1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Resident memory management module.
65 */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110
111 #include <machine/md_var.h>
112
113 struct vm_domain vm_dom[MAXMEMDOM];
114
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116
117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
118
119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
120 /* The following fields are protected by the domainset lock. */
121 domainset_t __exclusive_cache_line vm_min_domains;
122 domainset_t __exclusive_cache_line vm_severe_domains;
123 static int vm_min_waiters;
124 static int vm_severe_waiters;
125 static int vm_pageproc_waiters;
126
127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
128 "VM page statistics");
129
130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
132 CTLFLAG_RD, &pqstate_commit_retries,
133 "Number of failed per-page atomic queue state updates");
134
135 static COUNTER_U64_DEFINE_EARLY(queue_ops);
136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
137 CTLFLAG_RD, &queue_ops,
138 "Number of batched queue operations");
139
140 static COUNTER_U64_DEFINE_EARLY(queue_nops);
141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
142 CTLFLAG_RD, &queue_nops,
143 "Number of batched queue operations with no effects");
144
145 /*
146 * bogus page -- for I/O to/from partially complete buffers,
147 * or for paging into sparsely invalid regions.
148 */
149 vm_page_t bogus_page;
150
151 vm_page_t vm_page_array;
152 long vm_page_array_size;
153 long first_page;
154
155 struct bitset *vm_page_dump;
156 long vm_page_dump_pages;
157
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162
163 static uma_zone_t fakepg_zone;
164
165 static vm_page_t vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
166 int req, vm_page_t mpred);
167 static void vm_page_alloc_check(vm_page_t m);
168 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
169 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
170 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
171 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
172 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
173 static bool vm_page_free_prep(vm_page_t m);
174 static void vm_page_free_toq(vm_page_t m);
175 static void vm_page_init(void *dummy);
176 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
177 vm_pindex_t pindex, vm_page_t mpred);
178 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
179 vm_page_t mpred);
180 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
181 const uint16_t nflag);
182 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
183 vm_page_t m_run, vm_paddr_t high);
184 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
185 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
186 int req);
187 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
188 int flags);
189 static void vm_page_zone_release(void *arg, void **store, int cnt);
190
191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
192
193 static void
vm_page_init(void * dummy)194 vm_page_init(void *dummy)
195 {
196
197 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
198 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
199 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
200 }
201
202 static int pgcache_zone_max_pcpu;
203 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
204 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
205 "Per-CPU page cache size");
206
207 /*
208 * The cache page zone is initialized later since we need to be able to allocate
209 * pages before UMA is fully initialized.
210 */
211 static void
vm_page_init_cache_zones(void * dummy __unused)212 vm_page_init_cache_zones(void *dummy __unused)
213 {
214 struct vm_domain *vmd;
215 struct vm_pgcache *pgcache;
216 int cache, domain, maxcache, pool;
217
218 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
219 maxcache = pgcache_zone_max_pcpu * mp_ncpus;
220 for (domain = 0; domain < vm_ndomains; domain++) {
221 vmd = VM_DOMAIN(domain);
222 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
223 pgcache = &vmd->vmd_pgcache[pool];
224 pgcache->domain = domain;
225 pgcache->pool = pool;
226 pgcache->zone = uma_zcache_create("vm pgcache",
227 PAGE_SIZE, NULL, NULL, NULL, NULL,
228 vm_page_zone_import, vm_page_zone_release, pgcache,
229 UMA_ZONE_VM);
230
231 /*
232 * Limit each pool's zone to 0.1% of the pages in the
233 * domain.
234 */
235 cache = maxcache != 0 ? maxcache :
236 vmd->vmd_page_count / 1000;
237 uma_zone_set_maxcache(pgcache->zone, cache);
238 }
239 }
240 }
241 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
242
243 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
244 #if PAGE_SIZE == 32768
245 #ifdef CTASSERT
246 CTASSERT(sizeof(u_long) >= 8);
247 #endif
248 #endif
249
250 /*
251 * vm_set_page_size:
252 *
253 * Sets the page size, perhaps based upon the memory
254 * size. Must be called before any use of page-size
255 * dependent functions.
256 */
257 void
vm_set_page_size(void)258 vm_set_page_size(void)
259 {
260 if (vm_cnt.v_page_size == 0)
261 vm_cnt.v_page_size = PAGE_SIZE;
262 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
263 panic("vm_set_page_size: page size not a power of two");
264 }
265
266 /*
267 * vm_page_blacklist_next:
268 *
269 * Find the next entry in the provided string of blacklist
270 * addresses. Entries are separated by space, comma, or newline.
271 * If an invalid integer is encountered then the rest of the
272 * string is skipped. Updates the list pointer to the next
273 * character, or NULL if the string is exhausted or invalid.
274 */
275 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)276 vm_page_blacklist_next(char **list, char *end)
277 {
278 vm_paddr_t bad;
279 char *cp, *pos;
280
281 if (list == NULL || *list == NULL)
282 return (0);
283 if (**list =='\0') {
284 *list = NULL;
285 return (0);
286 }
287
288 /*
289 * If there's no end pointer then the buffer is coming from
290 * the kenv and we know it's null-terminated.
291 */
292 if (end == NULL)
293 end = *list + strlen(*list);
294
295 /* Ensure that strtoq() won't walk off the end */
296 if (*end != '\0') {
297 if (*end == '\n' || *end == ' ' || *end == ',')
298 *end = '\0';
299 else {
300 printf("Blacklist not terminated, skipping\n");
301 *list = NULL;
302 return (0);
303 }
304 }
305
306 for (pos = *list; *pos != '\0'; pos = cp) {
307 bad = strtoq(pos, &cp, 0);
308 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
309 if (bad == 0) {
310 if (++cp < end)
311 continue;
312 else
313 break;
314 }
315 } else
316 break;
317 if (*cp == '\0' || ++cp >= end)
318 *list = NULL;
319 else
320 *list = cp;
321 return (trunc_page(bad));
322 }
323 printf("Garbage in RAM blacklist, skipping\n");
324 *list = NULL;
325 return (0);
326 }
327
328 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)329 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
330 {
331 struct vm_domain *vmd;
332 vm_page_t m;
333 bool found;
334
335 m = vm_phys_paddr_to_vm_page(pa);
336 if (m == NULL)
337 return (true); /* page does not exist, no failure */
338
339 vmd = VM_DOMAIN(vm_phys_domain(pa));
340 vm_domain_free_lock(vmd);
341 found = vm_phys_unfree_page(pa);
342 vm_domain_free_unlock(vmd);
343 if (found) {
344 vm_domain_freecnt_inc(vmd, -1);
345 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
346 if (verbose)
347 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
348 }
349 return (found);
350 }
351
352 /*
353 * vm_page_blacklist_check:
354 *
355 * Iterate through the provided string of blacklist addresses, pulling
356 * each entry out of the physical allocator free list and putting it
357 * onto a list for reporting via the vm.page_blacklist sysctl.
358 */
359 static void
vm_page_blacklist_check(char * list,char * end)360 vm_page_blacklist_check(char *list, char *end)
361 {
362 vm_paddr_t pa;
363 char *next;
364
365 next = list;
366 while (next != NULL) {
367 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
368 continue;
369 vm_page_blacklist_add(pa, bootverbose);
370 }
371 }
372
373 /*
374 * vm_page_blacklist_load:
375 *
376 * Search for a special module named "ram_blacklist". It'll be a
377 * plain text file provided by the user via the loader directive
378 * of the same name.
379 */
380 static void
vm_page_blacklist_load(char ** list,char ** end)381 vm_page_blacklist_load(char **list, char **end)
382 {
383 void *mod;
384 u_char *ptr;
385 u_int len;
386
387 mod = NULL;
388 ptr = NULL;
389
390 mod = preload_search_by_type("ram_blacklist");
391 if (mod != NULL) {
392 ptr = preload_fetch_addr(mod);
393 len = preload_fetch_size(mod);
394 }
395 *list = ptr;
396 if (ptr != NULL)
397 *end = ptr + len;
398 else
399 *end = NULL;
400 return;
401 }
402
403 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)404 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
405 {
406 vm_page_t m;
407 struct sbuf sbuf;
408 int error, first;
409
410 first = 1;
411 error = sysctl_wire_old_buffer(req, 0);
412 if (error != 0)
413 return (error);
414 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
415 TAILQ_FOREACH(m, &blacklist_head, listq) {
416 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
417 (uintmax_t)m->phys_addr);
418 first = 0;
419 }
420 error = sbuf_finish(&sbuf);
421 sbuf_delete(&sbuf);
422 return (error);
423 }
424
425 /*
426 * Initialize a dummy page for use in scans of the specified paging queue.
427 * In principle, this function only needs to set the flag PG_MARKER.
428 * Nonetheless, it write busies the page as a safety precaution.
429 */
430 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)431 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
432 {
433
434 bzero(marker, sizeof(*marker));
435 marker->flags = PG_MARKER;
436 marker->a.flags = aflags;
437 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
438 marker->a.queue = queue;
439 }
440
441 static void
vm_page_domain_init(int domain)442 vm_page_domain_init(int domain)
443 {
444 struct vm_domain *vmd;
445 struct vm_pagequeue *pq;
446 int i;
447
448 vmd = VM_DOMAIN(domain);
449 bzero(vmd, sizeof(*vmd));
450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
451 "vm inactive pagequeue";
452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
453 "vm active pagequeue";
454 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
455 "vm laundry pagequeue";
456 *__DECONST(const char **,
457 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
458 "vm unswappable pagequeue";
459 vmd->vmd_domain = domain;
460 vmd->vmd_page_count = 0;
461 vmd->vmd_free_count = 0;
462 vmd->vmd_segs = 0;
463 vmd->vmd_oom = FALSE;
464 for (i = 0; i < PQ_COUNT; i++) {
465 pq = &vmd->vmd_pagequeues[i];
466 TAILQ_INIT(&pq->pq_pl);
467 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
468 MTX_DEF | MTX_DUPOK);
469 pq->pq_pdpages = 0;
470 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
471 }
472 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
473 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
474 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
475
476 /*
477 * inacthead is used to provide FIFO ordering for LRU-bypassing
478 * insertions.
479 */
480 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
481 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
482 &vmd->vmd_inacthead, plinks.q);
483
484 /*
485 * The clock pages are used to implement active queue scanning without
486 * requeues. Scans start at clock[0], which is advanced after the scan
487 * ends. When the two clock hands meet, they are reset and scanning
488 * resumes from the head of the queue.
489 */
490 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
491 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
492 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
493 &vmd->vmd_clock[0], plinks.q);
494 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
495 &vmd->vmd_clock[1], plinks.q);
496 }
497
498 /*
499 * Initialize a physical page in preparation for adding it to the free
500 * lists.
501 */
502 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)503 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
504 {
505 m->object = NULL;
506 m->ref_count = 0;
507 m->busy_lock = VPB_FREED;
508 m->flags = m->a.flags = 0;
509 m->phys_addr = pa;
510 m->a.queue = PQ_NONE;
511 m->psind = 0;
512 m->segind = segind;
513 m->order = VM_NFREEORDER;
514 m->pool = pool;
515 m->valid = m->dirty = 0;
516 pmap_page_init(m);
517 }
518
519 #ifndef PMAP_HAS_PAGE_ARRAY
520 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)521 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
522 {
523 vm_paddr_t new_end;
524
525 /*
526 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
527 * However, because this page is allocated from KVM, out-of-bounds
528 * accesses using the direct map will not be trapped.
529 */
530 *vaddr += PAGE_SIZE;
531
532 /*
533 * Allocate physical memory for the page structures, and map it.
534 */
535 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
536 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
537 VM_PROT_READ | VM_PROT_WRITE);
538 vm_page_array_size = page_range;
539
540 return (new_end);
541 }
542 #endif
543
544 /*
545 * vm_page_startup:
546 *
547 * Initializes the resident memory module. Allocates physical memory for
548 * bootstrapping UMA and some data structures that are used to manage
549 * physical pages. Initializes these structures, and populates the free
550 * page queues.
551 */
552 vm_offset_t
vm_page_startup(vm_offset_t vaddr)553 vm_page_startup(vm_offset_t vaddr)
554 {
555 struct vm_phys_seg *seg;
556 struct vm_domain *vmd;
557 vm_page_t m;
558 char *list, *listend;
559 vm_paddr_t end, high_avail, low_avail, new_end, size;
560 vm_paddr_t page_range __unused;
561 vm_paddr_t last_pa, pa, startp, endp;
562 u_long pagecount;
563 #if MINIDUMP_PAGE_TRACKING
564 u_long vm_page_dump_size;
565 #endif
566 int biggestone, i, segind;
567 #ifdef WITNESS
568 vm_offset_t mapped;
569 int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572 long ii;
573 #endif
574 #ifdef VM_FREEPOOL_LAZYINIT
575 int lazyinit;
576 #endif
577
578 vaddr = round_page(vaddr);
579
580 vm_phys_early_startup();
581 biggestone = vm_phys_avail_largest();
582 end = phys_avail[biggestone+1];
583
584 /*
585 * Initialize the page and queue locks.
586 */
587 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
588 for (i = 0; i < PA_LOCK_COUNT; i++)
589 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
590 for (i = 0; i < vm_ndomains; i++)
591 vm_page_domain_init(i);
592
593 new_end = end;
594 #ifdef WITNESS
595 witness_size = round_page(witness_startup_count());
596 new_end -= witness_size;
597 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
598 VM_PROT_READ | VM_PROT_WRITE);
599 bzero((void *)mapped, witness_size);
600 witness_startup((void *)mapped);
601 #endif
602
603 #if MINIDUMP_PAGE_TRACKING
604 /*
605 * Allocate a bitmap to indicate that a random physical page
606 * needs to be included in a minidump.
607 *
608 * The amd64 port needs this to indicate which direct map pages
609 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
610 *
611 * However, i386 still needs this workspace internally within the
612 * minidump code. In theory, they are not needed on i386, but are
613 * included should the sf_buf code decide to use them.
614 */
615 last_pa = 0;
616 vm_page_dump_pages = 0;
617 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
618 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
619 dump_avail[i] / PAGE_SIZE;
620 if (dump_avail[i + 1] > last_pa)
621 last_pa = dump_avail[i + 1];
622 }
623 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
624 new_end -= vm_page_dump_size;
625 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
626 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
627 bzero((void *)vm_page_dump, vm_page_dump_size);
628 #if MINIDUMP_STARTUP_PAGE_TRACKING
629 /*
630 * Include the UMA bootstrap pages, witness pages and vm_page_dump
631 * in a crash dump. When pmap_map() uses the direct map, they are
632 * not automatically included.
633 */
634 for (pa = new_end; pa < end; pa += PAGE_SIZE)
635 dump_add_page(pa);
636 #endif
637 #else
638 (void)last_pa;
639 #endif
640 phys_avail[biggestone + 1] = new_end;
641 #ifdef __amd64__
642 /*
643 * Request that the physical pages underlying the message buffer be
644 * included in a crash dump. Since the message buffer is accessed
645 * through the direct map, they are not automatically included.
646 */
647 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
648 last_pa = pa + round_page(msgbufsize);
649 while (pa < last_pa) {
650 dump_add_page(pa);
651 pa += PAGE_SIZE;
652 }
653 #endif
654 /*
655 * Compute the number of pages of memory that will be available for
656 * use, taking into account the overhead of a page structure per page.
657 * In other words, solve
658 * "available physical memory" - round_page(page_range *
659 * sizeof(struct vm_page)) = page_range * PAGE_SIZE
660 * for page_range.
661 */
662 low_avail = phys_avail[0];
663 high_avail = phys_avail[1];
664 for (i = 0; i < vm_phys_nsegs; i++) {
665 if (vm_phys_segs[i].start < low_avail)
666 low_avail = vm_phys_segs[i].start;
667 if (vm_phys_segs[i].end > high_avail)
668 high_avail = vm_phys_segs[i].end;
669 }
670 /* Skip the first chunk. It is already accounted for. */
671 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
672 if (phys_avail[i] < low_avail)
673 low_avail = phys_avail[i];
674 if (phys_avail[i + 1] > high_avail)
675 high_avail = phys_avail[i + 1];
676 }
677 first_page = low_avail / PAGE_SIZE;
678 #ifdef VM_PHYSSEG_SPARSE
679 size = 0;
680 for (i = 0; i < vm_phys_nsegs; i++)
681 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
682 for (i = 0; phys_avail[i + 1] != 0; i += 2)
683 size += phys_avail[i + 1] - phys_avail[i];
684 #elif defined(VM_PHYSSEG_DENSE)
685 size = high_avail - low_avail;
686 #else
687 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
688 #endif
689
690 #ifdef PMAP_HAS_PAGE_ARRAY
691 pmap_page_array_startup(size / PAGE_SIZE);
692 biggestone = vm_phys_avail_largest();
693 end = new_end = phys_avail[biggestone + 1];
694 #else
695 #ifdef VM_PHYSSEG_DENSE
696 /*
697 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
698 * the overhead of a page structure per page only if vm_page_array is
699 * allocated from the last physical memory chunk. Otherwise, we must
700 * allocate page structures representing the physical memory
701 * underlying vm_page_array, even though they will not be used.
702 */
703 if (new_end != high_avail)
704 page_range = size / PAGE_SIZE;
705 else
706 #endif
707 {
708 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
709
710 /*
711 * If the partial bytes remaining are large enough for
712 * a page (PAGE_SIZE) without a corresponding
713 * 'struct vm_page', then new_end will contain an
714 * extra page after subtracting the length of the VM
715 * page array. Compensate by subtracting an extra
716 * page from new_end.
717 */
718 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
719 if (new_end == high_avail)
720 high_avail -= PAGE_SIZE;
721 new_end -= PAGE_SIZE;
722 }
723 }
724 end = new_end;
725 new_end = vm_page_array_alloc(&vaddr, end, page_range);
726 #endif
727
728 #if VM_NRESERVLEVEL > 0
729 /*
730 * Allocate physical memory for the reservation management system's
731 * data structures, and map it.
732 */
733 new_end = vm_reserv_startup(&vaddr, new_end);
734 #endif
735 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
736 /*
737 * Include vm_page_array and vm_reserv_array in a crash dump.
738 */
739 for (pa = new_end; pa < end; pa += PAGE_SIZE)
740 dump_add_page(pa);
741 #endif
742 phys_avail[biggestone + 1] = new_end;
743
744 /*
745 * Add physical memory segments corresponding to the available
746 * physical pages.
747 */
748 for (i = 0; phys_avail[i + 1] != 0; i += 2)
749 if (vm_phys_avail_size(i) != 0)
750 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
751
752 /*
753 * Initialize the physical memory allocator.
754 */
755 vm_phys_init();
756
757 #ifdef VM_FREEPOOL_LAZYINIT
758 lazyinit = 1;
759 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
760 #endif
761
762 /*
763 * Initialize the page structures and add every available page to the
764 * physical memory allocator's free lists.
765 */
766 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
767 for (ii = 0; ii < vm_page_array_size; ii++) {
768 m = &vm_page_array[ii];
769 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
770 VM_FREEPOOL_DEFAULT);
771 m->flags = PG_FICTITIOUS;
772 }
773 #endif
774 vm_cnt.v_page_count = 0;
775 for (segind = 0; segind < vm_phys_nsegs; segind++) {
776 seg = &vm_phys_segs[segind];
777
778 /*
779 * If lazy vm_page initialization is not enabled, simply
780 * initialize all of the pages in the segment. Otherwise, we
781 * only initialize:
782 * 1. Pages not covered by phys_avail[], since they might be
783 * freed to the allocator at some future point, e.g., by
784 * kmem_bootstrap_free().
785 * 2. The first page of each run of free pages handed to the
786 * vm_phys allocator, which in turn defers initialization
787 * of pages until they are needed.
788 * This avoids blocking the boot process for long periods, which
789 * may be relevant for VMs (which ought to boot as quickly as
790 * possible) and/or systems with large amounts of physical
791 * memory.
792 */
793 #ifdef VM_FREEPOOL_LAZYINIT
794 if (lazyinit) {
795 startp = seg->start;
796 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
797 if (startp >= seg->end)
798 break;
799
800 if (phys_avail[i + 1] < startp)
801 continue;
802 if (phys_avail[i] <= startp) {
803 startp = phys_avail[i + 1];
804 continue;
805 }
806
807 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
808 for (endp = MIN(phys_avail[i], seg->end);
809 startp < endp; startp += PAGE_SIZE, m++) {
810 vm_page_init_page(m, startp, segind,
811 VM_FREEPOOL_DEFAULT);
812 }
813 }
814 } else
815 #endif
816 for (m = seg->first_page, pa = seg->start;
817 pa < seg->end; m++, pa += PAGE_SIZE) {
818 vm_page_init_page(m, pa, segind,
819 VM_FREEPOOL_DEFAULT);
820 }
821
822 /*
823 * Add the segment's pages that are covered by one of
824 * phys_avail's ranges to the free lists.
