1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Resident memory management module.
65 */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110
111 #include <machine/md_var.h>
112
113 struct vm_domain vm_dom[MAXMEMDOM];
114
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116
117 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
118 /* The following fields are protected by the domainset lock. */
119 domainset_t __exclusive_cache_line vm_min_domains;
120 domainset_t __exclusive_cache_line vm_severe_domains;
121 static int vm_min_waiters;
122 static int vm_severe_waiters;
123 static int vm_pageproc_waiters;
124
125 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
126 "VM page statistics");
127
128 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
129 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
130 CTLFLAG_RD, &pqstate_commit_retries,
131 "Number of failed per-page atomic queue state updates");
132
133 static COUNTER_U64_DEFINE_EARLY(queue_ops);
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
135 CTLFLAG_RD, &queue_ops,
136 "Number of batched queue operations");
137
138 static COUNTER_U64_DEFINE_EARLY(queue_nops);
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
140 CTLFLAG_RD, &queue_nops,
141 "Number of batched queue operations with no effects");
142
143 static unsigned long nofreeq_size;
144 SYSCTL_ULONG(_vm_stats_page, OID_AUTO, nofreeq_size, CTLFLAG_RD,
145 &nofreeq_size, 0,
146 "Size of the nofree queue");
147
148 /*
149 * bogus page -- for I/O to/from partially complete buffers,
150 * or for paging into sparsely invalid regions.
151 */
152 vm_page_t bogus_page;
153
154 vm_page_t vm_page_array;
155 long vm_page_array_size;
156 long first_page;
157
158 struct bitset *vm_page_dump;
159 long vm_page_dump_pages;
160
161 static TAILQ_HEAD(, vm_page) blacklist_head;
162 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
163 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
164 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
165
166 static uma_zone_t fakepg_zone;
167
168 static void vm_page_alloc_check(vm_page_t m);
169 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object);
178 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
179 const uint16_t nflag);
180 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
181 vm_page_t m_run, vm_paddr_t high);
182 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
183 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
184 int req);
185 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
186 int flags);
187 static void vm_page_zone_release(void *arg, void **store, int cnt);
188
189 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
190
191 static void
vm_page_init(void * dummy)192 vm_page_init(void *dummy)
193 {
194
195 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
196 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
198 }
199
200 static int pgcache_zone_max_pcpu;
201 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
202 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
203 "Per-CPU page cache size");
204
205 /*
206 * The cache page zone is initialized later since we need to be able to allocate
207 * pages before UMA is fully initialized.
208 */
209 static void
vm_page_init_cache_zones(void * dummy __unused)210 vm_page_init_cache_zones(void *dummy __unused)
211 {
212 struct vm_domain *vmd;
213 struct vm_pgcache *pgcache;
214 int cache, domain, maxcache, pool;
215
216 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
217 maxcache = pgcache_zone_max_pcpu * mp_ncpus;
218 for (domain = 0; domain < vm_ndomains; domain++) {
219 vmd = VM_DOMAIN(domain);
220 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
221 #ifdef VM_FREEPOOL_LAZYINIT
222 if (pool == VM_FREEPOOL_LAZYINIT)
223 continue;
224 #endif
225 pgcache = &vmd->vmd_pgcache[pool];
226 pgcache->domain = domain;
227 pgcache->pool = pool;
228 pgcache->zone = uma_zcache_create("vm pgcache",
229 PAGE_SIZE, NULL, NULL, NULL, NULL,
230 vm_page_zone_import, vm_page_zone_release, pgcache,
231 UMA_ZONE_VM);
232
233 /*
234 * Limit each pool's zone to 0.1% of the pages in the
235 * domain.
236 */
237 cache = maxcache != 0 ? maxcache :
238 vmd->vmd_page_count / 1000;
239 uma_zone_set_maxcache(pgcache->zone, cache);
240 }
241 }
242 }
243 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
244
245 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
246 #if PAGE_SIZE == 32768
247 #ifdef CTASSERT
248 CTASSERT(sizeof(u_long) >= 8);
249 #endif
250 #endif
251
252 /*
253 * vm_set_page_size:
254 *
255 * Sets the page size, perhaps based upon the memory
256 * size. Must be called before any use of page-size
257 * dependent functions.
258 */
259 void
vm_set_page_size(void)260 vm_set_page_size(void)
261 {
262 if (vm_cnt.v_page_size == 0)
263 vm_cnt.v_page_size = PAGE_SIZE;
264 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
265 panic("vm_set_page_size: page size not a power of two");
266 }
267
268 /*
269 * vm_page_blacklist_next:
270 *
271 * Find the next entry in the provided string of blacklist
272 * addresses. Entries are separated by space, comma, or newline.
273 * If an invalid integer is encountered then the rest of the
274 * string is skipped. Updates the list pointer to the next
275 * character, or NULL if the string is exhausted or invalid.
276 */
277 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)278 vm_page_blacklist_next(char **list, char *end)
279 {
280 vm_paddr_t bad;
281 char *cp, *pos;
282
283 if (list == NULL || *list == NULL)
284 return (0);
285 if (**list =='\0') {
286 *list = NULL;
287 return (0);
288 }
289
290 /*
291 * If there's no end pointer then the buffer is coming from
292 * the kenv and we know it's null-terminated.
293 */
294 if (end == NULL)
295 end = *list + strlen(*list);
296
297 /* Ensure that strtoq() won't walk off the end */
298 if (*end != '\0') {
299 if (*end == '\n' || *end == ' ' || *end == ',')
300 *end = '\0';
301 else {
302 printf("Blacklist not terminated, skipping\n");
303 *list = NULL;
304 return (0);
305 }
306 }
307
308 for (pos = *list; *pos != '\0'; pos = cp) {
309 bad = strtoq(pos, &cp, 0);
310 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
311 if (bad == 0) {
312 if (++cp < end)
313 continue;
314 else
315 break;
316 }
317 } else
318 break;
319 if (*cp == '\0' || ++cp >= end)
320 *list = NULL;
321 else
322 *list = cp;
323 return (trunc_page(bad));
324 }
325 printf("Garbage in RAM blacklist, skipping\n");
326 *list = NULL;
327 return (0);
328 }
329
330 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)331 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
332 {
333 struct vm_domain *vmd;
334 vm_page_t m;
335 bool found;
336
337 m = vm_phys_paddr_to_vm_page(pa);
338 if (m == NULL)
339 return (true); /* page does not exist, no failure */
340
341 vmd = VM_DOMAIN(vm_phys_domain(pa));
342 vm_domain_free_lock(vmd);
343 found = vm_phys_unfree_page(pa);
344 vm_domain_free_unlock(vmd);
345 if (found) {
346 vm_domain_freecnt_inc(vmd, -1);
347 TAILQ_INSERT_TAIL(&blacklist_head, m, plinks.q);
348 if (verbose)
349 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
350 }
351 return (found);
352 }
353
354 /*
355 * vm_page_blacklist_check:
356 *
357 * Iterate through the provided string of blacklist addresses, pulling
358 * each entry out of the physical allocator free list and putting it
359 * onto a list for reporting via the vm.page_blacklist sysctl.
360 */
361 static void
vm_page_blacklist_check(char * list,char * end)362 vm_page_blacklist_check(char *list, char *end)
363 {
364 vm_paddr_t pa;
365 char *next;
366
367 next = list;
368 while (next != NULL) {
369 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
370 continue;
371 vm_page_blacklist_add(pa, bootverbose);
372 }
373 }
374
375 /*
376 * vm_page_blacklist_load:
377 *
378 * Search for a special module named "ram_blacklist". It'll be a
379 * plain text file provided by the user via the loader directive
380 * of the same name.
381 */
382 static void
vm_page_blacklist_load(char ** list,char ** end)383 vm_page_blacklist_load(char **list, char **end)
384 {
385 void *mod;
386 u_char *ptr;
387 u_int len;
388
389 mod = NULL;
390 ptr = NULL;
391
392 mod = preload_search_by_type("ram_blacklist");
393 if (mod != NULL) {
394 ptr = preload_fetch_addr(mod);
395 len = preload_fetch_size(mod);
396 }
397 *list = ptr;
398 if (ptr != NULL)
399 *end = ptr + len;
400 else
401 *end = NULL;
402 return;
403 }
404
405 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)406 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
407 {
408 vm_page_t m;
409 struct sbuf sbuf;
410 int error, first;
411
412 first = 1;
413 error = sysctl_wire_old_buffer(req, 0);
414 if (error != 0)
415 return (error);
416 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
417 TAILQ_FOREACH(m, &blacklist_head, plinks.q) {
418 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
419 (uintmax_t)m->phys_addr);
420 first = 0;
421 }
422 error = sbuf_finish(&sbuf);
423 sbuf_delete(&sbuf);
424 return (error);
425 }
426
427 /*
428 * Initialize a dummy page for use in scans of the specified paging queue.
429 * In principle, this function only needs to set the flag PG_MARKER.
430 * Nonetheless, it write busies the page as a safety precaution.
431 */
432 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)433 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
434 {
435
436 bzero(marker, sizeof(*marker));
437 marker->flags = PG_MARKER;
438 marker->a.flags = aflags;
439 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
440 marker->a.queue = queue;
441 }
442
443 static void
vm_page_domain_init(int domain)444 vm_page_domain_init(int domain)
445 {
446 struct vm_domain *vmd;
447 struct vm_pagequeue *pq;
448 int i;
449
450 vmd = VM_DOMAIN(domain);
451 bzero(vmd, sizeof(*vmd));
452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
453 "vm inactive pagequeue";
454 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
455 "vm active pagequeue";
456 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
457 "vm laundry pagequeue";
458 *__DECONST(const char **,
459 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
460 "vm unswappable pagequeue";
461 vmd->vmd_domain = domain;
462 vmd->vmd_page_count = 0;
463 vmd->vmd_free_count = 0;
464 vmd->vmd_segs = 0;
465 vmd->vmd_oom = false;
466 vmd->vmd_helper_threads_enabled = true;
467 for (i = 0; i < PQ_COUNT; i++) {
468 pq = &vmd->vmd_pagequeues[i];
469 TAILQ_INIT(&pq->pq_pl);
470 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
471 MTX_DEF | MTX_DUPOK);
472 pq->pq_pdpages = 0;
473 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
474 }
475 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
476 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
477 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
478
479 /*
480 * inacthead is used to provide FIFO ordering for LRU-bypassing
481 * insertions.
482 */
483 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
484 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
485 &vmd->vmd_inacthead, plinks.q);
486
487 /*
488 * The clock pages are used to implement active queue scanning without
489 * requeues. Scans start at clock[0], which is advanced after the scan
490 * ends. When the two clock hands meet, they are reset and scanning
491 * resumes from the head of the queue.
492 */
493 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
494 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
495 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
496 &vmd->vmd_clock[0], plinks.q);
497 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
498 &vmd->vmd_clock[1], plinks.q);
499 }
500
501 /*
502 * Initialize a physical page in preparation for adding it to the free
503 * lists.
504 */
505 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)506 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
507 {
508 m->object = NULL;
509 m->ref_count = 0;
510 m->busy_lock = VPB_FREED;
511 m->flags = m->a.flags = 0;
512 m->phys_addr = pa;
513 m->a.queue = PQ_NONE;
514 m->psind = 0;
515 m->segind = segind;
516 m->order = VM_NFREEORDER;
517 m->pool = pool;
518 m->valid = m->dirty = 0;
519 pmap_page_init(m);
520 }
521
522 #ifndef PMAP_HAS_PAGE_ARRAY
523 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)524 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
525 {
526 vm_paddr_t new_end;
527
528 /*
529 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
530 * However, because this page is allocated from KVM, out-of-bounds
531 * accesses using the direct map will not be trapped.
532 */
533 *vaddr += PAGE_SIZE;
534
535 /*
536 * Allocate physical memory for the page structures, and map it.
537 */
538 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
539 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
540 VM_PROT_READ | VM_PROT_WRITE);
541 vm_page_array_size = page_range;
542
543 return (new_end);
544 }
545 #endif
546
547 /*
548 * vm_page_startup:
549 *
550 * Initializes the resident memory module. Allocates physical memory for
551 * bootstrapping UMA and some data structures that are used to manage
552 * physical pages. Initializes these structures, and populates the free
553 * page queues.
554 */
555 vm_offset_t
vm_page_startup(vm_offset_t vaddr)556 vm_page_startup(vm_offset_t vaddr)
557 {
558 struct vm_phys_seg *seg;
559 struct vm_domain *vmd;
560 vm_page_t m;
561 char *list, *listend;
562 vm_paddr_t end, high_avail, low_avail, new_end, size;
563 vm_paddr_t page_range __unused;
564 vm_paddr_t last_pa, pa, startp, endp;
565 u_long pagecount;
566 #if MINIDUMP_PAGE_TRACKING
567 u_long vm_page_dump_size;
568 #endif
569 int biggestone, i, segind;
570 #ifdef WITNESS
571 vm_offset_t mapped;
572 int witness_size;
573 #endif
574 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
575 long ii;
576 #endif
577 int pool;
578 #ifdef VM_FREEPOOL_LAZYINIT
579 int lazyinit;
580 #endif
581
582 vaddr = round_page(vaddr);
583
584 vm_phys_early_startup();
585 biggestone = vm_phys_avail_largest();
586 end = phys_avail[biggestone+1];
587
588 /*
589 * Initialize the page and queue locks.
590 */
591 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
592 for (i = 0; i < vm_ndomains; i++)
593 vm_page_domain_init(i);
594
595 new_end = end;
596 #ifdef WITNESS
597 witness_size = round_page(witness_startup_count());
598 new_end -= witness_size;
599 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
600 VM_PROT_READ | VM_PROT_WRITE);
601 bzero((void *)mapped, witness_size);
602 witness_startup((void *)mapped);
603 #endif
604
605 #if MINIDUMP_PAGE_TRACKING
606 /*
607 * Allocate a bitmap to indicate that a random physical page
608 * needs to be included in a minidump.
609 *
610 * The amd64 port needs this to indicate which direct map pages
611 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
612 *
613 * However, i386 still needs this workspace internally within the
614 * minidump code. In theory, they are not needed on i386, but are
615 * included should the sf_buf code decide to use them.
616 */
617 last_pa = 0;
618 vm_page_dump_pages = 0;
619 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
620 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
621 dump_avail[i] / PAGE_SIZE;
622 if (dump_avail[i + 1] > last_pa)
623 last_pa = dump_avail[i + 1];
624 }
625 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
626 new_end -= vm_page_dump_size;
627 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
628 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
629 bzero((void *)vm_page_dump, vm_page_dump_size);
630 #if MINIDUMP_STARTUP_PAGE_TRACKING
631 /*
632 * Include the UMA bootstrap pages, witness pages and vm_page_dump
633 * in a crash dump. When pmap_map() uses the direct map, they are
634 * not automatically included.
635 */
636 for (pa = new_end; pa < end; pa += PAGE_SIZE)
637 dump_add_page(pa);
638 #endif
639 #else
640 (void)last_pa;
641 #endif
642 phys_avail[biggestone + 1] = new_end;
643 #ifdef __amd64__
644 /*
645 * Request that the physical pages underlying the message buffer be
646 * included in a crash dump. Since the message buffer is accessed
647 * through the direct map, they are not automatically included.
648 */
649 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
650 last_pa = pa + round_page(msgbufsize);
651 while (pa < last_pa) {
652 dump_add_page(pa);
653 pa += PAGE_SIZE;
654 }
655 #else
656 (void)pa;
657 #endif
658
659 /*
660 * Determine the lowest and highest physical addresses and, in the case
661 * of VM_PHYSSEG_SPARSE, the exact size of the available physical
662 * memory. vm_phys_early_startup() already checked that phys_avail[]
663 * has at least one element.
664 */
665 #ifdef VM_PHYSSEG_SPARSE
666 size = phys_avail[1] - phys_avail[0];
667 #endif
668 low_avail = phys_avail[0];
669 high_avail = phys_avail[1];
670 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
671 #ifdef VM_PHYSSEG_SPARSE
672 size += phys_avail[i + 1] - phys_avail[i];
673 #endif
674 if (phys_avail[i] < low_avail)
675 low_avail = phys_avail[i];
676 if (phys_avail[i + 1] > high_avail)
677 high_avail = phys_avail[i + 1];
678 }
679 for (i = 0; i < vm_phys_nsegs; i++) {
680 #ifdef VM_PHYSSEG_SPARSE
681 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
682 #endif
683 if (vm_phys_segs[i].start < low_avail)
684 low_avail = vm_phys_segs[i].start;
685 if (vm_phys_segs[i].end > high_avail)
686 high_avail = vm_phys_segs[i].end;
687 }
688 first_page = low_avail / PAGE_SIZE;
689 #ifdef VM_PHYSSEG_DENSE
690 size = high_avail - low_avail;
691 #endif
692
693 #ifdef PMAP_HAS_PAGE_ARRAY
694 pmap_page_array_startup(size / PAGE_SIZE);
695 biggestone = vm_phys_avail_largest();
696 end = new_end = phys_avail[biggestone + 1];
697 #else
698 #ifdef VM_PHYSSEG_DENSE
699 /*
700 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
701 * the overhead of a page structure per page only if vm_page_array is
702 * allocated from the last physical memory chunk. Otherwise, we must
703 * allocate page structures representing the physical memory
704 * underlying vm_page_array, even though they will not be used.
705 */
706 if (new_end != high_avail)
707 page_range = size / PAGE_SIZE;
708 else
709 #endif
710 {
711 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
712
713 /*
714 * If the partial bytes remaining are large enough for
715 * a page (PAGE_SIZE) without a corresponding
716 * 'struct vm_page', then new_end will contain an
717 * extra page after subtracting the length of the VM
718 * page array. Compensate by subtracting an extra
719 * page from new_end.
720 */
721 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
722 if (new_end == high_avail)
723 high_avail -= PAGE_SIZE;
724 new_end -= PAGE_SIZE;
725 }
726 }
727 end = new_end;
728 new_end = vm_page_array_alloc(&vaddr, end, page_range);
729 #endif
730
731 #if VM_NRESERVLEVEL > 0
732 /*
733 * Allocate physical memory for the reservation management system's
734 * data structures, and map it.
735 */
736 new_end = vm_reserv_startup(&vaddr, new_end);
737 #endif
738 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
739 /*
740 * Include vm_page_array and vm_reserv_array in a crash dump.
741 */
742 for (pa = new_end; pa < end; pa += PAGE_SIZE)
743 dump_add_page(pa);
744 #endif
745 phys_avail[biggestone + 1] = new_end;
746
747 /*
748 * Add physical memory segments corresponding to the available
749 * physical pages.
750 */
751 for (i = 0; phys_avail[i + 1] != 0; i += 2)
752 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
753
754 /*
755 * Initialize the physical memory allocator.
756 */
757 vm_phys_init();
758
759 pool = VM_FREEPOOL_DEFAULT;
760 #ifdef VM_FREEPOOL_LAZYINIT
761 lazyinit = 1;
762 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
763 if (lazyinit)
764 pool = VM_FREEPOOL_LAZYINIT;
765 #endif
766
767 /*
768 * Initialize the page structures and add every available page to the
769 * physical memory allocator's free lists.
770 */
771 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
772 for (ii = 0; ii < vm_page_array_size; ii++) {
773 m = &vm_page_array[ii];
774 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
775 VM_FREEPOOL_DEFAULT);
776 m->flags = PG_FICTITIOUS;
777 }
778 #endif
779 vm_cnt.v_page_count = 0;
780 for (segind = 0; segind < vm_phys_nsegs; segind++) {
781 seg = &vm_phys_segs[segind];
782
783 /*
784 * Initialize pages not covered by phys_avail[], since they
785 * might be freed to the allocator at some future point, e.g.,
786 * by kmem_bootstrap_free().
787 */
788 startp = seg->start;
789 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
790 if (startp >= seg->end)
791 break;
792 if (phys_avail[i + 1] < startp)
793 continue;
794 if (phys_avail[i] <= startp) {
795 startp = phys_avail[i + 1];
796 continue;
797 }
798 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
799 for (endp = MIN(phys_avail[i], seg->end);
800 startp < endp; startp += PAGE_SIZE, m++) {
801 vm_page_init_page(m, startp, segind,
802 VM_FREEPOOL_DEFAULT);
803 }
804 }
805
806 /*
807 * Add the segment's pages that are covered by one of
808 * phys_avail's ranges to the free lists.
809 */
810 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
811 if (seg->end <= phys_avail[i] ||
812 seg->start >= phys_avail[i + 1])
813 continue;
814
815 startp = MAX(seg->start, phys_avail[i]);
816 endp = MIN(seg->end, phys_avail[i + 1]);
817 pagecount = (u_long)atop(endp - startp);
818 if (pagecount == 0)
819 continue;
820
821 /*
822 * If lazy vm_page initialization is not enabled, simply
823 * initialize all of the pages in the segment covered by
824 * phys_avail. Otherwise, initialize only the first
825 * page of each run of free pages handed to the vm_phys
826 * allocator, which in turn defers initialization of
827 * pages until they are needed.
828 *
829 * This avoids blocking the boot process for long
830 * periods, which may be relevant for VMs (which ought
831 * to boot as quickly as possible) and/or systems with
832 * large amounts of physical memory.
833 */
834 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
835 vm_page_init_page(m, startp, segind, pool);
836 if (pool == VM_FREEPOOL_DEFAULT) {
837 for (u_long j = 1; j < pagecount; j++) {
838 vm_page_init_page(&m[j],
839 startp + ptoa((vm_paddr_t)j),
840 segind, pool);
841 }
842 }
843 vmd = VM_DOMAIN(seg->domain);
844 vm_domain_free_lock(vmd);
845 vm_phys_enqueue_contig(m, pool, pagecount);
846 vm_domain_free_unlock(vmd);
847 vm_domain_freecnt_inc(vmd, pagecount);
848 vm_cnt.v_page_count += (u_int)pagecount;
849 vmd->vmd_page_count += (u_int)pagecount;
850 vmd->vmd_segs |= 1UL << segind;
851 }
852 }
853
854 /*
855 * Remove blacklisted pages from the physical memory allocator.
856 */
857 TAILQ_INIT(&blacklist_head);
858 vm_page_blacklist_load(&list, &listend);
859 vm_page_blacklist_check(list, listend);
860
861 list = kern_getenv("vm.blacklist");
862 vm_page_blacklist_check(list, NULL);
863
864 freeenv(list);
865 #if VM_NRESERVLEVEL > 0
866 /*
867 * Initialize the reservation management system.
