xref: /freebsd/sys/vm/vm_page.c (revision 637d9858e6a8b4a8a3ee4dd80743a58bde4cbd68)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Resident memory management module.
65  */
66 
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91 
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110 
111 #include <machine/md_var.h>
112 
113 struct vm_domain vm_dom[MAXMEMDOM];
114 
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116 
117 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
118 /* The following fields are protected by the domainset lock. */
119 domainset_t __exclusive_cache_line vm_min_domains;
120 domainset_t __exclusive_cache_line vm_severe_domains;
121 static int vm_min_waiters;
122 static int vm_severe_waiters;
123 static int vm_pageproc_waiters;
124 
125 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
126     "VM page statistics");
127 
128 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
129 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
130     CTLFLAG_RD, &pqstate_commit_retries,
131     "Number of failed per-page atomic queue state updates");
132 
133 static COUNTER_U64_DEFINE_EARLY(queue_ops);
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
135     CTLFLAG_RD, &queue_ops,
136     "Number of batched queue operations");
137 
138 static COUNTER_U64_DEFINE_EARLY(queue_nops);
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
140     CTLFLAG_RD, &queue_nops,
141     "Number of batched queue operations with no effects");
142 
143 static unsigned long nofreeq_size;
144 SYSCTL_ULONG(_vm_stats_page, OID_AUTO, nofreeq_size, CTLFLAG_RD,
145     &nofreeq_size, 0,
146     "Size of the nofree queue");
147 
148 /*
149  * bogus page -- for I/O to/from partially complete buffers,
150  * or for paging into sparsely invalid regions.
151  */
152 vm_page_t bogus_page;
153 
154 vm_page_t vm_page_array;
155 long vm_page_array_size;
156 long first_page;
157 
158 struct bitset *vm_page_dump;
159 long vm_page_dump_pages;
160 
161 static TAILQ_HEAD(, vm_page) blacklist_head;
162 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
163 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
164     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
165 
166 static uma_zone_t fakepg_zone;
167 
168 static void vm_page_alloc_check(vm_page_t m);
169 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object);
178 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
179     const uint16_t nflag);
180 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
181     vm_page_t m_run, vm_paddr_t high);
182 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
183 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
184     int req);
185 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
186     int flags);
187 static void vm_page_zone_release(void *arg, void **store, int cnt);
188 
189 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
190 
191 static void
vm_page_init(void * dummy)192 vm_page_init(void *dummy)
193 {
194 
195 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
196 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197 	bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
198 }
199 
200 static int pgcache_zone_max_pcpu;
201 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
202     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
203     "Per-CPU page cache size");
204 
205 /*
206  * The cache page zone is initialized later since we need to be able to allocate
207  * pages before UMA is fully initialized.
208  */
209 static void
vm_page_init_cache_zones(void * dummy __unused)210 vm_page_init_cache_zones(void *dummy __unused)
211 {
212 	struct vm_domain *vmd;
213 	struct vm_pgcache *pgcache;
214 	int cache, domain, maxcache, pool;
215 
216 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
217 	maxcache = pgcache_zone_max_pcpu * mp_ncpus;
218 	for (domain = 0; domain < vm_ndomains; domain++) {
219 		vmd = VM_DOMAIN(domain);
220 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
221 #ifdef VM_FREEPOOL_LAZYINIT
222 			if (pool == VM_FREEPOOL_LAZYINIT)
223 				continue;
224 #endif
225 			pgcache = &vmd->vmd_pgcache[pool];
226 			pgcache->domain = domain;
227 			pgcache->pool = pool;
228 			pgcache->zone = uma_zcache_create("vm pgcache",
229 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
230 			    vm_page_zone_import, vm_page_zone_release, pgcache,
231 			    UMA_ZONE_VM);
232 
233 			/*
234 			 * Limit each pool's zone to 0.1% of the pages in the
235 			 * domain.
236 			 */
237 			cache = maxcache != 0 ? maxcache :
238 			    vmd->vmd_page_count / 1000;
239 			uma_zone_set_maxcache(pgcache->zone, cache);
240 		}
241 	}
242 }
243 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
244 
245 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
246 #if PAGE_SIZE == 32768
247 #ifdef CTASSERT
248 CTASSERT(sizeof(u_long) >= 8);
249 #endif
250 #endif
251 
252 /*
253  *	vm_set_page_size:
254  *
255  *	Sets the page size, perhaps based upon the memory
256  *	size.  Must be called before any use of page-size
257  *	dependent functions.
258  */
259 void
vm_set_page_size(void)260 vm_set_page_size(void)
261 {
262 	if (vm_cnt.v_page_size == 0)
263 		vm_cnt.v_page_size = PAGE_SIZE;
264 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
265 		panic("vm_set_page_size: page size not a power of two");
266 }
267 
268 /*
269  *	vm_page_blacklist_next:
270  *
271  *	Find the next entry in the provided string of blacklist
272  *	addresses.  Entries are separated by space, comma, or newline.
273  *	If an invalid integer is encountered then the rest of the
274  *	string is skipped.  Updates the list pointer to the next
275  *	character, or NULL if the string is exhausted or invalid.
276  */
277 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)278 vm_page_blacklist_next(char **list, char *end)
279 {
280 	vm_paddr_t bad;
281 	char *cp, *pos;
282 
283 	if (list == NULL || *list == NULL)
284 		return (0);
285 	if (**list =='\0') {
286 		*list = NULL;
287 		return (0);
288 	}
289 
290 	/*
291 	 * If there's no end pointer then the buffer is coming from
292 	 * the kenv and we know it's null-terminated.
293 	 */
294 	if (end == NULL)
295 		end = *list + strlen(*list);
296 
297 	/* Ensure that strtoq() won't walk off the end */
298 	if (*end != '\0') {
299 		if (*end == '\n' || *end == ' ' || *end  == ',')
300 			*end = '\0';
301 		else {
302 			printf("Blacklist not terminated, skipping\n");
303 			*list = NULL;
304 			return (0);
305 		}
306 	}
307 
308 	for (pos = *list; *pos != '\0'; pos = cp) {
309 		bad = strtoq(pos, &cp, 0);
310 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
311 			if (bad == 0) {
312 				if (++cp < end)
313 					continue;
314 				else
315 					break;
316 			}
317 		} else
318 			break;
319 		if (*cp == '\0' || ++cp >= end)
320 			*list = NULL;
321 		else
322 			*list = cp;
323 		return (trunc_page(bad));
324 	}
325 	printf("Garbage in RAM blacklist, skipping\n");
326 	*list = NULL;
327 	return (0);
328 }
329 
330 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)331 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
332 {
333 	struct vm_domain *vmd;
334 	vm_page_t m;
335 	bool found;
336 
337 	m = vm_phys_paddr_to_vm_page(pa);
338 	if (m == NULL)
339 		return (true); /* page does not exist, no failure */
340 
341 	vmd = VM_DOMAIN(vm_phys_domain(pa));
342 	vm_domain_free_lock(vmd);
343 	found = vm_phys_unfree_page(pa);
344 	vm_domain_free_unlock(vmd);
345 	if (found) {
346 		vm_domain_freecnt_inc(vmd, -1);
347 		TAILQ_INSERT_TAIL(&blacklist_head, m, plinks.q);
348 		if (verbose)
349 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
350 	}
351 	return (found);
352 }
353 
354 /*
355  *	vm_page_blacklist_check:
356  *
357  *	Iterate through the provided string of blacklist addresses, pulling
358  *	each entry out of the physical allocator free list and putting it
359  *	onto a list for reporting via the vm.page_blacklist sysctl.
360  */
361 static void
vm_page_blacklist_check(char * list,char * end)362 vm_page_blacklist_check(char *list, char *end)
363 {
364 	vm_paddr_t pa;
365 	char *next;
366 
367 	next = list;
368 	while (next != NULL) {
369 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
370 			continue;
371 		vm_page_blacklist_add(pa, bootverbose);
372 	}
373 }
374 
375 /*
376  *	vm_page_blacklist_load:
377  *
378  *	Search for a special module named "ram_blacklist".  It'll be a
379  *	plain text file provided by the user via the loader directive
380  *	of the same name.
381  */
382 static void
vm_page_blacklist_load(char ** list,char ** end)383 vm_page_blacklist_load(char **list, char **end)
384 {
385 	void *mod;
386 	u_char *ptr;
387 	u_int len;
388 
389 	mod = NULL;
390 	ptr = NULL;
391 
392 	mod = preload_search_by_type("ram_blacklist");
393 	if (mod != NULL) {
394 		ptr = preload_fetch_addr(mod);
395 		len = preload_fetch_size(mod);
396         }
397 
398 	if (ptr != NULL && len > 0) {
399 		*list = ptr;
400 		*end = ptr + len - 1;
401 	} else {
402 		*list = NULL;
403 		*end = NULL;
404 	}
405 
406 	return;
407 }
408 
409 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)410 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
411 {
412 	vm_page_t m;
413 	struct sbuf sbuf;
414 	int error, first;
415 
416 	first = 1;
417 	error = sysctl_wire_old_buffer(req, 0);
418 	if (error != 0)
419 		return (error);
420 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
421 	TAILQ_FOREACH(m, &blacklist_head, plinks.q) {
422 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
423 		    (uintmax_t)m->phys_addr);
424 		first = 0;
425 	}
426 	error = sbuf_finish(&sbuf);
427 	sbuf_delete(&sbuf);
428 	return (error);
429 }
430 
431 /*
432  * Initialize a dummy page for use in scans of the specified paging queue.
433  * In principle, this function only needs to set the flag PG_MARKER.
434  * Nonetheless, it write busies the page as a safety precaution.
435  */
436 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)437 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
438 {
439 
440 	bzero(marker, sizeof(*marker));
441 	marker->flags = PG_MARKER;
442 	marker->a.flags = aflags;
443 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
444 	marker->a.queue = queue;
445 }
446 
447 static void
vm_page_domain_init(int domain)448 vm_page_domain_init(int domain)
449 {
450 	struct vm_domain *vmd;
451 	struct vm_pagequeue *pq;
452 	int i;
453 
454 	vmd = VM_DOMAIN(domain);
455 	bzero(vmd, sizeof(*vmd));
456 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
457 	    "vm inactive pagequeue";
458 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
459 	    "vm active pagequeue";
460 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
461 	    "vm laundry pagequeue";
462 	*__DECONST(const char **,
463 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
464 	    "vm unswappable pagequeue";
465 	vmd->vmd_domain = domain;
466 	vmd->vmd_page_count = 0;
467 	vmd->vmd_free_count = 0;
468 	vmd->vmd_segs = 0;
469 	vmd->vmd_oom = false;
470 	vmd->vmd_helper_threads_enabled = true;
471 	for (i = 0; i < PQ_COUNT; i++) {
472 		pq = &vmd->vmd_pagequeues[i];
473 		TAILQ_INIT(&pq->pq_pl);
474 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
475 		    MTX_DEF | MTX_DUPOK);
476 		pq->pq_pdpages = 0;
477 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
478 	}
479 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
480 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
481 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
482 
483 	/*
484 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
485 	 * insertions.
486 	 */
487 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
488 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
489 	    &vmd->vmd_inacthead, plinks.q);
490 
491 	/*
492 	 * The clock pages are used to implement active queue scanning without
493 	 * requeues.  Scans start at clock[0], which is advanced after the scan
494 	 * ends.  When the two clock hands meet, they are reset and scanning
495 	 * resumes from the head of the queue.
496 	 */
497 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
498 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
499 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
500 	    &vmd->vmd_clock[0], plinks.q);
501 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
502 	    &vmd->vmd_clock[1], plinks.q);
503 }
504 
505 /*
506  * Initialize a physical page in preparation for adding it to the free
507  * lists.
508  */
509 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)510 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
511 {
512 	m->object = NULL;
513 	m->ref_count = 0;
514 	m->busy_lock = VPB_FREED;
515 	m->flags = m->a.flags = 0;
516 	m->phys_addr = pa;
517 	m->a.queue = PQ_NONE;
518 	m->psind = 0;
519 	m->segind = segind;
520 	m->order = VM_NFREEORDER;
521 	m->pool = pool;
522 	m->valid = m->dirty = 0;
523 	pmap_page_init(m);
524 }
525 
526 #ifndef PMAP_HAS_PAGE_ARRAY
527 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)528 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
529 {
530 	vm_paddr_t new_end;
531 
532 	/*
533 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
534 	 * However, because this page is allocated from KVM, out-of-bounds
535 	 * accesses using the direct map will not be trapped.
536 	 */
537 	*vaddr += PAGE_SIZE;
538 
539 	/*
540 	 * Allocate physical memory for the page structures, and map it.
541 	 */
542 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
543 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
544 	    VM_PROT_READ | VM_PROT_WRITE);
545 	vm_page_array_size = page_range;
546 
547 	return (new_end);
548 }
549 #endif
550 
551 /*
552  *	vm_page_startup:
553  *
554  *	Initializes the resident memory module.  Allocates physical memory for
555  *	bootstrapping UMA and some data structures that are used to manage
556  *	physical pages.  Initializes these structures, and populates the free
557  *	page queues.
558  */
559 vm_offset_t
vm_page_startup(vm_offset_t vaddr)560 vm_page_startup(vm_offset_t vaddr)
561 {
562 	struct vm_phys_seg *seg;
563 	struct vm_domain *vmd;
564 	vm_page_t m;
565 	char *list, *listend;
566 	vm_paddr_t end, high_avail, low_avail, new_end, size;
567 	vm_paddr_t page_range __unused;
568 	vm_paddr_t last_pa, pa, startp, endp;
569 	u_long pagecount;
570 #if MINIDUMP_PAGE_TRACKING
571 	u_long vm_page_dump_size;
572 #endif
573 	int biggestone, i, segind;
574 #ifdef WITNESS
575 	vm_offset_t mapped;
576 	int witness_size;
577 #endif
578 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
579 	long ii;
580 #endif
581 	int pool;
582 #ifdef VM_FREEPOOL_LAZYINIT
583 	int lazyinit;
584 #endif
585 
586 	vaddr = round_page(vaddr);
587 
588 	vm_phys_early_startup();
589 	biggestone = vm_phys_avail_largest();
590 	end = phys_avail[biggestone+1];
591 
592 	/*
593 	 * Initialize the page and queue locks.
594 	 */
595 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
596 	for (i = 0; i < vm_ndomains; i++)
597 		vm_page_domain_init(i);
598 
599 	new_end = end;
600 #ifdef WITNESS
601 	witness_size = round_page(witness_startup_count());
602 	new_end -= witness_size;
603 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
604 	    VM_PROT_READ | VM_PROT_WRITE);
605 	bzero((void *)mapped, witness_size);
606 	witness_startup((void *)mapped);
607 #endif
608 
609 #if MINIDUMP_PAGE_TRACKING
610 	/*
611 	 * Allocate a bitmap to indicate that a random physical page
612 	 * needs to be included in a minidump.
613 	 *
614 	 * The amd64 port needs this to indicate which direct map pages
615 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
616 	 *
617 	 * However, i386 still needs this workspace internally within the
618 	 * minidump code.  In theory, they are not needed on i386, but are
619 	 * included should the sf_buf code decide to use them.
620 	 */
621 	last_pa = 0;
622 	vm_page_dump_pages = 0;
623 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
624 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
625 		    dump_avail[i] / PAGE_SIZE;
626 		if (dump_avail[i + 1] > last_pa)
627 			last_pa = dump_avail[i + 1];
628 	}
629 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
630 	new_end -= vm_page_dump_size;
631 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
632 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
633 	bzero((void *)vm_page_dump, vm_page_dump_size);
634 #if MINIDUMP_STARTUP_PAGE_TRACKING
635 	/*
636 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
637 	 * in a crash dump.  When pmap_map() uses the direct map, they are
638 	 * not automatically included.
639 	 */
640 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
641 		dump_add_page(pa);
642 #endif
643 #else
644 	(void)last_pa;
645 #endif
646 	phys_avail[biggestone + 1] = new_end;
647 #ifdef __amd64__
648 	/*
649 	 * Request that the physical pages underlying the message buffer be
650 	 * included in a crash dump.  Since the message buffer is accessed
651 	 * through the direct map, they are not automatically included.
652 	 */
653 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
654 	last_pa = pa + round_page(msgbufsize);
655 	while (pa < last_pa) {
656 		dump_add_page(pa);
657 		pa += PAGE_SIZE;
658 	}
659 #else
660 	(void)pa;
661 #endif
662 
663 	/*
664 	 * Determine the lowest and highest physical addresses and, in the case
665 	 * of VM_PHYSSEG_SPARSE, the exact size of the available physical
666 	 * memory.  vm_phys_early_startup() already checked that phys_avail[]
667 	 * has at least one element.
668 	 */
669 #ifdef VM_PHYSSEG_SPARSE
670 	size = phys_avail[1] - phys_avail[0];
671 #endif
672 	low_avail = phys_avail[0];
673 	high_avail = phys_avail[1];
674 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
675 #ifdef VM_PHYSSEG_SPARSE
676 		size += phys_avail[i + 1] - phys_avail[i];
677 #endif
678 		if (phys_avail[i] < low_avail)
679 			low_avail = phys_avail[i];
680 		if (phys_avail[i + 1] > high_avail)
681 			high_avail = phys_avail[i + 1];
682 	}
683 	for (i = 0; i < vm_phys_nsegs; i++) {
684 #ifdef VM_PHYSSEG_SPARSE
685 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
686 #endif
687 		if (vm_phys_segs[i].start < low_avail)
688 			low_avail = vm_phys_segs[i].start;
689 		if (vm_phys_segs[i].end > high_avail)
690 			high_avail = vm_phys_segs[i].end;
691 	}
692 	first_page = low_avail / PAGE_SIZE;
693 #ifdef VM_PHYSSEG_DENSE
694 	size = high_avail - low_avail;
695 #endif
696 
697 #ifdef PMAP_HAS_PAGE_ARRAY
698 	pmap_page_array_startup(size / PAGE_SIZE);
699 	biggestone = vm_phys_avail_largest();
700 	end = new_end = phys_avail[biggestone + 1];
701 #else
702 #ifdef VM_PHYSSEG_DENSE
703 	/*
704 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
705 	 * the overhead of a page structure per page only if vm_page_array is
706 	 * allocated from the last physical memory chunk.  Otherwise, we must
707 	 * allocate page structures representing the physical memory
708 	 * underlying vm_page_array, even though they will not be used.
709 	 */
710 	if (new_end != high_avail)
711 		page_range = size / PAGE_SIZE;
712 	else
713 #endif
714 	{
715 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
716 
717 		/*
718 		 * If the partial bytes remaining are large enough for
719 		 * a page (PAGE_SIZE) without a corresponding
720 		 * 'struct vm_page', then new_end will contain an
721 		 * extra page after subtracting the length of the VM
722 		 * page array.  Compensate by subtracting an extra
723 		 * page from new_end.
724 		 */
725 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
726 			if (new_end == high_avail)
727 				high_avail -= PAGE_SIZE;
728 			new_end -= PAGE_SIZE;
729 		}
730 	}
731 	end = new_end;
732 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
733 #endif
734 
735 #if VM_NRESERVLEVEL > 0
736 	/*
737 	 * Allocate physical memory for the reservation management system's
738 	 * data structures, and map it.
739 	 */
740 	new_end = vm_reserv_startup(&vaddr, new_end);
741 #endif
742 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
743 	/*
744 	 * Include vm_page_array and vm_reserv_array in a crash dump.
745 	 */
746 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
747 		dump_add_page(pa);
748 #endif
749 	phys_avail[biggestone + 1] = new_end;
750 
751 	/*
752 	 * Add physical memory segments corresponding to the available
753 	 * physical pages.
754 	 */
755 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
756 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
757 
758 	/*
759 	 * Initialize the physical memory allocator.
760 	 */
761 	vm_phys_init();
762 
763 	pool = VM_FREEPOOL_DEFAULT;
764 #ifdef VM_FREEPOOL_LAZYINIT
765 	lazyinit = 1;
766 	TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
767 	if (lazyinit)
768 		pool = VM_FREEPOOL_LAZYINIT;
769 #endif
770 
771 	/*
772 	 * Initialize the page structures and add every available page to the
773 	 * physical memory allocator's free lists.
774 	 */
775 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
776 	for (ii = 0; ii < vm_page_array_size; ii++) {
777 		m = &vm_page_array[ii];
778 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
779 		    VM_FREEPOOL_DEFAULT);
780 		m->flags = PG_FICTITIOUS;
781 	}
782 #endif
783 	vm_cnt.v_page_count = 0;
784 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
785 		seg = &vm_phys_segs[segind];
786 
787 		/*
788 		 * Initialize pages not covered by phys_avail[], since they
789 		 * might be freed to the allocator at some future point, e.g.,
790 		 * by kmem_bootstrap_free().
791 		 */
792 		startp = seg->start;
793 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
794 			if (startp >= seg->end)
795 				break;
796 			if (phys_avail[i + 1] < startp)
797 				continue;
798 			if (phys_avail[i] <= startp) {
799 				startp = phys_avail[i + 1];
800 				continue;
801 			}
802 			m = vm_phys_seg_paddr_to_vm_page(seg, startp);
803 			for (endp = MIN(phys_avail[i], seg->end);
804 			    startp < endp; startp += PAGE_SIZE, m++) {
805 				vm_page_init_page(m, startp, segind,
806 				    VM_FREEPOOL_DEFAULT);
807 			}
808 		}
809 
810 		/*
811 		 * Add the segment's pages that are covered by one of
812 		 * phys_avail's ranges to the free lists.
813 		 */
814 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
815 			if (seg->end <= phys_avail[i] ||
816 			    seg->start >= phys_avail[i + 1])
817 				continue;
818 
819 			startp = MAX(seg->start, phys_avail[i]);
820 			endp = MIN(seg->end, phys_avail[i + 1]);
821 			pagecount = (u_long)atop(endp - startp);
822 			if (pagecount == 0)
823 				continue;
824 
825 			/*
826 			 * If lazy vm_page initialization is not enabled, simply
827 			 * initialize all of the pages in the segment covered by
828 			 * phys_avail.  Otherwise, initialize only the first
829 			 * page of each run of free pages handed to the vm_phys
830 			 * allocator, which in turn defers initialization of
831 			 * pages until they are needed.
832 			 *
833 			 * This avoids blocking the boot process for long
834 			 * periods, which may be relevant for VMs (which ought
835 			 * to boot as quickly as possible) and/or systems with
836 			 * large amounts of physical memory.
837 			 */
838 			m = vm_phys_seg_paddr_to_vm_page(seg, startp);
839 			vm_page_init_page(m, startp, segind, pool);
840 			if (pool == VM_FREEPOOL_DEFAULT) {
841 				for (u_long j = 1; j < pagecount; j++) {
842 					vm_page_init_page(&m[j],
843 					    startp + ptoa((vm_paddr_t)j),
844 					    segind, pool);
845 				}
846 			}
847 			vmd = VM_DOMAIN(seg->domain);
848 			vm_domain_free_lock(vmd);
849 			vm_phys_enqueue_contig(m, pool, pagecount);
850 			vm_domain_free_unlock(vmd);
851 			vm_domain_freecnt_inc(vmd, pagecount);
852 			vm_cnt.v_page_count += (u_int)pagecount;
853 			vmd->vmd_page_count += (u_int)pagecount;
854 			vmd->vmd_segs |= 1UL << segind;
855 		}
856 	}
857 
858 	/*
859 	 * Remove blacklisted pages from the physical memory allocator.
