
4868 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4869 return (NULL);
4870 if (found &&
4871 (allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4872 return (NULL);
4873 mpred = vm_radix_iter_lookup_le(&pages, pindex);
4874 m = vm_page_alloc_after(object, pindex,
4875 vm_page_grab_pflags(allocflags), mpred);
4876 if (m != NULL) {
4877 if ((allocflags & VM_ALLOC_ZERO) != 0 &&
4878 (m->flags & PG_ZERO) == 0)
4879 pmap_zero_page(m);
4880 break;
4881 }
4882 if ((allocflags &
4883 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4884 return (NULL);
4885 }
4886 vm_page_grab_release(m, allocflags);
4887
4888 return (m);
4889 }
4890
4891 /*
4892 * Attempt to validate a page, locklessly acquiring it if necessary, given a
4893 * (object, pindex) tuple and either an invalided page or NULL. The resulting
4894 * page will be validated against the identity tuple, and busied or wired as
4895 * requested. A NULL page returned guarantees that the page was not in radix at
4896 * the time of the call but callers must perform higher level synchronization or
4897 * retry the operation under a lock if they require an atomic answer. This is
4898 * the only lock free validation routine, other routines can depend on the
4899 * resulting page state.
4900 *
4901 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4902 * caller flags.
4903 */
4904 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4905 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4906 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4907 int allocflags)
4908 {
4909 if (m == NULL)
4910 m = vm_page_lookup_unlocked(object, pindex);
4911 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4912 if (vm_page_trybusy(m, allocflags)) {
4913 if (m->object == object && m->pindex == pindex) {
4914 if ((allocflags & VM_ALLOC_WIRED) != 0)
4915 vm_page_wire(m);
4916 vm_page_grab_release(m, allocflags);
4917 break;
4918 }
4919 /* relookup. */
4920 vm_page_busy_release(m);
4921 cpu_spinwait();
4922 continue;
4923 }
4924 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4925 allocflags, false))
4926 return (PAGE_NOT_ACQUIRED);
4927 }
4928 return (m);
4929 }
4930
4931 /*
4932 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4933 * is not set.
4934 */
4935 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4936 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4937 {
4938 vm_page_t m;
4939
4940 vm_page_grab_check(allocflags);
4941 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4942 if (m == PAGE_NOT_ACQUIRED)
4943 return (NULL);
4944 if (m != NULL)
4945 return (m);
4946
4947 /*
4948 * The radix lockless lookup should never return a false negative
4949 * errors. If the user specifies NOCREAT they are guaranteed there
4950 * was no page present at the instant of the call. A NOCREAT caller
4951 * must handle create races gracefully.
4952 */
4953 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4954 return (NULL);
4955
4956 VM_OBJECT_WLOCK(object);
4957 m = vm_page_grab(object, pindex, allocflags);
4958 VM_OBJECT_WUNLOCK(object);
4959
4960 return (m);
4961 }
4962
4963 /*
4964 * Grab a page and make it valid, paging in if necessary. Pages missing from
4965 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
4966 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4967 * in simultaneously. Additional pages will be left on a paging queue but
4968 * will neither be wired nor busy regardless of allocflags.
4969 */
4970 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)4971 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4972 {
4973 vm_page_t m;
4974 vm_page_t ma[VM_INITIAL_PAGEIN];
4975 int after, i, pflags, rv;
4976
4977 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4978 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4979 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4980 KASSERT((allocflags &
4981 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4982 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4983 VM_OBJECT_ASSERT_WLOCKED(object);
4984 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4985 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4986 pflags |= VM_ALLOC_WAITFAIL;
4987
4988 retrylookup:
4989 if ((m = vm_page_lookup(object, pindex)) != NULL) {
4990 /*
4991 * If the page is fully valid it can only become invalid
4992 * with the object lock held. If it is not valid it can
4993 * become valid with the busy lock held. Therefore, we
4994 * may unnecessarily lock the exclusive busy here if we
4995 * race with I/O completion not using the object lock.
4996 * However, we will not end up with an invalid page and a
4997 * shared lock.