868 */
869 vm_reserv_init();
870 #endif
871
872 return (vaddr);
873 }
874
875 void
vm_page_reference(vm_page_t m)876 vm_page_reference(vm_page_t m)
877 {
878
879 vm_page_aflag_set(m, PGA_REFERENCED);
880 }
881
882 /*
883 * vm_page_trybusy
884 *
885 * Helper routine for grab functions to trylock busy.
886 *
887 * Returns true on success and false on failure.
888 */
889 static bool
vm_page_trybusy(vm_page_t m,int allocflags)890 vm_page_trybusy(vm_page_t m, int allocflags)
891 {
892
893 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
894 return (vm_page_trysbusy(m));
895 else
896 return (vm_page_tryxbusy(m));
897 }
898
899 /*
900 * vm_page_tryacquire
901 *
902 * Helper routine for grab functions to trylock busy and wire.
903 *
904 * Returns true on success and false on failure.
905 */
906 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)907 vm_page_tryacquire(vm_page_t m, int allocflags)
908 {
909 bool locked;
910
911 locked = vm_page_trybusy(m, allocflags);
912 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
913 vm_page_wire(m);
914 return (locked);
915 }
916
917 /*
918 * vm_page_busy_acquire:
919 *
920 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
921 * and drop the object lock if necessary.
922 */
923 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)924 vm_page_busy_acquire(vm_page_t m, int allocflags)
925 {
926 vm_object_t obj;
927 bool locked;
928
929 /*
930 * The page-specific object must be cached because page
931 * identity can change during the sleep, causing the
932 * re-lock of a different object.
933 * It is assumed that a reference to the object is already
934 * held by the callers.
935 */
936 obj = atomic_load_ptr(&m->object);
937 for (;;) {
938 if (vm_page_tryacquire(m, allocflags))
939 return (true);
940 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
941 return (false);
942 if (obj != NULL)
943 locked = VM_OBJECT_WOWNED(obj);
944 else
945 locked = false;
946 MPASS(locked || vm_page_wired(m));
947 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
948 locked) && locked)
949 VM_OBJECT_WLOCK(obj);
950 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
951 return (false);
952 KASSERT(m->object == obj || m->object == NULL,
953 ("vm_page_busy_acquire: page %p does not belong to %p",
954 m, obj));
955 }
956 }
957
958 /*
959 * vm_page_busy_downgrade:
960 *
961 * Downgrade an exclusive busy page into a single shared busy page.
962 */
963 void
vm_page_busy_downgrade(vm_page_t m)964 vm_page_busy_downgrade(vm_page_t m)
965 {
966 u_int x;
967
968 vm_page_assert_xbusied(m);
969
970 x = vm_page_busy_fetch(m);
971 for (;;) {
972 if (atomic_fcmpset_rel_int(&m->busy_lock,
973 &x, VPB_SHARERS_WORD(1)))
974 break;
975 }
976 if ((x & VPB_BIT_WAITERS) != 0)
977 wakeup(m);
978 }
979
980 /*
981 *
982 * vm_page_busy_tryupgrade:
983 *
984 * Attempt to upgrade a single shared busy into an exclusive busy.
985 */
986 int
vm_page_busy_tryupgrade(vm_page_t m)987 vm_page_busy_tryupgrade(vm_page_t m)
988 {
989 u_int ce, x;
990
991 vm_page_assert_sbusied(m);
992
993 x = vm_page_busy_fetch(m);
994 ce = VPB_CURTHREAD_EXCLUSIVE;
995 for (;;) {
996 if (VPB_SHARERS(x) > 1)
997 return (0);
998 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
999 ("vm_page_busy_tryupgrade: invalid lock state"));
1000 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1001 ce | (x & VPB_BIT_WAITERS)))
1002 continue;
1003 return (1);
1004 }
1005 }
1006
1007 /*
1008 * vm_page_sbusied:
1009 *
1010 * Return a positive value if the page is shared busied, 0 otherwise.
1011 */
1012 int
vm_page_sbusied(vm_page_t m)1013 vm_page_sbusied(vm_page_t m)
1014 {
1015 u_int x;
1016
1017 x = vm_page_busy_fetch(m);
1018 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1019 }
1020
1021 /*
1022 * vm_page_sunbusy:
1023 *
1024 * Shared unbusy a page.
1025 */
1026 void
vm_page_sunbusy(vm_page_t m)1027 vm_page_sunbusy(vm_page_t m)
1028 {
1029 u_int x;
1030
1031 vm_page_assert_sbusied(m);
1032
1033 x = vm_page_busy_fetch(m);
1034 for (;;) {
1035 KASSERT(x != VPB_FREED,
1036 ("vm_page_sunbusy: Unlocking freed page."));
1037 if (VPB_SHARERS(x) > 1) {
1038 if (atomic_fcmpset_int(&m->busy_lock, &x,
1039 x - VPB_ONE_SHARER))
1040 break;
1041 continue;
1042 }
1043 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1044 ("vm_page_sunbusy: invalid lock state"));
1045 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1046 continue;
1047 if ((x & VPB_BIT_WAITERS) == 0)
1048 break;
1049 wakeup(m);
1050 break;
1051 }
1052 }
1053
1054 /*
1055 * vm_page_busy_sleep:
1056 *
1057 * Sleep if the page is busy, using the page pointer as wchan.
1058 * This is used to implement the hard-path of the busying mechanism.
1059 *
1060 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1061 * will not sleep if the page is shared-busy.
1062 *
1063 * The object lock must be held on entry.
1064 *
1065 * Returns true if it slept and dropped the object lock, or false
1066 * if there was no sleep and the lock is still held.
1067 */
1068 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1069 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1070 {
1071 vm_object_t obj;
1072
1073 obj = m->object;
1074 VM_OBJECT_ASSERT_LOCKED(obj);
1075
1076 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1077 true));
1078 }
1079
1080 /*
1081 * vm_page_busy_sleep_unlocked:
1082 *
1083 * Sleep if the page is busy, using the page pointer as wchan.
1084 * This is used to implement the hard-path of busying mechanism.
1085 *
1086 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1087 * will not sleep if the page is shared-busy.
1088 *
1089 * The object lock must not be held on entry. The operation will
1090 * return if the page changes identity.
1091 */
1092 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1093 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1094 const char *wmesg, int allocflags)
1095 {
1096 VM_OBJECT_ASSERT_UNLOCKED(obj);
1097
1098 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1099 }
1100
1101 /*
1102 * _vm_page_busy_sleep:
1103 *
1104 * Internal busy sleep function. Verifies the page identity and
1105 * lockstate against parameters. Returns true if it sleeps and
1106 * false otherwise.
1107 *
1108 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1109 *
1110 * If locked is true the lock will be dropped for any true returns
1111 * and held for any false returns.
1112 */
1113 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1114 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1115 const char *wmesg, int allocflags, bool locked)
1116 {
1117 bool xsleep;
1118 u_int x;
1119
1120 /*
1121 * If the object is busy we must wait for that to drain to zero
1122 * before trying the page again.
1123 */
1124 if (obj != NULL && vm_object_busied(obj)) {
1125 if (locked)
1126 VM_OBJECT_DROP(obj);
1127 vm_object_busy_wait(obj, wmesg);
1128 return (true);
1129 }
1130
1131 if (!vm_page_busied(m))
1132 return (false);
1133
1134 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1135 sleepq_lock(m);
1136 x = vm_page_busy_fetch(m);
1137 do {
1138 /*
1139 * If the page changes objects or becomes unlocked we can
1140 * simply return.
1141 */
1142 if (x == VPB_UNBUSIED ||
1143 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1144 m->object != obj || m->pindex != pindex) {
1145 sleepq_release(m);
1146 return (false);
1147 }
1148 if ((x & VPB_BIT_WAITERS) != 0)
1149 break;
1150 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1151 if (locked)
1152 VM_OBJECT_DROP(obj);
1153 DROP_GIANT();
1154 sleepq_add(m, NULL, wmesg, 0, 0);
1155 sleepq_wait(m, PVM);
1156 PICKUP_GIANT();
1157 return (true);
1158 }
1159
1160 /*
1161 * vm_page_trysbusy:
1162 *
1163 * Try to shared busy a page.
1164 * If the operation succeeds 1 is returned otherwise 0.
1165 * The operation never sleeps.
1166 */
1167 int
vm_page_trysbusy(vm_page_t m)1168 vm_page_trysbusy(vm_page_t m)
1169 {
1170 vm_object_t obj;
1171 u_int x;
1172
1173 obj = m->object;
1174 x = vm_page_busy_fetch(m);
1175 for (;;) {
1176 if ((x & VPB_BIT_SHARED) == 0)
1177 return (0);
1178 /*
1179 * Reduce the window for transient busies that will trigger
1180 * false negatives in vm_page_ps_test().
1181 */
1182 if (obj != NULL && vm_object_busied(obj))
1183 return (0);
1184 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1185 x + VPB_ONE_SHARER))
1186 break;
1187 }
1188
1189 /* Refetch the object now that we're guaranteed that it is stable. */
1190 obj = m->object;
1191 if (obj != NULL && vm_object_busied(obj)) {
1192 vm_page_sunbusy(m);
1193 return (0);
1194 }
1195 return (1);
1196 }
1197
1198 /*
1199 * vm_page_tryxbusy:
1200 *
1201 * Try to exclusive busy a page.
1202 * If the operation succeeds 1 is returned otherwise 0.
1203 * The operation never sleeps.
1204 */
1205 int
vm_page_tryxbusy(vm_page_t m)1206 vm_page_tryxbusy(vm_page_t m)
1207 {
1208 vm_object_t obj;
1209
1210 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1211 VPB_CURTHREAD_EXCLUSIVE) == 0)
1212 return (0);
1213
1214 obj = m->object;
1215 if (obj != NULL && vm_object_busied(obj)) {
1216 vm_page_xunbusy(m);
1217 return (0);
1218 }
1219 return (1);
1220 }
1221
1222 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1223 vm_page_xunbusy_hard_tail(vm_page_t m)
1224 {
1225 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1226 /* Wake the waiter. */
1227 wakeup(m);
1228 }
1229
1230 /*
1231 * vm_page_xunbusy_hard:
1232 *
1233 * Called when unbusy has failed because there is a waiter.
1234 */
1235 void
vm_page_xunbusy_hard(vm_page_t m)1236 vm_page_xunbusy_hard(vm_page_t m)
1237 {
1238 vm_page_assert_xbusied(m);
1239 vm_page_xunbusy_hard_tail(m);
1240 }
1241
1242 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1243 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1244 {
1245 vm_page_assert_xbusied_unchecked(m);
1246 vm_page_xunbusy_hard_tail(m);
1247 }
1248
1249 static void
vm_page_busy_free(vm_page_t m)1250 vm_page_busy_free(vm_page_t m)
1251 {
1252 u_int x;
1253
1254 atomic_thread_fence_rel();
1255 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1256 if ((x & VPB_BIT_WAITERS) != 0)
1257 wakeup(m);
1258 }
1259
1260 /*
1261 * vm_page_unhold_pages:
1262 *
1263 * Unhold each of the pages that is referenced by the given array.
1264 */
1265 void
vm_page_unhold_pages(vm_page_t * ma,int count)1266 vm_page_unhold_pages(vm_page_t *ma, int count)
1267 {
1268
1269 for (; count != 0; count--) {
1270 vm_page_unwire(*ma, PQ_ACTIVE);
1271 ma++;
1272 }
1273 }
1274
1275 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1276 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1277 {
1278 vm_page_t m;
1279
1280 #ifdef VM_PHYSSEG_SPARSE
1281 m = vm_phys_paddr_to_vm_page(pa);
1282 if (m == NULL)
1283 m = vm_phys_fictitious_to_vm_page(pa);
1284 return (m);
1285 #elif defined(VM_PHYSSEG_DENSE)
1286 long pi;
1287
1288 pi = atop(pa);
1289 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1290 m = &vm_page_array[pi - first_page];
1291 return (m);
1292 }
1293 return (vm_phys_fictitious_to_vm_page(pa));
1294 #else
1295 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1296 #endif
1297 }
1298
1299 /*
1300 * vm_page_getfake:
1301 *
1302 * Create a fictitious page with the specified physical address and
1303 * memory attribute. The memory attribute is the only the machine-
1304 * dependent aspect of a fictitious page that must be initialized.
1305 */
1306 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1307 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1308 {
1309 vm_page_t m;
1310
1311 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1312 vm_page_initfake(m, paddr, memattr);
1313 return (m);
1314 }
1315
1316 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1317 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1318 {
1319
1320 if ((m->flags & PG_FICTITIOUS) != 0) {
1321 /*
1322 * The page's memattr might have changed since the
1323 * previous initialization. Update the pmap to the
1324 * new memattr.
1325 */
1326 goto memattr;
1327 }
1328 m->phys_addr = paddr;
1329 m->a.queue = PQ_NONE;
1330 /* Fictitious pages don't use "segind". */
1331 m->flags = PG_FICTITIOUS;
1332 /* Fictitious pages don't use "order" or "pool". */
1333 m->oflags = VPO_UNMANAGED;
1334 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1335 /* Fictitious pages are unevictable. */
1336 m->ref_count = 1;
1337 pmap_page_init(m);
1338 memattr:
1339 pmap_page_set_memattr(m, memattr);
1340 }
1341
1342 /*
1343 * vm_page_putfake:
1344 *
1345 * Release a fictitious page.
1346 */
1347 void
vm_page_putfake(vm_page_t m)1348 vm_page_putfake(vm_page_t m)
1349 {
1350
1351 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1352 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1353 ("vm_page_putfake: bad page %p", m));
1354 vm_page_assert_xbusied(m);
1355 vm_page_busy_free(m);
1356 uma_zfree(fakepg_zone, m);
1357 }
1358
1359 /*
1360 * vm_page_updatefake:
1361 *
1362 * Update the given fictitious page to the specified physical address and
1363 * memory attribute.
1364 */
1365 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1366 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1367 {
1368
1369 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1370 ("vm_page_updatefake: bad page %p", m));
1371 m->phys_addr = paddr;
1372 pmap_page_set_memattr(m, memattr);
1373 }
1374
1375 /*
1376 * vm_page_free:
1377 *
1378 * Free a page.
1379 */
1380 void
vm_page_free(vm_page_t m)1381 vm_page_free(vm_page_t m)
1382 {
1383
1384 m->flags &= ~PG_ZERO;
1385 vm_page_free_toq(m);
1386 }
1387
1388 /*
1389 * vm_page_free_zero:
1390 *
1391 * Free a page to the zerod-pages queue
1392 */
1393 void
vm_page_free_zero(vm_page_t m)1394 vm_page_free_zero(vm_page_t m)
1395 {
1396
1397 m->flags |= PG_ZERO;
1398 vm_page_free_toq(m);
1399 }
1400
1401 /*
1402 * Unbusy and handle the page queueing for a page from a getpages request that
1403 * was optionally read ahead or behind.
1404 */
1405 void
vm_page_readahead_finish(vm_page_t m)1406 vm_page_readahead_finish(vm_page_t m)
1407 {
1408
1409 /* We shouldn't put invalid pages on queues. */
1410 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1411
1412 /*
1413 * Since the page is not the actually needed one, whether it should
1414 * be activated or deactivated is not obvious. Empirical results
1415 * have shown that deactivating the page is usually the best choice,
1416 * unless the page is wanted by another thread.
1417 */
1418 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1419 vm_page_activate(m);
1420 else
1421 vm_page_deactivate(m);
1422 vm_page_xunbusy_unchecked(m);
1423 }
1424
1425 /*
1426 * Destroy the identity of an invalid page and free it if possible.
1427 * This is intended to be used when reading a page from backing store fails.
1428 */
1429 void
vm_page_free_invalid(vm_page_t m)1430 vm_page_free_invalid(vm_page_t m)
1431 {
1432
1433 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1434 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1435 KASSERT(m->object != NULL, ("page %p has no object", m));
1436 VM_OBJECT_ASSERT_WLOCKED(m->object);
1437
1438 /*
1439 * We may be attempting to free the page as part of the handling for an
1440 * I/O error, in which case the page was xbusied by a different thread.
1441 */
1442 vm_page_xbusy_claim(m);
1443
1444 /*
1445 * If someone has wired this page while the object lock
1446 * was not held, then the thread that unwires is responsible
1447 * for freeing the page. Otherwise just free the page now.
1448 * The wire count of this unmapped page cannot change while
1449 * we have the page xbusy and the page's object wlocked.
1450 */
1451 if (vm_page_remove(m))
1452 vm_page_free(m);
1453 }
1454
1455 /*
1456 * vm_page_dirty_KBI: [ internal use only ]
1457 *
1458 * Set all bits in the page's dirty field.
1459 *
1460 * The object containing the specified page must be locked if the
1461 * call is made from the machine-independent layer.
1462 *
1463 * See vm_page_clear_dirty_mask().
1464 *
1465 * This function should only be called by vm_page_dirty().
1466 */
1467 void
vm_page_dirty_KBI(vm_page_t m)1468 vm_page_dirty_KBI(vm_page_t m)
1469 {
1470
1471 /* Refer to this operation by its public name. */
1472 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1473 m->dirty = VM_PAGE_BITS_ALL;
1474 }
1475
1476 /*
1477 * Insert the given page into the given object at the given pindex.
1478 *
1479 * The procedure is marked __always_inline to suggest to the compiler to
1480 * eliminate the iter parameter and the associated alternate branch.
1481 */
1482 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,bool iter,struct pctrie_iter * pages)1483 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1484 bool iter, struct pctrie_iter *pages)
1485 {
1486 int error;
1487
1488 VM_OBJECT_ASSERT_WLOCKED(object);
1489 KASSERT(m->object == NULL,
1490 ("vm_page_insert: page %p already inserted", m));
1491
1492 /*
1493 * Record the object/offset pair in this page.
1494 */
1495 m->object = object;
1496 m->pindex = pindex;
1497 m->ref_count |= VPRC_OBJREF;
1498
1499 /*
1500 * Add this page to the object's radix tree.
1501 */
1502 if (iter)
1503 error = vm_radix_iter_insert(pages, m);
1504 else
1505 error = vm_radix_insert(&object->rtree, m);
1506 if (__predict_false(error != 0)) {
1507 m->object = NULL;
1508 m->pindex = 0;
1509 m->ref_count &= ~VPRC_OBJREF;
1510 return (1);
1511 }
1512
1513 vm_page_insert_radixdone(m, object);
1514 vm_pager_page_inserted(object, m);
1515 return (0);
1516 }
1517
1518 /*
1519 * vm_page_insert: [ internal use only ]
1520 *
1521 * Inserts the given mem entry into the object and object list.
1522 *
1523 * The object must be locked.
1524 */
1525 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1526 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1527 {
1528 return (vm_page_insert_lookup(m, object, pindex, false, NULL));
1529 }
1530
1531 /*
1532 * vm_page_iter_insert:
1533 *
1534 * Tries to insert the page "m" into the specified object at offset
1535 * "pindex" using the iterator "pages". Returns 0 if the insertion was
1536 * successful.
1537 *
1538 * The object must be locked.
1539 */
1540 int
vm_page_iter_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages)1541 vm_page_iter_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1542 struct pctrie_iter *pages)
1543 {
1544 return (vm_page_insert_lookup(m, object, pindex, true, pages));
1545 }
1546
1547 /*
1548 * vm_page_insert_radixdone:
1549 *
1550 * Complete page "m" insertion into the specified object after the
1551 * radix trie hooking.
1552 *
1553 * The object must be locked.
1554 */
1555 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object)1556 vm_page_insert_radixdone(vm_page_t m, vm_object_t object)
1557 {
1558
1559 VM_OBJECT_ASSERT_WLOCKED(object);
1560 KASSERT(object != NULL && m->object == object,
1561 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1562 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1563 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1564
1565 /*
1566 * Show that the object has one more resident page.
1567 */
1568 object->resident_page_count++;
1569
1570 /*
1571 * Hold the vnode until the last page is released.
1572 */
1573 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1574 vhold(object->handle);
1575
1576 /*
1577 * Since we are inserting a new and possibly dirty page,
1578 * update the object's generation count.
1579 */
1580 if (pmap_page_is_write_mapped(m))
1581 vm_object_set_writeable_dirty(object);
1582 }
1583
1584 /*
1585 * vm_page_remove_radixdone
1586 *
1587 * Complete page "m" removal from the specified object after the radix trie
1588 * unhooking.
1589 *
1590 * The caller is responsible for updating the page's fields to reflect this
1591 * removal.
1592 */
1593 static void
vm_page_remove_radixdone(vm_page_t m)1594 vm_page_remove_radixdone(vm_page_t m)
1595 {
1596 vm_object_t object;
1597
1598 vm_page_assert_xbusied(m);
1599 object = m->object;
1600 VM_OBJECT_ASSERT_WLOCKED(object);
1601 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1602 ("page %p is missing its object ref", m));
1603
1604 /* Deferred free of swap space. */
1605 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1606 vm_pager_page_unswapped(m);
1607
1608 vm_pager_page_removed(object, m);
1609 m->object = NULL;
1610
1611 /*
1612 * And show that the object has one fewer resident page.
1613 */
1614 object->resident_page_count--;
1615
1616 /*
1617 * The vnode may now be recycled.
1618 */
1619 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1620 vdrop(object->handle);
1621 }
1622
1623 /*
1624 * vm_page_free_object_prep:
1625 *
1626 * Disassociates the given page from its VM object.
1627 *
1628 * The object must be locked, and the page must be xbusy.
1629 */
1630 static void
vm_page_free_object_prep(vm_page_t m)1631 vm_page_free_object_prep(vm_page_t m)
1632 {
1633 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1634 ((m->object->flags & OBJ_UNMANAGED) != 0),
1635 ("%s: managed flag mismatch for page %p",
1636 __func__, m));
1637 vm_page_assert_xbusied(m);
1638
1639 /*
1640 * The object reference can be released without an atomic
1641 * operation.
1642 */
1643 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1644 m->ref_count == VPRC_OBJREF,
1645 ("%s: page %p has unexpected ref_count %u",
1646 __func__, m, m->ref_count));
1647 vm_page_remove_radixdone(m);
1648 m->ref_count -= VPRC_OBJREF;
1649 }
1650
1651 /*
1652 * vm_page_iter_free:
1653 *
1654 * Free the given page, and use the iterator to remove it from the radix
1655 * tree.
