1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Resident memory management module.
65 */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110
111 #include <machine/md_var.h>
112
113 struct vm_domain vm_dom[MAXMEMDOM];
114
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116
117 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
118 /* The following fields are protected by the domainset lock. */
119 domainset_t __exclusive_cache_line vm_min_domains;
120 domainset_t __exclusive_cache_line vm_severe_domains;
121 static int vm_min_waiters;
122 static int vm_severe_waiters;
123 static int vm_pageproc_waiters;
124
125 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
126 "VM page statistics");
127
128 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
129 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
130 CTLFLAG_RD, &pqstate_commit_retries,
131 "Number of failed per-page atomic queue state updates");
132
133 static COUNTER_U64_DEFINE_EARLY(queue_ops);
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
135 CTLFLAG_RD, &queue_ops,
136 "Number of batched queue operations");
137
138 static COUNTER_U64_DEFINE_EARLY(queue_nops);
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
140 CTLFLAG_RD, &queue_nops,
141 "Number of batched queue operations with no effects");
142
143 static unsigned long nofreeq_size;
144 SYSCTL_ULONG(_vm_stats_page, OID_AUTO, nofreeq_size, CTLFLAG_RD,
145 &nofreeq_size, 0,
146 "Size of the nofree queue");
147
148 /*
149 * bogus page -- for I/O to/from partially complete buffers,
150 * or for paging into sparsely invalid regions.
151 */
152 vm_page_t bogus_page;
153
154 vm_page_t vm_page_array;
155 long vm_page_array_size;
156 long first_page;
157
158 struct bitset *vm_page_dump;
159 long vm_page_dump_pages;
160
161 static TAILQ_HEAD(, vm_page) blacklist_head;
162 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
163 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
164 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
165
166 static uma_zone_t fakepg_zone;
167
168 static void vm_page_alloc_check(vm_page_t m);
169 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object);
178 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
179 const uint16_t nflag);
180 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
181 vm_page_t m_run, vm_paddr_t high);
182 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
183 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
184 int req);
185 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
186 int flags);
187 static void vm_page_zone_release(void *arg, void **store, int cnt);
188
189 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
190
191 static void
vm_page_init(void * dummy)192 vm_page_init(void *dummy)
193 {
194
195 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
196 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
198 }
199
200 static int pgcache_zone_max_pcpu;
201 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
202 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
203 "Per-CPU page cache size");
204
205 /*
206 * The cache page zone is initialized later since we need to be able to allocate
207 * pages before UMA is fully initialized.
208 */
209 static void
vm_page_init_cache_zones(void * dummy __unused)210 vm_page_init_cache_zones(void *dummy __unused)
211 {
212 struct vm_domain *vmd;
213 struct vm_pgcache *pgcache;
214 int cache, domain, maxcache, pool;
215
216 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
217 maxcache = pgcache_zone_max_pcpu * mp_ncpus;
218 for (domain = 0; domain < vm_ndomains; domain++) {
219 vmd = VM_DOMAIN(domain);
220 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
221 #ifdef VM_FREEPOOL_LAZYINIT
222 if (pool == VM_FREEPOOL_LAZYINIT)
223 continue;
224 #endif
225 pgcache = &vmd->vmd_pgcache[pool];
226 pgcache->domain = domain;
227 pgcache->pool = pool;
228 pgcache->zone = uma_zcache_create("vm pgcache",
229 PAGE_SIZE, NULL, NULL, NULL, NULL,
230 vm_page_zone_import, vm_page_zone_release, pgcache,
231 UMA_ZONE_VM);
232
233 /*
234 * Limit each pool's zone to 0.1% of the pages in the
235 * domain.
236 */
237 cache = maxcache != 0 ? maxcache :
238 vmd->vmd_page_count / 1000;
239 uma_zone_set_maxcache(pgcache->zone, cache);
240 }
241 }
242 }
243 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
244
245 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
246 #if PAGE_SIZE == 32768
247 #ifdef CTASSERT
248 CTASSERT(sizeof(u_long) >= 8);
249 #endif
250 #endif
251
252 /*
253 * vm_set_page_size:
254 *
255 * Sets the page size, perhaps based upon the memory
256 * size. Must be called before any use of page-size
257 * dependent functions.
258 */
259 void
vm_set_page_size(void)260 vm_set_page_size(void)
261 {
262 if (vm_cnt.v_page_size == 0)
263 vm_cnt.v_page_size = PAGE_SIZE;
264 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
265 panic("vm_set_page_size: page size not a power of two");
266 }
267
268 /*
269 * vm_page_blacklist_next:
270 *
271 * Find the next entry in the provided string of blacklist
272 * addresses. Entries are separated by space, comma, or newline.
273 * If an invalid integer is encountered then the rest of the
274 * string is skipped. Updates the list pointer to the next
275 * character, or NULL if the string is exhausted or invalid.
276 */
277 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)278 vm_page_blacklist_next(char **list, char *end)
279 {
280 vm_paddr_t bad;
281 char *cp, *pos;
282
283 if (list == NULL || *list == NULL)
284 return (0);
285 if (**list =='\0') {
286 *list = NULL;
287 return (0);
288 }
289
290 /*
291 * If there's no end pointer then the buffer is coming from
292 * the kenv and we know it's null-terminated.
293 */
294 if (end == NULL)
295 end = *list + strlen(*list);
296
297 /* Ensure that strtoq() won't walk off the end */
298 if (*end != '\0') {
299 if (*end == '\n' || *end == ' ' || *end == ',')
300 *end = '\0';
301 else {
302 printf("Blacklist not terminated, skipping\n");
303 *list = NULL;
304 return (0);
305 }
306 }
307
308 for (pos = *list; *pos != '\0'; pos = cp) {
309 bad = strtoq(pos, &cp, 0);
310 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
311 if (bad == 0) {
312 if (++cp < end)
313 continue;
314 else
315 break;
316 }
317 } else
318 break;
319 if (*cp == '\0' || ++cp >= end)
320 *list = NULL;
321 else
322 *list = cp;
323 return (trunc_page(bad));
324 }
325 printf("Garbage in RAM blacklist, skipping\n");
326 *list = NULL;
327 return (0);
328 }
329
330 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)331 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
332 {
333 struct vm_domain *vmd;
334 vm_page_t m;
335 bool found;
336
337 m = vm_phys_paddr_to_vm_page(pa);
338 if (m == NULL)
339 return (true); /* page does not exist, no failure */
340
341 vmd = VM_DOMAIN(vm_phys_domain(pa));
342 vm_domain_free_lock(vmd);
343 found = vm_phys_unfree_page(pa);
344 vm_domain_free_unlock(vmd);
345 if (found) {
346 vm_domain_freecnt_inc(vmd, -1);
347 TAILQ_INSERT_TAIL(&blacklist_head, m, plinks.q);
348 if (verbose)
349 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
350 }
351 return (found);
352 }
353
354 /*
355 * vm_page_blacklist_check:
356 *
357 * Iterate through the provided string of blacklist addresses, pulling
358 * each entry out of the physical allocator free list and putting it
359 * onto a list for reporting via the vm.page_blacklist sysctl.
360 */
361 static void
vm_page_blacklist_check(char * list,char * end)362 vm_page_blacklist_check(char *list, char *end)
363 {
364 vm_paddr_t pa;
365 char *next;
366
367 next = list;
368 while (next != NULL) {
369 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
370 continue;
371 vm_page_blacklist_add(pa, bootverbose);
372 }
373 }
374
375 /*
376 * vm_page_blacklist_load:
377 *
378 * Search for a special module named "ram_blacklist". It'll be a
379 * plain text file provided by the user via the loader directive
380 * of the same name.
381 */
382 static void
vm_page_blacklist_load(char ** list,char ** end)383 vm_page_blacklist_load(char **list, char **end)
384 {
385 void *mod;
386 u_char *ptr;
387 u_int len;
388
389 mod = NULL;
390 ptr = NULL;
391
392 mod = preload_search_by_type("ram_blacklist");
393 if (mod != NULL) {
394 ptr = preload_fetch_addr(mod);
395 len = preload_fetch_size(mod);
396 }
397
398 if (ptr != NULL && len > 0) {
399 *list = ptr;
400 *end = ptr + len - 1;
401 } else {
402 *list = NULL;
403 *end = NULL;
404 }
405
406 return;
407 }
408
409 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)410 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
411 {
412 vm_page_t m;
413 struct sbuf sbuf;
414 int error, first;
415
416 first = 1;
417 error = sysctl_wire_old_buffer(req, 0);
418 if (error != 0)
419 return (error);
420 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
421 TAILQ_FOREACH(m, &blacklist_head, plinks.q) {
422 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
423 (uintmax_t)m->phys_addr);
424 first = 0;
425 }
426 error = sbuf_finish(&sbuf);
427 sbuf_delete(&sbuf);
428 return (error);
429 }
430
431 /*
432 * Initialize a dummy page for use in scans of the specified paging queue.
433 * In principle, this function only needs to set the flag PG_MARKER.
434 * Nonetheless, it write busies the page as a safety precaution.
435 */
436 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)437 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
438 {
439
440 bzero(marker, sizeof(*marker));
441 marker->flags = PG_MARKER;
442 marker->a.flags = aflags;
443 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
444 marker->a.queue = queue;
445 }
446
447 static void
vm_page_domain_init(int domain)448 vm_page_domain_init(int domain)
449 {
450 struct vm_domain *vmd;
451 struct vm_pagequeue *pq;
452 int i;
453
454 vmd = VM_DOMAIN(domain);
455 bzero(vmd, sizeof(*vmd));
456 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
457 "vm inactive pagequeue";
458 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
459 "vm active pagequeue";
460 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
461 "vm laundry pagequeue";
462 *__DECONST(const char **,
463 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
464 "vm unswappable pagequeue";
465 vmd->vmd_domain = domain;
466 vmd->vmd_page_count = 0;
467 vmd->vmd_free_count = 0;
468 vmd->vmd_segs = 0;
469 vmd->vmd_oom = false;
470 vmd->vmd_helper_threads_enabled = true;
471 for (i = 0; i < PQ_COUNT; i++) {
472 pq = &vmd->vmd_pagequeues[i];
473 TAILQ_INIT(&pq->pq_pl);
474 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
475 MTX_DEF | MTX_DUPOK);
476 pq->pq_pdpages = 0;
477 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
478 }
479 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
480 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
481 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
482
483 /*
484 * inacthead is used to provide FIFO ordering for LRU-bypassing
485 * insertions.
486 */
487 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
488 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
489 &vmd->vmd_inacthead, plinks.q);
490
491 /*
492 * The clock pages are used to implement active queue scanning without
493 * requeues. Scans start at clock[0], which is advanced after the scan
494 * ends. When the two clock hands meet, they are reset and scanning
495 * resumes from the head of the queue.
496 */
497 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
498 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
499 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
500 &vmd->vmd_clock[0], plinks.q);
501 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
502 &vmd->vmd_clock[1], plinks.q);
503 }
504
505 /*
506 * Initialize a physical page in preparation for adding it to the free
507 * lists.
508 */
509 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)510 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
511 {
512 m->object = NULL;
513 m->ref_count = 0;
514 m->busy_lock = VPB_FREED;
515 m->flags = m->a.flags = 0;
516 m->phys_addr = pa;
517 m->a.queue = PQ_NONE;
518 m->psind = 0;
519 m->segind = segind;
520 m->order = VM_NFREEORDER;
521 m->pool = pool;
522 m->valid = m->dirty = 0;
523 pmap_page_init(m);
524 }
525
526 #ifndef PMAP_HAS_PAGE_ARRAY
527 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)528 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
529 {
530 vm_paddr_t new_end;
531
532 /*
533 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
534 * However, because this page is allocated from KVM, out-of-bounds
535 * accesses using the direct map will not be trapped.
536 */
537 *vaddr += PAGE_SIZE;
538
539 /*
540 * Allocate physical memory for the page structures, and map it.
541 */
542 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
543 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
544 VM_PROT_READ | VM_PROT_WRITE);
545 vm_page_array_size = page_range;
546
547 return (new_end);
548 }
549 #endif
550
551 /*
552 * vm_page_startup:
553 *
554 * Initializes the resident memory module. Allocates physical memory for
555 * bootstrapping UMA and some data structures that are used to manage
556 * physical pages. Initializes these structures, and populates the free
557 * page queues.
558 */
559 vm_offset_t
vm_page_startup(vm_offset_t vaddr)560 vm_page_startup(vm_offset_t vaddr)
561 {
562 struct vm_phys_seg *seg;
563 struct vm_domain *vmd;
564 vm_page_t m;
565 char *list, *listend;
566 vm_paddr_t end, high_avail, low_avail, new_end, size;
567 vm_paddr_t page_range __unused;
568 vm_paddr_t last_pa, pa, startp, endp;
569 u_long pagecount;
570 #if MINIDUMP_PAGE_TRACKING
571 u_long vm_page_dump_size;
572 #endif
573 int biggestone, i, segind;
574 #ifdef WITNESS
575 vm_offset_t mapped;
576 int witness_size;
577 #endif
578 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
579 long ii;
580 #endif
581 int pool;
582 #ifdef VM_FREEPOOL_LAZYINIT
583 int lazyinit;
584 #endif
585
586 vaddr = round_page(vaddr);
587
588 vm_phys_early_startup();
589 biggestone = vm_phys_avail_largest();
590 end = phys_avail[biggestone+1];
591
592 /*
593 * Initialize the page and queue locks.
594 */
595 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
596 for (i = 0; i < vm_ndomains; i++)
597 vm_page_domain_init(i);
598
599 new_end = end;
600 #ifdef WITNESS
601 witness_size = round_page(witness_startup_count());
602 new_end -= witness_size;
603 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
604 VM_PROT_READ | VM_PROT_WRITE);
605 bzero((void *)mapped, witness_size);
606 witness_startup((void *)mapped);
607 #endif
608
609 #if MINIDUMP_PAGE_TRACKING
610 /*
611 * Allocate a bitmap to indicate that a random physical page
612 * needs to be included in a minidump.
613 *
614 * The amd64 port needs this to indicate which direct map pages
615 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
616 *
617 * However, i386 still needs this workspace internally within the
618 * minidump code. In theory, they are not needed on i386, but are
619 * included should the sf_buf code decide to use them.
620 */
621 last_pa = 0;
622 vm_page_dump_pages = 0;
623 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
624 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
625 dump_avail[i] / PAGE_SIZE;
626 if (dump_avail[i + 1] > last_pa)
627 last_pa = dump_avail[i + 1];
628 }
629 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
630 new_end -= vm_page_dump_size;
631 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
632 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
633 bzero((void *)vm_page_dump, vm_page_dump_size);
634 #if MINIDUMP_STARTUP_PAGE_TRACKING
635 /*
636 * Include the UMA bootstrap pages, witness pages and vm_page_dump
637 * in a crash dump. When pmap_map() uses the direct map, they are
638 * not automatically included.
639 */
640 for (pa = new_end; pa < end; pa += PAGE_SIZE)
641 dump_add_page(pa);
642 #endif
643 #else
644 (void)last_pa;
645 #endif
646 phys_avail[biggestone + 1] = new_end;
647 #ifdef __amd64__
648 /*
649 * Request that the physical pages underlying the message buffer be
650 * included in a crash dump. Since the message buffer is accessed
651 * through the direct map, they are not automatically included.
652 */
653 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
654 last_pa = pa + round_page(msgbufsize);
655 while (pa < last_pa) {
656 dump_add_page(pa);
657 pa += PAGE_SIZE;
658 }
659 #else
660 (void)pa;
661 #endif
662
663 /*
664 * Determine the lowest and highest physical addresses and, in the case
665 * of VM_PHYSSEG_SPARSE, the exact size of the available physical
666 * memory. vm_phys_early_startup() already checked that phys_avail[]
667 * has at least one element.
668 */
669 #ifdef VM_PHYSSEG_SPARSE
670 size = phys_avail[1] - phys_avail[0];
671 #endif
672 low_avail = phys_avail[0];
673 high_avail = phys_avail[1];
674 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
675 #ifdef VM_PHYSSEG_SPARSE
676 size += phys_avail[i + 1] - phys_avail[i];
677 #endif
678 if (phys_avail[i] < low_avail)
679 low_avail = phys_avail[i];
680 if (phys_avail[i + 1] > high_avail)
681 high_avail = phys_avail[i + 1];
682 }
683 for (i = 0; i < vm_phys_nsegs; i++) {
684 #ifdef VM_PHYSSEG_SPARSE
685 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
686 #endif
687 if (vm_phys_segs[i].start < low_avail)
688 low_avail = vm_phys_segs[i].start;
689 if (vm_phys_segs[i].end > high_avail)
690 high_avail = vm_phys_segs[i].end;
691 }
692 first_page = low_avail / PAGE_SIZE;
693 #ifdef VM_PHYSSEG_DENSE
694 size = high_avail - low_avail;
695 #endif
696
697 #ifdef PMAP_HAS_PAGE_ARRAY
698 pmap_page_array_startup(size / PAGE_SIZE);
699 biggestone = vm_phys_avail_largest();
700 end = new_end = phys_avail[biggestone + 1];
701 #else
702 #ifdef VM_PHYSSEG_DENSE
703 /*
704 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
705 * the overhead of a page structure per page only if vm_page_array is
706 * allocated from the last physical memory chunk. Otherwise, we must
707 * allocate page structures representing the physical memory
708 * underlying vm_page_array, even though they will not be used.
709 */
710 if (new_end != high_avail)
711 page_range = size / PAGE_SIZE;
712 else
713 #endif
714 {
715 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
716
717 /*
718 * If the partial bytes remaining are large enough for
719 * a page (PAGE_SIZE) without a corresponding
720 * 'struct vm_page', then new_end will contain an
721 * extra page after subtracting the length of the VM
722 * page array. Compensate by subtracting an extra
723 * page from new_end.
724 */
725 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
726 if (new_end == high_avail)
727 high_avail -= PAGE_SIZE;
728 new_end -= PAGE_SIZE;
729 }
730 }
731 end = new_end;
732 new_end = vm_page_array_alloc(&vaddr, end, page_range);
733 #endif
734
735 #if VM_NRESERVLEVEL > 0
736 /*
737 * Allocate physical memory for the reservation management system's
738 * data structures, and map it.
739 */
740 new_end = vm_reserv_startup(&vaddr, new_end);
741 #endif
742 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
743 /*
744 * Include vm_page_array and vm_reserv_array in a crash dump.
745 */
746 for (pa = new_end; pa < end; pa += PAGE_SIZE)
747 dump_add_page(pa);
748 #endif
749 phys_avail[biggestone + 1] = new_end;
750
751 /*
752 * Add physical memory segments corresponding to the available
753 * physical pages.
754 */
755 for (i = 0; phys_avail[i + 1] != 0; i += 2)
756 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
757
758 /*
759 * Initialize the physical memory allocator.
760 */
761 vm_phys_init();
762
763 pool = VM_FREEPOOL_DEFAULT;
764 #ifdef VM_FREEPOOL_LAZYINIT
765 lazyinit = 1;
766 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
767 if (lazyinit)
768 pool = VM_FREEPOOL_LAZYINIT;
769 #endif
770
771 /*
772 * Initialize the page structures and add every available page to the
773 * physical memory allocator's free lists.
774 */
775 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
776 for (ii = 0; ii < vm_page_array_size; ii++) {
777 m = &vm_page_array[ii];
778 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
779 VM_FREEPOOL_DEFAULT);
780 m->flags = PG_FICTITIOUS;
781 }
782 #endif
783 vm_cnt.v_page_count = 0;
784 for (segind = 0; segind < vm_phys_nsegs; segind++) {
785 seg = &vm_phys_segs[segind];
786
787 /*
788 * Initialize pages not covered by phys_avail[], since they
789 * might be freed to the allocator at some future point, e.g.,
790 * by kmem_bootstrap_free().
791 */
792 startp = seg->start;
793 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
794 if (startp >= seg->end)
795 break;
796 if (phys_avail[i + 1] < startp)
797 continue;
798 if (phys_avail[i] <= startp) {
799 startp = phys_avail[i + 1];
800 continue;
801 }
802 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
803 for (endp = MIN(phys_avail[i], seg->end);
804 startp < endp; startp += PAGE_SIZE, m++) {
805 vm_page_init_page(m, startp, segind,
806 VM_FREEPOOL_DEFAULT);
807 }
808 }
809
810 /*
811 * Add the segment's pages that are covered by one of
812 * phys_avail's ranges to the free lists.
813 */
814 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
815 if (seg->end <= phys_avail[i] ||
816 seg->start >= phys_avail[i + 1])
817 continue;
818
819 startp = MAX(seg->start, phys_avail[i]);
820 endp = MIN(seg->end, phys_avail[i + 1]);
821 pagecount = (u_long)atop(endp - startp);
822 if (pagecount == 0)
823 continue;
824
825 /*
826 * If lazy vm_page initialization is not enabled, simply
827 * initialize all of the pages in the segment covered by
828 * phys_avail. Otherwise, initialize only the first
829 * page of each run of free pages handed to the vm_phys
830 * allocator, which in turn defers initialization of
831 * pages until they are needed.
832 *
833 * This avoids blocking the boot process for long
834 * periods, which may be relevant for VMs (which ought
835 * to boot as quickly as possible) and/or systems with
836 * large amounts of physical memory.
837 */
838 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
839 vm_page_init_page(m, startp, segind, pool);
840 if (pool == VM_FREEPOOL_DEFAULT) {
841 for (u_long j = 1; j < pagecount; j++) {
842 vm_page_init_page(&m[j],
843 startp + ptoa((vm_paddr_t)j),
844 segind, pool);
845 }
846 }
847 vmd = VM_DOMAIN(seg->domain);
848 vm_domain_free_lock(vmd);
849 vm_phys_enqueue_contig(m, pool, pagecount);
850 vm_domain_free_unlock(vmd);
851 vm_domain_freecnt_inc(vmd, pagecount);
852 vm_cnt.v_page_count += (u_int)pagecount;
853 vmd->vmd_page_count += (u_int)pagecount;
854 vmd->vmd_segs |= 1UL << segind;
855 }
856 }
857
858 /*
859 * Remove blacklisted pages from the physical memory allocator.
860 */
861 TAILQ_INIT(&blacklist_head);
862 vm_page_blacklist_load(&list, &listend);
863 vm_page_blacklist_check(list, listend);
864
865 list = kern_getenv("vm.blacklist");
866 vm_page_blacklist_check(list, NULL);
867
868 freeenv(list);
869 #if VM_NRESERVLEVEL > 0
870 /*
871 * Initialize the reservation management system.