4998 */
4999 if (!vm_page_trybusy(m,
5000 vm_page_all_valid(m) ? allocflags : 0)) {
5001 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
5002 allocflags, true);
5003 goto retrylookup;
5004 }
5005 if (vm_page_all_valid(m))
5006 goto out;
5007 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5008 vm_page_busy_release(m);
5009 *mp = NULL;
5010 return (VM_PAGER_FAIL);
5011 }
5012 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5013 *mp = NULL;
5014 return (VM_PAGER_FAIL);
5015 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
5016 if (!vm_pager_can_alloc_page(object, pindex)) {
5017 *mp = NULL;
5018 return (VM_PAGER_AGAIN);
5019 }
5020 goto retrylookup;
5021 }
5022
5023 vm_page_assert_xbusied(m);
5024 if (vm_pager_has_page(object, pindex, NULL, &after)) {
5025 after = MIN(after, VM_INITIAL_PAGEIN);
5026 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
5027 after = MAX(after, 1);
5028 ma[0] = m;
5029 for (i = 1; i < after; i++) {
5030 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
5031 if (vm_page_any_valid(ma[i]) ||
5032 !vm_page_tryxbusy(ma[i]))
5033 break;
5034 } else {
5035 ma[i] = vm_page_alloc_after(object,
5036 m->pindex + i, VM_ALLOC_NORMAL, ma[i - 1]);
5037 if (ma[i] == NULL)
5038 break;
5039 }
5040 }
5041 after = i;
5042 vm_object_pip_add(object, after);
5043 VM_OBJECT_WUNLOCK(object);
5044 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
5045 VM_OBJECT_WLOCK(object);
5046 vm_object_pip_wakeupn(object, after);
5047 /* Pager may have replaced a page. */
5048 m = ma[0];
5049 if (rv != VM_PAGER_OK) {
5050 for (i = 0; i < after; i++) {
5051 if (!vm_page_wired(ma[i]))
5052 vm_page_free(ma[i]);
5053 else
5054 vm_page_xunbusy(ma[i]);
5055 }
5056 *mp = NULL;
5057 return (rv);
5058 }
5059 for (i = 1; i < after; i++)
5060 vm_page_readahead_finish(ma[i]);
5061 MPASS(vm_page_all_valid(m));
5062 } else {
5063 vm_page_zero_invalid(m, TRUE);
5064 }
5065 out:
5066 if ((allocflags & VM_ALLOC_WIRED) != 0)
5067 vm_page_wire(m);
5068 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5069 vm_page_busy_downgrade(m);
5070 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5071 vm_page_busy_release(m);
5072 *mp = m;
5073 return (VM_PAGER_OK);
5074 }
5075
5076 /*
5077 * Grab a page. Keep on waiting, as long as the page exists in the object. If
5078 * the page doesn't exist, and the pager has it, allocate it and zero part of
5079 * it.
5080 *
5081 * The object must be locked on entry. This routine may sleep. The lock will,
5082 * however, be released and reacquired if the routine sleeps.
5083 */
5084 int
vm_page_grab_zero_partial(vm_object_t object,vm_pindex_t pindex,int base,int end)5085 vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
5086 int end)
5087 {
5088 struct pctrie_iter pages;
5089 vm_page_t m, mpred;
5090 int allocflags, rv;
5091 bool found;
5092
5093 VM_OBJECT_ASSERT_WLOCKED(object);
5094 KASSERT(base >= 0, ("%s: base %d", __func__, base));
5095 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
5096 end));
5097
5098 allocflags = VM_ALLOC_NOCREAT | VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL;
5099 vm_page_iter_init(&pages, object);
5100 while ((m = vm_page_grab_lookup(
5101 &pages, object, pindex, allocflags, &found)) == NULL) {
5102 if (!vm_pager_has_page(object, pindex, NULL, NULL))
5103 return (0);
5104 mpred = vm_radix_iter_lookup_le(&pages, pindex);
5105 m = vm_page_alloc_after(object, pindex,
5106 vm_page_grab_pflags(allocflags), mpred);
5107 if (m != NULL) {
5108 vm_object_pip_add(object, 1);
5109 VM_OBJECT_WUNLOCK(object);
5110 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
5111 VM_OBJECT_WLOCK(object);
5112 vm_object_pip_wakeup(object);
5113 if (rv != VM_PAGER_OK) {
5114 vm_page_free(m);
5115 return (EIO);
5116 }
5117
5118 /*
5119 * Since the page was not resident, and therefore not
5120 * recently accessed, immediately enqueue it for
5121 * asynchronous laundering. The current operation is
5122 * not regarded as an access.
5123 */
5124 vm_page_launder(m);
5125 break;
5126 }
5127 }
5128
5129 pmap_zero_page_area(m, base, end - base);
5130 KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid", __func__, m));
5131 vm_page_set_dirty(m);
5132 vm_page_xunbusy(m);
5133 return (0);
5134 }
5135
5136 /*
5137 * Locklessly grab a valid page. If the page is not valid or not yet
5138 * allocated this will fall back to the object lock method.