860 	 */
861 	TAILQ_INIT(&blacklist_head);
862 	vm_page_blacklist_load(&list, &listend);
863 	vm_page_blacklist_check(list, listend);
864 
865 	list = kern_getenv("vm.blacklist");
866 	vm_page_blacklist_check(list, NULL);
867 
868 	freeenv(list);
869 #if VM_NRESERVLEVEL > 0
870 	/*
871 	 * Initialize the reservation management system.
872 	 */
873 	vm_reserv_init();
874 #endif
875 
876 	return (vaddr);
877 }
878 
879 void
vm_page_reference(vm_page_t m)880 vm_page_reference(vm_page_t m)
881 {
882 
883 	vm_page_aflag_set(m, PGA_REFERENCED);
884 }
885 
886 /*
887  *	vm_page_trybusy
888  *
889  *	Helper routine for grab functions to trylock busy.
890  *
891  *	Returns true on success and false on failure.
892  */
893 static bool
vm_page_trybusy(vm_page_t m,int allocflags)894 vm_page_trybusy(vm_page_t m, int allocflags)
895 {
896 
897 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
898 		return (vm_page_trysbusy(m));
899 	else
900 		return (vm_page_tryxbusy(m));
901 }
902 
903 /*
904  *	vm_page_tryacquire
905  *
906  *	Helper routine for grab functions to trylock busy and wire.
907  *
908  *	Returns true on success and false on failure.
909  */
910 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)911 vm_page_tryacquire(vm_page_t m, int allocflags)
912 {
913 	bool locked;
914 
915 	locked = vm_page_trybusy(m, allocflags);
916 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
917 		vm_page_wire(m);
918 	return (locked);
919 }
920 
921 /*
922  *	vm_page_busy_acquire:
923  *
924  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
925  *	and drop the object lock if necessary.
926  */
927 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)928 vm_page_busy_acquire(vm_page_t m, int allocflags)
929 {
930 	vm_object_t obj;
931 	bool locked;
932 
933 	/*
934 	 * The page-specific object must be cached because page
935 	 * identity can change during the sleep, causing the
936 	 * re-lock of a different object.
937 	 * It is assumed that a reference to the object is already
938 	 * held by the callers.
939 	 */
940 	obj = atomic_load_ptr(&m->object);
941 	for (;;) {
942 		if (vm_page_tryacquire(m, allocflags))
943 			return (true);
944 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
945 			return (false);
946 		if (obj != NULL)
947 			locked = VM_OBJECT_WOWNED(obj);
948 		else
949 			locked = false;
950 		MPASS(locked || vm_page_wired(m));
951 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
952 		    locked) && locked)
953 			VM_OBJECT_WLOCK(obj);
954 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
955 			return (false);
956 		KASSERT(m->object == obj || m->object == NULL,
957 		    ("vm_page_busy_acquire: page %p does not belong to %p",
958 		    m, obj));
959 	}
960 }
961 
962 /*
963  *	vm_page_busy_downgrade:
964  *
965  *	Downgrade an exclusive busy page into a single shared busy page.
966  */
967 void
vm_page_busy_downgrade(vm_page_t m)968 vm_page_busy_downgrade(vm_page_t m)
969 {
970 	u_int x;
971 
972 	vm_page_assert_xbusied(m);
973 
974 	x = vm_page_busy_fetch(m);
975 	for (;;) {
976 		if (atomic_fcmpset_rel_int(&m->busy_lock,
977 		    &x, VPB_SHARERS_WORD(1)))
978 			break;
979 	}
980 	if ((x & VPB_BIT_WAITERS) != 0)
981 		wakeup(m);
982 }
983 
984 /*
985  *
986  *	vm_page_busy_tryupgrade:
987  *
988  *	Attempt to upgrade a single shared busy into an exclusive busy.
989  */
990 int
vm_page_busy_tryupgrade(vm_page_t m)991 vm_page_busy_tryupgrade(vm_page_t m)
992 {
993 	u_int ce, x;
994 
995 	vm_page_assert_sbusied(m);
996 
997 	x = vm_page_busy_fetch(m);
998 	ce = VPB_CURTHREAD_EXCLUSIVE;
999 	for (;;) {
1000 		if (VPB_SHARERS(x) > 1)
1001 			return (0);
1002 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1003 		    ("vm_page_busy_tryupgrade: invalid lock state"));
1004 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1005 		    ce | (x & VPB_BIT_WAITERS)))
1006 			continue;
1007 		return (1);
1008 	}
1009 }
1010 
1011 /*
1012  *	vm_page_sbusied:
1013  *
1014  *	Return a positive value if the page is shared busied, 0 otherwise.
1015  */
1016 int
vm_page_sbusied(vm_page_t m)1017 vm_page_sbusied(vm_page_t m)
1018 {
1019 	u_int x;
1020 
1021 	x = vm_page_busy_fetch(m);
1022 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1023 }
1024 
1025 /*
1026  *	vm_page_sunbusy:
1027  *
1028  *	Shared unbusy a page.
1029  */
1030 void
vm_page_sunbusy(vm_page_t m)1031 vm_page_sunbusy(vm_page_t m)
1032 {
1033 	u_int x;
1034 
1035 	vm_page_assert_sbusied(m);
1036 
1037 	x = vm_page_busy_fetch(m);
1038 	for (;;) {
1039 		KASSERT(x != VPB_FREED,
1040 		    ("vm_page_sunbusy: Unlocking freed page."));
1041 		if (VPB_SHARERS(x) > 1) {
1042 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1043 			    x - VPB_ONE_SHARER))
1044 				break;
1045 			continue;
1046 		}
1047 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1048 		    ("vm_page_sunbusy: invalid lock state"));
1049 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1050 			continue;
1051 		if ((x & VPB_BIT_WAITERS) == 0)
1052 			break;
1053 		wakeup(m);
1054 		break;
1055 	}
1056 }
1057 
1058 /*
1059  *	vm_page_busy_sleep:
1060  *
1061  *	Sleep if the page is busy, using the page pointer as wchan.
1062  *	This is used to implement the hard-path of the busying mechanism.
1063  *
1064  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1065  *	will not sleep if the page is shared-busy.
1066  *
1067  *	The object lock must be held on entry.
1068  *
1069  *	Returns true if it slept and dropped the object lock, or false
1070  *	if there was no sleep and the lock is still held.
1071  */
1072 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1073 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1074 {
1075 	vm_object_t obj;
1076 
1077 	obj = m->object;
1078 	VM_OBJECT_ASSERT_LOCKED(obj);
1079 
1080 	return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1081 	    true));
1082 }
1083 
1084 /*
1085  *	vm_page_busy_sleep_unlocked:
1086  *
1087  *	Sleep if the page is busy, using the page pointer as wchan.
1088  *	This is used to implement the hard-path of busying mechanism.
1089  *
1090  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1091  *	will not sleep if the page is shared-busy.
1092  *
1093  *	The object lock must not be held on entry.  The operation will
1094  *	return if the page changes identity.
1095  */
1096 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1097 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1098     const char *wmesg, int allocflags)
1099 {
1100 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1101 
1102 	(void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1103 }
1104 
1105 /*
1106  *	_vm_page_busy_sleep:
1107  *
1108  *	Internal busy sleep function.  Verifies the page identity and
1109  *	lockstate against parameters.  Returns true if it sleeps and
1110  *	false otherwise.
1111  *
1112  *	allocflags uses VM_ALLOC_* flags to specify the lock required.
1113  *
1114  *	If locked is true the lock will be dropped for any true returns
1115  *	and held for any false returns.
1116  */
1117 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1118 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1119     const char *wmesg, int allocflags, bool locked)
1120 {
1121 	bool xsleep;
1122 	u_int x;
1123 
1124 	/*
1125 	 * If the object is busy we must wait for that to drain to zero
1126 	 * before trying the page again.
1127 	 */
1128 	if (obj != NULL && vm_object_busied(obj)) {
1129 		if (locked)
1130 			VM_OBJECT_DROP(obj);
1131 		vm_object_busy_wait(obj, wmesg);
1132 		return (true);
1133 	}
1134 
1135 	if (!vm_page_busied(m))
1136 		return (false);
1137 
1138 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1139 	sleepq_lock(m);
1140 	x = vm_page_busy_fetch(m);
1141 	do {
1142 		/*
1143 		 * If the page changes objects or becomes unlocked we can
1144 		 * simply return.
1145 		 */
1146 		if (x == VPB_UNBUSIED ||
1147 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1148 		    m->object != obj || m->pindex != pindex) {
1149 			sleepq_release(m);
1150 			return (false);
1151 		}
1152 		if ((x & VPB_BIT_WAITERS) != 0)
1153 			break;
1154 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1155 	if (locked)
1156 		VM_OBJECT_DROP(obj);
1157 	DROP_GIANT();
1158 	sleepq_add(m, NULL, wmesg, 0, 0);
1159 	sleepq_wait(m, PVM);
1160 	PICKUP_GIANT();
1161 	return (true);
1162 }
1163 
1164 /*
1165  *	vm_page_trysbusy:
1166  *
1167  *	Try to shared busy a page.
1168  *	If the operation succeeds 1 is returned otherwise 0.
1169  *	The operation never sleeps.
1170  */
1171 int
vm_page_trysbusy(vm_page_t m)1172 vm_page_trysbusy(vm_page_t m)
1173 {
1174 	vm_object_t obj;
1175 	u_int x;
1176 
1177 	obj = m->object;
1178 	x = vm_page_busy_fetch(m);
1179 	for (;;) {
1180 		if ((x & VPB_BIT_SHARED) == 0)
1181 			return (0);
1182 		/*
1183 		 * Reduce the window for transient busies that will trigger
1184 		 * false negatives in vm_page_ps_test().
1185 		 */
1186 		if (obj != NULL && vm_object_busied(obj))
1187 			return (0);
1188 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1189 		    x + VPB_ONE_SHARER))
1190 			break;
1191 	}
1192 
1193 	/* Refetch the object now that we're guaranteed that it is stable. */
1194 	obj = m->object;
1195 	if (obj != NULL && vm_object_busied(obj)) {
1196 		vm_page_sunbusy(m);
1197 		return (0);
1198 	}
1199 	return (1);
1200 }
1201 
1202 /*
1203  *	vm_page_tryxbusy:
1204  *
1205  *	Try to exclusive busy a page.
1206  *	If the operation succeeds 1 is returned otherwise 0.
1207  *	The operation never sleeps.
1208  */
1209 int
vm_page_tryxbusy(vm_page_t m)1210 vm_page_tryxbusy(vm_page_t m)
1211 {
1212 	vm_object_t obj;
1213 
1214         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1215             VPB_CURTHREAD_EXCLUSIVE) == 0)
1216 		return (0);
1217 
1218 	obj = m->object;
1219 	if (obj != NULL && vm_object_busied(obj)) {
1220 		vm_page_xunbusy(m);
1221 		return (0);
1222 	}
1223 	return (1);
1224 }
1225 
1226 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1227 vm_page_xunbusy_hard_tail(vm_page_t m)
1228 {
1229 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1230 	/* Wake the waiter. */
1231 	wakeup(m);
1232 }
1233 
1234 /*
1235  *	vm_page_xunbusy_hard:
1236  *
1237  *	Called when unbusy has failed because there is a waiter.
1238  */
1239 void
vm_page_xunbusy_hard(vm_page_t m)1240 vm_page_xunbusy_hard(vm_page_t m)
1241 {
1242 	vm_page_assert_xbusied(m);
1243 	vm_page_xunbusy_hard_tail(m);
1244 }
1245 
1246 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1247 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1248 {
1249 	vm_page_assert_xbusied_unchecked(m);
1250 	vm_page_xunbusy_hard_tail(m);
1251 }
1252 
1253 static void
vm_page_busy_free(vm_page_t m)1254 vm_page_busy_free(vm_page_t m)
1255 {
1256 	u_int x;
1257 
1258 	atomic_thread_fence_rel();
1259 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1260 	if ((x & VPB_BIT_WAITERS) != 0)
1261 		wakeup(m);
1262 }
1263 
1264 /*
1265  *	vm_page_unhold_pages:
1266  *
1267  *	Unhold each of the pages that is referenced by the given array.
1268  */
1269 void
vm_page_unhold_pages(vm_page_t * ma,int count)1270 vm_page_unhold_pages(vm_page_t *ma, int count)
1271 {
1272 
1273 	for (; count != 0; count--) {
1274 		vm_page_unwire(*ma, PQ_ACTIVE);
1275 		ma++;
1276 	}
1277 }
1278 
1279 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1280 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1281 {
1282 	vm_page_t m;
1283 
1284 #ifdef VM_PHYSSEG_SPARSE
1285 	m = vm_phys_paddr_to_vm_page(pa);
1286 	if (m == NULL)
1287 		m = vm_phys_fictitious_to_vm_page(pa);
1288 	return (m);
1289 #elif defined(VM_PHYSSEG_DENSE)
1290 	long pi;
1291 
1292 	pi = atop(pa);
1293 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1294 		m = &vm_page_array[pi - first_page];
1295 		return (m);
1296 	}
1297 	return (vm_phys_fictitious_to_vm_page(pa));
1298 #else
1299 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1300 #endif
1301 }
1302 
1303 /*
1304  *	vm_page_getfake:
1305  *
1306  *	Create a fictitious page with the specified physical address and
1307  *	memory attribute.  The memory attribute is the only the machine-
1308  *	dependent aspect of a fictitious page that must be initialized.
1309  */
1310 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1311 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1312 {
1313 	vm_page_t m;
1314 
1315 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1316 	vm_page_initfake(m, paddr, memattr);
1317 	return (m);
1318 }
1319 
1320 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1321 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1322 {
1323 
1324 	if ((m->flags & PG_FICTITIOUS) != 0) {
1325 		/*
1326 		 * The page's memattr might have changed since the
1327 		 * previous initialization.  Update the pmap to the
1328 		 * new memattr.
1329 		 */
1330 		goto memattr;
1331 	}
1332 	m->phys_addr = paddr;
1333 	m->a.queue = PQ_NONE;
1334 	/* Fictitious pages don't use "segind". */
1335 	m->flags = PG_FICTITIOUS;
1336 	/* Fictitious pages don't use "order" or "pool". */
1337 	m->oflags = VPO_UNMANAGED;
1338 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1339 	/* Fictitious pages are unevictable. */
1340 	m->ref_count = 1;
1341 	pmap_page_init(m);
1342 memattr:
1343 	pmap_page_set_memattr(m, memattr);
1344 }
1345 
1346 /*
1347  *	vm_page_putfake:
1348  *
1349  *	Release a fictitious page.
1350  */
1351 void
vm_page_putfake(vm_page_t m)1352 vm_page_putfake(vm_page_t m)
1353 {
1354 
1355 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1356 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1357 	    ("vm_page_putfake: bad page %p", m));
1358 	vm_page_assert_xbusied(m);
1359 	vm_page_busy_free(m);
1360 	uma_zfree(fakepg_zone, m);
1361 }
1362 
1363 /*
1364  *	vm_page_updatefake:
1365  *
1366  *	Update the given fictitious page to the specified physical address and
1367  *	memory attribute.
1368  */
1369 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1370 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1371 {
1372 
1373 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1374 	    ("vm_page_updatefake: bad page %p", m));
1375 	m->phys_addr = paddr;
1376 	pmap_page_set_memattr(m, memattr);
1377 }
1378 
1379 /*
1380  *	vm_page_free:
1381  *
1382  *	Free a page.
1383  */
1384 void
vm_page_free(vm_page_t m)1385 vm_page_free(vm_page_t m)
1386 {
1387 
1388 	m->flags &= ~PG_ZERO;
1389 	vm_page_free_toq(m);
1390 }
1391 
1392 /*
1393  *	vm_page_free_zero:
1394  *
1395  *	Free a page to the zerod-pages queue
1396  */
1397 void
vm_page_free_zero(vm_page_t m)1398 vm_page_free_zero(vm_page_t m)
1399 {
1400 
1401 	m->flags |= PG_ZERO;
1402 	vm_page_free_toq(m);
1403 }
1404 
1405 /*
1406  * Unbusy and handle the page queueing for a page from a getpages request that
1407  * was optionally read ahead or behind.
1408  */
1409 void
vm_page_readahead_finish(vm_page_t m)1410 vm_page_readahead_finish(vm_page_t m)
1411 {
1412 
1413 	/* We shouldn't put invalid pages on queues. */
1414 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1415 
1416 	/*
1417 	 * Since the page is not the actually needed one, whether it should
1418 	 * be activated or deactivated is not obvious.  Empirical results
1419 	 * have shown that deactivating the page is usually the best choice,
1420 	 * unless the page is wanted by another thread.
1421 	 */
1422 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1423 		vm_page_activate(m);
1424 	else
1425 		vm_page_deactivate(m);
1426 	vm_page_xunbusy_unchecked(m);
1427 }
1428 
1429 /*
1430  * Destroy the identity of an invalid page and free it if possible.
1431  * This is intended to be used when reading a page from backing store fails.
1432  */
1433 void
vm_page_free_invalid(vm_page_t m)1434 vm_page_free_invalid(vm_page_t m)
1435 {
1436 
1437 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1438 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1439 	KASSERT(m->object != NULL, ("page %p has no object", m));
1440 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1441 
1442 	/*
1443 	 * We may be attempting to free the page as part of the handling for an
1444 	 * I/O error, in which case the page was xbusied by a different thread.
1445 	 */
1446 	vm_page_xbusy_claim(m);
1447 
1448 	/*
1449 	 * If someone has wired this page while the object lock
1450 	 * was not held, then the thread that unwires is responsible
1451 	 * for freeing the page.  Otherwise just free the page now.
1452 	 * The wire count of this unmapped page cannot change while
1453 	 * we have the page xbusy and the page's object wlocked.
1454 	 */
1455 	if (vm_page_remove(m))
1456 		vm_page_free(m);
1457 }
1458 
1459 /*
1460  *	vm_page_dirty_KBI:		[ internal use only ]
1461  *
1462  *	Set all bits in the page's dirty field.
1463  *
1464  *	The object containing the specified page must be locked if the
1465  *	call is made from the machine-independent layer.
1466  *
1467  *	See vm_page_clear_dirty_mask().
1468  *
1469  *	This function should only be called by vm_page_dirty().
1470  */
1471 void
vm_page_dirty_KBI(vm_page_t m)1472 vm_page_dirty_KBI(vm_page_t m)
1473 {
1474 
1475 	/* Refer to this operation by its public name. */
1476 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1477 	m->dirty = VM_PAGE_BITS_ALL;
1478 }
1479 
1480 /*
1481  * Insert the given page into the given object at the given pindex.
1482  *
1483  * The procedure is marked __always_inline to suggest to the compiler to
1484  * eliminate the iter parameter and the associated alternate branch.
1485  */
1486 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,bool iter,struct pctrie_iter * pages)1487 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1488     bool iter, struct pctrie_iter *pages)
1489 {
1490 	int error;
1491 
1492 	VM_OBJECT_ASSERT_WLOCKED(object);
1493 	KASSERT(m->object == NULL,
1494 	    ("vm_page_insert: page %p already inserted", m));
1495 
1496 	/*
1497 	 * Record the object/offset pair in this page.
1498 	 */
1499 	m->object = object;
1500 	m->pindex = pindex;
1501 	m->ref_count |= VPRC_OBJREF;
1502 
1503 	/*
1504 	 * Add this page to the object's radix tree.
1505 	 */
1506 	if (iter)
1507 		error = vm_radix_iter_insert(pages, m);
1508 	else
1509 		error = vm_radix_insert(&object->rtree, m);
1510 	if (__predict_false(error != 0)) {
1511 		m->object = NULL;
1512 		m->pindex = 0;
1513 		m->ref_count &= ~VPRC_OBJREF;
1514 		return (1);
1515 	}
1516 
1517 	vm_page_insert_radixdone(m, object);
1518 	vm_pager_page_inserted(object, m);
1519 	return (0);
1520 }
1521 
1522 /*
1523  *	vm_page_insert:		[ internal use only ]
1524  *
1525  *	Inserts the given mem entry into the object and object list.
1526  *
1527  *	The object must be locked.
1528  */
1529 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1530 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1531 {
1532 	return (vm_page_insert_lookup(m, object, pindex, false, NULL));
1533 }
1534 
1535 /*
1536  *	vm_page_iter_insert:
1537  *
1538  *	Tries to insert the page "m" into the specified object at offset
1539  *	"pindex" using the iterator "pages".  Returns 0 if the insertion was
1540  *	successful.
1541  *
1542  *	The object must be locked.
1543  */
1544 int
vm_page_iter_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages)1545 vm_page_iter_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1546     struct pctrie_iter *pages)
1547 {
1548 	return (vm_page_insert_lookup(m, object, pindex, true, pages));
1549 }
1550 
1551 /*
1552  *	vm_page_insert_radixdone:
1553  *
1554  *	Complete page "m" insertion into the specified object after the
1555  *	radix trie hooking.
1556  *
1557  *	The object must be locked.
1558  */
1559 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object)1560 vm_page_insert_radixdone(vm_page_t m, vm_object_t object)
1561 {
1562 
1563 	VM_OBJECT_ASSERT_WLOCKED(object);
1564 	KASSERT(object != NULL && m->object == object,
1565 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1566 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1567 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1568 
1569 	/*
1570 	 * Show that the object has one more resident page.
1571 	 */
1572 	object->resident_page_count++;
1573 
1574 	/*
1575 	 * Hold the vnode until the last page is released.
1576 	 */
1577 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1578 		vhold(object->handle);
1579 
1580 	/*
1581 	 * Since we are inserting a new and possibly dirty page,
1582 	 * update the object's generation count.
1583 	 */
1584 	if (pmap_page_is_write_mapped(m))
1585 		vm_object_set_writeable_dirty(object);
1586 }
1587 
1588 /*
1589  *	vm_page_remove_radixdone
1590  *
1591  *	Complete page "m" removal from the specified object after the radix trie
1592  *	unhooking.
1593  *
1594  *	The caller is responsible for updating the page's fields to reflect this
1595  *	removal.
1596  */
1597 static void
vm_page_remove_radixdone(vm_page_t m)1598 vm_page_remove_radixdone(vm_page_t m)
1599 {
1600 	vm_object_t object;
1601 
1602 	vm_page_assert_xbusied(m);
1603 	object = m->object;
1604 	VM_OBJECT_ASSERT_WLOCKED(object);
1605 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1606 	    ("page %p is missing its object ref", m));
1607 
1608 	/* Deferred free of swap space. */
1609 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1610 		vm_pager_page_unswapped(m);
1611 
1612 	vm_pager_page_removed(object, m);
1613 	m->object = NULL;
1614 
1615 	/*
1616 	 * And show that the object has one fewer resident page.
1617 	 */
1618 	object->resident_page_count--;
1619 
1620 	/*
1621 	 * The vnode may now be recycled.
1622 	 */
1623 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1624 		vdrop(object->handle);
1625 }
1626 
1627 /*
1628  *	vm_page_free_object_prep:
1629  *
1630  *	Disassociates the given page from its VM object.
1631  *
1632  *	The object must be locked, and the page must be xbusy.
1633  */
1634 static void
vm_page_free_object_prep(vm_page_t m)1635 vm_page_free_object_prep(vm_page_t m)
1636 {
1637 	KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1638 	    ((m->object->flags & OBJ_UNMANAGED) != 0),
1639 	    ("%s: managed flag mismatch for page %p",
1640 	     __func__, m));
1641 	vm_page_assert_xbusied(m);
1642 
1643 	/*
1644 	 * The object reference can be released without an atomic
1645 	 * operation.
1646 	 */
1647 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1648 	    m->ref_count == VPRC_OBJREF,
1649 	    ("%s: page %p has unexpected ref_count %u",
1650 	    __func__, m, m->ref_count));
1651 	vm_page_remove_radixdone(m);
1652 	m->ref_count -= VPRC_OBJREF;
1653 }
1654 
1655 /*
1656  *	vm_page_iter_free:
1657  *
1658  *	Free the given page, and use the iterator to remove it from the radix
1659  *	tree.