872 */
873 vm_reserv_init();
874 #endif
875
876 return (vaddr);
877 }
878
879 void
vm_page_reference(vm_page_t m)880 vm_page_reference(vm_page_t m)
881 {
882
883 vm_page_aflag_set(m, PGA_REFERENCED);
884 }
885
886 /*
887 * vm_page_trybusy
888 *
889 * Helper routine for grab functions to trylock busy.
890 *
891 * Returns true on success and false on failure.
892 */
893 static bool
vm_page_trybusy(vm_page_t m,int allocflags)894 vm_page_trybusy(vm_page_t m, int allocflags)
895 {
896
897 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
898 return (vm_page_trysbusy(m));
899 else
900 return (vm_page_tryxbusy(m));
901 }
902
903 /*
904 * vm_page_tryacquire
905 *
906 * Helper routine for grab functions to trylock busy and wire.
907 *
908 * Returns true on success and false on failure.
909 */
910 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)911 vm_page_tryacquire(vm_page_t m, int allocflags)
912 {
913 bool locked;
914
915 locked = vm_page_trybusy(m, allocflags);
916 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
917 vm_page_wire(m);
918 return (locked);
919 }
920
921 /*
922 * vm_page_busy_acquire:
923 *
924 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
925 * and drop the object lock if necessary.
926 */
927 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)928 vm_page_busy_acquire(vm_page_t m, int allocflags)
929 {
930 vm_object_t obj;
931 bool locked;
932
933 /*
934 * The page-specific object must be cached because page
935 * identity can change during the sleep, causing the
936 * re-lock of a different object.
937 * It is assumed that a reference to the object is already
938 * held by the callers.
939 */
940 obj = atomic_load_ptr(&m->object);
941 for (;;) {
942 if (vm_page_tryacquire(m, allocflags))
943 return (true);
944 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
945 return (false);
946 if (obj != NULL)
947 locked = VM_OBJECT_WOWNED(obj);
948 else
949 locked = false;
950 MPASS(locked || vm_page_wired(m));
951 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
952 locked) && locked)
953 VM_OBJECT_WLOCK(obj);
954 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
955 return (false);
956 KASSERT(m->object == obj || m->object == NULL,
957 ("vm_page_busy_acquire: page %p does not belong to %p",
958 m, obj));
959 }
960 }
961
962 /*
963 * vm_page_busy_downgrade:
964 *
965 * Downgrade an exclusive busy page into a single shared busy page.
966 */
967 void
vm_page_busy_downgrade(vm_page_t m)968 vm_page_busy_downgrade(vm_page_t m)
969 {
970 u_int x;
971
972 vm_page_assert_xbusied(m);
973
974 x = vm_page_busy_fetch(m);
975 for (;;) {
976 if (atomic_fcmpset_rel_int(&m->busy_lock,
977 &x, VPB_SHARERS_WORD(1)))
978 break;
979 }
980 if ((x & VPB_BIT_WAITERS) != 0)
981 wakeup(m);
982 }
983
984 /*
985 *
986 * vm_page_busy_tryupgrade:
987 *
988 * Attempt to upgrade a single shared busy into an exclusive busy.
989 */
990 int
vm_page_busy_tryupgrade(vm_page_t m)991 vm_page_busy_tryupgrade(vm_page_t m)
992 {
993 u_int ce, x;
994
995 vm_page_assert_sbusied(m);
996
997 x = vm_page_busy_fetch(m);
998 ce = VPB_CURTHREAD_EXCLUSIVE;
999 for (;;) {
1000 if (VPB_SHARERS(x) > 1)
1001 return (0);
1002 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1003 ("vm_page_busy_tryupgrade: invalid lock state"));
1004 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1005 ce | (x & VPB_BIT_WAITERS)))
1006 continue;
1007 return (1);
1008 }
1009 }
1010
1011 /*
1012 * vm_page_sbusied:
1013 *
1014 * Return a positive value if the page is shared busied, 0 otherwise.
1015 */
1016 int
vm_page_sbusied(vm_page_t m)1017 vm_page_sbusied(vm_page_t m)
1018 {
1019 u_int x;
1020
1021 x = vm_page_busy_fetch(m);
1022 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1023 }
1024
1025 /*
1026 * vm_page_sunbusy:
1027 *
1028 * Shared unbusy a page.
1029 */
1030 void
vm_page_sunbusy(vm_page_t m)1031 vm_page_sunbusy(vm_page_t m)
1032 {
1033 u_int x;
1034
1035 vm_page_assert_sbusied(m);
1036
1037 x = vm_page_busy_fetch(m);
1038 for (;;) {
1039 KASSERT(x != VPB_FREED,
1040 ("vm_page_sunbusy: Unlocking freed page."));
1041 if (VPB_SHARERS(x) > 1) {
1042 if (atomic_fcmpset_int(&m->busy_lock, &x,
1043 x - VPB_ONE_SHARER))
1044 break;
1045 continue;
1046 }
1047 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1048 ("vm_page_sunbusy: invalid lock state"));
1049 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1050 continue;
1051 if ((x & VPB_BIT_WAITERS) == 0)
1052 break;
1053 wakeup(m);
1054 break;
1055 }
1056 }
1057
1058 /*
1059 * vm_page_busy_sleep:
1060 *
1061 * Sleep if the page is busy, using the page pointer as wchan.
1062 * This is used to implement the hard-path of the busying mechanism.
1063 *
1064 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1065 * will not sleep if the page is shared-busy.
1066 *
1067 * The object lock must be held on entry.
1068 *
1069 * Returns true if it slept and dropped the object lock, or false
1070 * if there was no sleep and the lock is still held.
1071 */
1072 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1073 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1074 {
1075 vm_object_t obj;
1076
1077 obj = m->object;
1078 VM_OBJECT_ASSERT_LOCKED(obj);
1079
1080 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1081 true));
1082 }
1083
1084 /*
1085 * vm_page_busy_sleep_unlocked:
1086 *
1087 * Sleep if the page is busy, using the page pointer as wchan.
1088 * This is used to implement the hard-path of busying mechanism.
1089 *
1090 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1091 * will not sleep if the page is shared-busy.
1092 *
1093 * The object lock must not be held on entry. The operation will
1094 * return if the page changes identity.
1095 */
1096 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1097 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1098 const char *wmesg, int allocflags)
1099 {
1100 VM_OBJECT_ASSERT_UNLOCKED(obj);
1101
1102 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1103 }
1104
1105 /*
1106 * _vm_page_busy_sleep:
1107 *
1108 * Internal busy sleep function. Verifies the page identity and
1109 * lockstate against parameters. Returns true if it sleeps and
1110 * false otherwise.
1111 *
1112 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1113 *
1114 * If locked is true the lock will be dropped for any true returns
1115 * and held for any false returns.
1116 */
1117 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1118 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1119 const char *wmesg, int allocflags, bool locked)
1120 {
1121 bool xsleep;
1122 u_int x;
1123
1124 /*
1125 * If the object is busy we must wait for that to drain to zero
1126 * before trying the page again.
1127 */
1128 if (obj != NULL && vm_object_busied(obj)) {
1129 if (locked)
1130 VM_OBJECT_DROP(obj);
1131 vm_object_busy_wait(obj, wmesg);
1132 return (true);
1133 }
1134
1135 if (!vm_page_busied(m))
1136 return (false);
1137
1138 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1139 sleepq_lock(m);
1140 x = vm_page_busy_fetch(m);
1141 do {
1142 /*
1143 * If the page changes objects or becomes unlocked we can
1144 * simply return.
1145 */
1146 if (x == VPB_UNBUSIED ||
1147 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1148 m->object != obj || m->pindex != pindex) {
1149 sleepq_release(m);
1150 return (false);
1151 }
1152 if ((x & VPB_BIT_WAITERS) != 0)
1153 break;
1154 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1155 if (locked)
1156 VM_OBJECT_DROP(obj);
1157 DROP_GIANT();
1158 sleepq_add(m, NULL, wmesg, 0, 0);
1159 sleepq_wait(m, PVM);
1160 PICKUP_GIANT();
1161 return (true);
1162 }
1163
1164 /*
1165 * vm_page_trysbusy:
1166 *
1167 * Try to shared busy a page.
1168 * If the operation succeeds 1 is returned otherwise 0.
1169 * The operation never sleeps.
1170 */
1171 int
vm_page_trysbusy(vm_page_t m)1172 vm_page_trysbusy(vm_page_t m)
1173 {
1174 vm_object_t obj;
1175 u_int x;
1176
1177 obj = m->object;
1178 x = vm_page_busy_fetch(m);
1179 for (;;) {
1180 if ((x & VPB_BIT_SHARED) == 0)
1181 return (0);
1182 /*
1183 * Reduce the window for transient busies that will trigger
1184 * false negatives in vm_page_ps_test().
1185 */
1186 if (obj != NULL && vm_object_busied(obj))
1187 return (0);
1188 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1189 x + VPB_ONE_SHARER))
1190 break;
1191 }
1192
1193 /* Refetch the object now that we're guaranteed that it is stable. */
1194 obj = m->object;
1195 if (obj != NULL && vm_object_busied(obj)) {
1196 vm_page_sunbusy(m);
1197 return (0);
1198 }
1199 return (1);
1200 }
1201
1202 /*
1203 * vm_page_tryxbusy:
1204 *
1205 * Try to exclusive busy a page.
1206 * If the operation succeeds 1 is returned otherwise 0.
1207 * The operation never sleeps.
1208 */
1209 int
vm_page_tryxbusy(vm_page_t m)1210 vm_page_tryxbusy(vm_page_t m)
1211 {
1212 vm_object_t obj;
1213
1214 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1215 VPB_CURTHREAD_EXCLUSIVE) == 0)
1216 return (0);
1217
1218 obj = m->object;
1219 if (obj != NULL && vm_object_busied(obj)) {
1220 vm_page_xunbusy(m);
1221 return (0);
1222 }
1223 return (1);
1224 }
1225
1226 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1227 vm_page_xunbusy_hard_tail(vm_page_t m)
1228 {
1229 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1230 /* Wake the waiter. */
1231 wakeup(m);
1232 }
1233
1234 /*
1235 * vm_page_xunbusy_hard:
1236 *
1237 * Called when unbusy has failed because there is a waiter.
1238 */
1239 void
vm_page_xunbusy_hard(vm_page_t m)1240 vm_page_xunbusy_hard(vm_page_t m)
1241 {
1242 vm_page_assert_xbusied(m);
1243 vm_page_xunbusy_hard_tail(m);
1244 }
1245
1246 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1247 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1248 {
1249 vm_page_assert_xbusied_unchecked(m);
1250 vm_page_xunbusy_hard_tail(m);
1251 }
1252
1253 static void
vm_page_busy_free(vm_page_t m)1254 vm_page_busy_free(vm_page_t m)
1255 {
1256 u_int x;
1257
1258 atomic_thread_fence_rel();
1259 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1260 if ((x & VPB_BIT_WAITERS) != 0)
1261 wakeup(m);
1262 }
1263
1264 /*
1265 * vm_page_unhold_pages:
1266 *
1267 * Unhold each of the pages that is referenced by the given array.
1268 */
1269 void
vm_page_unhold_pages(vm_page_t * ma,int count)1270 vm_page_unhold_pages(vm_page_t *ma, int count)
1271 {
1272
1273 for (; count != 0; count--) {
1274 vm_page_unwire(*ma, PQ_ACTIVE);
1275 ma++;
1276 }
1277 }
1278
1279 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1280 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1281 {
1282 vm_page_t m;
1283
1284 #ifdef VM_PHYSSEG_SPARSE
1285 m = vm_phys_paddr_to_vm_page(pa);
1286 if (m == NULL)
1287 m = vm_phys_fictitious_to_vm_page(pa);
1288 return (m);
1289 #elif defined(VM_PHYSSEG_DENSE)
1290 long pi;
1291
1292 pi = atop(pa);
1293 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1294 m = &vm_page_array[pi - first_page];
1295 return (m);
1296 }
1297 return (vm_phys_fictitious_to_vm_page(pa));
1298 #else
1299 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1300 #endif
1301 }
1302
1303 /*
1304 * vm_page_getfake:
1305 *
1306 * Create a fictitious page with the specified physical address and
1307 * memory attribute. The memory attribute is the only the machine-
1308 * dependent aspect of a fictitious page that must be initialized.
1309 */
1310 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1311 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1312 {
1313 vm_page_t m;
1314
1315 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1316 vm_page_initfake(m, paddr, memattr);
1317 return (m);
1318 }
1319
1320 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1321 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1322 {
1323
1324 if ((m->flags & PG_FICTITIOUS) != 0) {
1325 /*
1326 * The page's memattr might have changed since the
1327 * previous initialization. Update the pmap to the
1328 * new memattr.
1329 */
1330 goto memattr;
1331 }
1332 m->phys_addr = paddr;
1333 m->a.queue = PQ_NONE;
1334 /* Fictitious pages don't use "segind". */
1335 m->flags = PG_FICTITIOUS;
1336 /* Fictitious pages don't use "order" or "pool". */
1337 m->oflags = VPO_UNMANAGED;
1338 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1339 /* Fictitious pages are unevictable. */
1340 m->ref_count = 1;
1341 pmap_page_init(m);
1342 memattr:
1343 pmap_page_set_memattr(m, memattr);
1344 }
1345
1346 /*
1347 * vm_page_putfake:
1348 *
1349 * Release a fictitious page.
1350 */
1351 void
vm_page_putfake(vm_page_t m)1352 vm_page_putfake(vm_page_t m)
1353 {
1354
1355 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1356 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1357 ("vm_page_putfake: bad page %p", m));
1358 vm_page_assert_xbusied(m);
1359 vm_page_busy_free(m);
1360 uma_zfree(fakepg_zone, m);
1361 }
1362
1363 /*
1364 * vm_page_updatefake:
1365 *
1366 * Update the given fictitious page to the specified physical address and
1367 * memory attribute.
1368 */
1369 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1370 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1371 {
1372
1373 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1374 ("vm_page_updatefake: bad page %p", m));
1375 m->phys_addr = paddr;
1376 pmap_page_set_memattr(m, memattr);
1377 }
1378
1379 /*
1380 * vm_page_free:
1381 *
1382 * Free a page.
1383 */
1384 void
vm_page_free(vm_page_t m)1385 vm_page_free(vm_page_t m)
1386 {
1387
1388 m->flags &= ~PG_ZERO;
1389 vm_page_free_toq(m);
1390 }
1391
1392 /*
1393 * vm_page_free_zero:
1394 *
1395 * Free a page to the zerod-pages queue
1396 */
1397 void
vm_page_free_zero(vm_page_t m)1398 vm_page_free_zero(vm_page_t m)
1399 {
1400
1401 m->flags |= PG_ZERO;
1402 vm_page_free_toq(m);
1403 }
1404
1405 /*
1406 * Unbusy and handle the page queueing for a page from a getpages request that
1407 * was optionally read ahead or behind.
1408 */
1409 void
vm_page_readahead_finish(vm_page_t m)1410 vm_page_readahead_finish(vm_page_t m)
1411 {
1412
1413 /* We shouldn't put invalid pages on queues. */
1414 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1415
1416 /*
1417 * Since the page is not the actually needed one, whether it should
1418 * be activated or deactivated is not obvious. Empirical results
1419 * have shown that deactivating the page is usually the best choice,
1420 * unless the page is wanted by another thread.
1421 */
1422 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1423 vm_page_activate(m);
1424 else
1425 vm_page_deactivate(m);
1426 vm_page_xunbusy_unchecked(m);
1427 }
1428
1429 /*
1430 * Destroy the identity of an invalid page and free it if possible.
1431 * This is intended to be used when reading a page from backing store fails.
1432 */
1433 void
vm_page_free_invalid(vm_page_t m)1434 vm_page_free_invalid(vm_page_t m)
1435 {
1436
1437 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1438 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1439 KASSERT(m->object != NULL, ("page %p has no object", m));
1440 VM_OBJECT_ASSERT_WLOCKED(m->object);
1441
1442 /*
1443 * We may be attempting to free the page as part of the handling for an
1444 * I/O error, in which case the page was xbusied by a different thread.
1445 */
1446 vm_page_xbusy_claim(m);
1447
1448 /*
1449 * If someone has wired this page while the object lock
1450 * was not held, then the thread that unwires is responsible
1451 * for freeing the page. Otherwise just free the page now.
1452 * The wire count of this unmapped page cannot change while
1453 * we have the page xbusy and the page's object wlocked.
1454 */
1455 if (vm_page_remove(m))
1456 vm_page_free(m);
1457 }
1458
1459 /*
1460 * vm_page_dirty_KBI: [ internal use only ]
1461 *
1462 * Set all bits in the page's dirty field.
1463 *
1464 * The object containing the specified page must be locked if the
1465 * call is made from the machine-independent layer.
1466 *
1467 * See vm_page_clear_dirty_mask().
1468 *
1469 * This function should only be called by vm_page_dirty().
1470 */
1471 void
vm_page_dirty_KBI(vm_page_t m)1472 vm_page_dirty_KBI(vm_page_t m)
1473 {
1474
1475 /* Refer to this operation by its public name. */
1476 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1477 m->dirty = VM_PAGE_BITS_ALL;
1478 }
1479
1480 /*
1481 * Insert the given page into the given object at the given pindex.
1482 *
1483 * The procedure is marked __always_inline to suggest to the compiler to
1484 * eliminate the iter parameter and the associated alternate branch.
1485 */
1486 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,bool iter,struct pctrie_iter * pages)1487 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1488 bool iter, struct pctrie_iter *pages)
1489 {
1490 int error;
1491
1492 VM_OBJECT_ASSERT_WLOCKED(object);
1493 KASSERT(m->object == NULL,
1494 ("vm_page_insert: page %p already inserted", m));
1495
1496 /*
1497 * Record the object/offset pair in this page.
1498 */
1499 m->object = object;
1500 m->pindex = pindex;
1501 m->ref_count |= VPRC_OBJREF;
1502
1503 /*
1504 * Add this page to the object's radix tree.
1505 */
1506 if (iter)
1507 error = vm_radix_iter_insert(pages, m);
1508 else
1509 error = vm_radix_insert(&object->rtree, m);
1510 if (__predict_false(error != 0)) {
1511 m->object = NULL;
1512 m->pindex = 0;
1513 m->ref_count &= ~VPRC_OBJREF;
1514 return (1);
1515 }
1516
1517 vm_page_insert_radixdone(m, object);
1518 vm_pager_page_inserted(object, m);
1519 return (0);
1520 }
1521
1522 /*
1523 * vm_page_insert: [ internal use only ]
1524 *
1525 * Inserts the given mem entry into the object and object list.
1526 *
1527 * The object must be locked.
1528 */
1529 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1530 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1531 {
1532 return (vm_page_insert_lookup(m, object, pindex, false, NULL));
1533 }
1534
1535 /*
1536 * vm_page_iter_insert:
1537 *
1538 * Tries to insert the page "m" into the specified object at offset
1539 * "pindex" using the iterator "pages". Returns 0 if the insertion was
1540 * successful.
1541 *
1542 * The object must be locked.
1543 */
1544 int
vm_page_iter_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages)1545 vm_page_iter_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1546 struct pctrie_iter *pages)
1547 {
1548 return (vm_page_insert_lookup(m, object, pindex, true, pages));
1549 }
1550
1551 /*
1552 * vm_page_insert_radixdone:
1553 *
1554 * Complete page "m" insertion into the specified object after the
1555 * radix trie hooking.
1556 *
1557 * The object must be locked.
1558 */
1559 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object)1560 vm_page_insert_radixdone(vm_page_t m, vm_object_t object)
1561 {
1562
1563 VM_OBJECT_ASSERT_WLOCKED(object);
1564 KASSERT(object != NULL && m->object == object,
1565 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1566 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1567 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1568
1569 /*
1570 * Show that the object has one more resident page.
1571 */
1572 object->resident_page_count++;
1573
1574 /*
1575 * Hold the vnode until the last page is released.
1576 */
1577 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1578 vhold(object->handle);
1579
1580 /*
1581 * Since we are inserting a new and possibly dirty page,
1582 * update the object's generation count.
1583 */
1584 if (pmap_page_is_write_mapped(m))
1585 vm_object_set_writeable_dirty(object);
1586 }
1587
1588 /*
1589 * vm_page_remove_radixdone
1590 *
1591 * Complete page "m" removal from the specified object after the radix trie
1592 * unhooking.
1593 *
1594 * The caller is responsible for updating the page's fields to reflect this
1595 * removal.
1596 */
1597 static void
vm_page_remove_radixdone(vm_page_t m)1598 vm_page_remove_radixdone(vm_page_t m)
1599 {
1600 vm_object_t object;
1601
1602 vm_page_assert_xbusied(m);
1603 object = m->object;
1604 VM_OBJECT_ASSERT_WLOCKED(object);
1605 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1606 ("page %p is missing its object ref", m));
1607
1608 /* Deferred free of swap space. */
1609 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1610 vm_pager_page_unswapped(m);
1611
1612 vm_pager_page_removed(object, m);
1613 m->object = NULL;
1614
1615 /*
1616 * And show that the object has one fewer resident page.
1617 */
1618 object->resident_page_count--;
1619
1620 /*
1621 * The vnode may now be recycled.
1622 */
1623 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1624 vdrop(object->handle);
1625 }
1626
1627 /*
1628 * vm_page_free_object_prep:
1629 *
1630 * Disassociates the given page from its VM object.
1631 *
1632 * The object must be locked, and the page must be xbusy.
1633 */
1634 static void
vm_page_free_object_prep(vm_page_t m)1635 vm_page_free_object_prep(vm_page_t m)
1636 {
1637 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1638 ((m->object->flags & OBJ_UNMANAGED) != 0),
1639 ("%s: managed flag mismatch for page %p",
1640 __func__, m));
1641 vm_page_assert_xbusied(m);
1642
1643 /*
1644 * The object reference can be released without an atomic
1645 * operation.
1646 */
1647 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1648 m->ref_count == VPRC_OBJREF,
1649 ("%s: page %p has unexpected ref_count %u",
1650 __func__, m, m->ref_count));
1651 vm_page_remove_radixdone(m);
1652 m->ref_count -= VPRC_OBJREF;
1653 }
1654
1655 /*
1656 * vm_page_iter_free:
1657 *
1658 * Free the given page, and use the iterator to remove it from the radix
1659 * tree.