5139 */
5140 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5141 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5142 vm_pindex_t pindex, int allocflags)
5143 {
5144 vm_page_t m;
5145 int flags;
5146 int error;
5147
5148 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5149 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5150 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5151 "mismatch"));
5152 KASSERT((allocflags &
5153 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5154 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5155
5156 /*
5157 * Attempt a lockless lookup and busy. We need at least an sbusy
5158 * before we can inspect the valid field and return a wired page.
5159 */
5160 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5161 vm_page_grab_check(flags);
5162 m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5163 if (m == PAGE_NOT_ACQUIRED)
5164 return (VM_PAGER_FAIL);
5165 if (m != NULL) {
5166 if (vm_page_all_valid(m)) {
5167 if ((allocflags & VM_ALLOC_WIRED) != 0)
5168 vm_page_wire(m);
5169 vm_page_grab_release(m, allocflags);
5170 *mp = m;
5171 return (VM_PAGER_OK);
5172 }
5173 vm_page_busy_release(m);
5174 }
5175 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5176 *mp = NULL;
5177 return (VM_PAGER_FAIL);
5178 }
5179 VM_OBJECT_WLOCK(object);
5180 error = vm_page_grab_valid(mp, object, pindex, allocflags);
5181 VM_OBJECT_WUNLOCK(object);
5182
5183 return (error);
5184 }
5185
5186 /*
5187 * Return the specified range of pages from the given object. For each
5188 * page offset within the range, if a page already exists within the object
5189 * at that offset and it is busy, then wait for it to change state. If,
5190 * instead, the page doesn't exist, then allocate it.
5191 *
5192 * The caller must always specify an allocation class.
5193 *
5194 * allocation classes:
5195 * VM_ALLOC_NORMAL normal process request
5196 * VM_ALLOC_SYSTEM system *really* needs the pages
5197 *
5198 * The caller must always specify that the pages are to be busied and/or
5199 * wired.
5200 *
5201 * optional allocation flags:
5202 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
5203 * VM_ALLOC_NOBUSY do not exclusive busy the page
5204 * VM_ALLOC_NOWAIT do not sleep
5205 * VM_ALLOC_SBUSY set page to sbusy state
5206 * VM_ALLOC_WIRED wire the pages
5207 * VM_ALLOC_ZERO zero and validate any invalid pages
5208 *
5209 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
5210 * may return a partial prefix of the requested range.
5211 */
5212 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5213 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5214 vm_page_t *ma, int count)
5215 {
5216 vm_page_t m, mpred;
5217 int pflags;
5218 int i;
5219
5220 VM_OBJECT_ASSERT_WLOCKED(object);
5221 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5222 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5223 KASSERT(count > 0,
5224 ("vm_page_grab_pages: invalid page count %d", count));
5225 vm_page_grab_check(allocflags);
5226
5227 pflags = vm_page_grab_pflags(allocflags);
5228 i = 0;
5229 retrylookup:
5230 m = vm_page_mpred(object, pindex + i);
5231 if (m == NULL || m->pindex != pindex + i) {
5232 mpred = m;
5233 m = NULL;
5234 } else
5235 mpred = TAILQ_PREV(m, pglist, listq);
5236 for (; i < count; i++) {
5237 if (m != NULL) {
5238 if (!vm_page_tryacquire(m, allocflags)) {
5239 if (vm_page_grab_sleep(object, m, pindex + i,
5240 "grbmaw", allocflags, true))
5241 goto retrylookup;
5242 break;
5243 }
5244 } else {
5245 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5246 break;
5247 m = vm_page_alloc_after(object, pindex + i,
5248 pflags | VM_ALLOC_COUNT(count - i), mpred);
5249 if (m == NULL) {
5250 if ((allocflags & (VM_ALLOC_NOWAIT |
5251 VM_ALLOC_WAITFAIL)) != 0)
5252 break;
5253 goto retrylookup;
5254 }
5255 }
5256 if (vm_page_none_valid(m) &&
5257 (allocflags & VM_ALLOC_ZERO) != 0) {
5258 if ((m->flags & PG_ZERO) == 0)
5259 pmap_zero_page(m);
5260 vm_page_valid(m);
5261 }
5262 vm_page_grab_release(m, allocflags);
5263 ma[i] = mpred = m;
5264 m = vm_page_next(m);
5265 }
5266 return (i);
5267 }
5268
5269 /*
5270 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
5271 * and will fall back to the locked variant to handle allocation.