1656 */
1657 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1658 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1659 {
1660 vm_radix_iter_remove(pages);
1661 vm_page_free_object_prep(m);
1662 vm_page_xunbusy(m);
1663 m->flags &= ~PG_ZERO;
1664 vm_page_free_toq(m);
1665 }
1666
1667 /*
1668 * vm_page_remove:
1669 *
1670 * Removes the specified page from its containing object, but does not
1671 * invalidate any backing storage. Returns true if the object's reference
1672 * was the last reference to the page, and false otherwise.
1673 *
1674 * The object must be locked and the page must be exclusively busied.
1675 * The exclusive busy will be released on return. If this is not the
1676 * final ref and the caller does not hold a wire reference it may not
1677 * continue to access the page.
1678 */
1679 bool
vm_page_remove(vm_page_t m)1680 vm_page_remove(vm_page_t m)
1681 {
1682 bool dropped;
1683
1684 dropped = vm_page_remove_xbusy(m);
1685 vm_page_xunbusy(m);
1686
1687 return (dropped);
1688 }
1689
1690 /*
1691 * vm_page_iter_remove:
1692 *
1693 * Remove the current page, and use the iterator to remove it from the
1694 * radix tree.
1695 */
1696 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1697 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1698 {
1699 bool dropped;
1700
1701 vm_radix_iter_remove(pages);
1702 vm_page_remove_radixdone(m);
1703 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1704 vm_page_xunbusy(m);
1705
1706 return (dropped);
1707 }
1708
1709 /*
1710 * vm_page_radix_remove
1711 *
1712 * Removes the specified page from the radix tree.
1713 */
1714 static void
vm_page_radix_remove(vm_page_t m)1715 vm_page_radix_remove(vm_page_t m)
1716 {
1717 vm_page_t mrem __diagused;
1718
1719 mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1720 KASSERT(mrem == m,
1721 ("removed page %p, expected page %p", mrem, m));
1722 }
1723
1724 /*
1725 * vm_page_remove_xbusy
1726 *
1727 * Removes the page but leaves the xbusy held. Returns true if this
1728 * removed the final ref and false otherwise.
1729 */
1730 bool
vm_page_remove_xbusy(vm_page_t m)1731 vm_page_remove_xbusy(vm_page_t m)
1732 {
1733
1734 vm_page_radix_remove(m);
1735 vm_page_remove_radixdone(m);
1736 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1737 }
1738
1739 /*
1740 * vm_page_lookup:
1741 *
1742 * Returns the page associated with the object/offset
1743 * pair specified; if none is found, NULL is returned.
1744 *
1745 * The object must be locked.
1746 */
1747 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1748 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1749 {
1750
1751 VM_OBJECT_ASSERT_LOCKED(object);
1752 return (vm_radix_lookup(&object->rtree, pindex));
1753 }
1754
1755 /*
1756 * vm_page_iter_init:
1757 *
1758 * Initialize iterator for vm pages.
1759 */
1760 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1761 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1762 {
1763
1764 vm_radix_iter_init(pages, &object->rtree);
1765 }
1766
1767 /*
1768 * vm_page_iter_init:
1769 *
1770 * Initialize iterator for vm pages.
1771 */
1772 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1773 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1774 vm_pindex_t limit)
1775 {
1776
1777 vm_radix_iter_limit_init(pages, &object->rtree, limit);
1778 }
1779
1780 /*
1781 * vm_page_lookup_unlocked:
1782 *
1783 * Returns the page associated with the object/offset pair specified;
1784 * if none is found, NULL is returned. The page may be no longer be
1785 * present in the object at the time that this function returns. Only
1786 * useful for opportunistic checks such as inmem().
1787 */
1788 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1789 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1790 {
1791
1792 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1793 }
1794
1795 /*
1796 * vm_page_relookup:
1797 *
1798 * Returns a page that must already have been busied by
1799 * the caller. Used for bogus page replacement.
1800 */
1801 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1802 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1803 {
1804 vm_page_t m;
1805
1806 m = vm_page_lookup_unlocked(object, pindex);
1807 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1808 m->object == object && m->pindex == pindex,
1809 ("vm_page_relookup: Invalid page %p", m));
1810 return (m);
1811 }
1812
1813 /*
1814 * This should only be used by lockless functions for releasing transient
1815 * incorrect acquires. The page may have been freed after we acquired a
1816 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1817 * further to do.
1818 */
1819 static void
vm_page_busy_release(vm_page_t m)1820 vm_page_busy_release(vm_page_t m)
1821 {
1822 u_int x;
1823
1824 x = vm_page_busy_fetch(m);
1825 for (;;) {
1826 if (x == VPB_FREED)
1827 break;
1828 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1829 if (atomic_fcmpset_int(&m->busy_lock, &x,
1830 x - VPB_ONE_SHARER))
1831 break;
1832 continue;
1833 }
1834 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1835 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1836 ("vm_page_busy_release: %p xbusy not owned.", m));
1837 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1838 continue;
1839 if ((x & VPB_BIT_WAITERS) != 0)
1840 wakeup(m);
1841 break;
1842 }
1843 }
1844
1845 /*
1846 * Uses the page mnew as a replacement for an existing page at index
1847 * pindex which must be already present in the object.
1848 *
1849 * Both pages must be exclusively busied on enter. The old page is
1850 * unbusied on exit.
1851 *
1852 * A return value of true means mold is now free. If this is not the
1853 * final ref and the caller does not hold a wire reference it may not
1854 * continue to access the page.
1855 */
1856 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1857 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1858 vm_page_t mold)
1859 {
1860 vm_page_t mret __diagused;
1861 bool dropped;
1862
1863 VM_OBJECT_ASSERT_WLOCKED(object);
1864 vm_page_assert_xbusied(mold);
1865 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1866 ("vm_page_replace: page %p already in object", mnew));
1867
1868 /*
1869 * This function mostly follows vm_page_insert() and
1870 * vm_page_remove() without the radix, object count and vnode
1871 * dance. Double check such functions for more comments.
1872 */
1873
1874 mnew->object = object;
1875 mnew->pindex = pindex;
1876 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1877 mret = vm_radix_replace(&object->rtree, mnew);
1878 KASSERT(mret == mold,
1879 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1880 KASSERT((mold->oflags & VPO_UNMANAGED) ==
1881 (mnew->oflags & VPO_UNMANAGED),
1882 ("vm_page_replace: mismatched VPO_UNMANAGED"));
1883
1884 mold->object = NULL;
1885
1886 /*
1887 * The object's resident_page_count does not change because we have
1888 * swapped one page for another, but the generation count should
1889 * change if the page is dirty.
1890 */
1891 if (pmap_page_is_write_mapped(mnew))
1892 vm_object_set_writeable_dirty(object);
1893 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1894 vm_page_xunbusy(mold);
1895
1896 return (dropped);
1897 }
1898
1899 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1900 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1901 vm_page_t mold)
1902 {
1903
1904 vm_page_assert_xbusied(mnew);
1905
1906 if (vm_page_replace_hold(mnew, object, pindex, mold))
1907 vm_page_free(mold);
1908 }
1909
1910 /*
1911 * vm_page_iter_rename:
1912 *
1913 * Tries to move the specified page from its current object to a new object
1914 * and pindex, using the given iterator to remove the page from its current
1915 * object. Returns true if the move was successful, and false if the move
1916 * was aborted due to a failed memory allocation.
1917 *
1918 * Panics if a page already resides in the new object at the new pindex.
1919 *
1920 * This routine dirties the page if it is valid, as callers are expected to
1921 * transfer backing storage only after moving the page. Dirtying the page
1922 * ensures that the destination object retains the most recent copy of the
1923 * page.
1924 *
1925 * The objects must be locked.
1926 */
1927 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)1928 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
1929 vm_object_t new_object, vm_pindex_t new_pindex)
1930 {
1931 vm_pindex_t opidx;
1932
1933 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1934 ("%s: page %p is missing object ref", __func__, m));
1935 VM_OBJECT_ASSERT_WLOCKED(m->object);
1936 VM_OBJECT_ASSERT_WLOCKED(new_object);
1937
1938 /*
1939 * Create a custom version of vm_page_insert() which does not depend
1940 * by m_prev and can cheat on the implementation aspects of the
1941 * function.
1942 */
1943 opidx = m->pindex;
1944 m->pindex = new_pindex;
1945 if (vm_radix_insert(&new_object->rtree, m) != 0) {
1946 m->pindex = opidx;
1947 return (false);
1948 }
1949
1950 /*
1951 * The operation cannot fail anymore.
1952 */
1953 m->pindex = opidx;
1954 vm_radix_iter_remove(old_pages);
1955 vm_page_remove_radixdone(m);
1956
1957 /* Return back to the new pindex to complete vm_page_insert(). */
1958 m->pindex = new_pindex;
1959 m->object = new_object;
1960
1961 vm_page_insert_radixdone(m, new_object);
1962 if (vm_page_any_valid(m))
1963 vm_page_dirty(m);
1964 vm_pager_page_inserted(new_object, m);
1965 return (true);
1966 }
1967
1968 /*
1969 * vm_page_alloc:
1970 *
1971 * Allocate and return a page that is associated with the specified
1972 * object and offset pair. By default, this page is exclusive busied.
1973 *
1974 * The caller must always specify an allocation class.
1975 *
1976 * allocation classes:
1977 * VM_ALLOC_NORMAL normal process request
1978 * VM_ALLOC_SYSTEM system *really* needs a page
1979 * VM_ALLOC_INTERRUPT interrupt time request
1980 *
1981 * optional allocation flags:
1982 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1983 * intends to allocate
1984 * VM_ALLOC_NOBUSY do not exclusive busy the page
1985 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
1986 * VM_ALLOC_NOFREE page will never be freed
1987 * VM_ALLOC_NOWAIT ignored (default behavior)
1988 * VM_ALLOC_SBUSY shared busy the allocated page
1989 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
1990 * VM_ALLOC_WIRED wire the allocated page
1991 * VM_ALLOC_ZERO prefer a zeroed page
1992 */
1993 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)1994 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1995 {
1996 struct pctrie_iter pages;
1997
1998 vm_page_iter_init(&pages, object);
1999 return (vm_page_alloc_iter(object, pindex, req, &pages));
2000 }
2001
2002 /*
2003 * Allocate a page in the specified object with the given page index. If the
2004 * object lock is dropped and regained, the pages iter is reset.
2005 */
2006 vm_page_t
vm_page_alloc_iter(vm_object_t object,vm_pindex_t pindex,int req,struct pctrie_iter * pages)2007 vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req,
2008 struct pctrie_iter *pages)
2009 {
2010 struct vm_domainset_iter di;
2011 vm_page_t m;
2012 int domain;
2013
2014 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req,
2015 pages);
2016 do {
2017 m = vm_page_alloc_domain_iter(object, pindex, domain, req,
2018 pages);
2019 if (m != NULL)
2020 break;
2021 } while (vm_domainset_iter_page(&di, object, &domain, pages) == 0);
2022
2023 return (m);
2024 }
2025
2026 /*
2027 * Returns true if the number of free pages exceeds the minimum
2028 * for the request class and false otherwise.
2029 */
2030 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2031 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2032 {
2033 u_int limit, old, new;
2034
2035 if (req_class == VM_ALLOC_INTERRUPT)
2036 limit = 0;
2037 else if (req_class == VM_ALLOC_SYSTEM)
2038 limit = vmd->vmd_interrupt_free_min;
2039 else
2040 limit = vmd->vmd_free_reserved;
2041
2042 /*
2043 * Attempt to reserve the pages. Fail if we're below the limit.
2044 */
2045 limit += npages;
2046 old = atomic_load_int(&vmd->vmd_free_count);
2047 do {
2048 if (old < limit)
2049 return (0);
2050 new = old - npages;
2051 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2052
2053 /* Wake the page daemon if we've crossed the threshold. */
2054 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2055 pagedaemon_wakeup(vmd->vmd_domain);
2056
2057 /* Only update bitsets on transitions. */
2058 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2059 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2060 vm_domain_set(vmd);
2061
2062 return (1);
2063 }
2064
2065 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2066 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2067 {
2068 int req_class;
2069
2070 /*
2071 * The page daemon is allowed to dig deeper into the free page list.
2072 */
2073 req_class = req & VM_ALLOC_CLASS_MASK;
2074 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2075 req_class = VM_ALLOC_SYSTEM;
2076 return (_vm_domain_allocate(vmd, req_class, npages));
2077 }
2078
2079 vm_page_t
vm_page_alloc_domain_iter(vm_object_t object,vm_pindex_t pindex,int domain,int req,struct pctrie_iter * pages)2080 vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex, int domain,
2081 int req, struct pctrie_iter *pages)
2082 {
2083 struct vm_domain *vmd;
2084 vm_page_t m;
2085 int flags;
2086
2087 #define VM_ALLOC_COMMON (VM_ALLOC_CLASS_MASK | VM_ALLOC_NODUMP | \
2088 VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | \
2089 VM_ALLOC_WIRED | VM_ALLOC_ZERO)
2090 #define VPA_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2091 VM_ALLOC_NOBUSY | VM_ALLOC_NOFREE | \
2092 VM_ALLOC_SBUSY)
2093 KASSERT((req & ~VPA_FLAGS) == 0,
2094 ("invalid request %#x", req));
2095 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2096 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2097 ("invalid request %#x", req));
2098 VM_OBJECT_ASSERT_WLOCKED(object);
2099
2100 flags = 0;
2101 m = NULL;
2102 if (!vm_pager_can_alloc_page(object, pindex))
2103 return (NULL);
2104 #if VM_NRESERVLEVEL > 0
2105 again:
2106 #endif
2107 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2108 m = vm_page_alloc_nofree_domain(domain, req);
2109 if (m != NULL)
2110 goto found;
2111 }
2112 #if VM_NRESERVLEVEL > 0
2113 /*
2114 * Can we allocate the page from a reservation?
2115 */
2116 if (vm_object_reserv(object) &&
2117 (m = vm_reserv_alloc_page(object, pindex, domain, req, pages)) !=
2118 NULL) {
2119 goto found;
2120 }
2121 #endif
2122 vmd = VM_DOMAIN(domain);
2123 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2124 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2125 M_NOWAIT | M_NOVM);
2126 if (m != NULL) {
2127 flags |= PG_PCPU_CACHE;
2128 goto found;
2129 }
2130 }
2131 if (vm_domain_allocate(vmd, req, 1)) {
2132 /*
2133 * If not, allocate it from the free page queues.
2134 */
2135 vm_domain_free_lock(vmd);
2136 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2137 vm_domain_free_unlock(vmd);
2138 if (m == NULL) {
2139 vm_domain_freecnt_inc(vmd, 1);
2140 #if VM_NRESERVLEVEL > 0
2141 if (vm_reserv_reclaim_inactive(domain))
2142 goto again;
2143 #endif
2144 }
2145 }
2146 if (m == NULL) {
2147 /*
2148 * Not allocatable, give up.
2149 */
2150 (void)vm_domain_alloc_fail(vmd, object, req);
2151 if ((req & VM_ALLOC_WAITFAIL) != 0)
2152 pctrie_iter_reset(pages);
2153 return (NULL);
2154 }
2155
2156 /*
2157 * At this point we had better have found a good page.
2158 */
2159 found:
2160 vm_page_dequeue(m);
2161 vm_page_alloc_check(m);
2162
2163 /*
2164 * Initialize the page. Only the PG_ZERO flag is inherited.
2165 */
2166 flags |= m->flags & PG_ZERO;
2167 if ((req & VM_ALLOC_NODUMP) != 0)
2168 flags |= PG_NODUMP;
2169 if ((req & VM_ALLOC_NOFREE) != 0)
2170 flags |= PG_NOFREE;
2171 m->flags = flags;
2172 m->a.flags = 0;
2173 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2174 m->pool = VM_FREEPOOL_DEFAULT;
2175 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2176 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2177 else if ((req & VM_ALLOC_SBUSY) != 0)
2178 m->busy_lock = VPB_SHARERS_WORD(1);
2179 else
2180 m->busy_lock = VPB_UNBUSIED;
2181 if (req & VM_ALLOC_WIRED) {
2182 vm_wire_add(1);
2183 m->ref_count = 1;
2184 }
2185 m->a.act_count = 0;
2186
2187 if (vm_page_iter_insert(m, object, pindex, pages)) {
2188 if (req & VM_ALLOC_WIRED) {
2189 vm_wire_sub(1);
2190 m->ref_count = 0;
2191 }
2192 KASSERT(m->object == NULL, ("page %p has object", m));
2193 m->oflags = VPO_UNMANAGED;
2194 m->busy_lock = VPB_UNBUSIED;
2195 /* Don't change PG_ZERO. */
2196 vm_page_free_toq(m);
2197 if (req & VM_ALLOC_WAITFAIL) {
2198 VM_OBJECT_WUNLOCK(object);
2199 vm_radix_wait();
2200 pctrie_iter_reset(pages);
2201 VM_OBJECT_WLOCK(object);
2202 }
2203 return (NULL);
2204 }
2205
2206 /* Ignore device objects; the pager sets "memattr" for them. */
2207 if (object->memattr != VM_MEMATTR_DEFAULT &&
2208 (object->flags & OBJ_FICTITIOUS) == 0)
2209 pmap_page_set_memattr(m, object->memattr);
2210
2211 return (m);
2212 }
2213
2214 /*
2215 * vm_page_alloc_contig:
2216 *
2217 * Allocate a contiguous set of physical pages of the given size "npages"
2218 * from the free lists. All of the physical pages must be at or above
2219 * the given physical address "low" and below the given physical address
2220 * "high". The given value "alignment" determines the alignment of the
2221 * first physical page in the set. If the given value "boundary" is
2222 * non-zero, then the set of physical pages cannot cross any physical
2223 * address boundary that is a multiple of that value. Both "alignment"
2224 * and "boundary" must be a power of two.
2225 *
2226 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2227 * then the memory attribute setting for the physical pages is configured
2228 * to the object's memory attribute setting. Otherwise, the memory
2229 * attribute setting for the physical pages is configured to "memattr",
2230 * overriding the object's memory attribute setting. However, if the
2231 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2232 * memory attribute setting for the physical pages cannot be configured
2233 * to VM_MEMATTR_DEFAULT.
2234 *
2235 * The specified object may not contain fictitious pages.
2236 *
2237 * The caller must always specify an allocation class.
2238 *
2239 * allocation classes:
2240 * VM_ALLOC_NORMAL normal process request
2241 * VM_ALLOC_SYSTEM system *really* needs the pages
2242 * VM_ALLOC_INTERRUPT interrupt time request
2243 *
2244 * optional allocation flags:
2245 * VM_ALLOC_NOBUSY do not exclusive busy the pages
2246 * VM_ALLOC_NODUMP do not include the pages in a kernel core dump
2247 * VM_ALLOC_NORECLAIM do not reclaim after initial failure
2248 * VM_ALLOC_NOWAIT ignored (default behavior)
2249 * VM_ALLOC_SBUSY shared busy the allocated pages
2250 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
2251 * VM_ALLOC_WIRED wire the allocated pages
2252 * VM_ALLOC_ZERO prefer zeroed pages
2253 */
2254 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2255 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2256 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2257 vm_paddr_t boundary, vm_memattr_t memattr)
2258 {
2259 struct vm_domainset_iter di;
2260 vm_page_t bounds[2];
2261 vm_page_t m;
2262 int domain;
2263 int start_segind;
2264
2265 start_segind = -1;
2266
2267 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req, NULL);
2268 do {
2269 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2270 npages, low, high, alignment, boundary, memattr);
2271 if (m != NULL)
2272 break;
2273 if (start_segind == -1)
2274 start_segind = vm_phys_lookup_segind(low);
2275 if (vm_phys_find_range(bounds, start_segind, domain,
2276 npages, low, high) == -1) {
2277 vm_domainset_iter_ignore(&di, domain);
2278 }
2279 } while (vm_domainset_iter_page(&di, object, &domain, NULL) == 0);
2280
2281 return (m);
2282 }
2283
2284 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2285 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2286 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2287 {
2288 struct vm_domain *vmd;
2289 vm_page_t m_ret;
2290
2291 /*
2292 * Can we allocate the pages without the number of free pages falling
2293 * below the lower bound for the allocation class?
2294 */
2295 vmd = VM_DOMAIN(domain);
2296 if (!vm_domain_allocate(vmd, req, npages))
2297 return (NULL);
2298 /*
2299 * Try to allocate the pages from the free page queues.
2300 */
2301 vm_domain_free_lock(vmd);
2302 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2303 alignment, boundary);
2304 vm_domain_free_unlock(vmd);
2305 if (m_ret != NULL)
2306 return (m_ret);
2307 #if VM_NRESERVLEVEL > 0
2308 /*
2309 * Try to break a reservation to allocate the pages.
2310 */
2311 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2312 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2313 high, alignment, boundary);
2314 if (m_ret != NULL)
2315 return (m_ret);
2316 }
2317 #endif
2318 vm_domain_freecnt_inc(vmd, npages);
2319 return (NULL);
2320 }
2321
2322 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2323 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2324 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2325 vm_paddr_t boundary, vm_memattr_t memattr)
2326 {
2327 struct pctrie_iter pages;
2328 vm_page_t m, m_ret, mpred;
2329 u_int busy_lock, flags, oflags;
2330
2331 #define VPAC_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2332 VM_ALLOC_NOBUSY | VM_ALLOC_NORECLAIM | \
2333 VM_ALLOC_SBUSY)
2334 KASSERT((req & ~VPAC_FLAGS) == 0,
2335 ("invalid request %#x", req));
2336 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2337 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2338 ("invalid request %#x", req));
2339 VM_OBJECT_ASSERT_WLOCKED(object);
2340 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2341 ("vm_page_alloc_contig: object %p has fictitious pages",
2342 object));
2343 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2344
2345 vm_page_iter_init(&pages, object);
2346 m_ret = NULL;
2347 #if VM_NRESERVLEVEL > 0
2348 /*
2349 * Can we allocate the pages from a reservation?
2350 */
2351 if (vm_object_reserv(object)) {
2352 m_ret = vm_reserv_alloc_contig(object, pindex, domain,
2353 req, npages, low, high, alignment, boundary, &pages);
2354 }
2355 #endif
2356 if (m_ret == NULL) {
2357 m_ret = vm_page_find_contig_domain(domain, req, npages,
2358 low, high, alignment, boundary);
2359 }
2360 if (m_ret == NULL) {
2361 (void)vm_domain_alloc_fail(VM_DOMAIN(domain), object, req);
2362 return (NULL);
2363 }
2364
2365 /*
2366 * Initialize the pages. Only the PG_ZERO flag is inherited.