1660 */
1661 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1662 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1663 {
1664 vm_radix_iter_remove(pages);
1665 vm_page_free_object_prep(m);
1666 vm_page_xunbusy(m);
1667 m->flags &= ~PG_ZERO;
1668 vm_page_free_toq(m);
1669 }
1670
1671 /*
1672 * vm_page_remove:
1673 *
1674 * Removes the specified page from its containing object, but does not
1675 * invalidate any backing storage. Returns true if the object's reference
1676 * was the last reference to the page, and false otherwise.
1677 *
1678 * The object must be locked and the page must be exclusively busied.
1679 * The exclusive busy will be released on return. If this is not the
1680 * final ref and the caller does not hold a wire reference it may not
1681 * continue to access the page.
1682 */
1683 bool
vm_page_remove(vm_page_t m)1684 vm_page_remove(vm_page_t m)
1685 {
1686 bool dropped;
1687
1688 dropped = vm_page_remove_xbusy(m);
1689 vm_page_xunbusy(m);
1690
1691 return (dropped);
1692 }
1693
1694 /*
1695 * vm_page_iter_remove:
1696 *
1697 * Remove the current page, and use the iterator to remove it from the
1698 * radix tree.
1699 */
1700 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1701 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1702 {
1703 bool dropped;
1704
1705 vm_radix_iter_remove(pages);
1706 vm_page_remove_radixdone(m);
1707 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1708 vm_page_xunbusy(m);
1709
1710 return (dropped);
1711 }
1712
1713 /*
1714 * vm_page_radix_remove
1715 *
1716 * Removes the specified page from the radix tree.
1717 */
1718 static void
vm_page_radix_remove(vm_page_t m)1719 vm_page_radix_remove(vm_page_t m)
1720 {
1721 vm_page_t mrem __diagused;
1722
1723 mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1724 KASSERT(mrem == m,
1725 ("removed page %p, expected page %p", mrem, m));
1726 }
1727
1728 /*
1729 * vm_page_remove_xbusy
1730 *
1731 * Removes the page but leaves the xbusy held. Returns true if this
1732 * removed the final ref and false otherwise.
1733 */
1734 bool
vm_page_remove_xbusy(vm_page_t m)1735 vm_page_remove_xbusy(vm_page_t m)
1736 {
1737
1738 vm_page_radix_remove(m);
1739 vm_page_remove_radixdone(m);
1740 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1741 }
1742
1743 /*
1744 * vm_page_lookup:
1745 *
1746 * Returns the page associated with the object/offset
1747 * pair specified; if none is found, NULL is returned.
1748 *
1749 * The object must be locked.
1750 */
1751 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1752 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1753 {
1754
1755 VM_OBJECT_ASSERT_LOCKED(object);
1756 return (vm_radix_lookup(&object->rtree, pindex));
1757 }
1758
1759 /*
1760 * vm_page_iter_init:
1761 *
1762 * Initialize iterator for vm pages.
1763 */
1764 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1765 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1766 {
1767
1768 vm_radix_iter_init(pages, &object->rtree);
1769 }
1770
1771 /*
1772 * vm_page_iter_init:
1773 *
1774 * Initialize iterator for vm pages.
1775 */
1776 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1777 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1778 vm_pindex_t limit)
1779 {
1780
1781 vm_radix_iter_limit_init(pages, &object->rtree, limit);
1782 }
1783
1784 /*
1785 * vm_page_lookup_unlocked:
1786 *
1787 * Returns the page associated with the object/offset pair specified;
1788 * if none is found, NULL is returned. The page may be no longer be
1789 * present in the object at the time that this function returns. Only
1790 * useful for opportunistic checks such as inmem().
1791 */
1792 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1793 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1794 {
1795
1796 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1797 }
1798
1799 /*
1800 * vm_page_relookup:
1801 *
1802 * Returns a page that must already have been busied by
1803 * the caller. Used for bogus page replacement.
1804 */
1805 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1806 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1807 {
1808 vm_page_t m;
1809
1810 m = vm_page_lookup_unlocked(object, pindex);
1811 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1812 m->object == object && m->pindex == pindex,
1813 ("vm_page_relookup: Invalid page %p", m));
1814 return (m);
1815 }
1816
1817 /*
1818 * This should only be used by lockless functions for releasing transient
1819 * incorrect acquires. The page may have been freed after we acquired a
1820 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1821 * further to do.
1822 */
1823 static void
vm_page_busy_release(vm_page_t m)1824 vm_page_busy_release(vm_page_t m)
1825 {
1826 u_int x;
1827
1828 x = vm_page_busy_fetch(m);
1829 for (;;) {
1830 if (x == VPB_FREED)
1831 break;
1832 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1833 if (atomic_fcmpset_int(&m->busy_lock, &x,
1834 x - VPB_ONE_SHARER))
1835 break;
1836 continue;
1837 }
1838 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1839 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1840 ("vm_page_busy_release: %p xbusy not owned.", m));
1841 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1842 continue;
1843 if ((x & VPB_BIT_WAITERS) != 0)
1844 wakeup(m);
1845 break;
1846 }
1847 }
1848
1849 /*
1850 * Uses the page mnew as a replacement for an existing page at index
1851 * pindex which must be already present in the object.
1852 *
1853 * Both pages must be exclusively busied on enter. The old page is
1854 * unbusied on exit.
1855 *
1856 * A return value of true means mold is now free. If this is not the
1857 * final ref and the caller does not hold a wire reference it may not
1858 * continue to access the page.
1859 */
1860 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1861 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1862 vm_page_t mold)
1863 {
1864 vm_page_t mret __diagused;
1865 bool dropped;
1866
1867 VM_OBJECT_ASSERT_WLOCKED(object);
1868 vm_page_assert_xbusied(mold);
1869 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1870 ("vm_page_replace: page %p already in object", mnew));
1871
1872 /*
1873 * This function mostly follows vm_page_insert() and
1874 * vm_page_remove() without the radix, object count and vnode
1875 * dance. Double check such functions for more comments.
1876 */
1877
1878 mnew->object = object;
1879 mnew->pindex = pindex;
1880 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1881 mret = vm_radix_replace(&object->rtree, mnew);
1882 KASSERT(mret == mold,
1883 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1884 KASSERT((mold->oflags & VPO_UNMANAGED) ==
1885 (mnew->oflags & VPO_UNMANAGED),
1886 ("vm_page_replace: mismatched VPO_UNMANAGED"));
1887
1888 mold->object = NULL;
1889
1890 /*
1891 * The object's resident_page_count does not change because we have
1892 * swapped one page for another, but the generation count should
1893 * change if the page is dirty.
1894 */
1895 if (pmap_page_is_write_mapped(mnew))
1896 vm_object_set_writeable_dirty(object);
1897 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1898 vm_page_xunbusy(mold);
1899
1900 return (dropped);
1901 }
1902
1903 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1904 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1905 vm_page_t mold)
1906 {
1907
1908 vm_page_assert_xbusied(mnew);
1909
1910 if (vm_page_replace_hold(mnew, object, pindex, mold))
1911 vm_page_free(mold);
1912 }
1913
1914 /*
1915 * vm_page_iter_rename:
1916 *
1917 * Tries to move the specified page from its current object to a new object
1918 * and pindex, using the given iterator to remove the page from its current
1919 * object. Returns true if the move was successful, and false if the move
1920 * was aborted due to a failed memory allocation.
1921 *
1922 * Panics if a page already resides in the new object at the new pindex.
1923 *
1924 * This routine dirties the page if it is valid, as callers are expected to
1925 * transfer backing storage only after moving the page. Dirtying the page
1926 * ensures that the destination object retains the most recent copy of the
1927 * page.
1928 *
1929 * The objects must be locked.
1930 */
1931 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)1932 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
1933 vm_object_t new_object, vm_pindex_t new_pindex)
1934 {
1935 vm_pindex_t opidx;
1936
1937 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1938 ("%s: page %p is missing object ref", __func__, m));
1939 VM_OBJECT_ASSERT_WLOCKED(m->object);
1940 VM_OBJECT_ASSERT_WLOCKED(new_object);
1941
1942 /*
1943 * Create a custom version of vm_page_insert() which does not depend
1944 * by m_prev and can cheat on the implementation aspects of the
1945 * function.
1946 */
1947 opidx = m->pindex;
1948 m->pindex = new_pindex;
1949 if (vm_radix_insert(&new_object->rtree, m) != 0) {
1950 m->pindex = opidx;
1951 return (false);
1952 }
1953
1954 /*
1955 * The operation cannot fail anymore.
1956 */
1957 m->pindex = opidx;
1958 vm_radix_iter_remove(old_pages);
1959 vm_page_remove_radixdone(m);
1960
1961 /* Return back to the new pindex to complete vm_page_insert(). */
1962 m->pindex = new_pindex;
1963 m->object = new_object;
1964
1965 vm_page_insert_radixdone(m, new_object);
1966 if (vm_page_any_valid(m))
1967 vm_page_dirty(m);
1968 vm_pager_page_inserted(new_object, m);
1969 return (true);
1970 }
1971
1972 /*
1973 * vm_page_alloc:
1974 *
1975 * Allocate and return a page that is associated with the specified
1976 * object and offset pair. By default, this page is exclusive busied.
1977 *
1978 * The caller must always specify an allocation class.
1979 *
1980 * allocation classes:
1981 * VM_ALLOC_NORMAL normal process request
1982 * VM_ALLOC_SYSTEM system *really* needs a page
1983 * VM_ALLOC_INTERRUPT interrupt time request
1984 *
1985 * optional allocation flags:
1986 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1987 * intends to allocate
1988 * VM_ALLOC_NOBUSY do not exclusive busy the page
1989 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
1990 * VM_ALLOC_NOFREE page will never be freed
1991 * VM_ALLOC_NOWAIT ignored (default behavior)
1992 * VM_ALLOC_SBUSY shared busy the allocated page
1993 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
1994 * VM_ALLOC_WIRED wire the allocated page
1995 * VM_ALLOC_ZERO prefer a zeroed page
1996 */
1997 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)1998 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1999 {
2000 struct pctrie_iter pages;
2001
2002 vm_page_iter_init(&pages, object);
2003 return (vm_page_alloc_iter(object, pindex, req, &pages));
2004 }
2005
2006 /*
2007 * Allocate a page in the specified object with the given page index. If the
2008 * object lock is dropped and regained, the pages iter is reset.
2009 */
2010 vm_page_t
vm_page_alloc_iter(vm_object_t object,vm_pindex_t pindex,int req,struct pctrie_iter * pages)2011 vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req,
2012 struct pctrie_iter *pages)
2013 {
2014 struct vm_domainset_iter di;
2015 vm_page_t m;
2016 int domain;
2017
2018 if (vm_domainset_iter_page_init(&di, object, pindex, &domain, &req) != 0)
2019 return (NULL);
2020
2021 do {
2022 m = vm_page_alloc_domain_iter(object, pindex, domain, req,
2023 pages);
2024 if (m != NULL)
2025 break;
2026 } while (vm_domainset_iter_page(&di, object, &domain, pages) == 0);
2027
2028 return (m);
2029 }
2030
2031 /*
2032 * Returns true if the number of free pages exceeds the minimum
2033 * for the request class and false otherwise.
2034 */
2035 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2036 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2037 {
2038 u_int limit, old, new;
2039
2040 if (req_class == VM_ALLOC_INTERRUPT)
2041 limit = 0;
2042 else if (req_class == VM_ALLOC_SYSTEM)
2043 limit = vmd->vmd_interrupt_free_min;
2044 else
2045 limit = vmd->vmd_free_reserved;
2046
2047 /*
2048 * Attempt to reserve the pages. Fail if we're below the limit.
2049 */
2050 limit += npages;
2051 old = atomic_load_int(&vmd->vmd_free_count);
2052 do {
2053 if (old < limit)
2054 return (0);
2055 new = old - npages;
2056 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2057
2058 /* Wake the page daemon if we've crossed the threshold. */
2059 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2060 pagedaemon_wakeup(vmd->vmd_domain);
2061
2062 /* Only update bitsets on transitions. */
2063 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2064 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2065 vm_domain_set(vmd);
2066
2067 return (1);
2068 }
2069
2070 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2071 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2072 {
2073 int req_class;
2074
2075 /*
2076 * The page daemon is allowed to dig deeper into the free page list.
2077 */
2078 req_class = req & VM_ALLOC_CLASS_MASK;
2079 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2080 req_class = VM_ALLOC_SYSTEM;
2081 return (_vm_domain_allocate(vmd, req_class, npages));
2082 }
2083
2084 vm_page_t
vm_page_alloc_domain_iter(vm_object_t object,vm_pindex_t pindex,int domain,int req,struct pctrie_iter * pages)2085 vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex, int domain,
2086 int req, struct pctrie_iter *pages)
2087 {
2088 struct vm_domain *vmd;
2089 vm_page_t m;
2090 int flags;
2091
2092 #define VM_ALLOC_COMMON (VM_ALLOC_CLASS_MASK | VM_ALLOC_NODUMP | \
2093 VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | \
2094 VM_ALLOC_WIRED | VM_ALLOC_ZERO)
2095 #define VPA_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2096 VM_ALLOC_NOBUSY | VM_ALLOC_NOFREE | \
2097 VM_ALLOC_SBUSY)
2098 KASSERT((req & ~VPA_FLAGS) == 0,
2099 ("invalid request %#x", req));
2100 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2101 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2102 ("invalid request %#x", req));
2103 VM_OBJECT_ASSERT_WLOCKED(object);
2104
2105 flags = 0;
2106 m = NULL;
2107 if (!vm_pager_can_alloc_page(object, pindex))
2108 return (NULL);
2109 #if VM_NRESERVLEVEL > 0
2110 again:
2111 #endif
2112 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2113 m = vm_page_alloc_nofree_domain(domain, req);
2114 if (m != NULL)
2115 goto found;
2116 }
2117 #if VM_NRESERVLEVEL > 0
2118 /*
2119 * Can we allocate the page from a reservation?
2120 */
2121 if (vm_object_reserv(object) &&
2122 (m = vm_reserv_alloc_page(object, pindex, domain, req, pages)) !=
2123 NULL) {
2124 goto found;
2125 }
2126 #endif
2127 vmd = VM_DOMAIN(domain);
2128 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2129 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2130 M_NOWAIT | M_NOVM);
2131 if (m != NULL) {
2132 flags |= PG_PCPU_CACHE;
2133 goto found;
2134 }
2135 }
2136 if (vm_domain_allocate(vmd, req, 1)) {
2137 /*
2138 * If not, allocate it from the free page queues.
2139 */
2140 vm_domain_free_lock(vmd);
2141 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2142 vm_domain_free_unlock(vmd);
2143 if (m == NULL) {
2144 vm_domain_freecnt_inc(vmd, 1);
2145 #if VM_NRESERVLEVEL > 0
2146 if (vm_reserv_reclaim_inactive(domain))
2147 goto again;
2148 #endif
2149 }
2150 }
2151 if (m == NULL) {
2152 /*
2153 * Not allocatable, give up.
2154 */
2155 (void)vm_domain_alloc_fail(vmd, object, req);
2156 if ((req & VM_ALLOC_WAITFAIL) != 0)
2157 pctrie_iter_reset(pages);
2158 return (NULL);
2159 }
2160
2161 /*
2162 * At this point we had better have found a good page.
2163 */
2164 found:
2165 vm_page_dequeue(m);
2166 vm_page_alloc_check(m);
2167
2168 /*
2169 * Initialize the page. Only the PG_ZERO flag is inherited.
2170 */
2171 flags |= m->flags & PG_ZERO;
2172 if ((req & VM_ALLOC_NODUMP) != 0)
2173 flags |= PG_NODUMP;
2174 if ((req & VM_ALLOC_NOFREE) != 0)
2175 flags |= PG_NOFREE;
2176 m->flags = flags;
2177 m->a.flags = 0;
2178 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2179 m->pool = VM_FREEPOOL_DEFAULT;
2180 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2181 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2182 else if ((req & VM_ALLOC_SBUSY) != 0)
2183 m->busy_lock = VPB_SHARERS_WORD(1);
2184 else
2185 m->busy_lock = VPB_UNBUSIED;
2186 if (req & VM_ALLOC_WIRED) {
2187 vm_wire_add(1);
2188 m->ref_count = 1;
2189 }
2190 m->a.act_count = 0;
2191
2192 if (vm_page_iter_insert(m, object, pindex, pages)) {
2193 if (req & VM_ALLOC_WIRED) {
2194 vm_wire_sub(1);
2195 m->ref_count = 0;
2196 }
2197 KASSERT(m->object == NULL, ("page %p has object", m));
2198 m->oflags = VPO_UNMANAGED;
2199 m->busy_lock = VPB_UNBUSIED;
2200 /* Don't change PG_ZERO. */
2201 vm_page_free_toq(m);
2202 if (req & VM_ALLOC_WAITFAIL) {
2203 VM_OBJECT_WUNLOCK(object);
2204 vm_radix_wait();
2205 pctrie_iter_reset(pages);
2206 VM_OBJECT_WLOCK(object);
2207 }
2208 return (NULL);
2209 }
2210
2211 /* Ignore device objects; the pager sets "memattr" for them. */
2212 if (object->memattr != VM_MEMATTR_DEFAULT &&
2213 (object->flags & OBJ_FICTITIOUS) == 0)
2214 pmap_page_set_memattr(m, object->memattr);
2215
2216 return (m);
2217 }
2218
2219 /*
2220 * vm_page_alloc_contig:
2221 *
2222 * Allocate a contiguous set of physical pages of the given size "npages"
2223 * from the free lists. All of the physical pages must be at or above
2224 * the given physical address "low" and below the given physical address
2225 * "high". The given value "alignment" determines the alignment of the
2226 * first physical page in the set. If the given value "boundary" is
2227 * non-zero, then the set of physical pages cannot cross any physical
2228 * address boundary that is a multiple of that value. Both "alignment"
2229 * and "boundary" must be a power of two.
2230 *
2231 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2232 * then the memory attribute setting for the physical pages is configured
2233 * to the object's memory attribute setting. Otherwise, the memory
2234 * attribute setting for the physical pages is configured to "memattr",
2235 * overriding the object's memory attribute setting. However, if the
2236 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2237 * memory attribute setting for the physical pages cannot be configured
2238 * to VM_MEMATTR_DEFAULT.
2239 *
2240 * The specified object may not contain fictitious pages.
2241 *
2242 * The caller must always specify an allocation class.
2243 *
2244 * allocation classes:
2245 * VM_ALLOC_NORMAL normal process request
2246 * VM_ALLOC_SYSTEM system *really* needs the pages
2247 * VM_ALLOC_INTERRUPT interrupt time request
2248 *
2249 * optional allocation flags:
2250 * VM_ALLOC_NOBUSY do not exclusive busy the pages
2251 * VM_ALLOC_NODUMP do not include the pages in a kernel core dump
2252 * VM_ALLOC_NORECLAIM do not reclaim after initial failure
2253 * VM_ALLOC_NOWAIT ignored (default behavior)
2254 * VM_ALLOC_SBUSY shared busy the allocated pages
2255 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
2256 * VM_ALLOC_WIRED wire the allocated pages
2257 * VM_ALLOC_ZERO prefer zeroed pages
2258 */
2259 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2260 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2261 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2262 vm_paddr_t boundary, vm_memattr_t memattr)
2263 {
2264 struct vm_domainset_iter di;
2265 vm_page_t bounds[2];
2266 vm_page_t m;
2267 int domain;
2268 int start_segind;
2269
2270 start_segind = -1;
2271
2272 if (vm_domainset_iter_page_init(&di, object, pindex, &domain, &req) != 0)
2273 return (NULL);
2274
2275 do {
2276 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2277 npages, low, high, alignment, boundary, memattr);
2278 if (m != NULL)
2279 break;
2280 if (start_segind == -1)
2281 start_segind = vm_phys_lookup_segind(low);
2282 if (vm_phys_find_range(bounds, start_segind, domain,
2283 npages, low, high) == -1) {
2284 vm_domainset_iter_ignore(&di, domain);
2285 }
2286 } while (vm_domainset_iter_page(&di, object, &domain, NULL) == 0);
2287
2288 return (m);
2289 }
2290
2291 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2292 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2293 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2294 {
2295 struct vm_domain *vmd;
2296 vm_page_t m_ret;
2297
2298 /*
2299 * Can we allocate the pages without the number of free pages falling
2300 * below the lower bound for the allocation class?
2301 */
2302 vmd = VM_DOMAIN(domain);
2303 if (!vm_domain_allocate(vmd, req, npages))
2304 return (NULL);
2305 /*
2306 * Try to allocate the pages from the free page queues.
2307 */
2308 vm_domain_free_lock(vmd);
2309 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2310 alignment, boundary);
2311 vm_domain_free_unlock(vmd);
2312 if (m_ret != NULL)
2313 return (m_ret);
2314 #if VM_NRESERVLEVEL > 0
2315 /*
2316 * Try to break a reservation to allocate the pages.
2317 */
2318 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2319 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2320 high, alignment, boundary);
2321 if (m_ret != NULL)
2322 return (m_ret);
2323 }
2324 #endif
2325 vm_domain_freecnt_inc(vmd, npages);
2326 return (NULL);
2327 }
2328
2329 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2330 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2331 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2332 vm_paddr_t boundary, vm_memattr_t memattr)
2333 {
2334 struct pctrie_iter pages;
2335 vm_page_t m, m_ret, mpred;
2336 u_int busy_lock, flags, oflags;
2337
2338 #define VPAC_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2339 VM_ALLOC_NOBUSY | VM_ALLOC_NORECLAIM | \
2340 VM_ALLOC_SBUSY)
2341 KASSERT((req & ~VPAC_FLAGS) == 0,
2342 ("invalid request %#x", req));
2343 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2344 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2345 ("invalid request %#x", req));
2346 VM_OBJECT_ASSERT_WLOCKED(object);
2347 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2348 ("vm_page_alloc_contig: object %p has fictitious pages",
2349 object));
2350 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2351
2352 vm_page_iter_init(&pages, object);
2353 m_ret = NULL;
2354 #if VM_NRESERVLEVEL > 0
2355 /*
2356 * Can we allocate the pages from a reservation?
2357 */
2358 if (vm_object_reserv(object)) {
2359 m_ret = vm_reserv_alloc_contig(object, pindex, domain,
2360 req, npages, low, high, alignment, boundary, &pages);
2361 }
2362 #endif
2363 if (m_ret == NULL) {
2364 m_ret = vm_page_find_contig_domain(domain, req, npages,
2365 low, high, alignment, boundary);
2366 }
2367 if (m_ret == NULL) {
2368 (void)vm_domain_alloc_fail(VM_DOMAIN(domain), object, req);
2369 return (NULL);
2370 }
2371
2372 /*
2373 * Initialize the pages. Only the PG_ZERO flag is inherited.