5272 */
5273 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5274 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5275 int allocflags, vm_page_t *ma, int count)
5276 {
5277 vm_page_t m;
5278 int flags;
5279 int i;
5280
5281 KASSERT(count > 0,
5282 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5283 vm_page_grab_check(allocflags);
5284
5285 /*
5286 * Modify flags for lockless acquire to hold the page until we
5287 * set it valid if necessary.
5288 */
5289 flags = allocflags & ~VM_ALLOC_NOBUSY;
5290 vm_page_grab_check(flags);
5291 m = NULL;
5292 for (i = 0; i < count; i++, pindex++) {
5293 /*
5294 * We may see a false NULL here because the previous page has
5295 * been removed or just inserted and the list is loaded without
5296 * barriers. Switch to radix to verify.
5297 */
5298 if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex ||
5299 atomic_load_ptr(&m->object) != object) {
5300 /*
5301 * This guarantees the result is instantaneously
5302 * correct.
5303 */
5304 m = NULL;
5305 }
5306 m = vm_page_acquire_unlocked(object, pindex, m, flags);
5307 if (m == PAGE_NOT_ACQUIRED)
5308 return (i);
5309 if (m == NULL)
5310 break;
5311 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5312 if ((m->flags & PG_ZERO) == 0)
5313 pmap_zero_page(m);
5314 vm_page_valid(m);
5315 }
5316 /* m will still be wired or busy according to flags. */
5317 vm_page_grab_release(m, allocflags);
5318 ma[i] = m;
5319 m = TAILQ_NEXT(m, listq);
5320 }
5321 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5322 return (i);
5323 count -= i;
5324 VM_OBJECT_WLOCK(object);
5325 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5326 VM_OBJECT_WUNLOCK(object);
5327
5328 return (i);
5329 }
5330
5331 /*
5332 * Mapping function for valid or dirty bits in a page.
5333 *
5334 * Inputs are required to range within a page.
5335 */
5336 vm_page_bits_t
vm_page_bits(int base,int size)5337 vm_page_bits(int base, int size)
5338 {
5339 int first_bit;
5340 int last_bit;
5341
5342 KASSERT(
5343 base + size <= PAGE_SIZE,
5344 ("vm_page_bits: illegal base/size %d/%d", base, size)
5345 );
5346
5347 if (size == 0) /* handle degenerate case */
5348 return (0);
5349
5350 first_bit = base >> DEV_BSHIFT;
5351 last_bit = (base + size - 1) >> DEV_BSHIFT;
5352
5353 return (((vm_page_bits_t)2 << last_bit) -
5354 ((vm_page_bits_t)1 << first_bit));
5355 }
5356
5357 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5358 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5359 {
5360
5361 #if PAGE_SIZE == 32768
5362 atomic_set_64((uint64_t *)bits, set);
5363 #elif PAGE_SIZE == 16384
5364 atomic_set_32((uint32_t *)bits, set);
5365 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5366 atomic_set_16((uint16_t *)bits, set);
5367 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5368 atomic_set_8((uint8_t *)bits, set);
5369 #else /* PAGE_SIZE <= 8192 */
5370 uintptr_t addr;
5371 int shift;
5372
5373 addr = (uintptr_t)bits;
5374 /*
5375 * Use a trick to perform a 32-bit atomic on the
5376 * containing aligned word, to not depend on the existence
5377 * of atomic_{set, clear}_{8, 16}.
5378 */
5379 shift = addr & (sizeof(uint32_t) - 1);
5380 #if BYTE_ORDER == BIG_ENDIAN
5381 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5382 #else
5383 shift *= NBBY;
5384 #endif
5385 addr &= ~(sizeof(uint32_t) - 1);
5386 atomic_set_32((uint32_t *)addr, set << shift);
5387 #endif /* PAGE_SIZE */
5388 }
5389
5390 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5391 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5392 {
5393
5394 #if PAGE_SIZE == 32768
5395 atomic_clear_64((uint64_t *)bits, clear);
5396 #elif PAGE_SIZE == 16384
5397 atomic_clear_32((uint32_t *)bits, clear);
5398 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5399 atomic_clear_16((uint16_t *)bits, clear);
5400 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5401 atomic_clear_8((uint8_t *)bits, clear);
5402 #else /* PAGE_SIZE <= 8192 */
5403 uintptr_t addr;
5404 int shift;
5405
5406 addr = (uintptr_t)bits;
5407 /*
5408 * Use a trick to perform a 32-bit atomic on the
5409 * containing aligned word, to not depend on the existence
5410 * of atomic_{set, clear}_{8, 16}.