2367 */
2368 flags = PG_ZERO;
2369 if ((req & VM_ALLOC_NODUMP) != 0)
2370 flags |= PG_NODUMP;
2371 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2372 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2373 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2374 else if ((req & VM_ALLOC_SBUSY) != 0)
2375 busy_lock = VPB_SHARERS_WORD(1);
2376 else
2377 busy_lock = VPB_UNBUSIED;
2378 if ((req & VM_ALLOC_WIRED) != 0)
2379 vm_wire_add(npages);
2380 if (object->memattr != VM_MEMATTR_DEFAULT &&
2381 memattr == VM_MEMATTR_DEFAULT)
2382 memattr = object->memattr;
2383 for (m = m_ret; m < &m_ret[npages]; m++) {
2384 vm_page_dequeue(m);
2385 vm_page_alloc_check(m);
2386 m->a.flags = 0;
2387 m->flags = (m->flags | PG_NODUMP) & flags;
2388 m->busy_lock = busy_lock;
2389 if ((req & VM_ALLOC_WIRED) != 0)
2390 m->ref_count = 1;
2391 m->a.act_count = 0;
2392 m->oflags = oflags;
2393 m->pool = VM_FREEPOOL_DEFAULT;
2394 if (vm_page_iter_insert(m, object, pindex, &pages)) {
2395 if ((req & VM_ALLOC_WIRED) != 0)
2396 vm_wire_sub(npages);
2397 KASSERT(m->object == NULL,
2398 ("page %p has object", m));
2399 mpred = m;
2400 for (m = m_ret; m < &m_ret[npages]; m++) {
2401 if (m <= mpred &&
2402 (req & VM_ALLOC_WIRED) != 0)
2403 m->ref_count = 0;
2404 m->oflags = VPO_UNMANAGED;
2405 m->busy_lock = VPB_UNBUSIED;
2406 /* Don't change PG_ZERO. */
2407 vm_page_free_toq(m);
2408 }
2409 if (req & VM_ALLOC_WAITFAIL) {
2410 VM_OBJECT_WUNLOCK(object);
2411 vm_radix_wait();
2412 VM_OBJECT_WLOCK(object);
2413 }
2414 return (NULL);
2415 }
2416 if (memattr != VM_MEMATTR_DEFAULT)
2417 pmap_page_set_memattr(m, memattr);
2418 pindex++;
2419 }
2420 return (m_ret);
2421 }
2422
2423 /*
2424 * Allocate a physical page that is not intended to be inserted into a VM
2425 * object.
2426 */
2427 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2428 vm_page_alloc_noobj_domain(int domain, int req)
2429 {
2430 struct vm_domain *vmd;
2431 vm_page_t m;
2432 int flags;
2433
2434 #define VPAN_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2435 VM_ALLOC_NOFREE | VM_ALLOC_WAITOK)
2436 KASSERT((req & ~VPAN_FLAGS) == 0,
2437 ("invalid request %#x", req));
2438
2439 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2440 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2441 vmd = VM_DOMAIN(domain);
2442 again:
2443 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2444 m = vm_page_alloc_nofree_domain(domain, req);
2445 if (m != NULL)
2446 goto found;
2447 }
2448
2449 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2450 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2451 M_NOWAIT | M_NOVM);
2452 if (m != NULL) {
2453 flags |= PG_PCPU_CACHE;
2454 goto found;
2455 }
2456 }
2457
2458 if (vm_domain_allocate(vmd, req, 1)) {
2459 vm_domain_free_lock(vmd);
2460 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2461 vm_domain_free_unlock(vmd);
2462 if (m == NULL) {
2463 vm_domain_freecnt_inc(vmd, 1);
2464 #if VM_NRESERVLEVEL > 0
2465 if (vm_reserv_reclaim_inactive(domain))
2466 goto again;
2467 #endif
2468 }
2469 }
2470 if (m == NULL) {
2471 if (!vm_domain_alloc_fail(vmd, NULL, req))
2472 return (NULL);
2473 goto again;
2474 }
2475
2476 found:
2477 /*
2478 * If the page comes from the free page cache, then it might still
2479 * have a pending deferred dequeue. Specifically, when the page is
2480 * imported from a different pool by vm_phys_alloc_npages(), the
2481 * second, third, etc. pages in a non-zero order set could have
2482 * pending deferred dequeues.
2483 */
2484 vm_page_dequeue(m);
2485 vm_page_alloc_check(m);
2486
2487 /*
2488 * Consumers should not rely on a useful default pindex value.
2489 */
2490 m->pindex = 0xdeadc0dedeadc0de;
2491 m->flags = (m->flags & PG_ZERO) | flags;
2492 m->a.flags = 0;
2493 m->oflags = VPO_UNMANAGED;
2494 m->pool = VM_FREEPOOL_DIRECT;
2495 m->busy_lock = VPB_UNBUSIED;
2496 if ((req & VM_ALLOC_WIRED) != 0) {
2497 vm_wire_add(1);
2498 m->ref_count = 1;
2499 }
2500
2501 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2502 pmap_zero_page(m);
2503
2504 return (m);
2505 }
2506
2507 #if VM_NRESERVLEVEL > 1
2508 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2509 #elif VM_NRESERVLEVEL > 0
2510 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER
2511 #else
2512 #define VM_NOFREE_IMPORT_ORDER 8
2513 #endif
2514
2515 /*
2516 * Allocate a single NOFREE page.
2517 *
2518 * This routine hands out NOFREE pages from higher-order
2519 * physical memory blocks in order to reduce memory fragmentation.
2520 * When a NOFREE for a given domain chunk is used up,
2521 * the routine will try to fetch a new one from the freelists
2522 * and discard the old one.
2523 */
2524 static vm_page_t __noinline
vm_page_alloc_nofree_domain(int domain,int req)2525 vm_page_alloc_nofree_domain(int domain, int req)
2526 {
2527 vm_page_t m;
2528 struct vm_domain *vmd;
2529
2530 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2531
2532 vmd = VM_DOMAIN(domain);
2533 vm_domain_free_lock(vmd);
2534 if (TAILQ_EMPTY(&vmd->vmd_nofreeq)) {
2535 int count;
2536
2537 count = 1 << VM_NOFREE_IMPORT_ORDER;
2538 if (!vm_domain_allocate(vmd, req, count)) {
2539 vm_domain_free_unlock(vmd);
2540 return (NULL);
2541 }
2542 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2543 VM_NOFREE_IMPORT_ORDER);
2544 if (m == NULL) {
2545 vm_domain_freecnt_inc(vmd, count);
2546 vm_domain_free_unlock(vmd);
2547 return (NULL);
2548 }
2549 m->ref_count = count - 1;
2550 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2551 atomic_add_long(&nofreeq_size, count);
2552 }
2553 m = TAILQ_FIRST(&vmd->vmd_nofreeq);
2554 TAILQ_REMOVE(&vmd->vmd_nofreeq, m, plinks.q);
2555 if (m->ref_count > 0) {
2556 vm_page_t m_next;
2557
2558 m_next = &m[1];
2559 vm_page_dequeue(m_next);
2560 m_next->ref_count = m->ref_count - 1;
2561 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m_next, plinks.q);
2562 m->ref_count = 0;
2563 }
2564 vm_domain_free_unlock(vmd);
2565 atomic_add_long(&nofreeq_size, -1);
2566 VM_CNT_INC(v_nofree_count);
2567
2568 return (m);
2569 }
2570
2571 /*
2572 * Though a NOFREE page by definition should not be freed, we support putting
2573 * them aside for future NOFREE allocations. This enables code which allocates
2574 * NOFREE pages for some purpose but then encounters an error and releases
2575 * resources.
2576 */
2577 static void __noinline
vm_page_free_nofree(struct vm_domain * vmd,vm_page_t m)2578 vm_page_free_nofree(struct vm_domain *vmd, vm_page_t m)
2579 {
2580 VM_CNT_ADD(v_nofree_count, -1);
2581 atomic_add_long(&nofreeq_size, 1);
2582 vm_domain_free_lock(vmd);
2583 MPASS(m->ref_count == 0);
2584 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2585 vm_domain_free_unlock(vmd);
2586 }
2587
2588 vm_page_t
vm_page_alloc_noobj(int req)2589 vm_page_alloc_noobj(int req)
2590 {
2591 struct vm_domainset_iter di;
2592 vm_page_t m;
2593 int domain;
2594
2595 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL);
2596 do {
2597 m = vm_page_alloc_noobj_domain(domain, req);
2598 if (m != NULL)
2599 break;
2600 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2601
2602 return (m);
2603 }
2604
2605 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2606 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2607 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2608 vm_memattr_t memattr)
2609 {
2610 struct vm_domainset_iter di;
2611 vm_page_t m;
2612 int domain;
2613
2614 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL);
2615 do {
2616 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2617 high, alignment, boundary, memattr);
2618 if (m != NULL)
2619 break;
2620 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2621
2622 return (m);
2623 }
2624
2625 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2626 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2627 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2628 vm_memattr_t memattr)
2629 {
2630 vm_page_t m, m_ret;
2631 u_int flags;
2632
2633 #define VPANC_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2634 VM_ALLOC_NORECLAIM | VM_ALLOC_WAITOK)
2635 KASSERT((req & ~VPANC_FLAGS) == 0,
2636 ("invalid request %#x", req));
2637 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2638 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2639 ("invalid request %#x", req));
2640 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2641
2642 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2643 low, high, alignment, boundary)) == NULL) {
2644 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2645 return (NULL);
2646 }
2647
2648 /*
2649 * Initialize the pages. Only the PG_ZERO flag is inherited.
2650 */
2651 flags = PG_ZERO;
2652 if ((req & VM_ALLOC_NODUMP) != 0)
2653 flags |= PG_NODUMP;
2654 if ((req & VM_ALLOC_WIRED) != 0)
2655 vm_wire_add(npages);
2656 for (m = m_ret; m < &m_ret[npages]; m++) {
2657 vm_page_dequeue(m);
2658 vm_page_alloc_check(m);
2659
2660 /*
2661 * Consumers should not rely on a useful default pindex value.
2662 */
2663 m->pindex = 0xdeadc0dedeadc0de;
2664 m->a.flags = 0;
2665 m->flags = (m->flags | PG_NODUMP) & flags;
2666 m->busy_lock = VPB_UNBUSIED;
2667 if ((req & VM_ALLOC_WIRED) != 0)
2668 m->ref_count = 1;
2669 m->a.act_count = 0;
2670 m->oflags = VPO_UNMANAGED;
2671 m->pool = VM_FREEPOOL_DIRECT;
2672
2673 /*
2674 * Zero the page before updating any mappings since the page is
2675 * not yet shared with any devices which might require the
2676 * non-default memory attribute. pmap_page_set_memattr()
2677 * flushes data caches before returning.
2678 */
2679 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2680 pmap_zero_page(m);
2681 if (memattr != VM_MEMATTR_DEFAULT)
2682 pmap_page_set_memattr(m, memattr);
2683 }
2684 return (m_ret);
2685 }
2686
2687 /*
2688 * Check a page that has been freshly dequeued from a freelist.
2689 */
2690 static void
vm_page_alloc_check(vm_page_t m)2691 vm_page_alloc_check(vm_page_t m)
2692 {
2693
2694 KASSERT(m->object == NULL, ("page %p has object", m));
2695 KASSERT(m->a.queue == PQ_NONE &&
2696 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2697 ("page %p has unexpected queue %d, flags %#x",
2698 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2699 KASSERT(m->ref_count == 0, ("page %p has references", m));
2700 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2701 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2702 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2703 ("page %p has unexpected memattr %d",
2704 m, pmap_page_get_memattr(m)));
2705 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2706 pmap_vm_page_alloc_check(m);
2707 }
2708
2709 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2710 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2711 {
2712 struct vm_domain *vmd;
2713 struct vm_pgcache *pgcache;
2714 int i;
2715
2716 pgcache = arg;
2717 vmd = VM_DOMAIN(pgcache->domain);
2718
2719 /*
2720 * The page daemon should avoid creating extra memory pressure since its
2721 * main purpose is to replenish the store of free pages.
2722 */
2723 if (vmd->vmd_severeset || curproc == pageproc ||
2724 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2725 return (0);
2726 domain = vmd->vmd_domain;
2727 vm_domain_free_lock(vmd);
2728 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2729 (vm_page_t *)store);
2730 vm_domain_free_unlock(vmd);
2731 if (cnt != i)
2732 vm_domain_freecnt_inc(vmd, cnt - i);
2733
2734 return (i);
2735 }
2736
2737 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2738 vm_page_zone_release(void *arg, void **store, int cnt)
2739 {
2740 struct vm_domain *vmd;
2741 struct vm_pgcache *pgcache;
2742 vm_page_t m;
2743 int i;
2744
2745 pgcache = arg;
2746 vmd = VM_DOMAIN(pgcache->domain);
2747 vm_domain_free_lock(vmd);
2748 for (i = 0; i < cnt; i++) {
2749 m = (vm_page_t)store[i];
2750 vm_phys_free_pages(m, pgcache->pool, 0);
2751 }
2752 vm_domain_free_unlock(vmd);
2753 vm_domain_freecnt_inc(vmd, cnt);
2754 }
2755
2756 #define VPSC_ANY 0 /* No restrictions. */
2757 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2758 #define VPSC_NOSUPER 2 /* Skip superpages. */
2759
2760 /*
2761 * vm_page_scan_contig:
2762 *
2763 * Scan vm_page_array[] between the specified entries "m_start" and
2764 * "m_end" for a run of contiguous physical pages that satisfy the
2765 * specified conditions, and return the lowest page in the run. The
2766 * specified "alignment" determines the alignment of the lowest physical
2767 * page in the run. If the specified "boundary" is non-zero, then the
2768 * run of physical pages cannot span a physical address that is a
2769 * multiple of "boundary".
2770 *
2771 * "m_end" is never dereferenced, so it need not point to a vm_page
2772 * structure within vm_page_array[].
2773 *
2774 * "npages" must be greater than zero. "m_start" and "m_end" must not
2775 * span a hole (or discontiguity) in the physical address space. Both
2776 * "alignment" and "boundary" must be a power of two.
2777 */
2778 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2779 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2780 u_long alignment, vm_paddr_t boundary, int options)
2781 {
2782 vm_object_t object;
2783 vm_paddr_t pa;
2784 vm_page_t m, m_run;
2785 #if VM_NRESERVLEVEL > 0
2786 int level;
2787 #endif
2788 int m_inc, order, run_ext, run_len;
2789
2790 KASSERT(npages > 0, ("npages is 0"));
2791 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2792 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2793 m_run = NULL;
2794 run_len = 0;
2795 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2796 KASSERT((m->flags & PG_MARKER) == 0,
2797 ("page %p is PG_MARKER", m));
2798 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2799 ("fictitious page %p has invalid ref count", m));
2800
2801 /*
2802 * If the current page would be the start of a run, check its
2803 * physical address against the end, alignment, and boundary
2804 * conditions. If it doesn't satisfy these conditions, either
2805 * terminate the scan or advance to the next page that
2806 * satisfies the failed condition.
2807 */
2808 if (run_len == 0) {
2809 KASSERT(m_run == NULL, ("m_run != NULL"));
2810 if (m + npages > m_end)
2811 break;
2812 pa = VM_PAGE_TO_PHYS(m);
2813 if (!vm_addr_align_ok(pa, alignment)) {
2814 m_inc = atop(roundup2(pa, alignment) - pa);
2815 continue;
2816 }
2817 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2818 m_inc = atop(roundup2(pa, boundary) - pa);
2819 continue;
2820 }
2821 } else
2822 KASSERT(m_run != NULL, ("m_run == NULL"));
2823
2824 retry:
2825 m_inc = 1;
2826 if (vm_page_wired(m))
2827 run_ext = 0;
2828 #if VM_NRESERVLEVEL > 0
2829 else if ((level = vm_reserv_level(m)) >= 0 &&
2830 (options & VPSC_NORESERV) != 0) {
2831 run_ext = 0;
2832 /* Advance to the end of the reservation. */
2833 pa = VM_PAGE_TO_PHYS(m);
2834 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2835 pa);
2836 }
2837 #endif
2838 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2839 /*
2840 * The page is considered eligible for relocation if
2841 * and only if it could be laundered or reclaimed by
2842 * the page daemon.
2843 */
2844 VM_OBJECT_RLOCK(object);
2845 if (object != m->object) {
2846 VM_OBJECT_RUNLOCK(object);
2847 goto retry;
2848 }
2849 /* Don't care: PG_NODUMP, PG_ZERO. */
2850 if ((object->flags & OBJ_SWAP) == 0 &&
2851 object->type != OBJT_VNODE) {
2852 run_ext = 0;
2853 #if VM_NRESERVLEVEL > 0
2854 } else if ((options & VPSC_NOSUPER) != 0 &&
2855 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2856 run_ext = 0;
2857 /* Advance to the end of the superpage. */
2858 pa = VM_PAGE_TO_PHYS(m);
2859 m_inc = atop(roundup2(pa + 1,
2860 vm_reserv_size(level)) - pa);
2861 #endif
2862 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2863 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2864 /*
2865 * The page is allocated but eligible for
2866 * relocation. Extend the current run by one
2867 * page.
2868 */
2869 KASSERT(pmap_page_get_memattr(m) ==
2870 VM_MEMATTR_DEFAULT,
2871 ("page %p has an unexpected memattr", m));
2872 KASSERT((m->oflags & (VPO_SWAPINPROG |
2873 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2874 ("page %p has unexpected oflags", m));
2875 /* Don't care: PGA_NOSYNC. */
2876 run_ext = 1;
2877 } else
2878 run_ext = 0;
2879 VM_OBJECT_RUNLOCK(object);
2880 #if VM_NRESERVLEVEL > 0
2881 } else if (level >= 0) {
2882 /*
2883 * The page is reserved but not yet allocated. In
2884 * other words, it is still free. Extend the current
2885 * run by one page.
2886 */
2887 run_ext = 1;
2888 #endif
2889 } else if ((order = m->order) < VM_NFREEORDER) {
2890 /*
2891 * The page is enqueued in the physical memory
2892 * allocator's free page queues. Moreover, it is the
2893 * first page in a power-of-two-sized run of
2894 * contiguous free pages. Add these pages to the end
2895 * of the current run, and jump ahead.
2896 */
2897 run_ext = 1 << order;
2898 m_inc = 1 << order;
2899 } else {
2900 /*
2901 * Skip the page for one of the following reasons: (1)
2902 * It is enqueued in the physical memory allocator's
2903 * free page queues. However, it is not the first
2904 * page in a run of contiguous free pages. (This case
2905 * rarely occurs because the scan is performed in
2906 * ascending order.) (2) It is not reserved, and it is
2907 * transitioning from free to allocated. (Conversely,
2908 * the transition from allocated to free for managed
2909 * pages is blocked by the page busy lock.) (3) It is
2910 * allocated but not contained by an object and not
2911 * wired, e.g., allocated by Xen's balloon driver.
2912 */
2913 run_ext = 0;
2914 }
2915
2916 /*
2917 * Extend or reset the current run of pages.
2918 */
2919 if (run_ext > 0) {
2920 if (run_len == 0)
2921 m_run = m;
2922 run_len += run_ext;
2923 } else {
2924 if (run_len > 0) {
2925 m_run = NULL;
2926 run_len = 0;
2927 }
2928 }
2929 }
2930 if (run_len >= npages)
2931 return (m_run);
2932 return (NULL);
2933 }
2934
2935 /*
2936 * vm_page_reclaim_run:
2937 *
2938 * Try to relocate each of the allocated virtual pages within the
2939 * specified run of physical pages to a new physical address. Free the
2940 * physical pages underlying the relocated virtual pages. A virtual page
2941 * is relocatable if and only if it could be laundered or reclaimed by
2942 * the page daemon. Whenever possible, a virtual page is relocated to a
2943 * physical address above "high".
2944 *
2945 * Returns 0 if every physical page within the run was already free or
2946 * just freed by a successful relocation. Otherwise, returns a non-zero
2947 * value indicating why the last attempt to relocate a virtual page was
2948 * unsuccessful.
2949 *
2950 * "req_class" must be an allocation class.
2951 */
2952 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)2953 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2954 vm_paddr_t high)
2955 {
2956 struct vm_domain *vmd;
2957 struct spglist free;
2958 vm_object_t object;
2959 vm_paddr_t pa;
2960 vm_page_t m, m_end, m_new;
2961 int error, order, req;
2962
2963 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2964 ("req_class is not an allocation class"));
2965 SLIST_INIT(&free);
2966 error = 0;
2967 m = m_run;
2968 m_end = m_run + npages;
2969 for (; error == 0 && m < m_end; m++) {
2970 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2971 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2972
2973 /*
2974 * Racily check for wirings. Races are handled once the object
2975 * lock is held and the page is unmapped.
2976 */
2977 if (vm_page_wired(m))
2978 error = EBUSY;
2979 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2980 /*
2981 * The page is relocated if and only if it could be
2982 * laundered or reclaimed by the page daemon.
2983 */
2984 VM_OBJECT_WLOCK(object);
2985 /* Don't care: PG_NODUMP, PG_ZERO. */
2986 if (m->object != object ||
2987 ((object->flags & OBJ_SWAP) == 0 &&
2988 object->type != OBJT_VNODE))
2989 error = EINVAL;
2990 else if (object->memattr != VM_MEMATTR_DEFAULT)
2991 error = EINVAL;
2992 else if (vm_page_queue(m) != PQ_NONE &&
2993 vm_page_tryxbusy(m) != 0) {
2994 if (vm_page_wired(m)) {
2995 vm_page_xunbusy(m);
2996 error = EBUSY;
2997 goto unlock;
2998 }
2999 KASSERT(pmap_page_get_memattr(m) ==
3000 VM_MEMATTR_DEFAULT,
3001 ("page %p has an unexpected memattr", m));
3002 KASSERT(m->oflags == 0,
3003 ("page %p has unexpected oflags", m));
3004 /* Don't care: PGA_NOSYNC. */
3005 if (!vm_page_none_valid(m)) {
3006 /*
3007 * First, try to allocate a new page
3008 * that is above "high". Failing
3009 * that, try to allocate a new page
3010 * that is below "m_run". Allocate
3011 * the new page between the end of
3012 * "m_run" and "high" only as a last
3013 * resort.