825 */
826 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
827 if (seg->end <= phys_avail[i] ||
828 seg->start >= phys_avail[i + 1])
829 continue;
830
831 startp = MAX(seg->start, phys_avail[i]);
832 endp = MIN(seg->end, phys_avail[i + 1]);
833 pagecount = (u_long)atop(endp - startp);
834 if (pagecount == 0)
835 continue;
836
837 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
838 #ifdef VM_FREEPOOL_LAZYINIT
839 if (lazyinit) {
840 vm_page_init_page(m, startp, segind,
841 VM_FREEPOOL_LAZYINIT);
842 }
843 #endif
844 vmd = VM_DOMAIN(seg->domain);
845 vm_domain_free_lock(vmd);
846 vm_phys_enqueue_contig(m, pagecount);
847 vm_domain_free_unlock(vmd);
848 vm_domain_freecnt_inc(vmd, pagecount);
849 vm_cnt.v_page_count += (u_int)pagecount;
850 vmd->vmd_page_count += (u_int)pagecount;
851 vmd->vmd_segs |= 1UL << segind;
852 }
853 }
854
855 /*
856 * Remove blacklisted pages from the physical memory allocator.
857 */
858 TAILQ_INIT(&blacklist_head);
859 vm_page_blacklist_load(&list, &listend);
860 vm_page_blacklist_check(list, listend);
861
862 list = kern_getenv("vm.blacklist");
863 vm_page_blacklist_check(list, NULL);
864
865 freeenv(list);
866 #if VM_NRESERVLEVEL > 0
867 /*
868 * Initialize the reservation management system.
869 */
870 vm_reserv_init();
871 #endif
872
873 return (vaddr);
874 }
875
876 void
vm_page_reference(vm_page_t m)877 vm_page_reference(vm_page_t m)
878 {
879
880 vm_page_aflag_set(m, PGA_REFERENCED);
881 }
882
883 /*
884 * vm_page_trybusy
885 *
886 * Helper routine for grab functions to trylock busy.
887 *
888 * Returns true on success and false on failure.
889 */
890 static bool
vm_page_trybusy(vm_page_t m,int allocflags)891 vm_page_trybusy(vm_page_t m, int allocflags)
892 {
893
894 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
895 return (vm_page_trysbusy(m));
896 else
897 return (vm_page_tryxbusy(m));
898 }
899
900 /*
901 * vm_page_tryacquire
902 *
903 * Helper routine for grab functions to trylock busy and wire.
904 *
905 * Returns true on success and false on failure.
906 */
907 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)908 vm_page_tryacquire(vm_page_t m, int allocflags)
909 {
910 bool locked;
911
912 locked = vm_page_trybusy(m, allocflags);
913 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
914 vm_page_wire(m);
915 return (locked);
916 }
917
918 /*
919 * vm_page_busy_acquire:
920 *
921 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
922 * and drop the object lock if necessary.
923 */
924 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)925 vm_page_busy_acquire(vm_page_t m, int allocflags)
926 {
927 vm_object_t obj;
928 bool locked;
929
930 /*
931 * The page-specific object must be cached because page
932 * identity can change during the sleep, causing the
933 * re-lock of a different object.
934 * It is assumed that a reference to the object is already
935 * held by the callers.
936 */
937 obj = atomic_load_ptr(&m->object);
938 for (;;) {
939 if (vm_page_tryacquire(m, allocflags))
940 return (true);
941 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
942 return (false);
943 if (obj != NULL)
944 locked = VM_OBJECT_WOWNED(obj);
945 else
946 locked = false;
947 MPASS(locked || vm_page_wired(m));
948 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
949 locked) && locked)
950 VM_OBJECT_WLOCK(obj);
951 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
952 return (false);
953 KASSERT(m->object == obj || m->object == NULL,
954 ("vm_page_busy_acquire: page %p does not belong to %p",
955 m, obj));
956 }
957 }
958
959 /*
960 * vm_page_busy_downgrade:
961 *
962 * Downgrade an exclusive busy page into a single shared busy page.
963 */
964 void
vm_page_busy_downgrade(vm_page_t m)965 vm_page_busy_downgrade(vm_page_t m)
966 {
967 u_int x;
968
969 vm_page_assert_xbusied(m);
970
971 x = vm_page_busy_fetch(m);
972 for (;;) {
973 if (atomic_fcmpset_rel_int(&m->busy_lock,
974 &x, VPB_SHARERS_WORD(1)))
975 break;
976 }
977 if ((x & VPB_BIT_WAITERS) != 0)
978 wakeup(m);
979 }
980
981 /*
982 *
983 * vm_page_busy_tryupgrade:
984 *
985 * Attempt to upgrade a single shared busy into an exclusive busy.
986 */
987 int
vm_page_busy_tryupgrade(vm_page_t m)988 vm_page_busy_tryupgrade(vm_page_t m)
989 {
990 u_int ce, x;
991
992 vm_page_assert_sbusied(m);
993
994 x = vm_page_busy_fetch(m);
995 ce = VPB_CURTHREAD_EXCLUSIVE;
996 for (;;) {
997 if (VPB_SHARERS(x) > 1)
998 return (0);
999 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1000 ("vm_page_busy_tryupgrade: invalid lock state"));
1001 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1002 ce | (x & VPB_BIT_WAITERS)))
1003 continue;
1004 return (1);
1005 }
1006 }
1007
1008 /*
1009 * vm_page_sbusied:
1010 *
1011 * Return a positive value if the page is shared busied, 0 otherwise.
1012 */
1013 int
vm_page_sbusied(vm_page_t m)1014 vm_page_sbusied(vm_page_t m)
1015 {
1016 u_int x;
1017
1018 x = vm_page_busy_fetch(m);
1019 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1020 }
1021
1022 /*
1023 * vm_page_sunbusy:
1024 *
1025 * Shared unbusy a page.
1026 */
1027 void
vm_page_sunbusy(vm_page_t m)1028 vm_page_sunbusy(vm_page_t m)
1029 {
1030 u_int x;
1031
1032 vm_page_assert_sbusied(m);
1033
1034 x = vm_page_busy_fetch(m);
1035 for (;;) {
1036 KASSERT(x != VPB_FREED,
1037 ("vm_page_sunbusy: Unlocking freed page."));
1038 if (VPB_SHARERS(x) > 1) {
1039 if (atomic_fcmpset_int(&m->busy_lock, &x,
1040 x - VPB_ONE_SHARER))
1041 break;
1042 continue;
1043 }
1044 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1045 ("vm_page_sunbusy: invalid lock state"));
1046 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1047 continue;
1048 if ((x & VPB_BIT_WAITERS) == 0)
1049 break;
1050 wakeup(m);
1051 break;
1052 }
1053 }
1054
1055 /*
1056 * vm_page_busy_sleep:
1057 *
1058 * Sleep if the page is busy, using the page pointer as wchan.
1059 * This is used to implement the hard-path of the busying mechanism.
1060 *
1061 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1062 * will not sleep if the page is shared-busy.
1063 *
1064 * The object lock must be held on entry.
1065 *
1066 * Returns true if it slept and dropped the object lock, or false
1067 * if there was no sleep and the lock is still held.
1068 */
1069 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1070 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1071 {
1072 vm_object_t obj;
1073
1074 obj = m->object;
1075 VM_OBJECT_ASSERT_LOCKED(obj);
1076
1077 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1078 true));
1079 }
1080
1081 /*
1082 * vm_page_busy_sleep_unlocked:
1083 *
1084 * Sleep if the page is busy, using the page pointer as wchan.
1085 * This is used to implement the hard-path of busying mechanism.
1086 *
1087 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1088 * will not sleep if the page is shared-busy.
1089 *
1090 * The object lock must not be held on entry. The operation will
1091 * return if the page changes identity.
1092 */
1093 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1094 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1095 const char *wmesg, int allocflags)
1096 {
1097 VM_OBJECT_ASSERT_UNLOCKED(obj);
1098
1099 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1100 }
1101
1102 /*
1103 * _vm_page_busy_sleep:
1104 *
1105 * Internal busy sleep function. Verifies the page identity and
1106 * lockstate against parameters. Returns true if it sleeps and
1107 * false otherwise.
1108 *
1109 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1110 *
1111 * If locked is true the lock will be dropped for any true returns
1112 * and held for any false returns.
1113 */
1114 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1115 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1116 const char *wmesg, int allocflags, bool locked)
1117 {
1118 bool xsleep;
1119 u_int x;
1120
1121 /*
1122 * If the object is busy we must wait for that to drain to zero
1123 * before trying the page again.
1124 */
1125 if (obj != NULL && vm_object_busied(obj)) {
1126 if (locked)
1127 VM_OBJECT_DROP(obj);
1128 vm_object_busy_wait(obj, wmesg);
1129 return (true);
1130 }
1131
1132 if (!vm_page_busied(m))
1133 return (false);
1134
1135 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1136 sleepq_lock(m);
1137 x = vm_page_busy_fetch(m);
1138 do {
1139 /*
1140 * If the page changes objects or becomes unlocked we can
1141 * simply return.
1142 */
1143 if (x == VPB_UNBUSIED ||
1144 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1145 m->object != obj || m->pindex != pindex) {
1146 sleepq_release(m);
1147 return (false);
1148 }
1149 if ((x & VPB_BIT_WAITERS) != 0)
1150 break;
1151 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1152 if (locked)
1153 VM_OBJECT_DROP(obj);
1154 DROP_GIANT();
1155 sleepq_add(m, NULL, wmesg, 0, 0);
1156 sleepq_wait(m, PVM);
1157 PICKUP_GIANT();
1158 return (true);
1159 }
1160
1161 /*
1162 * vm_page_trysbusy:
1163 *
1164 * Try to shared busy a page.
1165 * If the operation succeeds 1 is returned otherwise 0.
1166 * The operation never sleeps.
1167 */
1168 int
vm_page_trysbusy(vm_page_t m)1169 vm_page_trysbusy(vm_page_t m)
1170 {
1171 vm_object_t obj;
1172 u_int x;
1173
1174 obj = m->object;
1175 x = vm_page_busy_fetch(m);
1176 for (;;) {
1177 if ((x & VPB_BIT_SHARED) == 0)
1178 return (0);
1179 /*
1180 * Reduce the window for transient busies that will trigger
1181 * false negatives in vm_page_ps_test().
1182 */
1183 if (obj != NULL && vm_object_busied(obj))
1184 return (0);
1185 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1186 x + VPB_ONE_SHARER))
1187 break;
1188 }
1189
1190 /* Refetch the object now that we're guaranteed that it is stable. */
1191 obj = m->object;
1192 if (obj != NULL && vm_object_busied(obj)) {
1193 vm_page_sunbusy(m);
1194 return (0);
1195 }
1196 return (1);
1197 }
1198
1199 /*
1200 * vm_page_tryxbusy:
1201 *
1202 * Try to exclusive busy a page.
1203 * If the operation succeeds 1 is returned otherwise 0.
1204 * The operation never sleeps.
1205 */
1206 int
vm_page_tryxbusy(vm_page_t m)1207 vm_page_tryxbusy(vm_page_t m)
1208 {
1209 vm_object_t obj;
1210
1211 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1212 VPB_CURTHREAD_EXCLUSIVE) == 0)
1213 return (0);
1214
1215 obj = m->object;
1216 if (obj != NULL && vm_object_busied(obj)) {
1217 vm_page_xunbusy(m);
1218 return (0);
1219 }
1220 return (1);
1221 }
1222
1223 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1224 vm_page_xunbusy_hard_tail(vm_page_t m)
1225 {
1226 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1227 /* Wake the waiter. */
1228 wakeup(m);
1229 }
1230
1231 /*
1232 * vm_page_xunbusy_hard:
1233 *
1234 * Called when unbusy has failed because there is a waiter.
1235 */
1236 void
vm_page_xunbusy_hard(vm_page_t m)1237 vm_page_xunbusy_hard(vm_page_t m)
1238 {
1239 vm_page_assert_xbusied(m);
1240 vm_page_xunbusy_hard_tail(m);
1241 }
1242
1243 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1244 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1245 {
1246 vm_page_assert_xbusied_unchecked(m);
1247 vm_page_xunbusy_hard_tail(m);
1248 }
1249
1250 static void
vm_page_busy_free(vm_page_t m)1251 vm_page_busy_free(vm_page_t m)
1252 {
1253 u_int x;
1254
1255 atomic_thread_fence_rel();
1256 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1257 if ((x & VPB_BIT_WAITERS) != 0)
1258 wakeup(m);
1259 }
1260
1261 /*
1262 * vm_page_unhold_pages:
1263 *
1264 * Unhold each of the pages that is referenced by the given array.
1265 */
1266 void
vm_page_unhold_pages(vm_page_t * ma,int count)1267 vm_page_unhold_pages(vm_page_t *ma, int count)
1268 {
1269
1270 for (; count != 0; count--) {
1271 vm_page_unwire(*ma, PQ_ACTIVE);
1272 ma++;
1273 }
1274 }
1275
1276 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1277 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1278 {
1279 vm_page_t m;
1280
1281 #ifdef VM_PHYSSEG_SPARSE
1282 m = vm_phys_paddr_to_vm_page(pa);
1283 if (m == NULL)
1284 m = vm_phys_fictitious_to_vm_page(pa);
1285 return (m);
1286 #elif defined(VM_PHYSSEG_DENSE)
1287 long pi;
1288
1289 pi = atop(pa);
1290 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1291 m = &vm_page_array[pi - first_page];
1292 return (m);
1293 }
1294 return (vm_phys_fictitious_to_vm_page(pa));
1295 #else
1296 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1297 #endif
1298 }
1299
1300 /*
1301 * vm_page_getfake:
1302 *
1303 * Create a fictitious page with the specified physical address and
1304 * memory attribute. The memory attribute is the only the machine-
1305 * dependent aspect of a fictitious page that must be initialized.
1306 */
1307 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1308 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1309 {
1310 vm_page_t m;
1311
1312 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1313 vm_page_initfake(m, paddr, memattr);
1314 return (m);
1315 }
1316
1317 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1318 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1319 {
1320
1321 if ((m->flags & PG_FICTITIOUS) != 0) {
1322 /*
1323 * The page's memattr might have changed since the
1324 * previous initialization. Update the pmap to the
1325 * new memattr.
1326 */
1327 goto memattr;
1328 }
1329 m->phys_addr = paddr;
1330 m->a.queue = PQ_NONE;
1331 /* Fictitious pages don't use "segind". */
1332 m->flags = PG_FICTITIOUS;
1333 /* Fictitious pages don't use "order" or "pool". */
1334 m->oflags = VPO_UNMANAGED;
1335 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1336 /* Fictitious pages are unevictable. */
1337 m->ref_count = 1;
1338 pmap_page_init(m);
1339 memattr:
1340 pmap_page_set_memattr(m, memattr);
1341 }
1342
1343 /*
1344 * vm_page_putfake:
1345 *
1346 * Release a fictitious page.
1347 */
1348 void
vm_page_putfake(vm_page_t m)1349 vm_page_putfake(vm_page_t m)
1350 {
1351
1352 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1353 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1354 ("vm_page_putfake: bad page %p", m));
1355 vm_page_assert_xbusied(m);
1356 vm_page_busy_free(m);
1357 uma_zfree(fakepg_zone, m);
1358 }
1359
1360 /*
1361 * vm_page_updatefake:
1362 *
1363 * Update the given fictitious page to the specified physical address and
1364 * memory attribute.
1365 */
1366 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1367 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1368 {
1369
1370 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1371 ("vm_page_updatefake: bad page %p", m));
1372 m->phys_addr = paddr;
1373 pmap_page_set_memattr(m, memattr);
1374 }
1375
1376 /*
1377 * vm_page_free:
1378 *
1379 * Free a page.
1380 */
1381 void
vm_page_free(vm_page_t m)1382 vm_page_free(vm_page_t m)
1383 {
1384
1385 m->flags &= ~PG_ZERO;
1386 vm_page_free_toq(m);
1387 }
1388
1389 /*
1390 * vm_page_free_zero:
1391 *
1392 * Free a page to the zerod-pages queue
1393 */
1394 void
vm_page_free_zero(vm_page_t m)1395 vm_page_free_zero(vm_page_t m)
1396 {
1397
1398 m->flags |= PG_ZERO;
1399 vm_page_free_toq(m);
1400 }
1401
1402 /*
1403 * Unbusy and handle the page queueing for a page from a getpages request that
1404 * was optionally read ahead or behind.
1405 */
1406 void
vm_page_readahead_finish(vm_page_t m)1407 vm_page_readahead_finish(vm_page_t m)
1408 {
1409
1410 /* We shouldn't put invalid pages on queues. */
1411 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1412
1413 /*
1414 * Since the page is not the actually needed one, whether it should
1415 * be activated or deactivated is not obvious. Empirical results
1416 * have shown that deactivating the page is usually the best choice,
1417 * unless the page is wanted by another thread.
1418 */
1419 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1420 vm_page_activate(m);
1421 else
1422 vm_page_deactivate(m);
1423 vm_page_xunbusy_unchecked(m);
1424 }
1425
1426 /*
1427 * Destroy the identity of an invalid page and free it if possible.
1428 * This is intended to be used when reading a page from backing store fails.
1429 */
1430 void
vm_page_free_invalid(vm_page_t m)1431 vm_page_free_invalid(vm_page_t m)
1432 {
1433
1434 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1435 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1436 KASSERT(m->object != NULL, ("page %p has no object", m));
1437 VM_OBJECT_ASSERT_WLOCKED(m->object);
1438
1439 /*
1440 * We may be attempting to free the page as part of the handling for an
1441 * I/O error, in which case the page was xbusied by a different thread.
1442 */
1443 vm_page_xbusy_claim(m);
1444
1445 /*
1446 * If someone has wired this page while the object lock
1447 * was not held, then the thread that unwires is responsible
1448 * for freeing the page. Otherwise just free the page now.
1449 * The wire count of this unmapped page cannot change while
1450 * we have the page xbusy and the page's object wlocked.
1451 */
1452 if (vm_page_remove(m))
1453 vm_page_free(m);
1454 }
1455
1456 /*
1457 * vm_page_dirty_KBI: [ internal use only ]
1458 *
1459 * Set all bits in the page's dirty field.
1460 *
1461 * The object containing the specified page must be locked if the
1462 * call is made from the machine-independent layer.
1463 *
1464 * See vm_page_clear_dirty_mask().
1465 *
1466 * This function should only be called by vm_page_dirty().
1467 */
1468 void
vm_page_dirty_KBI(vm_page_t m)1469 vm_page_dirty_KBI(vm_page_t m)
1470 {
1471
1472 /* Refer to this operation by its public name. */
1473 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1474 m->dirty = VM_PAGE_BITS_ALL;
1475 }
1476
1477 /*
1478 * Insert the given page into the given object at the given pindex. mpred is
1479 * used for memq linkage. From vm_page_insert, lookup is true, mpred is
1480 * initially NULL, and this procedure looks it up. From vm_page_insert_after
1481 * and vm_page_iter_insert, lookup is false and mpred is known to the caller
1482 * to be valid, and may be NULL if this will be the page with the lowest
1483 * pindex.
1484 *
1485 * The procedure is marked __always_inline to suggest to the compiler to
1486 * eliminate the lookup parameter and the associated alternate branch.
1487 */
1488 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages,bool iter,vm_page_t mpred,bool lookup)1489 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1490 struct pctrie_iter *pages, bool iter, vm_page_t mpred, bool lookup)
1491 {
1492 int error;
1493
1494 VM_OBJECT_ASSERT_WLOCKED(object);
1495 KASSERT(m->object == NULL,
1496 ("vm_page_insert: page %p already inserted", m));
1497
1498 /*
1499 * Record the object/offset pair in this page.
1500 */
1501 m->object = object;
1502 m->pindex = pindex;
1503 m->ref_count |= VPRC_OBJREF;
1504
1505 /*
1506 * Add this page to the object's radix tree, and look up mpred if
1507 * needed.
1508 */
1509 if (iter) {
1510 KASSERT(!lookup, ("%s: cannot lookup mpred", __func__));
1511 error = vm_radix_iter_insert(pages, m);
1512 } else if (lookup)
1513 error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred);
1514 else
1515 error = vm_radix_insert(&object->rtree, m);
1516 if (__predict_false(error != 0)) {
1517 m->object = NULL;
1518 m->pindex = 0;
1519 m->ref_count &= ~VPRC_OBJREF;
1520 return (1);
1521 }
1522
1523 /*
1524 * Now link into the object's ordered list of backed pages.
1525 */
1526 vm_page_insert_radixdone(m, object, mpred);
1527 vm_pager_page_inserted(object, m);
1528 return (0);
1529 }
1530
1531 /*
1532 * vm_page_insert: [ internal use only ]
1533 *
1534 * Inserts the given mem entry into the object and object list.
1535 *
1536 * The object must be locked.
1537 */
1538 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1539 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1540 {
1541 return (vm_page_insert_lookup(m, object, pindex, NULL, false, NULL,
1542 true));
1543 }
1544
1545 /*
1546 * vm_page_insert_after:
1547 *
1548 * Inserts the page "m" into the specified object at offset "pindex".