5411 */
5412 shift = addr & (sizeof(uint32_t) - 1);
5413 #if BYTE_ORDER == BIG_ENDIAN
5414 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5415 #else
5416 shift *= NBBY;
5417 #endif
5418 addr &= ~(sizeof(uint32_t) - 1);
5419 atomic_clear_32((uint32_t *)addr, clear << shift);
5420 #endif /* PAGE_SIZE */
5421 }
5422
5423 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5424 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5425 {
5426 #if PAGE_SIZE == 32768
5427 uint64_t old;
5428
5429 old = *bits;
5430 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5431 return (old);
5432 #elif PAGE_SIZE == 16384
5433 uint32_t old;
5434
5435 old = *bits;
5436 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5437 return (old);
5438 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5439 uint16_t old;
5440
5441 old = *bits;
5442 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5443 return (old);
5444 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5445 uint8_t old;
5446
5447 old = *bits;
5448 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5449 return (old);
5450 #else /* PAGE_SIZE <= 4096*/
5451 uintptr_t addr;
5452 uint32_t old, new, mask;
5453 int shift;
5454
5455 addr = (uintptr_t)bits;
5456 /*
5457 * Use a trick to perform a 32-bit atomic on the
5458 * containing aligned word, to not depend on the existence
5459 * of atomic_{set, swap, clear}_{8, 16}.
5460 */
5461 shift = addr & (sizeof(uint32_t) - 1);
5462 #if BYTE_ORDER == BIG_ENDIAN
5463 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5464 #else
5465 shift *= NBBY;
5466 #endif
5467 addr &= ~(sizeof(uint32_t) - 1);
5468 mask = VM_PAGE_BITS_ALL << shift;
5469
5470 old = *bits;
5471 do {
5472 new = old & ~mask;
5473 new |= newbits << shift;
5474 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5475 return (old >> shift);
5476 #endif /* PAGE_SIZE */
5477 }
5478
5479 /*
5480 * vm_page_set_valid_range:
5481 *
5482 * Sets portions of a page valid. The arguments are expected
5483 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5484 * of any partial chunks touched by the range. The invalid portion of
5485 * such chunks will be zeroed.
5486 *
5487 * (base + size) must be less then or equal to PAGE_SIZE.
5488 */
5489 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5490 vm_page_set_valid_range(vm_page_t m, int base, int size)
5491 {
5492 int endoff, frag;
5493 vm_page_bits_t pagebits;
5494
5495 vm_page_assert_busied(m);
5496 if (size == 0) /* handle degenerate case */
5497 return;
5498
5499 /*
5500 * If the base is not DEV_BSIZE aligned and the valid
5501 * bit is clear, we have to zero out a portion of the
5502 * first block.
5503 */
5504 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5505 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5506 pmap_zero_page_area(m, frag, base - frag);
5507
5508 /*
5509 * If the ending offset is not DEV_BSIZE aligned and the
5510 * valid bit is clear, we have to zero out a portion of
5511 * the last block.
5512 */
5513 endoff = base + size;
5514 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5515 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5516 pmap_zero_page_area(m, endoff,
5517 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5518
5519 /*
5520 * Assert that no previously invalid block that is now being validated
5521 * is already dirty.
5522 */
5523 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5524 ("vm_page_set_valid_range: page %p is dirty", m));
5525
5526 /*
5527 * Set valid bits inclusive of any overlap.
5528 */
5529 pagebits = vm_page_bits(base, size);
5530 if (vm_page_xbusied(m))
5531 m->valid |= pagebits;
5532 else
5533 vm_page_bits_set(m, &m->valid, pagebits);
5534 }
5535
5536 /*
5537 * Set the page dirty bits and free the invalid swap space if
5538 * present. Returns the previous dirty bits.
5539 */
5540 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5541 vm_page_set_dirty(vm_page_t m)
5542 {
5543 vm_page_bits_t old;
5544
5545 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5546
5547 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5548 old = m->dirty;
5549 m->dirty = VM_PAGE_BITS_ALL;
5550 } else
5551 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5552 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5553 vm_pager_page_unswapped(m);
5554
5555 return (old);
5556 }
5557
5558 /*
5559 * Clear the given bits from the specified page's dirty field.