3014 */
3015 req = req_class;
3016 if ((m->flags & PG_NODUMP) != 0)
3017 req |= VM_ALLOC_NODUMP;
3018 if (trunc_page(high) !=
3019 ~(vm_paddr_t)PAGE_MASK) {
3020 m_new =
3021 vm_page_alloc_noobj_contig(
3022 req, 1, round_page(high),
3023 ~(vm_paddr_t)0, PAGE_SIZE,
3024 0, VM_MEMATTR_DEFAULT);
3025 } else
3026 m_new = NULL;
3027 if (m_new == NULL) {
3028 pa = VM_PAGE_TO_PHYS(m_run);
3029 m_new =
3030 vm_page_alloc_noobj_contig(
3031 req, 1, 0, pa - 1,
3032 PAGE_SIZE, 0,
3033 VM_MEMATTR_DEFAULT);
3034 }
3035 if (m_new == NULL) {
3036 pa += ptoa(npages);
3037 m_new =
3038 vm_page_alloc_noobj_contig(
3039 req, 1, pa, high, PAGE_SIZE,
3040 0, VM_MEMATTR_DEFAULT);
3041 }
3042 if (m_new == NULL) {
3043 vm_page_xunbusy(m);
3044 error = ENOMEM;
3045 goto unlock;
3046 }
3047
3048 /*
3049 * Unmap the page and check for new
3050 * wirings that may have been acquired
3051 * through a pmap lookup.
3052 */
3053 if (object->ref_count != 0 &&
3054 !vm_page_try_remove_all(m)) {
3055 vm_page_xunbusy(m);
3056 vm_page_free(m_new);
3057 error = EBUSY;
3058 goto unlock;
3059 }
3060
3061 /*
3062 * Replace "m" with the new page. For
3063 * vm_page_replace(), "m" must be busy
3064 * and dequeued. Finally, change "m"
3065 * as if vm_page_free() was called.
3066 */
3067 m_new->a.flags = m->a.flags &
3068 ~PGA_QUEUE_STATE_MASK;
3069 KASSERT(m_new->oflags == VPO_UNMANAGED,
3070 ("page %p is managed", m_new));
3071 m_new->oflags = 0;
3072 pmap_copy_page(m, m_new);
3073 m_new->valid = m->valid;
3074 m_new->dirty = m->dirty;
3075 m->flags &= ~PG_ZERO;
3076 vm_page_dequeue(m);
3077 if (vm_page_replace_hold(m_new, object,
3078 m->pindex, m) &&
3079 vm_page_free_prep(m))
3080 SLIST_INSERT_HEAD(&free, m,
3081 plinks.s.ss);
3082
3083 /*
3084 * The new page must be deactivated
3085 * before the object is unlocked.
3086 */
3087 vm_page_deactivate(m_new);
3088 } else {
3089 m->flags &= ~PG_ZERO;
3090 vm_page_dequeue(m);
3091 if (vm_page_free_prep(m))
3092 SLIST_INSERT_HEAD(&free, m,
3093 plinks.s.ss);
3094 KASSERT(m->dirty == 0,
3095 ("page %p is dirty", m));
3096 }
3097 } else
3098 error = EBUSY;
3099 unlock:
3100 VM_OBJECT_WUNLOCK(object);
3101 } else {
3102 MPASS(vm_page_domain(m) == domain);
3103 vmd = VM_DOMAIN(domain);
3104 vm_domain_free_lock(vmd);
3105 order = m->order;
3106 if (order < VM_NFREEORDER) {
3107 /*
3108 * The page is enqueued in the physical memory
3109 * allocator's free page queues. Moreover, it
3110 * is the first page in a power-of-two-sized
3111 * run of contiguous free pages. Jump ahead
3112 * to the last page within that run, and
3113 * continue from there.
3114 */
3115 m += (1 << order) - 1;
3116 }
3117 #if VM_NRESERVLEVEL > 0
3118 else if (vm_reserv_is_page_free(m))
3119 order = 0;
3120 #endif
3121 vm_domain_free_unlock(vmd);
3122 if (order == VM_NFREEORDER)
3123 error = EINVAL;
3124 }
3125 }
3126 if ((m = SLIST_FIRST(&free)) != NULL) {
3127 int cnt;
3128
3129 vmd = VM_DOMAIN(domain);
3130 cnt = 0;
3131 vm_domain_free_lock(vmd);
3132 do {
3133 MPASS(vm_page_domain(m) == domain);
3134 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3135 vm_phys_free_pages(m, m->pool, 0);
3136 cnt++;
3137 } while ((m = SLIST_FIRST(&free)) != NULL);
3138 vm_domain_free_unlock(vmd);
3139 vm_domain_freecnt_inc(vmd, cnt);
3140 }
3141 return (error);
3142 }
3143
3144 #define NRUNS 16
3145
3146 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3147
3148 #define MIN_RECLAIM 8
3149
3150 /*
3151 * vm_page_reclaim_contig:
3152 *
3153 * Reclaim allocated, contiguous physical memory satisfying the specified
3154 * conditions by relocating the virtual pages using that physical memory.
3155 * Returns 0 if reclamation is successful, ERANGE if the specified domain
3156 * can't possibly satisfy the reclamation request, or ENOMEM if not
3157 * currently able to reclaim the requested number of pages. Since
3158 * relocation requires the allocation of physical pages, reclamation may
3159 * fail with ENOMEM due to a shortage of free pages. When reclamation
3160 * fails in this manner, callers are expected to perform vm_wait() before
3161 * retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3162 *
3163 * The caller must always specify an allocation class through "req".
3164 *
3165 * allocation classes:
3166 * VM_ALLOC_NORMAL normal process request
3167 * VM_ALLOC_SYSTEM system *really* needs a page
3168 * VM_ALLOC_INTERRUPT interrupt time request
3169 *
3170 * The optional allocation flags are ignored.
3171 *
3172 * "npages" must be greater than zero. Both "alignment" and "boundary"
3173 * must be a power of two.
3174 */
3175 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3176 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3177 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3178 int desired_runs)
3179 {
3180 struct vm_domain *vmd;
3181 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3182 u_long count, minalign, reclaimed;
3183 int error, i, min_reclaim, nruns, options, req_class;
3184 int segind, start_segind;
3185 int ret;
3186
3187 KASSERT(npages > 0, ("npages is 0"));
3188 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3189 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3190
3191 ret = ENOMEM;
3192
3193 /*
3194 * If the caller wants to reclaim multiple runs, try to allocate
3195 * space to store the runs. If that fails, fall back to the old
3196 * behavior of just reclaiming MIN_RECLAIM pages.
3197 */
3198 if (desired_runs > 1)
3199 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3200 M_TEMP, M_NOWAIT);
3201 else
3202 m_runs = NULL;
3203
3204 if (m_runs == NULL) {
3205 m_runs = _m_runs;
3206 nruns = NRUNS;
3207 } else {
3208 nruns = NRUNS + desired_runs - 1;
3209 }
3210 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3211
3212 /*
3213 * The caller will attempt an allocation after some runs have been
3214 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3215 * of vm_phys_alloc_contig(), round up the requested length to the next
3216 * power of two or maximum chunk size, and ensure that each run is
3217 * suitably aligned.
3218 */
3219 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3220 npages = roundup2(npages, minalign);
3221 if (alignment < ptoa(minalign))
3222 alignment = ptoa(minalign);
3223
3224 /*
3225 * The page daemon is allowed to dig deeper into the free page list.
3226 */
3227 req_class = req & VM_ALLOC_CLASS_MASK;
3228 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3229 req_class = VM_ALLOC_SYSTEM;
3230
3231 start_segind = vm_phys_lookup_segind(low);
3232
3233 /*
3234 * Return if the number of free pages cannot satisfy the requested
3235 * allocation.
3236 */
3237 vmd = VM_DOMAIN(domain);
3238 count = vmd->vmd_free_count;
3239 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3240 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3241 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3242 goto done;
3243
3244 /*
3245 * Scan up to three times, relaxing the restrictions ("options") on
3246 * the reclamation of reservations and superpages each time.
3247 */
3248 for (options = VPSC_NORESERV;;) {
3249 bool phys_range_exists = false;
3250
3251 /*
3252 * Find the highest runs that satisfy the given constraints
3253 * and restrictions, and record them in "m_runs".
3254 */
3255 count = 0;
3256 segind = start_segind;
3257 while ((segind = vm_phys_find_range(bounds, segind, domain,
3258 npages, low, high)) != -1) {
3259 phys_range_exists = true;
3260 while ((m_run = vm_page_scan_contig(npages, bounds[0],
3261 bounds[1], alignment, boundary, options))) {
3262 bounds[0] = m_run + npages;
3263 m_runs[RUN_INDEX(count, nruns)] = m_run;
3264 count++;
3265 }
3266 segind++;
3267 }
3268
3269 if (!phys_range_exists) {
3270 ret = ERANGE;
3271 goto done;
3272 }
3273
3274 /*
3275 * Reclaim the highest runs in LIFO (descending) order until
3276 * the number of reclaimed pages, "reclaimed", is at least
3277 * "min_reclaim". Reset "reclaimed" each time because each
3278 * reclamation is idempotent, and runs will (likely) recur
3279 * from one scan to the next as restrictions are relaxed.
3280 */
3281 reclaimed = 0;
3282 for (i = 0; count > 0 && i < nruns; i++) {
3283 count--;
3284 m_run = m_runs[RUN_INDEX(count, nruns)];
3285 error = vm_page_reclaim_run(req_class, domain, npages,
3286 m_run, high);
3287 if (error == 0) {
3288 reclaimed += npages;
3289 if (reclaimed >= min_reclaim) {
3290 ret = 0;
3291 goto done;
3292 }
3293 }
3294 }
3295
3296 /*
3297 * Either relax the restrictions on the next scan or return if
3298 * the last scan had no restrictions.
3299 */
3300 if (options == VPSC_NORESERV)
3301 options = VPSC_NOSUPER;
3302 else if (options == VPSC_NOSUPER)
3303 options = VPSC_ANY;
3304 else if (options == VPSC_ANY) {
3305 if (reclaimed != 0)
3306 ret = 0;
3307 goto done;
3308 }
3309 }
3310 done:
3311 if (m_runs != _m_runs)
3312 free(m_runs, M_TEMP);
3313 return (ret);
3314 }
3315
3316 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3317 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3318 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3319 {
3320 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low,
3321 high, alignment, boundary, 1));
3322 }
3323
3324 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3325 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3326 u_long alignment, vm_paddr_t boundary)
3327 {
3328 struct vm_domainset_iter di;
3329 int domain, ret, status;
3330
3331 ret = ERANGE;
3332
3333 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL);
3334 do {
3335 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3336 high, alignment, boundary);
3337 if (status == 0)
3338 return (0);
3339 else if (status == ERANGE)
3340 vm_domainset_iter_ignore(&di, domain);
3341 else {
3342 KASSERT(status == ENOMEM, ("Unrecognized error %d "
3343 "from vm_page_reclaim_contig_domain()", status));
3344 ret = ENOMEM;
3345 }
3346 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
3347
3348 return (ret);
3349 }
3350
3351 /*
3352 * Set the domain in the appropriate page level domainset.
3353 */
3354 void
vm_domain_set(struct vm_domain * vmd)3355 vm_domain_set(struct vm_domain *vmd)
3356 {
3357
3358 mtx_lock(&vm_domainset_lock);
3359 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3360 vmd->vmd_minset = 1;
3361 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3362 }
3363 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3364 vmd->vmd_severeset = 1;
3365 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3366 }
3367 mtx_unlock(&vm_domainset_lock);
3368 }
3369
3370 /*
3371 * Clear the domain from the appropriate page level domainset.
3372 */
3373 void
vm_domain_clear(struct vm_domain * vmd)3374 vm_domain_clear(struct vm_domain *vmd)
3375 {
3376
3377 mtx_lock(&vm_domainset_lock);
3378 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3379 vmd->vmd_minset = 0;
3380 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3381 if (vm_min_waiters != 0) {
3382 vm_min_waiters = 0;
3383 wakeup(&vm_min_domains);
3384 }
3385 }
3386 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3387 vmd->vmd_severeset = 0;
3388 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3389 if (vm_severe_waiters != 0) {
3390 vm_severe_waiters = 0;
3391 wakeup(&vm_severe_domains);
3392 }
3393 }
3394
3395 /*
3396 * If pageout daemon needs pages, then tell it that there are
3397 * some free.
3398 */
3399 if (vmd->vmd_pageout_pages_needed &&
3400 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3401 wakeup(&vmd->vmd_pageout_pages_needed);
3402 vmd->vmd_pageout_pages_needed = 0;
3403 }
3404
3405 /* See comments in vm_wait_doms(). */
3406 if (vm_pageproc_waiters) {
3407 vm_pageproc_waiters = 0;
3408 wakeup(&vm_pageproc_waiters);
3409 }
3410 mtx_unlock(&vm_domainset_lock);
3411 }
3412
3413 /*
3414 * Wait for free pages to exceed the min threshold globally.
3415 */
3416 void
vm_wait_min(void)3417 vm_wait_min(void)
3418 {
3419
3420 mtx_lock(&vm_domainset_lock);
3421 while (vm_page_count_min()) {
3422 vm_min_waiters++;
3423 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3424 }
3425 mtx_unlock(&vm_domainset_lock);
3426 }
3427
3428 /*
3429 * Wait for free pages to exceed the severe threshold globally.
3430 */
3431 void
vm_wait_severe(void)3432 vm_wait_severe(void)
3433 {
3434
3435 mtx_lock(&vm_domainset_lock);
3436 while (vm_page_count_severe()) {
3437 vm_severe_waiters++;
3438 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3439 "vmwait", 0);
3440 }
3441 mtx_unlock(&vm_domainset_lock);
3442 }
3443
3444 u_int
vm_wait_count(void)3445 vm_wait_count(void)
3446 {
3447
3448 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3449 }
3450
3451 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3452 vm_wait_doms(const domainset_t *wdoms, int mflags)
3453 {
3454 int error;
3455
3456 error = 0;
3457
3458 /*
3459 * We use racey wakeup synchronization to avoid expensive global
3460 * locking for the pageproc when sleeping with a non-specific vm_wait.
3461 * To handle this, we only sleep for one tick in this instance. It
3462 * is expected that most allocations for the pageproc will come from
3463 * kmem or vm_page_grab* which will use the more specific and
3464 * race-free vm_wait_domain().
3465 */
3466 if (curproc == pageproc) {
3467 mtx_lock(&vm_domainset_lock);
3468 vm_pageproc_waiters++;
3469 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3470 PVM | PDROP | mflags, "pageprocwait", 1);
3471 } else {
3472 /*
3473 * XXX Ideally we would wait only until the allocation could
3474 * be satisfied. This condition can cause new allocators to
3475 * consume all freed pages while old allocators wait.
3476 */
3477 mtx_lock(&vm_domainset_lock);
3478 if (vm_page_count_min_set(wdoms)) {
3479 if (pageproc == NULL)
3480 panic("vm_wait in early boot");
3481 vm_min_waiters++;
3482 error = msleep(&vm_min_domains, &vm_domainset_lock,
3483 PVM | PDROP | mflags, "vmwait", 0);
3484 } else
3485 mtx_unlock(&vm_domainset_lock);
3486 }
3487 return (error);
3488 }
3489
3490 /*
3491 * vm_wait_domain:
3492 *
3493 * Sleep until free pages are available for allocation.
3494 * - Called in various places after failed memory allocations.
3495 */
3496 void
vm_wait_domain(int domain)3497 vm_wait_domain(int domain)
3498 {
3499 struct vm_domain *vmd;
3500 domainset_t wdom;
3501
3502 vmd = VM_DOMAIN(domain);
3503 vm_domain_free_assert_unlocked(vmd);
3504
3505 if (curproc == pageproc) {
3506 mtx_lock(&vm_domainset_lock);
3507 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3508 vmd->vmd_pageout_pages_needed = 1;
3509 msleep(&vmd->vmd_pageout_pages_needed,
3510 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3511 } else
3512 mtx_unlock(&vm_domainset_lock);
3513 } else {
3514 DOMAINSET_ZERO(&wdom);
3515 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3516 vm_wait_doms(&wdom, 0);
3517 }
3518 }
3519
3520 static int
vm_wait_flags(vm_object_t obj,int mflags)3521 vm_wait_flags(vm_object_t obj, int mflags)
3522 {
3523 struct domainset *d;
3524
3525 d = NULL;
3526
3527 /*
3528 * Carefully fetch pointers only once: the struct domainset
3529 * itself is ummutable but the pointer might change.
3530 */
3531 if (obj != NULL)
3532 d = obj->domain.dr_policy;
3533 if (d == NULL)
3534 d = curthread->td_domain.dr_policy;
3535
3536 return (vm_wait_doms(&d->ds_mask, mflags));
3537 }
3538
3539 /*
3540 * vm_wait:
3541 *
3542 * Sleep until free pages are available for allocation in the
3543 * affinity domains of the obj. If obj is NULL, the domain set
3544 * for the calling thread is used.
3545 * Called in various places after failed memory allocations.
3546 */
3547 void
vm_wait(vm_object_t obj)3548 vm_wait(vm_object_t obj)
3549 {
3550 (void)vm_wait_flags(obj, 0);
3551 }
3552
3553 int
vm_wait_intr(vm_object_t obj)3554 vm_wait_intr(vm_object_t obj)
3555 {
3556 return (vm_wait_flags(obj, PCATCH));
3557 }
3558
3559 /*
3560 * vm_domain_alloc_fail:
3561 *
3562 * Called when a page allocation function fails. Informs the
3563 * pagedaemon and performs the requested wait. Requires the
3564 * domain_free and object lock on entry. Returns with the
3565 * object lock held and free lock released. Returns an error when
3566 * retry is necessary.
3567 *
3568 */
3569 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3570 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3571 {
3572
3573 vm_domain_free_assert_unlocked(vmd);
3574
3575 atomic_add_int(&vmd->vmd_pageout_deficit,
3576 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3577 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3578 if (object != NULL)
3579 VM_OBJECT_WUNLOCK(object);
3580 vm_wait_domain(vmd->vmd_domain);
3581 if (object != NULL)
3582 VM_OBJECT_WLOCK(object);
3583 if (req & VM_ALLOC_WAITOK)
3584 return (EAGAIN);
3585 }
3586
3587 return (0);
3588 }
3589
3590 /*
3591 * vm_waitpfault:
3592 *
3593 * Sleep until free pages are available for allocation.
3594 * - Called only in vm_fault so that processes page faulting
3595 * can be easily tracked.
3596 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3597 * processes will be able to grab memory first. Do not change
3598 * this balance without careful testing first.
3599 */
3600 void
vm_waitpfault(struct domainset * dset,int timo)3601 vm_waitpfault(struct domainset *dset, int timo)
3602 {
3603
3604 /*
3605 * XXX Ideally we would wait only until the allocation could
3606 * be satisfied. This condition can cause new allocators to
3607 * consume all freed pages while old allocators wait.
3608 */
3609 mtx_lock(&vm_domainset_lock);
3610 if (vm_page_count_min_set(&dset->ds_mask)) {
3611 vm_min_waiters++;
3612 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3613 "pfault", timo);
3614 } else
3615 mtx_unlock(&vm_domainset_lock);
3616 }
3617
3618 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3619 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3620 {
3621
3622 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3623 }
3624
3625 #ifdef INVARIANTS
3626 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3627 vm_page_pagequeue(vm_page_t m)
3628 {
3629
3630 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3631 }
3632 #endif
3633
3634 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3635 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old,
3636 vm_page_astate_t new)
3637 {
3638 vm_page_astate_t tmp;
3639
3640 tmp = *old;
3641 do {
3642 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3643 return (true);
3644 counter_u64_add(pqstate_commit_retries, 1);
3645 } while (old->_bits == tmp._bits);
3646
3647 return (false);
3648 }
3649
3650 /*
3651 * Do the work of committing a queue state update that moves the page out of
3652 * its current queue.
3653 */
3654 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3655 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3656 vm_page_astate_t *old, vm_page_astate_t new)
3657 {
3658 vm_page_t next;
3659
3660 vm_pagequeue_assert_locked(pq);
3661 KASSERT(vm_page_pagequeue(m) == pq,
3662 ("%s: queue %p does not match page %p", __func__, pq, m));
3663 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3664 ("%s: invalid queue indices %d %d",
3665 __func__, old->queue, new.queue));
3666
3667 /*
3668 * Once the queue index of the page changes there is nothing
3669 * synchronizing with further updates to the page's physical
3670 * queue state. Therefore we must speculatively remove the page
3671 * from the queue now and be prepared to roll back if the queue
3672 * state update fails. If the page is not physically enqueued then
3673 * we just update its queue index.
3674 */
3675 if ((old->flags & PGA_ENQUEUED) != 0) {
3676 new.flags &= ~PGA_ENQUEUED;
3677 next = TAILQ_NEXT(m, plinks.q);
3678 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3679 vm_pagequeue_cnt_dec(pq);
3680 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3681 if (next == NULL)
3682 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3683 else
3684 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3685 vm_pagequeue_cnt_inc(pq);
3686 return (false);
3687 } else {
3688 return (true);
3689 }
3690 } else {
3691 return (vm_page_pqstate_fcmpset(m, old, new));
3692 }
3693 }
3694
3695 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3696 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3697 vm_page_astate_t new)
3698 {
3699 struct vm_pagequeue *pq;
3700 vm_page_astate_t as;
3701 bool ret;
3702
3703 pq = _vm_page_pagequeue(m, old->queue);
3704
3705 /*
3706 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3707 * corresponding page queue lock is held.
3708 */
3709 vm_pagequeue_lock(pq);
3710 as = vm_page_astate_load(m);
3711 if (__predict_false(as._bits != old->_bits)) {
3712 *old = as;
3713 ret = false;
3714 } else {
3715 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3716 }
3717 vm_pagequeue_unlock(pq);
3718 return (ret);
3719 }
3720
3721 /*
3722 * Commit a queue state update that enqueues or requeues a page.
3723 */
3724 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3725 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3726 vm_page_astate_t *old, vm_page_astate_t new)
3727 {
3728 struct vm_domain *vmd;
3729
3730 vm_pagequeue_assert_locked(pq);
3731 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3732 ("%s: invalid queue indices %d %d",
3733 __func__, old->queue, new.queue));
3734
3735 new.flags |= PGA_ENQUEUED;
3736 if (!vm_page_pqstate_fcmpset(m, old, new))
3737 return (false);
3738
3739 if ((old->flags & PGA_ENQUEUED) != 0)
3740 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3741 else
3742 vm_pagequeue_cnt_inc(pq);
3743
3744 /*
3745 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3746 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3747 * applied, even if it was set first.