1549 *
1550 * The page "mpred" must immediately precede the offset "pindex" within
1551 * the specified object.
1552 *
1553 * The object must be locked.
1554 */
1555 static int
vm_page_insert_after(vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1556 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1557 vm_page_t mpred)
1558 {
1559 return (vm_page_insert_lookup(m, object, pindex, NULL, false, mpred,
1560 false));
1561 }
1562
1563 /*
1564 * vm_page_iter_insert:
1565 *
1566 * Tries to insert the page "m" into the specified object at offset
1567 * "pindex" using the iterator "pages". Returns 0 if the insertion was
1568 * successful.
1569 *
1570 * The page "mpred" must immediately precede the offset "pindex" within
1571 * the specified object.
1572 *
1573 * The object must be locked.
1574 */
1575 static int
vm_page_iter_insert(struct pctrie_iter * pages,vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1576 vm_page_iter_insert(struct pctrie_iter *pages, vm_page_t m, vm_object_t object,
1577 vm_pindex_t pindex, vm_page_t mpred)
1578 {
1579 return (vm_page_insert_lookup(m, object, pindex, pages, true, mpred,
1580 false));
1581 }
1582
1583 /*
1584 * vm_page_insert_radixdone:
1585 *
1586 * Complete page "m" insertion into the specified object after the
1587 * radix trie hooking.
1588 *
1589 * The page "mpred" must precede the offset "m->pindex" within the
1590 * specified object.
1591 *
1592 * The object must be locked.
1593 */
1594 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object,vm_page_t mpred)1595 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1596 {
1597
1598 VM_OBJECT_ASSERT_WLOCKED(object);
1599 KASSERT(object != NULL && m->object == object,
1600 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1601 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1602 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1603 if (mpred != NULL) {
1604 KASSERT(mpred->object == object,
1605 ("vm_page_insert_radixdone: object doesn't contain mpred"));
1606 KASSERT(mpred->pindex < m->pindex,
1607 ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1608 KASSERT(TAILQ_NEXT(mpred, listq) == NULL ||
1609 m->pindex < TAILQ_NEXT(mpred, listq)->pindex,
1610 ("vm_page_insert_radixdone: pindex doesn't precede msucc"));
1611 } else {
1612 KASSERT(TAILQ_EMPTY(&object->memq) ||
1613 m->pindex < TAILQ_FIRST(&object->memq)->pindex,
1614 ("vm_page_insert_radixdone: no mpred but not first page"));
1615 }
1616
1617 if (mpred != NULL)
1618 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1619 else
1620 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1621
1622 /*
1623 * Show that the object has one more resident page.
1624 */
1625 object->resident_page_count++;
1626
1627 /*
1628 * Hold the vnode until the last page is released.
1629 */
1630 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1631 vhold(object->handle);
1632
1633 /*
1634 * Since we are inserting a new and possibly dirty page,
1635 * update the object's generation count.
1636 */
1637 if (pmap_page_is_write_mapped(m))
1638 vm_object_set_writeable_dirty(object);
1639 }
1640
1641 /*
1642 * vm_page_remove_radixdone
1643 *
1644 * Complete page "m" removal from the specified object after the radix trie
1645 * unhooking.
1646 *
1647 * The caller is responsible for updating the page's fields to reflect this
1648 * removal.
1649 */
1650 static void
vm_page_remove_radixdone(vm_page_t m)1651 vm_page_remove_radixdone(vm_page_t m)
1652 {
1653 vm_object_t object;
1654
1655 vm_page_assert_xbusied(m);
1656 object = m->object;
1657 VM_OBJECT_ASSERT_WLOCKED(object);
1658 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1659 ("page %p is missing its object ref", m));
1660
1661 /* Deferred free of swap space. */
1662 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1663 vm_pager_page_unswapped(m);
1664
1665 vm_pager_page_removed(object, m);
1666 m->object = NULL;
1667
1668 /*
1669 * Now remove from the object's list of backed pages.
1670 */
1671 TAILQ_REMOVE(&object->memq, m, listq);
1672
1673 /*
1674 * And show that the object has one fewer resident page.
1675 */
1676 object->resident_page_count--;
1677
1678 /*
1679 * The vnode may now be recycled.
1680 */
1681 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1682 vdrop(object->handle);
1683 }
1684
1685 /*
1686 * vm_page_free_object_prep:
1687 *
1688 * Disassociates the given page from its VM object.
1689 *
1690 * The object must be locked, and the page must be xbusy.
1691 */
1692 static void
vm_page_free_object_prep(vm_page_t m)1693 vm_page_free_object_prep(vm_page_t m)
1694 {
1695 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1696 ((m->object->flags & OBJ_UNMANAGED) != 0),
1697 ("%s: managed flag mismatch for page %p",
1698 __func__, m));
1699 vm_page_assert_xbusied(m);
1700
1701 /*
1702 * The object reference can be released without an atomic
1703 * operation.
1704 */
1705 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1706 m->ref_count == VPRC_OBJREF,
1707 ("%s: page %p has unexpected ref_count %u",
1708 __func__, m, m->ref_count));
1709 vm_page_remove_radixdone(m);
1710 m->ref_count -= VPRC_OBJREF;
1711 }
1712
1713 /*
1714 * vm_page_iter_free:
1715 *
1716 * Free the given page, and use the iterator to remove it from the radix
1717 * tree.
1718 */
1719 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1720 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1721 {
1722 vm_radix_iter_remove(pages);
1723 vm_page_free_object_prep(m);
1724 vm_page_xunbusy(m);
1725 m->flags &= ~PG_ZERO;
1726 vm_page_free_toq(m);
1727 }
1728
1729 /*
1730 * vm_page_remove:
1731 *
1732 * Removes the specified page from its containing object, but does not
1733 * invalidate any backing storage. Returns true if the object's reference
1734 * was the last reference to the page, and false otherwise.
1735 *
1736 * The object must be locked and the page must be exclusively busied.
1737 * The exclusive busy will be released on return. If this is not the
1738 * final ref and the caller does not hold a wire reference it may not
1739 * continue to access the page.
1740 */
1741 bool
vm_page_remove(vm_page_t m)1742 vm_page_remove(vm_page_t m)
1743 {
1744 bool dropped;
1745
1746 dropped = vm_page_remove_xbusy(m);
1747 vm_page_xunbusy(m);
1748
1749 return (dropped);
1750 }
1751
1752 /*
1753 * vm_page_iter_remove:
1754 *
1755 * Remove the current page, and use the iterator to remove it from the
1756 * radix tree.
1757 */
1758 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1759 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1760 {
1761 bool dropped;
1762
1763 vm_radix_iter_remove(pages);
1764 vm_page_remove_radixdone(m);
1765 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1766 vm_page_xunbusy(m);
1767
1768 return (dropped);
1769 }
1770
1771 /*
1772 * vm_page_radix_remove
1773 *
1774 * Removes the specified page from the radix tree.
1775 */
1776 static void
vm_page_radix_remove(vm_page_t m)1777 vm_page_radix_remove(vm_page_t m)
1778 {
1779 vm_page_t mrem __diagused;
1780
1781 mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1782 KASSERT(mrem == m,
1783 ("removed page %p, expected page %p", mrem, m));
1784 }
1785
1786 /*
1787 * vm_page_remove_xbusy
1788 *
1789 * Removes the page but leaves the xbusy held. Returns true if this
1790 * removed the final ref and false otherwise.
1791 */
1792 bool
vm_page_remove_xbusy(vm_page_t m)1793 vm_page_remove_xbusy(vm_page_t m)
1794 {
1795
1796 vm_page_radix_remove(m);
1797 vm_page_remove_radixdone(m);
1798 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1799 }
1800
1801 /*
1802 * vm_page_lookup:
1803 *
1804 * Returns the page associated with the object/offset
1805 * pair specified; if none is found, NULL is returned.
1806 *
1807 * The object must be locked.
1808 */
1809 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1810 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1811 {
1812
1813 VM_OBJECT_ASSERT_LOCKED(object);
1814 return (vm_radix_lookup(&object->rtree, pindex));
1815 }
1816
1817 /*
1818 * vm_page_iter_init:
1819 *
1820 * Initialize iterator for vm pages.
1821 */
1822 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1823 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1824 {
1825
1826 vm_radix_iter_init(pages, &object->rtree);
1827 }
1828
1829 /*
1830 * vm_page_iter_init:
1831 *
1832 * Initialize iterator for vm pages.
1833 */
1834 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1835 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1836 vm_pindex_t limit)
1837 {
1838
1839 vm_radix_iter_limit_init(pages, &object->rtree, limit);
1840 }
1841
1842 /*
1843 * vm_page_iter_lookup:
1844 *
1845 * Returns the page associated with the object/offset pair specified, and
1846 * stores the path to its position; if none is found, NULL is returned.
1847 *
1848 * The iter pctrie must be locked.
1849 */
1850 vm_page_t
vm_page_iter_lookup(struct pctrie_iter * pages,vm_pindex_t pindex)1851 vm_page_iter_lookup(struct pctrie_iter *pages, vm_pindex_t pindex)
1852 {
1853
1854 return (vm_radix_iter_lookup(pages, pindex));
1855 }
1856
1857 /*
1858 * vm_page_lookup_unlocked:
1859 *
1860 * Returns the page associated with the object/offset pair specified;
1861 * if none is found, NULL is returned. The page may be no longer be
1862 * present in the object at the time that this function returns. Only
1863 * useful for opportunistic checks such as inmem().
1864 */
1865 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1866 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1867 {
1868
1869 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1870 }
1871
1872 /*
1873 * vm_page_relookup:
1874 *
1875 * Returns a page that must already have been busied by
1876 * the caller. Used for bogus page replacement.
1877 */
1878 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1879 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1880 {
1881 vm_page_t m;
1882
1883 m = vm_page_lookup_unlocked(object, pindex);
1884 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1885 m->object == object && m->pindex == pindex,
1886 ("vm_page_relookup: Invalid page %p", m));
1887 return (m);
1888 }
1889
1890 /*
1891 * This should only be used by lockless functions for releasing transient
1892 * incorrect acquires. The page may have been freed after we acquired a
1893 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1894 * further to do.
1895 */
1896 static void
vm_page_busy_release(vm_page_t m)1897 vm_page_busy_release(vm_page_t m)
1898 {
1899 u_int x;
1900
1901 x = vm_page_busy_fetch(m);
1902 for (;;) {
1903 if (x == VPB_FREED)
1904 break;
1905 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1906 if (atomic_fcmpset_int(&m->busy_lock, &x,
1907 x - VPB_ONE_SHARER))
1908 break;
1909 continue;
1910 }
1911 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1912 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1913 ("vm_page_busy_release: %p xbusy not owned.", m));
1914 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1915 continue;
1916 if ((x & VPB_BIT_WAITERS) != 0)
1917 wakeup(m);
1918 break;
1919 }
1920 }
1921
1922 /*
1923 * vm_page_find_least:
1924 *
1925 * Returns the page associated with the object with least pindex
1926 * greater than or equal to the parameter pindex, or NULL.
1927 *
1928 * The object must be locked.
1929 */
1930 vm_page_t
vm_page_find_least(vm_object_t object,vm_pindex_t pindex)1931 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1932 {
1933 vm_page_t m;
1934
1935 VM_OBJECT_ASSERT_LOCKED(object);
1936 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1937 m = vm_radix_lookup_ge(&object->rtree, pindex);
1938 return (m);
1939 }
1940
1941 /*
1942 * vm_page_iter_lookup_ge:
1943 *
1944 * Returns the page associated with the object with least pindex
1945 * greater than or equal to the parameter pindex, or NULL. Initializes the
1946 * iterator to point to that page.
1947 *
1948 * The iter pctrie must be locked.
1949 */
1950 vm_page_t
vm_page_iter_lookup_ge(struct pctrie_iter * pages,vm_pindex_t pindex)1951 vm_page_iter_lookup_ge(struct pctrie_iter *pages, vm_pindex_t pindex)
1952 {
1953
1954 return (vm_radix_iter_lookup_ge(pages, pindex));
1955 }
1956
1957 /*
1958 * Returns the given page's successor (by pindex) within the object if it is
1959 * resident; if none is found, NULL is returned.
1960 *
1961 * The object must be locked.
1962 */
1963 vm_page_t
vm_page_next(vm_page_t m)1964 vm_page_next(vm_page_t m)
1965 {
1966 vm_page_t next;
1967
1968 VM_OBJECT_ASSERT_LOCKED(m->object);
1969 if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1970 MPASS(next->object == m->object);
1971 if (next->pindex != m->pindex + 1)
1972 next = NULL;
1973 }
1974 return (next);
1975 }
1976
1977 /*
1978 * Returns the given page's predecessor (by pindex) within the object if it is
1979 * resident; if none is found, NULL is returned.
1980 *
1981 * The object must be locked.
1982 */
1983 vm_page_t
vm_page_prev(vm_page_t m)1984 vm_page_prev(vm_page_t m)
1985 {
1986 vm_page_t prev;
1987
1988 VM_OBJECT_ASSERT_LOCKED(m->object);
1989 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1990 MPASS(prev->object == m->object);
1991 if (prev->pindex != m->pindex - 1)
1992 prev = NULL;
1993 }
1994 return (prev);
1995 }
1996
1997 /*
1998 * Uses the page mnew as a replacement for an existing page at index
1999 * pindex which must be already present in the object.
2000 *
2001 * Both pages must be exclusively busied on enter. The old page is
2002 * unbusied on exit.
2003 *
2004 * A return value of true means mold is now free. If this is not the
2005 * final ref and the caller does not hold a wire reference it may not
2006 * continue to access the page.
2007 */
2008 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)2009 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2010 vm_page_t mold)
2011 {
2012 vm_page_t mret __diagused;
2013 bool dropped;
2014
2015 VM_OBJECT_ASSERT_WLOCKED(object);
2016 vm_page_assert_xbusied(mold);
2017 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
2018 ("vm_page_replace: page %p already in object", mnew));
2019
2020 /*
2021 * This function mostly follows vm_page_insert() and
2022 * vm_page_remove() without the radix, object count and vnode
2023 * dance. Double check such functions for more comments.
2024 */
2025
2026 mnew->object = object;
2027 mnew->pindex = pindex;
2028 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
2029 mret = vm_radix_replace(&object->rtree, mnew);
2030 KASSERT(mret == mold,
2031 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
2032 KASSERT((mold->oflags & VPO_UNMANAGED) ==
2033 (mnew->oflags & VPO_UNMANAGED),
2034 ("vm_page_replace: mismatched VPO_UNMANAGED"));
2035
2036 /* Keep the resident page list in sorted order. */
2037 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
2038 TAILQ_REMOVE(&object->memq, mold, listq);
2039 mold->object = NULL;
2040
2041 /*
2042 * The object's resident_page_count does not change because we have
2043 * swapped one page for another, but the generation count should
2044 * change if the page is dirty.
2045 */
2046 if (pmap_page_is_write_mapped(mnew))
2047 vm_object_set_writeable_dirty(object);
2048 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
2049 vm_page_xunbusy(mold);
2050
2051 return (dropped);
2052 }
2053
2054 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)2055 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2056 vm_page_t mold)
2057 {
2058
2059 vm_page_assert_xbusied(mnew);
2060
2061 if (vm_page_replace_hold(mnew, object, pindex, mold))
2062 vm_page_free(mold);
2063 }
2064
2065 /*
2066 * vm_page_iter_rename:
2067 *
2068 * Tries to move the specified page from its current object to a new object
2069 * and pindex, using the given iterator to remove the page from its current
2070 * object. Returns true if the move was successful, and false if the move
2071 * was aborted due to a failed memory allocation.
2072 *
2073 * Panics if a page already resides in the new object at the new pindex.
2074 *
2075 * Note: swap associated with the page must be invalidated by the move. We
2076 * have to do this for several reasons: (1) we aren't freeing the
2077 * page, (2) we are dirtying the page, (3) the VM system is probably
2078 * moving the page from object A to B, and will then later move
2079 * the backing store from A to B and we can't have a conflict.
2080 *
2081 * Note: we *always* dirty the page. It is necessary both for the
2082 * fact that we moved it, and because we may be invalidating
2083 * swap.
2084 *
2085 * The objects must be locked.
2086 */
2087 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)2088 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
2089 vm_object_t new_object, vm_pindex_t new_pindex)
2090 {
2091 vm_page_t mpred;
2092 vm_pindex_t opidx;
2093
2094 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
2095 ("%s: page %p is missing object ref", __func__, m));
2096 VM_OBJECT_ASSERT_WLOCKED(m->object);
2097 VM_OBJECT_ASSERT_WLOCKED(new_object);
2098
2099 /*
2100 * Create a custom version of vm_page_insert() which does not depend
2101 * by m_prev and can cheat on the implementation aspects of the
2102 * function.
2103 */
2104 opidx = m->pindex;
2105 m->pindex = new_pindex;
2106 if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) {
2107 m->pindex = opidx;
2108 return (false);
2109 }
2110
2111 /*
2112 * The operation cannot fail anymore. The removal must happen before
2113 * the listq iterator is tainted.
2114 */
2115 m->pindex = opidx;
2116 vm_radix_iter_remove(old_pages);
2117 vm_page_remove_radixdone(m);
2118
2119 /* Return back to the new pindex to complete vm_page_insert(). */
2120 m->pindex = new_pindex;
2121 m->object = new_object;
2122
2123 vm_page_insert_radixdone(m, new_object, mpred);
2124 vm_page_dirty(m);
2125 vm_pager_page_inserted(new_object, m);
2126 return (true);
2127 }
2128
2129 /*
2130 * vm_page_mpred:
2131 *
2132 * Return the greatest page of the object with index <= pindex,
2133 * or NULL, if there is none. Assumes object lock is held.
2134 */
2135 vm_page_t
vm_page_mpred(vm_object_t object,vm_pindex_t pindex)2136 vm_page_mpred(vm_object_t object, vm_pindex_t pindex)
2137 {
2138 return (vm_radix_lookup_le(&object->rtree, pindex));
2139 }
2140
2141 /*
2142 * vm_page_alloc:
2143 *
2144 * Allocate and return a page that is associated with the specified
2145 * object and offset pair. By default, this page is exclusive busied.
2146 *
2147 * The caller must always specify an allocation class.
2148 *
2149 * allocation classes:
2150 * VM_ALLOC_NORMAL normal process request
2151 * VM_ALLOC_SYSTEM system *really* needs a page
2152 * VM_ALLOC_INTERRUPT interrupt time request
2153 *
2154 * optional allocation flags:
2155 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
2156 * intends to allocate
2157 * VM_ALLOC_NOBUSY do not exclusive busy the page
2158 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2159 * VM_ALLOC_SBUSY shared busy the allocated page
2160 * VM_ALLOC_WIRED wire the allocated page
2161 * VM_ALLOC_ZERO prefer a zeroed page
2162 */
2163 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)2164 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
2165 {
2166
2167 return (vm_page_alloc_after(object, pindex, req,
2168 vm_page_mpred(object, pindex)));
2169 }
2170
2171 /*
2172 * Allocate a page in the specified object with the given page index. To
2173 * optimize insertion of the page into the object, the caller must also specify
2174 * the resident page in the object with largest index smaller than the given
2175 * page index, or NULL if no such page exists.
2176 */
2177 static vm_page_t
vm_page_alloc_after(vm_object_t object,vm_pindex_t pindex,int req,vm_page_t mpred)2178 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
2179 int req, vm_page_t mpred)
2180 {
2181 struct vm_domainset_iter di;
2182 vm_page_t m;
2183 int domain;
2184
2185 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2186 do {
2187 m = vm_page_alloc_domain_after(object, pindex, domain, req,
2188 mpred);
2189 if (m != NULL)
2190 break;
2191 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2192
2193 return (m);
2194 }
2195
2196 /*
2197 * Returns true if the number of free pages exceeds the minimum
2198 * for the request class and false otherwise.
2199 */
2200 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2201 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2202 {
2203 u_int limit, old, new;
2204
2205 if (req_class == VM_ALLOC_INTERRUPT)
2206 limit = 0;
2207 else if (req_class == VM_ALLOC_SYSTEM)
2208 limit = vmd->vmd_interrupt_free_min;
2209 else
2210 limit = vmd->vmd_free_reserved;
2211
2212 /*
2213 * Attempt to reserve the pages. Fail if we're below the limit.
2214 */
2215 limit += npages;
2216 old = atomic_load_int(&vmd->vmd_free_count);
2217 do {
2218 if (old < limit)
2219 return (0);
2220 new = old - npages;
2221 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2222
2223 /* Wake the page daemon if we've crossed the threshold. */
2224 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2225 pagedaemon_wakeup(vmd->vmd_domain);
2226
2227 /* Only update bitsets on transitions. */
2228 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2229 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2230 vm_domain_set(vmd);
2231
2232 return (1);
2233 }
2234
2235 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2236 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2237 {
2238 int req_class;
2239
2240 /*
2241 * The page daemon is allowed to dig deeper into the free page list.