5560 */
5561 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5562 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5563 {
5564
5565 vm_page_assert_busied(m);
5566
5567 /*
5568 * If the page is xbusied and not write mapped we are the
5569 * only thread that can modify dirty bits. Otherwise, The pmap
5570 * layer can call vm_page_dirty() without holding a distinguished
5571 * lock. The combination of page busy and atomic operations
5572 * suffice to guarantee consistency of the page dirty field.
5573 */
5574 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5575 m->dirty &= ~pagebits;
5576 else
5577 vm_page_bits_clear(m, &m->dirty, pagebits);
5578 }
5579
5580 /*
5581 * vm_page_set_validclean:
5582 *
5583 * Sets portions of a page valid and clean. The arguments are expected
5584 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5585 * of any partial chunks touched by the range. The invalid portion of
5586 * such chunks will be zero'd.
5587 *
5588 * (base + size) must be less then or equal to PAGE_SIZE.
5589 */
5590 void
vm_page_set_validclean(vm_page_t m,int base,int size)5591 vm_page_set_validclean(vm_page_t m, int base, int size)
5592 {
5593 vm_page_bits_t oldvalid, pagebits;
5594 int endoff, frag;
5595
5596 vm_page_assert_busied(m);
5597 if (size == 0) /* handle degenerate case */
5598 return;
5599
5600 /*
5601 * If the base is not DEV_BSIZE aligned and the valid
5602 * bit is clear, we have to zero out a portion of the
5603 * first block.
5604 */
5605 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5606 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5607 pmap_zero_page_area(m, frag, base - frag);
5608
5609 /*
5610 * If the ending offset is not DEV_BSIZE aligned and the
5611 * valid bit is clear, we have to zero out a portion of
5612 * the last block.
5613 */
5614 endoff = base + size;
5615 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5616 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5617 pmap_zero_page_area(m, endoff,
5618 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5619
5620 /*
5621 * Set valid, clear dirty bits. If validating the entire
5622 * page we can safely clear the pmap modify bit. We also
5623 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5624 * takes a write fault on a MAP_NOSYNC memory area the flag will
5625 * be set again.
5626 *
5627 * We set valid bits inclusive of any overlap, but we can only
5628 * clear dirty bits for DEV_BSIZE chunks that are fully within
5629 * the range.
5630 */
5631 oldvalid = m->valid;
5632 pagebits = vm_page_bits(base, size);
5633 if (vm_page_xbusied(m))
5634 m->valid |= pagebits;
5635 else
5636 vm_page_bits_set(m, &m->valid, pagebits);
5637 #if 0 /* NOT YET */
5638 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5639 frag = DEV_BSIZE - frag;
5640 base += frag;
5641 size -= frag;
5642 if (size < 0)
5643 size = 0;
5644 }
5645 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5646 #endif
5647 if (base == 0 && size == PAGE_SIZE) {
5648 /*
5649 * The page can only be modified within the pmap if it is
5650 * mapped, and it can only be mapped if it was previously
5651 * fully valid.
5652 */
5653 if (oldvalid == VM_PAGE_BITS_ALL)
5654 /*
5655 * Perform the pmap_clear_modify() first. Otherwise,
5656 * a concurrent pmap operation, such as
5657 * pmap_protect(), could clear a modification in the
5658 * pmap and set the dirty field on the page before
5659 * pmap_clear_modify() had begun and after the dirty
5660 * field was cleared here.
5661 */
5662 pmap_clear_modify(m);
5663 m->dirty = 0;
5664 vm_page_aflag_clear(m, PGA_NOSYNC);
5665 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5666 m->dirty &= ~pagebits;
5667 else
5668 vm_page_clear_dirty_mask(m, pagebits);
5669 }
5670
5671 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5672 vm_page_clear_dirty(vm_page_t m, int base, int size)
5673 {
5674
5675 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5676 }
5677
5678 /*
5679 * vm_page_set_invalid:
5680 *
5681 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5682 * valid and dirty bits for the effected areas are cleared.
5683 */
5684 void
vm_page_set_invalid(vm_page_t m,int base,int size)5685 vm_page_set_invalid(vm_page_t m, int base, int size)
5686 {
5687 vm_page_bits_t bits;
5688 vm_object_t object;
5689
5690 /*
5691 * The object lock is required so that pages can't be mapped
5692 * read-only while we're in the process of invalidating them.