3748 */
3749 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3750 vmd = vm_pagequeue_domain(m);
3751 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3752 ("%s: invalid page queue for page %p", __func__, m));
3753 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3754 } else {
3755 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3756 }
3757 return (true);
3758 }
3759
3760 /*
3761 * Commit a queue state update that encodes a request for a deferred queue
3762 * operation.
3763 */
3764 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3765 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3766 vm_page_astate_t new)
3767 {
3768
3769 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3770 ("%s: invalid state, queue %d flags %x",
3771 __func__, new.queue, new.flags));
3772
3773 if (old->_bits != new._bits &&
3774 !vm_page_pqstate_fcmpset(m, old, new))
3775 return (false);
3776 vm_page_pqbatch_submit(m, new.queue);
3777 return (true);
3778 }
3779
3780 /*
3781 * A generic queue state update function. This handles more cases than the
3782 * specialized functions above.
3783 */
3784 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3785 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3786 {
3787
3788 if (old->_bits == new._bits)
3789 return (true);
3790
3791 if (old->queue != PQ_NONE && new.queue != old->queue) {
3792 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3793 return (false);
3794 if (new.queue != PQ_NONE)
3795 vm_page_pqbatch_submit(m, new.queue);
3796 } else {
3797 if (!vm_page_pqstate_fcmpset(m, old, new))
3798 return (false);
3799 if (new.queue != PQ_NONE &&
3800 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3801 vm_page_pqbatch_submit(m, new.queue);
3802 }
3803 return (true);
3804 }
3805
3806 /*
3807 * Apply deferred queue state updates to a page.
3808 */
3809 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3810 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3811 {
3812 vm_page_astate_t new, old;
3813
3814 CRITICAL_ASSERT(curthread);
3815 vm_pagequeue_assert_locked(pq);
3816 KASSERT(queue < PQ_COUNT,
3817 ("%s: invalid queue index %d", __func__, queue));
3818 KASSERT(pq == _vm_page_pagequeue(m, queue),
3819 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3820
3821 for (old = vm_page_astate_load(m);;) {
3822 if (__predict_false(old.queue != queue ||
3823 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3824 counter_u64_add(queue_nops, 1);
3825 break;
3826 }
3827 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3828 ("%s: page %p is unmanaged", __func__, m));
3829
3830 new = old;
3831 if ((old.flags & PGA_DEQUEUE) != 0) {
3832 new.flags &= ~PGA_QUEUE_OP_MASK;
3833 new.queue = PQ_NONE;
3834 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3835 m, &old, new))) {
3836 counter_u64_add(queue_ops, 1);
3837 break;
3838 }
3839 } else {
3840 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3841 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3842 m, &old, new))) {
3843 counter_u64_add(queue_ops, 1);
3844 break;
3845 }
3846 }
3847 }
3848 }
3849
3850 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3851 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3852 uint8_t queue)
3853 {
3854 int i;
3855
3856 for (i = 0; i < bq->bq_cnt; i++)
3857 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3858 vm_batchqueue_init(bq);
3859 }
3860
3861 /*
3862 * vm_page_pqbatch_submit: [ internal use only ]
3863 *
3864 * Enqueue a page in the specified page queue's batched work queue.
3865 * The caller must have encoded the requested operation in the page
3866 * structure's a.flags field.
3867 */
3868 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3869 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3870 {
3871 struct vm_batchqueue *bq;
3872 struct vm_pagequeue *pq;
3873 int domain, slots_remaining;
3874
3875 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3876
3877 domain = vm_page_domain(m);
3878 critical_enter();
3879 bq = DPCPU_PTR(pqbatch[domain][queue]);
3880 slots_remaining = vm_batchqueue_insert(bq, m);
3881 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3882 /* keep building the bq */
3883 critical_exit();
3884 return;
3885 } else if (slots_remaining > 0 ) {
3886 /* Try to process the bq if we can get the lock */
3887 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3888 if (vm_pagequeue_trylock(pq)) {
3889 vm_pqbatch_process(pq, bq, queue);
3890 vm_pagequeue_unlock(pq);
3891 }
3892 critical_exit();
3893 return;
3894 }
3895 critical_exit();
3896
3897 /* if we make it here, the bq is full so wait for the lock */
3898
3899 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3900 vm_pagequeue_lock(pq);
3901 critical_enter();
3902 bq = DPCPU_PTR(pqbatch[domain][queue]);
3903 vm_pqbatch_process(pq, bq, queue);
3904 vm_pqbatch_process_page(pq, m, queue);
3905 vm_pagequeue_unlock(pq);
3906 critical_exit();
3907 }
3908
3909 /*
3910 * vm_page_pqbatch_drain: [ internal use only ]
3911 *
3912 * Force all per-CPU page queue batch queues to be drained. This is
3913 * intended for use in severe memory shortages, to ensure that pages
3914 * do not remain stuck in the batch queues.
3915 */
3916 void
vm_page_pqbatch_drain(void)3917 vm_page_pqbatch_drain(void)
3918 {
3919 struct thread *td;
3920 struct vm_domain *vmd;
3921 struct vm_pagequeue *pq;
3922 int cpu, domain, queue;
3923
3924 td = curthread;
3925 CPU_FOREACH(cpu) {
3926 thread_lock(td);
3927 sched_bind(td, cpu);
3928 thread_unlock(td);
3929
3930 for (domain = 0; domain < vm_ndomains; domain++) {
3931 vmd = VM_DOMAIN(domain);
3932 for (queue = 0; queue < PQ_COUNT; queue++) {
3933 pq = &vmd->vmd_pagequeues[queue];
3934 vm_pagequeue_lock(pq);
3935 critical_enter();
3936 vm_pqbatch_process(pq,
3937 DPCPU_PTR(pqbatch[domain][queue]), queue);
3938 critical_exit();
3939 vm_pagequeue_unlock(pq);
3940 }
3941 }
3942 }
3943 thread_lock(td);
3944 sched_unbind(td);
3945 thread_unlock(td);
3946 }
3947
3948 /*
3949 * vm_page_dequeue_deferred: [ internal use only ]
3950 *
3951 * Request removal of the given page from its current page
3952 * queue. Physical removal from the queue may be deferred
3953 * indefinitely.
3954 */
3955 void
vm_page_dequeue_deferred(vm_page_t m)3956 vm_page_dequeue_deferred(vm_page_t m)
3957 {
3958 vm_page_astate_t new, old;
3959
3960 old = vm_page_astate_load(m);
3961 do {
3962 if (old.queue == PQ_NONE) {
3963 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3964 ("%s: page %p has unexpected queue state",
3965 __func__, m));
3966 break;
3967 }
3968 new = old;
3969 new.flags |= PGA_DEQUEUE;
3970 } while (!vm_page_pqstate_commit_request(m, &old, new));
3971 }
3972
3973 /*
3974 * vm_page_dequeue:
3975 *
3976 * Remove the page from whichever page queue it's in, if any, before
3977 * returning.
3978 */
3979 void
vm_page_dequeue(vm_page_t m)3980 vm_page_dequeue(vm_page_t m)
3981 {
3982 vm_page_astate_t new, old;
3983
3984 old = vm_page_astate_load(m);
3985 do {
3986 if (__predict_true(old.queue == PQ_NONE)) {
3987 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3988 ("%s: page %p has unexpected queue state",
3989 __func__, m));
3990 break;
3991 }
3992 new = old;
3993 new.flags &= ~PGA_QUEUE_OP_MASK;
3994 new.queue = PQ_NONE;
3995 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3996
3997 }
3998
3999 /*
4000 * Schedule the given page for insertion into the specified page queue.
4001 * Physical insertion of the page may be deferred indefinitely.
4002 */
4003 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4004 vm_page_enqueue(vm_page_t m, uint8_t queue)
4005 {
4006
4007 KASSERT(m->a.queue == PQ_NONE &&
4008 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4009 ("%s: page %p is already enqueued", __func__, m));
4010 KASSERT(m->ref_count > 0,
4011 ("%s: page %p does not carry any references", __func__, m));
4012
4013 m->a.queue = queue;
4014 if ((m->a.flags & PGA_REQUEUE) == 0)
4015 vm_page_aflag_set(m, PGA_REQUEUE);
4016 vm_page_pqbatch_submit(m, queue);
4017 }
4018
4019 /*
4020 * vm_page_free_prep:
4021 *
4022 * Prepares the given page to be put on the free list,
4023 * disassociating it from any VM object. The caller may return
4024 * the page to the free list only if this function returns true.
4025 *
4026 * The object, if it exists, must be locked, and then the page must
4027 * be xbusy. Otherwise the page must be not busied. A managed
4028 * page must be unmapped.
4029 */
4030 static bool
vm_page_free_prep(vm_page_t m)4031 vm_page_free_prep(vm_page_t m)
4032 {
4033
4034 /*
4035 * Synchronize with threads that have dropped a reference to this
4036 * page.
4037 */
4038 atomic_thread_fence_acq();
4039
4040 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4041 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4042 uint64_t *p;
4043 int i;
4044 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4045 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4046 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4047 m, i, (uintmax_t)*p));
4048 }
4049 #endif
4050 if ((m->oflags & VPO_UNMANAGED) == 0) {
4051 KASSERT(!pmap_page_is_mapped(m),
4052 ("vm_page_free_prep: freeing mapped page %p", m));
4053 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4054 ("vm_page_free_prep: mapping flags set in page %p", m));
4055 } else {
4056 KASSERT(m->a.queue == PQ_NONE,
4057 ("vm_page_free_prep: unmanaged page %p is queued", m));
4058 }
4059 VM_CNT_INC(v_tfree);
4060
4061 if (m->object != NULL) {
4062 vm_page_radix_remove(m);
4063 vm_page_free_object_prep(m);
4064 } else
4065 vm_page_assert_unbusied(m);
4066
4067 vm_page_busy_free(m);
4068
4069 /*
4070 * If fictitious remove object association and
4071 * return.
4072 */
4073 if ((m->flags & PG_FICTITIOUS) != 0) {
4074 KASSERT(m->ref_count == 1,
4075 ("fictitious page %p is referenced", m));
4076 KASSERT(m->a.queue == PQ_NONE,
4077 ("fictitious page %p is queued", m));
4078 return (false);
4079 }
4080
4081 /*
4082 * Pages need not be dequeued before they are returned to the physical
4083 * memory allocator, but they must at least be marked for a deferred
4084 * dequeue.
4085 */
4086 if ((m->oflags & VPO_UNMANAGED) == 0)
4087 vm_page_dequeue_deferred(m);
4088
4089 m->valid = 0;
4090 vm_page_undirty(m);
4091
4092 if (m->ref_count != 0)
4093 panic("vm_page_free_prep: page %p has references", m);
4094
4095 /*
4096 * Restore the default memory attribute to the page.
4097 */
4098 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4099 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4100
4101 #if VM_NRESERVLEVEL > 0
4102 /*
4103 * Determine whether the page belongs to a reservation. If the page was
4104 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4105 * as an optimization, we avoid the check in that case.
4106 */
4107 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4108 return (false);
4109 #endif
4110
4111 return (true);
4112 }
4113
4114 /*
4115 * vm_page_free_toq:
4116 *
4117 * Returns the given page to the free list, disassociating it
4118 * from any VM object.
4119 *
4120 * The object must be locked. The page must be exclusively busied if it
4121 * belongs to an object.
4122 */
4123 static void
vm_page_free_toq(vm_page_t m)4124 vm_page_free_toq(vm_page_t m)
4125 {
4126 struct vm_domain *vmd;
4127 uma_zone_t zone;
4128
4129 if (!vm_page_free_prep(m))
4130 return;
4131
4132 vmd = vm_pagequeue_domain(m);
4133 if (__predict_false((m->flags & PG_NOFREE) != 0)) {
4134 vm_page_free_nofree(vmd, m);
4135 return;
4136 }
4137 zone = vmd->vmd_pgcache[m->pool].zone;
4138 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4139 uma_zfree(zone, m);
4140 return;
4141 }
4142 vm_domain_free_lock(vmd);
4143 vm_phys_free_pages(m, m->pool, 0);
4144 vm_domain_free_unlock(vmd);
4145 vm_domain_freecnt_inc(vmd, 1);
4146 }
4147
4148 /*
4149 * vm_page_free_pages_toq:
4150 *
4151 * Returns a list of pages to the free list, disassociating it
4152 * from any VM object. In other words, this is equivalent to
4153 * calling vm_page_free_toq() for each page of a list of VM objects.
4154 */
4155 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4156 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4157 {
4158 vm_page_t m;
4159 int count;
4160
4161 if (SLIST_EMPTY(free))
4162 return (0);
4163
4164 count = 0;
4165 while ((m = SLIST_FIRST(free)) != NULL) {
4166 count++;
4167 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4168 vm_page_free_toq(m);
4169 }
4170
4171 if (update_wire_count)
4172 vm_wire_sub(count);
4173 return (count);
4174 }
4175
4176 /*
4177 * Mark this page as wired down. For managed pages, this prevents reclamation
4178 * by the page daemon, or when the containing object, if any, is destroyed.
4179 */
4180 void
vm_page_wire(vm_page_t m)4181 vm_page_wire(vm_page_t m)
4182 {
4183 u_int old;
4184
4185 #ifdef INVARIANTS
4186 if (m->object != NULL && !vm_page_busied(m) &&
4187 !vm_object_busied(m->object))
4188 VM_OBJECT_ASSERT_LOCKED(m->object);
4189 #endif
4190 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4191 VPRC_WIRE_COUNT(m->ref_count) >= 1,
4192 ("vm_page_wire: fictitious page %p has zero wirings", m));
4193
4194 old = atomic_fetchadd_int(&m->ref_count, 1);
4195 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4196 ("vm_page_wire: counter overflow for page %p", m));
4197 if (VPRC_WIRE_COUNT(old) == 0) {
4198 if ((m->oflags & VPO_UNMANAGED) == 0)
4199 vm_page_aflag_set(m, PGA_DEQUEUE);
4200 vm_wire_add(1);
4201 }
4202 }
4203
4204 /*
4205 * Attempt to wire a mapped page following a pmap lookup of that page.
4206 * This may fail if a thread is concurrently tearing down mappings of the page.
4207 * The transient failure is acceptable because it translates to the
4208 * failure of the caller pmap_extract_and_hold(), which should be then
4209 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4210 */
4211 bool
vm_page_wire_mapped(vm_page_t m)4212 vm_page_wire_mapped(vm_page_t m)
4213 {
4214 u_int old;
4215
4216 old = atomic_load_int(&m->ref_count);
4217 do {
4218 KASSERT(old > 0,
4219 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4220 if ((old & VPRC_BLOCKED) != 0)
4221 return (false);
4222 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4223
4224 if (VPRC_WIRE_COUNT(old) == 0) {
4225 if ((m->oflags & VPO_UNMANAGED) == 0)
4226 vm_page_aflag_set(m, PGA_DEQUEUE);
4227 vm_wire_add(1);
4228 }
4229 return (true);
4230 }
4231
4232 /*
4233 * Release a wiring reference to a managed page. If the page still belongs to
4234 * an object, update its position in the page queues to reflect the reference.
4235 * If the wiring was the last reference to the page, free the page.
4236 */
4237 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4238 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4239 {
4240 u_int old;
4241
4242 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4243 ("%s: page %p is unmanaged", __func__, m));
4244
4245 /*
4246 * Update LRU state before releasing the wiring reference.
4247 * Use a release store when updating the reference count to
4248 * synchronize with vm_page_free_prep().
4249 */
4250 old = atomic_load_int(&m->ref_count);
4251 do {
4252 u_int count;
4253
4254 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4255 ("vm_page_unwire: wire count underflow for page %p", m));
4256
4257 count = old & ~VPRC_BLOCKED;
4258 if (count > VPRC_OBJREF + 1) {
4259 /*
4260 * The page has at least one other wiring reference. An
4261 * earlier iteration of this loop may have called
4262 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4263 * re-set it if necessary.
4264 */
4265 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4266 vm_page_aflag_set(m, PGA_DEQUEUE);
4267 } else if (count == VPRC_OBJREF + 1) {
4268 /*
4269 * This is the last wiring. Clear PGA_DEQUEUE and
4270 * update the page's queue state to reflect the
4271 * reference. If the page does not belong to an object
4272 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4273 * clear leftover queue state.
4274 */
4275 vm_page_release_toq(m, nqueue, noreuse);
4276 } else if (count == 1) {
4277 vm_page_aflag_clear(m, PGA_DEQUEUE);
4278 }
4279 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4280
4281 if (VPRC_WIRE_COUNT(old) == 1) {
4282 vm_wire_sub(1);
4283 if (old == 1)
4284 vm_page_free(m);
4285 }
4286 }
4287
4288 /*
4289 * Release one wiring of the specified page, potentially allowing it to be
4290 * paged out.
4291 *
4292 * Only managed pages belonging to an object can be paged out. If the number
4293 * of wirings transitions to zero and the page is eligible for page out, then
4294 * the page is added to the specified paging queue. If the released wiring
4295 * represented the last reference to the page, the page is freed.
4296 */
4297 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4298 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4299 {
4300
4301 KASSERT(nqueue < PQ_COUNT,
4302 ("vm_page_unwire: invalid queue %u request for page %p",
4303 nqueue, m));
4304
4305 if ((m->oflags & VPO_UNMANAGED) != 0) {
4306 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4307 vm_page_free(m);
4308 return;
4309 }
4310 vm_page_unwire_managed(m, nqueue, false);
4311 }
4312
4313 /*
4314 * Unwire a page without (re-)inserting it into a page queue. It is up
4315 * to the caller to enqueue, requeue, or free the page as appropriate.
4316 * In most cases involving managed pages, vm_page_unwire() should be used
4317 * instead.
4318 */
4319 bool
vm_page_unwire_noq(vm_page_t m)4320 vm_page_unwire_noq(vm_page_t m)
4321 {
4322 u_int old;
4323
4324 old = vm_page_drop(m, 1);
4325 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4326 ("%s: counter underflow for page %p", __func__, m));
4327 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4328 ("%s: missing ref on fictitious page %p", __func__, m));
4329
4330 if (VPRC_WIRE_COUNT(old) > 1)
4331 return (false);
4332 if ((m->oflags & VPO_UNMANAGED) == 0)
4333 vm_page_aflag_clear(m, PGA_DEQUEUE);
4334 vm_wire_sub(1);
4335 return (true);
4336 }
4337
4338 /*
4339 * Ensure that the page ends up in the specified page queue. If the page is
4340 * active or being moved to the active queue, ensure that its act_count is
4341 * at least ACT_INIT but do not otherwise mess with it.
4342 */
4343 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4344 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4345 {
4346 vm_page_astate_t old, new;
4347
4348 KASSERT(m->ref_count > 0,
4349 ("%s: page %p does not carry any references", __func__, m));
4350 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4351 ("%s: invalid flags %x", __func__, nflag));
4352
4353 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4354 return;
4355
4356 old = vm_page_astate_load(m);
4357 do {
4358 if ((old.flags & PGA_DEQUEUE) != 0)
4359 break;
4360 new = old;
4361 new.flags &= ~PGA_QUEUE_OP_MASK;
4362 if (nqueue == PQ_ACTIVE)
4363 new.act_count = max(old.act_count, ACT_INIT);
4364 if (old.queue == nqueue) {
4365 /*
4366 * There is no need to requeue pages already in the
4367 * active queue.
4368 */
4369 if (nqueue != PQ_ACTIVE ||
4370 (old.flags & PGA_ENQUEUED) == 0)
4371 new.flags |= nflag;
4372 } else {
4373 new.flags |= nflag;
4374 new.queue = nqueue;
4375 }
4376 } while (!vm_page_pqstate_commit(m, &old, new));
4377 }
4378
4379 /*
4380 * Put the specified page on the active list (if appropriate).
4381 */
4382 void
vm_page_activate(vm_page_t m)4383 vm_page_activate(vm_page_t m)
4384 {
4385
4386 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4387 }
4388
4389 /*
4390 * Move the specified page to the tail of the inactive queue, or requeue
4391 * the page if it is already in the inactive queue.
4392 */
4393 void
vm_page_deactivate(vm_page_t m)4394 vm_page_deactivate(vm_page_t m)
4395 {
4396
4397 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4398 }
4399
4400 void
vm_page_deactivate_noreuse(vm_page_t m)4401 vm_page_deactivate_noreuse(vm_page_t m)
4402 {
4403
4404 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4405 }
4406
4407 /*
4408 * Put a page in the laundry, or requeue it if it is already there.
4409 */
4410 void
vm_page_launder(vm_page_t m)4411 vm_page_launder(vm_page_t m)
4412 {
4413
4414 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4415 }
4416
4417 /*
4418 * Put a page in the PQ_UNSWAPPABLE holding queue.
4419 */
4420 void
vm_page_unswappable(vm_page_t m)4421 vm_page_unswappable(vm_page_t m)
4422 {
4423
4424 VM_OBJECT_ASSERT_LOCKED(m->object);
4425 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4426 ("page %p already unswappable", m));
4427
4428 vm_page_dequeue(m);
4429 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4430 }
4431
4432 /*
4433 * Release a page back to the page queues in preparation for unwiring.
4434 */
4435 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4436 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4437 {
4438 vm_page_astate_t old, new;
4439 uint16_t nflag;
4440
4441 /*
4442 * Use a check of the valid bits to determine whether we should
4443 * accelerate reclamation of the page. The object lock might not be
4444 * held here, in which case the check is racy. At worst we will either
4445 * accelerate reclamation of a valid page and violate LRU, or
4446 * unnecessarily defer reclamation of an invalid page.
4447 *
4448 * If we were asked to not cache the page, place it near the head of the
4449 * inactive queue so that is reclaimed sooner.
4450 */
4451 if (noreuse || vm_page_none_valid(m)) {
4452 nqueue = PQ_INACTIVE;
4453 nflag = PGA_REQUEUE_HEAD;
4454 } else {
4455 nflag = PGA_REQUEUE;
4456 }
4457
4458 old = vm_page_astate_load(m);
4459 do {
4460 new = old;
4461
4462 /*
4463 * If the page is already in the active queue and we are not
4464 * trying to accelerate reclamation, simply mark it as
4465 * referenced and avoid any queue operations.
4466 */
4467 new.flags &= ~PGA_QUEUE_OP_MASK;
4468 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4469 (old.flags & PGA_ENQUEUED) != 0)
4470 new.flags |= PGA_REFERENCED;
4471 else {
4472 new.flags |= nflag;
4473 new.queue = nqueue;
4474 }
4475 } while (!vm_page_pqstate_commit(m, &old, new));
4476 }
4477
4478 /*
4479 * Unwire a page and either attempt to free it or re-add it to the page queues.