2242 */
2243 req_class = req & VM_ALLOC_CLASS_MASK;
2244 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2245 req_class = VM_ALLOC_SYSTEM;
2246 return (_vm_domain_allocate(vmd, req_class, npages));
2247 }
2248
2249 vm_page_t
vm_page_alloc_domain_after(vm_object_t object,vm_pindex_t pindex,int domain,int req,vm_page_t mpred)2250 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2251 int req, vm_page_t mpred)
2252 {
2253 struct vm_domain *vmd;
2254 vm_page_t m;
2255 int flags;
2256
2257 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2258 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \
2259 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \
2260 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2261 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2262 KASSERT((req & ~VPA_FLAGS) == 0,
2263 ("invalid request %#x", req));
2264 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2265 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2266 ("invalid request %#x", req));
2267 KASSERT(mpred == NULL || mpred->pindex < pindex,
2268 ("mpred %p doesn't precede pindex 0x%jx", mpred,
2269 (uintmax_t)pindex));
2270 VM_OBJECT_ASSERT_WLOCKED(object);
2271
2272 flags = 0;
2273 m = NULL;
2274 if (!vm_pager_can_alloc_page(object, pindex))
2275 return (NULL);
2276 again:
2277 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2278 m = vm_page_alloc_nofree_domain(domain, req);
2279 if (m != NULL)
2280 goto found;
2281 }
2282 #if VM_NRESERVLEVEL > 0
2283 /*
2284 * Can we allocate the page from a reservation?
2285 */
2286 if (vm_object_reserv(object) &&
2287 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2288 NULL) {
2289 goto found;
2290 }
2291 #endif
2292 vmd = VM_DOMAIN(domain);
2293 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2294 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2295 M_NOWAIT | M_NOVM);
2296 if (m != NULL) {
2297 flags |= PG_PCPU_CACHE;
2298 goto found;
2299 }
2300 }
2301 if (vm_domain_allocate(vmd, req, 1)) {
2302 /*
2303 * If not, allocate it from the free page queues.
2304 */
2305 vm_domain_free_lock(vmd);
2306 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2307 vm_domain_free_unlock(vmd);
2308 if (m == NULL) {
2309 vm_domain_freecnt_inc(vmd, 1);
2310 #if VM_NRESERVLEVEL > 0
2311 if (vm_reserv_reclaim_inactive(domain))
2312 goto again;
2313 #endif
2314 }
2315 }
2316 if (m == NULL) {
2317 /*
2318 * Not allocatable, give up.
2319 */
2320 if (vm_domain_alloc_fail(vmd, object, req))
2321 goto again;
2322 return (NULL);
2323 }
2324
2325 /*
2326 * At this point we had better have found a good page.
2327 */
2328 found:
2329 vm_page_dequeue(m);
2330 vm_page_alloc_check(m);
2331
2332 /*
2333 * Initialize the page. Only the PG_ZERO flag is inherited.
2334 */
2335 flags |= m->flags & PG_ZERO;
2336 if ((req & VM_ALLOC_NODUMP) != 0)
2337 flags |= PG_NODUMP;
2338 if ((req & VM_ALLOC_NOFREE) != 0)
2339 flags |= PG_NOFREE;
2340 m->flags = flags;
2341 m->a.flags = 0;
2342 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2343 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2344 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2345 else if ((req & VM_ALLOC_SBUSY) != 0)
2346 m->busy_lock = VPB_SHARERS_WORD(1);
2347 else
2348 m->busy_lock = VPB_UNBUSIED;
2349 if (req & VM_ALLOC_WIRED) {
2350 vm_wire_add(1);
2351 m->ref_count = 1;
2352 }
2353 m->a.act_count = 0;
2354
2355 if (vm_page_insert_after(m, object, pindex, mpred)) {
2356 if (req & VM_ALLOC_WIRED) {
2357 vm_wire_sub(1);
2358 m->ref_count = 0;
2359 }
2360 KASSERT(m->object == NULL, ("page %p has object", m));
2361 m->oflags = VPO_UNMANAGED;
2362 m->busy_lock = VPB_UNBUSIED;
2363 /* Don't change PG_ZERO. */
2364 vm_page_free_toq(m);
2365 if (req & VM_ALLOC_WAITFAIL) {
2366 VM_OBJECT_WUNLOCK(object);
2367 vm_radix_wait();
2368 VM_OBJECT_WLOCK(object);
2369 }
2370 return (NULL);
2371 }
2372
2373 /* Ignore device objects; the pager sets "memattr" for them. */
2374 if (object->memattr != VM_MEMATTR_DEFAULT &&
2375 (object->flags & OBJ_FICTITIOUS) == 0)
2376 pmap_page_set_memattr(m, object->memattr);
2377
2378 return (m);
2379 }
2380
2381 /*
2382 * vm_page_alloc_contig:
2383 *
2384 * Allocate a contiguous set of physical pages of the given size "npages"
2385 * from the free lists. All of the physical pages must be at or above
2386 * the given physical address "low" and below the given physical address
2387 * "high". The given value "alignment" determines the alignment of the
2388 * first physical page in the set. If the given value "boundary" is
2389 * non-zero, then the set of physical pages cannot cross any physical
2390 * address boundary that is a multiple of that value. Both "alignment"
2391 * and "boundary" must be a power of two.
2392 *
2393 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2394 * then the memory attribute setting for the physical pages is configured
2395 * to the object's memory attribute setting. Otherwise, the memory
2396 * attribute setting for the physical pages is configured to "memattr",
2397 * overriding the object's memory attribute setting. However, if the
2398 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2399 * memory attribute setting for the physical pages cannot be configured
2400 * to VM_MEMATTR_DEFAULT.
2401 *
2402 * The specified object may not contain fictitious pages.
2403 *
2404 * The caller must always specify an allocation class.
2405 *
2406 * allocation classes:
2407 * VM_ALLOC_NORMAL normal process request
2408 * VM_ALLOC_SYSTEM system *really* needs a page
2409 * VM_ALLOC_INTERRUPT interrupt time request
2410 *
2411 * optional allocation flags:
2412 * VM_ALLOC_NOBUSY do not exclusive busy the page
2413 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2414 * VM_ALLOC_SBUSY shared busy the allocated page
2415 * VM_ALLOC_WIRED wire the allocated page
2416 * VM_ALLOC_ZERO prefer a zeroed page
2417 */
2418 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2419 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2420 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2421 vm_paddr_t boundary, vm_memattr_t memattr)
2422 {
2423 struct vm_domainset_iter di;
2424 vm_page_t bounds[2];
2425 vm_page_t m;
2426 int domain;
2427 int start_segind;
2428
2429 start_segind = -1;
2430
2431 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2432 do {
2433 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2434 npages, low, high, alignment, boundary, memattr);
2435 if (m != NULL)
2436 break;
2437 if (start_segind == -1)
2438 start_segind = vm_phys_lookup_segind(low);
2439 if (vm_phys_find_range(bounds, start_segind, domain,
2440 npages, low, high) == -1) {
2441 vm_domainset_iter_ignore(&di, domain);
2442 }
2443 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2444
2445 return (m);
2446 }
2447
2448 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2449 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2450 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2451 {
2452 struct vm_domain *vmd;
2453 vm_page_t m_ret;
2454
2455 /*
2456 * Can we allocate the pages without the number of free pages falling
2457 * below the lower bound for the allocation class?
2458 */
2459 vmd = VM_DOMAIN(domain);
2460 if (!vm_domain_allocate(vmd, req, npages))
2461 return (NULL);
2462 /*
2463 * Try to allocate the pages from the free page queues.
2464 */
2465 vm_domain_free_lock(vmd);
2466 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2467 alignment, boundary);
2468 vm_domain_free_unlock(vmd);
2469 if (m_ret != NULL)
2470 return (m_ret);
2471 #if VM_NRESERVLEVEL > 0
2472 /*
2473 * Try to break a reservation to allocate the pages.
2474 */
2475 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2476 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2477 high, alignment, boundary);
2478 if (m_ret != NULL)
2479 return (m_ret);
2480 }
2481 #endif
2482 vm_domain_freecnt_inc(vmd, npages);
2483 return (NULL);
2484 }
2485
2486 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2487 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2488 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2489 vm_paddr_t boundary, vm_memattr_t memattr)
2490 {
2491 struct pctrie_iter pages;
2492 vm_page_t m, m_ret, mpred;
2493 u_int busy_lock, flags, oflags;
2494
2495 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM)
2496 KASSERT((req & ~VPAC_FLAGS) == 0,
2497 ("invalid request %#x", req));
2498 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2499 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2500 ("invalid request %#x", req));
2501 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2502 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2503 ("invalid request %#x", req));
2504 VM_OBJECT_ASSERT_WLOCKED(object);
2505 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2506 ("vm_page_alloc_contig: object %p has fictitious pages",
2507 object));
2508 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2509
2510 vm_page_iter_init(&pages, object);
2511 mpred = vm_radix_iter_lookup_le(&pages, pindex);
2512 KASSERT(mpred == NULL || mpred->pindex != pindex,
2513 ("vm_page_alloc_contig: pindex already allocated"));
2514 for (;;) {
2515 #if VM_NRESERVLEVEL > 0
2516 /*
2517 * Can we allocate the pages from a reservation?
2518 */
2519 if (vm_object_reserv(object) &&
2520 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2521 mpred, npages, low, high, alignment, boundary)) != NULL) {
2522 break;
2523 }
2524 #endif
2525 if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2526 low, high, alignment, boundary)) != NULL)
2527 break;
2528 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2529 return (NULL);
2530 }
2531
2532 /*
2533 * Initialize the pages. Only the PG_ZERO flag is inherited.
2534 */
2535 flags = PG_ZERO;
2536 if ((req & VM_ALLOC_NODUMP) != 0)
2537 flags |= PG_NODUMP;
2538 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2539 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2540 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2541 else if ((req & VM_ALLOC_SBUSY) != 0)
2542 busy_lock = VPB_SHARERS_WORD(1);
2543 else
2544 busy_lock = VPB_UNBUSIED;
2545 if ((req & VM_ALLOC_WIRED) != 0)
2546 vm_wire_add(npages);
2547 if (object->memattr != VM_MEMATTR_DEFAULT &&
2548 memattr == VM_MEMATTR_DEFAULT)
2549 memattr = object->memattr;
2550 for (m = m_ret; m < &m_ret[npages]; m++) {
2551 vm_page_dequeue(m);
2552 vm_page_alloc_check(m);
2553 m->a.flags = 0;
2554 m->flags = (m->flags | PG_NODUMP) & flags;
2555 m->busy_lock = busy_lock;
2556 if ((req & VM_ALLOC_WIRED) != 0)
2557 m->ref_count = 1;
2558 m->a.act_count = 0;
2559 m->oflags = oflags;
2560 if (vm_page_iter_insert(&pages, m, object, pindex, mpred)) {
2561 if ((req & VM_ALLOC_WIRED) != 0)
2562 vm_wire_sub(npages);
2563 KASSERT(m->object == NULL,
2564 ("page %p has object", m));
2565 mpred = m;
2566 for (m = m_ret; m < &m_ret[npages]; m++) {
2567 if (m <= mpred &&
2568 (req & VM_ALLOC_WIRED) != 0)
2569 m->ref_count = 0;
2570 m->oflags = VPO_UNMANAGED;
2571 m->busy_lock = VPB_UNBUSIED;
2572 /* Don't change PG_ZERO. */
2573 vm_page_free_toq(m);
2574 }
2575 if (req & VM_ALLOC_WAITFAIL) {
2576 VM_OBJECT_WUNLOCK(object);
2577 vm_radix_wait();
2578 VM_OBJECT_WLOCK(object);
2579 }
2580 return (NULL);
2581 }
2582 mpred = m;
2583 if (memattr != VM_MEMATTR_DEFAULT)
2584 pmap_page_set_memattr(m, memattr);
2585 pindex++;
2586 }
2587 return (m_ret);
2588 }
2589
2590 /*
2591 * Allocate a physical page that is not intended to be inserted into a VM
2592 * object.
2593 */
2594 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2595 vm_page_alloc_noobj_domain(int domain, int req)
2596 {
2597 struct vm_domain *vmd;
2598 vm_page_t m;
2599 int flags;
2600
2601 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2602 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \
2603 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \
2604 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2605 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2606 KASSERT((req & ~VPAN_FLAGS) == 0,
2607 ("invalid request %#x", req));
2608
2609 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2610 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2611 vmd = VM_DOMAIN(domain);
2612 again:
2613 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2614 m = vm_page_alloc_nofree_domain(domain, req);
2615 if (m != NULL)
2616 goto found;
2617 }
2618
2619 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2620 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2621 M_NOWAIT | M_NOVM);
2622 if (m != NULL) {
2623 flags |= PG_PCPU_CACHE;
2624 goto found;
2625 }
2626 }
2627
2628 if (vm_domain_allocate(vmd, req, 1)) {
2629 vm_domain_free_lock(vmd);
2630 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2631 vm_domain_free_unlock(vmd);
2632 if (m == NULL) {
2633 vm_domain_freecnt_inc(vmd, 1);
2634 #if VM_NRESERVLEVEL > 0
2635 if (vm_reserv_reclaim_inactive(domain))
2636 goto again;
2637 #endif
2638 }
2639 }
2640 if (m == NULL) {
2641 if (vm_domain_alloc_fail(vmd, NULL, req))
2642 goto again;
2643 return (NULL);
2644 }
2645
2646 found:
2647 vm_page_dequeue(m);
2648 vm_page_alloc_check(m);
2649
2650 /*
2651 * Consumers should not rely on a useful default pindex value.
2652 */
2653 m->pindex = 0xdeadc0dedeadc0de;
2654 m->flags = (m->flags & PG_ZERO) | flags;
2655 m->a.flags = 0;
2656 m->oflags = VPO_UNMANAGED;
2657 m->busy_lock = VPB_UNBUSIED;
2658 if ((req & VM_ALLOC_WIRED) != 0) {
2659 vm_wire_add(1);
2660 m->ref_count = 1;
2661 }
2662
2663 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2664 pmap_zero_page(m);
2665
2666 return (m);
2667 }
2668
2669 #if VM_NRESERVLEVEL > 1
2670 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2671 #elif VM_NRESERVLEVEL > 0
2672 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER
2673 #else
2674 #define VM_NOFREE_IMPORT_ORDER 8
2675 #endif
2676
2677 /*
2678 * Allocate a single NOFREE page.
2679 *
2680 * This routine hands out NOFREE pages from higher-order
2681 * physical memory blocks in order to reduce memory fragmentation.
2682 * When a NOFREE for a given domain chunk is used up,
2683 * the routine will try to fetch a new one from the freelists
2684 * and discard the old one.
2685 */
2686 static vm_page_t
vm_page_alloc_nofree_domain(int domain,int req)2687 vm_page_alloc_nofree_domain(int domain, int req)
2688 {
2689 vm_page_t m;
2690 struct vm_domain *vmd;
2691 struct vm_nofreeq *nqp;
2692
2693 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2694
2695 vmd = VM_DOMAIN(domain);
2696 nqp = &vmd->vmd_nofreeq;
2697 vm_domain_free_lock(vmd);
2698 if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) {
2699 if (!vm_domain_allocate(vmd, req,
2700 1 << VM_NOFREE_IMPORT_ORDER)) {
2701 vm_domain_free_unlock(vmd);
2702 return (NULL);
2703 }
2704 nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2705 VM_NOFREE_IMPORT_ORDER);
2706 if (nqp->ma == NULL) {
2707 vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER);
2708 vm_domain_free_unlock(vmd);
2709 return (NULL);
2710 }
2711 nqp->offs = 0;
2712 }
2713 m = &nqp->ma[nqp->offs++];
2714 vm_domain_free_unlock(vmd);
2715 VM_CNT_ADD(v_nofree_count, 1);
2716
2717 return (m);
2718 }
2719
2720 vm_page_t
vm_page_alloc_noobj(int req)2721 vm_page_alloc_noobj(int req)
2722 {
2723 struct vm_domainset_iter di;
2724 vm_page_t m;
2725 int domain;
2726
2727 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2728 do {
2729 m = vm_page_alloc_noobj_domain(domain, req);
2730 if (m != NULL)
2731 break;
2732 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2733
2734 return (m);
2735 }
2736
2737 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2738 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2739 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2740 vm_memattr_t memattr)
2741 {
2742 struct vm_domainset_iter di;
2743 vm_page_t m;
2744 int domain;
2745
2746 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2747 do {
2748 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2749 high, alignment, boundary, memattr);
2750 if (m != NULL)
2751 break;
2752 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2753
2754 return (m);
2755 }
2756
2757 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2758 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2759 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2760 vm_memattr_t memattr)
2761 {
2762 vm_page_t m, m_ret;
2763 u_int flags;
2764
2765 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2766 KASSERT((req & ~VPANC_FLAGS) == 0,
2767 ("invalid request %#x", req));
2768 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2769 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2770 ("invalid request %#x", req));
2771 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2772 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2773 ("invalid request %#x", req));
2774 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2775
2776 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2777 low, high, alignment, boundary)) == NULL) {
2778 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2779 return (NULL);
2780 }
2781
2782 /*
2783 * Initialize the pages. Only the PG_ZERO flag is inherited.
2784 */
2785 flags = PG_ZERO;
2786 if ((req & VM_ALLOC_NODUMP) != 0)
2787 flags |= PG_NODUMP;
2788 if ((req & VM_ALLOC_WIRED) != 0)
2789 vm_wire_add(npages);
2790 for (m = m_ret; m < &m_ret[npages]; m++) {
2791 vm_page_dequeue(m);
2792 vm_page_alloc_check(m);
2793
2794 /*
2795 * Consumers should not rely on a useful default pindex value.
2796 */
2797 m->pindex = 0xdeadc0dedeadc0de;
2798 m->a.flags = 0;
2799 m->flags = (m->flags | PG_NODUMP) & flags;
2800 m->busy_lock = VPB_UNBUSIED;
2801 if ((req & VM_ALLOC_WIRED) != 0)
2802 m->ref_count = 1;
2803 m->a.act_count = 0;
2804 m->oflags = VPO_UNMANAGED;
2805
2806 /*
2807 * Zero the page before updating any mappings since the page is
2808 * not yet shared with any devices which might require the
2809 * non-default memory attribute. pmap_page_set_memattr()
2810 * flushes data caches before returning.
2811 */
2812 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2813 pmap_zero_page(m);
2814 if (memattr != VM_MEMATTR_DEFAULT)
2815 pmap_page_set_memattr(m, memattr);
2816 }
2817 return (m_ret);
2818 }
2819
2820 /*
2821 * Check a page that has been freshly dequeued from a freelist.
2822 */
2823 static void
vm_page_alloc_check(vm_page_t m)2824 vm_page_alloc_check(vm_page_t m)
2825 {
2826
2827 KASSERT(m->object == NULL, ("page %p has object", m));
2828 KASSERT(m->a.queue == PQ_NONE &&
2829 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2830 ("page %p has unexpected queue %d, flags %#x",
2831 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2832 KASSERT(m->ref_count == 0, ("page %p has references", m));
2833 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2834 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2835 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2836 ("page %p has unexpected memattr %d",
2837 m, pmap_page_get_memattr(m)));
2838 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2839 pmap_vm_page_alloc_check(m);
2840 }
2841
2842 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2843 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2844 {
2845 struct vm_domain *vmd;
2846 struct vm_pgcache *pgcache;
2847 int i;
2848
2849 pgcache = arg;
2850 vmd = VM_DOMAIN(pgcache->domain);
2851
2852 /*
2853 * The page daemon should avoid creating extra memory pressure since its
2854 * main purpose is to replenish the store of free pages.
2855 */
2856 if (vmd->vmd_severeset || curproc == pageproc ||
2857 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2858 return (0);
2859 domain = vmd->vmd_domain;
2860 vm_domain_free_lock(vmd);
2861 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2862 (vm_page_t *)store);
2863 vm_domain_free_unlock(vmd);
2864 if (cnt != i)
2865 vm_domain_freecnt_inc(vmd, cnt - i);
2866
2867 return (i);
2868 }
2869
2870 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2871 vm_page_zone_release(void *arg, void **store, int cnt)
2872 {
2873 struct vm_domain *vmd;
2874 struct vm_pgcache *pgcache;
2875 vm_page_t m;
2876 int i;
2877
2878 pgcache = arg;
2879 vmd = VM_DOMAIN(pgcache->domain);
2880 vm_domain_free_lock(vmd);
2881 for (i = 0; i < cnt; i++) {
2882 m = (vm_page_t)store[i];
2883 vm_phys_free_pages(m, 0);
2884 }
2885 vm_domain_free_unlock(vmd);
2886 vm_domain_freecnt_inc(vmd, cnt);
2887 }
2888
2889 #define VPSC_ANY 0 /* No restrictions. */
2890 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2891 #define VPSC_NOSUPER 2 /* Skip superpages. */
2892
2893 /*
2894 * vm_page_scan_contig:
2895 *
2896 * Scan vm_page_array[] between the specified entries "m_start" and
2897 * "m_end" for a run of contiguous physical pages that satisfy the
2898 * specified conditions, and return the lowest page in the run. The
2899 * specified "alignment" determines the alignment of the lowest physical
2900 * page in the run. If the specified "boundary" is non-zero, then the
2901 * run of physical pages cannot span a physical address that is a
2902 * multiple of "boundary".