2374 */
2375 flags = PG_ZERO;
2376 if ((req & VM_ALLOC_NODUMP) != 0)
2377 flags |= PG_NODUMP;
2378 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2379 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2380 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2381 else if ((req & VM_ALLOC_SBUSY) != 0)
2382 busy_lock = VPB_SHARERS_WORD(1);
2383 else
2384 busy_lock = VPB_UNBUSIED;
2385 if ((req & VM_ALLOC_WIRED) != 0)
2386 vm_wire_add(npages);
2387 if (object->memattr != VM_MEMATTR_DEFAULT &&
2388 memattr == VM_MEMATTR_DEFAULT)
2389 memattr = object->memattr;
2390 for (m = m_ret; m < &m_ret[npages]; m++) {
2391 vm_page_dequeue(m);
2392 vm_page_alloc_check(m);
2393 m->a.flags = 0;
2394 m->flags = (m->flags | PG_NODUMP) & flags;
2395 m->busy_lock = busy_lock;
2396 if ((req & VM_ALLOC_WIRED) != 0)
2397 m->ref_count = 1;
2398 m->a.act_count = 0;
2399 m->oflags = oflags;
2400 m->pool = VM_FREEPOOL_DEFAULT;
2401 if (vm_page_iter_insert(m, object, pindex, &pages)) {
2402 if ((req & VM_ALLOC_WIRED) != 0)
2403 vm_wire_sub(npages);
2404 KASSERT(m->object == NULL,
2405 ("page %p has object", m));
2406 mpred = m;
2407 for (m = m_ret; m < &m_ret[npages]; m++) {
2408 if (m <= mpred &&
2409 (req & VM_ALLOC_WIRED) != 0)
2410 m->ref_count = 0;
2411 m->oflags = VPO_UNMANAGED;
2412 m->busy_lock = VPB_UNBUSIED;
2413 /* Don't change PG_ZERO. */
2414 vm_page_free_toq(m);
2415 }
2416 if (req & VM_ALLOC_WAITFAIL) {
2417 VM_OBJECT_WUNLOCK(object);
2418 vm_radix_wait();
2419 VM_OBJECT_WLOCK(object);
2420 }
2421 return (NULL);
2422 }
2423 if (memattr != VM_MEMATTR_DEFAULT)
2424 pmap_page_set_memattr(m, memattr);
2425 pindex++;
2426 }
2427 return (m_ret);
2428 }
2429
2430 /*
2431 * Allocate a physical page that is not intended to be inserted into a VM
2432 * object.
2433 */
2434 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2435 vm_page_alloc_noobj_domain(int domain, int req)
2436 {
2437 struct vm_domain *vmd;
2438 vm_page_t m;
2439 int flags;
2440
2441 #define VPAN_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2442 VM_ALLOC_NOFREE | VM_ALLOC_WAITOK)
2443 KASSERT((req & ~VPAN_FLAGS) == 0,
2444 ("invalid request %#x", req));
2445
2446 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2447 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2448 vmd = VM_DOMAIN(domain);
2449 again:
2450 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2451 m = vm_page_alloc_nofree_domain(domain, req);
2452 if (m != NULL)
2453 goto found;
2454 }
2455
2456 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2457 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2458 M_NOWAIT | M_NOVM);
2459 if (m != NULL) {
2460 flags |= PG_PCPU_CACHE;
2461 goto found;
2462 }
2463 }
2464
2465 if (vm_domain_allocate(vmd, req, 1)) {
2466 vm_domain_free_lock(vmd);
2467 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2468 vm_domain_free_unlock(vmd);
2469 if (m == NULL) {
2470 vm_domain_freecnt_inc(vmd, 1);
2471 #if VM_NRESERVLEVEL > 0
2472 if (vm_reserv_reclaim_inactive(domain))
2473 goto again;
2474 #endif
2475 }
2476 }
2477 if (m == NULL) {
2478 if (!vm_domain_alloc_fail(vmd, NULL, req))
2479 return (NULL);
2480 goto again;
2481 }
2482
2483 found:
2484 /*
2485 * If the page comes from the free page cache, then it might still
2486 * have a pending deferred dequeue. Specifically, when the page is
2487 * imported from a different pool by vm_phys_alloc_npages(), the
2488 * second, third, etc. pages in a non-zero order set could have
2489 * pending deferred dequeues.
2490 */
2491 vm_page_dequeue(m);
2492 vm_page_alloc_check(m);
2493
2494 /*
2495 * Consumers should not rely on a useful default pindex value.
2496 */
2497 m->pindex = 0xdeadc0dedeadc0de;
2498 m->flags = (m->flags & PG_ZERO) | flags;
2499 m->a.flags = 0;
2500 m->oflags = VPO_UNMANAGED;
2501 m->pool = VM_FREEPOOL_DIRECT;
2502 m->busy_lock = VPB_UNBUSIED;
2503 if ((req & VM_ALLOC_WIRED) != 0) {
2504 vm_wire_add(1);
2505 m->ref_count = 1;
2506 }
2507
2508 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2509 pmap_zero_page(m);
2510
2511 return (m);
2512 }
2513
2514 #if VM_NRESERVLEVEL > 1
2515 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2516 #elif VM_NRESERVLEVEL > 0
2517 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER
2518 #else
2519 #define VM_NOFREE_IMPORT_ORDER 8
2520 #endif
2521
2522 /*
2523 * Allocate a single NOFREE page.
2524 *
2525 * This routine hands out NOFREE pages from higher-order
2526 * physical memory blocks in order to reduce memory fragmentation.
2527 * When a NOFREE for a given domain chunk is used up,
2528 * the routine will try to fetch a new one from the freelists
2529 * and discard the old one.
2530 */
2531 static vm_page_t __noinline
vm_page_alloc_nofree_domain(int domain,int req)2532 vm_page_alloc_nofree_domain(int domain, int req)
2533 {
2534 vm_page_t m;
2535 struct vm_domain *vmd;
2536
2537 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2538
2539 vmd = VM_DOMAIN(domain);
2540 vm_domain_free_lock(vmd);
2541 if (TAILQ_EMPTY(&vmd->vmd_nofreeq)) {
2542 int count;
2543
2544 count = 1 << VM_NOFREE_IMPORT_ORDER;
2545 if (!vm_domain_allocate(vmd, req, count)) {
2546 vm_domain_free_unlock(vmd);
2547 return (NULL);
2548 }
2549 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2550 VM_NOFREE_IMPORT_ORDER);
2551 if (m == NULL) {
2552 vm_domain_freecnt_inc(vmd, count);
2553 vm_domain_free_unlock(vmd);
2554 return (NULL);
2555 }
2556 m->ref_count = count - 1;
2557 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2558 atomic_add_long(&nofreeq_size, count);
2559 }
2560 m = TAILQ_FIRST(&vmd->vmd_nofreeq);
2561 TAILQ_REMOVE(&vmd->vmd_nofreeq, m, plinks.q);
2562 if (m->ref_count > 0) {
2563 vm_page_t m_next;
2564
2565 m_next = &m[1];
2566 vm_page_dequeue(m_next);
2567 m_next->ref_count = m->ref_count - 1;
2568 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m_next, plinks.q);
2569 m->ref_count = 0;
2570 }
2571 vm_domain_free_unlock(vmd);
2572 atomic_add_long(&nofreeq_size, -1);
2573 VM_CNT_INC(v_nofree_count);
2574
2575 return (m);
2576 }
2577
2578 /*
2579 * Though a NOFREE page by definition should not be freed, we support putting
2580 * them aside for future NOFREE allocations. This enables code which allocates
2581 * NOFREE pages for some purpose but then encounters an error and releases
2582 * resources.
2583 */
2584 static void __noinline
vm_page_free_nofree(struct vm_domain * vmd,vm_page_t m)2585 vm_page_free_nofree(struct vm_domain *vmd, vm_page_t m)
2586 {
2587 VM_CNT_ADD(v_nofree_count, -1);
2588 atomic_add_long(&nofreeq_size, 1);
2589 vm_domain_free_lock(vmd);
2590 MPASS(m->ref_count == 0);
2591 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2592 vm_domain_free_unlock(vmd);
2593 }
2594
2595 vm_page_t
vm_page_alloc_noobj(int req)2596 vm_page_alloc_noobj(int req)
2597 {
2598 struct vm_domainset_iter di;
2599 vm_page_t m;
2600 int domain;
2601
2602 if (vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req) != 0)
2603 return (NULL);
2604
2605 do {
2606 m = vm_page_alloc_noobj_domain(domain, req);
2607 if (m != NULL)
2608 break;
2609 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2610
2611 return (m);
2612 }
2613
2614 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2615 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2616 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2617 vm_memattr_t memattr)
2618 {
2619 struct vm_domainset_iter di;
2620 vm_page_t m;
2621 int domain;
2622
2623 if (vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req) != 0)
2624 return (NULL);
2625
2626 do {
2627 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2628 high, alignment, boundary, memattr);
2629 if (m != NULL)
2630 break;
2631 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2632
2633 return (m);
2634 }
2635
2636 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2637 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2638 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2639 vm_memattr_t memattr)
2640 {
2641 vm_page_t m, m_ret;
2642 u_int flags;
2643
2644 #define VPANC_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2645 VM_ALLOC_NORECLAIM | VM_ALLOC_WAITOK)
2646 KASSERT((req & ~VPANC_FLAGS) == 0,
2647 ("invalid request %#x", req));
2648 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2649 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2650 ("invalid request %#x", req));
2651 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2652
2653 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2654 low, high, alignment, boundary)) == NULL) {
2655 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2656 return (NULL);
2657 }
2658
2659 /*
2660 * Initialize the pages. Only the PG_ZERO flag is inherited.
2661 */
2662 flags = PG_ZERO;
2663 if ((req & VM_ALLOC_NODUMP) != 0)
2664 flags |= PG_NODUMP;
2665 if ((req & VM_ALLOC_WIRED) != 0)
2666 vm_wire_add(npages);
2667 for (m = m_ret; m < &m_ret[npages]; m++) {
2668 vm_page_dequeue(m);
2669 vm_page_alloc_check(m);
2670
2671 /*
2672 * Consumers should not rely on a useful default pindex value.
2673 */
2674 m->pindex = 0xdeadc0dedeadc0de;
2675 m->a.flags = 0;
2676 m->flags = (m->flags | PG_NODUMP) & flags;
2677 m->busy_lock = VPB_UNBUSIED;
2678 if ((req & VM_ALLOC_WIRED) != 0)
2679 m->ref_count = 1;
2680 m->a.act_count = 0;
2681 m->oflags = VPO_UNMANAGED;
2682 m->pool = VM_FREEPOOL_DIRECT;
2683
2684 /*
2685 * Zero the page before updating any mappings since the page is
2686 * not yet shared with any devices which might require the
2687 * non-default memory attribute. pmap_page_set_memattr()
2688 * flushes data caches before returning.
2689 */
2690 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2691 pmap_zero_page(m);
2692 if (memattr != VM_MEMATTR_DEFAULT)
2693 pmap_page_set_memattr(m, memattr);
2694 }
2695 return (m_ret);
2696 }
2697
2698 /*
2699 * Check a page that has been freshly dequeued from a freelist.
2700 */
2701 static void
vm_page_alloc_check(vm_page_t m)2702 vm_page_alloc_check(vm_page_t m)
2703 {
2704
2705 KASSERT(m->object == NULL, ("page %p has object", m));
2706 KASSERT(m->a.queue == PQ_NONE &&
2707 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2708 ("page %p has unexpected queue %d, flags %#x",
2709 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2710 KASSERT(m->ref_count == 0, ("page %p has references", m));
2711 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2712 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2713 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2714 ("page %p has unexpected memattr %d",
2715 m, pmap_page_get_memattr(m)));
2716 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2717 pmap_vm_page_alloc_check(m);
2718 }
2719
2720 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2721 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2722 {
2723 struct vm_domain *vmd;
2724 struct vm_pgcache *pgcache;
2725 int i;
2726
2727 pgcache = arg;
2728 vmd = VM_DOMAIN(pgcache->domain);
2729
2730 /*
2731 * The page daemon should avoid creating extra memory pressure since its
2732 * main purpose is to replenish the store of free pages.
2733 */
2734 if (vmd->vmd_severeset || curproc == pageproc ||
2735 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2736 return (0);
2737 domain = vmd->vmd_domain;
2738 vm_domain_free_lock(vmd);
2739 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2740 (vm_page_t *)store);
2741 vm_domain_free_unlock(vmd);
2742 if (cnt != i)
2743 vm_domain_freecnt_inc(vmd, cnt - i);
2744
2745 return (i);
2746 }
2747
2748 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2749 vm_page_zone_release(void *arg, void **store, int cnt)
2750 {
2751 struct vm_domain *vmd;
2752 struct vm_pgcache *pgcache;
2753 vm_page_t m;
2754 int i;
2755
2756 pgcache = arg;
2757 vmd = VM_DOMAIN(pgcache->domain);
2758 vm_domain_free_lock(vmd);
2759 for (i = 0; i < cnt; i++) {
2760 m = (vm_page_t)store[i];
2761 vm_phys_free_pages(m, pgcache->pool, 0);
2762 }
2763 vm_domain_free_unlock(vmd);
2764 vm_domain_freecnt_inc(vmd, cnt);
2765 }
2766
2767 #define VPSC_ANY 0 /* No restrictions. */
2768 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2769 #define VPSC_NOSUPER 2 /* Skip superpages. */
2770
2771 /*
2772 * vm_page_scan_contig:
2773 *
2774 * Scan vm_page_array[] between the specified entries "m_start" and
2775 * "m_end" for a run of contiguous physical pages that satisfy the
2776 * specified conditions, and return the lowest page in the run. The
2777 * specified "alignment" determines the alignment of the lowest physical
2778 * page in the run. If the specified "boundary" is non-zero, then the
2779 * run of physical pages cannot span a physical address that is a
2780 * multiple of "boundary".
2781 *
2782 * "m_end" is never dereferenced, so it need not point to a vm_page
2783 * structure within vm_page_array[].
2784 *
2785 * "npages" must be greater than zero. "m_start" and "m_end" must not
2786 * span a hole (or discontiguity) in the physical address space. Both
2787 * "alignment" and "boundary" must be a power of two.
2788 */
2789 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2790 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2791 u_long alignment, vm_paddr_t boundary, int options)
2792 {
2793 vm_object_t object;
2794 vm_paddr_t pa;
2795 vm_page_t m, m_run;
2796 #if VM_NRESERVLEVEL > 0
2797 int level;
2798 #endif
2799 int m_inc, order, run_ext, run_len;
2800
2801 KASSERT(npages > 0, ("npages is 0"));
2802 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2803 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2804 m_run = NULL;
2805 run_len = 0;
2806 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2807 KASSERT((m->flags & PG_MARKER) == 0,
2808 ("page %p is PG_MARKER", m));
2809 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2810 ("fictitious page %p has invalid ref count", m));
2811
2812 /*
2813 * If the current page would be the start of a run, check its
2814 * physical address against the end, alignment, and boundary
2815 * conditions. If it doesn't satisfy these conditions, either
2816 * terminate the scan or advance to the next page that
2817 * satisfies the failed condition.
2818 */
2819 if (run_len == 0) {
2820 KASSERT(m_run == NULL, ("m_run != NULL"));
2821 if (m + npages > m_end)
2822 break;
2823 pa = VM_PAGE_TO_PHYS(m);
2824 if (!vm_addr_align_ok(pa, alignment)) {
2825 m_inc = atop(roundup2(pa, alignment) - pa);
2826 continue;
2827 }
2828 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2829 m_inc = atop(roundup2(pa, boundary) - pa);
2830 continue;
2831 }
2832 } else
2833 KASSERT(m_run != NULL, ("m_run == NULL"));
2834
2835 retry:
2836 m_inc = 1;
2837 if (vm_page_wired(m))
2838 run_ext = 0;
2839 #if VM_NRESERVLEVEL > 0
2840 else if ((level = vm_reserv_level(m)) >= 0 &&
2841 (options & VPSC_NORESERV) != 0) {
2842 run_ext = 0;
2843 /* Advance to the end of the reservation. */
2844 pa = VM_PAGE_TO_PHYS(m);
2845 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2846 pa);
2847 }
2848 #endif
2849 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2850 /*
2851 * The page is considered eligible for relocation if
2852 * and only if it could be laundered or reclaimed by
2853 * the page daemon.
2854 */
2855 VM_OBJECT_RLOCK(object);
2856 if (object != m->object) {
2857 VM_OBJECT_RUNLOCK(object);
2858 goto retry;
2859 }
2860 /* Don't care: PG_NODUMP, PG_ZERO. */
2861 if ((object->flags & OBJ_SWAP) == 0 &&
2862 object->type != OBJT_VNODE) {
2863 run_ext = 0;
2864 #if VM_NRESERVLEVEL > 0
2865 } else if ((options & VPSC_NOSUPER) != 0 &&
2866 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2867 run_ext = 0;
2868 /* Advance to the end of the superpage. */
2869 pa = VM_PAGE_TO_PHYS(m);
2870 m_inc = atop(roundup2(pa + 1,
2871 vm_reserv_size(level)) - pa);
2872 #endif
2873 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2874 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2875 /*
2876 * The page is allocated but eligible for
2877 * relocation. Extend the current run by one
2878 * page.
2879 */
2880 KASSERT(pmap_page_get_memattr(m) ==
2881 VM_MEMATTR_DEFAULT,
2882 ("page %p has an unexpected memattr", m));
2883 KASSERT((m->oflags & (VPO_SWAPINPROG |
2884 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2885 ("page %p has unexpected oflags", m));
2886 /* Don't care: PGA_NOSYNC. */
2887 run_ext = 1;
2888 } else
2889 run_ext = 0;
2890 VM_OBJECT_RUNLOCK(object);
2891 #if VM_NRESERVLEVEL > 0
2892 } else if (level >= 0) {
2893 /*
2894 * The page is reserved but not yet allocated. In
2895 * other words, it is still free. Extend the current
2896 * run by one page.
2897 */
2898 run_ext = 1;
2899 #endif
2900 } else if ((order = m->order) < VM_NFREEORDER) {
2901 /*
2902 * The page is enqueued in the physical memory
2903 * allocator's free page queues. Moreover, it is the
2904 * first page in a power-of-two-sized run of
2905 * contiguous free pages. Add these pages to the end
2906 * of the current run, and jump ahead.
2907 */
2908 run_ext = 1 << order;
2909 m_inc = 1 << order;
2910 } else {
2911 /*
2912 * Skip the page for one of the following reasons: (1)
2913 * It is enqueued in the physical memory allocator's
2914 * free page queues. However, it is not the first
2915 * page in a run of contiguous free pages. (This case
2916 * rarely occurs because the scan is performed in
2917 * ascending order.) (2) It is not reserved, and it is
2918 * transitioning from free to allocated. (Conversely,
2919 * the transition from allocated to free for managed
2920 * pages is blocked by the page busy lock.) (3) It is
2921 * allocated but not contained by an object and not
2922 * wired, e.g., allocated by Xen's balloon driver.
2923 */
2924 run_ext = 0;
2925 }
2926
2927 /*
2928 * Extend or reset the current run of pages.
2929 */
2930 if (run_ext > 0) {
2931 if (run_len == 0)
2932 m_run = m;
2933 run_len += run_ext;
2934 } else {
2935 if (run_len > 0) {
2936 m_run = NULL;
2937 run_len = 0;
2938 }
2939 }
2940 }
2941 if (run_len >= npages)
2942 return (m_run);
2943 return (NULL);
2944 }
2945
2946 /*
2947 * vm_page_reclaim_run:
2948 *
2949 * Try to relocate each of the allocated virtual pages within the
2950 * specified run of physical pages to a new physical address. Free the
2951 * physical pages underlying the relocated virtual pages. A virtual page
2952 * is relocatable if and only if it could be laundered or reclaimed by
2953 * the page daemon. Whenever possible, a virtual page is relocated to a
2954 * physical address above "high".
2955 *
2956 * Returns 0 if every physical page within the run was already free or
2957 * just freed by a successful relocation. Otherwise, returns a non-zero
2958 * value indicating why the last attempt to relocate a virtual page was
2959 * unsuccessful.
2960 *
2961 * "req_class" must be an allocation class.
2962 */
2963 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)2964 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2965 vm_paddr_t high)
2966 {
2967 struct vm_domain *vmd;
2968 struct spglist free;
2969 vm_object_t object;
2970 vm_paddr_t pa;
2971 vm_page_t m, m_end, m_new;
2972 int error, order, req;
2973
2974 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2975 ("req_class is not an allocation class"));
2976 SLIST_INIT(&free);
2977 error = 0;
2978 m = m_run;
2979 m_end = m_run + npages;
2980 for (; error == 0 && m < m_end; m++) {
2981 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2982 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2983
2984 /*
2985 * Racily check for wirings. Races are handled once the object
2986 * lock is held and the page is unmapped.
2987 */
2988 if (vm_page_wired(m))
2989 error = EBUSY;
2990 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2991 /*
2992 * The page is relocated if and only if it could be
2993 * laundered or reclaimed by the page daemon.
2994 */
2995 VM_OBJECT_WLOCK(object);
2996 /* Don't care: PG_NODUMP, PG_ZERO. */
2997 if (m->object != object ||
2998 ((object->flags & OBJ_SWAP) == 0 &&
2999 object->type != OBJT_VNODE))
3000 error = EINVAL;
3001 else if (object->memattr != VM_MEMATTR_DEFAULT)
3002 error = EINVAL;
3003 else if (vm_page_queue(m) != PQ_NONE &&
3004 vm_page_tryxbusy(m) != 0) {
3005 if (vm_page_wired(m)) {
3006 vm_page_xunbusy(m);
3007 error = EBUSY;
3008 goto unlock;
3009 }
3010 KASSERT(pmap_page_get_memattr(m) ==
3011 VM_MEMATTR_DEFAULT,
3012 ("page %p has an unexpected memattr", m));
3013 KASSERT(m->oflags == 0,
3014 ("page %p has unexpected oflags", m));
3015 /* Don't care: PGA_NOSYNC. */
3016 if (!vm_page_none_valid(m)) {
3017 /*
3018 * First, try to allocate a new page
3019 * that is above "high". Failing
3020 * that, try to allocate a new page
3021 * that is below "m_run". Allocate
3022 * the new page between the end of
3023 * "m_run" and "high" only as a last
3024 * resort.