1660  */
1661 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1662 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1663 {
1664 	vm_radix_iter_remove(pages);
1665 	vm_page_free_object_prep(m);
1666 	vm_page_xunbusy(m);
1667 	m->flags &= ~PG_ZERO;
1668 	vm_page_free_toq(m);
1669 }
1670 
1671 /*
1672  *	vm_page_remove:
1673  *
1674  *	Removes the specified page from its containing object, but does not
1675  *	invalidate any backing storage.  Returns true if the object's reference
1676  *	was the last reference to the page, and false otherwise.
1677  *
1678  *	The object must be locked and the page must be exclusively busied.
1679  *	The exclusive busy will be released on return.  If this is not the
1680  *	final ref and the caller does not hold a wire reference it may not
1681  *	continue to access the page.
1682  */
1683 bool
vm_page_remove(vm_page_t m)1684 vm_page_remove(vm_page_t m)
1685 {
1686 	bool dropped;
1687 
1688 	dropped = vm_page_remove_xbusy(m);
1689 	vm_page_xunbusy(m);
1690 
1691 	return (dropped);
1692 }
1693 
1694 /*
1695  *	vm_page_iter_remove:
1696  *
1697  *	Remove the current page, and use the iterator to remove it from the
1698  *	radix tree.
1699  */
1700 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1701 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1702 {
1703 	bool dropped;
1704 
1705 	vm_radix_iter_remove(pages);
1706 	vm_page_remove_radixdone(m);
1707 	dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1708 	vm_page_xunbusy(m);
1709 
1710 	return (dropped);
1711 }
1712 
1713 /*
1714  *	vm_page_radix_remove
1715  *
1716  *	Removes the specified page from the radix tree.
1717  */
1718 static void
vm_page_radix_remove(vm_page_t m)1719 vm_page_radix_remove(vm_page_t m)
1720 {
1721 	vm_page_t mrem __diagused;
1722 
1723 	mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1724 	KASSERT(mrem == m,
1725 	    ("removed page %p, expected page %p", mrem, m));
1726 }
1727 
1728 /*
1729  *	vm_page_remove_xbusy
1730  *
1731  *	Removes the page but leaves the xbusy held.  Returns true if this
1732  *	removed the final ref and false otherwise.
1733  */
1734 bool
vm_page_remove_xbusy(vm_page_t m)1735 vm_page_remove_xbusy(vm_page_t m)
1736 {
1737 
1738 	vm_page_radix_remove(m);
1739 	vm_page_remove_radixdone(m);
1740 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1741 }
1742 
1743 /*
1744  *	vm_page_lookup:
1745  *
1746  *	Returns the page associated with the object/offset
1747  *	pair specified; if none is found, NULL is returned.
1748  *
1749  *	The object must be locked.
1750  */
1751 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1752 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1753 {
1754 
1755 	VM_OBJECT_ASSERT_LOCKED(object);
1756 	return (vm_radix_lookup(&object->rtree, pindex));
1757 }
1758 
1759 /*
1760  *	vm_page_iter_init:
1761  *
1762  *	Initialize iterator for vm pages.
1763  */
1764 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1765 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1766 {
1767 
1768 	vm_radix_iter_init(pages, &object->rtree);
1769 }
1770 
1771 /*
1772  *	vm_page_iter_init:
1773  *
1774  *	Initialize iterator for vm pages.
1775  */
1776 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1777 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1778     vm_pindex_t limit)
1779 {
1780 
1781 	vm_radix_iter_limit_init(pages, &object->rtree, limit);
1782 }
1783 
1784 /*
1785  *	vm_page_lookup_unlocked:
1786  *
1787  *	Returns the page associated with the object/offset pair specified;
1788  *	if none is found, NULL is returned.  The page may be no longer be
1789  *	present in the object at the time that this function returns.  Only
1790  *	useful for opportunistic checks such as inmem().
1791  */
1792 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1793 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1794 {
1795 
1796 	return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1797 }
1798 
1799 /*
1800  *	vm_page_relookup:
1801  *
1802  *	Returns a page that must already have been busied by
1803  *	the caller.  Used for bogus page replacement.
1804  */
1805 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1806 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1807 {
1808 	vm_page_t m;
1809 
1810 	m = vm_page_lookup_unlocked(object, pindex);
1811 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1812 	    m->object == object && m->pindex == pindex,
1813 	    ("vm_page_relookup: Invalid page %p", m));
1814 	return (m);
1815 }
1816 
1817 /*
1818  * This should only be used by lockless functions for releasing transient
1819  * incorrect acquires.  The page may have been freed after we acquired a
1820  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1821  * further to do.
1822  */
1823 static void
vm_page_busy_release(vm_page_t m)1824 vm_page_busy_release(vm_page_t m)
1825 {
1826 	u_int x;
1827 
1828 	x = vm_page_busy_fetch(m);
1829 	for (;;) {
1830 		if (x == VPB_FREED)
1831 			break;
1832 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1833 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1834 			    x - VPB_ONE_SHARER))
1835 				break;
1836 			continue;
1837 		}
1838 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1839 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1840 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1841 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1842 			continue;
1843 		if ((x & VPB_BIT_WAITERS) != 0)
1844 			wakeup(m);
1845 		break;
1846 	}
1847 }
1848 
1849 /*
1850  * Uses the page mnew as a replacement for an existing page at index
1851  * pindex which must be already present in the object.
1852  *
1853  * Both pages must be exclusively busied on enter.  The old page is
1854  * unbusied on exit.
1855  *
1856  * A return value of true means mold is now free.  If this is not the
1857  * final ref and the caller does not hold a wire reference it may not
1858  * continue to access the page.
1859  */
1860 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1861 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1862     vm_page_t mold)
1863 {
1864 	vm_page_t mret __diagused;
1865 	bool dropped;
1866 
1867 	VM_OBJECT_ASSERT_WLOCKED(object);
1868 	vm_page_assert_xbusied(mold);
1869 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1870 	    ("vm_page_replace: page %p already in object", mnew));
1871 
1872 	/*
1873 	 * This function mostly follows vm_page_insert() and
1874 	 * vm_page_remove() without the radix, object count and vnode
1875 	 * dance.  Double check such functions for more comments.
1876 	 */
1877 
1878 	mnew->object = object;
1879 	mnew->pindex = pindex;
1880 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1881 	mret = vm_radix_replace(&object->rtree, mnew);
1882 	KASSERT(mret == mold,
1883 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1884 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1885 	    (mnew->oflags & VPO_UNMANAGED),
1886 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1887 
1888 	mold->object = NULL;
1889 
1890 	/*
1891 	 * The object's resident_page_count does not change because we have
1892 	 * swapped one page for another, but the generation count should
1893 	 * change if the page is dirty.
1894 	 */
1895 	if (pmap_page_is_write_mapped(mnew))
1896 		vm_object_set_writeable_dirty(object);
1897 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1898 	vm_page_xunbusy(mold);
1899 
1900 	return (dropped);
1901 }
1902 
1903 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1904 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1905     vm_page_t mold)
1906 {
1907 
1908 	vm_page_assert_xbusied(mnew);
1909 
1910 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1911 		vm_page_free(mold);
1912 }
1913 
1914 /*
1915  *	vm_page_iter_rename:
1916  *
1917  *	Tries to move the specified page from its current object to a new object
1918  *	and pindex, using the given iterator to remove the page from its current
1919  *	object.  Returns true if the move was successful, and false if the move
1920  *	was aborted due to a failed memory allocation.
1921  *
1922  *	Panics if a page already resides in the new object at the new pindex.
1923  *
1924  *	This routine dirties the page if it is valid, as callers are expected to
1925  *	transfer backing storage only after moving the page.  Dirtying the page
1926  *	ensures that the destination object retains the most recent copy of the
1927  *	page.
1928  *
1929  *	The objects must be locked.
1930  */
1931 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)1932 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
1933     vm_object_t new_object, vm_pindex_t new_pindex)
1934 {
1935 	vm_pindex_t opidx;
1936 
1937 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1938 	    ("%s: page %p is missing object ref", __func__, m));
1939 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1940 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1941 
1942 	/*
1943 	 * Create a custom version of vm_page_insert() which does not depend
1944 	 * by m_prev and can cheat on the implementation aspects of the
1945 	 * function.
1946 	 */
1947 	opidx = m->pindex;
1948 	m->pindex = new_pindex;
1949 	if (vm_radix_insert(&new_object->rtree, m) != 0) {
1950 		m->pindex = opidx;
1951 		return (false);
1952 	}
1953 
1954 	/*
1955 	 * The operation cannot fail anymore.
1956 	 */
1957 	m->pindex = opidx;
1958 	vm_radix_iter_remove(old_pages);
1959 	vm_page_remove_radixdone(m);
1960 
1961 	/* Return back to the new pindex to complete vm_page_insert(). */
1962 	m->pindex = new_pindex;
1963 	m->object = new_object;
1964 
1965 	vm_page_insert_radixdone(m, new_object);
1966 	if (vm_page_any_valid(m))
1967 		vm_page_dirty(m);
1968 	vm_pager_page_inserted(new_object, m);
1969 	return (true);
1970 }
1971 
1972 /*
1973  *	vm_page_alloc:
1974  *
1975  *	Allocate and return a page that is associated with the specified
1976  *	object and offset pair.  By default, this page is exclusive busied.
1977  *
1978  *	The caller must always specify an allocation class.
1979  *
1980  *	allocation classes:
1981  *	VM_ALLOC_NORMAL		normal process request
1982  *	VM_ALLOC_SYSTEM		system *really* needs a page
1983  *	VM_ALLOC_INTERRUPT	interrupt time request
1984  *
1985  *	optional allocation flags:
1986  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1987  *				intends to allocate
1988  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1989  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1990  *	VM_ALLOC_NOFREE		page will never be freed
1991  *	VM_ALLOC_NOWAIT		ignored (default behavior)
1992  *	VM_ALLOC_SBUSY		shared busy the allocated page
1993  *	VM_ALLOC_WAITFAIL	in case of failure, sleep before returning
1994  *	VM_ALLOC_WIRED		wire the allocated page
1995  *	VM_ALLOC_ZERO		prefer a zeroed page
1996  */
1997 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)1998 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1999 {
2000 	struct pctrie_iter pages;
2001 
2002 	vm_page_iter_init(&pages, object);
2003 	return (vm_page_alloc_iter(object, pindex, req, &pages));
2004 }
2005 
2006 /*
2007  * Allocate a page in the specified object with the given page index.  If the
2008  * object lock is dropped and regained, the pages iter is reset.
2009  */
2010 vm_page_t
vm_page_alloc_iter(vm_object_t object,vm_pindex_t pindex,int req,struct pctrie_iter * pages)2011 vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req,
2012     struct pctrie_iter *pages)
2013 {
2014 	struct vm_domainset_iter di;
2015 	vm_page_t m;
2016 	int domain;
2017 
2018 	if (vm_domainset_iter_page_init(&di, object, pindex, &domain, &req) != 0)
2019 		return (NULL);
2020 
2021 	do {
2022 		m = vm_page_alloc_domain_iter(object, pindex, domain, req,
2023 		    pages);
2024 		if (m != NULL)
2025 			break;
2026 	} while (vm_domainset_iter_page(&di, object, &domain, pages) == 0);
2027 
2028 	return (m);
2029 }
2030 
2031 /*
2032  * Returns true if the number of free pages exceeds the minimum
2033  * for the request class and false otherwise.
2034  */
2035 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2036 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2037 {
2038 	u_int limit, old, new;
2039 
2040 	if (req_class == VM_ALLOC_INTERRUPT)
2041 		limit = 0;
2042 	else if (req_class == VM_ALLOC_SYSTEM)
2043 		limit = vmd->vmd_interrupt_free_min;
2044 	else
2045 		limit = vmd->vmd_free_reserved;
2046 
2047 	/*
2048 	 * Attempt to reserve the pages.  Fail if we're below the limit.
2049 	 */
2050 	limit += npages;
2051 	old = atomic_load_int(&vmd->vmd_free_count);
2052 	do {
2053 		if (old < limit)
2054 			return (0);
2055 		new = old - npages;
2056 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2057 
2058 	/* Wake the page daemon if we've crossed the threshold. */
2059 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2060 		pagedaemon_wakeup(vmd->vmd_domain);
2061 
2062 	/* Only update bitsets on transitions. */
2063 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2064 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2065 		vm_domain_set(vmd);
2066 
2067 	return (1);
2068 }
2069 
2070 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2071 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2072 {
2073 	int req_class;
2074 
2075 	/*
2076 	 * The page daemon is allowed to dig deeper into the free page list.
2077 	 */
2078 	req_class = req & VM_ALLOC_CLASS_MASK;
2079 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2080 		req_class = VM_ALLOC_SYSTEM;
2081 	return (_vm_domain_allocate(vmd, req_class, npages));
2082 }
2083 
2084 vm_page_t
vm_page_alloc_domain_iter(vm_object_t object,vm_pindex_t pindex,int domain,int req,struct pctrie_iter * pages)2085 vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex, int domain,
2086     int req, struct pctrie_iter *pages)
2087 {
2088 	struct vm_domain *vmd;
2089 	vm_page_t m;
2090 	int flags;
2091 
2092 #define	VM_ALLOC_COMMON	(VM_ALLOC_CLASS_MASK | VM_ALLOC_NODUMP |	\
2093 			 VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL |		\
2094 			 VM_ALLOC_WIRED | VM_ALLOC_ZERO)
2095 #define	VPA_FLAGS	(VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK |	\
2096 			 VM_ALLOC_NOBUSY | VM_ALLOC_NOFREE |		\
2097 			 VM_ALLOC_SBUSY)
2098 	KASSERT((req & ~VPA_FLAGS) == 0,
2099 	    ("invalid request %#x", req));
2100 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2101 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2102 	    ("invalid request %#x", req));
2103 	VM_OBJECT_ASSERT_WLOCKED(object);
2104 
2105 	flags = 0;
2106 	m = NULL;
2107 	if (!vm_pager_can_alloc_page(object, pindex))
2108 		return (NULL);
2109 #if VM_NRESERVLEVEL > 0
2110 again:
2111 #endif
2112 	if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2113 		m = vm_page_alloc_nofree_domain(domain, req);
2114 		if (m != NULL)
2115 			goto found;
2116 	}
2117 #if VM_NRESERVLEVEL > 0
2118 	/*
2119 	 * Can we allocate the page from a reservation?
2120 	 */
2121 	if (vm_object_reserv(object) &&
2122 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, pages)) !=
2123 	    NULL) {
2124 		goto found;
2125 	}
2126 #endif
2127 	vmd = VM_DOMAIN(domain);
2128 	if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2129 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2130 		    M_NOWAIT | M_NOVM);
2131 		if (m != NULL) {
2132 			flags |= PG_PCPU_CACHE;
2133 			goto found;
2134 		}
2135 	}
2136 	if (vm_domain_allocate(vmd, req, 1)) {
2137 		/*
2138 		 * If not, allocate it from the free page queues.
2139 		 */
2140 		vm_domain_free_lock(vmd);
2141 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2142 		vm_domain_free_unlock(vmd);
2143 		if (m == NULL) {
2144 			vm_domain_freecnt_inc(vmd, 1);
2145 #if VM_NRESERVLEVEL > 0
2146 			if (vm_reserv_reclaim_inactive(domain))
2147 				goto again;
2148 #endif
2149 		}
2150 	}
2151 	if (m == NULL) {
2152 		/*
2153 		 * Not allocatable, give up.
2154 		 */
2155 		(void)vm_domain_alloc_fail(vmd, object, req);
2156 		if ((req & VM_ALLOC_WAITFAIL) != 0)
2157 			pctrie_iter_reset(pages);
2158 		return (NULL);
2159 	}
2160 
2161 	/*
2162 	 * At this point we had better have found a good page.
2163 	 */
2164 found:
2165 	vm_page_dequeue(m);
2166 	vm_page_alloc_check(m);
2167 
2168 	/*
2169 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2170 	 */
2171 	flags |= m->flags & PG_ZERO;
2172 	if ((req & VM_ALLOC_NODUMP) != 0)
2173 		flags |= PG_NODUMP;
2174 	if ((req & VM_ALLOC_NOFREE) != 0)
2175 		flags |= PG_NOFREE;
2176 	m->flags = flags;
2177 	m->a.flags = 0;
2178 	m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2179 	m->pool = VM_FREEPOOL_DEFAULT;
2180 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2181 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2182 	else if ((req & VM_ALLOC_SBUSY) != 0)
2183 		m->busy_lock = VPB_SHARERS_WORD(1);
2184 	else
2185 		m->busy_lock = VPB_UNBUSIED;
2186 	if (req & VM_ALLOC_WIRED) {
2187 		vm_wire_add(1);
2188 		m->ref_count = 1;
2189 	}
2190 	m->a.act_count = 0;
2191 
2192 	if (vm_page_iter_insert(m, object, pindex, pages)) {
2193 		if (req & VM_ALLOC_WIRED) {
2194 			vm_wire_sub(1);
2195 			m->ref_count = 0;
2196 		}
2197 		KASSERT(m->object == NULL, ("page %p has object", m));
2198 		m->oflags = VPO_UNMANAGED;
2199 		m->busy_lock = VPB_UNBUSIED;
2200 		/* Don't change PG_ZERO. */
2201 		vm_page_free_toq(m);
2202 		if (req & VM_ALLOC_WAITFAIL) {
2203 			VM_OBJECT_WUNLOCK(object);
2204 			vm_radix_wait();
2205 			pctrie_iter_reset(pages);
2206 			VM_OBJECT_WLOCK(object);
2207 		}
2208 		return (NULL);
2209 	}
2210 
2211 	/* Ignore device objects; the pager sets "memattr" for them. */
2212 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2213 	    (object->flags & OBJ_FICTITIOUS) == 0)
2214 		pmap_page_set_memattr(m, object->memattr);
2215 
2216 	return (m);
2217 }
2218 
2219 /*
2220  *	vm_page_alloc_contig:
2221  *
2222  *	Allocate a contiguous set of physical pages of the given size "npages"
2223  *	from the free lists.  All of the physical pages must be at or above
2224  *	the given physical address "low" and below the given physical address
2225  *	"high".  The given value "alignment" determines the alignment of the
2226  *	first physical page in the set.  If the given value "boundary" is
2227  *	non-zero, then the set of physical pages cannot cross any physical
2228  *	address boundary that is a multiple of that value.  Both "alignment"
2229  *	and "boundary" must be a power of two.
2230  *
2231  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2232  *	then the memory attribute setting for the physical pages is configured
2233  *	to the object's memory attribute setting.  Otherwise, the memory
2234  *	attribute setting for the physical pages is configured to "memattr",
2235  *	overriding the object's memory attribute setting.  However, if the
2236  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2237  *	memory attribute setting for the physical pages cannot be configured
2238  *	to VM_MEMATTR_DEFAULT.
2239  *
2240  *	The specified object may not contain fictitious pages.
2241  *
2242  *	The caller must always specify an allocation class.
2243  *
2244  *	allocation classes:
2245  *	VM_ALLOC_NORMAL		normal process request
2246  *	VM_ALLOC_SYSTEM		system *really* needs the pages
2247  *	VM_ALLOC_INTERRUPT	interrupt time request
2248  *
2249  *	optional allocation flags:
2250  *	VM_ALLOC_NOBUSY		do not exclusive busy the pages
2251  *	VM_ALLOC_NODUMP		do not include the pages in a kernel core dump
2252  *	VM_ALLOC_NORECLAIM	do not reclaim after initial failure
2253  *	VM_ALLOC_NOWAIT		ignored (default behavior)
2254  *	VM_ALLOC_SBUSY		shared busy the allocated pages
2255  *	VM_ALLOC_WAITFAIL	in case of failure, sleep before returning
2256  *	VM_ALLOC_WIRED		wire the allocated pages
2257  *	VM_ALLOC_ZERO		prefer zeroed pages
2258  */
2259 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2260 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2261     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2262     vm_paddr_t boundary, vm_memattr_t memattr)
2263 {
2264 	struct vm_domainset_iter di;
2265 	vm_page_t bounds[2];
2266 	vm_page_t m;
2267 	int domain;
2268 	int start_segind;
2269 
2270 	start_segind = -1;
2271 
2272 	if (vm_domainset_iter_page_init(&di, object, pindex, &domain, &req) != 0)
2273 		return (NULL);
2274 
2275 	do {
2276 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2277 		    npages, low, high, alignment, boundary, memattr);
2278 		if (m != NULL)
2279 			break;
2280 		if (start_segind == -1)
2281 			start_segind = vm_phys_lookup_segind(low);
2282 		if (vm_phys_find_range(bounds, start_segind, domain,
2283 		    npages, low, high) == -1) {
2284 			vm_domainset_iter_ignore(&di, domain);
2285 		}
2286 	} while (vm_domainset_iter_page(&di, object, &domain, NULL) == 0);
2287 
2288 	return (m);
2289 }
2290 
2291 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2292 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2293     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2294 {
2295 	struct vm_domain *vmd;
2296 	vm_page_t m_ret;
2297 
2298 	/*
2299 	 * Can we allocate the pages without the number of free pages falling
2300 	 * below the lower bound for the allocation class?
2301 	 */
2302 	vmd = VM_DOMAIN(domain);
2303 	if (!vm_domain_allocate(vmd, req, npages))
2304 		return (NULL);
2305 	/*
2306 	 * Try to allocate the pages from the free page queues.
2307 	 */
2308 	vm_domain_free_lock(vmd);
2309 	m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2310 	    alignment, boundary);
2311 	vm_domain_free_unlock(vmd);
2312 	if (m_ret != NULL)
2313 		return (m_ret);
2314 #if VM_NRESERVLEVEL > 0
2315 	/*
2316 	 * Try to break a reservation to allocate the pages.
2317 	 */
2318 	if ((req & VM_ALLOC_NORECLAIM) == 0) {
2319 		m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2320 	            high, alignment, boundary);
2321 		if (m_ret != NULL)
2322 			return (m_ret);
2323 	}
2324 #endif
2325 	vm_domain_freecnt_inc(vmd, npages);
2326 	return (NULL);
2327 }
2328 
2329 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2330 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2331     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2332     vm_paddr_t boundary, vm_memattr_t memattr)
2333 {
2334 	struct pctrie_iter pages;
2335 	vm_page_t m, m_ret, mpred;
2336 	u_int busy_lock, flags, oflags;
2337 
2338 #define	VPAC_FLAGS	(VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK |	\
2339 			 VM_ALLOC_NOBUSY | VM_ALLOC_NORECLAIM |		\
2340 			 VM_ALLOC_SBUSY)
2341 	KASSERT((req & ~VPAC_FLAGS) == 0,
2342 	    ("invalid request %#x", req));
2343 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2344 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2345 	    ("invalid request %#x", req));
2346 	VM_OBJECT_ASSERT_WLOCKED(object);
2347 	KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2348 	    ("vm_page_alloc_contig: object %p has fictitious pages",
2349 	    object));
2350 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2351 
2352 	vm_page_iter_init(&pages, object);
2353 	m_ret = NULL;
2354 #if VM_NRESERVLEVEL > 0
2355 	/*
2356 	 * Can we allocate the pages from a reservation?