2903 *
2904 * "m_end" is never dereferenced, so it need not point to a vm_page
2905 * structure within vm_page_array[].
2906 *
2907 * "npages" must be greater than zero. "m_start" and "m_end" must not
2908 * span a hole (or discontiguity) in the physical address space. Both
2909 * "alignment" and "boundary" must be a power of two.
2910 */
2911 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2912 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2913 u_long alignment, vm_paddr_t boundary, int options)
2914 {
2915 vm_object_t object;
2916 vm_paddr_t pa;
2917 vm_page_t m, m_run;
2918 #if VM_NRESERVLEVEL > 0
2919 int level;
2920 #endif
2921 int m_inc, order, run_ext, run_len;
2922
2923 KASSERT(npages > 0, ("npages is 0"));
2924 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2925 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2926 m_run = NULL;
2927 run_len = 0;
2928 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2929 KASSERT((m->flags & PG_MARKER) == 0,
2930 ("page %p is PG_MARKER", m));
2931 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2932 ("fictitious page %p has invalid ref count", m));
2933
2934 /*
2935 * If the current page would be the start of a run, check its
2936 * physical address against the end, alignment, and boundary
2937 * conditions. If it doesn't satisfy these conditions, either
2938 * terminate the scan or advance to the next page that
2939 * satisfies the failed condition.
2940 */
2941 if (run_len == 0) {
2942 KASSERT(m_run == NULL, ("m_run != NULL"));
2943 if (m + npages > m_end)
2944 break;
2945 pa = VM_PAGE_TO_PHYS(m);
2946 if (!vm_addr_align_ok(pa, alignment)) {
2947 m_inc = atop(roundup2(pa, alignment) - pa);
2948 continue;
2949 }
2950 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2951 m_inc = atop(roundup2(pa, boundary) - pa);
2952 continue;
2953 }
2954 } else
2955 KASSERT(m_run != NULL, ("m_run == NULL"));
2956
2957 retry:
2958 m_inc = 1;
2959 if (vm_page_wired(m))
2960 run_ext = 0;
2961 #if VM_NRESERVLEVEL > 0
2962 else if ((level = vm_reserv_level(m)) >= 0 &&
2963 (options & VPSC_NORESERV) != 0) {
2964 run_ext = 0;
2965 /* Advance to the end of the reservation. */
2966 pa = VM_PAGE_TO_PHYS(m);
2967 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2968 pa);
2969 }
2970 #endif
2971 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2972 /*
2973 * The page is considered eligible for relocation if
2974 * and only if it could be laundered or reclaimed by
2975 * the page daemon.
2976 */
2977 VM_OBJECT_RLOCK(object);
2978 if (object != m->object) {
2979 VM_OBJECT_RUNLOCK(object);
2980 goto retry;
2981 }
2982 /* Don't care: PG_NODUMP, PG_ZERO. */
2983 if ((object->flags & OBJ_SWAP) == 0 &&
2984 object->type != OBJT_VNODE) {
2985 run_ext = 0;
2986 #if VM_NRESERVLEVEL > 0
2987 } else if ((options & VPSC_NOSUPER) != 0 &&
2988 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2989 run_ext = 0;
2990 /* Advance to the end of the superpage. */
2991 pa = VM_PAGE_TO_PHYS(m);
2992 m_inc = atop(roundup2(pa + 1,
2993 vm_reserv_size(level)) - pa);
2994 #endif
2995 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2996 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2997 /*
2998 * The page is allocated but eligible for
2999 * relocation. Extend the current run by one
3000 * page.
3001 */
3002 KASSERT(pmap_page_get_memattr(m) ==
3003 VM_MEMATTR_DEFAULT,
3004 ("page %p has an unexpected memattr", m));
3005 KASSERT((m->oflags & (VPO_SWAPINPROG |
3006 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
3007 ("page %p has unexpected oflags", m));
3008 /* Don't care: PGA_NOSYNC. */
3009 run_ext = 1;
3010 } else
3011 run_ext = 0;
3012 VM_OBJECT_RUNLOCK(object);
3013 #if VM_NRESERVLEVEL > 0
3014 } else if (level >= 0) {
3015 /*
3016 * The page is reserved but not yet allocated. In
3017 * other words, it is still free. Extend the current
3018 * run by one page.
3019 */
3020 run_ext = 1;
3021 #endif
3022 } else if ((order = m->order) < VM_NFREEORDER) {
3023 /*
3024 * The page is enqueued in the physical memory
3025 * allocator's free page queues. Moreover, it is the
3026 * first page in a power-of-two-sized run of
3027 * contiguous free pages. Add these pages to the end
3028 * of the current run, and jump ahead.
3029 */
3030 run_ext = 1 << order;
3031 m_inc = 1 << order;
3032 } else {
3033 /*
3034 * Skip the page for one of the following reasons: (1)
3035 * It is enqueued in the physical memory allocator's
3036 * free page queues. However, it is not the first
3037 * page in a run of contiguous free pages. (This case
3038 * rarely occurs because the scan is performed in
3039 * ascending order.) (2) It is not reserved, and it is
3040 * transitioning from free to allocated. (Conversely,
3041 * the transition from allocated to free for managed
3042 * pages is blocked by the page busy lock.) (3) It is
3043 * allocated but not contained by an object and not
3044 * wired, e.g., allocated by Xen's balloon driver.
3045 */
3046 run_ext = 0;
3047 }
3048
3049 /*
3050 * Extend or reset the current run of pages.
3051 */
3052 if (run_ext > 0) {
3053 if (run_len == 0)
3054 m_run = m;
3055 run_len += run_ext;
3056 } else {
3057 if (run_len > 0) {
3058 m_run = NULL;
3059 run_len = 0;
3060 }
3061 }
3062 }
3063 if (run_len >= npages)
3064 return (m_run);
3065 return (NULL);
3066 }
3067
3068 /*
3069 * vm_page_reclaim_run:
3070 *
3071 * Try to relocate each of the allocated virtual pages within the
3072 * specified run of physical pages to a new physical address. Free the
3073 * physical pages underlying the relocated virtual pages. A virtual page
3074 * is relocatable if and only if it could be laundered or reclaimed by
3075 * the page daemon. Whenever possible, a virtual page is relocated to a
3076 * physical address above "high".
3077 *
3078 * Returns 0 if every physical page within the run was already free or
3079 * just freed by a successful relocation. Otherwise, returns a non-zero
3080 * value indicating why the last attempt to relocate a virtual page was
3081 * unsuccessful.
3082 *
3083 * "req_class" must be an allocation class.
3084 */
3085 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)3086 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
3087 vm_paddr_t high)
3088 {
3089 struct vm_domain *vmd;
3090 struct spglist free;
3091 vm_object_t object;
3092 vm_paddr_t pa;
3093 vm_page_t m, m_end, m_new;
3094 int error, order, req;
3095
3096 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
3097 ("req_class is not an allocation class"));
3098 SLIST_INIT(&free);
3099 error = 0;
3100 m = m_run;
3101 m_end = m_run + npages;
3102 for (; error == 0 && m < m_end; m++) {
3103 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
3104 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
3105
3106 /*
3107 * Racily check for wirings. Races are handled once the object
3108 * lock is held and the page is unmapped.
3109 */
3110 if (vm_page_wired(m))
3111 error = EBUSY;
3112 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
3113 /*
3114 * The page is relocated if and only if it could be
3115 * laundered or reclaimed by the page daemon.
3116 */
3117 VM_OBJECT_WLOCK(object);
3118 /* Don't care: PG_NODUMP, PG_ZERO. */
3119 if (m->object != object ||
3120 ((object->flags & OBJ_SWAP) == 0 &&
3121 object->type != OBJT_VNODE))
3122 error = EINVAL;
3123 else if (object->memattr != VM_MEMATTR_DEFAULT)
3124 error = EINVAL;
3125 else if (vm_page_queue(m) != PQ_NONE &&
3126 vm_page_tryxbusy(m) != 0) {
3127 if (vm_page_wired(m)) {
3128 vm_page_xunbusy(m);
3129 error = EBUSY;
3130 goto unlock;
3131 }
3132 KASSERT(pmap_page_get_memattr(m) ==
3133 VM_MEMATTR_DEFAULT,
3134 ("page %p has an unexpected memattr", m));
3135 KASSERT(m->oflags == 0,
3136 ("page %p has unexpected oflags", m));
3137 /* Don't care: PGA_NOSYNC. */
3138 if (!vm_page_none_valid(m)) {
3139 /*
3140 * First, try to allocate a new page
3141 * that is above "high". Failing
3142 * that, try to allocate a new page
3143 * that is below "m_run". Allocate
3144 * the new page between the end of
3145 * "m_run" and "high" only as a last
3146 * resort.
3147 */
3148 req = req_class;
3149 if ((m->flags & PG_NODUMP) != 0)
3150 req |= VM_ALLOC_NODUMP;
3151 if (trunc_page(high) !=
3152 ~(vm_paddr_t)PAGE_MASK) {
3153 m_new =
3154 vm_page_alloc_noobj_contig(
3155 req, 1, round_page(high),
3156 ~(vm_paddr_t)0, PAGE_SIZE,
3157 0, VM_MEMATTR_DEFAULT);
3158 } else
3159 m_new = NULL;
3160 if (m_new == NULL) {
3161 pa = VM_PAGE_TO_PHYS(m_run);
3162 m_new =
3163 vm_page_alloc_noobj_contig(
3164 req, 1, 0, pa - 1,
3165 PAGE_SIZE, 0,
3166 VM_MEMATTR_DEFAULT);
3167 }
3168 if (m_new == NULL) {
3169 pa += ptoa(npages);
3170 m_new =
3171 vm_page_alloc_noobj_contig(
3172 req, 1, pa, high, PAGE_SIZE,
3173 0, VM_MEMATTR_DEFAULT);
3174 }
3175 if (m_new == NULL) {
3176 vm_page_xunbusy(m);
3177 error = ENOMEM;
3178 goto unlock;
3179 }
3180
3181 /*
3182 * Unmap the page and check for new
3183 * wirings that may have been acquired
3184 * through a pmap lookup.
3185 */
3186 if (object->ref_count != 0 &&
3187 !vm_page_try_remove_all(m)) {
3188 vm_page_xunbusy(m);
3189 vm_page_free(m_new);
3190 error = EBUSY;
3191 goto unlock;
3192 }
3193
3194 /*
3195 * Replace "m" with the new page. For
3196 * vm_page_replace(), "m" must be busy
3197 * and dequeued. Finally, change "m"
3198 * as if vm_page_free() was called.
3199 */
3200 m_new->a.flags = m->a.flags &
3201 ~PGA_QUEUE_STATE_MASK;
3202 KASSERT(m_new->oflags == VPO_UNMANAGED,
3203 ("page %p is managed", m_new));
3204 m_new->oflags = 0;
3205 pmap_copy_page(m, m_new);
3206 m_new->valid = m->valid;
3207 m_new->dirty = m->dirty;
3208 m->flags &= ~PG_ZERO;
3209 vm_page_dequeue(m);
3210 if (vm_page_replace_hold(m_new, object,
3211 m->pindex, m) &&
3212 vm_page_free_prep(m))
3213 SLIST_INSERT_HEAD(&free, m,
3214 plinks.s.ss);
3215
3216 /*
3217 * The new page must be deactivated
3218 * before the object is unlocked.
3219 */
3220 vm_page_deactivate(m_new);
3221 } else {
3222 m->flags &= ~PG_ZERO;
3223 vm_page_dequeue(m);
3224 if (vm_page_free_prep(m))
3225 SLIST_INSERT_HEAD(&free, m,
3226 plinks.s.ss);
3227 KASSERT(m->dirty == 0,
3228 ("page %p is dirty", m));
3229 }
3230 } else
3231 error = EBUSY;
3232 unlock:
3233 VM_OBJECT_WUNLOCK(object);
3234 } else {
3235 MPASS(vm_page_domain(m) == domain);
3236 vmd = VM_DOMAIN(domain);
3237 vm_domain_free_lock(vmd);
3238 order = m->order;
3239 if (order < VM_NFREEORDER) {
3240 /*
3241 * The page is enqueued in the physical memory
3242 * allocator's free page queues. Moreover, it
3243 * is the first page in a power-of-two-sized
3244 * run of contiguous free pages. Jump ahead
3245 * to the last page within that run, and
3246 * continue from there.
3247 */
3248 m += (1 << order) - 1;
3249 }
3250 #if VM_NRESERVLEVEL > 0
3251 else if (vm_reserv_is_page_free(m))
3252 order = 0;
3253 #endif
3254 vm_domain_free_unlock(vmd);
3255 if (order == VM_NFREEORDER)
3256 error = EINVAL;
3257 }
3258 }
3259 if ((m = SLIST_FIRST(&free)) != NULL) {
3260 int cnt;
3261
3262 vmd = VM_DOMAIN(domain);
3263 cnt = 0;
3264 vm_domain_free_lock(vmd);
3265 do {
3266 MPASS(vm_page_domain(m) == domain);
3267 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3268 vm_phys_free_pages(m, 0);
3269 cnt++;
3270 } while ((m = SLIST_FIRST(&free)) != NULL);
3271 vm_domain_free_unlock(vmd);
3272 vm_domain_freecnt_inc(vmd, cnt);
3273 }
3274 return (error);
3275 }
3276
3277 #define NRUNS 16
3278
3279 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3280
3281 #define MIN_RECLAIM 8
3282
3283 /*
3284 * vm_page_reclaim_contig:
3285 *
3286 * Reclaim allocated, contiguous physical memory satisfying the specified
3287 * conditions by relocating the virtual pages using that physical memory.
3288 * Returns 0 if reclamation is successful, ERANGE if the specified domain
3289 * can't possibly satisfy the reclamation request, or ENOMEM if not
3290 * currently able to reclaim the requested number of pages. Since
3291 * relocation requires the allocation of physical pages, reclamation may
3292 * fail with ENOMEM due to a shortage of free pages. When reclamation
3293 * fails in this manner, callers are expected to perform vm_wait() before
3294 * retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3295 *
3296 * The caller must always specify an allocation class through "req".
3297 *
3298 * allocation classes:
3299 * VM_ALLOC_NORMAL normal process request
3300 * VM_ALLOC_SYSTEM system *really* needs a page
3301 * VM_ALLOC_INTERRUPT interrupt time request
3302 *
3303 * The optional allocation flags are ignored.
3304 *
3305 * "npages" must be greater than zero. Both "alignment" and "boundary"
3306 * must be a power of two.
3307 */
3308 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3309 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3310 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3311 int desired_runs)
3312 {
3313 struct vm_domain *vmd;
3314 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3315 u_long count, minalign, reclaimed;
3316 int error, i, min_reclaim, nruns, options, req_class;
3317 int segind, start_segind;
3318 int ret;
3319
3320 KASSERT(npages > 0, ("npages is 0"));
3321 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3322 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3323
3324 ret = ENOMEM;
3325
3326 /*
3327 * If the caller wants to reclaim multiple runs, try to allocate
3328 * space to store the runs. If that fails, fall back to the old
3329 * behavior of just reclaiming MIN_RECLAIM pages.
3330 */
3331 if (desired_runs > 1)
3332 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3333 M_TEMP, M_NOWAIT);
3334 else
3335 m_runs = NULL;
3336
3337 if (m_runs == NULL) {
3338 m_runs = _m_runs;
3339 nruns = NRUNS;
3340 } else {
3341 nruns = NRUNS + desired_runs - 1;
3342 }
3343 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3344
3345 /*
3346 * The caller will attempt an allocation after some runs have been
3347 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3348 * of vm_phys_alloc_contig(), round up the requested length to the next
3349 * power of two or maximum chunk size, and ensure that each run is
3350 * suitably aligned.
3351 */
3352 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3353 npages = roundup2(npages, minalign);
3354 if (alignment < ptoa(minalign))
3355 alignment = ptoa(minalign);
3356
3357 /*
3358 * The page daemon is allowed to dig deeper into the free page list.
3359 */
3360 req_class = req & VM_ALLOC_CLASS_MASK;
3361 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3362 req_class = VM_ALLOC_SYSTEM;
3363
3364 start_segind = vm_phys_lookup_segind(low);
3365
3366 /*
3367 * Return if the number of free pages cannot satisfy the requested
3368 * allocation.
3369 */
3370 vmd = VM_DOMAIN(domain);
3371 count = vmd->vmd_free_count;
3372 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3373 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3374 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3375 goto done;
3376
3377 /*
3378 * Scan up to three times, relaxing the restrictions ("options") on
3379 * the reclamation of reservations and superpages each time.
3380 */
3381 for (options = VPSC_NORESERV;;) {
3382 bool phys_range_exists = false;
3383
3384 /*
3385 * Find the highest runs that satisfy the given constraints
3386 * and restrictions, and record them in "m_runs".
3387 */
3388 count = 0;
3389 segind = start_segind;
3390 while ((segind = vm_phys_find_range(bounds, segind, domain,
3391 npages, low, high)) != -1) {
3392 phys_range_exists = true;
3393 while ((m_run = vm_page_scan_contig(npages, bounds[0],
3394 bounds[1], alignment, boundary, options))) {
3395 bounds[0] = m_run + npages;
3396 m_runs[RUN_INDEX(count, nruns)] = m_run;
3397 count++;
3398 }
3399 segind++;
3400 }
3401
3402 if (!phys_range_exists) {
3403 ret = ERANGE;
3404 goto done;
3405 }
3406
3407 /*
3408 * Reclaim the highest runs in LIFO (descending) order until
3409 * the number of reclaimed pages, "reclaimed", is at least
3410 * "min_reclaim". Reset "reclaimed" each time because each
3411 * reclamation is idempotent, and runs will (likely) recur
3412 * from one scan to the next as restrictions are relaxed.
3413 */
3414 reclaimed = 0;
3415 for (i = 0; count > 0 && i < nruns; i++) {
3416 count--;
3417 m_run = m_runs[RUN_INDEX(count, nruns)];
3418 error = vm_page_reclaim_run(req_class, domain, npages,
3419 m_run, high);
3420 if (error == 0) {
3421 reclaimed += npages;
3422 if (reclaimed >= min_reclaim) {
3423 ret = 0;
3424 goto done;
3425 }
3426 }
3427 }
3428
3429 /*
3430 * Either relax the restrictions on the next scan or return if
3431 * the last scan had no restrictions.
3432 */
3433 if (options == VPSC_NORESERV)
3434 options = VPSC_NOSUPER;
3435 else if (options == VPSC_NOSUPER)
3436 options = VPSC_ANY;
3437 else if (options == VPSC_ANY) {
3438 if (reclaimed != 0)
3439 ret = 0;
3440 goto done;
3441 }
3442 }
3443 done:
3444 if (m_runs != _m_runs)
3445 free(m_runs, M_TEMP);
3446 return (ret);
3447 }
3448
3449 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3450 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3451 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3452 {
3453 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3454 alignment, boundary, 1));
3455 }
3456
3457 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3458 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3459 u_long alignment, vm_paddr_t boundary)
3460 {
3461 struct vm_domainset_iter di;
3462 int domain, ret, status;
3463
3464 ret = ERANGE;
3465
3466 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3467 do {
3468 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3469 high, alignment, boundary);
3470 if (status == 0)
3471 return (0);
3472 else if (status == ERANGE)
3473 vm_domainset_iter_ignore(&di, domain);
3474 else {
3475 KASSERT(status == ENOMEM, ("Unrecognized error %d "
3476 "from vm_page_reclaim_contig_domain()", status));
3477 ret = ENOMEM;
3478 }
3479 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3480
3481 return (ret);
3482 }
3483
3484 /*
3485 * Set the domain in the appropriate page level domainset.
3486 */
3487 void
vm_domain_set(struct vm_domain * vmd)3488 vm_domain_set(struct vm_domain *vmd)
3489 {
3490
3491 mtx_lock(&vm_domainset_lock);
3492 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3493 vmd->vmd_minset = 1;
3494 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3495 }
3496 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3497 vmd->vmd_severeset = 1;
3498 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3499 }
3500 mtx_unlock(&vm_domainset_lock);
3501 }
3502
3503 /*
3504 * Clear the domain from the appropriate page level domainset.