3025 */
3026 req = req_class;
3027 if ((m->flags & PG_NODUMP) != 0)
3028 req |= VM_ALLOC_NODUMP;
3029 if (trunc_page(high) !=
3030 ~(vm_paddr_t)PAGE_MASK) {
3031 m_new =
3032 vm_page_alloc_noobj_contig(
3033 req, 1, round_page(high),
3034 ~(vm_paddr_t)0, PAGE_SIZE,
3035 0, VM_MEMATTR_DEFAULT);
3036 } else
3037 m_new = NULL;
3038 if (m_new == NULL) {
3039 pa = VM_PAGE_TO_PHYS(m_run);
3040 m_new =
3041 vm_page_alloc_noobj_contig(
3042 req, 1, 0, pa - 1,
3043 PAGE_SIZE, 0,
3044 VM_MEMATTR_DEFAULT);
3045 }
3046 if (m_new == NULL) {
3047 pa += ptoa(npages);
3048 m_new =
3049 vm_page_alloc_noobj_contig(
3050 req, 1, pa, high, PAGE_SIZE,
3051 0, VM_MEMATTR_DEFAULT);
3052 }
3053 if (m_new == NULL) {
3054 vm_page_xunbusy(m);
3055 error = ENOMEM;
3056 goto unlock;
3057 }
3058
3059 /*
3060 * Unmap the page and check for new
3061 * wirings that may have been acquired
3062 * through a pmap lookup.
3063 */
3064 if (object->ref_count != 0 &&
3065 !vm_page_try_remove_all(m)) {
3066 vm_page_xunbusy(m);
3067 vm_page_free(m_new);
3068 error = EBUSY;
3069 goto unlock;
3070 }
3071
3072 /*
3073 * Replace "m" with the new page. For
3074 * vm_page_replace(), "m" must be busy
3075 * and dequeued. Finally, change "m"
3076 * as if vm_page_free() was called.
3077 */
3078 m_new->a.flags = m->a.flags &
3079 ~PGA_QUEUE_STATE_MASK;
3080 KASSERT(m_new->oflags == VPO_UNMANAGED,
3081 ("page %p is managed", m_new));
3082 m_new->oflags = 0;
3083 pmap_copy_page(m, m_new);
3084 m_new->valid = m->valid;
3085 m_new->dirty = m->dirty;
3086 m->flags &= ~PG_ZERO;
3087 vm_page_dequeue(m);
3088 if (vm_page_replace_hold(m_new, object,
3089 m->pindex, m) &&
3090 vm_page_free_prep(m))
3091 SLIST_INSERT_HEAD(&free, m,
3092 plinks.s.ss);
3093
3094 /*
3095 * The new page must be deactivated
3096 * before the object is unlocked.
3097 */
3098 vm_page_deactivate(m_new);
3099 } else {
3100 m->flags &= ~PG_ZERO;
3101 vm_page_dequeue(m);
3102 if (vm_page_free_prep(m))
3103 SLIST_INSERT_HEAD(&free, m,
3104 plinks.s.ss);
3105 KASSERT(m->dirty == 0,
3106 ("page %p is dirty", m));
3107 }
3108 } else
3109 error = EBUSY;
3110 unlock:
3111 VM_OBJECT_WUNLOCK(object);
3112 } else {
3113 MPASS(vm_page_domain(m) == domain);
3114 vmd = VM_DOMAIN(domain);
3115 vm_domain_free_lock(vmd);
3116 order = m->order;
3117 if (order < VM_NFREEORDER) {
3118 /*
3119 * The page is enqueued in the physical memory
3120 * allocator's free page queues. Moreover, it
3121 * is the first page in a power-of-two-sized
3122 * run of contiguous free pages. Jump ahead
3123 * to the last page within that run, and
3124 * continue from there.
3125 */
3126 m += (1 << order) - 1;
3127 }
3128 #if VM_NRESERVLEVEL > 0
3129 else if (vm_reserv_is_page_free(m))
3130 order = 0;
3131 #endif
3132 vm_domain_free_unlock(vmd);
3133 if (order == VM_NFREEORDER)
3134 error = EINVAL;
3135 }
3136 }
3137 if ((m = SLIST_FIRST(&free)) != NULL) {
3138 int cnt;
3139
3140 vmd = VM_DOMAIN(domain);
3141 cnt = 0;
3142 vm_domain_free_lock(vmd);
3143 do {
3144 MPASS(vm_page_domain(m) == domain);
3145 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3146 vm_phys_free_pages(m, m->pool, 0);
3147 cnt++;
3148 } while ((m = SLIST_FIRST(&free)) != NULL);
3149 vm_domain_free_unlock(vmd);
3150 vm_domain_freecnt_inc(vmd, cnt);
3151 }
3152 return (error);
3153 }
3154
3155 #define NRUNS 16
3156
3157 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3158
3159 #define MIN_RECLAIM 8
3160
3161 /*
3162 * vm_page_reclaim_contig:
3163 *
3164 * Reclaim allocated, contiguous physical memory satisfying the specified
3165 * conditions by relocating the virtual pages using that physical memory.
3166 * Returns 0 if reclamation is successful, ERANGE if the specified domain
3167 * can't possibly satisfy the reclamation request, or ENOMEM if not
3168 * currently able to reclaim the requested number of pages. Since
3169 * relocation requires the allocation of physical pages, reclamation may
3170 * fail with ENOMEM due to a shortage of free pages. When reclamation
3171 * fails in this manner, callers are expected to perform vm_wait() before
3172 * retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3173 *
3174 * The caller must always specify an allocation class through "req".
3175 *
3176 * allocation classes:
3177 * VM_ALLOC_NORMAL normal process request
3178 * VM_ALLOC_SYSTEM system *really* needs a page
3179 * VM_ALLOC_INTERRUPT interrupt time request
3180 *
3181 * The optional allocation flags are ignored.
3182 *
3183 * "npages" must be greater than zero. Both "alignment" and "boundary"
3184 * must be a power of two.
3185 */
3186 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3187 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3188 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3189 int desired_runs)
3190 {
3191 struct vm_domain *vmd;
3192 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3193 u_long count, minalign, reclaimed;
3194 int error, i, min_reclaim, nruns, options, req_class;
3195 int segind, start_segind;
3196 int ret;
3197
3198 KASSERT(npages > 0, ("npages is 0"));
3199 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3200 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3201
3202 ret = ENOMEM;
3203
3204 /*
3205 * If the caller wants to reclaim multiple runs, try to allocate
3206 * space to store the runs. If that fails, fall back to the old
3207 * behavior of just reclaiming MIN_RECLAIM pages.
3208 */
3209 if (desired_runs > 1)
3210 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3211 M_TEMP, M_NOWAIT);
3212 else
3213 m_runs = NULL;
3214
3215 if (m_runs == NULL) {
3216 m_runs = _m_runs;
3217 nruns = NRUNS;
3218 } else {
3219 nruns = NRUNS + desired_runs - 1;
3220 }
3221 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3222
3223 /*
3224 * The caller will attempt an allocation after some runs have been
3225 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3226 * of vm_phys_alloc_contig(), round up the requested length to the next
3227 * power of two or maximum chunk size, and ensure that each run is
3228 * suitably aligned.
3229 */
3230 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3231 npages = roundup2(npages, minalign);
3232 if (alignment < ptoa(minalign))
3233 alignment = ptoa(minalign);
3234
3235 /*
3236 * The page daemon is allowed to dig deeper into the free page list.
3237 */
3238 req_class = req & VM_ALLOC_CLASS_MASK;
3239 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3240 req_class = VM_ALLOC_SYSTEM;
3241
3242 start_segind = vm_phys_lookup_segind(low);
3243
3244 /*
3245 * Return if the number of free pages cannot satisfy the requested
3246 * allocation.
3247 */
3248 vmd = VM_DOMAIN(domain);
3249 count = vmd->vmd_free_count;
3250 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3251 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3252 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3253 goto done;
3254
3255 /*
3256 * Scan up to three times, relaxing the restrictions ("options") on
3257 * the reclamation of reservations and superpages each time.
3258 */
3259 for (options = VPSC_NORESERV;;) {
3260 bool phys_range_exists = false;
3261
3262 /*
3263 * Find the highest runs that satisfy the given constraints
3264 * and restrictions, and record them in "m_runs".
3265 */
3266 count = 0;
3267 segind = start_segind;
3268 while ((segind = vm_phys_find_range(bounds, segind, domain,
3269 npages, low, high)) != -1) {
3270 phys_range_exists = true;
3271 while ((m_run = vm_page_scan_contig(npages, bounds[0],
3272 bounds[1], alignment, boundary, options))) {
3273 bounds[0] = m_run + npages;
3274 m_runs[RUN_INDEX(count, nruns)] = m_run;
3275 count++;
3276 }
3277 segind++;
3278 }
3279
3280 if (!phys_range_exists) {
3281 ret = ERANGE;
3282 goto done;
3283 }
3284
3285 /*
3286 * Reclaim the highest runs in LIFO (descending) order until
3287 * the number of reclaimed pages, "reclaimed", is at least
3288 * "min_reclaim". Reset "reclaimed" each time because each
3289 * reclamation is idempotent, and runs will (likely) recur
3290 * from one scan to the next as restrictions are relaxed.
3291 */
3292 reclaimed = 0;
3293 for (i = 0; count > 0 && i < nruns; i++) {
3294 count--;
3295 m_run = m_runs[RUN_INDEX(count, nruns)];
3296 error = vm_page_reclaim_run(req_class, domain, npages,
3297 m_run, high);
3298 if (error == 0) {
3299 reclaimed += npages;
3300 if (reclaimed >= min_reclaim) {
3301 ret = 0;
3302 goto done;
3303 }
3304 }
3305 }
3306
3307 /*
3308 * Either relax the restrictions on the next scan or return if
3309 * the last scan had no restrictions.
3310 */
3311 if (options == VPSC_NORESERV)
3312 options = VPSC_NOSUPER;
3313 else if (options == VPSC_NOSUPER)
3314 options = VPSC_ANY;
3315 else if (options == VPSC_ANY) {
3316 if (reclaimed != 0)
3317 ret = 0;
3318 goto done;
3319 }
3320 }
3321 done:
3322 if (m_runs != _m_runs)
3323 free(m_runs, M_TEMP);
3324 return (ret);
3325 }
3326
3327 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3328 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3329 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3330 {
3331 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low,
3332 high, alignment, boundary, 1));
3333 }
3334
3335 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3336 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3337 u_long alignment, vm_paddr_t boundary)
3338 {
3339 struct vm_domainset_iter di;
3340 int domain, ret, status;
3341
3342 ret = ERANGE;
3343
3344 if (vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req) != 0)
3345 return (ret);
3346
3347 do {
3348 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3349 high, alignment, boundary);
3350 if (status == 0)
3351 return (0);
3352 else if (status == ERANGE)
3353 vm_domainset_iter_ignore(&di, domain);
3354 else {
3355 KASSERT(status == ENOMEM, ("Unrecognized error %d "
3356 "from vm_page_reclaim_contig_domain()", status));
3357 ret = ENOMEM;
3358 }
3359 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
3360
3361 return (ret);
3362 }
3363
3364 /*
3365 * Set the domain in the appropriate page level domainset.
3366 */
3367 void
vm_domain_set(struct vm_domain * vmd)3368 vm_domain_set(struct vm_domain *vmd)
3369 {
3370
3371 mtx_lock(&vm_domainset_lock);
3372 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3373 vmd->vmd_minset = 1;
3374 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3375 }
3376 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3377 vmd->vmd_severeset = 1;
3378 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3379 }
3380 mtx_unlock(&vm_domainset_lock);
3381 }
3382
3383 /*
3384 * Clear the domain from the appropriate page level domainset.
3385 */
3386 void
vm_domain_clear(struct vm_domain * vmd)3387 vm_domain_clear(struct vm_domain *vmd)
3388 {
3389
3390 mtx_lock(&vm_domainset_lock);
3391 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3392 vmd->vmd_minset = 0;
3393 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3394 if (vm_min_waiters != 0) {
3395 vm_min_waiters = 0;
3396 wakeup(&vm_min_domains);
3397 }
3398 }
3399 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3400 vmd->vmd_severeset = 0;
3401 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3402 if (vm_severe_waiters != 0) {
3403 vm_severe_waiters = 0;
3404 wakeup(&vm_severe_domains);
3405 }
3406 }
3407
3408 /*
3409 * If pageout daemon needs pages, then tell it that there are
3410 * some free.
3411 */
3412 if (vmd->vmd_pageout_pages_needed &&
3413 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3414 wakeup(&vmd->vmd_pageout_pages_needed);
3415 vmd->vmd_pageout_pages_needed = 0;
3416 }
3417
3418 /* See comments in vm_wait_doms(). */
3419 if (vm_pageproc_waiters) {
3420 vm_pageproc_waiters = 0;
3421 wakeup(&vm_pageproc_waiters);
3422 }
3423 mtx_unlock(&vm_domainset_lock);
3424 }
3425
3426 /*
3427 * Wait for free pages to exceed the min threshold globally.
3428 */
3429 void
vm_wait_min(void)3430 vm_wait_min(void)
3431 {
3432
3433 mtx_lock(&vm_domainset_lock);
3434 while (vm_page_count_min()) {
3435 vm_min_waiters++;
3436 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3437 }
3438 mtx_unlock(&vm_domainset_lock);
3439 }
3440
3441 /*
3442 * Wait for free pages to exceed the severe threshold globally.
3443 */
3444 void
vm_wait_severe(void)3445 vm_wait_severe(void)
3446 {
3447
3448 mtx_lock(&vm_domainset_lock);
3449 while (vm_page_count_severe()) {
3450 vm_severe_waiters++;
3451 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3452 "vmwait", 0);
3453 }
3454 mtx_unlock(&vm_domainset_lock);
3455 }
3456
3457 u_int
vm_wait_count(void)3458 vm_wait_count(void)
3459 {
3460
3461 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3462 }
3463
3464 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3465 vm_wait_doms(const domainset_t *wdoms, int mflags)
3466 {
3467 int error;
3468
3469 error = 0;
3470
3471 /*
3472 * We use racey wakeup synchronization to avoid expensive global
3473 * locking for the pageproc when sleeping with a non-specific vm_wait.
3474 * To handle this, we only sleep for one tick in this instance. It
3475 * is expected that most allocations for the pageproc will come from
3476 * kmem or vm_page_grab* which will use the more specific and
3477 * race-free vm_wait_domain().
3478 */
3479 if (curproc == pageproc) {
3480 mtx_lock(&vm_domainset_lock);
3481 vm_pageproc_waiters++;
3482 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3483 PVM | PDROP | mflags, "pageprocwait", 1);
3484 } else {
3485 /*
3486 * XXX Ideally we would wait only until the allocation could
3487 * be satisfied. This condition can cause new allocators to
3488 * consume all freed pages while old allocators wait.
3489 */
3490 mtx_lock(&vm_domainset_lock);
3491 if (vm_page_count_min_set(wdoms)) {
3492 if (pageproc == NULL)
3493 panic("vm_wait in early boot");
3494 vm_min_waiters++;
3495 error = msleep(&vm_min_domains, &vm_domainset_lock,
3496 PVM | PDROP | mflags, "vmwait", 0);
3497 } else
3498 mtx_unlock(&vm_domainset_lock);
3499 }
3500 return (error);
3501 }
3502
3503 /*
3504 * vm_wait_domain:
3505 *
3506 * Sleep until free pages are available for allocation.
3507 * - Called in various places after failed memory allocations.
3508 */
3509 void
vm_wait_domain(int domain)3510 vm_wait_domain(int domain)
3511 {
3512 struct vm_domain *vmd;
3513 domainset_t wdom;
3514
3515 vmd = VM_DOMAIN(domain);
3516 vm_domain_free_assert_unlocked(vmd);
3517
3518 if (curproc == pageproc) {
3519 mtx_lock(&vm_domainset_lock);
3520 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3521 vmd->vmd_pageout_pages_needed = 1;
3522 msleep(&vmd->vmd_pageout_pages_needed,
3523 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3524 } else
3525 mtx_unlock(&vm_domainset_lock);
3526 } else {
3527 DOMAINSET_ZERO(&wdom);
3528 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3529 vm_wait_doms(&wdom, 0);
3530 }
3531 }
3532
3533 static int
vm_wait_flags(vm_object_t obj,int mflags)3534 vm_wait_flags(vm_object_t obj, int mflags)
3535 {
3536 struct domainset *d;
3537
3538 d = NULL;
3539
3540 /*
3541 * Carefully fetch pointers only once: the struct domainset
3542 * itself is ummutable but the pointer might change.
3543 */
3544 if (obj != NULL)
3545 d = obj->domain.dr_policy;
3546 if (d == NULL)
3547 d = curthread->td_domain.dr_policy;
3548
3549 return (vm_wait_doms(&d->ds_mask, mflags));
3550 }
3551
3552 /*
3553 * vm_wait:
3554 *
3555 * Sleep until free pages are available for allocation in the
3556 * affinity domains of the obj. If obj is NULL, the domain set
3557 * for the calling thread is used.
3558 * Called in various places after failed memory allocations.
3559 */
3560 void
vm_wait(vm_object_t obj)3561 vm_wait(vm_object_t obj)
3562 {
3563 (void)vm_wait_flags(obj, 0);
3564 }
3565
3566 int
vm_wait_intr(vm_object_t obj)3567 vm_wait_intr(vm_object_t obj)
3568 {
3569 return (vm_wait_flags(obj, PCATCH));
3570 }
3571
3572 /*
3573 * vm_domain_alloc_fail:
3574 *
3575 * Called when a page allocation function fails. Informs the
3576 * pagedaemon and performs the requested wait. Requires the
3577 * domain_free and object lock on entry. Returns with the
3578 * object lock held and free lock released. Returns an error when
3579 * retry is necessary.
3580 *
3581 */
3582 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3583 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3584 {
3585
3586 vm_domain_free_assert_unlocked(vmd);
3587
3588 atomic_add_int(&vmd->vmd_pageout_deficit,
3589 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3590 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3591 if (object != NULL)
3592 VM_OBJECT_WUNLOCK(object);
3593 vm_wait_domain(vmd->vmd_domain);
3594 if (object != NULL)
3595 VM_OBJECT_WLOCK(object);
3596 if (req & VM_ALLOC_WAITOK)
3597 return (EAGAIN);
3598 }
3599
3600 return (0);
3601 }
3602
3603 /*
3604 * vm_waitpfault:
3605 *
3606 * Sleep until free pages are available for allocation.
3607 * - Called only in vm_fault so that processes page faulting
3608 * can be easily tracked.
3609 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3610 * processes will be able to grab memory first. Do not change
3611 * this balance without careful testing first.
3612 */
3613 void
vm_waitpfault(struct domainset * dset,int timo)3614 vm_waitpfault(struct domainset *dset, int timo)
3615 {
3616
3617 /*
3618 * XXX Ideally we would wait only until the allocation could
3619 * be satisfied. This condition can cause new allocators to
3620 * consume all freed pages while old allocators wait.
3621 */
3622 mtx_lock(&vm_domainset_lock);
3623 if (vm_page_count_min_set(&dset->ds_mask)) {
3624 vm_min_waiters++;
3625 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3626 "pfault", timo);
3627 } else
3628 mtx_unlock(&vm_domainset_lock);
3629 }
3630
3631 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3632 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3633 {
3634
3635 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3636 }
3637
3638 #ifdef INVARIANTS
3639 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3640 vm_page_pagequeue(vm_page_t m)
3641 {
3642
3643 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3644 }
3645 #endif
3646
3647 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3648 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old,
3649 vm_page_astate_t new)
3650 {
3651 vm_page_astate_t tmp;
3652
3653 tmp = *old;
3654 do {
3655 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3656 return (true);
3657 counter_u64_add(pqstate_commit_retries, 1);
3658 } while (old->_bits == tmp._bits);
3659
3660 return (false);
3661 }
3662
3663 /*
3664 * Do the work of committing a queue state update that moves the page out of
3665 * its current queue.
3666 */
3667 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3668 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3669 vm_page_astate_t *old, vm_page_astate_t new)
3670 {
3671 vm_page_t next;
3672
3673 vm_pagequeue_assert_locked(pq);
3674 KASSERT(vm_page_pagequeue(m) == pq,
3675 ("%s: queue %p does not match page %p", __func__, pq, m));
3676 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3677 ("%s: invalid queue indices %d %d",
3678 __func__, old->queue, new.queue));
3679
3680 /*
3681 * Once the queue index of the page changes there is nothing
3682 * synchronizing with further updates to the page's physical
3683 * queue state. Therefore we must speculatively remove the page
3684 * from the queue now and be prepared to roll back if the queue
3685 * state update fails. If the page is not physically enqueued then
3686 * we just update its queue index.
3687 */
3688 if ((old->flags & PGA_ENQUEUED) != 0) {
3689 new.flags &= ~PGA_ENQUEUED;
3690 next = TAILQ_NEXT(m, plinks.q);
3691 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3692 vm_pagequeue_cnt_dec(pq);
3693 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3694 if (next == NULL)
3695 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3696 else
3697 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3698 vm_pagequeue_cnt_inc(pq);
3699 return (false);
3700 } else {
3701 return (true);
3702 }
3703 } else {
3704 return (vm_page_pqstate_fcmpset(m, old, new));
3705 }
3706 }
3707
3708 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3709 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3710 vm_page_astate_t new)
3711 {
3712 struct vm_pagequeue *pq;
3713 vm_page_astate_t as;
3714 bool ret;
3715
3716 pq = _vm_page_pagequeue(m, old->queue);
3717
3718 /*
3719 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3720 * corresponding page queue lock is held.
3721 */
3722 vm_pagequeue_lock(pq);
3723 as = vm_page_astate_load(m);
3724 if (__predict_false(as._bits != old->_bits)) {
3725 *old = as;
3726 ret = false;
3727 } else {
3728 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3729 }
3730 vm_pagequeue_unlock(pq);
3731 return (ret);
3732 }
3733
3734 /*
3735 * Commit a queue state update that enqueues or requeues a page.
3736 */
3737 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3738 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3739 vm_page_astate_t *old, vm_page_astate_t new)
3740 {
3741 struct vm_domain *vmd;
3742
3743 vm_pagequeue_assert_locked(pq);
3744 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3745 ("%s: invalid queue indices %d %d",
3746 __func__, old->queue, new.queue));
3747
3748 new.flags |= PGA_ENQUEUED;
3749 if (!vm_page_pqstate_fcmpset(m, old, new))
3750 return (false);
3751
3752 if ((old->flags & PGA_ENQUEUED) != 0)
3753 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3754 else
3755 vm_pagequeue_cnt_inc(pq);
3756
3757 /*
3758 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3759 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3760 * applied, even if it was set first.