2357 	 */
2358 	if (vm_object_reserv(object)) {
2359 		m_ret = vm_reserv_alloc_contig(object, pindex, domain,
2360 		    req, npages, low, high, alignment, boundary, &pages);
2361 	}
2362 #endif
2363 	if (m_ret == NULL) {
2364 		m_ret = vm_page_find_contig_domain(domain, req, npages,
2365 		    low, high, alignment, boundary);
2366 	}
2367 	if (m_ret == NULL) {
2368 		(void)vm_domain_alloc_fail(VM_DOMAIN(domain), object, req);
2369 		return (NULL);
2370 	}
2371 
2372 	/*
2373 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2374 	 */
2375 	flags = PG_ZERO;
2376 	if ((req & VM_ALLOC_NODUMP) != 0)
2377 		flags |= PG_NODUMP;
2378 	oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2379 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2380 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2381 	else if ((req & VM_ALLOC_SBUSY) != 0)
2382 		busy_lock = VPB_SHARERS_WORD(1);
2383 	else
2384 		busy_lock = VPB_UNBUSIED;
2385 	if ((req & VM_ALLOC_WIRED) != 0)
2386 		vm_wire_add(npages);
2387 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2388 	    memattr == VM_MEMATTR_DEFAULT)
2389 		memattr = object->memattr;
2390 	for (m = m_ret; m < &m_ret[npages]; m++) {
2391 		vm_page_dequeue(m);
2392 		vm_page_alloc_check(m);
2393 		m->a.flags = 0;
2394 		m->flags = (m->flags | PG_NODUMP) & flags;
2395 		m->busy_lock = busy_lock;
2396 		if ((req & VM_ALLOC_WIRED) != 0)
2397 			m->ref_count = 1;
2398 		m->a.act_count = 0;
2399 		m->oflags = oflags;
2400 		m->pool = VM_FREEPOOL_DEFAULT;
2401 		if (vm_page_iter_insert(m, object, pindex, &pages)) {
2402 			if ((req & VM_ALLOC_WIRED) != 0)
2403 				vm_wire_sub(npages);
2404 			KASSERT(m->object == NULL,
2405 			    ("page %p has object", m));
2406 			mpred = m;
2407 			for (m = m_ret; m < &m_ret[npages]; m++) {
2408 				if (m <= mpred &&
2409 				    (req & VM_ALLOC_WIRED) != 0)
2410 					m->ref_count = 0;
2411 				m->oflags = VPO_UNMANAGED;
2412 				m->busy_lock = VPB_UNBUSIED;
2413 				/* Don't change PG_ZERO. */
2414 				vm_page_free_toq(m);
2415 			}
2416 			if (req & VM_ALLOC_WAITFAIL) {
2417 				VM_OBJECT_WUNLOCK(object);
2418 				vm_radix_wait();
2419 				VM_OBJECT_WLOCK(object);
2420 			}
2421 			return (NULL);
2422 		}
2423 		if (memattr != VM_MEMATTR_DEFAULT)
2424 			pmap_page_set_memattr(m, memattr);
2425 		pindex++;
2426 	}
2427 	return (m_ret);
2428 }
2429 
2430 /*
2431  * Allocate a physical page that is not intended to be inserted into a VM
2432  * object.
2433  */
2434 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2435 vm_page_alloc_noobj_domain(int domain, int req)
2436 {
2437 	struct vm_domain *vmd;
2438 	vm_page_t m;
2439 	int flags;
2440 
2441 #define	VPAN_FLAGS	(VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK |	\
2442 			 VM_ALLOC_NOFREE | VM_ALLOC_WAITOK)
2443 	KASSERT((req & ~VPAN_FLAGS) == 0,
2444 	    ("invalid request %#x", req));
2445 
2446 	flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2447 	    ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2448 	vmd = VM_DOMAIN(domain);
2449 again:
2450 	if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2451 		m = vm_page_alloc_nofree_domain(domain, req);
2452 		if (m != NULL)
2453 			goto found;
2454 	}
2455 
2456 	if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2457 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2458 		    M_NOWAIT | M_NOVM);
2459 		if (m != NULL) {
2460 			flags |= PG_PCPU_CACHE;
2461 			goto found;
2462 		}
2463 	}
2464 
2465 	if (vm_domain_allocate(vmd, req, 1)) {
2466 		vm_domain_free_lock(vmd);
2467 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2468 		vm_domain_free_unlock(vmd);
2469 		if (m == NULL) {
2470 			vm_domain_freecnt_inc(vmd, 1);
2471 #if VM_NRESERVLEVEL > 0
2472 			if (vm_reserv_reclaim_inactive(domain))
2473 				goto again;
2474 #endif
2475 		}
2476 	}
2477 	if (m == NULL) {
2478 		if (!vm_domain_alloc_fail(vmd, NULL, req))
2479 			return (NULL);
2480 		goto again;
2481 	}
2482 
2483 found:
2484 	/*
2485 	 * If the page comes from the free page cache, then it might still
2486 	 * have a pending deferred dequeue.  Specifically, when the page is
2487 	 * imported from a different pool by vm_phys_alloc_npages(), the
2488 	 * second, third, etc. pages in a non-zero order set could have
2489 	 * pending deferred dequeues.
2490 	 */
2491 	vm_page_dequeue(m);
2492 	vm_page_alloc_check(m);
2493 
2494 	/*
2495 	 * Consumers should not rely on a useful default pindex value.
2496 	 */
2497 	m->pindex = 0xdeadc0dedeadc0de;
2498 	m->flags = (m->flags & PG_ZERO) | flags;
2499 	m->a.flags = 0;
2500 	m->oflags = VPO_UNMANAGED;
2501 	m->pool = VM_FREEPOOL_DIRECT;
2502 	m->busy_lock = VPB_UNBUSIED;
2503 	if ((req & VM_ALLOC_WIRED) != 0) {
2504 		vm_wire_add(1);
2505 		m->ref_count = 1;
2506 	}
2507 
2508 	if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2509 		pmap_zero_page(m);
2510 
2511 	return (m);
2512 }
2513 
2514 #if VM_NRESERVLEVEL > 1
2515 #define	VM_NOFREE_IMPORT_ORDER	(VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2516 #elif VM_NRESERVLEVEL > 0
2517 #define	VM_NOFREE_IMPORT_ORDER	VM_LEVEL_0_ORDER
2518 #else
2519 #define	VM_NOFREE_IMPORT_ORDER	8
2520 #endif
2521 
2522 /*
2523  * Allocate a single NOFREE page.
2524  *
2525  * This routine hands out NOFREE pages from higher-order
2526  * physical memory blocks in order to reduce memory fragmentation.
2527  * When a NOFREE for a given domain chunk is used up,
2528  * the routine will try to fetch a new one from the freelists
2529  * and discard the old one.
2530  */
2531 static vm_page_t __noinline
vm_page_alloc_nofree_domain(int domain,int req)2532 vm_page_alloc_nofree_domain(int domain, int req)
2533 {
2534 	vm_page_t m;
2535 	struct vm_domain *vmd;
2536 
2537 	KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2538 
2539 	vmd = VM_DOMAIN(domain);
2540 	vm_domain_free_lock(vmd);
2541 	if (TAILQ_EMPTY(&vmd->vmd_nofreeq)) {
2542 		int count;
2543 
2544 		count = 1 << VM_NOFREE_IMPORT_ORDER;
2545 		if (!vm_domain_allocate(vmd, req, count)) {
2546 			vm_domain_free_unlock(vmd);
2547 			return (NULL);
2548 		}
2549 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2550 		    VM_NOFREE_IMPORT_ORDER);
2551 		if (m == NULL) {
2552 			vm_domain_freecnt_inc(vmd, count);
2553 			vm_domain_free_unlock(vmd);
2554 			return (NULL);
2555 		}
2556 		m->ref_count = count - 1;
2557 		TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2558 		atomic_add_long(&nofreeq_size, count);
2559 	}
2560 	m = TAILQ_FIRST(&vmd->vmd_nofreeq);
2561 	TAILQ_REMOVE(&vmd->vmd_nofreeq, m, plinks.q);
2562 	if (m->ref_count > 0) {
2563 		vm_page_t m_next;
2564 
2565 		m_next = &m[1];
2566 		vm_page_dequeue(m_next);
2567 		m_next->ref_count = m->ref_count - 1;
2568 		TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m_next, plinks.q);
2569 		m->ref_count = 0;
2570 	}
2571 	vm_domain_free_unlock(vmd);
2572 	atomic_add_long(&nofreeq_size, -1);
2573 	VM_CNT_INC(v_nofree_count);
2574 
2575 	return (m);
2576 }
2577 
2578 /*
2579  * Though a NOFREE page by definition should not be freed, we support putting
2580  * them aside for future NOFREE allocations.  This enables code which allocates
2581  * NOFREE pages for some purpose but then encounters an error and releases
2582  * resources.
2583  */
2584 static void __noinline
vm_page_free_nofree(struct vm_domain * vmd,vm_page_t m)2585 vm_page_free_nofree(struct vm_domain *vmd, vm_page_t m)
2586 {
2587 	VM_CNT_ADD(v_nofree_count, -1);
2588 	atomic_add_long(&nofreeq_size, 1);
2589 	vm_domain_free_lock(vmd);
2590 	MPASS(m->ref_count == 0);
2591 	TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2592 	vm_domain_free_unlock(vmd);
2593 }
2594 
2595 vm_page_t
vm_page_alloc_noobj(int req)2596 vm_page_alloc_noobj(int req)
2597 {
2598 	struct vm_domainset_iter di;
2599 	vm_page_t m;
2600 	int domain;
2601 
2602 	if (vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req) != 0)
2603 		return (NULL);
2604 
2605 	do {
2606 		m = vm_page_alloc_noobj_domain(domain, req);
2607 		if (m != NULL)
2608 			break;
2609 	} while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2610 
2611 	return (m);
2612 }
2613 
2614 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2615 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2616     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2617     vm_memattr_t memattr)
2618 {
2619 	struct vm_domainset_iter di;
2620 	vm_page_t m;
2621 	int domain;
2622 
2623 	if (vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req) != 0)
2624 		return (NULL);
2625 
2626 	do {
2627 		m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2628 		    high, alignment, boundary, memattr);
2629 		if (m != NULL)
2630 			break;
2631 	} while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2632 
2633 	return (m);
2634 }
2635 
2636 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2637 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2638     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2639     vm_memattr_t memattr)
2640 {
2641 	vm_page_t m, m_ret;
2642 	u_int flags;
2643 
2644 #define	VPANC_FLAGS	(VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK |	\
2645 			 VM_ALLOC_NORECLAIM | VM_ALLOC_WAITOK)
2646 	KASSERT((req & ~VPANC_FLAGS) == 0,
2647 	    ("invalid request %#x", req));
2648 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2649 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2650 	    ("invalid request %#x", req));
2651 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2652 
2653 	while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2654 	    low, high, alignment, boundary)) == NULL) {
2655 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2656 			return (NULL);
2657 	}
2658 
2659 	/*
2660 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2661 	 */
2662 	flags = PG_ZERO;
2663 	if ((req & VM_ALLOC_NODUMP) != 0)
2664 		flags |= PG_NODUMP;
2665 	if ((req & VM_ALLOC_WIRED) != 0)
2666 		vm_wire_add(npages);
2667 	for (m = m_ret; m < &m_ret[npages]; m++) {
2668 		vm_page_dequeue(m);
2669 		vm_page_alloc_check(m);
2670 
2671 		/*
2672 		 * Consumers should not rely on a useful default pindex value.
2673 		 */
2674 		m->pindex = 0xdeadc0dedeadc0de;
2675 		m->a.flags = 0;
2676 		m->flags = (m->flags | PG_NODUMP) & flags;
2677 		m->busy_lock = VPB_UNBUSIED;
2678 		if ((req & VM_ALLOC_WIRED) != 0)
2679 			m->ref_count = 1;
2680 		m->a.act_count = 0;
2681 		m->oflags = VPO_UNMANAGED;
2682 		m->pool = VM_FREEPOOL_DIRECT;
2683 
2684 		/*
2685 		 * Zero the page before updating any mappings since the page is
2686 		 * not yet shared with any devices which might require the
2687 		 * non-default memory attribute.  pmap_page_set_memattr()
2688 		 * flushes data caches before returning.
2689 		 */
2690 		if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2691 			pmap_zero_page(m);
2692 		if (memattr != VM_MEMATTR_DEFAULT)
2693 			pmap_page_set_memattr(m, memattr);
2694 	}
2695 	return (m_ret);
2696 }
2697 
2698 /*
2699  * Check a page that has been freshly dequeued from a freelist.
2700  */
2701 static void
vm_page_alloc_check(vm_page_t m)2702 vm_page_alloc_check(vm_page_t m)
2703 {
2704 
2705 	KASSERT(m->object == NULL, ("page %p has object", m));
2706 	KASSERT(m->a.queue == PQ_NONE &&
2707 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2708 	    ("page %p has unexpected queue %d, flags %#x",
2709 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2710 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2711 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2712 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2713 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2714 	    ("page %p has unexpected memattr %d",
2715 	    m, pmap_page_get_memattr(m)));
2716 	KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2717 	pmap_vm_page_alloc_check(m);
2718 }
2719 
2720 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2721 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2722 {
2723 	struct vm_domain *vmd;
2724 	struct vm_pgcache *pgcache;
2725 	int i;
2726 
2727 	pgcache = arg;
2728 	vmd = VM_DOMAIN(pgcache->domain);
2729 
2730 	/*
2731 	 * The page daemon should avoid creating extra memory pressure since its
2732 	 * main purpose is to replenish the store of free pages.
2733 	 */
2734 	if (vmd->vmd_severeset || curproc == pageproc ||
2735 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2736 		return (0);
2737 	domain = vmd->vmd_domain;
2738 	vm_domain_free_lock(vmd);
2739 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2740 	    (vm_page_t *)store);
2741 	vm_domain_free_unlock(vmd);
2742 	if (cnt != i)
2743 		vm_domain_freecnt_inc(vmd, cnt - i);
2744 
2745 	return (i);
2746 }
2747 
2748 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2749 vm_page_zone_release(void *arg, void **store, int cnt)
2750 {
2751 	struct vm_domain *vmd;
2752 	struct vm_pgcache *pgcache;
2753 	vm_page_t m;
2754 	int i;
2755 
2756 	pgcache = arg;
2757 	vmd = VM_DOMAIN(pgcache->domain);
2758 	vm_domain_free_lock(vmd);
2759 	for (i = 0; i < cnt; i++) {
2760 		m = (vm_page_t)store[i];
2761 		vm_phys_free_pages(m, pgcache->pool, 0);
2762 	}
2763 	vm_domain_free_unlock(vmd);
2764 	vm_domain_freecnt_inc(vmd, cnt);
2765 }
2766 
2767 #define	VPSC_ANY	0	/* No restrictions. */
2768 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2769 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2770 
2771 /*
2772  *	vm_page_scan_contig:
2773  *
2774  *	Scan vm_page_array[] between the specified entries "m_start" and
2775  *	"m_end" for a run of contiguous physical pages that satisfy the
2776  *	specified conditions, and return the lowest page in the run.  The
2777  *	specified "alignment" determines the alignment of the lowest physical
2778  *	page in the run.  If the specified "boundary" is non-zero, then the
2779  *	run of physical pages cannot span a physical address that is a
2780  *	multiple of "boundary".
2781  *
2782  *	"m_end" is never dereferenced, so it need not point to a vm_page
2783  *	structure within vm_page_array[].
2784  *
2785  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2786  *	span a hole (or discontiguity) in the physical address space.  Both
2787  *	"alignment" and "boundary" must be a power of two.
2788  */
2789 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2790 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2791     u_long alignment, vm_paddr_t boundary, int options)
2792 {
2793 	vm_object_t object;
2794 	vm_paddr_t pa;
2795 	vm_page_t m, m_run;
2796 #if VM_NRESERVLEVEL > 0
2797 	int level;
2798 #endif
2799 	int m_inc, order, run_ext, run_len;
2800 
2801 	KASSERT(npages > 0, ("npages is 0"));
2802 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2803 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2804 	m_run = NULL;
2805 	run_len = 0;
2806 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2807 		KASSERT((m->flags & PG_MARKER) == 0,
2808 		    ("page %p is PG_MARKER", m));
2809 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2810 		    ("fictitious page %p has invalid ref count", m));
2811 
2812 		/*
2813 		 * If the current page would be the start of a run, check its
2814 		 * physical address against the end, alignment, and boundary
2815 		 * conditions.  If it doesn't satisfy these conditions, either
2816 		 * terminate the scan or advance to the next page that
2817 		 * satisfies the failed condition.
2818 		 */
2819 		if (run_len == 0) {
2820 			KASSERT(m_run == NULL, ("m_run != NULL"));
2821 			if (m + npages > m_end)
2822 				break;
2823 			pa = VM_PAGE_TO_PHYS(m);
2824 			if (!vm_addr_align_ok(pa, alignment)) {
2825 				m_inc = atop(roundup2(pa, alignment) - pa);
2826 				continue;
2827 			}
2828 			if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2829 				m_inc = atop(roundup2(pa, boundary) - pa);
2830 				continue;
2831 			}
2832 		} else
2833 			KASSERT(m_run != NULL, ("m_run == NULL"));
2834 
2835 retry:
2836 		m_inc = 1;
2837 		if (vm_page_wired(m))
2838 			run_ext = 0;
2839 #if VM_NRESERVLEVEL > 0
2840 		else if ((level = vm_reserv_level(m)) >= 0 &&
2841 		    (options & VPSC_NORESERV) != 0) {
2842 			run_ext = 0;
2843 			/* Advance to the end of the reservation. */
2844 			pa = VM_PAGE_TO_PHYS(m);
2845 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2846 			    pa);
2847 		}
2848 #endif
2849 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2850 			/*
2851 			 * The page is considered eligible for relocation if
2852 			 * and only if it could be laundered or reclaimed by
2853 			 * the page daemon.
2854 			 */
2855 			VM_OBJECT_RLOCK(object);
2856 			if (object != m->object) {
2857 				VM_OBJECT_RUNLOCK(object);
2858 				goto retry;
2859 			}
2860 			/* Don't care: PG_NODUMP, PG_ZERO. */
2861 			if ((object->flags & OBJ_SWAP) == 0 &&
2862 			    object->type != OBJT_VNODE) {
2863 				run_ext = 0;
2864 #if VM_NRESERVLEVEL > 0
2865 			} else if ((options & VPSC_NOSUPER) != 0 &&
2866 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2867 				run_ext = 0;
2868 				/* Advance to the end of the superpage. */
2869 				pa = VM_PAGE_TO_PHYS(m);
2870 				m_inc = atop(roundup2(pa + 1,
2871 				    vm_reserv_size(level)) - pa);
2872 #endif
2873 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2874 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2875 				/*
2876 				 * The page is allocated but eligible for
2877 				 * relocation.  Extend the current run by one
2878 				 * page.
2879 				 */
2880 				KASSERT(pmap_page_get_memattr(m) ==
2881 				    VM_MEMATTR_DEFAULT,
2882 				    ("page %p has an unexpected memattr", m));
2883 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2884 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2885 				    ("page %p has unexpected oflags", m));
2886 				/* Don't care: PGA_NOSYNC. */
2887 				run_ext = 1;
2888 			} else
2889 				run_ext = 0;
2890 			VM_OBJECT_RUNLOCK(object);
2891 #if VM_NRESERVLEVEL > 0
2892 		} else if (level >= 0) {
2893 			/*
2894 			 * The page is reserved but not yet allocated.  In
2895 			 * other words, it is still free.  Extend the current
2896 			 * run by one page.
2897 			 */
2898 			run_ext = 1;
2899 #endif
2900 		} else if ((order = m->order) < VM_NFREEORDER) {
2901 			/*
2902 			 * The page is enqueued in the physical memory
2903 			 * allocator's free page queues.  Moreover, it is the
2904 			 * first page in a power-of-two-sized run of
2905 			 * contiguous free pages.  Add these pages to the end
2906 			 * of the current run, and jump ahead.
2907 			 */
2908 			run_ext = 1 << order;
2909 			m_inc = 1 << order;
2910 		} else {
2911 			/*
2912 			 * Skip the page for one of the following reasons: (1)
2913 			 * It is enqueued in the physical memory allocator's
2914 			 * free page queues.  However, it is not the first
2915 			 * page in a run of contiguous free pages.  (This case
2916 			 * rarely occurs because the scan is performed in
2917 			 * ascending order.) (2) It is not reserved, and it is
2918 			 * transitioning from free to allocated.  (Conversely,
2919 			 * the transition from allocated to free for managed
2920 			 * pages is blocked by the page busy lock.) (3) It is
2921 			 * allocated but not contained by an object and not
2922 			 * wired, e.g., allocated by Xen's balloon driver.
2923 			 */
2924 			run_ext = 0;
2925 		}
2926 
2927 		/*
2928 		 * Extend or reset the current run of pages.
2929 		 */
2930 		if (run_ext > 0) {
2931 			if (run_len == 0)
2932 				m_run = m;
2933 			run_len += run_ext;
2934 		} else {
2935 			if (run_len > 0) {
2936 				m_run = NULL;
2937 				run_len = 0;
2938 			}
2939 		}
2940 	}
2941 	if (run_len >= npages)
2942 		return (m_run);
2943 	return (NULL);
2944 }
2945 
2946 /*
2947  *	vm_page_reclaim_run:
2948  *
2949  *	Try to relocate each of the allocated virtual pages within the
2950  *	specified run of physical pages to a new physical address.  Free the
2951  *	physical pages underlying the relocated virtual pages.  A virtual page
2952  *	is relocatable if and only if it could be laundered or reclaimed by
2953  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2954  *	physical address above "high".
2955  *
2956  *	Returns 0 if every physical page within the run was already free or
2957  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2958  *	value indicating why the last attempt to relocate a virtual page was
2959  *	unsuccessful.
2960  *
2961  *	"req_class" must be an allocation class.
2962  */
2963 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)2964 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2965     vm_paddr_t high)
2966 {
2967 	struct vm_domain *vmd;
2968 	struct spglist free;
2969 	vm_object_t object;
2970 	vm_paddr_t pa;
2971 	vm_page_t m, m_end, m_new;
2972 	int error, order, req;
2973 
2974 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2975 	    ("req_class is not an allocation class"));
2976 	SLIST_INIT(&free);
2977 	error = 0;
2978 	m = m_run;
2979 	m_end = m_run + npages;
2980 	for (; error == 0 && m < m_end; m++) {
2981 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2982 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2983 
2984 		/*
2985 		 * Racily check for wirings.  Races are handled once the object
2986 		 * lock is held and the page is unmapped.
2987 		 */
2988 		if (vm_page_wired(m))
2989 			error = EBUSY;
2990 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2991 			/*
2992 			 * The page is relocated if and only if it could be
2993 			 * laundered or reclaimed by the page daemon.
2994 			 */
2995 			VM_OBJECT_WLOCK(object);
2996 			/* Don't care: PG_NODUMP, PG_ZERO. */
2997 			if (m->object != object ||
2998 			    ((object->flags & OBJ_SWAP) == 0 &&
2999 			    object->type != OBJT_VNODE))
3000 				error = EINVAL;
3001 			else if (object->memattr != VM_MEMATTR_DEFAULT)
3002 				error = EINVAL;
3003 			else if (vm_page_queue(m) != PQ_NONE &&
3004 			    vm_page_tryxbusy(m) != 0) {
3005 				if (vm_page_wired(m)) {
3006 					vm_page_xunbusy(m);
3007 					error = EBUSY;
3008 					goto unlock;
3009 				}
3010 				KASSERT(pmap_page_get_memattr(m) ==
3011 				    VM_MEMATTR_DEFAULT,
3012 				    ("page %p has an unexpected memattr", m));
3013 				KASSERT(m->oflags == 0,
3014 				    ("page %p has unexpected oflags", m));
3015 				/* Don't care: PGA_NOSYNC. */
3016 				if (!vm_page_none_valid(m)) {
3017 					/*
3018 					 * First, try to allocate a new page
3019 					 * that is above "high".  Failing
3020 					 * that, try to allocate a new page
3021 					 * that is below "m_run".  Allocate
3022 					 * the new page between the end of
3023 					 * "m_run" and "high" only as a last
3024 					 * resort.