4480 */
4481 void
vm_page_release(vm_page_t m,int flags)4482 vm_page_release(vm_page_t m, int flags)
4483 {
4484 vm_object_t object;
4485
4486 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4487 ("vm_page_release: page %p is unmanaged", m));
4488
4489 if ((flags & VPR_TRYFREE) != 0) {
4490 for (;;) {
4491 object = atomic_load_ptr(&m->object);
4492 if (object == NULL)
4493 break;
4494 /* Depends on type-stability. */
4495 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4496 break;
4497 if (object == m->object) {
4498 vm_page_release_locked(m, flags);
4499 VM_OBJECT_WUNLOCK(object);
4500 return;
4501 }
4502 VM_OBJECT_WUNLOCK(object);
4503 }
4504 }
4505 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4506 }
4507
4508 /* See vm_page_release(). */
4509 void
vm_page_release_locked(vm_page_t m,int flags)4510 vm_page_release_locked(vm_page_t m, int flags)
4511 {
4512
4513 VM_OBJECT_ASSERT_WLOCKED(m->object);
4514 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4515 ("vm_page_release_locked: page %p is unmanaged", m));
4516
4517 if (vm_page_unwire_noq(m)) {
4518 if ((flags & VPR_TRYFREE) != 0 &&
4519 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4520 m->dirty == 0 && vm_page_tryxbusy(m)) {
4521 /*
4522 * An unlocked lookup may have wired the page before the
4523 * busy lock was acquired, in which case the page must
4524 * not be freed.
4525 */
4526 if (__predict_true(!vm_page_wired(m))) {
4527 vm_page_free(m);
4528 return;
4529 }
4530 vm_page_xunbusy(m);
4531 } else {
4532 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4533 }
4534 }
4535 }
4536
4537 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4538 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4539 {
4540 u_int old;
4541
4542 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4543 ("vm_page_try_blocked_op: page %p has no object", m));
4544 KASSERT(vm_page_busied(m),
4545 ("vm_page_try_blocked_op: page %p is not busy", m));
4546 VM_OBJECT_ASSERT_LOCKED(m->object);
4547
4548 old = atomic_load_int(&m->ref_count);
4549 do {
4550 KASSERT(old != 0,
4551 ("vm_page_try_blocked_op: page %p has no references", m));
4552 KASSERT((old & VPRC_BLOCKED) == 0,
4553 ("vm_page_try_blocked_op: page %p blocks wirings", m));
4554 if (VPRC_WIRE_COUNT(old) != 0)
4555 return (false);
4556 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4557
4558 (op)(m);
4559
4560 /*
4561 * If the object is read-locked, new wirings may be created via an
4562 * object lookup.
4563 */
4564 old = vm_page_drop(m, VPRC_BLOCKED);
4565 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4566 old == (VPRC_BLOCKED | VPRC_OBJREF),
4567 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4568 old, m));
4569 return (true);
4570 }
4571
4572 /*
4573 * Atomically check for wirings and remove all mappings of the page.
4574 */
4575 bool
vm_page_try_remove_all(vm_page_t m)4576 vm_page_try_remove_all(vm_page_t m)
4577 {
4578
4579 return (vm_page_try_blocked_op(m, pmap_remove_all));
4580 }
4581
4582 /*
4583 * Atomically check for wirings and remove all writeable mappings of the page.
4584 */
4585 bool
vm_page_try_remove_write(vm_page_t m)4586 vm_page_try_remove_write(vm_page_t m)
4587 {
4588
4589 return (vm_page_try_blocked_op(m, pmap_remove_write));
4590 }
4591
4592 /*
4593 * vm_page_advise
4594 *
4595 * Apply the specified advice to the given page.
4596 */
4597 void
vm_page_advise(vm_page_t m,int advice)4598 vm_page_advise(vm_page_t m, int advice)
4599 {
4600
4601 VM_OBJECT_ASSERT_WLOCKED(m->object);
4602 vm_page_assert_xbusied(m);
4603
4604 if (advice == MADV_FREE)
4605 /*
4606 * Mark the page clean. This will allow the page to be freed
4607 * without first paging it out. MADV_FREE pages are often
4608 * quickly reused by malloc(3), so we do not do anything that
4609 * would result in a page fault on a later access.
4610 */
4611 vm_page_undirty(m);
4612 else if (advice != MADV_DONTNEED) {
4613 if (advice == MADV_WILLNEED)
4614 vm_page_activate(m);
4615 return;
4616 }
4617
4618 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4619 vm_page_dirty(m);
4620
4621 /*
4622 * Clear any references to the page. Otherwise, the page daemon will
4623 * immediately reactivate the page.
4624 */
4625 vm_page_aflag_clear(m, PGA_REFERENCED);
4626
4627 /*
4628 * Place clean pages near the head of the inactive queue rather than
4629 * the tail, thus defeating the queue's LRU operation and ensuring that
4630 * the page will be reused quickly. Dirty pages not already in the
4631 * laundry are moved there.
4632 */
4633 if (m->dirty == 0)
4634 vm_page_deactivate_noreuse(m);
4635 else if (!vm_page_in_laundry(m))
4636 vm_page_launder(m);
4637 }
4638
4639 /*
4640 * vm_page_grab_release
4641 *
4642 * Helper routine for grab functions to release busy on return.
4643 */
4644 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4645 vm_page_grab_release(vm_page_t m, int allocflags)
4646 {
4647
4648 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4649 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4650 vm_page_sunbusy(m);
4651 else
4652 vm_page_xunbusy(m);
4653 }
4654 }
4655
4656 /*
4657 * vm_page_grab_sleep
4658 *
4659 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4660 * if the caller should retry and false otherwise.
4661 *
4662 * If the object is locked on entry the object will be unlocked with
4663 * false returns and still locked but possibly having been dropped
4664 * with true returns.
4665 */
4666 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4667 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4668 const char *wmesg, int allocflags, bool locked)
4669 {
4670
4671 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4672 return (false);
4673
4674 /*
4675 * Reference the page before unlocking and sleeping so that
4676 * the page daemon is less likely to reclaim it.
4677 */
4678 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4679 vm_page_reference(m);
4680
4681 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4682 locked)
4683 VM_OBJECT_WLOCK(object);
4684 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4685 return (false);
4686
4687 return (true);
4688 }
4689
4690 /*
4691 * Assert that the grab flags are valid.
4692 */
4693 static inline void
vm_page_grab_check(int allocflags)4694 vm_page_grab_check(int allocflags)
4695 {
4696
4697 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4698 (allocflags & VM_ALLOC_WIRED) != 0,
4699 ("vm_page_grab*: the pages must be busied or wired"));
4700
4701 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4702 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4703 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4704 }
4705
4706 /*
4707 * Calculate the page allocation flags for grab.
4708 */
4709 static inline int
vm_page_grab_pflags(int allocflags)4710 vm_page_grab_pflags(int allocflags)
4711 {
4712 int pflags;
4713
4714 pflags = allocflags &
4715 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4716 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4717 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4718 pflags |= VM_ALLOC_WAITFAIL;
4719 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4720 pflags |= VM_ALLOC_SBUSY;
4721
4722 return (pflags);
4723 }
4724
4725 /*
4726 * Grab a page, waiting until we are woken up due to the page changing state.
4727 * We keep on waiting, if the page continues to be in the object, unless
4728 * allocflags forbid waiting.
4729 *
4730 * The object must be locked on entry. This routine may sleep. The lock will,
4731 * however, be released and reacquired if the routine sleeps.
4732 *
4733 * Return a grabbed page, or NULL. Set *found if a page was found, whether or
4734 * not it was grabbed.
4735 */
4736 static inline vm_page_t
vm_page_grab_lookup(vm_object_t object,vm_pindex_t pindex,int allocflags,bool * found,struct pctrie_iter * pages)4737 vm_page_grab_lookup(vm_object_t object, vm_pindex_t pindex, int allocflags,
4738 bool *found, struct pctrie_iter *pages)
4739 {
4740 vm_page_t m;
4741
4742 while ((*found = (m = vm_radix_iter_lookup(pages, pindex)) != NULL) &&
4743 !vm_page_tryacquire(m, allocflags)) {
4744 if (!vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4745 allocflags, true))
4746 return (NULL);
4747 pctrie_iter_reset(pages);
4748 }
4749 return (m);
4750 }
4751
4752 /*
4753 * Grab a page. Use an iterator parameter. Keep on waiting, as long as the page
4754 * exists in the object. If the page doesn't exist, first allocate it and then
4755 * conditionally zero it.
4756 *
4757 * The object must be locked on entry. This routine may sleep. The lock will,
4758 * however, be released and reacquired if the routine sleeps.
4759 */
4760 vm_page_t
vm_page_grab_iter(vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4761 vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex, int allocflags,
4762 struct pctrie_iter *pages)
4763 {
4764 vm_page_t m;
4765 bool found;
4766
4767 VM_OBJECT_ASSERT_WLOCKED(object);
4768 vm_page_grab_check(allocflags);
4769
4770 while ((m = vm_page_grab_lookup(
4771 object, pindex, allocflags, &found, pages)) == NULL) {
4772 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4773 return (NULL);
4774 if (found &&
4775 (allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4776 return (NULL);
4777 m = vm_page_alloc_iter(object, pindex,
4778 vm_page_grab_pflags(allocflags), pages);
4779 if (m != NULL) {
4780 if ((allocflags & VM_ALLOC_ZERO) != 0 &&
4781 (m->flags & PG_ZERO) == 0)
4782 pmap_zero_page(m);
4783 break;
4784 }
4785 if ((allocflags &
4786 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4787 return (NULL);
4788 }
4789 vm_page_grab_release(m, allocflags);
4790
4791 return (m);
4792 }
4793
4794 /*
4795 * Grab a page. Keep on waiting, as long as the page exists in the object. If
4796 * the page doesn't exist, first allocate it and then conditionally zero it.
4797 *
4798 * The object must be locked on entry. This routine may sleep. The lock will,
4799 * however, be released and reacquired if the routine sleeps.
4800 */
4801 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4802 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4803 {
4804 struct pctrie_iter pages;
4805
4806 VM_OBJECT_ASSERT_WLOCKED(object);
4807 vm_page_iter_init(&pages, object);
4808 return (vm_page_grab_iter(object, pindex, allocflags, &pages));
4809 }
4810
4811 /*
4812 * Attempt to validate a page, locklessly acquiring it if necessary, given a
4813 * (object, pindex) tuple and either an invalided page or NULL. The resulting
4814 * page will be validated against the identity tuple, and busied or wired as
4815 * requested. A NULL page returned guarantees that the page was not in radix at
4816 * the time of the call but callers must perform higher level synchronization or
4817 * retry the operation under a lock if they require an atomic answer. This is
4818 * the only lock free validation routine, other routines can depend on the
4819 * resulting page state.
4820 *
4821 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4822 * caller flags.
4823 */
4824 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4825 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4826 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4827 int allocflags)
4828 {
4829 if (m == NULL)
4830 m = vm_page_lookup_unlocked(object, pindex);
4831 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4832 if (vm_page_trybusy(m, allocflags)) {
4833 if (m->object == object && m->pindex == pindex) {
4834 if ((allocflags & VM_ALLOC_WIRED) != 0)
4835 vm_page_wire(m);
4836 vm_page_grab_release(m, allocflags);
4837 break;
4838 }
4839 /* relookup. */
4840 vm_page_busy_release(m);
4841 cpu_spinwait();
4842 continue;
4843 }
4844 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4845 allocflags, false))
4846 return (PAGE_NOT_ACQUIRED);
4847 }
4848 return (m);
4849 }
4850
4851 /*
4852 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4853 * is not set.
4854 */
4855 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4856 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4857 {
4858 vm_page_t m;
4859
4860 vm_page_grab_check(allocflags);
4861 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4862 if (m == PAGE_NOT_ACQUIRED)
4863 return (NULL);
4864 if (m != NULL)
4865 return (m);
4866
4867 /*
4868 * The radix lockless lookup should never return a false negative
4869 * errors. If the user specifies NOCREAT they are guaranteed there
4870 * was no page present at the instant of the call. A NOCREAT caller
4871 * must handle create races gracefully.
4872 */
4873 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4874 return (NULL);
4875
4876 VM_OBJECT_WLOCK(object);
4877 m = vm_page_grab(object, pindex, allocflags);
4878 VM_OBJECT_WUNLOCK(object);
4879
4880 return (m);
4881 }
4882
4883 /*
4884 * Grab a page and make it valid, paging in if necessary. Use an iterator
4885 * parameter. Pages missing from their pager are zero filled and validated. If
4886 * a VM_ALLOC_COUNT is supplied and the page is not valid as many as
4887 * VM_INITIAL_PAGEIN pages can be brought in simultaneously. Additional pages
4888 * will be left on a paging queue but will neither be wired nor busy regardless
4889 * of allocflags.
4890 */
4891 int
vm_page_grab_valid_iter(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4892 vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
4893 int allocflags, struct pctrie_iter *pages)
4894 {
4895 vm_page_t m;
4896 vm_page_t ma[VM_INITIAL_PAGEIN];
4897 int after, ahead, i, pflags, rv;
4898
4899 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4900 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4901 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4902 KASSERT((allocflags &
4903 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4904 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4905 VM_OBJECT_ASSERT_WLOCKED(object);
4906 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4907 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4908 pflags |= VM_ALLOC_WAITFAIL;
4909
4910 retrylookup:
4911 if ((m = vm_radix_iter_lookup(pages, pindex)) != NULL) {
4912 /*
4913 * If the page is fully valid it can only become invalid
4914 * with the object lock held. If it is not valid it can
4915 * become valid with the busy lock held. Therefore, we
4916 * may unnecessarily lock the exclusive busy here if we
4917 * race with I/O completion not using the object lock.
4918 * However, we will not end up with an invalid page and a
4919 * shared lock.
4920 */
4921 if (!vm_page_trybusy(m,
4922 vm_page_all_valid(m) ? allocflags : 0)) {
4923 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4924 allocflags, true);
4925 pctrie_iter_reset(pages);
4926 goto retrylookup;
4927 }
4928 if (vm_page_all_valid(m))
4929 goto out;
4930 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4931 vm_page_busy_release(m);
4932 *mp = NULL;
4933 return (VM_PAGER_FAIL);
4934 }
4935 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4936 *mp = NULL;
4937 return (VM_PAGER_FAIL);
4938 } else {
4939 m = vm_page_alloc_iter(object, pindex, pflags, pages);
4940 if (m == NULL) {
4941 if (!vm_pager_can_alloc_page(object, pindex)) {
4942 *mp = NULL;
4943 return (VM_PAGER_AGAIN);
4944 }
4945 goto retrylookup;
4946 }
4947 }
4948
4949 vm_page_assert_xbusied(m);
4950 if (vm_pager_has_page(object, pindex, NULL, &after)) {
4951 after = MIN(after, VM_INITIAL_PAGEIN);
4952 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4953 after = MAX(after, 1);
4954 ma[0] = m;
4955 pctrie_iter_reset(pages);
4956 for (i = 1; i < after; i++) {
4957 m = vm_radix_iter_lookup_ge(pages, pindex + i);
4958 ahead = after;
4959 if (m != NULL)
4960 ahead = MIN(ahead, m->pindex - pindex);
4961 for (; i < ahead; i++) {
4962 ma[i] = vm_page_alloc_iter(object, pindex + i,
4963 VM_ALLOC_NORMAL, pages);
4964 if (ma[i] == NULL)
4965 break;
4966 }
4967 if (m == NULL || m->pindex != pindex + i ||
4968 vm_page_any_valid(m) || !vm_page_tryxbusy(m))
4969 break;
4970 ma[i] = m;
4971 }
4972 after = i;
4973 vm_object_pip_add(object, after);
4974 VM_OBJECT_WUNLOCK(object);
4975 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4976 pctrie_iter_reset(pages);
4977 VM_OBJECT_WLOCK(object);
4978 vm_object_pip_wakeupn(object, after);
4979 /* Pager may have replaced a page. */
4980 m = ma[0];
4981 if (rv != VM_PAGER_OK) {
4982 for (i = 0; i < after; i++) {
4983 if (!vm_page_wired(ma[i]))
4984 vm_page_free(ma[i]);
4985 else
4986 vm_page_xunbusy(ma[i]);
4987 }
4988 *mp = NULL;
4989 return (rv);
4990 }
4991 for (i = 1; i < after; i++)
4992 vm_page_readahead_finish(ma[i]);
4993 MPASS(vm_page_all_valid(m));
4994 } else {
4995 vm_page_zero_invalid(m, TRUE);
4996 pctrie_iter_reset(pages);
4997 }
4998 out:
4999 if ((allocflags & VM_ALLOC_WIRED) != 0)
5000 vm_page_wire(m);
5001 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5002 vm_page_busy_downgrade(m);
5003 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5004 vm_page_busy_release(m);
5005 *mp = m;
5006 return (VM_PAGER_OK);
5007 }
5008
5009 /*
5010 * Grab a page and make it valid, paging in if necessary. Pages missing from
5011 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
5012 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
5013 * in simultaneously. Additional pages will be left on a paging queue but
5014 * will neither be wired nor busy regardless of allocflags.
5015 */
5016 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5017 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
5018 int allocflags)
5019 {
5020 struct pctrie_iter pages;
5021
5022 VM_OBJECT_ASSERT_WLOCKED(object);
5023 vm_page_iter_init(&pages, object);
5024 return (vm_page_grab_valid_iter(mp, object, pindex, allocflags,
5025 &pages));
5026 }
5027
5028 /*
5029 * Grab a page. Keep on waiting, as long as the page exists in the object. If
5030 * the page doesn't exist, and the pager has it, allocate it and zero part of
5031 * it.
5032 *
5033 * The object must be locked on entry. This routine may sleep. The lock will,
5034 * however, be released and reacquired if the routine sleeps.
5035 */
5036 int
vm_page_grab_zero_partial(vm_object_t object,vm_pindex_t pindex,int base,int end)5037 vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
5038 int end)
5039 {
5040 struct pctrie_iter pages;
5041 vm_page_t m;
5042 int allocflags, rv;
5043 bool found;
5044
5045 VM_OBJECT_ASSERT_WLOCKED(object);
5046 KASSERT(base >= 0, ("%s: base %d", __func__, base));
5047 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
5048 end));
5049
5050 allocflags = VM_ALLOC_NOCREAT | VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL;
5051 vm_page_iter_init(&pages, object);
5052 while ((m = vm_page_grab_lookup(
5053 object, pindex, allocflags, &found, &pages)) == NULL) {
5054 if (!vm_pager_has_page(object, pindex, NULL, NULL))
5055 return (0);
5056 m = vm_page_alloc_iter(object, pindex,
5057 vm_page_grab_pflags(allocflags), &pages);
5058 if (m != NULL) {
5059 vm_object_pip_add(object, 1);
5060 VM_OBJECT_WUNLOCK(object);
5061 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
5062 VM_OBJECT_WLOCK(object);
5063 vm_object_pip_wakeup(object);
5064 if (rv != VM_PAGER_OK) {
5065 vm_page_free(m);
5066 return (EIO);
5067 }
5068
5069 /*
5070 * Since the page was not resident, and therefore not
5071 * recently accessed, immediately enqueue it for
5072 * asynchronous laundering. The current operation is
5073 * not regarded as an access.
5074 */
5075 vm_page_launder(m);
5076 break;
5077 }
5078 }
5079
5080 pmap_zero_page_area(m, base, end - base);
5081 KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid", __func__, m));
5082 vm_page_set_dirty(m);
5083 vm_page_xunbusy(m);
5084 return (0);
5085 }
5086
5087 /*
5088 * Locklessly grab a valid page. If the page is not valid or not yet
5089 * allocated this will fall back to the object lock method.
5090 */
5091 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5092 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5093 vm_pindex_t pindex, int allocflags)
5094 {
5095 vm_page_t m;
5096 int flags;
5097 int error;
5098
5099 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5100 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5101 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5102 "mismatch"));
5103 KASSERT((allocflags &
5104 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5105 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5106
5107 /*
5108 * Attempt a lockless lookup and busy. We need at least an sbusy
5109 * before we can inspect the valid field and return a wired page.
5110 */
5111 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5112 vm_page_grab_check(flags);
5113 m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5114 if (m == PAGE_NOT_ACQUIRED)
5115 return (VM_PAGER_FAIL);
5116 if (m != NULL) {
5117 if (vm_page_all_valid(m)) {
5118 if ((allocflags & VM_ALLOC_WIRED) != 0)
5119 vm_page_wire(m);
5120 vm_page_grab_release(m, allocflags);
5121 *mp = m;
5122 return (VM_PAGER_OK);
5123 }
5124 vm_page_busy_release(m);
5125 }
5126 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5127 *mp = NULL;
5128 return (VM_PAGER_FAIL);
5129 }
5130 VM_OBJECT_WLOCK(object);
5131 error = vm_page_grab_valid(mp, object, pindex, allocflags);
5132 VM_OBJECT_WUNLOCK(object);
5133
5134 return (error);
5135 }
5136
5137 /*
5138 * Return the specified range of pages from the given object. For each
5139 * page offset within the range, if a page already exists within the object
5140 * at that offset and it is busy, then wait for it to change state. If,
5141 * instead, the page doesn't exist, then allocate it.
5142 *
5143 * The caller must always specify an allocation class.
5144 *
5145 * allocation classes:
5146 * VM_ALLOC_NORMAL normal process request
5147 * VM_ALLOC_SYSTEM system *really* needs the pages
5148 * VM_ALLOC_INTERRUPT interrupt time request
5149 *
5150 * The caller must always specify that the pages are to be busied and/or
5151 * wired.
5152 *
5153 * optional allocation flags:
5154 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
5155 * VM_ALLOC_NOBUSY do not exclusive busy the pages
5156 * VM_ALLOC_NODUMP do not include the pages in a kernel core dump
5157 * VM_ALLOC_NOFREE pages will never be freed
5158 * VM_ALLOC_NOWAIT do not sleep
5159 * VM_ALLOC_SBUSY set pages to sbusy state
5160 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
5161 * VM_ALLOC_WAITOK ignored (default behavior)
5162 * VM_ALLOC_WIRED wire the pages
5163 * VM_ALLOC_ZERO zero and validate any invalid pages
5164 *
5165 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
5166 * may return a partial prefix of the requested range.