3761 */
3762 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3763 vmd = vm_pagequeue_domain(m);
3764 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3765 ("%s: invalid page queue for page %p", __func__, m));
3766 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3767 } else {
3768 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3769 }
3770 return (true);
3771 }
3772
3773 /*
3774 * Commit a queue state update that encodes a request for a deferred queue
3775 * operation.
3776 */
3777 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3778 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3779 vm_page_astate_t new)
3780 {
3781
3782 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3783 ("%s: invalid state, queue %d flags %x",
3784 __func__, new.queue, new.flags));
3785
3786 if (old->_bits != new._bits &&
3787 !vm_page_pqstate_fcmpset(m, old, new))
3788 return (false);
3789 vm_page_pqbatch_submit(m, new.queue);
3790 return (true);
3791 }
3792
3793 /*
3794 * A generic queue state update function. This handles more cases than the
3795 * specialized functions above.
3796 */
3797 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3798 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3799 {
3800
3801 if (old->_bits == new._bits)
3802 return (true);
3803
3804 if (old->queue != PQ_NONE && new.queue != old->queue) {
3805 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3806 return (false);
3807 if (new.queue != PQ_NONE)
3808 vm_page_pqbatch_submit(m, new.queue);
3809 } else {
3810 if (!vm_page_pqstate_fcmpset(m, old, new))
3811 return (false);
3812 if (new.queue != PQ_NONE &&
3813 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3814 vm_page_pqbatch_submit(m, new.queue);
3815 }
3816 return (true);
3817 }
3818
3819 /*
3820 * Apply deferred queue state updates to a page.
3821 */
3822 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3823 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3824 {
3825 vm_page_astate_t new, old;
3826
3827 CRITICAL_ASSERT(curthread);
3828 vm_pagequeue_assert_locked(pq);
3829 KASSERT(queue < PQ_COUNT,
3830 ("%s: invalid queue index %d", __func__, queue));
3831 KASSERT(pq == _vm_page_pagequeue(m, queue),
3832 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3833
3834 for (old = vm_page_astate_load(m);;) {
3835 if (__predict_false(old.queue != queue ||
3836 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3837 counter_u64_add(queue_nops, 1);
3838 break;
3839 }
3840 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3841 ("%s: page %p is unmanaged", __func__, m));
3842
3843 new = old;
3844 if ((old.flags & PGA_DEQUEUE) != 0) {
3845 new.flags &= ~PGA_QUEUE_OP_MASK;
3846 new.queue = PQ_NONE;
3847 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3848 m, &old, new))) {
3849 counter_u64_add(queue_ops, 1);
3850 break;
3851 }
3852 } else {
3853 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3854 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3855 m, &old, new))) {
3856 counter_u64_add(queue_ops, 1);
3857 break;
3858 }
3859 }
3860 }
3861 }
3862
3863 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3864 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3865 uint8_t queue)
3866 {
3867 int i;
3868
3869 for (i = 0; i < bq->bq_cnt; i++)
3870 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3871 vm_batchqueue_init(bq);
3872 }
3873
3874 /*
3875 * vm_page_pqbatch_submit: [ internal use only ]
3876 *
3877 * Enqueue a page in the specified page queue's batched work queue.
3878 * The caller must have encoded the requested operation in the page
3879 * structure's a.flags field.
3880 */
3881 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3882 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3883 {
3884 struct vm_batchqueue *bq;
3885 struct vm_pagequeue *pq;
3886 int domain, slots_remaining;
3887
3888 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3889
3890 domain = vm_page_domain(m);
3891 critical_enter();
3892 bq = DPCPU_PTR(pqbatch[domain][queue]);
3893 slots_remaining = vm_batchqueue_insert(bq, m);
3894 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3895 /* keep building the bq */
3896 critical_exit();
3897 return;
3898 } else if (slots_remaining > 0 ) {
3899 /* Try to process the bq if we can get the lock */
3900 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3901 if (vm_pagequeue_trylock(pq)) {
3902 vm_pqbatch_process(pq, bq, queue);
3903 vm_pagequeue_unlock(pq);
3904 }
3905 critical_exit();
3906 return;
3907 }
3908 critical_exit();
3909
3910 /* if we make it here, the bq is full so wait for the lock */
3911
3912 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3913 vm_pagequeue_lock(pq);
3914 critical_enter();
3915 bq = DPCPU_PTR(pqbatch[domain][queue]);
3916 vm_pqbatch_process(pq, bq, queue);
3917 vm_pqbatch_process_page(pq, m, queue);
3918 vm_pagequeue_unlock(pq);
3919 critical_exit();
3920 }
3921
3922 /*
3923 * vm_page_pqbatch_drain: [ internal use only ]
3924 *
3925 * Force all per-CPU page queue batch queues to be drained. This is
3926 * intended for use in severe memory shortages, to ensure that pages
3927 * do not remain stuck in the batch queues.
3928 */
3929 void
vm_page_pqbatch_drain(void)3930 vm_page_pqbatch_drain(void)
3931 {
3932 struct thread *td;
3933 struct vm_domain *vmd;
3934 struct vm_pagequeue *pq;
3935 int cpu, domain, queue;
3936
3937 td = curthread;
3938 CPU_FOREACH(cpu) {
3939 thread_lock(td);
3940 sched_bind(td, cpu);
3941 thread_unlock(td);
3942
3943 for (domain = 0; domain < vm_ndomains; domain++) {
3944 vmd = VM_DOMAIN(domain);
3945 for (queue = 0; queue < PQ_COUNT; queue++) {
3946 pq = &vmd->vmd_pagequeues[queue];
3947 vm_pagequeue_lock(pq);
3948 critical_enter();
3949 vm_pqbatch_process(pq,
3950 DPCPU_PTR(pqbatch[domain][queue]), queue);
3951 critical_exit();
3952 vm_pagequeue_unlock(pq);
3953 }
3954 }
3955 }
3956 thread_lock(td);
3957 sched_unbind(td);
3958 thread_unlock(td);
3959 }
3960
3961 /*
3962 * vm_page_dequeue_deferred: [ internal use only ]
3963 *
3964 * Request removal of the given page from its current page
3965 * queue. Physical removal from the queue may be deferred
3966 * indefinitely.
3967 */
3968 void
vm_page_dequeue_deferred(vm_page_t m)3969 vm_page_dequeue_deferred(vm_page_t m)
3970 {
3971 vm_page_astate_t new, old;
3972
3973 old = vm_page_astate_load(m);
3974 do {
3975 if (old.queue == PQ_NONE) {
3976 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3977 ("%s: page %p has unexpected queue state",
3978 __func__, m));
3979 break;
3980 }
3981 new = old;
3982 new.flags |= PGA_DEQUEUE;
3983 } while (!vm_page_pqstate_commit_request(m, &old, new));
3984 }
3985
3986 /*
3987 * vm_page_dequeue:
3988 *
3989 * Remove the page from whichever page queue it's in, if any, before
3990 * returning.
3991 */
3992 void
vm_page_dequeue(vm_page_t m)3993 vm_page_dequeue(vm_page_t m)
3994 {
3995 vm_page_astate_t new, old;
3996
3997 old = vm_page_astate_load(m);
3998 do {
3999 if (__predict_true(old.queue == PQ_NONE)) {
4000 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4001 ("%s: page %p has unexpected queue state",
4002 __func__, m));
4003 break;
4004 }
4005 new = old;
4006 new.flags &= ~PGA_QUEUE_OP_MASK;
4007 new.queue = PQ_NONE;
4008 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4009
4010 }
4011
4012 /*
4013 * Schedule the given page for insertion into the specified page queue.
4014 * Physical insertion of the page may be deferred indefinitely.
4015 */
4016 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4017 vm_page_enqueue(vm_page_t m, uint8_t queue)
4018 {
4019
4020 KASSERT(m->a.queue == PQ_NONE &&
4021 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4022 ("%s: page %p is already enqueued", __func__, m));
4023 KASSERT(m->ref_count > 0,
4024 ("%s: page %p does not carry any references", __func__, m));
4025
4026 m->a.queue = queue;
4027 if ((m->a.flags & PGA_REQUEUE) == 0)
4028 vm_page_aflag_set(m, PGA_REQUEUE);
4029 vm_page_pqbatch_submit(m, queue);
4030 }
4031
4032 /*
4033 * vm_page_free_prep:
4034 *
4035 * Prepares the given page to be put on the free list,
4036 * disassociating it from any VM object. The caller may return
4037 * the page to the free list only if this function returns true.
4038 *
4039 * The object, if it exists, must be locked, and then the page must
4040 * be xbusy. Otherwise the page must be not busied. A managed
4041 * page must be unmapped.
4042 */
4043 static bool
vm_page_free_prep(vm_page_t m)4044 vm_page_free_prep(vm_page_t m)
4045 {
4046
4047 /*
4048 * Synchronize with threads that have dropped a reference to this
4049 * page.
4050 */
4051 atomic_thread_fence_acq();
4052
4053 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4054 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4055 uint64_t *p;
4056 int i;
4057 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4058 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4059 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4060 m, i, (uintmax_t)*p));
4061 }
4062 #endif
4063 if ((m->oflags & VPO_UNMANAGED) == 0) {
4064 KASSERT(!pmap_page_is_mapped(m),
4065 ("vm_page_free_prep: freeing mapped page %p", m));
4066 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4067 ("vm_page_free_prep: mapping flags set in page %p", m));
4068 } else {
4069 KASSERT(m->a.queue == PQ_NONE,
4070 ("vm_page_free_prep: unmanaged page %p is queued", m));
4071 }
4072 VM_CNT_INC(v_tfree);
4073
4074 if (m->object != NULL) {
4075 vm_page_radix_remove(m);
4076 vm_page_free_object_prep(m);
4077 } else
4078 vm_page_assert_unbusied(m);
4079
4080 vm_page_busy_free(m);
4081
4082 /*
4083 * If fictitious remove object association and
4084 * return.
4085 */
4086 if ((m->flags & PG_FICTITIOUS) != 0) {
4087 KASSERT(m->ref_count == 1,
4088 ("fictitious page %p is referenced", m));
4089 KASSERT(m->a.queue == PQ_NONE,
4090 ("fictitious page %p is queued", m));
4091 return (false);
4092 }
4093
4094 /*
4095 * Pages need not be dequeued before they are returned to the physical
4096 * memory allocator, but they must at least be marked for a deferred
4097 * dequeue.
4098 */
4099 if ((m->oflags & VPO_UNMANAGED) == 0)
4100 vm_page_dequeue_deferred(m);
4101
4102 m->valid = 0;
4103 vm_page_undirty(m);
4104
4105 if (m->ref_count != 0)
4106 panic("vm_page_free_prep: page %p has references", m);
4107
4108 /*
4109 * Restore the default memory attribute to the page.
4110 */
4111 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4112 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4113
4114 #if VM_NRESERVLEVEL > 0
4115 /*
4116 * Determine whether the page belongs to a reservation. If the page was
4117 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4118 * as an optimization, we avoid the check in that case.
4119 */
4120 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4121 return (false);
4122 #endif
4123
4124 return (true);
4125 }
4126
4127 /*
4128 * vm_page_free_toq:
4129 *
4130 * Returns the given page to the free list, disassociating it
4131 * from any VM object.
4132 *
4133 * The object must be locked. The page must be exclusively busied if it
4134 * belongs to an object.
4135 */
4136 static void
vm_page_free_toq(vm_page_t m)4137 vm_page_free_toq(vm_page_t m)
4138 {
4139 struct vm_domain *vmd;
4140 uma_zone_t zone;
4141
4142 if (!vm_page_free_prep(m))
4143 return;
4144
4145 vmd = vm_pagequeue_domain(m);
4146 if (__predict_false((m->flags & PG_NOFREE) != 0)) {
4147 vm_page_free_nofree(vmd, m);
4148 return;
4149 }
4150 zone = vmd->vmd_pgcache[m->pool].zone;
4151 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4152 uma_zfree(zone, m);
4153 return;
4154 }
4155 vm_domain_free_lock(vmd);
4156 vm_phys_free_pages(m, m->pool, 0);
4157 vm_domain_free_unlock(vmd);
4158 vm_domain_freecnt_inc(vmd, 1);
4159 }
4160
4161 /*
4162 * vm_page_free_pages_toq:
4163 *
4164 * Returns a list of pages to the free list, disassociating it
4165 * from any VM object. In other words, this is equivalent to
4166 * calling vm_page_free_toq() for each page of a list of VM objects.
4167 */
4168 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4169 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4170 {
4171 vm_page_t m;
4172 int count;
4173
4174 if (SLIST_EMPTY(free))
4175 return (0);
4176
4177 count = 0;
4178 while ((m = SLIST_FIRST(free)) != NULL) {
4179 count++;
4180 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4181 vm_page_free_toq(m);
4182 }
4183
4184 if (update_wire_count)
4185 vm_wire_sub(count);
4186 return (count);
4187 }
4188
4189 /*
4190 * Mark this page as wired down. For managed pages, this prevents reclamation
4191 * by the page daemon, or when the containing object, if any, is destroyed.
4192 */
4193 void
vm_page_wire(vm_page_t m)4194 vm_page_wire(vm_page_t m)
4195 {
4196 u_int old;
4197
4198 #ifdef INVARIANTS
4199 if (m->object != NULL && !vm_page_busied(m) &&
4200 !vm_object_busied(m->object))
4201 VM_OBJECT_ASSERT_LOCKED(m->object);
4202 #endif
4203 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4204 VPRC_WIRE_COUNT(m->ref_count) >= 1,
4205 ("vm_page_wire: fictitious page %p has zero wirings", m));
4206
4207 old = atomic_fetchadd_int(&m->ref_count, 1);
4208 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4209 ("vm_page_wire: counter overflow for page %p", m));
4210 if (VPRC_WIRE_COUNT(old) == 0) {
4211 if ((m->oflags & VPO_UNMANAGED) == 0)
4212 vm_page_aflag_set(m, PGA_DEQUEUE);
4213 vm_wire_add(1);
4214 }
4215 }
4216
4217 /*
4218 * Attempt to wire a mapped page following a pmap lookup of that page.
4219 * This may fail if a thread is concurrently tearing down mappings of the page.
4220 * The transient failure is acceptable because it translates to the
4221 * failure of the caller pmap_extract_and_hold(), which should be then
4222 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4223 */
4224 bool
vm_page_wire_mapped(vm_page_t m)4225 vm_page_wire_mapped(vm_page_t m)
4226 {
4227 u_int old;
4228
4229 old = atomic_load_int(&m->ref_count);
4230 do {
4231 KASSERT(old > 0,
4232 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4233 if ((old & VPRC_BLOCKED) != 0)
4234 return (false);
4235 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4236
4237 if (VPRC_WIRE_COUNT(old) == 0) {
4238 if ((m->oflags & VPO_UNMANAGED) == 0)
4239 vm_page_aflag_set(m, PGA_DEQUEUE);
4240 vm_wire_add(1);
4241 }
4242 return (true);
4243 }
4244
4245 /*
4246 * Release a wiring reference to a managed page. If the page still belongs to
4247 * an object, update its position in the page queues to reflect the reference.
4248 * If the wiring was the last reference to the page, free the page.
4249 */
4250 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4251 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4252 {
4253 u_int old;
4254
4255 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4256 ("%s: page %p is unmanaged", __func__, m));
4257
4258 /*
4259 * Update LRU state before releasing the wiring reference.
4260 * Use a release store when updating the reference count to
4261 * synchronize with vm_page_free_prep().
4262 */
4263 old = atomic_load_int(&m->ref_count);
4264 do {
4265 u_int count;
4266
4267 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4268 ("vm_page_unwire: wire count underflow for page %p", m));
4269
4270 count = old & ~VPRC_BLOCKED;
4271 if (count > VPRC_OBJREF + 1) {
4272 /*
4273 * The page has at least one other wiring reference. An
4274 * earlier iteration of this loop may have called
4275 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4276 * re-set it if necessary.
4277 */
4278 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4279 vm_page_aflag_set(m, PGA_DEQUEUE);
4280 } else if (count == VPRC_OBJREF + 1) {
4281 /*
4282 * This is the last wiring. Clear PGA_DEQUEUE and
4283 * update the page's queue state to reflect the
4284 * reference. If the page does not belong to an object
4285 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4286 * clear leftover queue state.
4287 */
4288 vm_page_release_toq(m, nqueue, noreuse);
4289 } else if (count == 1) {
4290 vm_page_aflag_clear(m, PGA_DEQUEUE);
4291 }
4292 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4293
4294 if (VPRC_WIRE_COUNT(old) == 1) {
4295 vm_wire_sub(1);
4296 if (old == 1)
4297 vm_page_free(m);
4298 }
4299 }
4300
4301 /*
4302 * Release one wiring of the specified page, potentially allowing it to be
4303 * paged out.
4304 *
4305 * Only managed pages belonging to an object can be paged out. If the number
4306 * of wirings transitions to zero and the page is eligible for page out, then
4307 * the page is added to the specified paging queue. If the released wiring
4308 * represented the last reference to the page, the page is freed.
4309 */
4310 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4311 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4312 {
4313
4314 KASSERT(nqueue < PQ_COUNT,
4315 ("vm_page_unwire: invalid queue %u request for page %p",
4316 nqueue, m));
4317
4318 if ((m->oflags & VPO_UNMANAGED) != 0) {
4319 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4320 vm_page_free(m);
4321 return;
4322 }
4323 vm_page_unwire_managed(m, nqueue, false);
4324 }
4325
4326 /*
4327 * Unwire a page without (re-)inserting it into a page queue. It is up
4328 * to the caller to enqueue, requeue, or free the page as appropriate.
4329 * In most cases involving managed pages, vm_page_unwire() should be used
4330 * instead.
4331 */
4332 bool
vm_page_unwire_noq(vm_page_t m)4333 vm_page_unwire_noq(vm_page_t m)
4334 {
4335 u_int old;
4336
4337 old = vm_page_drop(m, 1);
4338 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4339 ("%s: counter underflow for page %p", __func__, m));
4340 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4341 ("%s: missing ref on fictitious page %p", __func__, m));
4342
4343 if (VPRC_WIRE_COUNT(old) > 1)
4344 return (false);
4345 if ((m->oflags & VPO_UNMANAGED) == 0)
4346 vm_page_aflag_clear(m, PGA_DEQUEUE);
4347 vm_wire_sub(1);
4348 return (true);
4349 }
4350
4351 /*
4352 * Ensure that the page ends up in the specified page queue. If the page is
4353 * active or being moved to the active queue, ensure that its act_count is
4354 * at least ACT_INIT but do not otherwise mess with it.
4355 */
4356 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4357 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4358 {
4359 vm_page_astate_t old, new;
4360
4361 KASSERT(m->ref_count > 0,
4362 ("%s: page %p does not carry any references", __func__, m));
4363 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4364 ("%s: invalid flags %x", __func__, nflag));
4365
4366 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4367 return;
4368
4369 old = vm_page_astate_load(m);
4370 do {
4371 if ((old.flags & PGA_DEQUEUE) != 0)
4372 break;
4373 new = old;
4374 new.flags &= ~PGA_QUEUE_OP_MASK;
4375 if (nqueue == PQ_ACTIVE)
4376 new.act_count = max(old.act_count, ACT_INIT);
4377 if (old.queue == nqueue) {
4378 /*
4379 * There is no need to requeue pages already in the
4380 * active queue.
4381 */
4382 if (nqueue != PQ_ACTIVE ||
4383 (old.flags & PGA_ENQUEUED) == 0)
4384 new.flags |= nflag;
4385 } else {
4386 new.flags |= nflag;
4387 new.queue = nqueue;
4388 }
4389 } while (!vm_page_pqstate_commit(m, &old, new));
4390 }
4391
4392 /*
4393 * Put the specified page on the active list (if appropriate).
4394 */
4395 void
vm_page_activate(vm_page_t m)4396 vm_page_activate(vm_page_t m)
4397 {
4398
4399 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4400 }
4401
4402 /*
4403 * Move the specified page to the tail of the inactive queue, or requeue
4404 * the page if it is already in the inactive queue.
4405 */
4406 void
vm_page_deactivate(vm_page_t m)4407 vm_page_deactivate(vm_page_t m)
4408 {
4409
4410 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4411 }
4412
4413 void
vm_page_deactivate_noreuse(vm_page_t m)4414 vm_page_deactivate_noreuse(vm_page_t m)
4415 {
4416
4417 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4418 }
4419
4420 /*
4421 * Put a page in the laundry, or requeue it if it is already there.
4422 */
4423 void
vm_page_launder(vm_page_t m)4424 vm_page_launder(vm_page_t m)
4425 {
4426
4427 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4428 }
4429
4430 /*
4431 * Put a page in the PQ_UNSWAPPABLE holding queue.
4432 */
4433 void
vm_page_unswappable(vm_page_t m)4434 vm_page_unswappable(vm_page_t m)
4435 {
4436
4437 VM_OBJECT_ASSERT_LOCKED(m->object);
4438 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4439 ("page %p already unswappable", m));
4440
4441 vm_page_dequeue(m);
4442 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4443 }
4444
4445 /*
4446 * Release a page back to the page queues in preparation for unwiring.
4447 */
4448 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4449 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4450 {
4451 vm_page_astate_t old, new;
4452 uint16_t nflag;
4453
4454 /*
4455 * Use a check of the valid bits to determine whether we should
4456 * accelerate reclamation of the page. The object lock might not be
4457 * held here, in which case the check is racy. At worst we will either
4458 * accelerate reclamation of a valid page and violate LRU, or
4459 * unnecessarily defer reclamation of an invalid page.
4460 *
4461 * If we were asked to not cache the page, place it near the head of the
4462 * inactive queue so that is reclaimed sooner.
4463 */
4464 if (noreuse || vm_page_none_valid(m)) {
4465 nqueue = PQ_INACTIVE;
4466 nflag = PGA_REQUEUE_HEAD;
4467 } else {
4468 nflag = PGA_REQUEUE;
4469 }
4470
4471 old = vm_page_astate_load(m);
4472 do {
4473 new = old;
4474
4475 /*
4476 * If the page is already in the active queue and we are not
4477 * trying to accelerate reclamation, simply mark it as
4478 * referenced and avoid any queue operations.