3025 					 */
3026 					req = req_class;
3027 					if ((m->flags & PG_NODUMP) != 0)
3028 						req |= VM_ALLOC_NODUMP;
3029 					if (trunc_page(high) !=
3030 					    ~(vm_paddr_t)PAGE_MASK) {
3031 						m_new =
3032 						    vm_page_alloc_noobj_contig(
3033 						    req, 1, round_page(high),
3034 						    ~(vm_paddr_t)0, PAGE_SIZE,
3035 						    0, VM_MEMATTR_DEFAULT);
3036 					} else
3037 						m_new = NULL;
3038 					if (m_new == NULL) {
3039 						pa = VM_PAGE_TO_PHYS(m_run);
3040 						m_new =
3041 						    vm_page_alloc_noobj_contig(
3042 						    req, 1, 0, pa - 1,
3043 						    PAGE_SIZE, 0,
3044 						    VM_MEMATTR_DEFAULT);
3045 					}
3046 					if (m_new == NULL) {
3047 						pa += ptoa(npages);
3048 						m_new =
3049 						    vm_page_alloc_noobj_contig(
3050 						    req, 1, pa, high, PAGE_SIZE,
3051 						    0, VM_MEMATTR_DEFAULT);
3052 					}
3053 					if (m_new == NULL) {
3054 						vm_page_xunbusy(m);
3055 						error = ENOMEM;
3056 						goto unlock;
3057 					}
3058 
3059 					/*
3060 					 * Unmap the page and check for new
3061 					 * wirings that may have been acquired
3062 					 * through a pmap lookup.
3063 					 */
3064 					if (object->ref_count != 0 &&
3065 					    !vm_page_try_remove_all(m)) {
3066 						vm_page_xunbusy(m);
3067 						vm_page_free(m_new);
3068 						error = EBUSY;
3069 						goto unlock;
3070 					}
3071 
3072 					/*
3073 					 * Replace "m" with the new page.  For
3074 					 * vm_page_replace(), "m" must be busy
3075 					 * and dequeued.  Finally, change "m"
3076 					 * as if vm_page_free() was called.
3077 					 */
3078 					m_new->a.flags = m->a.flags &
3079 					    ~PGA_QUEUE_STATE_MASK;
3080 					KASSERT(m_new->oflags == VPO_UNMANAGED,
3081 					    ("page %p is managed", m_new));
3082 					m_new->oflags = 0;
3083 					pmap_copy_page(m, m_new);
3084 					m_new->valid = m->valid;
3085 					m_new->dirty = m->dirty;
3086 					m->flags &= ~PG_ZERO;
3087 					vm_page_dequeue(m);
3088 					if (vm_page_replace_hold(m_new, object,
3089 					    m->pindex, m) &&
3090 					    vm_page_free_prep(m))
3091 						SLIST_INSERT_HEAD(&free, m,
3092 						    plinks.s.ss);
3093 
3094 					/*
3095 					 * The new page must be deactivated
3096 					 * before the object is unlocked.
3097 					 */
3098 					vm_page_deactivate(m_new);
3099 				} else {
3100 					m->flags &= ~PG_ZERO;
3101 					vm_page_dequeue(m);
3102 					if (vm_page_free_prep(m))
3103 						SLIST_INSERT_HEAD(&free, m,
3104 						    plinks.s.ss);
3105 					KASSERT(m->dirty == 0,
3106 					    ("page %p is dirty", m));
3107 				}
3108 			} else
3109 				error = EBUSY;
3110 unlock:
3111 			VM_OBJECT_WUNLOCK(object);
3112 		} else {
3113 			MPASS(vm_page_domain(m) == domain);
3114 			vmd = VM_DOMAIN(domain);
3115 			vm_domain_free_lock(vmd);
3116 			order = m->order;
3117 			if (order < VM_NFREEORDER) {
3118 				/*
3119 				 * The page is enqueued in the physical memory
3120 				 * allocator's free page queues.  Moreover, it
3121 				 * is the first page in a power-of-two-sized
3122 				 * run of contiguous free pages.  Jump ahead
3123 				 * to the last page within that run, and
3124 				 * continue from there.
3125 				 */
3126 				m += (1 << order) - 1;
3127 			}
3128 #if VM_NRESERVLEVEL > 0
3129 			else if (vm_reserv_is_page_free(m))
3130 				order = 0;
3131 #endif
3132 			vm_domain_free_unlock(vmd);
3133 			if (order == VM_NFREEORDER)
3134 				error = EINVAL;
3135 		}
3136 	}
3137 	if ((m = SLIST_FIRST(&free)) != NULL) {
3138 		int cnt;
3139 
3140 		vmd = VM_DOMAIN(domain);
3141 		cnt = 0;
3142 		vm_domain_free_lock(vmd);
3143 		do {
3144 			MPASS(vm_page_domain(m) == domain);
3145 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3146 			vm_phys_free_pages(m, m->pool, 0);
3147 			cnt++;
3148 		} while ((m = SLIST_FIRST(&free)) != NULL);
3149 		vm_domain_free_unlock(vmd);
3150 		vm_domain_freecnt_inc(vmd, cnt);
3151 	}
3152 	return (error);
3153 }
3154 
3155 #define	NRUNS	16
3156 
3157 #define	RUN_INDEX(count, nruns)	((count) % (nruns))
3158 
3159 #define	MIN_RECLAIM	8
3160 
3161 /*
3162  *	vm_page_reclaim_contig:
3163  *
3164  *	Reclaim allocated, contiguous physical memory satisfying the specified
3165  *	conditions by relocating the virtual pages using that physical memory.
3166  *	Returns 0 if reclamation is successful, ERANGE if the specified domain
3167  *	can't possibly satisfy the reclamation request, or ENOMEM if not
3168  *	currently able to reclaim the requested number of pages.  Since
3169  *	relocation requires the allocation of physical pages, reclamation may
3170  *	fail with ENOMEM due to a shortage of free pages.  When reclamation
3171  *	fails in this manner, callers are expected to perform vm_wait() before
3172  *	retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3173  *
3174  *	The caller must always specify an allocation class through "req".
3175  *
3176  *	allocation classes:
3177  *	VM_ALLOC_NORMAL		normal process request
3178  *	VM_ALLOC_SYSTEM		system *really* needs a page
3179  *	VM_ALLOC_INTERRUPT	interrupt time request
3180  *
3181  *	The optional allocation flags are ignored.
3182  *
3183  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
3184  *	must be a power of two.
3185  */
3186 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3187 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3188     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3189     int desired_runs)
3190 {
3191 	struct vm_domain *vmd;
3192 	vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3193 	u_long count, minalign, reclaimed;
3194 	int error, i, min_reclaim, nruns, options, req_class;
3195 	int segind, start_segind;
3196 	int ret;
3197 
3198 	KASSERT(npages > 0, ("npages is 0"));
3199 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3200 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3201 
3202 	ret = ENOMEM;
3203 
3204 	/*
3205 	 * If the caller wants to reclaim multiple runs, try to allocate
3206 	 * space to store the runs.  If that fails, fall back to the old
3207 	 * behavior of just reclaiming MIN_RECLAIM pages.
3208 	 */
3209 	if (desired_runs > 1)
3210 		m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3211 		    M_TEMP, M_NOWAIT);
3212 	else
3213 		m_runs = NULL;
3214 
3215 	if (m_runs == NULL) {
3216 		m_runs = _m_runs;
3217 		nruns = NRUNS;
3218 	} else {
3219 		nruns = NRUNS + desired_runs - 1;
3220 	}
3221 	min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3222 
3223 	/*
3224 	 * The caller will attempt an allocation after some runs have been
3225 	 * reclaimed and added to the vm_phys buddy lists.  Due to limitations
3226 	 * of vm_phys_alloc_contig(), round up the requested length to the next
3227 	 * power of two or maximum chunk size, and ensure that each run is
3228 	 * suitably aligned.
3229 	 */
3230 	minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3231 	npages = roundup2(npages, minalign);
3232 	if (alignment < ptoa(minalign))
3233 		alignment = ptoa(minalign);
3234 
3235 	/*
3236 	 * The page daemon is allowed to dig deeper into the free page list.
3237 	 */
3238 	req_class = req & VM_ALLOC_CLASS_MASK;
3239 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3240 		req_class = VM_ALLOC_SYSTEM;
3241 
3242 	start_segind = vm_phys_lookup_segind(low);
3243 
3244 	/*
3245 	 * Return if the number of free pages cannot satisfy the requested
3246 	 * allocation.
3247 	 */
3248 	vmd = VM_DOMAIN(domain);
3249 	count = vmd->vmd_free_count;
3250 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
3251 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3252 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
3253 		goto done;
3254 
3255 	/*
3256 	 * Scan up to three times, relaxing the restrictions ("options") on
3257 	 * the reclamation of reservations and superpages each time.
3258 	 */
3259 	for (options = VPSC_NORESERV;;) {
3260 		bool phys_range_exists = false;
3261 
3262 		/*
3263 		 * Find the highest runs that satisfy the given constraints
3264 		 * and restrictions, and record them in "m_runs".
3265 		 */
3266 		count = 0;
3267 		segind = start_segind;
3268 		while ((segind = vm_phys_find_range(bounds, segind, domain,
3269 		    npages, low, high)) != -1) {
3270 			phys_range_exists = true;
3271 			while ((m_run = vm_page_scan_contig(npages, bounds[0],
3272 			    bounds[1], alignment, boundary, options))) {
3273 				bounds[0] = m_run + npages;
3274 				m_runs[RUN_INDEX(count, nruns)] = m_run;
3275 				count++;
3276 			}
3277 			segind++;
3278 		}
3279 
3280 		if (!phys_range_exists) {
3281 			ret = ERANGE;
3282 			goto done;
3283 		}
3284 
3285 		/*
3286 		 * Reclaim the highest runs in LIFO (descending) order until
3287 		 * the number of reclaimed pages, "reclaimed", is at least
3288 		 * "min_reclaim".  Reset "reclaimed" each time because each
3289 		 * reclamation is idempotent, and runs will (likely) recur
3290 		 * from one scan to the next as restrictions are relaxed.
3291 		 */
3292 		reclaimed = 0;
3293 		for (i = 0; count > 0 && i < nruns; i++) {
3294 			count--;
3295 			m_run = m_runs[RUN_INDEX(count, nruns)];
3296 			error = vm_page_reclaim_run(req_class, domain, npages,
3297 			    m_run, high);
3298 			if (error == 0) {
3299 				reclaimed += npages;
3300 				if (reclaimed >= min_reclaim) {
3301 					ret = 0;
3302 					goto done;
3303 				}
3304 			}
3305 		}
3306 
3307 		/*
3308 		 * Either relax the restrictions on the next scan or return if
3309 		 * the last scan had no restrictions.
3310 		 */
3311 		if (options == VPSC_NORESERV)
3312 			options = VPSC_NOSUPER;
3313 		else if (options == VPSC_NOSUPER)
3314 			options = VPSC_ANY;
3315 		else if (options == VPSC_ANY) {
3316 			if (reclaimed != 0)
3317 				ret = 0;
3318 			goto done;
3319 		}
3320 	}
3321 done:
3322 	if (m_runs != _m_runs)
3323 		free(m_runs, M_TEMP);
3324 	return (ret);
3325 }
3326 
3327 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3328 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3329     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3330 {
3331 	return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low,
3332 	    high, alignment, boundary, 1));
3333 }
3334 
3335 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3336 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3337     u_long alignment, vm_paddr_t boundary)
3338 {
3339 	struct vm_domainset_iter di;
3340 	int domain, ret, status;
3341 
3342 	ret = ERANGE;
3343 
3344 	if (vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req) != 0)
3345 		return (ret);
3346 
3347 	do {
3348 		status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3349 		    high, alignment, boundary);
3350 		if (status == 0)
3351 			return (0);
3352 		else if (status == ERANGE)
3353 			vm_domainset_iter_ignore(&di, domain);
3354 		else {
3355 			KASSERT(status == ENOMEM, ("Unrecognized error %d "
3356 			    "from vm_page_reclaim_contig_domain()", status));
3357 			ret = ENOMEM;
3358 		}
3359 	} while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
3360 
3361 	return (ret);
3362 }
3363 
3364 /*
3365  * Set the domain in the appropriate page level domainset.
3366  */
3367 void
vm_domain_set(struct vm_domain * vmd)3368 vm_domain_set(struct vm_domain *vmd)
3369 {
3370 
3371 	mtx_lock(&vm_domainset_lock);
3372 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3373 		vmd->vmd_minset = 1;
3374 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3375 	}
3376 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3377 		vmd->vmd_severeset = 1;
3378 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3379 	}
3380 	mtx_unlock(&vm_domainset_lock);
3381 }
3382 
3383 /*
3384  * Clear the domain from the appropriate page level domainset.
3385  */
3386 void
vm_domain_clear(struct vm_domain * vmd)3387 vm_domain_clear(struct vm_domain *vmd)
3388 {
3389 
3390 	mtx_lock(&vm_domainset_lock);
3391 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3392 		vmd->vmd_minset = 0;
3393 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3394 		if (vm_min_waiters != 0) {
3395 			vm_min_waiters = 0;
3396 			wakeup(&vm_min_domains);
3397 		}
3398 	}
3399 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3400 		vmd->vmd_severeset = 0;
3401 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3402 		if (vm_severe_waiters != 0) {
3403 			vm_severe_waiters = 0;
3404 			wakeup(&vm_severe_domains);
3405 		}
3406 	}
3407 
3408 	/*
3409 	 * If pageout daemon needs pages, then tell it that there are
3410 	 * some free.
3411 	 */
3412 	if (vmd->vmd_pageout_pages_needed &&
3413 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3414 		wakeup(&vmd->vmd_pageout_pages_needed);
3415 		vmd->vmd_pageout_pages_needed = 0;
3416 	}
3417 
3418 	/* See comments in vm_wait_doms(). */
3419 	if (vm_pageproc_waiters) {
3420 		vm_pageproc_waiters = 0;
3421 		wakeup(&vm_pageproc_waiters);
3422 	}
3423 	mtx_unlock(&vm_domainset_lock);
3424 }
3425 
3426 /*
3427  * Wait for free pages to exceed the min threshold globally.
3428  */
3429 void
vm_wait_min(void)3430 vm_wait_min(void)
3431 {
3432 
3433 	mtx_lock(&vm_domainset_lock);
3434 	while (vm_page_count_min()) {
3435 		vm_min_waiters++;
3436 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3437 	}
3438 	mtx_unlock(&vm_domainset_lock);
3439 }
3440 
3441 /*
3442  * Wait for free pages to exceed the severe threshold globally.
3443  */
3444 void
vm_wait_severe(void)3445 vm_wait_severe(void)
3446 {
3447 
3448 	mtx_lock(&vm_domainset_lock);
3449 	while (vm_page_count_severe()) {
3450 		vm_severe_waiters++;
3451 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3452 		    "vmwait", 0);
3453 	}
3454 	mtx_unlock(&vm_domainset_lock);
3455 }
3456 
3457 u_int
vm_wait_count(void)3458 vm_wait_count(void)
3459 {
3460 
3461 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3462 }
3463 
3464 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3465 vm_wait_doms(const domainset_t *wdoms, int mflags)
3466 {
3467 	int error;
3468 
3469 	error = 0;
3470 
3471 	/*
3472 	 * We use racey wakeup synchronization to avoid expensive global
3473 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3474 	 * To handle this, we only sleep for one tick in this instance.  It
3475 	 * is expected that most allocations for the pageproc will come from
3476 	 * kmem or vm_page_grab* which will use the more specific and
3477 	 * race-free vm_wait_domain().
3478 	 */
3479 	if (curproc == pageproc) {
3480 		mtx_lock(&vm_domainset_lock);
3481 		vm_pageproc_waiters++;
3482 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3483 		    PVM | PDROP | mflags, "pageprocwait", 1);
3484 	} else {
3485 		/*
3486 		 * XXX Ideally we would wait only until the allocation could
3487 		 * be satisfied.  This condition can cause new allocators to
3488 		 * consume all freed pages while old allocators wait.
3489 		 */
3490 		mtx_lock(&vm_domainset_lock);
3491 		if (vm_page_count_min_set(wdoms)) {
3492 			if (pageproc == NULL)
3493 				panic("vm_wait in early boot");
3494 			vm_min_waiters++;
3495 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3496 			    PVM | PDROP | mflags, "vmwait", 0);
3497 		} else
3498 			mtx_unlock(&vm_domainset_lock);
3499 	}
3500 	return (error);
3501 }
3502 
3503 /*
3504  *	vm_wait_domain:
3505  *
3506  *	Sleep until free pages are available for allocation.
3507  *	- Called in various places after failed memory allocations.
3508  */
3509 void
vm_wait_domain(int domain)3510 vm_wait_domain(int domain)
3511 {
3512 	struct vm_domain *vmd;
3513 	domainset_t wdom;
3514 
3515 	vmd = VM_DOMAIN(domain);
3516 	vm_domain_free_assert_unlocked(vmd);
3517 
3518 	if (curproc == pageproc) {
3519 		mtx_lock(&vm_domainset_lock);
3520 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3521 			vmd->vmd_pageout_pages_needed = 1;
3522 			msleep(&vmd->vmd_pageout_pages_needed,
3523 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3524 		} else
3525 			mtx_unlock(&vm_domainset_lock);
3526 	} else {
3527 		DOMAINSET_ZERO(&wdom);
3528 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3529 		vm_wait_doms(&wdom, 0);
3530 	}
3531 }
3532 
3533 static int
vm_wait_flags(vm_object_t obj,int mflags)3534 vm_wait_flags(vm_object_t obj, int mflags)
3535 {
3536 	struct domainset *d;
3537 
3538 	d = NULL;
3539 
3540 	/*
3541 	 * Carefully fetch pointers only once: the struct domainset
3542 	 * itself is ummutable but the pointer might change.
3543 	 */
3544 	if (obj != NULL)
3545 		d = obj->domain.dr_policy;
3546 	if (d == NULL)
3547 		d = curthread->td_domain.dr_policy;
3548 
3549 	return (vm_wait_doms(&d->ds_mask, mflags));
3550 }
3551 
3552 /*
3553  *	vm_wait:
3554  *
3555  *	Sleep until free pages are available for allocation in the
3556  *	affinity domains of the obj.  If obj is NULL, the domain set
3557  *	for the calling thread is used.
3558  *	Called in various places after failed memory allocations.
3559  */
3560 void
vm_wait(vm_object_t obj)3561 vm_wait(vm_object_t obj)
3562 {
3563 	(void)vm_wait_flags(obj, 0);
3564 }
3565 
3566 int
vm_wait_intr(vm_object_t obj)3567 vm_wait_intr(vm_object_t obj)
3568 {
3569 	return (vm_wait_flags(obj, PCATCH));
3570 }
3571 
3572 /*
3573  *	vm_domain_alloc_fail:
3574  *
3575  *	Called when a page allocation function fails.  Informs the
3576  *	pagedaemon and performs the requested wait.  Requires the
3577  *	domain_free and object lock on entry.  Returns with the
3578  *	object lock held and free lock released.  Returns an error when
3579  *	retry is necessary.
3580  *
3581  */
3582 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3583 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3584 {
3585 
3586 	vm_domain_free_assert_unlocked(vmd);
3587 
3588 	atomic_add_int(&vmd->vmd_pageout_deficit,
3589 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3590 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3591 		if (object != NULL)
3592 			VM_OBJECT_WUNLOCK(object);
3593 		vm_wait_domain(vmd->vmd_domain);
3594 		if (object != NULL)
3595 			VM_OBJECT_WLOCK(object);
3596 		if (req & VM_ALLOC_WAITOK)
3597 			return (EAGAIN);
3598 	}
3599 
3600 	return (0);
3601 }
3602 
3603 /*
3604  *	vm_waitpfault:
3605  *
3606  *	Sleep until free pages are available for allocation.
3607  *	- Called only in vm_fault so that processes page faulting
3608  *	  can be easily tracked.
3609  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3610  *	  processes will be able to grab memory first.  Do not change
3611  *	  this balance without careful testing first.
3612  */
3613 void
vm_waitpfault(struct domainset * dset,int timo)3614 vm_waitpfault(struct domainset *dset, int timo)
3615 {
3616 
3617 	/*
3618 	 * XXX Ideally we would wait only until the allocation could
3619 	 * be satisfied.  This condition can cause new allocators to
3620 	 * consume all freed pages while old allocators wait.
3621 	 */
3622 	mtx_lock(&vm_domainset_lock);
3623 	if (vm_page_count_min_set(&dset->ds_mask)) {
3624 		vm_min_waiters++;
3625 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3626 		    "pfault", timo);
3627 	} else
3628 		mtx_unlock(&vm_domainset_lock);
3629 }
3630 
3631 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3632 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3633 {
3634 
3635 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3636 }
3637 
3638 #ifdef INVARIANTS
3639 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3640 vm_page_pagequeue(vm_page_t m)
3641 {
3642 
3643 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3644 }
3645 #endif
3646 
3647 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3648 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old,
3649     vm_page_astate_t new)
3650 {
3651 	vm_page_astate_t tmp;
3652 
3653 	tmp = *old;
3654 	do {
3655 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3656 			return (true);
3657 		counter_u64_add(pqstate_commit_retries, 1);
3658 	} while (old->_bits == tmp._bits);
3659 
3660 	return (false);
3661 }
3662 
3663 /*
3664  * Do the work of committing a queue state update that moves the page out of
3665  * its current queue.
3666  */
3667 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3668 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3669     vm_page_astate_t *old, vm_page_astate_t new)
3670 {
3671 	vm_page_t next;
3672 
3673 	vm_pagequeue_assert_locked(pq);
3674 	KASSERT(vm_page_pagequeue(m) == pq,
3675 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3676 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3677 	    ("%s: invalid queue indices %d %d",
3678 	    __func__, old->queue, new.queue));
3679 
3680 	/*
3681 	 * Once the queue index of the page changes there is nothing
3682 	 * synchronizing with further updates to the page's physical
3683 	 * queue state.  Therefore we must speculatively remove the page
3684 	 * from the queue now and be prepared to roll back if the queue
3685 	 * state update fails.  If the page is not physically enqueued then
3686 	 * we just update its queue index.
3687 	 */
3688 	if ((old->flags & PGA_ENQUEUED) != 0) {
3689 		new.flags &= ~PGA_ENQUEUED;
3690 		next = TAILQ_NEXT(m, plinks.q);
3691 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3692 		vm_pagequeue_cnt_dec(pq);
3693 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3694 			if (next == NULL)
3695 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3696 			else
3697 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3698 			vm_pagequeue_cnt_inc(pq);
3699 			return (false);
3700 		} else {
3701 			return (true);
3702 		}
3703 	} else {
3704 		return (vm_page_pqstate_fcmpset(m, old, new));
3705 	}
3706 }
3707 
3708 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3709 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3710     vm_page_astate_t new)
3711 {
3712 	struct vm_pagequeue *pq;
3713 	vm_page_astate_t as;
3714 	bool ret;
3715 
3716 	pq = _vm_page_pagequeue(m, old->queue);
3717 
3718 	/*
3719 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3720 	 * corresponding page queue lock is held.