5167 */
5168 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5169 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5170 vm_page_t *ma, int count)
5171 {
5172 struct pctrie_iter pages;
5173 vm_page_t m;
5174 int pflags;
5175 int ahead, i;
5176
5177 VM_OBJECT_ASSERT_WLOCKED(object);
5178 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5179 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5180 KASSERT(count > 0,
5181 ("vm_page_grab_pages: invalid page count %d", count));
5182 vm_page_grab_check(allocflags);
5183
5184 pflags = vm_page_grab_pflags(allocflags);
5185 i = 0;
5186 vm_page_iter_init(&pages, object);
5187 retrylookup:
5188 ahead = -1;
5189 for (; i < count; i++) {
5190 if (ahead < 0) {
5191 ahead = vm_radix_iter_lookup_range(
5192 &pages, pindex + i, &ma[i], count - i);
5193 }
5194 if (ahead-- > 0) {
5195 m = ma[i];
5196 if (!vm_page_tryacquire(m, allocflags)) {
5197 if (vm_page_grab_sleep(object, m, pindex + i,
5198 "grbmaw", allocflags, true)) {
5199 pctrie_iter_reset(&pages);
5200 goto retrylookup;
5201 }
5202 break;
5203 }
5204 } else {
5205 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5206 break;
5207 m = vm_page_alloc_iter(object, pindex + i,
5208 pflags | VM_ALLOC_COUNT(count - i), &pages);
5209 /* pages was reset if alloc_iter lost the lock. */
5210 if (m == NULL) {
5211 if ((allocflags & (VM_ALLOC_NOWAIT |
5212 VM_ALLOC_WAITFAIL)) != 0)
5213 break;
5214 goto retrylookup;
5215 }
5216 ma[i] = m;
5217 }
5218 if (vm_page_none_valid(m) &&
5219 (allocflags & VM_ALLOC_ZERO) != 0) {
5220 if ((m->flags & PG_ZERO) == 0)
5221 pmap_zero_page(m);
5222 vm_page_valid(m);
5223 }
5224 vm_page_grab_release(m, allocflags);
5225 }
5226 return (i);
5227 }
5228
5229 /*
5230 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
5231 * and will fall back to the locked variant to handle allocation.
5232 */
5233 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5234 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5235 int allocflags, vm_page_t *ma, int count)
5236 {
5237 vm_page_t m;
5238 int flags;
5239 int i, num_fetched;
5240
5241 KASSERT(count > 0,
5242 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5243 vm_page_grab_check(allocflags);
5244
5245 /*
5246 * Modify flags for lockless acquire to hold the page until we
5247 * set it valid if necessary.
5248 */
5249 flags = allocflags & ~VM_ALLOC_NOBUSY;
5250 vm_page_grab_check(flags);
5251 num_fetched = vm_radix_lookup_range_unlocked(&object->rtree, pindex,
5252 ma, count);
5253 for (i = 0; i < num_fetched; i++, pindex++) {
5254 m = vm_page_acquire_unlocked(object, pindex, ma[i], flags);
5255 if (m == PAGE_NOT_ACQUIRED)
5256 return (i);
5257 if (m == NULL)
5258 break;
5259 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5260 if ((m->flags & PG_ZERO) == 0)
5261 pmap_zero_page(m);
5262 vm_page_valid(m);
5263 }
5264 /* m will still be wired or busy according to flags. */
5265 vm_page_grab_release(m, allocflags);
5266 /* vm_page_acquire_unlocked() may not return ma[i]. */
5267 ma[i] = m;
5268 }
5269 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5270 return (i);
5271 count -= i;
5272 VM_OBJECT_WLOCK(object);
5273 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5274 VM_OBJECT_WUNLOCK(object);
5275
5276 return (i);
5277 }
5278
5279 /*
5280 * Mapping function for valid or dirty bits in a page.
5281 *
5282 * Inputs are required to range within a page.
5283 */
5284 vm_page_bits_t
vm_page_bits(int base,int size)5285 vm_page_bits(int base, int size)
5286 {
5287 int first_bit;
5288 int last_bit;
5289
5290 KASSERT(
5291 base + size <= PAGE_SIZE,
5292 ("vm_page_bits: illegal base/size %d/%d", base, size)
5293 );
5294
5295 if (size == 0) /* handle degenerate case */
5296 return (0);
5297
5298 first_bit = base >> DEV_BSHIFT;
5299 last_bit = (base + size - 1) >> DEV_BSHIFT;
5300
5301 return (((vm_page_bits_t)2 << last_bit) -
5302 ((vm_page_bits_t)1 << first_bit));
5303 }
5304
5305 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5306 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5307 {
5308
5309 #if PAGE_SIZE == 32768
5310 atomic_set_64((uint64_t *)bits, set);
5311 #elif PAGE_SIZE == 16384
5312 atomic_set_32((uint32_t *)bits, set);
5313 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5314 atomic_set_16((uint16_t *)bits, set);
5315 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5316 atomic_set_8((uint8_t *)bits, set);
5317 #else /* PAGE_SIZE <= 8192 */
5318 uintptr_t addr;
5319 int shift;
5320
5321 addr = (uintptr_t)bits;
5322 /*
5323 * Use a trick to perform a 32-bit atomic on the
5324 * containing aligned word, to not depend on the existence
5325 * of atomic_{set, clear}_{8, 16}.
5326 */
5327 shift = addr & (sizeof(uint32_t) - 1);
5328 #if BYTE_ORDER == BIG_ENDIAN
5329 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5330 #else
5331 shift *= NBBY;
5332 #endif
5333 addr &= ~(sizeof(uint32_t) - 1);
5334 atomic_set_32((uint32_t *)addr, set << shift);
5335 #endif /* PAGE_SIZE */
5336 }
5337
5338 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5339 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5340 {
5341
5342 #if PAGE_SIZE == 32768
5343 atomic_clear_64((uint64_t *)bits, clear);
5344 #elif PAGE_SIZE == 16384
5345 atomic_clear_32((uint32_t *)bits, clear);
5346 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5347 atomic_clear_16((uint16_t *)bits, clear);
5348 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5349 atomic_clear_8((uint8_t *)bits, clear);
5350 #else /* PAGE_SIZE <= 8192 */
5351 uintptr_t addr;
5352 int shift;
5353
5354 addr = (uintptr_t)bits;
5355 /*
5356 * Use a trick to perform a 32-bit atomic on the
5357 * containing aligned word, to not depend on the existence
5358 * of atomic_{set, clear}_{8, 16}.
5359 */
5360 shift = addr & (sizeof(uint32_t) - 1);
5361 #if BYTE_ORDER == BIG_ENDIAN
5362 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5363 #else
5364 shift *= NBBY;
5365 #endif
5366 addr &= ~(sizeof(uint32_t) - 1);
5367 atomic_clear_32((uint32_t *)addr, clear << shift);
5368 #endif /* PAGE_SIZE */
5369 }
5370
5371 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5372 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5373 {
5374 #if PAGE_SIZE == 32768
5375 uint64_t old;
5376
5377 old = *bits;
5378 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5379 return (old);
5380 #elif PAGE_SIZE == 16384
5381 uint32_t old;
5382
5383 old = *bits;
5384 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5385 return (old);
5386 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5387 uint16_t old;
5388
5389 old = *bits;
5390 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5391 return (old);
5392 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5393 uint8_t old;
5394
5395 old = *bits;
5396 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5397 return (old);
5398 #else /* PAGE_SIZE <= 4096*/
5399 uintptr_t addr;
5400 uint32_t old, new, mask;
5401 int shift;
5402
5403 addr = (uintptr_t)bits;
5404 /*
5405 * Use a trick to perform a 32-bit atomic on the
5406 * containing aligned word, to not depend on the existence
5407 * of atomic_{set, swap, clear}_{8, 16}.
5408 */
5409 shift = addr & (sizeof(uint32_t) - 1);
5410 #if BYTE_ORDER == BIG_ENDIAN
5411 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5412 #else
5413 shift *= NBBY;
5414 #endif
5415 addr &= ~(sizeof(uint32_t) - 1);
5416 mask = VM_PAGE_BITS_ALL << shift;
5417
5418 old = *bits;
5419 do {
5420 new = old & ~mask;
5421 new |= newbits << shift;
5422 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5423 return (old >> shift);
5424 #endif /* PAGE_SIZE */
5425 }
5426
5427 /*
5428 * vm_page_set_valid_range:
5429 *
5430 * Sets portions of a page valid. The arguments are expected
5431 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5432 * of any partial chunks touched by the range. The invalid portion of
5433 * such chunks will be zeroed.
5434 *
5435 * (base + size) must be less then or equal to PAGE_SIZE.
5436 */
5437 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5438 vm_page_set_valid_range(vm_page_t m, int base, int size)
5439 {
5440 int endoff, frag;
5441 vm_page_bits_t pagebits;
5442
5443 vm_page_assert_busied(m);
5444 if (size == 0) /* handle degenerate case */
5445 return;
5446
5447 /*
5448 * If the base is not DEV_BSIZE aligned and the valid
5449 * bit is clear, we have to zero out a portion of the
5450 * first block.
5451 */
5452 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5453 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5454 pmap_zero_page_area(m, frag, base - frag);
5455
5456 /*
5457 * If the ending offset is not DEV_BSIZE aligned and the
5458 * valid bit is clear, we have to zero out a portion of
5459 * the last block.
5460 */
5461 endoff = base + size;
5462 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5463 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5464 pmap_zero_page_area(m, endoff,
5465 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5466
5467 /*
5468 * Assert that no previously invalid block that is now being validated
5469 * is already dirty.
5470 */
5471 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5472 ("vm_page_set_valid_range: page %p is dirty", m));
5473
5474 /*
5475 * Set valid bits inclusive of any overlap.
5476 */
5477 pagebits = vm_page_bits(base, size);
5478 if (vm_page_xbusied(m))
5479 m->valid |= pagebits;
5480 else
5481 vm_page_bits_set(m, &m->valid, pagebits);
5482 }
5483
5484 /*
5485 * Set the page dirty bits and free the invalid swap space if
5486 * present. Returns the previous dirty bits.
5487 */
5488 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5489 vm_page_set_dirty(vm_page_t m)
5490 {
5491 vm_page_bits_t old;
5492
5493 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5494
5495 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5496 old = m->dirty;
5497 m->dirty = VM_PAGE_BITS_ALL;
5498 } else
5499 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5500 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5501 vm_pager_page_unswapped(m);
5502
5503 return (old);
5504 }
5505
5506 /*
5507 * Clear the given bits from the specified page's dirty field.
5508 */
5509 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5510 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5511 {
5512
5513 vm_page_assert_busied(m);
5514
5515 /*
5516 * If the page is xbusied and not write mapped we are the
5517 * only thread that can modify dirty bits. Otherwise, The pmap
5518 * layer can call vm_page_dirty() without holding a distinguished
5519 * lock. The combination of page busy and atomic operations
5520 * suffice to guarantee consistency of the page dirty field.
5521 */
5522 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5523 m->dirty &= ~pagebits;
5524 else
5525 vm_page_bits_clear(m, &m->dirty, pagebits);
5526 }
5527
5528 /*
5529 * vm_page_set_validclean:
5530 *
5531 * Sets portions of a page valid and clean. The arguments are expected
5532 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5533 * of any partial chunks touched by the range. The invalid portion of
5534 * such chunks will be zero'd.
5535 *
5536 * (base + size) must be less then or equal to PAGE_SIZE.
5537 */
5538 void
vm_page_set_validclean(vm_page_t m,int base,int size)5539 vm_page_set_validclean(vm_page_t m, int base, int size)
5540 {
5541 vm_page_bits_t oldvalid, pagebits;
5542 int endoff, frag;
5543
5544 vm_page_assert_busied(m);
5545 if (size == 0) /* handle degenerate case */
5546 return;
5547
5548 /*
5549 * If the base is not DEV_BSIZE aligned and the valid
5550 * bit is clear, we have to zero out a portion of the
5551 * first block.
5552 */
5553 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5554 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5555 pmap_zero_page_area(m, frag, base - frag);
5556
5557 /*
5558 * If the ending offset is not DEV_BSIZE aligned and the
5559 * valid bit is clear, we have to zero out a portion of
5560 * the last block.
5561 */
5562 endoff = base + size;
5563 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5564 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5565 pmap_zero_page_area(m, endoff,
5566 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5567
5568 /*
5569 * Set valid, clear dirty bits. If validating the entire
5570 * page we can safely clear the pmap modify bit. We also
5571 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5572 * takes a write fault on a MAP_NOSYNC memory area the flag will
5573 * be set again.
5574 *
5575 * We set valid bits inclusive of any overlap, but we can only
5576 * clear dirty bits for DEV_BSIZE chunks that are fully within
5577 * the range.
5578 */
5579 oldvalid = m->valid;
5580 pagebits = vm_page_bits(base, size);
5581 if (vm_page_xbusied(m))
5582 m->valid |= pagebits;
5583 else
5584 vm_page_bits_set(m, &m->valid, pagebits);
5585 #if 0 /* NOT YET */
5586 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5587 frag = DEV_BSIZE - frag;
5588 base += frag;
5589 size -= frag;
5590 if (size < 0)
5591 size = 0;
5592 }
5593 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5594 #endif
5595 if (base == 0 && size == PAGE_SIZE) {
5596 /*
5597 * The page can only be modified within the pmap if it is
5598 * mapped, and it can only be mapped if it was previously
5599 * fully valid.
5600 */
5601 if (oldvalid == VM_PAGE_BITS_ALL)
5602 /*
5603 * Perform the pmap_clear_modify() first. Otherwise,
5604 * a concurrent pmap operation, such as
5605 * pmap_protect(), could clear a modification in the
5606 * pmap and set the dirty field on the page before
5607 * pmap_clear_modify() had begun and after the dirty
5608 * field was cleared here.
5609 */
5610 pmap_clear_modify(m);
5611 m->dirty = 0;
5612 vm_page_aflag_clear(m, PGA_NOSYNC);
5613 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5614 m->dirty &= ~pagebits;
5615 else
5616 vm_page_clear_dirty_mask(m, pagebits);
5617 }
5618
5619 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5620 vm_page_clear_dirty(vm_page_t m, int base, int size)
5621 {
5622
5623 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5624 }
5625
5626 /*
5627 * vm_page_set_invalid:
5628 *
5629 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5630 * valid and dirty bits for the effected areas are cleared.
5631 */
5632 void
vm_page_set_invalid(vm_page_t m,int base,int size)5633 vm_page_set_invalid(vm_page_t m, int base, int size)
5634 {
5635 vm_page_bits_t bits;
5636 vm_object_t object;
5637
5638 /*
5639 * The object lock is required so that pages can't be mapped
5640 * read-only while we're in the process of invalidating them.
5641 */
5642 object = m->object;
5643 VM_OBJECT_ASSERT_WLOCKED(object);
5644 vm_page_assert_busied(m);
5645
5646 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5647 size >= object->un_pager.vnp.vnp_size)
5648 bits = VM_PAGE_BITS_ALL;
5649 else
5650 bits = vm_page_bits(base, size);
5651 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5652 pmap_remove_all(m);
5653 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5654 !pmap_page_is_mapped(m),
5655 ("vm_page_set_invalid: page %p is mapped", m));
5656 if (vm_page_xbusied(m)) {
5657 m->valid &= ~bits;
5658 m->dirty &= ~bits;
5659 } else {
5660 vm_page_bits_clear(m, &m->valid, bits);
5661 vm_page_bits_clear(m, &m->dirty, bits);
5662 }
5663 }
5664
5665 /*
5666 * vm_page_invalid:
5667 *
5668 * Invalidates the entire page. The page must be busy, unmapped, and
5669 * the enclosing object must be locked. The object locks protects
5670 * against concurrent read-only pmap enter which is done without
5671 * busy.
5672 */
5673 void
vm_page_invalid(vm_page_t m)5674 vm_page_invalid(vm_page_t m)
5675 {
5676
5677 vm_page_assert_busied(m);
5678 VM_OBJECT_ASSERT_WLOCKED(m->object);
5679 MPASS(!pmap_page_is_mapped(m));
5680
5681 if (vm_page_xbusied(m))
5682 m->valid = 0;
5683 else
5684 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5685 }
5686
5687 /*
5688 * vm_page_zero_invalid()
5689 *
5690 * The kernel assumes that the invalid portions of a page contain
5691 * garbage, but such pages can be mapped into memory by user code.
5692 * When this occurs, we must zero out the non-valid portions of the
5693 * page so user code sees what it expects.
5694 *
5695 * Pages are most often semi-valid when the end of a file is mapped
5696 * into memory and the file's size is not page aligned.
5697 */
5698 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5699 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5700 {
5701 int b;
5702 int i;
5703
5704 /*
5705 * Scan the valid bits looking for invalid sections that
5706 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5707 * valid bit may be set ) have already been zeroed by
5708 * vm_page_set_validclean().
5709 */
5710 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5711 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5712 (m->valid & ((vm_page_bits_t)1 << i))) {
5713 if (i > b) {
5714 pmap_zero_page_area(m,
5715 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5716 }
5717 b = i + 1;
5718 }
5719 }
5720
5721 /*
5722 * setvalid is TRUE when we can safely set the zero'd areas
5723 * as being valid. We can do this if there are no cache consistency
5724 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5725 */
5726 if (setvalid)
5727 vm_page_valid(m);
5728 }
5729
5730 /*
5731 * vm_page_is_valid:
5732 *
5733 * Is (partial) page valid? Note that the case where size == 0
5734 * will return FALSE in the degenerate case where the page is
5735 * entirely invalid, and TRUE otherwise.
5736 *
5737 * Some callers envoke this routine without the busy lock held and
5738 * handle races via higher level locks. Typical callers should
5739 * hold a busy lock to prevent invalidation.
5740 */
5741 int
vm_page_is_valid(vm_page_t m,int base,int size)5742 vm_page_is_valid(vm_page_t m, int base, int size)
5743 {
5744 vm_page_bits_t bits;
5745
5746 bits = vm_page_bits(base, size);
5747 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5748 }
5749
5750 /*
5751 * Returns true if all of the specified predicates are true for the entire
5752 * (super)page and false otherwise.
5753 */
5754 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5755 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5756 {
5757 vm_object_t object;
5758 int i, npages;
5759
5760 object = m->object;
5761 if (skip_m != NULL && skip_m->object != object)
5762 return (false);
5763 VM_OBJECT_ASSERT_LOCKED(object);
5764 KASSERT(psind <= m->psind,
5765 ("psind %d > psind %d of m %p", psind, m->psind, m));
5766 npages = atop(pagesizes[psind]);
5767
5768 /*
5769 * The physically contiguous pages that make up a superpage, i.e., a
5770 * page with a page size index ("psind") greater than zero, will
5771 * occupy adjacent entries in vm_page_array[].
5772 */
5773 for (i = 0; i < npages; i++) {
5774 /* Always test object consistency, including "skip_m". */
5775 if (m[i].object != object)
5776 return (false);
5777 if (&m[i] == skip_m)
5778 continue;
5779 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5780 return (false);
5781 if ((flags & PS_ALL_DIRTY) != 0) {
5782 /*
5783 * Calling vm_page_test_dirty() or pmap_is_modified()
5784 * might stop this case from spuriously returning
5785 * "false". However, that would require a write lock
5786 * on the object containing "m[i]".
5787 */
5788 if (m[i].dirty != VM_PAGE_BITS_ALL)
5789 return (false);
5790 }
5791 if ((flags & PS_ALL_VALID) != 0 &&
5792 m[i].valid != VM_PAGE_BITS_ALL)
5793 return (false);
5794 }
5795 return (true);
5796 }
5797
5798 /*
5799 * Set the page's dirty bits if the page is modified.
5800 */
5801 void
vm_page_test_dirty(vm_page_t m)5802 vm_page_test_dirty(vm_page_t m)
5803 {
5804
5805 vm_page_assert_busied(m);
5806 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5807 vm_page_dirty(m);
5808 }
5809
5810 void
vm_page_valid(vm_page_t m)5811 vm_page_valid(vm_page_t m)
5812 {
5813
5814 vm_page_assert_busied(m);
5815 if (vm_page_xbusied(m))
5816 m->valid = VM_PAGE_BITS_ALL;
5817 else
5818 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5819 }
5820
5821 #ifdef INVARIANTS
5822 void
vm_page_object_busy_assert(vm_page_t m)5823 vm_page_object_busy_assert(vm_page_t m)
5824 {
5825
5826 /*
5827 * Certain of the page's fields may only be modified by the
5828 * holder of a page or object busy.
5829 */
5830 if (m->object != NULL && !vm_page_busied(m))
5831 VM_OBJECT_ASSERT_BUSY(m->object);
5832 }
5833
5834 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5835 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5836 {
5837
5838 if ((bits & PGA_WRITEABLE) == 0)
5839 return;
5840
5841 /*
5842 * The PGA_WRITEABLE flag can only be set if the page is
5843 * managed, is exclusively busied or the object is locked.
5844 * Currently, this flag is only set by pmap_enter().
5845 */
5846 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5847 ("PGA_WRITEABLE on unmanaged page"));
5848 if (!vm_page_xbusied(m))
5849 VM_OBJECT_ASSERT_BUSY(m->object);
5850 }
5851 #endif
5852
5853 #include "opt_ddb.h"
5854 #ifdef DDB
5855 #include <sys/kernel.h>
5856
5857 #include <ddb/ddb.h>
5858
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5859 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5860 {
5861
5862 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5863 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5864 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5865 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5866 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5867 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5868 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5869 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5870 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5871 }
5872
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5873 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5874 {
5875 int dom;
5876
5877 db_printf("pq_free %d\n", vm_free_count());
5878 for (dom = 0; dom < vm_ndomains; dom++) {
5879 db_printf(
5880 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5881 dom,
5882 vm_dom[dom].vmd_page_count,
5883 vm_dom[dom].vmd_free_count,
5884 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5885 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5886 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5887 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5888 }
5889 }
5890
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5891 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5892 {
5893 vm_page_t m;
5894 boolean_t phys, virt;
5895
5896 if (!have_addr) {
5897 db_printf("show pginfo addr\n");
5898 return;
5899 }
5900
5901 phys = strchr(modif, 'p') != NULL;
5902 virt = strchr(modif, 'v') != NULL;
5903 if (virt)
5904 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5905 else if (phys)
5906 m = PHYS_TO_VM_PAGE(addr);
5907 else
5908 m = (vm_page_t)addr;
5909 db_printf(
5910 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5911 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5912 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5913 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5914 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5915 }
5916 #endif /* DDB */
5917