3505 */
3506 void
vm_domain_clear(struct vm_domain * vmd)3507 vm_domain_clear(struct vm_domain *vmd)
3508 {
3509
3510 mtx_lock(&vm_domainset_lock);
3511 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3512 vmd->vmd_minset = 0;
3513 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3514 if (vm_min_waiters != 0) {
3515 vm_min_waiters = 0;
3516 wakeup(&vm_min_domains);
3517 }
3518 }
3519 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3520 vmd->vmd_severeset = 0;
3521 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3522 if (vm_severe_waiters != 0) {
3523 vm_severe_waiters = 0;
3524 wakeup(&vm_severe_domains);
3525 }
3526 }
3527
3528 /*
3529 * If pageout daemon needs pages, then tell it that there are
3530 * some free.
3531 */
3532 if (vmd->vmd_pageout_pages_needed &&
3533 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3534 wakeup(&vmd->vmd_pageout_pages_needed);
3535 vmd->vmd_pageout_pages_needed = 0;
3536 }
3537
3538 /* See comments in vm_wait_doms(). */
3539 if (vm_pageproc_waiters) {
3540 vm_pageproc_waiters = 0;
3541 wakeup(&vm_pageproc_waiters);
3542 }
3543 mtx_unlock(&vm_domainset_lock);
3544 }
3545
3546 /*
3547 * Wait for free pages to exceed the min threshold globally.
3548 */
3549 void
vm_wait_min(void)3550 vm_wait_min(void)
3551 {
3552
3553 mtx_lock(&vm_domainset_lock);
3554 while (vm_page_count_min()) {
3555 vm_min_waiters++;
3556 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3557 }
3558 mtx_unlock(&vm_domainset_lock);
3559 }
3560
3561 /*
3562 * Wait for free pages to exceed the severe threshold globally.
3563 */
3564 void
vm_wait_severe(void)3565 vm_wait_severe(void)
3566 {
3567
3568 mtx_lock(&vm_domainset_lock);
3569 while (vm_page_count_severe()) {
3570 vm_severe_waiters++;
3571 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3572 "vmwait", 0);
3573 }
3574 mtx_unlock(&vm_domainset_lock);
3575 }
3576
3577 u_int
vm_wait_count(void)3578 vm_wait_count(void)
3579 {
3580
3581 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3582 }
3583
3584 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3585 vm_wait_doms(const domainset_t *wdoms, int mflags)
3586 {
3587 int error;
3588
3589 error = 0;
3590
3591 /*
3592 * We use racey wakeup synchronization to avoid expensive global
3593 * locking for the pageproc when sleeping with a non-specific vm_wait.
3594 * To handle this, we only sleep for one tick in this instance. It
3595 * is expected that most allocations for the pageproc will come from
3596 * kmem or vm_page_grab* which will use the more specific and
3597 * race-free vm_wait_domain().
3598 */
3599 if (curproc == pageproc) {
3600 mtx_lock(&vm_domainset_lock);
3601 vm_pageproc_waiters++;
3602 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3603 PVM | PDROP | mflags, "pageprocwait", 1);
3604 } else {
3605 /*
3606 * XXX Ideally we would wait only until the allocation could
3607 * be satisfied. This condition can cause new allocators to
3608 * consume all freed pages while old allocators wait.
3609 */
3610 mtx_lock(&vm_domainset_lock);
3611 if (vm_page_count_min_set(wdoms)) {
3612 if (pageproc == NULL)
3613 panic("vm_wait in early boot");
3614 vm_min_waiters++;
3615 error = msleep(&vm_min_domains, &vm_domainset_lock,
3616 PVM | PDROP | mflags, "vmwait", 0);
3617 } else
3618 mtx_unlock(&vm_domainset_lock);
3619 }
3620 return (error);
3621 }
3622
3623 /*
3624 * vm_wait_domain:
3625 *
3626 * Sleep until free pages are available for allocation.
3627 * - Called in various places after failed memory allocations.
3628 */
3629 void
vm_wait_domain(int domain)3630 vm_wait_domain(int domain)
3631 {
3632 struct vm_domain *vmd;
3633 domainset_t wdom;
3634
3635 vmd = VM_DOMAIN(domain);
3636 vm_domain_free_assert_unlocked(vmd);
3637
3638 if (curproc == pageproc) {
3639 mtx_lock(&vm_domainset_lock);
3640 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3641 vmd->vmd_pageout_pages_needed = 1;
3642 msleep(&vmd->vmd_pageout_pages_needed,
3643 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3644 } else
3645 mtx_unlock(&vm_domainset_lock);
3646 } else {
3647 DOMAINSET_ZERO(&wdom);
3648 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3649 vm_wait_doms(&wdom, 0);
3650 }
3651 }
3652
3653 static int
vm_wait_flags(vm_object_t obj,int mflags)3654 vm_wait_flags(vm_object_t obj, int mflags)
3655 {
3656 struct domainset *d;
3657
3658 d = NULL;
3659
3660 /*
3661 * Carefully fetch pointers only once: the struct domainset
3662 * itself is ummutable but the pointer might change.
3663 */
3664 if (obj != NULL)
3665 d = obj->domain.dr_policy;
3666 if (d == NULL)
3667 d = curthread->td_domain.dr_policy;
3668
3669 return (vm_wait_doms(&d->ds_mask, mflags));
3670 }
3671
3672 /*
3673 * vm_wait:
3674 *
3675 * Sleep until free pages are available for allocation in the
3676 * affinity domains of the obj. If obj is NULL, the domain set
3677 * for the calling thread is used.
3678 * Called in various places after failed memory allocations.
3679 */
3680 void
vm_wait(vm_object_t obj)3681 vm_wait(vm_object_t obj)
3682 {
3683 (void)vm_wait_flags(obj, 0);
3684 }
3685
3686 int
vm_wait_intr(vm_object_t obj)3687 vm_wait_intr(vm_object_t obj)
3688 {
3689 return (vm_wait_flags(obj, PCATCH));
3690 }
3691
3692 /*
3693 * vm_domain_alloc_fail:
3694 *
3695 * Called when a page allocation function fails. Informs the
3696 * pagedaemon and performs the requested wait. Requires the
3697 * domain_free and object lock on entry. Returns with the
3698 * object lock held and free lock released. Returns an error when
3699 * retry is necessary.
3700 *
3701 */
3702 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3703 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3704 {
3705
3706 vm_domain_free_assert_unlocked(vmd);
3707
3708 atomic_add_int(&vmd->vmd_pageout_deficit,
3709 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3710 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3711 if (object != NULL)
3712 VM_OBJECT_WUNLOCK(object);
3713 vm_wait_domain(vmd->vmd_domain);
3714 if (object != NULL)
3715 VM_OBJECT_WLOCK(object);
3716 if (req & VM_ALLOC_WAITOK)
3717 return (EAGAIN);
3718 }
3719
3720 return (0);
3721 }
3722
3723 /*
3724 * vm_waitpfault:
3725 *
3726 * Sleep until free pages are available for allocation.
3727 * - Called only in vm_fault so that processes page faulting
3728 * can be easily tracked.
3729 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3730 * processes will be able to grab memory first. Do not change
3731 * this balance without careful testing first.
3732 */
3733 void
vm_waitpfault(struct domainset * dset,int timo)3734 vm_waitpfault(struct domainset *dset, int timo)
3735 {
3736
3737 /*
3738 * XXX Ideally we would wait only until the allocation could
3739 * be satisfied. This condition can cause new allocators to
3740 * consume all freed pages while old allocators wait.
3741 */
3742 mtx_lock(&vm_domainset_lock);
3743 if (vm_page_count_min_set(&dset->ds_mask)) {
3744 vm_min_waiters++;
3745 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3746 "pfault", timo);
3747 } else
3748 mtx_unlock(&vm_domainset_lock);
3749 }
3750
3751 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3752 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3753 {
3754
3755 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3756 }
3757
3758 #ifdef INVARIANTS
3759 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3760 vm_page_pagequeue(vm_page_t m)
3761 {
3762
3763 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3764 }
3765 #endif
3766
3767 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3768 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3769 {
3770 vm_page_astate_t tmp;
3771
3772 tmp = *old;
3773 do {
3774 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3775 return (true);
3776 counter_u64_add(pqstate_commit_retries, 1);
3777 } while (old->_bits == tmp._bits);
3778
3779 return (false);
3780 }
3781
3782 /*
3783 * Do the work of committing a queue state update that moves the page out of
3784 * its current queue.
3785 */
3786 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3787 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3788 vm_page_astate_t *old, vm_page_astate_t new)
3789 {
3790 vm_page_t next;
3791
3792 vm_pagequeue_assert_locked(pq);
3793 KASSERT(vm_page_pagequeue(m) == pq,
3794 ("%s: queue %p does not match page %p", __func__, pq, m));
3795 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3796 ("%s: invalid queue indices %d %d",
3797 __func__, old->queue, new.queue));
3798
3799 /*
3800 * Once the queue index of the page changes there is nothing
3801 * synchronizing with further updates to the page's physical
3802 * queue state. Therefore we must speculatively remove the page
3803 * from the queue now and be prepared to roll back if the queue
3804 * state update fails. If the page is not physically enqueued then
3805 * we just update its queue index.
3806 */
3807 if ((old->flags & PGA_ENQUEUED) != 0) {
3808 new.flags &= ~PGA_ENQUEUED;
3809 next = TAILQ_NEXT(m, plinks.q);
3810 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3811 vm_pagequeue_cnt_dec(pq);
3812 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3813 if (next == NULL)
3814 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3815 else
3816 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3817 vm_pagequeue_cnt_inc(pq);
3818 return (false);
3819 } else {
3820 return (true);
3821 }
3822 } else {
3823 return (vm_page_pqstate_fcmpset(m, old, new));
3824 }
3825 }
3826
3827 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3828 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3829 vm_page_astate_t new)
3830 {
3831 struct vm_pagequeue *pq;
3832 vm_page_astate_t as;
3833 bool ret;
3834
3835 pq = _vm_page_pagequeue(m, old->queue);
3836
3837 /*
3838 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3839 * corresponding page queue lock is held.
3840 */
3841 vm_pagequeue_lock(pq);
3842 as = vm_page_astate_load(m);
3843 if (__predict_false(as._bits != old->_bits)) {
3844 *old = as;
3845 ret = false;
3846 } else {
3847 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3848 }
3849 vm_pagequeue_unlock(pq);
3850 return (ret);
3851 }
3852
3853 /*
3854 * Commit a queue state update that enqueues or requeues a page.
3855 */
3856 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3857 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3858 vm_page_astate_t *old, vm_page_astate_t new)
3859 {
3860 struct vm_domain *vmd;
3861
3862 vm_pagequeue_assert_locked(pq);
3863 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3864 ("%s: invalid queue indices %d %d",
3865 __func__, old->queue, new.queue));
3866
3867 new.flags |= PGA_ENQUEUED;
3868 if (!vm_page_pqstate_fcmpset(m, old, new))
3869 return (false);
3870
3871 if ((old->flags & PGA_ENQUEUED) != 0)
3872 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3873 else
3874 vm_pagequeue_cnt_inc(pq);
3875
3876 /*
3877 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3878 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3879 * applied, even if it was set first.
3880 */
3881 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3882 vmd = vm_pagequeue_domain(m);
3883 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3884 ("%s: invalid page queue for page %p", __func__, m));
3885 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3886 } else {
3887 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3888 }
3889 return (true);
3890 }
3891
3892 /*
3893 * Commit a queue state update that encodes a request for a deferred queue
3894 * operation.
3895 */
3896 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3897 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3898 vm_page_astate_t new)
3899 {
3900
3901 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3902 ("%s: invalid state, queue %d flags %x",
3903 __func__, new.queue, new.flags));
3904
3905 if (old->_bits != new._bits &&
3906 !vm_page_pqstate_fcmpset(m, old, new))
3907 return (false);
3908 vm_page_pqbatch_submit(m, new.queue);
3909 return (true);
3910 }
3911
3912 /*
3913 * A generic queue state update function. This handles more cases than the
3914 * specialized functions above.
3915 */
3916 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3917 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3918 {
3919
3920 if (old->_bits == new._bits)
3921 return (true);
3922
3923 if (old->queue != PQ_NONE && new.queue != old->queue) {
3924 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3925 return (false);
3926 if (new.queue != PQ_NONE)
3927 vm_page_pqbatch_submit(m, new.queue);
3928 } else {
3929 if (!vm_page_pqstate_fcmpset(m, old, new))
3930 return (false);
3931 if (new.queue != PQ_NONE &&
3932 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3933 vm_page_pqbatch_submit(m, new.queue);
3934 }
3935 return (true);
3936 }
3937
3938 /*
3939 * Apply deferred queue state updates to a page.
3940 */
3941 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3942 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3943 {
3944 vm_page_astate_t new, old;
3945
3946 CRITICAL_ASSERT(curthread);
3947 vm_pagequeue_assert_locked(pq);
3948 KASSERT(queue < PQ_COUNT,
3949 ("%s: invalid queue index %d", __func__, queue));
3950 KASSERT(pq == _vm_page_pagequeue(m, queue),
3951 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3952
3953 for (old = vm_page_astate_load(m);;) {
3954 if (__predict_false(old.queue != queue ||
3955 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3956 counter_u64_add(queue_nops, 1);
3957 break;
3958 }
3959 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3960 ("%s: page %p is unmanaged", __func__, m));
3961
3962 new = old;
3963 if ((old.flags & PGA_DEQUEUE) != 0) {
3964 new.flags &= ~PGA_QUEUE_OP_MASK;
3965 new.queue = PQ_NONE;
3966 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3967 m, &old, new))) {
3968 counter_u64_add(queue_ops, 1);
3969 break;
3970 }
3971 } else {
3972 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3973 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3974 m, &old, new))) {
3975 counter_u64_add(queue_ops, 1);
3976 break;
3977 }
3978 }
3979 }
3980 }
3981
3982 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3983 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3984 uint8_t queue)
3985 {
3986 int i;
3987
3988 for (i = 0; i < bq->bq_cnt; i++)
3989 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3990 vm_batchqueue_init(bq);
3991 }
3992
3993 /*
3994 * vm_page_pqbatch_submit: [ internal use only ]
3995 *
3996 * Enqueue a page in the specified page queue's batched work queue.
3997 * The caller must have encoded the requested operation in the page
3998 * structure's a.flags field.
3999 */
4000 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)4001 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
4002 {
4003 struct vm_batchqueue *bq;
4004 struct vm_pagequeue *pq;
4005 int domain, slots_remaining;
4006
4007 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
4008
4009 domain = vm_page_domain(m);
4010 critical_enter();
4011 bq = DPCPU_PTR(pqbatch[domain][queue]);
4012 slots_remaining = vm_batchqueue_insert(bq, m);
4013 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
4014 /* keep building the bq */
4015 critical_exit();
4016 return;
4017 } else if (slots_remaining > 0 ) {
4018 /* Try to process the bq if we can get the lock */
4019 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4020 if (vm_pagequeue_trylock(pq)) {
4021 vm_pqbatch_process(pq, bq, queue);
4022 vm_pagequeue_unlock(pq);
4023 }
4024 critical_exit();
4025 return;
4026 }
4027 critical_exit();
4028
4029 /* if we make it here, the bq is full so wait for the lock */
4030
4031 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4032 vm_pagequeue_lock(pq);
4033 critical_enter();
4034 bq = DPCPU_PTR(pqbatch[domain][queue]);
4035 vm_pqbatch_process(pq, bq, queue);
4036 vm_pqbatch_process_page(pq, m, queue);
4037 vm_pagequeue_unlock(pq);
4038 critical_exit();
4039 }
4040
4041 /*
4042 * vm_page_pqbatch_drain: [ internal use only ]
4043 *
4044 * Force all per-CPU page queue batch queues to be drained. This is
4045 * intended for use in severe memory shortages, to ensure that pages
4046 * do not remain stuck in the batch queues.
4047 */
4048 void
vm_page_pqbatch_drain(void)4049 vm_page_pqbatch_drain(void)
4050 {
4051 struct thread *td;
4052 struct vm_domain *vmd;
4053 struct vm_pagequeue *pq;
4054 int cpu, domain, queue;
4055
4056 td = curthread;
4057 CPU_FOREACH(cpu) {
4058 thread_lock(td);
4059 sched_bind(td, cpu);
4060 thread_unlock(td);
4061
4062 for (domain = 0; domain < vm_ndomains; domain++) {
4063 vmd = VM_DOMAIN(domain);
4064 for (queue = 0; queue < PQ_COUNT; queue++) {
4065 pq = &vmd->vmd_pagequeues[queue];
4066 vm_pagequeue_lock(pq);
4067 critical_enter();
4068 vm_pqbatch_process(pq,
4069 DPCPU_PTR(pqbatch[domain][queue]), queue);
4070 critical_exit();
4071 vm_pagequeue_unlock(pq);
4072 }
4073 }
4074 }
4075 thread_lock(td);
4076 sched_unbind(td);
4077 thread_unlock(td);
4078 }
4079
4080 /*
4081 * vm_page_dequeue_deferred: [ internal use only ]
4082 *
4083 * Request removal of the given page from its current page
4084 * queue. Physical removal from the queue may be deferred
4085 * indefinitely.
4086 */
4087 void
vm_page_dequeue_deferred(vm_page_t m)4088 vm_page_dequeue_deferred(vm_page_t m)
4089 {
4090 vm_page_astate_t new, old;
4091
4092 old = vm_page_astate_load(m);
4093 do {
4094 if (old.queue == PQ_NONE) {
4095 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4096 ("%s: page %p has unexpected queue state",
4097 __func__, m));
4098 break;
4099 }
4100 new = old;
4101 new.flags |= PGA_DEQUEUE;
4102 } while (!vm_page_pqstate_commit_request(m, &old, new));
4103 }
4104
4105 /*
4106 * vm_page_dequeue:
4107 *
4108 * Remove the page from whichever page queue it's in, if any, before
4109 * returning.
4110 */
4111 void
vm_page_dequeue(vm_page_t m)4112 vm_page_dequeue(vm_page_t m)
4113 {
4114 vm_page_astate_t new, old;
4115
4116 old = vm_page_astate_load(m);
4117 do {
4118 if (old.queue == PQ_NONE) {
4119 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4120 ("%s: page %p has unexpected queue state",
4121 __func__, m));
4122 break;
4123 }
4124 new = old;
4125 new.flags &= ~PGA_QUEUE_OP_MASK;
4126 new.queue = PQ_NONE;
4127 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4128
4129 }
4130
4131 /*
4132 * Schedule the given page for insertion into the specified page queue.
4133 * Physical insertion of the page may be deferred indefinitely.
4134 */
4135 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4136 vm_page_enqueue(vm_page_t m, uint8_t queue)
4137 {
4138
4139 KASSERT(m->a.queue == PQ_NONE &&
4140 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4141 ("%s: page %p is already enqueued", __func__, m));
4142 KASSERT(m->ref_count > 0,
4143 ("%s: page %p does not carry any references", __func__, m));
4144
4145 m->a.queue = queue;
4146 if ((m->a.flags & PGA_REQUEUE) == 0)
4147 vm_page_aflag_set(m, PGA_REQUEUE);
4148 vm_page_pqbatch_submit(m, queue);
4149 }
4150
4151 /*
4152 * vm_page_free_prep:
4153 *
4154 * Prepares the given page to be put on the free list,
4155 * disassociating it from any VM object. The caller may return
4156 * the page to the free list only if this function returns true.
4157 *
4158 * The object, if it exists, must be locked, and then the page must
4159 * be xbusy. Otherwise the page must be not busied. A managed
4160 * page must be unmapped.
4161 */
4162 static bool
vm_page_free_prep(vm_page_t m)4163 vm_page_free_prep(vm_page_t m)
4164 {
4165
4166 /*
4167 * Synchronize with threads that have dropped a reference to this
4168 * page.
4169 */
4170 atomic_thread_fence_acq();
4171
4172 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4173 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4174 uint64_t *p;
4175 int i;
4176 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4177 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4178 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4179 m, i, (uintmax_t)*p));
4180 }
4181 #endif
4182 KASSERT((m->flags & PG_NOFREE) == 0,
4183 ("%s: attempting to free a PG_NOFREE page", __func__));
4184 if ((m->oflags & VPO_UNMANAGED) == 0) {
4185 KASSERT(!pmap_page_is_mapped(m),
4186 ("vm_page_free_prep: freeing mapped page %p", m));
4187 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4188 ("vm_page_free_prep: mapping flags set in page %p", m));
4189 } else {
4190 KASSERT(m->a.queue == PQ_NONE,
4191 ("vm_page_free_prep: unmanaged page %p is queued", m));
4192 }
4193 VM_CNT_INC(v_tfree);
4194
4195 if (m->object != NULL) {
4196 vm_page_radix_remove(m);
4197 vm_page_free_object_prep(m);
4198 } else
4199 vm_page_assert_unbusied(m);
4200
4201 vm_page_busy_free(m);
4202
4203 /*
4204 * If fictitious remove object association and
4205 * return.
4206 */
4207 if ((m->flags & PG_FICTITIOUS) != 0) {
4208 KASSERT(m->ref_count == 1,
4209 ("fictitious page %p is referenced", m));
4210 KASSERT(m->a.queue == PQ_NONE,
4211 ("fictitious page %p is queued", m));
4212 return (false);
4213 }
4214
4215 /*
4216 * Pages need not be dequeued before they are returned to the physical
4217 * memory allocator, but they must at least be marked for a deferred
4218 * dequeue.