3721 	 */
3722 	vm_pagequeue_lock(pq);
3723 	as = vm_page_astate_load(m);
3724 	if (__predict_false(as._bits != old->_bits)) {
3725 		*old = as;
3726 		ret = false;
3727 	} else {
3728 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3729 	}
3730 	vm_pagequeue_unlock(pq);
3731 	return (ret);
3732 }
3733 
3734 /*
3735  * Commit a queue state update that enqueues or requeues a page.
3736  */
3737 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3738 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3739     vm_page_astate_t *old, vm_page_astate_t new)
3740 {
3741 	struct vm_domain *vmd;
3742 
3743 	vm_pagequeue_assert_locked(pq);
3744 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3745 	    ("%s: invalid queue indices %d %d",
3746 	    __func__, old->queue, new.queue));
3747 
3748 	new.flags |= PGA_ENQUEUED;
3749 	if (!vm_page_pqstate_fcmpset(m, old, new))
3750 		return (false);
3751 
3752 	if ((old->flags & PGA_ENQUEUED) != 0)
3753 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3754 	else
3755 		vm_pagequeue_cnt_inc(pq);
3756 
3757 	/*
3758 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3759 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3760 	 * applied, even if it was set first.
3761 	 */
3762 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3763 		vmd = vm_pagequeue_domain(m);
3764 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3765 		    ("%s: invalid page queue for page %p", __func__, m));
3766 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3767 	} else {
3768 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3769 	}
3770 	return (true);
3771 }
3772 
3773 /*
3774  * Commit a queue state update that encodes a request for a deferred queue
3775  * operation.
3776  */
3777 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3778 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3779     vm_page_astate_t new)
3780 {
3781 
3782 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3783 	    ("%s: invalid state, queue %d flags %x",
3784 	    __func__, new.queue, new.flags));
3785 
3786 	if (old->_bits != new._bits &&
3787 	    !vm_page_pqstate_fcmpset(m, old, new))
3788 		return (false);
3789 	vm_page_pqbatch_submit(m, new.queue);
3790 	return (true);
3791 }
3792 
3793 /*
3794  * A generic queue state update function.  This handles more cases than the
3795  * specialized functions above.
3796  */
3797 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3798 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3799 {
3800 
3801 	if (old->_bits == new._bits)
3802 		return (true);
3803 
3804 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3805 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3806 			return (false);
3807 		if (new.queue != PQ_NONE)
3808 			vm_page_pqbatch_submit(m, new.queue);
3809 	} else {
3810 		if (!vm_page_pqstate_fcmpset(m, old, new))
3811 			return (false);
3812 		if (new.queue != PQ_NONE &&
3813 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3814 			vm_page_pqbatch_submit(m, new.queue);
3815 	}
3816 	return (true);
3817 }
3818 
3819 /*
3820  * Apply deferred queue state updates to a page.
3821  */
3822 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3823 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3824 {
3825 	vm_page_astate_t new, old;
3826 
3827 	CRITICAL_ASSERT(curthread);
3828 	vm_pagequeue_assert_locked(pq);
3829 	KASSERT(queue < PQ_COUNT,
3830 	    ("%s: invalid queue index %d", __func__, queue));
3831 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3832 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3833 
3834 	for (old = vm_page_astate_load(m);;) {
3835 		if (__predict_false(old.queue != queue ||
3836 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3837 			counter_u64_add(queue_nops, 1);
3838 			break;
3839 		}
3840 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3841 		    ("%s: page %p is unmanaged", __func__, m));
3842 
3843 		new = old;
3844 		if ((old.flags & PGA_DEQUEUE) != 0) {
3845 			new.flags &= ~PGA_QUEUE_OP_MASK;
3846 			new.queue = PQ_NONE;
3847 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3848 			    m, &old, new))) {
3849 				counter_u64_add(queue_ops, 1);
3850 				break;
3851 			}
3852 		} else {
3853 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3854 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3855 			    m, &old, new))) {
3856 				counter_u64_add(queue_ops, 1);
3857 				break;
3858 			}
3859 		}
3860 	}
3861 }
3862 
3863 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3864 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3865     uint8_t queue)
3866 {
3867 	int i;
3868 
3869 	for (i = 0; i < bq->bq_cnt; i++)
3870 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3871 	vm_batchqueue_init(bq);
3872 }
3873 
3874 /*
3875  *	vm_page_pqbatch_submit:		[ internal use only ]
3876  *
3877  *	Enqueue a page in the specified page queue's batched work queue.
3878  *	The caller must have encoded the requested operation in the page
3879  *	structure's a.flags field.
3880  */
3881 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3882 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3883 {
3884 	struct vm_batchqueue *bq;
3885 	struct vm_pagequeue *pq;
3886 	int domain, slots_remaining;
3887 
3888 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3889 
3890 	domain = vm_page_domain(m);
3891 	critical_enter();
3892 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3893 	slots_remaining = vm_batchqueue_insert(bq, m);
3894 	if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3895 		/* keep building the bq */
3896 		critical_exit();
3897 		return;
3898 	} else if (slots_remaining > 0 ) {
3899 		/* Try to process the bq if we can get the lock */
3900 		pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3901 		if (vm_pagequeue_trylock(pq)) {
3902 			vm_pqbatch_process(pq, bq, queue);
3903 			vm_pagequeue_unlock(pq);
3904 		}
3905 		critical_exit();
3906 		return;
3907 	}
3908 	critical_exit();
3909 
3910 	/* if we make it here, the bq is full so wait for the lock */
3911 
3912 	pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3913 	vm_pagequeue_lock(pq);
3914 	critical_enter();
3915 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3916 	vm_pqbatch_process(pq, bq, queue);
3917 	vm_pqbatch_process_page(pq, m, queue);
3918 	vm_pagequeue_unlock(pq);
3919 	critical_exit();
3920 }
3921 
3922 /*
3923  *	vm_page_pqbatch_drain:		[ internal use only ]
3924  *
3925  *	Force all per-CPU page queue batch queues to be drained.  This is
3926  *	intended for use in severe memory shortages, to ensure that pages
3927  *	do not remain stuck in the batch queues.
3928  */
3929 void
vm_page_pqbatch_drain(void)3930 vm_page_pqbatch_drain(void)
3931 {
3932 	struct thread *td;
3933 	struct vm_domain *vmd;
3934 	struct vm_pagequeue *pq;
3935 	int cpu, domain, queue;
3936 
3937 	td = curthread;
3938 	CPU_FOREACH(cpu) {
3939 		thread_lock(td);
3940 		sched_bind(td, cpu);
3941 		thread_unlock(td);
3942 
3943 		for (domain = 0; domain < vm_ndomains; domain++) {
3944 			vmd = VM_DOMAIN(domain);
3945 			for (queue = 0; queue < PQ_COUNT; queue++) {
3946 				pq = &vmd->vmd_pagequeues[queue];
3947 				vm_pagequeue_lock(pq);
3948 				critical_enter();
3949 				vm_pqbatch_process(pq,
3950 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3951 				critical_exit();
3952 				vm_pagequeue_unlock(pq);
3953 			}
3954 		}
3955 	}
3956 	thread_lock(td);
3957 	sched_unbind(td);
3958 	thread_unlock(td);
3959 }
3960 
3961 /*
3962  *	vm_page_dequeue_deferred:	[ internal use only ]
3963  *
3964  *	Request removal of the given page from its current page
3965  *	queue.  Physical removal from the queue may be deferred
3966  *	indefinitely.
3967  */
3968 void
vm_page_dequeue_deferred(vm_page_t m)3969 vm_page_dequeue_deferred(vm_page_t m)
3970 {
3971 	vm_page_astate_t new, old;
3972 
3973 	old = vm_page_astate_load(m);
3974 	do {
3975 		if (old.queue == PQ_NONE) {
3976 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3977 			    ("%s: page %p has unexpected queue state",
3978 			    __func__, m));
3979 			break;
3980 		}
3981 		new = old;
3982 		new.flags |= PGA_DEQUEUE;
3983 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3984 }
3985 
3986 /*
3987  *	vm_page_dequeue:
3988  *
3989  *	Remove the page from whichever page queue it's in, if any, before
3990  *	returning.
3991  */
3992 void
vm_page_dequeue(vm_page_t m)3993 vm_page_dequeue(vm_page_t m)
3994 {
3995 	vm_page_astate_t new, old;
3996 
3997 	old = vm_page_astate_load(m);
3998 	do {
3999 		if (__predict_true(old.queue == PQ_NONE)) {
4000 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4001 			    ("%s: page %p has unexpected queue state",
4002 			    __func__, m));
4003 			break;
4004 		}
4005 		new = old;
4006 		new.flags &= ~PGA_QUEUE_OP_MASK;
4007 		new.queue = PQ_NONE;
4008 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4009 
4010 }
4011 
4012 /*
4013  * Schedule the given page for insertion into the specified page queue.
4014  * Physical insertion of the page may be deferred indefinitely.
4015  */
4016 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4017 vm_page_enqueue(vm_page_t m, uint8_t queue)
4018 {
4019 
4020 	KASSERT(m->a.queue == PQ_NONE &&
4021 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4022 	    ("%s: page %p is already enqueued", __func__, m));
4023 	KASSERT(m->ref_count > 0,
4024 	    ("%s: page %p does not carry any references", __func__, m));
4025 
4026 	m->a.queue = queue;
4027 	if ((m->a.flags & PGA_REQUEUE) == 0)
4028 		vm_page_aflag_set(m, PGA_REQUEUE);
4029 	vm_page_pqbatch_submit(m, queue);
4030 }
4031 
4032 /*
4033  *	vm_page_free_prep:
4034  *
4035  *	Prepares the given page to be put on the free list,
4036  *	disassociating it from any VM object. The caller may return
4037  *	the page to the free list only if this function returns true.
4038  *
4039  *	The object, if it exists, must be locked, and then the page must
4040  *	be xbusy.  Otherwise the page must be not busied.  A managed
4041  *	page must be unmapped.
4042  */
4043 static bool
vm_page_free_prep(vm_page_t m)4044 vm_page_free_prep(vm_page_t m)
4045 {
4046 
4047 	/*
4048 	 * Synchronize with threads that have dropped a reference to this
4049 	 * page.
4050 	 */
4051 	atomic_thread_fence_acq();
4052 
4053 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4054 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4055 		uint64_t *p;
4056 		int i;
4057 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4058 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4059 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4060 			    m, i, (uintmax_t)*p));
4061 	}
4062 #endif
4063 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4064 		KASSERT(!pmap_page_is_mapped(m),
4065 		    ("vm_page_free_prep: freeing mapped page %p", m));
4066 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4067 		    ("vm_page_free_prep: mapping flags set in page %p", m));
4068 	} else {
4069 		KASSERT(m->a.queue == PQ_NONE,
4070 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
4071 	}
4072 	VM_CNT_INC(v_tfree);
4073 
4074 	if (m->object != NULL) {
4075 		vm_page_radix_remove(m);
4076 		vm_page_free_object_prep(m);
4077 	} else
4078 		vm_page_assert_unbusied(m);
4079 
4080 	vm_page_busy_free(m);
4081 
4082 	/*
4083 	 * If fictitious remove object association and
4084 	 * return.
4085 	 */
4086 	if ((m->flags & PG_FICTITIOUS) != 0) {
4087 		KASSERT(m->ref_count == 1,
4088 		    ("fictitious page %p is referenced", m));
4089 		KASSERT(m->a.queue == PQ_NONE,
4090 		    ("fictitious page %p is queued", m));
4091 		return (false);
4092 	}
4093 
4094 	/*
4095 	 * Pages need not be dequeued before they are returned to the physical
4096 	 * memory allocator, but they must at least be marked for a deferred
4097 	 * dequeue.
4098 	 */
4099 	if ((m->oflags & VPO_UNMANAGED) == 0)
4100 		vm_page_dequeue_deferred(m);
4101 
4102 	m->valid = 0;
4103 	vm_page_undirty(m);
4104 
4105 	if (m->ref_count != 0)
4106 		panic("vm_page_free_prep: page %p has references", m);
4107 
4108 	/*
4109 	 * Restore the default memory attribute to the page.
4110 	 */
4111 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4112 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4113 
4114 #if VM_NRESERVLEVEL > 0
4115 	/*
4116 	 * Determine whether the page belongs to a reservation.  If the page was
4117 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4118 	 * as an optimization, we avoid the check in that case.
4119 	 */
4120 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4121 		return (false);
4122 #endif
4123 
4124 	return (true);
4125 }
4126 
4127 /*
4128  *	vm_page_free_toq:
4129  *
4130  *	Returns the given page to the free list, disassociating it
4131  *	from any VM object.
4132  *
4133  *	The object must be locked.  The page must be exclusively busied if it
4134  *	belongs to an object.
4135  */
4136 static void
vm_page_free_toq(vm_page_t m)4137 vm_page_free_toq(vm_page_t m)
4138 {
4139 	struct vm_domain *vmd;
4140 	uma_zone_t zone;
4141 
4142 	if (!vm_page_free_prep(m))
4143 		return;
4144 
4145 	vmd = vm_pagequeue_domain(m);
4146 	if (__predict_false((m->flags & PG_NOFREE) != 0)) {
4147 		vm_page_free_nofree(vmd, m);
4148 		return;
4149 	}
4150 	zone = vmd->vmd_pgcache[m->pool].zone;
4151 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4152 		uma_zfree(zone, m);
4153 		return;
4154 	}
4155 	vm_domain_free_lock(vmd);
4156 	vm_phys_free_pages(m, m->pool, 0);
4157 	vm_domain_free_unlock(vmd);
4158 	vm_domain_freecnt_inc(vmd, 1);
4159 }
4160 
4161 /*
4162  *	vm_page_free_pages_toq:
4163  *
4164  *	Returns a list of pages to the free list, disassociating it
4165  *	from any VM object.  In other words, this is equivalent to
4166  *	calling vm_page_free_toq() for each page of a list of VM objects.
4167  */
4168 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4169 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4170 {
4171 	vm_page_t m;
4172 	int count;
4173 
4174 	if (SLIST_EMPTY(free))
4175 		return (0);
4176 
4177 	count = 0;
4178 	while ((m = SLIST_FIRST(free)) != NULL) {
4179 		count++;
4180 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
4181 		vm_page_free_toq(m);
4182 	}
4183 
4184 	if (update_wire_count)
4185 		vm_wire_sub(count);
4186 	return (count);
4187 }
4188 
4189 /*
4190  * Mark this page as wired down.  For managed pages, this prevents reclamation
4191  * by the page daemon, or when the containing object, if any, is destroyed.
4192  */
4193 void
vm_page_wire(vm_page_t m)4194 vm_page_wire(vm_page_t m)
4195 {
4196 	u_int old;
4197 
4198 #ifdef INVARIANTS
4199 	if (m->object != NULL && !vm_page_busied(m) &&
4200 	    !vm_object_busied(m->object))
4201 		VM_OBJECT_ASSERT_LOCKED(m->object);
4202 #endif
4203 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4204 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
4205 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
4206 
4207 	old = atomic_fetchadd_int(&m->ref_count, 1);
4208 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4209 	    ("vm_page_wire: counter overflow for page %p", m));
4210 	if (VPRC_WIRE_COUNT(old) == 0) {
4211 		if ((m->oflags & VPO_UNMANAGED) == 0)
4212 			vm_page_aflag_set(m, PGA_DEQUEUE);
4213 		vm_wire_add(1);
4214 	}
4215 }
4216 
4217 /*
4218  * Attempt to wire a mapped page following a pmap lookup of that page.
4219  * This may fail if a thread is concurrently tearing down mappings of the page.
4220  * The transient failure is acceptable because it translates to the
4221  * failure of the caller pmap_extract_and_hold(), which should be then
4222  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4223  */
4224 bool
vm_page_wire_mapped(vm_page_t m)4225 vm_page_wire_mapped(vm_page_t m)
4226 {
4227 	u_int old;
4228 
4229 	old = atomic_load_int(&m->ref_count);
4230 	do {
4231 		KASSERT(old > 0,
4232 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4233 		if ((old & VPRC_BLOCKED) != 0)
4234 			return (false);
4235 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4236 
4237 	if (VPRC_WIRE_COUNT(old) == 0) {
4238 		if ((m->oflags & VPO_UNMANAGED) == 0)
4239 			vm_page_aflag_set(m, PGA_DEQUEUE);
4240 		vm_wire_add(1);
4241 	}
4242 	return (true);
4243 }
4244 
4245 /*
4246  * Release a wiring reference to a managed page.  If the page still belongs to
4247  * an object, update its position in the page queues to reflect the reference.
4248  * If the wiring was the last reference to the page, free the page.
4249  */
4250 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4251 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4252 {
4253 	u_int old;
4254 
4255 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4256 	    ("%s: page %p is unmanaged", __func__, m));
4257 
4258 	/*
4259 	 * Update LRU state before releasing the wiring reference.
4260 	 * Use a release store when updating the reference count to
4261 	 * synchronize with vm_page_free_prep().
4262 	 */
4263 	old = atomic_load_int(&m->ref_count);
4264 	do {
4265 		u_int count;
4266 
4267 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4268 		    ("vm_page_unwire: wire count underflow for page %p", m));
4269 
4270 		count = old & ~VPRC_BLOCKED;
4271 		if (count > VPRC_OBJREF + 1) {
4272 			/*
4273 			 * The page has at least one other wiring reference.  An
4274 			 * earlier iteration of this loop may have called
4275 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4276 			 * re-set it if necessary.
4277 			 */
4278 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4279 				vm_page_aflag_set(m, PGA_DEQUEUE);
4280 		} else if (count == VPRC_OBJREF + 1) {
4281 			/*
4282 			 * This is the last wiring.  Clear PGA_DEQUEUE and
4283 			 * update the page's queue state to reflect the
4284 			 * reference.  If the page does not belong to an object
4285 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4286 			 * clear leftover queue state.
4287 			 */
4288 			vm_page_release_toq(m, nqueue, noreuse);
4289 		} else if (count == 1) {
4290 			vm_page_aflag_clear(m, PGA_DEQUEUE);
4291 		}
4292 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4293 
4294 	if (VPRC_WIRE_COUNT(old) == 1) {
4295 		vm_wire_sub(1);
4296 		if (old == 1)
4297 			vm_page_free(m);
4298 	}
4299 }
4300 
4301 /*
4302  * Release one wiring of the specified page, potentially allowing it to be
4303  * paged out.
4304  *
4305  * Only managed pages belonging to an object can be paged out.  If the number
4306  * of wirings transitions to zero and the page is eligible for page out, then
4307  * the page is added to the specified paging queue.  If the released wiring
4308  * represented the last reference to the page, the page is freed.
4309  */
4310 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4311 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4312 {
4313 
4314 	KASSERT(nqueue < PQ_COUNT,
4315 	    ("vm_page_unwire: invalid queue %u request for page %p",
4316 	    nqueue, m));
4317 
4318 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4319 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4320 			vm_page_free(m);
4321 		return;
4322 	}
4323 	vm_page_unwire_managed(m, nqueue, false);
4324 }
4325 
4326 /*
4327  * Unwire a page without (re-)inserting it into a page queue.  It is up
4328  * to the caller to enqueue, requeue, or free the page as appropriate.
4329  * In most cases involving managed pages, vm_page_unwire() should be used
4330  * instead.
4331  */
4332 bool
vm_page_unwire_noq(vm_page_t m)4333 vm_page_unwire_noq(vm_page_t m)
4334 {
4335 	u_int old;
4336 
4337 	old = vm_page_drop(m, 1);
4338 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4339 	    ("%s: counter underflow for page %p", __func__,  m));
4340 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4341 	    ("%s: missing ref on fictitious page %p", __func__, m));
4342 
4343 	if (VPRC_WIRE_COUNT(old) > 1)
4344 		return (false);
4345 	if ((m->oflags & VPO_UNMANAGED) == 0)
4346 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4347 	vm_wire_sub(1);
4348 	return (true);
4349 }
4350 
4351 /*
4352  * Ensure that the page ends up in the specified page queue.  If the page is
4353  * active or being moved to the active queue, ensure that its act_count is
4354  * at least ACT_INIT but do not otherwise mess with it.
4355  */
4356 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4357 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4358 {
4359 	vm_page_astate_t old, new;
4360 
4361 	KASSERT(m->ref_count > 0,
4362 	    ("%s: page %p does not carry any references", __func__, m));
4363 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4364 	    ("%s: invalid flags %x", __func__, nflag));
4365 
4366 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4367 		return;
4368 
4369 	old = vm_page_astate_load(m);
4370 	do {
4371 		if ((old.flags & PGA_DEQUEUE) != 0)
4372 			break;
4373 		new = old;
4374 		new.flags &= ~PGA_QUEUE_OP_MASK;
4375 		if (nqueue == PQ_ACTIVE)
4376 			new.act_count = max(old.act_count, ACT_INIT);
4377 		if (old.queue == nqueue) {
4378 			/*
4379 			 * There is no need to requeue pages already in the
4380 			 * active queue.
4381 			 */
4382 			if (nqueue != PQ_ACTIVE ||
4383 			    (old.flags & PGA_ENQUEUED) == 0)
4384 				new.flags |= nflag;
4385 		} else {
4386 			new.flags |= nflag;
4387 			new.queue = nqueue;
4388 		}
4389 	} while (!vm_page_pqstate_commit(m, &old, new));
4390 }
4391 
4392 /*
4393  * Put the specified page on the active list (if appropriate).
4394  */
4395 void
vm_page_activate(vm_page_t m)4396 vm_page_activate(vm_page_t m)
4397 {
4398 
4399 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4400 }
4401 
4402 /*
4403  * Move the specified page to the tail of the inactive queue, or requeue
4404  * the page if it is already in the inactive queue.
4405  */
4406 void
vm_page_deactivate(vm_page_t m)4407 vm_page_deactivate(vm_page_t m)
4408 {
4409 
4410 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4411 }
4412 
4413 void
vm_page_deactivate_noreuse(vm_page_t m)4414 vm_page_deactivate_noreuse(vm_page_t m)
4415 {
4416 
4417 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4418 }
4419 
4420 /*
4421  * Put a page in the laundry, or requeue it if it is already there.
4422  */
4423 void
vm_page_launder(vm_page_t m)4424 vm_page_launder(vm_page_t m)
4425 {
4426 
4427 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4428 }
4429 
4430 /*
4431  * Put a page in the PQ_UNSWAPPABLE holding queue.
4432  */
4433 void
vm_page_unswappable(vm_page_t m)4434 vm_page_unswappable(vm_page_t m)
4435 {
4436 
4437 	VM_OBJECT_ASSERT_LOCKED(m->object);
4438 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4439 	    ("page %p already unswappable", m));
4440 
4441 	vm_page_dequeue(m);
4442 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4443 }
4444 
4445 /*
4446  * Release a page back to the page queues in preparation for unwiring.
4447  */
4448 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4449 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4450 {
4451 	vm_page_astate_t old, new;
4452 	uint16_t nflag;
4453 
4454 	/*
4455 	 * Use a check of the valid bits to determine whether we should
4456 	 * accelerate reclamation of the page.  The object lock might not be
4457 	 * held here, in which case the check is racy.  At worst we will either
4458 	 * accelerate reclamation of a valid page and violate LRU, or
4459 	 * unnecessarily defer reclamation of an invalid page.
4460 	 *
4461 	 * If we were asked to not cache the page, place it near the head of the
4462 	 * inactive queue so that is reclaimed sooner.
4463 	 */
4464 	if (noreuse || vm_page_none_valid(m)) {
4465 		nqueue = PQ_INACTIVE;
4466 		nflag = PGA_REQUEUE_HEAD;
4467 	} else {
4468 		nflag = PGA_REQUEUE;
4469 	}
4470 
4471 	old = vm_page_astate_load(m);
4472 	do {
4473 		new = old;
4474 
4475 		/*
4476 		 * If the page is already in the active queue and we are not
4477 		 * trying to accelerate reclamation, simply mark it as
4478 		 * referenced and avoid any queue operations.