4479 */
4480 new.flags &= ~PGA_QUEUE_OP_MASK;
4481 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4482 (old.flags & PGA_ENQUEUED) != 0)
4483 new.flags |= PGA_REFERENCED;
4484 else {
4485 new.flags |= nflag;
4486 new.queue = nqueue;
4487 }
4488 } while (!vm_page_pqstate_commit(m, &old, new));
4489 }
4490
4491 /*
4492 * Unwire a page and either attempt to free it or re-add it to the page queues.
4493 */
4494 void
vm_page_release(vm_page_t m,int flags)4495 vm_page_release(vm_page_t m, int flags)
4496 {
4497 vm_object_t object;
4498
4499 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4500 ("vm_page_release: page %p is unmanaged", m));
4501
4502 if ((flags & VPR_TRYFREE) != 0) {
4503 for (;;) {
4504 object = atomic_load_ptr(&m->object);
4505 if (object == NULL)
4506 break;
4507 /* Depends on type-stability. */
4508 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4509 break;
4510 if (object == m->object) {
4511 vm_page_release_locked(m, flags);
4512 VM_OBJECT_WUNLOCK(object);
4513 return;
4514 }
4515 VM_OBJECT_WUNLOCK(object);
4516 }
4517 }
4518 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4519 }
4520
4521 /* See vm_page_release(). */
4522 void
vm_page_release_locked(vm_page_t m,int flags)4523 vm_page_release_locked(vm_page_t m, int flags)
4524 {
4525
4526 VM_OBJECT_ASSERT_WLOCKED(m->object);
4527 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4528 ("vm_page_release_locked: page %p is unmanaged", m));
4529
4530 if (vm_page_unwire_noq(m)) {
4531 if ((flags & VPR_TRYFREE) != 0 &&
4532 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4533 m->dirty == 0 && vm_page_tryxbusy(m)) {
4534 /*
4535 * An unlocked lookup may have wired the page before the
4536 * busy lock was acquired, in which case the page must
4537 * not be freed.
4538 */
4539 if (__predict_true(!vm_page_wired(m))) {
4540 vm_page_free(m);
4541 return;
4542 }
4543 vm_page_xunbusy(m);
4544 } else {
4545 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4546 }
4547 }
4548 }
4549
4550 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4551 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4552 {
4553 u_int old;
4554
4555 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4556 ("vm_page_try_blocked_op: page %p has no object", m));
4557 KASSERT(vm_page_busied(m),
4558 ("vm_page_try_blocked_op: page %p is not busy", m));
4559 VM_OBJECT_ASSERT_LOCKED(m->object);
4560
4561 old = atomic_load_int(&m->ref_count);
4562 do {
4563 KASSERT(old != 0,
4564 ("vm_page_try_blocked_op: page %p has no references", m));
4565 KASSERT((old & VPRC_BLOCKED) == 0,
4566 ("vm_page_try_blocked_op: page %p blocks wirings", m));
4567 if (VPRC_WIRE_COUNT(old) != 0)
4568 return (false);
4569 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4570
4571 (op)(m);
4572
4573 /*
4574 * If the object is read-locked, new wirings may be created via an
4575 * object lookup.
4576 */
4577 old = vm_page_drop(m, VPRC_BLOCKED);
4578 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4579 old == (VPRC_BLOCKED | VPRC_OBJREF),
4580 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4581 old, m));
4582 return (true);
4583 }
4584
4585 /*
4586 * Atomically check for wirings and remove all mappings of the page.
4587 */
4588 bool
vm_page_try_remove_all(vm_page_t m)4589 vm_page_try_remove_all(vm_page_t m)
4590 {
4591
4592 return (vm_page_try_blocked_op(m, pmap_remove_all));
4593 }
4594
4595 /*
4596 * Atomically check for wirings and remove all writeable mappings of the page.
4597 */
4598 bool
vm_page_try_remove_write(vm_page_t m)4599 vm_page_try_remove_write(vm_page_t m)
4600 {
4601
4602 return (vm_page_try_blocked_op(m, pmap_remove_write));
4603 }
4604
4605 /*
4606 * vm_page_advise
4607 *
4608 * Apply the specified advice to the given page.
4609 */
4610 void
vm_page_advise(vm_page_t m,int advice)4611 vm_page_advise(vm_page_t m, int advice)
4612 {
4613
4614 VM_OBJECT_ASSERT_WLOCKED(m->object);
4615 vm_page_assert_xbusied(m);
4616
4617 if (advice == MADV_FREE)
4618 /*
4619 * Mark the page clean. This will allow the page to be freed
4620 * without first paging it out. MADV_FREE pages are often
4621 * quickly reused by malloc(3), so we do not do anything that
4622 * would result in a page fault on a later access.
4623 */
4624 vm_page_undirty(m);
4625 else if (advice != MADV_DONTNEED) {
4626 if (advice == MADV_WILLNEED)
4627 vm_page_activate(m);
4628 return;
4629 }
4630
4631 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4632 vm_page_dirty(m);
4633
4634 /*
4635 * Clear any references to the page. Otherwise, the page daemon will
4636 * immediately reactivate the page.
4637 */
4638 vm_page_aflag_clear(m, PGA_REFERENCED);
4639
4640 /*
4641 * Place clean pages near the head of the inactive queue rather than
4642 * the tail, thus defeating the queue's LRU operation and ensuring that
4643 * the page will be reused quickly. Dirty pages not already in the
4644 * laundry are moved there.
4645 */
4646 if (m->dirty == 0)
4647 vm_page_deactivate_noreuse(m);
4648 else if (!vm_page_in_laundry(m))
4649 vm_page_launder(m);
4650 }
4651
4652 /*
4653 * vm_page_grab_release
4654 *
4655 * Helper routine for grab functions to release busy on return.
4656 */
4657 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4658 vm_page_grab_release(vm_page_t m, int allocflags)
4659 {
4660
4661 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4662 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4663 vm_page_sunbusy(m);
4664 else
4665 vm_page_xunbusy(m);
4666 }
4667 }
4668
4669 /*
4670 * vm_page_grab_sleep
4671 *
4672 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4673 * if the caller should retry and false otherwise.
4674 *
4675 * If the object is locked on entry the object will be unlocked with
4676 * false returns and still locked but possibly having been dropped
4677 * with true returns.
4678 */
4679 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4680 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4681 const char *wmesg, int allocflags, bool locked)
4682 {
4683
4684 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4685 return (false);
4686
4687 /*
4688 * Reference the page before unlocking and sleeping so that
4689 * the page daemon is less likely to reclaim it.
4690 */
4691 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4692 vm_page_reference(m);
4693
4694 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4695 locked)
4696 VM_OBJECT_WLOCK(object);
4697 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4698 return (false);
4699
4700 return (true);
4701 }
4702
4703 /*
4704 * Assert that the grab flags are valid.
4705 */
4706 static inline void
vm_page_grab_check(int allocflags)4707 vm_page_grab_check(int allocflags)
4708 {
4709
4710 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4711 (allocflags & VM_ALLOC_WIRED) != 0,
4712 ("vm_page_grab*: the pages must be busied or wired"));
4713
4714 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4715 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4716 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4717 }
4718
4719 /*
4720 * Calculate the page allocation flags for grab.
4721 */
4722 static inline int
vm_page_grab_pflags(int allocflags)4723 vm_page_grab_pflags(int allocflags)
4724 {
4725 int pflags;
4726
4727 pflags = allocflags &
4728 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4729 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOCREAT);
4730 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4731 pflags |= VM_ALLOC_WAITFAIL;
4732 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4733 pflags |= VM_ALLOC_SBUSY;
4734
4735 return (pflags);
4736 }
4737
4738 /*
4739 * Grab a page, waiting until we are woken up due to the page changing state.
4740 * We keep on waiting, if the page continues to be in the object, unless
4741 * allocflags forbid waiting.
4742 *
4743 * The object must be locked on entry. This routine may sleep. The lock will,
4744 * however, be released and reacquired if the routine sleeps.
4745 *
4746 * Return a grabbed page, or NULL. Set *found if a page was found, whether or
4747 * not it was grabbed.
4748 */
4749 static inline vm_page_t
vm_page_grab_lookup(vm_object_t object,vm_pindex_t pindex,int allocflags,bool * found,struct pctrie_iter * pages)4750 vm_page_grab_lookup(vm_object_t object, vm_pindex_t pindex, int allocflags,
4751 bool *found, struct pctrie_iter *pages)
4752 {
4753 vm_page_t m;
4754
4755 while ((*found = (m = vm_radix_iter_lookup(pages, pindex)) != NULL) &&
4756 !vm_page_tryacquire(m, allocflags)) {
4757 if (!vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4758 allocflags, true))
4759 return (NULL);
4760 pctrie_iter_reset(pages);
4761 }
4762 return (m);
4763 }
4764
4765 /*
4766 * Grab a page. Use an iterator parameter. Keep on waiting, as long as the page
4767 * exists in the object. If the page doesn't exist, first allocate it and then
4768 * conditionally zero it.
4769 *
4770 * The object must be locked on entry. This routine may sleep. The lock will,
4771 * however, be released and reacquired if the routine sleeps.
4772 */
4773 vm_page_t
vm_page_grab_iter(vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4774 vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex, int allocflags,
4775 struct pctrie_iter *pages)
4776 {
4777 vm_page_t m;
4778 bool found;
4779
4780 VM_OBJECT_ASSERT_WLOCKED(object);
4781 vm_page_grab_check(allocflags);
4782
4783 while ((m = vm_page_grab_lookup(
4784 object, pindex, allocflags, &found, pages)) == NULL) {
4785 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4786 return (NULL);
4787 if (found &&
4788 (allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4789 return (NULL);
4790 m = vm_page_alloc_iter(object, pindex,
4791 vm_page_grab_pflags(allocflags), pages);
4792 if (m != NULL) {
4793 if ((allocflags & VM_ALLOC_ZERO) != 0 &&
4794 (m->flags & PG_ZERO) == 0)
4795 pmap_zero_page(m);
4796 break;
4797 }
4798 if ((allocflags &
4799 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4800 return (NULL);
4801 }
4802 vm_page_grab_release(m, allocflags);
4803
4804 return (m);
4805 }
4806
4807 /*
4808 * Grab a page. Keep on waiting, as long as the page exists in the object. If
4809 * the page doesn't exist, first allocate it and then conditionally zero it.
4810 *
4811 * The object must be locked on entry. This routine may sleep. The lock will,
4812 * however, be released and reacquired if the routine sleeps.
4813 */
4814 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4815 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4816 {
4817 struct pctrie_iter pages;
4818
4819 VM_OBJECT_ASSERT_WLOCKED(object);
4820 vm_page_iter_init(&pages, object);
4821 return (vm_page_grab_iter(object, pindex, allocflags, &pages));
4822 }
4823
4824 /*
4825 * Attempt to validate a page, locklessly acquiring it if necessary, given a
4826 * (object, pindex) tuple and either an invalided page or NULL. The resulting
4827 * page will be validated against the identity tuple, and busied or wired as
4828 * requested. A NULL page returned guarantees that the page was not in radix at
4829 * the time of the call but callers must perform higher level synchronization or
4830 * retry the operation under a lock if they require an atomic answer. This is
4831 * the only lock free validation routine, other routines can depend on the
4832 * resulting page state.
4833 *
4834 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4835 * caller flags.
4836 */
4837 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4838 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4839 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4840 int allocflags)
4841 {
4842 if (m == NULL)
4843 m = vm_page_lookup_unlocked(object, pindex);
4844 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4845 if (vm_page_trybusy(m, allocflags)) {
4846 if (m->object == object && m->pindex == pindex) {
4847 if ((allocflags & VM_ALLOC_WIRED) != 0)
4848 vm_page_wire(m);
4849 vm_page_grab_release(m, allocflags);
4850 break;
4851 }
4852 /* relookup. */
4853 vm_page_busy_release(m);
4854 cpu_spinwait();
4855 continue;
4856 }
4857 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4858 allocflags, false))
4859 return (PAGE_NOT_ACQUIRED);
4860 }
4861 return (m);
4862 }
4863
4864 /*
4865 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4866 * is not set.
4867 */
4868 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4869 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4870 {
4871 vm_page_t m;
4872
4873 vm_page_grab_check(allocflags);
4874 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4875 if (m == PAGE_NOT_ACQUIRED)
4876 return (NULL);
4877 if (m != NULL)
4878 return (m);
4879
4880 /*
4881 * The radix lockless lookup should never return a false negative
4882 * errors. If the user specifies NOCREAT they are guaranteed there
4883 * was no page present at the instant of the call. A NOCREAT caller
4884 * must handle create races gracefully.
4885 */
4886 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4887 return (NULL);
4888
4889 VM_OBJECT_WLOCK(object);
4890 m = vm_page_grab(object, pindex, allocflags);
4891 VM_OBJECT_WUNLOCK(object);
4892
4893 return (m);
4894 }
4895
4896 /*
4897 * Grab a page and make it valid, paging in if necessary. Use an iterator
4898 * parameter. Pages missing from their pager are zero filled and validated. If
4899 * a VM_ALLOC_COUNT is supplied and the page is not valid as many as
4900 * VM_INITIAL_PAGEIN pages can be brought in simultaneously. Additional pages
4901 * will be left on a paging queue but will neither be wired nor busy regardless
4902 * of allocflags.
4903 */
4904 int
vm_page_grab_valid_iter(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4905 vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
4906 int allocflags, struct pctrie_iter *pages)
4907 {
4908 vm_page_t m;
4909 vm_page_t ma[VM_INITIAL_PAGEIN];
4910 int after, ahead, i, pflags, rv;
4911
4912 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4913 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4914 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4915 KASSERT((allocflags &
4916 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4917 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4918 VM_OBJECT_ASSERT_WLOCKED(object);
4919 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4920 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4921 pflags |= VM_ALLOC_WAITFAIL;
4922
4923 retrylookup:
4924 if ((m = vm_radix_iter_lookup(pages, pindex)) != NULL) {
4925 /*
4926 * If the page is fully valid it can only become invalid
4927 * with the object lock held. If it is not valid it can
4928 * become valid with the busy lock held. Therefore, we
4929 * may unnecessarily lock the exclusive busy here if we
4930 * race with I/O completion not using the object lock.
4931 * However, we will not end up with an invalid page and a
4932 * shared lock.
4933 */
4934 if (!vm_page_trybusy(m,
4935 vm_page_all_valid(m) ? allocflags : 0)) {
4936 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4937 allocflags, true);
4938 pctrie_iter_reset(pages);
4939 goto retrylookup;
4940 }
4941 if (vm_page_all_valid(m))
4942 goto out;
4943 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4944 vm_page_busy_release(m);
4945 *mp = NULL;
4946 return (VM_PAGER_FAIL);
4947 }
4948 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4949 *mp = NULL;
4950 return (VM_PAGER_FAIL);
4951 } else {
4952 m = vm_page_alloc_iter(object, pindex, pflags, pages);
4953 if (m == NULL) {
4954 if (!vm_pager_can_alloc_page(object, pindex)) {
4955 *mp = NULL;
4956 return (VM_PAGER_AGAIN);
4957 }
4958 goto retrylookup;
4959 }
4960 }
4961
4962 vm_page_assert_xbusied(m);
4963 if (vm_pager_has_page(object, pindex, NULL, &after)) {
4964 after = MIN(after, VM_INITIAL_PAGEIN);
4965 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4966 after = MAX(after, 1);
4967 ma[0] = m;
4968 pctrie_iter_reset(pages);
4969 for (i = 1; i < after; i++) {
4970 m = vm_radix_iter_lookup_ge(pages, pindex + i);
4971 ahead = after;
4972 if (m != NULL)
4973 ahead = MIN(ahead, m->pindex - pindex);
4974 for (; i < ahead; i++) {
4975 ma[i] = vm_page_alloc_iter(object, pindex + i,
4976 VM_ALLOC_NORMAL, pages);
4977 if (ma[i] == NULL)
4978 break;
4979 }
4980 if (m == NULL || m->pindex != pindex + i ||
4981 vm_page_any_valid(m) || !vm_page_tryxbusy(m))
4982 break;
4983 ma[i] = m;
4984 }
4985 after = i;
4986 vm_object_pip_add(object, after);
4987 VM_OBJECT_WUNLOCK(object);
4988 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4989 pctrie_iter_reset(pages);
4990 VM_OBJECT_WLOCK(object);
4991 vm_object_pip_wakeupn(object, after);
4992 /* Pager may have replaced a page. */
4993 m = ma[0];
4994 if (rv != VM_PAGER_OK) {
4995 for (i = 0; i < after; i++) {
4996 if (!vm_page_wired(ma[i]))
4997 vm_page_free(ma[i]);
4998 else
4999 vm_page_xunbusy(ma[i]);
5000 }
5001 *mp = NULL;
5002 return (rv);
5003 }
5004 for (i = 1; i < after; i++)
5005 vm_page_readahead_finish(ma[i]);
5006 MPASS(vm_page_all_valid(m));
5007 } else {
5008 vm_page_zero_invalid(m, TRUE);
5009 pctrie_iter_reset(pages);
5010 }
5011 out:
5012 if ((allocflags & VM_ALLOC_WIRED) != 0)
5013 vm_page_wire(m);
5014 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5015 vm_page_busy_downgrade(m);
5016 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5017 vm_page_busy_release(m);
5018 *mp = m;
5019 return (VM_PAGER_OK);
5020 }
5021
5022 /*
5023 * Grab a page and make it valid, paging in if necessary. Pages missing from
5024 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
5025 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
5026 * in simultaneously. Additional pages will be left on a paging queue but
5027 * will neither be wired nor busy regardless of allocflags.
5028 */
5029 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5030 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
5031 int allocflags)
5032 {
5033 struct pctrie_iter pages;
5034
5035 VM_OBJECT_ASSERT_WLOCKED(object);
5036 vm_page_iter_init(&pages, object);
5037 return (vm_page_grab_valid_iter(mp, object, pindex, allocflags,
5038 &pages));
5039 }
5040
5041 /*
5042 * Grab a page. Keep on waiting, as long as the page exists in the object. If
5043 * the page doesn't exist, and the pager has it, allocate it and zero part of
5044 * it.
5045 *
5046 * The object must be locked on entry. This routine may sleep. The lock will,
5047 * however, be released and reacquired if the routine sleeps.
5048 */
5049 int
vm_page_grab_zero_partial(vm_object_t object,vm_pindex_t pindex,int base,int end)5050 vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
5051 int end)
5052 {
5053 struct pctrie_iter pages;
5054 vm_page_t m;
5055 int allocflags, rv;
5056 bool found;
5057
5058 VM_OBJECT_ASSERT_WLOCKED(object);
5059 KASSERT(base >= 0, ("%s: base %d", __func__, base));
5060 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
5061 end));
5062
5063 allocflags = VM_ALLOC_NOCREAT | VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL;
5064 vm_page_iter_init(&pages, object);
5065 while ((m = vm_page_grab_lookup(
5066 object, pindex, allocflags, &found, &pages)) == NULL) {
5067 if (!vm_pager_has_page(object, pindex, NULL, NULL))
5068 return (0);
5069 m = vm_page_alloc_iter(object, pindex,
5070 vm_page_grab_pflags(allocflags), &pages);
5071 if (m != NULL) {
5072 vm_object_pip_add(object, 1);
5073 VM_OBJECT_WUNLOCK(object);
5074 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
5075 VM_OBJECT_WLOCK(object);
5076 vm_object_pip_wakeup(object);
5077 if (rv != VM_PAGER_OK) {
5078 vm_page_free(m);
5079 return (EIO);
5080 }
5081
5082 /*
5083 * Since the page was not resident, and therefore not
5084 * recently accessed, immediately enqueue it for
5085 * asynchronous laundering. The current operation is
5086 * not regarded as an access.
5087 */
5088 vm_page_launder(m);
5089 break;
5090 }
5091 }
5092
5093 pmap_zero_page_area(m, base, end - base);
5094 KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid", __func__, m));
5095 vm_page_set_dirty(m);
5096 vm_page_xunbusy(m);
5097 return (0);
5098 }
5099
5100 /*
5101 * Locklessly grab a valid page. If the page is not valid or not yet
5102 * allocated this will fall back to the object lock method.
5103 */
5104 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5105 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5106 vm_pindex_t pindex, int allocflags)
5107 {
5108 vm_page_t m;
5109 int flags;
5110 int error;
5111
5112 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5113 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5114 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5115 "mismatch"));
5116 KASSERT((allocflags &
5117 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5118 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5119
5120 /*
5121 * Attempt a lockless lookup and busy. We need at least an sbusy
5122 * before we can inspect the valid field and return a wired page.
5123 */
5124 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5125 vm_page_grab_check(flags);
5126 m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5127 if (m == PAGE_NOT_ACQUIRED)
5128 return (VM_PAGER_FAIL);
5129 if (m != NULL) {
5130 if (vm_page_all_valid(m)) {
5131 if ((allocflags & VM_ALLOC_WIRED) != 0)
5132 vm_page_wire(m);
5133 vm_page_grab_release(m, allocflags);
5134 *mp = m;
5135 return (VM_PAGER_OK);
5136 }
5137 vm_page_busy_release(m);
5138 }
5139 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5140 *mp = NULL;
5141 return (VM_PAGER_FAIL);
5142 }
5143 VM_OBJECT_WLOCK(object);
5144 error = vm_page_grab_valid(mp, object, pindex, allocflags);
5145 VM_OBJECT_WUNLOCK(object);
5146
5147 return (error);
5148 }
5149
5150 /*
5151 * Return the specified range of pages from the given object. For each
5152 * page offset within the range, if a page already exists within the object
5153 * at that offset and it is busy, then wait for it to change state. If,
5154 * instead, the page doesn't exist, then allocate it.
5155 *
5156 * The caller must always specify an allocation class.
5157 *
5158 * allocation classes:
5159 * VM_ALLOC_NORMAL normal process request
5160 * VM_ALLOC_SYSTEM system *really* needs the pages
5161 * VM_ALLOC_INTERRUPT interrupt time request
5162 *
5163 * The caller must always specify that the pages are to be busied and/or
5164 * wired.
5165 *
5166 * optional allocation flags:
5167 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
5168 * VM_ALLOC_NOBUSY do not exclusive busy the pages
5169 * VM_ALLOC_NODUMP do not include the pages in a kernel core dump
5170 * VM_ALLOC_NOFREE pages will never be freed
5171 * VM_ALLOC_NOWAIT do not sleep
5172 * VM_ALLOC_SBUSY set pages to sbusy state
5173 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
5174 * VM_ALLOC_WAITOK ignored (default behavior)
5175 * VM_ALLOC_WIRED wire the pages
5176 * VM_ALLOC_ZERO zero and validate any invalid pages
5177 *
5178 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
5179 * may return a partial prefix of the requested range.