4219 */
4220 if ((m->oflags & VPO_UNMANAGED) == 0)
4221 vm_page_dequeue_deferred(m);
4222
4223 m->valid = 0;
4224 vm_page_undirty(m);
4225
4226 if (m->ref_count != 0)
4227 panic("vm_page_free_prep: page %p has references", m);
4228
4229 /*
4230 * Restore the default memory attribute to the page.
4231 */
4232 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4233 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4234
4235 #if VM_NRESERVLEVEL > 0
4236 /*
4237 * Determine whether the page belongs to a reservation. If the page was
4238 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4239 * as an optimization, we avoid the check in that case.
4240 */
4241 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4242 return (false);
4243 #endif
4244
4245 return (true);
4246 }
4247
4248 /*
4249 * vm_page_free_toq:
4250 *
4251 * Returns the given page to the free list, disassociating it
4252 * from any VM object.
4253 *
4254 * The object must be locked. The page must be exclusively busied if it
4255 * belongs to an object.
4256 */
4257 static void
vm_page_free_toq(vm_page_t m)4258 vm_page_free_toq(vm_page_t m)
4259 {
4260 struct vm_domain *vmd;
4261 uma_zone_t zone;
4262
4263 if (!vm_page_free_prep(m))
4264 return;
4265
4266 vmd = vm_pagequeue_domain(m);
4267 zone = vmd->vmd_pgcache[m->pool].zone;
4268 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4269 uma_zfree(zone, m);
4270 return;
4271 }
4272 vm_domain_free_lock(vmd);
4273 vm_phys_free_pages(m, 0);
4274 vm_domain_free_unlock(vmd);
4275 vm_domain_freecnt_inc(vmd, 1);
4276 }
4277
4278 /*
4279 * vm_page_free_pages_toq:
4280 *
4281 * Returns a list of pages to the free list, disassociating it
4282 * from any VM object. In other words, this is equivalent to
4283 * calling vm_page_free_toq() for each page of a list of VM objects.
4284 */
4285 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4286 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4287 {
4288 vm_page_t m;
4289 int count;
4290
4291 if (SLIST_EMPTY(free))
4292 return (0);
4293
4294 count = 0;
4295 while ((m = SLIST_FIRST(free)) != NULL) {
4296 count++;
4297 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4298 vm_page_free_toq(m);
4299 }
4300
4301 if (update_wire_count)
4302 vm_wire_sub(count);
4303 return (count);
4304 }
4305
4306 /*
4307 * Mark this page as wired down. For managed pages, this prevents reclamation
4308 * by the page daemon, or when the containing object, if any, is destroyed.
4309 */
4310 void
vm_page_wire(vm_page_t m)4311 vm_page_wire(vm_page_t m)
4312 {
4313 u_int old;
4314
4315 #ifdef INVARIANTS
4316 if (m->object != NULL && !vm_page_busied(m) &&
4317 !vm_object_busied(m->object))
4318 VM_OBJECT_ASSERT_LOCKED(m->object);
4319 #endif
4320 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4321 VPRC_WIRE_COUNT(m->ref_count) >= 1,
4322 ("vm_page_wire: fictitious page %p has zero wirings", m));
4323
4324 old = atomic_fetchadd_int(&m->ref_count, 1);
4325 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4326 ("vm_page_wire: counter overflow for page %p", m));
4327 if (VPRC_WIRE_COUNT(old) == 0) {
4328 if ((m->oflags & VPO_UNMANAGED) == 0)
4329 vm_page_aflag_set(m, PGA_DEQUEUE);
4330 vm_wire_add(1);
4331 }
4332 }
4333
4334 /*
4335 * Attempt to wire a mapped page following a pmap lookup of that page.
4336 * This may fail if a thread is concurrently tearing down mappings of the page.
4337 * The transient failure is acceptable because it translates to the
4338 * failure of the caller pmap_extract_and_hold(), which should be then
4339 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4340 */
4341 bool
vm_page_wire_mapped(vm_page_t m)4342 vm_page_wire_mapped(vm_page_t m)
4343 {
4344 u_int old;
4345
4346 old = atomic_load_int(&m->ref_count);
4347 do {
4348 KASSERT(old > 0,
4349 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4350 if ((old & VPRC_BLOCKED) != 0)
4351 return (false);
4352 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4353
4354 if (VPRC_WIRE_COUNT(old) == 0) {
4355 if ((m->oflags & VPO_UNMANAGED) == 0)
4356 vm_page_aflag_set(m, PGA_DEQUEUE);
4357 vm_wire_add(1);
4358 }
4359 return (true);
4360 }
4361
4362 /*
4363 * Release a wiring reference to a managed page. If the page still belongs to
4364 * an object, update its position in the page queues to reflect the reference.
4365 * If the wiring was the last reference to the page, free the page.
4366 */
4367 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4368 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4369 {
4370 u_int old;
4371
4372 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4373 ("%s: page %p is unmanaged", __func__, m));
4374
4375 /*
4376 * Update LRU state before releasing the wiring reference.
4377 * Use a release store when updating the reference count to
4378 * synchronize with vm_page_free_prep().
4379 */
4380 old = atomic_load_int(&m->ref_count);
4381 do {
4382 u_int count;
4383
4384 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4385 ("vm_page_unwire: wire count underflow for page %p", m));
4386
4387 count = old & ~VPRC_BLOCKED;
4388 if (count > VPRC_OBJREF + 1) {
4389 /*
4390 * The page has at least one other wiring reference. An
4391 * earlier iteration of this loop may have called
4392 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4393 * re-set it if necessary.
4394 */
4395 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4396 vm_page_aflag_set(m, PGA_DEQUEUE);
4397 } else if (count == VPRC_OBJREF + 1) {
4398 /*
4399 * This is the last wiring. Clear PGA_DEQUEUE and
4400 * update the page's queue state to reflect the
4401 * reference. If the page does not belong to an object
4402 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4403 * clear leftover queue state.
4404 */
4405 vm_page_release_toq(m, nqueue, noreuse);
4406 } else if (count == 1) {
4407 vm_page_aflag_clear(m, PGA_DEQUEUE);
4408 }
4409 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4410
4411 if (VPRC_WIRE_COUNT(old) == 1) {
4412 vm_wire_sub(1);
4413 if (old == 1)
4414 vm_page_free(m);
4415 }
4416 }
4417
4418 /*
4419 * Release one wiring of the specified page, potentially allowing it to be
4420 * paged out.
4421 *
4422 * Only managed pages belonging to an object can be paged out. If the number
4423 * of wirings transitions to zero and the page is eligible for page out, then
4424 * the page is added to the specified paging queue. If the released wiring
4425 * represented the last reference to the page, the page is freed.
4426 */
4427 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4428 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4429 {
4430
4431 KASSERT(nqueue < PQ_COUNT,
4432 ("vm_page_unwire: invalid queue %u request for page %p",
4433 nqueue, m));
4434
4435 if ((m->oflags & VPO_UNMANAGED) != 0) {
4436 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4437 vm_page_free(m);
4438 return;
4439 }
4440 vm_page_unwire_managed(m, nqueue, false);
4441 }
4442
4443 /*
4444 * Unwire a page without (re-)inserting it into a page queue. It is up
4445 * to the caller to enqueue, requeue, or free the page as appropriate.
4446 * In most cases involving managed pages, vm_page_unwire() should be used
4447 * instead.
4448 */
4449 bool
vm_page_unwire_noq(vm_page_t m)4450 vm_page_unwire_noq(vm_page_t m)
4451 {
4452 u_int old;
4453
4454 old = vm_page_drop(m, 1);
4455 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4456 ("%s: counter underflow for page %p", __func__, m));
4457 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4458 ("%s: missing ref on fictitious page %p", __func__, m));
4459
4460 if (VPRC_WIRE_COUNT(old) > 1)
4461 return (false);
4462 if ((m->oflags & VPO_UNMANAGED) == 0)
4463 vm_page_aflag_clear(m, PGA_DEQUEUE);
4464 vm_wire_sub(1);
4465 return (true);
4466 }
4467
4468 /*
4469 * Ensure that the page ends up in the specified page queue. If the page is
4470 * active or being moved to the active queue, ensure that its act_count is
4471 * at least ACT_INIT but do not otherwise mess with it.
4472 */
4473 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4474 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4475 {
4476 vm_page_astate_t old, new;
4477
4478 KASSERT(m->ref_count > 0,
4479 ("%s: page %p does not carry any references", __func__, m));
4480 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4481 ("%s: invalid flags %x", __func__, nflag));
4482
4483 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4484 return;
4485
4486 old = vm_page_astate_load(m);
4487 do {
4488 if ((old.flags & PGA_DEQUEUE) != 0)
4489 break;
4490 new = old;
4491 new.flags &= ~PGA_QUEUE_OP_MASK;
4492 if (nqueue == PQ_ACTIVE)
4493 new.act_count = max(old.act_count, ACT_INIT);
4494 if (old.queue == nqueue) {
4495 /*
4496 * There is no need to requeue pages already in the
4497 * active queue.
4498 */
4499 if (nqueue != PQ_ACTIVE ||
4500 (old.flags & PGA_ENQUEUED) == 0)
4501 new.flags |= nflag;
4502 } else {
4503 new.flags |= nflag;
4504 new.queue = nqueue;
4505 }
4506 } while (!vm_page_pqstate_commit(m, &old, new));
4507 }
4508
4509 /*
4510 * Put the specified page on the active list (if appropriate).
4511 */
4512 void
vm_page_activate(vm_page_t m)4513 vm_page_activate(vm_page_t m)
4514 {
4515
4516 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4517 }
4518
4519 /*
4520 * Move the specified page to the tail of the inactive queue, or requeue
4521 * the page if it is already in the inactive queue.
4522 */
4523 void
vm_page_deactivate(vm_page_t m)4524 vm_page_deactivate(vm_page_t m)
4525 {
4526
4527 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4528 }
4529
4530 void
vm_page_deactivate_noreuse(vm_page_t m)4531 vm_page_deactivate_noreuse(vm_page_t m)
4532 {
4533
4534 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4535 }
4536
4537 /*
4538 * Put a page in the laundry, or requeue it if it is already there.
4539 */
4540 void
vm_page_launder(vm_page_t m)4541 vm_page_launder(vm_page_t m)
4542 {
4543
4544 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4545 }
4546
4547 /*
4548 * Put a page in the PQ_UNSWAPPABLE holding queue.
4549 */
4550 void
vm_page_unswappable(vm_page_t m)4551 vm_page_unswappable(vm_page_t m)
4552 {
4553
4554 VM_OBJECT_ASSERT_LOCKED(m->object);
4555 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4556 ("page %p already unswappable", m));
4557
4558 vm_page_dequeue(m);
4559 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4560 }
4561
4562 /*
4563 * Release a page back to the page queues in preparation for unwiring.
4564 */
4565 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4566 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4567 {
4568 vm_page_astate_t old, new;
4569 uint16_t nflag;
4570
4571 /*
4572 * Use a check of the valid bits to determine whether we should
4573 * accelerate reclamation of the page. The object lock might not be
4574 * held here, in which case the check is racy. At worst we will either
4575 * accelerate reclamation of a valid page and violate LRU, or
4576 * unnecessarily defer reclamation of an invalid page.
4577 *
4578 * If we were asked to not cache the page, place it near the head of the
4579 * inactive queue so that is reclaimed sooner.
4580 */
4581 if (noreuse || vm_page_none_valid(m)) {
4582 nqueue = PQ_INACTIVE;
4583 nflag = PGA_REQUEUE_HEAD;
4584 } else {
4585 nflag = PGA_REQUEUE;
4586 }
4587
4588 old = vm_page_astate_load(m);
4589 do {
4590 new = old;
4591
4592 /*
4593 * If the page is already in the active queue and we are not
4594 * trying to accelerate reclamation, simply mark it as
4595 * referenced and avoid any queue operations.
4596 */
4597 new.flags &= ~PGA_QUEUE_OP_MASK;
4598 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4599 (old.flags & PGA_ENQUEUED) != 0)
4600 new.flags |= PGA_REFERENCED;
4601 else {
4602 new.flags |= nflag;
4603 new.queue = nqueue;
4604 }
4605 } while (!vm_page_pqstate_commit(m, &old, new));
4606 }
4607
4608 /*
4609 * Unwire a page and either attempt to free it or re-add it to the page queues.
4610 */
4611 void
vm_page_release(vm_page_t m,int flags)4612 vm_page_release(vm_page_t m, int flags)
4613 {
4614 vm_object_t object;
4615
4616 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4617 ("vm_page_release: page %p is unmanaged", m));
4618
4619 if ((flags & VPR_TRYFREE) != 0) {
4620 for (;;) {
4621 object = atomic_load_ptr(&m->object);
4622 if (object == NULL)
4623 break;
4624 /* Depends on type-stability. */
4625 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4626 break;
4627 if (object == m->object) {
4628 vm_page_release_locked(m, flags);
4629 VM_OBJECT_WUNLOCK(object);
4630 return;
4631 }
4632 VM_OBJECT_WUNLOCK(object);
4633 }
4634 }
4635 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4636 }
4637
4638 /* See vm_page_release(). */
4639 void
vm_page_release_locked(vm_page_t m,int flags)4640 vm_page_release_locked(vm_page_t m, int flags)
4641 {
4642
4643 VM_OBJECT_ASSERT_WLOCKED(m->object);
4644 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4645 ("vm_page_release_locked: page %p is unmanaged", m));
4646
4647 if (vm_page_unwire_noq(m)) {
4648 if ((flags & VPR_TRYFREE) != 0 &&
4649 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4650 m->dirty == 0 && vm_page_tryxbusy(m)) {
4651 /*
4652 * An unlocked lookup may have wired the page before the
4653 * busy lock was acquired, in which case the page must
4654 * not be freed.
4655 */
4656 if (__predict_true(!vm_page_wired(m))) {
4657 vm_page_free(m);
4658 return;
4659 }
4660 vm_page_xunbusy(m);
4661 } else {
4662 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4663 }
4664 }
4665 }
4666
4667 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4668 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4669 {
4670 u_int old;
4671
4672 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4673 ("vm_page_try_blocked_op: page %p has no object", m));
4674 KASSERT(vm_page_busied(m),
4675 ("vm_page_try_blocked_op: page %p is not busy", m));
4676 VM_OBJECT_ASSERT_LOCKED(m->object);
4677
4678 old = atomic_load_int(&m->ref_count);
4679 do {
4680 KASSERT(old != 0,
4681 ("vm_page_try_blocked_op: page %p has no references", m));
4682 KASSERT((old & VPRC_BLOCKED) == 0,
4683 ("vm_page_try_blocked_op: page %p blocks wirings", m));
4684 if (VPRC_WIRE_COUNT(old) != 0)
4685 return (false);
4686 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4687
4688 (op)(m);
4689
4690 /*
4691 * If the object is read-locked, new wirings may be created via an
4692 * object lookup.
4693 */
4694 old = vm_page_drop(m, VPRC_BLOCKED);
4695 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4696 old == (VPRC_BLOCKED | VPRC_OBJREF),
4697 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4698 old, m));
4699 return (true);
4700 }
4701
4702 /*
4703 * Atomically check for wirings and remove all mappings of the page.
4704 */
4705 bool
vm_page_try_remove_all(vm_page_t m)4706 vm_page_try_remove_all(vm_page_t m)
4707 {
4708
4709 return (vm_page_try_blocked_op(m, pmap_remove_all));
4710 }
4711
4712 /*
4713 * Atomically check for wirings and remove all writeable mappings of the page.
4714 */
4715 bool
vm_page_try_remove_write(vm_page_t m)4716 vm_page_try_remove_write(vm_page_t m)
4717 {
4718
4719 return (vm_page_try_blocked_op(m, pmap_remove_write));
4720 }
4721
4722 /*
4723 * vm_page_advise
4724 *
4725 * Apply the specified advice to the given page.
4726 */
4727 void
vm_page_advise(vm_page_t m,int advice)4728 vm_page_advise(vm_page_t m, int advice)
4729 {
4730
4731 VM_OBJECT_ASSERT_WLOCKED(m->object);
4732 vm_page_assert_xbusied(m);
4733
4734 if (advice == MADV_FREE)
4735 /*
4736 * Mark the page clean. This will allow the page to be freed
4737 * without first paging it out. MADV_FREE pages are often
4738 * quickly reused by malloc(3), so we do not do anything that
4739 * would result in a page fault on a later access.
4740 */
4741 vm_page_undirty(m);
4742 else if (advice != MADV_DONTNEED) {
4743 if (advice == MADV_WILLNEED)
4744 vm_page_activate(m);
4745 return;
4746 }
4747
4748 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4749 vm_page_dirty(m);
4750
4751 /*
4752 * Clear any references to the page. Otherwise, the page daemon will
4753 * immediately reactivate the page.
4754 */
4755 vm_page_aflag_clear(m, PGA_REFERENCED);
4756
4757 /*
4758 * Place clean pages near the head of the inactive queue rather than
4759 * the tail, thus defeating the queue's LRU operation and ensuring that
4760 * the page will be reused quickly. Dirty pages not already in the
4761 * laundry are moved there.
4762 */
4763 if (m->dirty == 0)
4764 vm_page_deactivate_noreuse(m);
4765 else if (!vm_page_in_laundry(m))
4766 vm_page_launder(m);
4767 }
4768
4769 /*
4770 * vm_page_grab_release
4771 *
4772 * Helper routine for grab functions to release busy on return.
4773 */
4774 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4775 vm_page_grab_release(vm_page_t m, int allocflags)
4776 {
4777
4778 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4779 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4780 vm_page_sunbusy(m);
4781 else
4782 vm_page_xunbusy(m);
4783 }
4784 }
4785
4786 /*
4787 * vm_page_grab_sleep
4788 *
4789 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4790 * if the caller should retry and false otherwise.
4791 *
4792 * If the object is locked on entry the object will be unlocked with
4793 * false returns and still locked but possibly having been dropped
4794 * with true returns.
4795 */
4796 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4797 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4798 const char *wmesg, int allocflags, bool locked)
4799 {
4800
4801 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4802 return (false);
4803
4804 /*
4805 * Reference the page before unlocking and sleeping so that
4806 * the page daemon is less likely to reclaim it.
4807 */
4808 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4809 vm_page_reference(m);
4810
4811 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4812 locked)
4813 VM_OBJECT_WLOCK(object);
4814 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4815 return (false);
4816
4817 return (true);
4818 }
4819
4820 /*
4821 * Assert that the grab flags are valid.
4822 */
4823 static inline void
vm_page_grab_check(int allocflags)4824 vm_page_grab_check(int allocflags)
4825 {
4826
4827 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4828 (allocflags & VM_ALLOC_WIRED) != 0,
4829 ("vm_page_grab*: the pages must be busied or wired"));
4830
4831 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4832 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4833 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4834 }
4835
4836 /*
4837 * Calculate the page allocation flags for grab.
4838 */
4839 static inline int
vm_page_grab_pflags(int allocflags)4840 vm_page_grab_pflags(int allocflags)
4841 {
4842 int pflags;
4843
4844 pflags = allocflags &
4845 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4846 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4847 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4848 pflags |= VM_ALLOC_WAITFAIL;
4849 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4850 pflags |= VM_ALLOC_SBUSY;
4851
4852 return (pflags);
4853 }
4854
4855 /*
4856 * Grab a page, waiting until we are waken up due to the page
4857 * changing state. We keep on waiting, if the page continues
4858 * to be in the object. If the page doesn't exist, first allocate it
4859 * and then conditionally zero it.
4860 *
4861 * This routine may sleep.
4862 *
4863 * The object must be locked on entry. The lock will, however, be released
4864 * and reacquired if the routine sleeps.
4865 */
4866 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4867 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4868 {
4869 vm_page_t m;
4870
4871 VM_OBJECT_ASSERT_WLOCKED(object);
4872 vm_page_grab_check(allocflags);
4873
4874 retrylookup:
4875 if ((m = vm_page_lookup(object, pindex)) != NULL) {
4876 if (!vm_page_tryacquire(m, allocflags)) {
4877 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4878 allocflags, true))
4879 goto retrylookup;
4880 return (NULL);
4881 }
4882 goto out;
4883 }
4884 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4885 return (NULL);
4886 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4887 if (m == NULL) {
4888 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4889 return (NULL);
4890 goto retrylookup;
4891 }
4892 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4893 pmap_zero_page(m);
4894
4895 out:
4896 vm_page_grab_release(m, allocflags);
4897
4898 return (m);
4899 }
4900
4901 /*
4902 * Attempt to validate a page, locklessly acquiring it if necessary, given a
4903 * (object, pindex) tuple and either an invalided page or NULL. The resulting
4904 * page will be validated against the identity tuple, and busied or wired as
4905 * requested. A NULL page returned guarantees that the page was not in radix at
4906 * the time of the call but callers must perform higher level synchronization or
4907 * retry the operation under a lock if they require an atomic answer. This is
4908 * the only lock free validation routine, other routines can depend on the
4909 * resulting page state.