4479 		 */
4480 		new.flags &= ~PGA_QUEUE_OP_MASK;
4481 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4482 		    (old.flags & PGA_ENQUEUED) != 0)
4483 			new.flags |= PGA_REFERENCED;
4484 		else {
4485 			new.flags |= nflag;
4486 			new.queue = nqueue;
4487 		}
4488 	} while (!vm_page_pqstate_commit(m, &old, new));
4489 }
4490 
4491 /*
4492  * Unwire a page and either attempt to free it or re-add it to the page queues.
4493  */
4494 void
vm_page_release(vm_page_t m,int flags)4495 vm_page_release(vm_page_t m, int flags)
4496 {
4497 	vm_object_t object;
4498 
4499 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4500 	    ("vm_page_release: page %p is unmanaged", m));
4501 
4502 	if ((flags & VPR_TRYFREE) != 0) {
4503 		for (;;) {
4504 			object = atomic_load_ptr(&m->object);
4505 			if (object == NULL)
4506 				break;
4507 			/* Depends on type-stability. */
4508 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4509 				break;
4510 			if (object == m->object) {
4511 				vm_page_release_locked(m, flags);
4512 				VM_OBJECT_WUNLOCK(object);
4513 				return;
4514 			}
4515 			VM_OBJECT_WUNLOCK(object);
4516 		}
4517 	}
4518 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4519 }
4520 
4521 /* See vm_page_release(). */
4522 void
vm_page_release_locked(vm_page_t m,int flags)4523 vm_page_release_locked(vm_page_t m, int flags)
4524 {
4525 
4526 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4527 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4528 	    ("vm_page_release_locked: page %p is unmanaged", m));
4529 
4530 	if (vm_page_unwire_noq(m)) {
4531 		if ((flags & VPR_TRYFREE) != 0 &&
4532 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4533 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4534 			/*
4535 			 * An unlocked lookup may have wired the page before the
4536 			 * busy lock was acquired, in which case the page must
4537 			 * not be freed.
4538 			 */
4539 			if (__predict_true(!vm_page_wired(m))) {
4540 				vm_page_free(m);
4541 				return;
4542 			}
4543 			vm_page_xunbusy(m);
4544 		} else {
4545 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4546 		}
4547 	}
4548 }
4549 
4550 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4551 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4552 {
4553 	u_int old;
4554 
4555 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4556 	    ("vm_page_try_blocked_op: page %p has no object", m));
4557 	KASSERT(vm_page_busied(m),
4558 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4559 	VM_OBJECT_ASSERT_LOCKED(m->object);
4560 
4561 	old = atomic_load_int(&m->ref_count);
4562 	do {
4563 		KASSERT(old != 0,
4564 		    ("vm_page_try_blocked_op: page %p has no references", m));
4565 		KASSERT((old & VPRC_BLOCKED) == 0,
4566 		    ("vm_page_try_blocked_op: page %p blocks wirings", m));
4567 		if (VPRC_WIRE_COUNT(old) != 0)
4568 			return (false);
4569 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4570 
4571 	(op)(m);
4572 
4573 	/*
4574 	 * If the object is read-locked, new wirings may be created via an
4575 	 * object lookup.
4576 	 */
4577 	old = vm_page_drop(m, VPRC_BLOCKED);
4578 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4579 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4580 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4581 	    old, m));
4582 	return (true);
4583 }
4584 
4585 /*
4586  * Atomically check for wirings and remove all mappings of the page.
4587  */
4588 bool
vm_page_try_remove_all(vm_page_t m)4589 vm_page_try_remove_all(vm_page_t m)
4590 {
4591 
4592 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4593 }
4594 
4595 /*
4596  * Atomically check for wirings and remove all writeable mappings of the page.
4597  */
4598 bool
vm_page_try_remove_write(vm_page_t m)4599 vm_page_try_remove_write(vm_page_t m)
4600 {
4601 
4602 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4603 }
4604 
4605 /*
4606  * vm_page_advise
4607  *
4608  * 	Apply the specified advice to the given page.
4609  */
4610 void
vm_page_advise(vm_page_t m,int advice)4611 vm_page_advise(vm_page_t m, int advice)
4612 {
4613 
4614 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4615 	vm_page_assert_xbusied(m);
4616 
4617 	if (advice == MADV_FREE)
4618 		/*
4619 		 * Mark the page clean.  This will allow the page to be freed
4620 		 * without first paging it out.  MADV_FREE pages are often
4621 		 * quickly reused by malloc(3), so we do not do anything that
4622 		 * would result in a page fault on a later access.
4623 		 */
4624 		vm_page_undirty(m);
4625 	else if (advice != MADV_DONTNEED) {
4626 		if (advice == MADV_WILLNEED)
4627 			vm_page_activate(m);
4628 		return;
4629 	}
4630 
4631 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4632 		vm_page_dirty(m);
4633 
4634 	/*
4635 	 * Clear any references to the page.  Otherwise, the page daemon will
4636 	 * immediately reactivate the page.
4637 	 */
4638 	vm_page_aflag_clear(m, PGA_REFERENCED);
4639 
4640 	/*
4641 	 * Place clean pages near the head of the inactive queue rather than
4642 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4643 	 * the page will be reused quickly.  Dirty pages not already in the
4644 	 * laundry are moved there.
4645 	 */
4646 	if (m->dirty == 0)
4647 		vm_page_deactivate_noreuse(m);
4648 	else if (!vm_page_in_laundry(m))
4649 		vm_page_launder(m);
4650 }
4651 
4652 /*
4653  *	vm_page_grab_release
4654  *
4655  *	Helper routine for grab functions to release busy on return.
4656  */
4657 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4658 vm_page_grab_release(vm_page_t m, int allocflags)
4659 {
4660 
4661 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4662 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4663 			vm_page_sunbusy(m);
4664 		else
4665 			vm_page_xunbusy(m);
4666 	}
4667 }
4668 
4669 /*
4670  *	vm_page_grab_sleep
4671  *
4672  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4673  *	if the caller should retry and false otherwise.
4674  *
4675  *	If the object is locked on entry the object will be unlocked with
4676  *	false returns and still locked but possibly having been dropped
4677  *	with true returns.
4678  */
4679 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4680 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4681     const char *wmesg, int allocflags, bool locked)
4682 {
4683 
4684 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4685 		return (false);
4686 
4687 	/*
4688 	 * Reference the page before unlocking and sleeping so that
4689 	 * the page daemon is less likely to reclaim it.
4690 	 */
4691 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4692 		vm_page_reference(m);
4693 
4694 	if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4695 	    locked)
4696 		VM_OBJECT_WLOCK(object);
4697 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4698 		return (false);
4699 
4700 	return (true);
4701 }
4702 
4703 /*
4704  * Assert that the grab flags are valid.
4705  */
4706 static inline void
vm_page_grab_check(int allocflags)4707 vm_page_grab_check(int allocflags)
4708 {
4709 
4710 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4711 	    (allocflags & VM_ALLOC_WIRED) != 0,
4712 	    ("vm_page_grab*: the pages must be busied or wired"));
4713 
4714 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4715 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4716 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4717 }
4718 
4719 /*
4720  * Calculate the page allocation flags for grab.
4721  */
4722 static inline int
vm_page_grab_pflags(int allocflags)4723 vm_page_grab_pflags(int allocflags)
4724 {
4725 	int pflags;
4726 
4727 	pflags = allocflags &
4728 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4729 	    VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOCREAT);
4730 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4731 		pflags |= VM_ALLOC_WAITFAIL;
4732 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4733 		pflags |= VM_ALLOC_SBUSY;
4734 
4735 	return (pflags);
4736 }
4737 
4738 /*
4739  * Grab a page, waiting until we are woken up due to the page changing state.
4740  * We keep on waiting, if the page continues to be in the object, unless
4741  * allocflags forbid waiting.
4742  *
4743  * The object must be locked on entry.  This routine may sleep.  The lock will,
4744  * however, be released and reacquired if the routine sleeps.
4745  *
4746  *  Return a grabbed page, or NULL.  Set *found if a page was found, whether or
4747  *  not it was grabbed.
4748  */
4749 static inline vm_page_t
vm_page_grab_lookup(vm_object_t object,vm_pindex_t pindex,int allocflags,bool * found,struct pctrie_iter * pages)4750 vm_page_grab_lookup(vm_object_t object, vm_pindex_t pindex, int allocflags,
4751     bool *found, struct pctrie_iter *pages)
4752 {
4753 	vm_page_t m;
4754 
4755 	while ((*found = (m = vm_radix_iter_lookup(pages, pindex)) != NULL) &&
4756 	    !vm_page_tryacquire(m, allocflags)) {
4757 		if (!vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4758 		    allocflags, true))
4759 			return (NULL);
4760 		pctrie_iter_reset(pages);
4761 	}
4762 	return (m);
4763 }
4764 
4765 /*
4766  * Grab a page.  Use an iterator parameter. Keep on waiting, as long as the page
4767  * exists in the object.  If the page doesn't exist, first allocate it and then
4768  * conditionally zero it.
4769  *
4770  * The object must be locked on entry.  This routine may sleep.  The lock will,
4771  * however, be released and reacquired if the routine sleeps.
4772  */
4773 vm_page_t
vm_page_grab_iter(vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4774 vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex, int allocflags,
4775     struct pctrie_iter *pages)
4776 {
4777 	vm_page_t m;
4778 	bool found;
4779 
4780 	VM_OBJECT_ASSERT_WLOCKED(object);
4781 	vm_page_grab_check(allocflags);
4782 
4783 	while ((m = vm_page_grab_lookup(
4784 	    object, pindex, allocflags, &found, pages)) == NULL) {
4785 		if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4786 			return (NULL);
4787 		if (found &&
4788 		    (allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4789 			return (NULL);
4790 		m = vm_page_alloc_iter(object, pindex,
4791 		    vm_page_grab_pflags(allocflags), pages);
4792 		if (m != NULL) {
4793 			if ((allocflags & VM_ALLOC_ZERO) != 0 &&
4794 			    (m->flags & PG_ZERO) == 0)
4795 				pmap_zero_page(m);
4796 			break;
4797 		}
4798 		if ((allocflags &
4799 		    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4800 			return (NULL);
4801 	}
4802 	vm_page_grab_release(m, allocflags);
4803 
4804 	return (m);
4805 }
4806 
4807 /*
4808  * Grab a page.  Keep on waiting, as long as the page exists in the object.  If
4809  * the page doesn't exist, first allocate it and then conditionally zero it.
4810  *
4811  * The object must be locked on entry.  This routine may sleep.  The lock will,
4812  * however, be released and reacquired if the routine sleeps.
4813  */
4814 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4815 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4816 {
4817 	struct pctrie_iter pages;
4818 
4819 	VM_OBJECT_ASSERT_WLOCKED(object);
4820 	vm_page_iter_init(&pages, object);
4821 	return (vm_page_grab_iter(object, pindex, allocflags, &pages));
4822 }
4823 
4824 /*
4825  * Attempt to validate a page, locklessly acquiring it if necessary, given a
4826  * (object, pindex) tuple and either an invalided page or NULL.  The resulting
4827  * page will be validated against the identity tuple, and busied or wired as
4828  * requested.  A NULL page returned guarantees that the page was not in radix at
4829  * the time of the call but callers must perform higher level synchronization or
4830  * retry the operation under a lock if they require an atomic answer.  This is
4831  * the only lock free validation routine, other routines can depend on the
4832  * resulting page state.
4833  *
4834  * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4835  * caller flags.
4836  */
4837 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4838 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4839 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4840     int allocflags)
4841 {
4842 	if (m == NULL)
4843 		m = vm_page_lookup_unlocked(object, pindex);
4844 	for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4845 		if (vm_page_trybusy(m, allocflags)) {
4846 			if (m->object == object && m->pindex == pindex) {
4847 				if ((allocflags & VM_ALLOC_WIRED) != 0)
4848 					vm_page_wire(m);
4849 				vm_page_grab_release(m, allocflags);
4850 				break;
4851 			}
4852 			/* relookup. */
4853 			vm_page_busy_release(m);
4854 			cpu_spinwait();
4855 			continue;
4856 		}
4857 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4858 		    allocflags, false))
4859 			return (PAGE_NOT_ACQUIRED);
4860 	}
4861 	return (m);
4862 }
4863 
4864 /*
4865  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4866  * is not set.
4867  */
4868 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4869 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4870 {
4871 	vm_page_t m;
4872 
4873 	vm_page_grab_check(allocflags);
4874 	m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4875 	if (m == PAGE_NOT_ACQUIRED)
4876 		return (NULL);
4877 	if (m != NULL)
4878 		return (m);
4879 
4880 	/*
4881 	 * The radix lockless lookup should never return a false negative
4882 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4883 	 * was no page present at the instant of the call.  A NOCREAT caller
4884 	 * must handle create races gracefully.
4885 	 */
4886 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4887 		return (NULL);
4888 
4889 	VM_OBJECT_WLOCK(object);
4890 	m = vm_page_grab(object, pindex, allocflags);
4891 	VM_OBJECT_WUNLOCK(object);
4892 
4893 	return (m);
4894 }
4895 
4896 /*
4897  * Grab a page and make it valid, paging in if necessary.  Use an iterator
4898  * parameter. Pages missing from their pager are zero filled and validated.  If
4899  * a VM_ALLOC_COUNT is supplied and the page is not valid as many as
4900  * VM_INITIAL_PAGEIN pages can be brought in simultaneously.  Additional pages
4901  * will be left on a paging queue but will neither be wired nor busy regardless
4902  * of allocflags.
4903  */
4904 int
vm_page_grab_valid_iter(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4905 vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
4906     int allocflags, struct pctrie_iter *pages)
4907 {
4908 	vm_page_t m;
4909 	vm_page_t ma[VM_INITIAL_PAGEIN];
4910 	int after, ahead, i, pflags, rv;
4911 
4912 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4913 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4914 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4915 	KASSERT((allocflags &
4916 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4917 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4918 	VM_OBJECT_ASSERT_WLOCKED(object);
4919 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4920 	    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4921 	pflags |= VM_ALLOC_WAITFAIL;
4922 
4923 retrylookup:
4924 	if ((m = vm_radix_iter_lookup(pages, pindex)) != NULL) {
4925 		/*
4926 		 * If the page is fully valid it can only become invalid
4927 		 * with the object lock held.  If it is not valid it can
4928 		 * become valid with the busy lock held.  Therefore, we
4929 		 * may unnecessarily lock the exclusive busy here if we
4930 		 * race with I/O completion not using the object lock.
4931 		 * However, we will not end up with an invalid page and a
4932 		 * shared lock.
4933 		 */
4934 		if (!vm_page_trybusy(m,
4935 		    vm_page_all_valid(m) ? allocflags : 0)) {
4936 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4937 			    allocflags, true);
4938 			pctrie_iter_reset(pages);
4939 			goto retrylookup;
4940 		}
4941 		if (vm_page_all_valid(m))
4942 			goto out;
4943 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4944 			vm_page_busy_release(m);
4945 			*mp = NULL;
4946 			return (VM_PAGER_FAIL);
4947 		}
4948 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4949 		*mp = NULL;
4950 		return (VM_PAGER_FAIL);
4951 	} else {
4952 		m = vm_page_alloc_iter(object, pindex, pflags, pages);
4953 		if (m == NULL) {
4954 			if (!vm_pager_can_alloc_page(object, pindex)) {
4955 				*mp = NULL;
4956 				return (VM_PAGER_AGAIN);
4957 			}
4958 			goto retrylookup;
4959 		}
4960 	}
4961 
4962 	vm_page_assert_xbusied(m);
4963 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4964 		after = MIN(after, VM_INITIAL_PAGEIN);
4965 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4966 		after = MAX(after, 1);
4967 		ma[0] = m;
4968 		pctrie_iter_reset(pages);
4969 		for (i = 1; i < after; i++) {
4970 			m = vm_radix_iter_lookup_ge(pages, pindex + i);
4971 			ahead = after;
4972 			if (m != NULL)
4973 				ahead = MIN(ahead, m->pindex - pindex);
4974 			for (; i < ahead; i++) {
4975 				ma[i] = vm_page_alloc_iter(object, pindex + i,
4976 				    VM_ALLOC_NORMAL, pages);
4977 				if (ma[i] == NULL)
4978 					break;
4979 			}
4980 			if (m == NULL || m->pindex != pindex + i ||
4981 			    vm_page_any_valid(m) || !vm_page_tryxbusy(m))
4982 				break;
4983 			ma[i] = m;
4984 		}
4985 		after = i;
4986 		vm_object_pip_add(object, after);
4987 		VM_OBJECT_WUNLOCK(object);
4988 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4989 		pctrie_iter_reset(pages);
4990 		VM_OBJECT_WLOCK(object);
4991 		vm_object_pip_wakeupn(object, after);
4992 		/* Pager may have replaced a page. */
4993 		m = ma[0];
4994 		if (rv != VM_PAGER_OK) {
4995 			for (i = 0; i < after; i++) {
4996 				if (!vm_page_wired(ma[i]))
4997 					vm_page_free(ma[i]);
4998 				else
4999 					vm_page_xunbusy(ma[i]);
5000 			}
5001 			*mp = NULL;
5002 			return (rv);
5003 		}
5004 		for (i = 1; i < after; i++)
5005 			vm_page_readahead_finish(ma[i]);
5006 		MPASS(vm_page_all_valid(m));
5007 	} else {
5008 		vm_page_zero_invalid(m, TRUE);
5009 		pctrie_iter_reset(pages);
5010 	}
5011 out:
5012 	if ((allocflags & VM_ALLOC_WIRED) != 0)
5013 		vm_page_wire(m);
5014 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5015 		vm_page_busy_downgrade(m);
5016 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5017 		vm_page_busy_release(m);
5018 	*mp = m;
5019 	return (VM_PAGER_OK);
5020 }
5021 
5022 /*
5023  * Grab a page and make it valid, paging in if necessary.  Pages missing from
5024  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
5025  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
5026  * in simultaneously.  Additional pages will be left on a paging queue but
5027  * will neither be wired nor busy regardless of allocflags.
5028  */
5029 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5030 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
5031     int allocflags)
5032 {
5033 	struct pctrie_iter pages;
5034 
5035 	VM_OBJECT_ASSERT_WLOCKED(object);
5036 	vm_page_iter_init(&pages, object);
5037 	return (vm_page_grab_valid_iter(mp, object, pindex, allocflags,
5038 	    &pages));
5039 }
5040 
5041 /*
5042  * Grab a page.  Keep on waiting, as long as the page exists in the object.  If
5043  * the page doesn't exist, and the pager has it, allocate it and zero part of
5044  * it.
5045  *
5046  * The object must be locked on entry.  This routine may sleep.  The lock will,
5047  * however, be released and reacquired if the routine sleeps.
5048  */
5049 int
vm_page_grab_zero_partial(vm_object_t object,vm_pindex_t pindex,int base,int end)5050 vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
5051     int end)
5052 {
5053 	struct pctrie_iter pages;
5054 	vm_page_t m;
5055 	int allocflags, rv;
5056 	bool found;
5057 
5058 	VM_OBJECT_ASSERT_WLOCKED(object);
5059 	KASSERT(base >= 0, ("%s: base %d", __func__, base));
5060 	KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
5061 	    end));
5062 
5063 	allocflags = VM_ALLOC_NOCREAT | VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL;
5064 	vm_page_iter_init(&pages, object);
5065 	while ((m = vm_page_grab_lookup(
5066 	    object, pindex, allocflags, &found, &pages)) == NULL) {
5067 		if (!vm_pager_has_page(object, pindex, NULL, NULL))
5068 			return (0);
5069 		m = vm_page_alloc_iter(object, pindex,
5070 		    vm_page_grab_pflags(allocflags), &pages);
5071 		if (m != NULL) {
5072 			vm_object_pip_add(object, 1);
5073 			VM_OBJECT_WUNLOCK(object);
5074 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
5075 			VM_OBJECT_WLOCK(object);
5076 			vm_object_pip_wakeup(object);
5077 			if (rv != VM_PAGER_OK) {
5078 				vm_page_free(m);
5079 				return (EIO);
5080 			}
5081 
5082 			/*
5083 			 * Since the page was not resident, and therefore not
5084 			 * recently accessed, immediately enqueue it for
5085 			 * asynchronous laundering.  The current operation is
5086 			 * not regarded as an access.
5087 			 */
5088 			vm_page_launder(m);
5089 			break;
5090 		}
5091 	}
5092 
5093 	pmap_zero_page_area(m, base, end - base);
5094 	KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid", __func__, m));
5095 	vm_page_set_dirty(m);
5096 	vm_page_xunbusy(m);
5097 	return (0);
5098 }
5099 
5100 /*
5101  * Locklessly grab a valid page.  If the page is not valid or not yet
5102  * allocated this will fall back to the object lock method.
5103  */
5104 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5105 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5106     vm_pindex_t pindex, int allocflags)
5107 {
5108 	vm_page_t m;
5109 	int flags;
5110 	int error;
5111 
5112 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5113 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5114 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5115 	    "mismatch"));
5116 	KASSERT((allocflags &
5117 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5118 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5119 
5120 	/*
5121 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
5122 	 * before we can inspect the valid field and return a wired page.
5123 	 */
5124 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5125 	vm_page_grab_check(flags);
5126 	m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5127 	if (m == PAGE_NOT_ACQUIRED)
5128 		return (VM_PAGER_FAIL);
5129 	if (m != NULL) {
5130 		if (vm_page_all_valid(m)) {
5131 			if ((allocflags & VM_ALLOC_WIRED) != 0)
5132 				vm_page_wire(m);
5133 			vm_page_grab_release(m, allocflags);
5134 			*mp = m;
5135 			return (VM_PAGER_OK);
5136 		}
5137 		vm_page_busy_release(m);
5138 	}
5139 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5140 		*mp = NULL;
5141 		return (VM_PAGER_FAIL);
5142 	}
5143 	VM_OBJECT_WLOCK(object);
5144 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
5145 	VM_OBJECT_WUNLOCK(object);
5146 
5147 	return (error);
5148 }
5149 
5150 /*
5151  * Return the specified range of pages from the given object.  For each
5152  * page offset within the range, if a page already exists within the object
5153  * at that offset and it is busy, then wait for it to change state.  If,
5154  * instead, the page doesn't exist, then allocate it.
5155  *
5156  * The caller must always specify an allocation class.
5157  *
5158  * allocation classes:
5159  *	VM_ALLOC_NORMAL		normal process request
5160  *	VM_ALLOC_SYSTEM		system *really* needs the pages
5161  *	VM_ALLOC_INTERRUPT	interrupt time request
5162  *
5163  * The caller must always specify that the pages are to be busied and/or
5164  * wired.
5165  *
5166  * optional allocation flags:
5167  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
5168  *	VM_ALLOC_NOBUSY		do not exclusive busy the pages
5169  *	VM_ALLOC_NODUMP		do not include the pages in a kernel core dump
5170  *	VM_ALLOC_NOFREE		pages will never be freed
5171  *	VM_ALLOC_NOWAIT		do not sleep
5172  *	VM_ALLOC_SBUSY		set pages to sbusy state
5173  *	VM_ALLOC_WAITFAIL	in case of failure, sleep before returning
5174  *	VM_ALLOC_WAITOK		ignored (default behavior)
5175  *	VM_ALLOC_WIRED		wire the pages
5176  *	VM_ALLOC_ZERO		zero and validate any invalid pages
5177  *
5178  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
5179  * may return a partial prefix of the requested range.