5180 */
5181 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5182 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5183 vm_page_t *ma, int count)
5184 {
5185 struct pctrie_iter pages;
5186 vm_page_t m;
5187 int pflags;
5188 int ahead, i;
5189
5190 VM_OBJECT_ASSERT_WLOCKED(object);
5191 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5192 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5193 KASSERT(count > 0,
5194 ("vm_page_grab_pages: invalid page count %d", count));
5195 vm_page_grab_check(allocflags);
5196
5197 pflags = vm_page_grab_pflags(allocflags);
5198 i = 0;
5199 vm_page_iter_init(&pages, object);
5200 retrylookup:
5201 ahead = -1;
5202 for (; i < count; i++) {
5203 if (ahead < 0) {
5204 ahead = vm_radix_iter_lookup_range(
5205 &pages, pindex + i, &ma[i], count - i);
5206 }
5207 if (ahead-- > 0) {
5208 m = ma[i];
5209 if (!vm_page_tryacquire(m, allocflags)) {
5210 if (vm_page_grab_sleep(object, m, pindex + i,
5211 "grbmaw", allocflags, true)) {
5212 pctrie_iter_reset(&pages);
5213 goto retrylookup;
5214 }
5215 break;
5216 }
5217 } else {
5218 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5219 break;
5220 m = vm_page_alloc_iter(object, pindex + i,
5221 pflags | VM_ALLOC_COUNT(count - i), &pages);
5222 /* pages was reset if alloc_iter lost the lock. */
5223 if (m == NULL) {
5224 if ((allocflags & (VM_ALLOC_NOWAIT |
5225 VM_ALLOC_WAITFAIL)) != 0)
5226 break;
5227 goto retrylookup;
5228 }
5229 ma[i] = m;
5230 }
5231 if (vm_page_none_valid(m) &&
5232 (allocflags & VM_ALLOC_ZERO) != 0) {
5233 if ((m->flags & PG_ZERO) == 0)
5234 pmap_zero_page(m);
5235 vm_page_valid(m);
5236 }
5237 vm_page_grab_release(m, allocflags);
5238 }
5239 return (i);
5240 }
5241
5242 /*
5243 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
5244 * and will fall back to the locked variant to handle allocation.
5245 */
5246 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5247 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5248 int allocflags, vm_page_t *ma, int count)
5249 {
5250 vm_page_t m;
5251 int flags;
5252 int i, num_fetched;
5253
5254 KASSERT(count > 0,
5255 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5256 vm_page_grab_check(allocflags);
5257
5258 /*
5259 * Modify flags for lockless acquire to hold the page until we
5260 * set it valid if necessary.
5261 */
5262 flags = allocflags & ~VM_ALLOC_NOBUSY;
5263 vm_page_grab_check(flags);
5264 num_fetched = vm_radix_lookup_range_unlocked(&object->rtree, pindex,
5265 ma, count);
5266 for (i = 0; i < num_fetched; i++, pindex++) {
5267 m = vm_page_acquire_unlocked(object, pindex, ma[i], flags);
5268 if (m == PAGE_NOT_ACQUIRED)
5269 return (i);
5270 if (m == NULL)
5271 break;
5272 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5273 if ((m->flags & PG_ZERO) == 0)
5274 pmap_zero_page(m);
5275 vm_page_valid(m);
5276 }
5277 /* m will still be wired or busy according to flags. */
5278 vm_page_grab_release(m, allocflags);
5279 /* vm_page_acquire_unlocked() may not return ma[i]. */
5280 ma[i] = m;
5281 }
5282 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5283 return (i);
5284 count -= i;
5285 VM_OBJECT_WLOCK(object);
5286 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5287 VM_OBJECT_WUNLOCK(object);
5288
5289 return (i);
5290 }
5291
5292 /*
5293 * Mapping function for valid or dirty bits in a page.
5294 *
5295 * Inputs are required to range within a page.
5296 */
5297 vm_page_bits_t
vm_page_bits(int base,int size)5298 vm_page_bits(int base, int size)
5299 {
5300 int first_bit;
5301 int last_bit;
5302
5303 KASSERT(
5304 base + size <= PAGE_SIZE,
5305 ("vm_page_bits: illegal base/size %d/%d", base, size)
5306 );
5307
5308 if (size == 0) /* handle degenerate case */
5309 return (0);
5310
5311 first_bit = base >> DEV_BSHIFT;
5312 last_bit = (base + size - 1) >> DEV_BSHIFT;
5313
5314 return (((vm_page_bits_t)2 << last_bit) -
5315 ((vm_page_bits_t)1 << first_bit));
5316 }
5317
5318 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5319 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5320 {
5321
5322 #if PAGE_SIZE == 32768
5323 atomic_set_64((uint64_t *)bits, set);
5324 #elif PAGE_SIZE == 16384
5325 atomic_set_32((uint32_t *)bits, set);
5326 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5327 atomic_set_16((uint16_t *)bits, set);
5328 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5329 atomic_set_8((uint8_t *)bits, set);
5330 #else /* PAGE_SIZE <= 8192 */
5331 uintptr_t addr;
5332 int shift;
5333
5334 addr = (uintptr_t)bits;
5335 /*
5336 * Use a trick to perform a 32-bit atomic on the
5337 * containing aligned word, to not depend on the existence
5338 * of atomic_{set, clear}_{8, 16}.
5339 */
5340 shift = addr & (sizeof(uint32_t) - 1);
5341 #if BYTE_ORDER == BIG_ENDIAN
5342 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5343 #else
5344 shift *= NBBY;
5345 #endif
5346 addr &= ~(sizeof(uint32_t) - 1);
5347 atomic_set_32((uint32_t *)addr, set << shift);
5348 #endif /* PAGE_SIZE */
5349 }
5350
5351 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5352 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5353 {
5354
5355 #if PAGE_SIZE == 32768
5356 atomic_clear_64((uint64_t *)bits, clear);
5357 #elif PAGE_SIZE == 16384
5358 atomic_clear_32((uint32_t *)bits, clear);
5359 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5360 atomic_clear_16((uint16_t *)bits, clear);
5361 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5362 atomic_clear_8((uint8_t *)bits, clear);
5363 #else /* PAGE_SIZE <= 8192 */
5364 uintptr_t addr;
5365 int shift;
5366
5367 addr = (uintptr_t)bits;
5368 /*
5369 * Use a trick to perform a 32-bit atomic on the
5370 * containing aligned word, to not depend on the existence
5371 * of atomic_{set, clear}_{8, 16}.
5372 */
5373 shift = addr & (sizeof(uint32_t) - 1);
5374 #if BYTE_ORDER == BIG_ENDIAN
5375 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5376 #else
5377 shift *= NBBY;
5378 #endif
5379 addr &= ~(sizeof(uint32_t) - 1);
5380 atomic_clear_32((uint32_t *)addr, clear << shift);
5381 #endif /* PAGE_SIZE */
5382 }
5383
5384 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5385 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5386 {
5387 #if PAGE_SIZE == 32768
5388 uint64_t old;
5389
5390 old = *bits;
5391 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5392 return (old);
5393 #elif PAGE_SIZE == 16384
5394 uint32_t old;
5395
5396 old = *bits;
5397 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5398 return (old);
5399 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5400 uint16_t old;
5401
5402 old = *bits;
5403 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5404 return (old);
5405 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5406 uint8_t old;
5407
5408 old = *bits;
5409 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5410 return (old);
5411 #else /* PAGE_SIZE <= 4096*/
5412 uintptr_t addr;
5413 uint32_t old, new, mask;
5414 int shift;
5415
5416 addr = (uintptr_t)bits;
5417 /*
5418 * Use a trick to perform a 32-bit atomic on the
5419 * containing aligned word, to not depend on the existence
5420 * of atomic_{set, swap, clear}_{8, 16}.
5421 */
5422 shift = addr & (sizeof(uint32_t) - 1);
5423 #if BYTE_ORDER == BIG_ENDIAN
5424 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5425 #else
5426 shift *= NBBY;
5427 #endif
5428 addr &= ~(sizeof(uint32_t) - 1);
5429 mask = VM_PAGE_BITS_ALL << shift;
5430
5431 old = *bits;
5432 do {
5433 new = old & ~mask;
5434 new |= newbits << shift;
5435 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5436 return (old >> shift);
5437 #endif /* PAGE_SIZE */
5438 }
5439
5440 /*
5441 * vm_page_set_valid_range:
5442 *
5443 * Sets portions of a page valid. The arguments are expected
5444 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5445 * of any partial chunks touched by the range. The invalid portion of
5446 * such chunks will be zeroed.
5447 *
5448 * (base + size) must be less then or equal to PAGE_SIZE.
5449 */
5450 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5451 vm_page_set_valid_range(vm_page_t m, int base, int size)
5452 {
5453 int endoff, frag;
5454 vm_page_bits_t pagebits;
5455
5456 vm_page_assert_busied(m);
5457 if (size == 0) /* handle degenerate case */
5458 return;
5459
5460 /*
5461 * If the base is not DEV_BSIZE aligned and the valid
5462 * bit is clear, we have to zero out a portion of the
5463 * first block.
5464 */
5465 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5466 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5467 pmap_zero_page_area(m, frag, base - frag);
5468
5469 /*
5470 * If the ending offset is not DEV_BSIZE aligned and the
5471 * valid bit is clear, we have to zero out a portion of
5472 * the last block.
5473 */
5474 endoff = base + size;
5475 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5476 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5477 pmap_zero_page_area(m, endoff,
5478 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5479
5480 /*
5481 * Assert that no previously invalid block that is now being validated
5482 * is already dirty.
5483 */
5484 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5485 ("vm_page_set_valid_range: page %p is dirty", m));
5486
5487 /*
5488 * Set valid bits inclusive of any overlap.
5489 */
5490 pagebits = vm_page_bits(base, size);
5491 if (vm_page_xbusied(m))
5492 m->valid |= pagebits;
5493 else
5494 vm_page_bits_set(m, &m->valid, pagebits);
5495 }
5496
5497 /*
5498 * Set the page dirty bits and free the invalid swap space if
5499 * present. Returns the previous dirty bits.
5500 */
5501 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5502 vm_page_set_dirty(vm_page_t m)
5503 {
5504 vm_page_bits_t old;
5505
5506 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5507
5508 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5509 old = m->dirty;
5510 m->dirty = VM_PAGE_BITS_ALL;
5511 } else
5512 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5513 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5514 vm_pager_page_unswapped(m);
5515
5516 return (old);
5517 }
5518
5519 /*
5520 * Clear the given bits from the specified page's dirty field.
5521 */
5522 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5523 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5524 {
5525
5526 vm_page_assert_busied(m);
5527
5528 /*
5529 * If the page is xbusied and not write mapped we are the
5530 * only thread that can modify dirty bits. Otherwise, The pmap
5531 * layer can call vm_page_dirty() without holding a distinguished
5532 * lock. The combination of page busy and atomic operations
5533 * suffice to guarantee consistency of the page dirty field.
5534 */
5535 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5536 m->dirty &= ~pagebits;
5537 else
5538 vm_page_bits_clear(m, &m->dirty, pagebits);
5539 }
5540
5541 /*
5542 * vm_page_set_validclean:
5543 *
5544 * Sets portions of a page valid and clean. The arguments are expected
5545 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5546 * of any partial chunks touched by the range. The invalid portion of
5547 * such chunks will be zero'd.
5548 *
5549 * (base + size) must be less then or equal to PAGE_SIZE.
5550 */
5551 void
vm_page_set_validclean(vm_page_t m,int base,int size)5552 vm_page_set_validclean(vm_page_t m, int base, int size)
5553 {
5554 vm_page_bits_t oldvalid, pagebits;
5555 int endoff, frag;
5556
5557 vm_page_assert_busied(m);
5558 if (size == 0) /* handle degenerate case */
5559 return;
5560
5561 /*
5562 * If the base is not DEV_BSIZE aligned and the valid
5563 * bit is clear, we have to zero out a portion of the
5564 * first block.
5565 */
5566 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5567 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5568 pmap_zero_page_area(m, frag, base - frag);
5569
5570 /*
5571 * If the ending offset is not DEV_BSIZE aligned and the
5572 * valid bit is clear, we have to zero out a portion of
5573 * the last block.
5574 */
5575 endoff = base + size;
5576 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5577 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5578 pmap_zero_page_area(m, endoff,
5579 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5580
5581 /*
5582 * Set valid, clear dirty bits. If validating the entire
5583 * page we can safely clear the pmap modify bit. We also
5584 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5585 * takes a write fault on a MAP_NOSYNC memory area the flag will
5586 * be set again.
5587 *
5588 * We set valid bits inclusive of any overlap, but we can only
5589 * clear dirty bits for DEV_BSIZE chunks that are fully within
5590 * the range.
5591 */
5592 oldvalid = m->valid;
5593 pagebits = vm_page_bits(base, size);
5594 if (vm_page_xbusied(m))
5595 m->valid |= pagebits;
5596 else
5597 vm_page_bits_set(m, &m->valid, pagebits);
5598 #if 0 /* NOT YET */
5599 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5600 frag = DEV_BSIZE - frag;
5601 base += frag;
5602 size -= frag;
5603 if (size < 0)
5604 size = 0;
5605 }
5606 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5607 #endif
5608 if (base == 0 && size == PAGE_SIZE) {
5609 /*
5610 * The page can only be modified within the pmap if it is
5611 * mapped, and it can only be mapped if it was previously
5612 * fully valid.
5613 */
5614 if (oldvalid == VM_PAGE_BITS_ALL)
5615 /*
5616 * Perform the pmap_clear_modify() first. Otherwise,
5617 * a concurrent pmap operation, such as
5618 * pmap_protect(), could clear a modification in the
5619 * pmap and set the dirty field on the page before
5620 * pmap_clear_modify() had begun and after the dirty
5621 * field was cleared here.
5622 */
5623 pmap_clear_modify(m);
5624 m->dirty = 0;
5625 vm_page_aflag_clear(m, PGA_NOSYNC);
5626 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5627 m->dirty &= ~pagebits;
5628 else
5629 vm_page_clear_dirty_mask(m, pagebits);
5630 }
5631
5632 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5633 vm_page_clear_dirty(vm_page_t m, int base, int size)
5634 {
5635
5636 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5637 }
5638
5639 /*
5640 * vm_page_set_invalid:
5641 *
5642 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5643 * valid and dirty bits for the effected areas are cleared.
5644 */
5645 void
vm_page_set_invalid(vm_page_t m,int base,int size)5646 vm_page_set_invalid(vm_page_t m, int base, int size)
5647 {
5648 vm_page_bits_t bits;
5649 vm_object_t object;
5650
5651 /*
5652 * The object lock is required so that pages can't be mapped
5653 * read-only while we're in the process of invalidating them.
5654 */
5655 object = m->object;
5656 VM_OBJECT_ASSERT_WLOCKED(object);
5657 vm_page_assert_busied(m);
5658
5659 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5660 size >= object->un_pager.vnp.vnp_size)
5661 bits = VM_PAGE_BITS_ALL;
5662 else
5663 bits = vm_page_bits(base, size);
5664 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5665 pmap_remove_all(m);
5666 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5667 !pmap_page_is_mapped(m),
5668 ("vm_page_set_invalid: page %p is mapped", m));
5669 if (vm_page_xbusied(m)) {
5670 m->valid &= ~bits;
5671 m->dirty &= ~bits;
5672 } else {
5673 vm_page_bits_clear(m, &m->valid, bits);
5674 vm_page_bits_clear(m, &m->dirty, bits);
5675 }
5676 }
5677
5678 /*
5679 * vm_page_invalid:
5680 *
5681 * Invalidates the entire page. The page must be busy, unmapped, and
5682 * the enclosing object must be locked. The object locks protects
5683 * against concurrent read-only pmap enter which is done without
5684 * busy.
5685 */
5686 void
vm_page_invalid(vm_page_t m)5687 vm_page_invalid(vm_page_t m)
5688 {
5689
5690 vm_page_assert_busied(m);
5691 VM_OBJECT_ASSERT_WLOCKED(m->object);
5692 MPASS(!pmap_page_is_mapped(m));
5693
5694 if (vm_page_xbusied(m))
5695 m->valid = 0;
5696 else
5697 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5698 }
5699
5700 /*
5701 * vm_page_zero_invalid()
5702 *
5703 * The kernel assumes that the invalid portions of a page contain
5704 * garbage, but such pages can be mapped into memory by user code.
5705 * When this occurs, we must zero out the non-valid portions of the
5706 * page so user code sees what it expects.
5707 *
5708 * Pages are most often semi-valid when the end of a file is mapped
5709 * into memory and the file's size is not page aligned.
5710 */
5711 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5712 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5713 {
5714 int b;
5715 int i;
5716
5717 /*
5718 * Scan the valid bits looking for invalid sections that
5719 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5720 * valid bit may be set ) have already been zeroed by
5721 * vm_page_set_validclean().
5722 */
5723 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5724 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5725 (m->valid & ((vm_page_bits_t)1 << i))) {
5726 if (i > b) {
5727 pmap_zero_page_area(m,
5728 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5729 }
5730 b = i + 1;
5731 }
5732 }
5733
5734 /*
5735 * setvalid is TRUE when we can safely set the zero'd areas
5736 * as being valid. We can do this if there are no cache consistency
5737 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5738 */
5739 if (setvalid)
5740 vm_page_valid(m);
5741 }
5742
5743 /*
5744 * vm_page_is_valid:
5745 *
5746 * Is (partial) page valid? Note that the case where size == 0
5747 * will return FALSE in the degenerate case where the page is
5748 * entirely invalid, and TRUE otherwise.
5749 *
5750 * Some callers envoke this routine without the busy lock held and
5751 * handle races via higher level locks. Typical callers should
5752 * hold a busy lock to prevent invalidation.
5753 */
5754 int
vm_page_is_valid(vm_page_t m,int base,int size)5755 vm_page_is_valid(vm_page_t m, int base, int size)
5756 {
5757 vm_page_bits_t bits;
5758
5759 bits = vm_page_bits(base, size);
5760 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5761 }
5762
5763 /*
5764 * Returns true if all of the specified predicates are true for the entire
5765 * (super)page and false otherwise.
5766 */
5767 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5768 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5769 {
5770 vm_object_t object;
5771 int i, npages;
5772
5773 object = m->object;
5774 if (skip_m != NULL && skip_m->object != object)
5775 return (false);
5776 VM_OBJECT_ASSERT_LOCKED(object);
5777 KASSERT(psind <= m->psind,
5778 ("psind %d > psind %d of m %p", psind, m->psind, m));
5779 npages = atop(pagesizes[psind]);
5780
5781 /*
5782 * The physically contiguous pages that make up a superpage, i.e., a
5783 * page with a page size index ("psind") greater than zero, will
5784 * occupy adjacent entries in vm_page_array[].
5785 */
5786 for (i = 0; i < npages; i++) {
5787 /* Always test object consistency, including "skip_m". */
5788 if (m[i].object != object)
5789 return (false);
5790 if (&m[i] == skip_m)
5791 continue;
5792 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5793 return (false);
5794 if ((flags & PS_ALL_DIRTY) != 0) {
5795 /*
5796 * Calling vm_page_test_dirty() or pmap_is_modified()
5797 * might stop this case from spuriously returning
5798 * "false". However, that would require a write lock
5799 * on the object containing "m[i]".
5800 */
5801 if (m[i].dirty != VM_PAGE_BITS_ALL)
5802 return (false);
5803 }
5804 if ((flags & PS_ALL_VALID) != 0 &&
5805 m[i].valid != VM_PAGE_BITS_ALL)
5806 return (false);
5807 }
5808 return (true);
5809 }
5810
5811 /*
5812 * Set the page's dirty bits if the page is modified.
5813 */
5814 void
vm_page_test_dirty(vm_page_t m)5815 vm_page_test_dirty(vm_page_t m)
5816 {
5817
5818 vm_page_assert_busied(m);
5819 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5820 vm_page_dirty(m);
5821 }
5822
5823 void
vm_page_valid(vm_page_t m)5824 vm_page_valid(vm_page_t m)
5825 {
5826
5827 vm_page_assert_busied(m);
5828 if (vm_page_xbusied(m))
5829 m->valid = VM_PAGE_BITS_ALL;
5830 else
5831 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5832 }
5833
5834 #ifdef INVARIANTS
5835 void
vm_page_object_busy_assert(vm_page_t m)5836 vm_page_object_busy_assert(vm_page_t m)
5837 {
5838
5839 /*
5840 * Certain of the page's fields may only be modified by the
5841 * holder of a page or object busy.
5842 */
5843 if (m->object != NULL && !vm_page_busied(m))
5844 VM_OBJECT_ASSERT_BUSY(m->object);
5845 }
5846
5847 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5848 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5849 {
5850
5851 if ((bits & PGA_WRITEABLE) == 0)
5852 return;
5853
5854 /*
5855 * The PGA_WRITEABLE flag can only be set if the page is
5856 * managed, is exclusively busied or the object is locked.
5857 * Currently, this flag is only set by pmap_enter().
5858 */
5859 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5860 ("PGA_WRITEABLE on unmanaged page"));
5861 if (!vm_page_xbusied(m))
5862 VM_OBJECT_ASSERT_BUSY(m->object);
5863 }
5864 #endif
5865
5866 #include "opt_ddb.h"
5867 #ifdef DDB
5868 #include <sys/kernel.h>
5869
5870 #include <ddb/ddb.h>
5871
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5872 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5873 {
5874
5875 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5876 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5877 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5878 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5879 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5880 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5881 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5882 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5883 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5884 }
5885
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5886 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5887 {
5888 int dom;
5889
5890 db_printf("pq_free %d\n", vm_free_count());
5891 for (dom = 0; dom < vm_ndomains; dom++) {
5892 db_printf(
5893 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5894 dom,
5895 vm_dom[dom].vmd_page_count,
5896 vm_dom[dom].vmd_free_count,
5897 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5898 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5899 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5900 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5901 }
5902 }
5903
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5904 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5905 {
5906 vm_page_t m;
5907 boolean_t phys, virt;
5908
5909 if (!have_addr) {
5910 db_printf("show pginfo addr\n");
5911 return;
5912 }
5913
5914 phys = strchr(modif, 'p') != NULL;
5915 virt = strchr(modif, 'v') != NULL;
5916 if (virt)
5917 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5918 else if (phys)
5919 m = PHYS_TO_VM_PAGE(addr);
5920 else
5921 m = (vm_page_t)addr;
5922 db_printf(
5923 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5924 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5925 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5926 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5927 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5928 }
5929 #endif /* DDB */
5930