5693 */
5694 object = m->object;
5695 VM_OBJECT_ASSERT_WLOCKED(object);
5696 vm_page_assert_busied(m);
5697
5698 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5699 size >= object->un_pager.vnp.vnp_size)
5700 bits = VM_PAGE_BITS_ALL;
5701 else
5702 bits = vm_page_bits(base, size);
5703 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5704 pmap_remove_all(m);
5705 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5706 !pmap_page_is_mapped(m),
5707 ("vm_page_set_invalid: page %p is mapped", m));
5708 if (vm_page_xbusied(m)) {
5709 m->valid &= ~bits;
5710 m->dirty &= ~bits;
5711 } else {
5712 vm_page_bits_clear(m, &m->valid, bits);
5713 vm_page_bits_clear(m, &m->dirty, bits);
5714 }
5715 }
5716
5717 /*
5718 * vm_page_invalid:
5719 *
5720 * Invalidates the entire page. The page must be busy, unmapped, and
5721 * the enclosing object must be locked. The object locks protects
5722 * against concurrent read-only pmap enter which is done without
5723 * busy.
5724 */
5725 void
vm_page_invalid(vm_page_t m)5726 vm_page_invalid(vm_page_t m)
5727 {
5728
5729 vm_page_assert_busied(m);
5730 VM_OBJECT_ASSERT_WLOCKED(m->object);
5731 MPASS(!pmap_page_is_mapped(m));
5732
5733 if (vm_page_xbusied(m))
5734 m->valid = 0;
5735 else
5736 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5737 }
5738
5739 /*
5740 * vm_page_zero_invalid()
5741 *
5742 * The kernel assumes that the invalid portions of a page contain
5743 * garbage, but such pages can be mapped into memory by user code.
5744 * When this occurs, we must zero out the non-valid portions of the
5745 * page so user code sees what it expects.
5746 *
5747 * Pages are most often semi-valid when the end of a file is mapped
5748 * into memory and the file's size is not page aligned.
5749 */
5750 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5751 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5752 {
5753 int b;
5754 int i;
5755
5756 /*
5757 * Scan the valid bits looking for invalid sections that
5758 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5759 * valid bit may be set ) have already been zeroed by
5760 * vm_page_set_validclean().
5761 */
5762 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5763 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5764 (m->valid & ((vm_page_bits_t)1 << i))) {
5765 if (i > b) {
5766 pmap_zero_page_area(m,
5767 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5768 }
5769 b = i + 1;
5770 }
5771 }
5772
5773 /*
5774 * setvalid is TRUE when we can safely set the zero'd areas
5775 * as being valid. We can do this if there are no cache consistency
5776 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5777 */
5778 if (setvalid)
5779 vm_page_valid(m);
5780 }
5781
5782 /*
5783 * vm_page_is_valid:
5784 *
5785 * Is (partial) page valid? Note that the case where size == 0
5786 * will return FALSE in the degenerate case where the page is
5787 * entirely invalid, and TRUE otherwise.
5788 *
5789 * Some callers envoke this routine without the busy lock held and
5790 * handle races via higher level locks. Typical callers should
5791 * hold a busy lock to prevent invalidation.
5792 */
5793 int
vm_page_is_valid(vm_page_t m,int base,int size)5794 vm_page_is_valid(vm_page_t m, int base, int size)
5795 {
5796 vm_page_bits_t bits;
5797
5798 bits = vm_page_bits(base, size);
5799 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5800 }
5801
5802 /*
5803 * Returns true if all of the specified predicates are true for the entire
5804 * (super)page and false otherwise.
5805 */
5806 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5807 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5808 {
5809 vm_object_t object;
5810 int i, npages;
5811
5812 object = m->object;
5813 if (skip_m != NULL && skip_m->object != object)
5814 return (false);
5815 VM_OBJECT_ASSERT_LOCKED(object);
5816 KASSERT(psind <= m->psind,
5817 ("psind %d > psind %d of m %p", psind, m->psind, m));
5818 npages = atop(pagesizes[psind]);
5819
5820 /*
5821 * The physically contiguous pages that make up a superpage, i.e., a
5822 * page with a page size index ("psind") greater than zero, will
5823 * occupy adjacent entries in vm_page_array[].
5824 */
5825 for (i = 0; i < npages; i++) {
5826 /* Always test object consistency, including "skip_m". */
5827 if (m[i].object != object)
5828 return (false);
5829 if (&m[i] == skip_m)
5830 continue;
5831 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5832 return (false);
5833 if ((flags & PS_ALL_DIRTY) != 0) {
5834 /*
5835 * Calling vm_page_test_dirty() or pmap_is_modified()
5836 * might stop this case from spuriously returning
5837 * "false". However, that would require a write lock
5838 * on the object containing "m[i]".