5180  */
5181 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5182 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5183     vm_page_t *ma, int count)
5184 {
5185 	struct pctrie_iter pages;
5186 	vm_page_t m;
5187 	int pflags;
5188 	int ahead, i;
5189 
5190 	VM_OBJECT_ASSERT_WLOCKED(object);
5191 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5192 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5193 	KASSERT(count > 0,
5194 	    ("vm_page_grab_pages: invalid page count %d", count));
5195 	vm_page_grab_check(allocflags);
5196 
5197 	pflags = vm_page_grab_pflags(allocflags);
5198 	i = 0;
5199 	vm_page_iter_init(&pages, object);
5200 retrylookup:
5201 	ahead = -1;
5202 	for (; i < count; i++) {
5203 		if (ahead < 0) {
5204 			ahead = vm_radix_iter_lookup_range(
5205 			    &pages, pindex + i, &ma[i], count - i);
5206 		}
5207 		if (ahead-- > 0) {
5208 			m = ma[i];
5209 			if (!vm_page_tryacquire(m, allocflags)) {
5210 				if (vm_page_grab_sleep(object, m, pindex + i,
5211 				    "grbmaw", allocflags, true)) {
5212 					pctrie_iter_reset(&pages);
5213 					goto retrylookup;
5214 				}
5215 				break;
5216 			}
5217 		} else {
5218 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5219 				break;
5220 			m = vm_page_alloc_iter(object, pindex + i,
5221 			    pflags | VM_ALLOC_COUNT(count - i), &pages);
5222 			/* pages was reset if alloc_iter lost the lock. */
5223 			if (m == NULL) {
5224 				if ((allocflags & (VM_ALLOC_NOWAIT |
5225 				    VM_ALLOC_WAITFAIL)) != 0)
5226 					break;
5227 				goto retrylookup;
5228 			}
5229 			ma[i] = m;
5230 		}
5231 		if (vm_page_none_valid(m) &&
5232 		    (allocflags & VM_ALLOC_ZERO) != 0) {
5233 			if ((m->flags & PG_ZERO) == 0)
5234 				pmap_zero_page(m);
5235 			vm_page_valid(m);
5236 		}
5237 		vm_page_grab_release(m, allocflags);
5238 	}
5239 	return (i);
5240 }
5241 
5242 /*
5243  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
5244  * and will fall back to the locked variant to handle allocation.
5245  */
5246 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5247 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5248     int allocflags, vm_page_t *ma, int count)
5249 {
5250 	vm_page_t m;
5251 	int flags;
5252 	int i, num_fetched;
5253 
5254 	KASSERT(count > 0,
5255 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5256 	vm_page_grab_check(allocflags);
5257 
5258 	/*
5259 	 * Modify flags for lockless acquire to hold the page until we
5260 	 * set it valid if necessary.
5261 	 */
5262 	flags = allocflags & ~VM_ALLOC_NOBUSY;
5263 	vm_page_grab_check(flags);
5264 	num_fetched = vm_radix_lookup_range_unlocked(&object->rtree, pindex,
5265 	    ma, count);
5266 	for (i = 0; i < num_fetched; i++, pindex++) {
5267 		m = vm_page_acquire_unlocked(object, pindex, ma[i], flags);
5268 		if (m == PAGE_NOT_ACQUIRED)
5269 			return (i);
5270 		if (m == NULL)
5271 			break;
5272 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5273 			if ((m->flags & PG_ZERO) == 0)
5274 				pmap_zero_page(m);
5275 			vm_page_valid(m);
5276 		}
5277 		/* m will still be wired or busy according to flags. */
5278 		vm_page_grab_release(m, allocflags);
5279 		/* vm_page_acquire_unlocked() may not return ma[i]. */
5280 		ma[i] = m;
5281 	}
5282 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5283 		return (i);
5284 	count -= i;
5285 	VM_OBJECT_WLOCK(object);
5286 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5287 	VM_OBJECT_WUNLOCK(object);
5288 
5289 	return (i);
5290 }
5291 
5292 /*
5293  * Mapping function for valid or dirty bits in a page.
5294  *
5295  * Inputs are required to range within a page.
5296  */
5297 vm_page_bits_t
vm_page_bits(int base,int size)5298 vm_page_bits(int base, int size)
5299 {
5300 	int first_bit;
5301 	int last_bit;
5302 
5303 	KASSERT(
5304 	    base + size <= PAGE_SIZE,
5305 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
5306 	);
5307 
5308 	if (size == 0)		/* handle degenerate case */
5309 		return (0);
5310 
5311 	first_bit = base >> DEV_BSHIFT;
5312 	last_bit = (base + size - 1) >> DEV_BSHIFT;
5313 
5314 	return (((vm_page_bits_t)2 << last_bit) -
5315 	    ((vm_page_bits_t)1 << first_bit));
5316 }
5317 
5318 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5319 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5320 {
5321 
5322 #if PAGE_SIZE == 32768
5323 	atomic_set_64((uint64_t *)bits, set);
5324 #elif PAGE_SIZE == 16384
5325 	atomic_set_32((uint32_t *)bits, set);
5326 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5327 	atomic_set_16((uint16_t *)bits, set);
5328 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5329 	atomic_set_8((uint8_t *)bits, set);
5330 #else		/* PAGE_SIZE <= 8192 */
5331 	uintptr_t addr;
5332 	int shift;
5333 
5334 	addr = (uintptr_t)bits;
5335 	/*
5336 	 * Use a trick to perform a 32-bit atomic on the
5337 	 * containing aligned word, to not depend on the existence
5338 	 * of atomic_{set, clear}_{8, 16}.
5339 	 */
5340 	shift = addr & (sizeof(uint32_t) - 1);
5341 #if BYTE_ORDER == BIG_ENDIAN
5342 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5343 #else
5344 	shift *= NBBY;
5345 #endif
5346 	addr &= ~(sizeof(uint32_t) - 1);
5347 	atomic_set_32((uint32_t *)addr, set << shift);
5348 #endif		/* PAGE_SIZE */
5349 }
5350 
5351 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5352 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5353 {
5354 
5355 #if PAGE_SIZE == 32768
5356 	atomic_clear_64((uint64_t *)bits, clear);
5357 #elif PAGE_SIZE == 16384
5358 	atomic_clear_32((uint32_t *)bits, clear);
5359 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5360 	atomic_clear_16((uint16_t *)bits, clear);
5361 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5362 	atomic_clear_8((uint8_t *)bits, clear);
5363 #else		/* PAGE_SIZE <= 8192 */
5364 	uintptr_t addr;
5365 	int shift;
5366 
5367 	addr = (uintptr_t)bits;
5368 	/*
5369 	 * Use a trick to perform a 32-bit atomic on the
5370 	 * containing aligned word, to not depend on the existence
5371 	 * of atomic_{set, clear}_{8, 16}.
5372 	 */
5373 	shift = addr & (sizeof(uint32_t) - 1);
5374 #if BYTE_ORDER == BIG_ENDIAN
5375 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5376 #else
5377 	shift *= NBBY;
5378 #endif
5379 	addr &= ~(sizeof(uint32_t) - 1);
5380 	atomic_clear_32((uint32_t *)addr, clear << shift);
5381 #endif		/* PAGE_SIZE */
5382 }
5383 
5384 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5385 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5386 {
5387 #if PAGE_SIZE == 32768
5388 	uint64_t old;
5389 
5390 	old = *bits;
5391 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5392 	return (old);
5393 #elif PAGE_SIZE == 16384
5394 	uint32_t old;
5395 
5396 	old = *bits;
5397 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5398 	return (old);
5399 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5400 	uint16_t old;
5401 
5402 	old = *bits;
5403 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5404 	return (old);
5405 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5406 	uint8_t old;
5407 
5408 	old = *bits;
5409 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5410 	return (old);
5411 #else		/* PAGE_SIZE <= 4096*/
5412 	uintptr_t addr;
5413 	uint32_t old, new, mask;
5414 	int shift;
5415 
5416 	addr = (uintptr_t)bits;
5417 	/*
5418 	 * Use a trick to perform a 32-bit atomic on the
5419 	 * containing aligned word, to not depend on the existence
5420 	 * of atomic_{set, swap, clear}_{8, 16}.
5421 	 */
5422 	shift = addr & (sizeof(uint32_t) - 1);
5423 #if BYTE_ORDER == BIG_ENDIAN
5424 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5425 #else
5426 	shift *= NBBY;
5427 #endif
5428 	addr &= ~(sizeof(uint32_t) - 1);
5429 	mask = VM_PAGE_BITS_ALL << shift;
5430 
5431 	old = *bits;
5432 	do {
5433 		new = old & ~mask;
5434 		new |= newbits << shift;
5435 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5436 	return (old >> shift);
5437 #endif		/* PAGE_SIZE */
5438 }
5439 
5440 /*
5441  *	vm_page_set_valid_range:
5442  *
5443  *	Sets portions of a page valid.  The arguments are expected
5444  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5445  *	of any partial chunks touched by the range.  The invalid portion of
5446  *	such chunks will be zeroed.
5447  *
5448  *	(base + size) must be less then or equal to PAGE_SIZE.
5449  */
5450 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5451 vm_page_set_valid_range(vm_page_t m, int base, int size)
5452 {
5453 	int endoff, frag;
5454 	vm_page_bits_t pagebits;
5455 
5456 	vm_page_assert_busied(m);
5457 	if (size == 0)	/* handle degenerate case */
5458 		return;
5459 
5460 	/*
5461 	 * If the base is not DEV_BSIZE aligned and the valid
5462 	 * bit is clear, we have to zero out a portion of the
5463 	 * first block.
5464 	 */
5465 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5466 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5467 		pmap_zero_page_area(m, frag, base - frag);
5468 
5469 	/*
5470 	 * If the ending offset is not DEV_BSIZE aligned and the
5471 	 * valid bit is clear, we have to zero out a portion of
5472 	 * the last block.
5473 	 */
5474 	endoff = base + size;
5475 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5476 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5477 		pmap_zero_page_area(m, endoff,
5478 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5479 
5480 	/*
5481 	 * Assert that no previously invalid block that is now being validated
5482 	 * is already dirty.
5483 	 */
5484 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5485 	    ("vm_page_set_valid_range: page %p is dirty", m));
5486 
5487 	/*
5488 	 * Set valid bits inclusive of any overlap.
5489 	 */
5490 	pagebits = vm_page_bits(base, size);
5491 	if (vm_page_xbusied(m))
5492 		m->valid |= pagebits;
5493 	else
5494 		vm_page_bits_set(m, &m->valid, pagebits);
5495 }
5496 
5497 /*
5498  * Set the page dirty bits and free the invalid swap space if
5499  * present.  Returns the previous dirty bits.
5500  */
5501 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5502 vm_page_set_dirty(vm_page_t m)
5503 {
5504 	vm_page_bits_t old;
5505 
5506 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5507 
5508 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5509 		old = m->dirty;
5510 		m->dirty = VM_PAGE_BITS_ALL;
5511 	} else
5512 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5513 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5514 		vm_pager_page_unswapped(m);
5515 
5516 	return (old);
5517 }
5518 
5519 /*
5520  * Clear the given bits from the specified page's dirty field.
5521  */
5522 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5523 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5524 {
5525 
5526 	vm_page_assert_busied(m);
5527 
5528 	/*
5529 	 * If the page is xbusied and not write mapped we are the
5530 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5531 	 * layer can call vm_page_dirty() without holding a distinguished
5532 	 * lock.  The combination of page busy and atomic operations
5533 	 * suffice to guarantee consistency of the page dirty field.
5534 	 */
5535 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5536 		m->dirty &= ~pagebits;
5537 	else
5538 		vm_page_bits_clear(m, &m->dirty, pagebits);
5539 }
5540 
5541 /*
5542  *	vm_page_set_validclean:
5543  *
5544  *	Sets portions of a page valid and clean.  The arguments are expected
5545  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5546  *	of any partial chunks touched by the range.  The invalid portion of
5547  *	such chunks will be zero'd.
5548  *
5549  *	(base + size) must be less then or equal to PAGE_SIZE.
5550  */
5551 void
vm_page_set_validclean(vm_page_t m,int base,int size)5552 vm_page_set_validclean(vm_page_t m, int base, int size)
5553 {
5554 	vm_page_bits_t oldvalid, pagebits;
5555 	int endoff, frag;
5556 
5557 	vm_page_assert_busied(m);
5558 	if (size == 0)	/* handle degenerate case */
5559 		return;
5560 
5561 	/*
5562 	 * If the base is not DEV_BSIZE aligned and the valid
5563 	 * bit is clear, we have to zero out a portion of the
5564 	 * first block.
5565 	 */
5566 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5567 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5568 		pmap_zero_page_area(m, frag, base - frag);
5569 
5570 	/*
5571 	 * If the ending offset is not DEV_BSIZE aligned and the
5572 	 * valid bit is clear, we have to zero out a portion of
5573 	 * the last block.
5574 	 */
5575 	endoff = base + size;
5576 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5577 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5578 		pmap_zero_page_area(m, endoff,
5579 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5580 
5581 	/*
5582 	 * Set valid, clear dirty bits.  If validating the entire
5583 	 * page we can safely clear the pmap modify bit.  We also
5584 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5585 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5586 	 * be set again.
5587 	 *
5588 	 * We set valid bits inclusive of any overlap, but we can only
5589 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5590 	 * the range.
5591 	 */
5592 	oldvalid = m->valid;
5593 	pagebits = vm_page_bits(base, size);
5594 	if (vm_page_xbusied(m))
5595 		m->valid |= pagebits;
5596 	else
5597 		vm_page_bits_set(m, &m->valid, pagebits);
5598 #if 0	/* NOT YET */
5599 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5600 		frag = DEV_BSIZE - frag;
5601 		base += frag;
5602 		size -= frag;
5603 		if (size < 0)
5604 			size = 0;
5605 	}
5606 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5607 #endif
5608 	if (base == 0 && size == PAGE_SIZE) {
5609 		/*
5610 		 * The page can only be modified within the pmap if it is
5611 		 * mapped, and it can only be mapped if it was previously
5612 		 * fully valid.
5613 		 */
5614 		if (oldvalid == VM_PAGE_BITS_ALL)
5615 			/*
5616 			 * Perform the pmap_clear_modify() first.  Otherwise,
5617 			 * a concurrent pmap operation, such as
5618 			 * pmap_protect(), could clear a modification in the
5619 			 * pmap and set the dirty field on the page before
5620 			 * pmap_clear_modify() had begun and after the dirty
5621 			 * field was cleared here.
5622 			 */
5623 			pmap_clear_modify(m);
5624 		m->dirty = 0;
5625 		vm_page_aflag_clear(m, PGA_NOSYNC);
5626 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5627 		m->dirty &= ~pagebits;
5628 	else
5629 		vm_page_clear_dirty_mask(m, pagebits);
5630 }
5631 
5632 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5633 vm_page_clear_dirty(vm_page_t m, int base, int size)
5634 {
5635 
5636 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5637 }
5638 
5639 /*
5640  *	vm_page_set_invalid:
5641  *
5642  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5643  *	valid and dirty bits for the effected areas are cleared.
5644  */
5645 void
vm_page_set_invalid(vm_page_t m,int base,int size)5646 vm_page_set_invalid(vm_page_t m, int base, int size)
5647 {
5648 	vm_page_bits_t bits;
5649 	vm_object_t object;
5650 
5651 	/*
5652 	 * The object lock is required so that pages can't be mapped
5653 	 * read-only while we're in the process of invalidating them.
5654 	 */
5655 	object = m->object;
5656 	VM_OBJECT_ASSERT_WLOCKED(object);
5657 	vm_page_assert_busied(m);
5658 
5659 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5660 	    size >= object->un_pager.vnp.vnp_size)
5661 		bits = VM_PAGE_BITS_ALL;
5662 	else
5663 		bits = vm_page_bits(base, size);
5664 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5665 		pmap_remove_all(m);
5666 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5667 	    !pmap_page_is_mapped(m),
5668 	    ("vm_page_set_invalid: page %p is mapped", m));
5669 	if (vm_page_xbusied(m)) {
5670 		m->valid &= ~bits;
5671 		m->dirty &= ~bits;
5672 	} else {
5673 		vm_page_bits_clear(m, &m->valid, bits);
5674 		vm_page_bits_clear(m, &m->dirty, bits);
5675 	}
5676 }
5677 
5678 /*
5679  *	vm_page_invalid:
5680  *
5681  *	Invalidates the entire page.  The page must be busy, unmapped, and
5682  *	the enclosing object must be locked.  The object locks protects
5683  *	against concurrent read-only pmap enter which is done without
5684  *	busy.
5685  */
5686 void
vm_page_invalid(vm_page_t m)5687 vm_page_invalid(vm_page_t m)
5688 {
5689 
5690 	vm_page_assert_busied(m);
5691 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5692 	MPASS(!pmap_page_is_mapped(m));
5693 
5694 	if (vm_page_xbusied(m))
5695 		m->valid = 0;
5696 	else
5697 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5698 }
5699 
5700 /*
5701  * vm_page_zero_invalid()
5702  *
5703  *	The kernel assumes that the invalid portions of a page contain
5704  *	garbage, but such pages can be mapped into memory by user code.
5705  *	When this occurs, we must zero out the non-valid portions of the
5706  *	page so user code sees what it expects.
5707  *
5708  *	Pages are most often semi-valid when the end of a file is mapped
5709  *	into memory and the file's size is not page aligned.
5710  */
5711 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5712 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5713 {
5714 	int b;
5715 	int i;
5716 
5717 	/*
5718 	 * Scan the valid bits looking for invalid sections that
5719 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5720 	 * valid bit may be set ) have already been zeroed by
5721 	 * vm_page_set_validclean().
5722 	 */
5723 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5724 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5725 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5726 			if (i > b) {
5727 				pmap_zero_page_area(m,
5728 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5729 			}
5730 			b = i + 1;
5731 		}
5732 	}
5733 
5734 	/*
5735 	 * setvalid is TRUE when we can safely set the zero'd areas
5736 	 * as being valid.  We can do this if there are no cache consistency
5737 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5738 	 */
5739 	if (setvalid)
5740 		vm_page_valid(m);
5741 }
5742 
5743 /*
5744  *	vm_page_is_valid:
5745  *
5746  *	Is (partial) page valid?  Note that the case where size == 0
5747  *	will return FALSE in the degenerate case where the page is
5748  *	entirely invalid, and TRUE otherwise.
5749  *
5750  *	Some callers envoke this routine without the busy lock held and
5751  *	handle races via higher level locks.  Typical callers should
5752  *	hold a busy lock to prevent invalidation.
5753  */
5754 int
vm_page_is_valid(vm_page_t m,int base,int size)5755 vm_page_is_valid(vm_page_t m, int base, int size)
5756 {
5757 	vm_page_bits_t bits;
5758 
5759 	bits = vm_page_bits(base, size);
5760 	return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5761 }
5762 
5763 /*
5764  * Returns true if all of the specified predicates are true for the entire
5765  * (super)page and false otherwise.
5766  */
5767 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5768 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5769 {
5770 	vm_object_t object;
5771 	int i, npages;
5772 
5773 	object = m->object;
5774 	if (skip_m != NULL && skip_m->object != object)
5775 		return (false);
5776 	VM_OBJECT_ASSERT_LOCKED(object);
5777 	KASSERT(psind <= m->psind,
5778 	    ("psind %d > psind %d of m %p", psind, m->psind, m));
5779 	npages = atop(pagesizes[psind]);
5780 
5781 	/*
5782 	 * The physically contiguous pages that make up a superpage, i.e., a
5783 	 * page with a page size index ("psind") greater than zero, will
5784 	 * occupy adjacent entries in vm_page_array[].
5785 	 */
5786 	for (i = 0; i < npages; i++) {
5787 		/* Always test object consistency, including "skip_m". */
5788 		if (m[i].object != object)
5789 			return (false);
5790 		if (&m[i] == skip_m)
5791 			continue;
5792 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5793 			return (false);
5794 		if ((flags & PS_ALL_DIRTY) != 0) {
5795 			/*
5796 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5797 			 * might stop this case from spuriously returning
5798 			 * "false".  However, that would require a write lock
5799 			 * on the object containing "m[i]".
5800 			 */
5801 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5802 				return (false);
5803 		}
5804 		if ((flags & PS_ALL_VALID) != 0 &&
5805 		    m[i].valid != VM_PAGE_BITS_ALL)
5806 			return (false);
5807 	}
5808 	return (true);
5809 }
5810 
5811 /*
5812  * Set the page's dirty bits if the page is modified.
5813  */
5814 void
vm_page_test_dirty(vm_page_t m)5815 vm_page_test_dirty(vm_page_t m)
5816 {
5817 
5818 	vm_page_assert_busied(m);
5819 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5820 		vm_page_dirty(m);
5821 }
5822 
5823 void
vm_page_valid(vm_page_t m)5824 vm_page_valid(vm_page_t m)
5825 {
5826 
5827 	vm_page_assert_busied(m);
5828 	if (vm_page_xbusied(m))
5829 		m->valid = VM_PAGE_BITS_ALL;
5830 	else
5831 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5832 }
5833 
5834 #ifdef INVARIANTS
5835 void
vm_page_object_busy_assert(vm_page_t m)5836 vm_page_object_busy_assert(vm_page_t m)
5837 {
5838 
5839 	/*
5840 	 * Certain of the page's fields may only be modified by the
5841 	 * holder of a page or object busy.
5842 	 */
5843 	if (m->object != NULL && !vm_page_busied(m))
5844 		VM_OBJECT_ASSERT_BUSY(m->object);
5845 }
5846 
5847 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5848 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5849 {
5850 
5851 	if ((bits & PGA_WRITEABLE) == 0)
5852 		return;
5853 
5854 	/*
5855 	 * The PGA_WRITEABLE flag can only be set if the page is
5856 	 * managed, is exclusively busied or the object is locked.
5857 	 * Currently, this flag is only set by pmap_enter().
5858 	 */
5859 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5860 	    ("PGA_WRITEABLE on unmanaged page"));
5861 	if (!vm_page_xbusied(m))
5862 		VM_OBJECT_ASSERT_BUSY(m->object);
5863 }
5864 #endif
5865 
5866 #include "opt_ddb.h"
5867 #ifdef DDB
5868 #include <sys/kernel.h>
5869 
5870 #include <ddb/ddb.h>
5871 
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5872 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5873 {
5874 
5875 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5876 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5877 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5878 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5879 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5880 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5881 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5882 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5883 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5884 }
5885 
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5886 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5887 {
5888 	int dom;
5889 
5890 	db_printf("pq_free %d\n", vm_free_count());
5891 	for (dom = 0; dom < vm_ndomains; dom++) {
5892 		db_printf(
5893     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5894 		    dom,
5895 		    vm_dom[dom].vmd_page_count,
5896 		    vm_dom[dom].vmd_free_count,
5897 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5898 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5899 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5900 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5901 	}
5902 }
5903 
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5904 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5905 {
5906 	vm_page_t m;
5907 	boolean_t phys, virt;
5908 
5909 	if (!have_addr) {
5910 		db_printf("show pginfo addr\n");
5911 		return;
5912 	}
5913 
5914 	phys = strchr(modif, 'p') != NULL;
5915 	virt = strchr(modif, 'v') != NULL;
5916 	if (virt)
5917 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5918 	else if (phys)
5919 		m = PHYS_TO_VM_PAGE(addr);
5920 	else
5921 		m = (vm_page_t)addr;
5922 	db_printf(
5923     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5924     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5925 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5926 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5927 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5928 }
5929 #endif /* DDB */
5930