5839 */
5840 if (m[i].dirty != VM_PAGE_BITS_ALL)
5841 return (false);
5842 }
5843 if ((flags & PS_ALL_VALID) != 0 &&
5844 m[i].valid != VM_PAGE_BITS_ALL)
5845 return (false);
5846 }
5847 return (true);
5848 }
5849
5850 /*
5851 * Set the page's dirty bits if the page is modified.
5852 */
5853 void
vm_page_test_dirty(vm_page_t m)5854 vm_page_test_dirty(vm_page_t m)
5855 {
5856
5857 vm_page_assert_busied(m);
5858 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5859 vm_page_dirty(m);
5860 }
5861
5862 void
vm_page_valid(vm_page_t m)5863 vm_page_valid(vm_page_t m)
5864 {
5865
5866 vm_page_assert_busied(m);
5867 if (vm_page_xbusied(m))
5868 m->valid = VM_PAGE_BITS_ALL;
5869 else
5870 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5871 }
5872
5873 void
vm_page_lock_KBI(vm_page_t m,const char * file,int line)5874 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5875 {
5876
5877 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5878 }
5879
5880 void
vm_page_unlock_KBI(vm_page_t m,const char * file,int line)5881 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5882 {
5883
5884 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5885 }
5886
5887 int
vm_page_trylock_KBI(vm_page_t m,const char * file,int line)5888 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5889 {
5890
5891 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5892 }
5893
5894 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5895 void
vm_page_assert_locked_KBI(vm_page_t m,const char * file,int line)5896 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5897 {
5898
5899 vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5900 }
5901
5902 void
vm_page_lock_assert_KBI(vm_page_t m,int a,const char * file,int line)5903 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5904 {
5905
5906 mtx_assert_(vm_page_lockptr(m), a, file, line);
5907 }
5908 #endif
5909
5910 #ifdef INVARIANTS
5911 void
vm_page_object_busy_assert(vm_page_t m)5912 vm_page_object_busy_assert(vm_page_t m)
5913 {
5914
5915 /*
5916 * Certain of the page's fields may only be modified by the
5917 * holder of a page or object busy.
5918 */
5919 if (m->object != NULL && !vm_page_busied(m))
5920 VM_OBJECT_ASSERT_BUSY(m->object);
5921 }
5922
5923 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5924 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5925 {
5926
5927 if ((bits & PGA_WRITEABLE) == 0)
5928 return;
5929
5930 /*
5931 * The PGA_WRITEABLE flag can only be set if the page is
5932 * managed, is exclusively busied or the object is locked.
5933 * Currently, this flag is only set by pmap_enter().
5934 */
5935 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5936 ("PGA_WRITEABLE on unmanaged page"));
5937 if (!vm_page_xbusied(m))
5938 VM_OBJECT_ASSERT_BUSY(m->object);
5939 }
5940 #endif
5941
5942 #include "opt_ddb.h"
5943 #ifdef DDB
5944 #include <sys/kernel.h>
5945
5946 #include <ddb/ddb.h>
5947
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5948 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5949 {
5950
5951 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5952 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5953 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5954 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5955 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5956 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5957 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5958 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5959 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5960 }
5961
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5962 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5963 {
5964 int dom;
5965
5966 db_printf("pq_free %d\n", vm_free_count());
5967 for (dom = 0; dom < vm_ndomains; dom++) {
5968 db_printf(
5969 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5970 dom,
5971 vm_dom[dom].vmd_page_count,
5972 vm_dom[dom].vmd_free_count,
5973 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5974 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5975 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5976 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5977 }
5978 }
5979
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5980 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5981 {
5982 vm_page_t m;
5983 boolean_t phys, virt;
5984
5985 if (!have_addr) {
5986 db_printf("show pginfo addr\n");
5987 return;
5988 }
5989
5990 phys = strchr(modif, 'p') != NULL;
5991 virt = strchr(modif, 'v') != NULL;
5992 if (virt)
5993 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5994 else if (phys)
5995 m = PHYS_TO_VM_PAGE(addr);
5996 else
5997 m = (vm_page_t)addr;
5998 db_printf(
5999 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
6000 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
6001 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
6002 m->a.queue, m->ref_count, m->a.flags, m->oflags,
6003 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
6004 }
6005 #endif /* DDB */
6006