4910 *
4911 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4912 * caller flags.
4913 */
4914 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4915 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4916 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4917 int allocflags)
4918 {
4919 if (m == NULL)
4920 m = vm_page_lookup_unlocked(object, pindex);
4921 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4922 if (vm_page_trybusy(m, allocflags)) {
4923 if (m->object == object && m->pindex == pindex) {
4924 if ((allocflags & VM_ALLOC_WIRED) != 0)
4925 vm_page_wire(m);
4926 vm_page_grab_release(m, allocflags);
4927 break;
4928 }
4929 /* relookup. */
4930 vm_page_busy_release(m);
4931 cpu_spinwait();
4932 continue;
4933 }
4934 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4935 allocflags, false))
4936 return (PAGE_NOT_ACQUIRED);
4937 }
4938 return (m);
4939 }
4940
4941 /*
4942 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4943 * is not set.
4944 */
4945 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4946 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4947 {
4948 vm_page_t m;
4949
4950 vm_page_grab_check(allocflags);
4951 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4952 if (m == PAGE_NOT_ACQUIRED)
4953 return (NULL);
4954 if (m != NULL)
4955 return (m);
4956
4957 /*
4958 * The radix lockless lookup should never return a false negative
4959 * errors. If the user specifies NOCREAT they are guaranteed there
4960 * was no page present at the instant of the call. A NOCREAT caller
4961 * must handle create races gracefully.
4962 */
4963 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4964 return (NULL);
4965
4966 VM_OBJECT_WLOCK(object);
4967 m = vm_page_grab(object, pindex, allocflags);
4968 VM_OBJECT_WUNLOCK(object);
4969
4970 return (m);
4971 }
4972
4973 /*
4974 * Grab a page and make it valid, paging in if necessary. Pages missing from
4975 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
4976 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4977 * in simultaneously. Additional pages will be left on a paging queue but
4978 * will neither be wired nor busy regardless of allocflags.
4979 */
4980 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)4981 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4982 {
4983 vm_page_t m;
4984 vm_page_t ma[VM_INITIAL_PAGEIN];
4985 int after, i, pflags, rv;
4986
4987 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4988 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4989 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4990 KASSERT((allocflags &
4991 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4992 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4993 VM_OBJECT_ASSERT_WLOCKED(object);
4994 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4995 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4996 pflags |= VM_ALLOC_WAITFAIL;
4997
4998 retrylookup:
4999 if ((m = vm_page_lookup(object, pindex)) != NULL) {
5000 /*
5001 * If the page is fully valid it can only become invalid
5002 * with the object lock held. If it is not valid it can
5003 * become valid with the busy lock held. Therefore, we
5004 * may unnecessarily lock the exclusive busy here if we
5005 * race with I/O completion not using the object lock.
5006 * However, we will not end up with an invalid page and a
5007 * shared lock.
5008 */
5009 if (!vm_page_trybusy(m,
5010 vm_page_all_valid(m) ? allocflags : 0)) {
5011 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
5012 allocflags, true);
5013 goto retrylookup;
5014 }
5015 if (vm_page_all_valid(m))
5016 goto out;
5017 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5018 vm_page_busy_release(m);
5019 *mp = NULL;
5020 return (VM_PAGER_FAIL);
5021 }
5022 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5023 *mp = NULL;
5024 return (VM_PAGER_FAIL);
5025 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
5026 if (!vm_pager_can_alloc_page(object, pindex)) {
5027 *mp = NULL;
5028 return (VM_PAGER_AGAIN);
5029 }
5030 goto retrylookup;
5031 }
5032
5033 vm_page_assert_xbusied(m);
5034 if (vm_pager_has_page(object, pindex, NULL, &after)) {
5035 after = MIN(after, VM_INITIAL_PAGEIN);
5036 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
5037 after = MAX(after, 1);
5038 ma[0] = m;
5039 for (i = 1; i < after; i++) {
5040 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
5041 if (vm_page_any_valid(ma[i]) ||
5042 !vm_page_tryxbusy(ma[i]))
5043 break;
5044 } else {
5045 ma[i] = vm_page_alloc(object, m->pindex + i,
5046 VM_ALLOC_NORMAL);
5047 if (ma[i] == NULL)
5048 break;
5049 }
5050 }
5051 after = i;
5052 vm_object_pip_add(object, after);
5053 VM_OBJECT_WUNLOCK(object);
5054 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
5055 VM_OBJECT_WLOCK(object);
5056 vm_object_pip_wakeupn(object, after);
5057 /* Pager may have replaced a page. */
5058 m = ma[0];
5059 if (rv != VM_PAGER_OK) {
5060 for (i = 0; i < after; i++) {
5061 if (!vm_page_wired(ma[i]))
5062 vm_page_free(ma[i]);
5063 else
5064 vm_page_xunbusy(ma[i]);
5065 }
5066 *mp = NULL;
5067 return (rv);
5068 }
5069 for (i = 1; i < after; i++)
5070 vm_page_readahead_finish(ma[i]);
5071 MPASS(vm_page_all_valid(m));
5072 } else {
5073 vm_page_zero_invalid(m, TRUE);
5074 }
5075 out:
5076 if ((allocflags & VM_ALLOC_WIRED) != 0)
5077 vm_page_wire(m);
5078 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5079 vm_page_busy_downgrade(m);
5080 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5081 vm_page_busy_release(m);
5082 *mp = m;
5083 return (VM_PAGER_OK);
5084 }
5085
5086 /*
5087 * Locklessly grab a valid page. If the page is not valid or not yet
5088 * allocated this will fall back to the object lock method.
5089 */
5090 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5091 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5092 vm_pindex_t pindex, int allocflags)
5093 {
5094 vm_page_t m;
5095 int flags;
5096 int error;
5097
5098 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5099 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5100 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5101 "mismatch"));
5102 KASSERT((allocflags &
5103 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5104 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5105
5106 /*
5107 * Attempt a lockless lookup and busy. We need at least an sbusy
5108 * before we can inspect the valid field and return a wired page.
5109 */
5110 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5111 vm_page_grab_check(flags);
5112 m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5113 if (m == PAGE_NOT_ACQUIRED)
5114 return (VM_PAGER_FAIL);
5115 if (m != NULL) {
5116 if (vm_page_all_valid(m)) {
5117 if ((allocflags & VM_ALLOC_WIRED) != 0)
5118 vm_page_wire(m);
5119 vm_page_grab_release(m, allocflags);
5120 *mp = m;
5121 return (VM_PAGER_OK);
5122 }
5123 vm_page_busy_release(m);
5124 }
5125 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5126 *mp = NULL;
5127 return (VM_PAGER_FAIL);
5128 }
5129 VM_OBJECT_WLOCK(object);
5130 error = vm_page_grab_valid(mp, object, pindex, allocflags);
5131 VM_OBJECT_WUNLOCK(object);
5132
5133 return (error);
5134 }
5135
5136 /*
5137 * Return the specified range of pages from the given object. For each
5138 * page offset within the range, if a page already exists within the object
5139 * at that offset and it is busy, then wait for it to change state. If,
5140 * instead, the page doesn't exist, then allocate it.
5141 *
5142 * The caller must always specify an allocation class.
5143 *
5144 * allocation classes:
5145 * VM_ALLOC_NORMAL normal process request
5146 * VM_ALLOC_SYSTEM system *really* needs the pages
5147 *
5148 * The caller must always specify that the pages are to be busied and/or
5149 * wired.
5150 *
5151 * optional allocation flags:
5152 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
5153 * VM_ALLOC_NOBUSY do not exclusive busy the page
5154 * VM_ALLOC_NOWAIT do not sleep
5155 * VM_ALLOC_SBUSY set page to sbusy state
5156 * VM_ALLOC_WIRED wire the pages
5157 * VM_ALLOC_ZERO zero and validate any invalid pages
5158 *
5159 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
5160 * may return a partial prefix of the requested range.
5161 */
5162 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5163 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5164 vm_page_t *ma, int count)
5165 {
5166 vm_page_t m, mpred;
5167 int pflags;
5168 int i;
5169
5170 VM_OBJECT_ASSERT_WLOCKED(object);
5171 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5172 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5173 KASSERT(count > 0,
5174 ("vm_page_grab_pages: invalid page count %d", count));
5175 vm_page_grab_check(allocflags);
5176
5177 pflags = vm_page_grab_pflags(allocflags);
5178 i = 0;
5179 retrylookup:
5180 m = vm_page_mpred(object, pindex + i);
5181 if (m == NULL || m->pindex != pindex + i) {
5182 mpred = m;
5183 m = NULL;
5184 } else
5185 mpred = TAILQ_PREV(m, pglist, listq);
5186 for (; i < count; i++) {
5187 if (m != NULL) {
5188 if (!vm_page_tryacquire(m, allocflags)) {
5189 if (vm_page_grab_sleep(object, m, pindex + i,
5190 "grbmaw", allocflags, true))
5191 goto retrylookup;
5192 break;
5193 }
5194 } else {
5195 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5196 break;
5197 m = vm_page_alloc_after(object, pindex + i,
5198 pflags | VM_ALLOC_COUNT(count - i), mpred);
5199 if (m == NULL) {
5200 if ((allocflags & (VM_ALLOC_NOWAIT |
5201 VM_ALLOC_WAITFAIL)) != 0)
5202 break;
5203 goto retrylookup;
5204 }
5205 }
5206 if (vm_page_none_valid(m) &&
5207 (allocflags & VM_ALLOC_ZERO) != 0) {
5208 if ((m->flags & PG_ZERO) == 0)
5209 pmap_zero_page(m);
5210 vm_page_valid(m);
5211 }
5212 vm_page_grab_release(m, allocflags);
5213 ma[i] = mpred = m;
5214 m = vm_page_next(m);
5215 }
5216 return (i);
5217 }
5218
5219 /*
5220 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
5221 * and will fall back to the locked variant to handle allocation.
5222 */
5223 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5224 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5225 int allocflags, vm_page_t *ma, int count)
5226 {
5227 vm_page_t m;
5228 int flags;
5229 int i;
5230
5231 KASSERT(count > 0,
5232 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5233 vm_page_grab_check(allocflags);
5234
5235 /*
5236 * Modify flags for lockless acquire to hold the page until we
5237 * set it valid if necessary.
5238 */
5239 flags = allocflags & ~VM_ALLOC_NOBUSY;
5240 vm_page_grab_check(flags);
5241 m = NULL;
5242 for (i = 0; i < count; i++, pindex++) {
5243 /*
5244 * We may see a false NULL here because the previous page has
5245 * been removed or just inserted and the list is loaded without
5246 * barriers. Switch to radix to verify.
5247 */
5248 if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex ||
5249 atomic_load_ptr(&m->object) != object) {
5250 /*
5251 * This guarantees the result is instantaneously
5252 * correct.
5253 */
5254 m = NULL;
5255 }
5256 m = vm_page_acquire_unlocked(object, pindex, m, flags);
5257 if (m == PAGE_NOT_ACQUIRED)
5258 return (i);
5259 if (m == NULL)
5260 break;
5261 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5262 if ((m->flags & PG_ZERO) == 0)
5263 pmap_zero_page(m);
5264 vm_page_valid(m);
5265 }
5266 /* m will still be wired or busy according to flags. */
5267 vm_page_grab_release(m, allocflags);
5268 ma[i] = m;
5269 m = TAILQ_NEXT(m, listq);
5270 }
5271 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5272 return (i);
5273 count -= i;
5274 VM_OBJECT_WLOCK(object);
5275 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5276 VM_OBJECT_WUNLOCK(object);
5277
5278 return (i);
5279 }
5280
5281 /*
5282 * Mapping function for valid or dirty bits in a page.
5283 *
5284 * Inputs are required to range within a page.
5285 */
5286 vm_page_bits_t
vm_page_bits(int base,int size)5287 vm_page_bits(int base, int size)
5288 {
5289 int first_bit;
5290 int last_bit;
5291
5292 KASSERT(
5293 base + size <= PAGE_SIZE,
5294 ("vm_page_bits: illegal base/size %d/%d", base, size)
5295 );
5296
5297 if (size == 0) /* handle degenerate case */
5298 return (0);
5299
5300 first_bit = base >> DEV_BSHIFT;
5301 last_bit = (base + size - 1) >> DEV_BSHIFT;
5302
5303 return (((vm_page_bits_t)2 << last_bit) -
5304 ((vm_page_bits_t)1 << first_bit));
5305 }
5306
5307 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5308 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5309 {
5310
5311 #if PAGE_SIZE == 32768
5312 atomic_set_64((uint64_t *)bits, set);
5313 #elif PAGE_SIZE == 16384
5314 atomic_set_32((uint32_t *)bits, set);
5315 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5316 atomic_set_16((uint16_t *)bits, set);
5317 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5318 atomic_set_8((uint8_t *)bits, set);
5319 #else /* PAGE_SIZE <= 8192 */
5320 uintptr_t addr;
5321 int shift;
5322
5323 addr = (uintptr_t)bits;
5324 /*
5325 * Use a trick to perform a 32-bit atomic on the
5326 * containing aligned word, to not depend on the existence
5327 * of atomic_{set, clear}_{8, 16}.
5328 */
5329 shift = addr & (sizeof(uint32_t) - 1);
5330 #if BYTE_ORDER == BIG_ENDIAN
5331 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5332 #else
5333 shift *= NBBY;
5334 #endif
5335 addr &= ~(sizeof(uint32_t) - 1);
5336 atomic_set_32((uint32_t *)addr, set << shift);
5337 #endif /* PAGE_SIZE */
5338 }
5339
5340 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5341 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5342 {
5343
5344 #if PAGE_SIZE == 32768
5345 atomic_clear_64((uint64_t *)bits, clear);
5346 #elif PAGE_SIZE == 16384
5347 atomic_clear_32((uint32_t *)bits, clear);
5348 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5349 atomic_clear_16((uint16_t *)bits, clear);
5350 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5351 atomic_clear_8((uint8_t *)bits, clear);
5352 #else /* PAGE_SIZE <= 8192 */
5353 uintptr_t addr;
5354 int shift;
5355
5356 addr = (uintptr_t)bits;
5357 /*
5358 * Use a trick to perform a 32-bit atomic on the
5359 * containing aligned word, to not depend on the existence
5360 * of atomic_{set, clear}_{8, 16}.
5361 */
5362 shift = addr & (sizeof(uint32_t) - 1);
5363 #if BYTE_ORDER == BIG_ENDIAN
5364 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5365 #else
5366 shift *= NBBY;
5367 #endif
5368 addr &= ~(sizeof(uint32_t) - 1);
5369 atomic_clear_32((uint32_t *)addr, clear << shift);
5370 #endif /* PAGE_SIZE */
5371 }
5372
5373 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5374 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5375 {
5376 #if PAGE_SIZE == 32768
5377 uint64_t old;
5378
5379 old = *bits;
5380 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5381 return (old);
5382 #elif PAGE_SIZE == 16384
5383 uint32_t old;
5384
5385 old = *bits;
5386 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5387 return (old);
5388 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5389 uint16_t old;
5390
5391 old = *bits;
5392 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5393 return (old);
5394 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5395 uint8_t old;
5396
5397 old = *bits;
5398 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5399 return (old);
5400 #else /* PAGE_SIZE <= 4096*/
5401 uintptr_t addr;
5402 uint32_t old, new, mask;
5403 int shift;
5404
5405 addr = (uintptr_t)bits;
5406 /*
5407 * Use a trick to perform a 32-bit atomic on the
5408 * containing aligned word, to not depend on the existence
5409 * of atomic_{set, swap, clear}_{8, 16}.
5410 */
5411 shift = addr & (sizeof(uint32_t) - 1);
5412 #if BYTE_ORDER == BIG_ENDIAN
5413 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5414 #else
5415 shift *= NBBY;
5416 #endif
5417 addr &= ~(sizeof(uint32_t) - 1);
5418 mask = VM_PAGE_BITS_ALL << shift;
5419
5420 old = *bits;
5421 do {
5422 new = old & ~mask;
5423 new |= newbits << shift;
5424 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5425 return (old >> shift);
5426 #endif /* PAGE_SIZE */
5427 }
5428
5429 /*
5430 * vm_page_set_valid_range:
5431 *
5432 * Sets portions of a page valid. The arguments are expected
5433 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5434 * of any partial chunks touched by the range. The invalid portion of
5435 * such chunks will be zeroed.
5436 *
5437 * (base + size) must be less then or equal to PAGE_SIZE.
5438 */
5439 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5440 vm_page_set_valid_range(vm_page_t m, int base, int size)
5441 {
5442 int endoff, frag;
5443 vm_page_bits_t pagebits;
5444
5445 vm_page_assert_busied(m);
5446 if (size == 0) /* handle degenerate case */
5447 return;
5448
5449 /*
5450 * If the base is not DEV_BSIZE aligned and the valid
5451 * bit is clear, we have to zero out a portion of the
5452 * first block.
5453 */
5454 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5455 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5456 pmap_zero_page_area(m, frag, base - frag);
5457
5458 /*
5459 * If the ending offset is not DEV_BSIZE aligned and the
5460 * valid bit is clear, we have to zero out a portion of
5461 * the last block.
5462 */
5463 endoff = base + size;
5464 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5465 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5466 pmap_zero_page_area(m, endoff,
5467 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5468
5469 /*
5470 * Assert that no previously invalid block that is now being validated
5471 * is already dirty.
5472 */
5473 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5474 ("vm_page_set_valid_range: page %p is dirty", m));
5475
5476 /*
5477 * Set valid bits inclusive of any overlap.
5478 */
5479 pagebits = vm_page_bits(base, size);
5480 if (vm_page_xbusied(m))
5481 m->valid |= pagebits;
5482 else
5483 vm_page_bits_set(m, &m->valid, pagebits);
5484 }
5485
5486 /*
5487 * Set the page dirty bits and free the invalid swap space if
5488 * present. Returns the previous dirty bits.
5489 */
5490 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5491 vm_page_set_dirty(vm_page_t m)
5492 {
5493 vm_page_bits_t old;
5494
5495 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5496
5497 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5498 old = m->dirty;
5499 m->dirty = VM_PAGE_BITS_ALL;
5500 } else
5501 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5502 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5503 vm_pager_page_unswapped(m);
5504
5505 return (old);
5506 }
5507
5508 /*
5509 * Clear the given bits from the specified page's dirty field.
5510 */
5511 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5512 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5513 {
5514
5515 vm_page_assert_busied(m);
5516
5517 /*
5518 * If the page is xbusied and not write mapped we are the
5519 * only thread that can modify dirty bits. Otherwise, The pmap
5520 * layer can call vm_page_dirty() without holding a distinguished
5521 * lock. The combination of page busy and atomic operations
5522 * suffice to guarantee consistency of the page dirty field.
5523 */
5524 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5525 m->dirty &= ~pagebits;
5526 else
5527 vm_page_bits_clear(m, &m->dirty, pagebits);
5528 }
5529
5530 /*
5531 * vm_page_set_validclean:
5532 *
5533 * Sets portions of a page valid and clean. The arguments are expected
5534 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5535 * of any partial chunks touched by the range. The invalid portion of
5536 * such chunks will be zero'd.
5537 *
5538 * (base + size) must be less then or equal to PAGE_SIZE.
5539 */
5540 void
vm_page_set_validclean(vm_page_t m,int base,int size)5541 vm_page_set_validclean(vm_page_t m, int base, int size)
5542 {
5543 vm_page_bits_t oldvalid, pagebits;
5544 int endoff, frag;
5545
5546 vm_page_assert_busied(m);
5547 if (size == 0) /* handle degenerate case */
5548 return;
5549
5550 /*
5551 * If the base is not DEV_BSIZE aligned and the valid
5552 * bit is clear, we have to zero out a portion of the
5553 * first block.
5554 */
5555 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5556 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5557 pmap_zero_page_area(m, frag, base - frag);
5558
5559 /*
5560 * If the ending offset is not DEV_BSIZE aligned and the
5561 * valid bit is clear, we have to zero out a portion of
5562 * the last block.
5563 */
5564 endoff = base + size;
5565 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5566 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5567 pmap_zero_page_area(m, endoff,
5568 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5569
5570 /*
5571 * Set valid, clear dirty bits. If validating the entire
5572 * page we can safely clear the pmap modify bit. We also
5573 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5574 * takes a write fault on a MAP_NOSYNC memory area the flag will
5575 * be set again.
5576 *
5577 * We set valid bits inclusive of any overlap, but we can only
5578 * clear dirty bits for DEV_BSIZE chunks that are fully within
5579 * the range.
5580 */
5581 oldvalid = m->valid;
5582 pagebits = vm_page_bits(base, size);
5583 if (vm_page_xbusied(m))
5584 m->valid |= pagebits;
5585 else
5586 vm_page_bits_set(m, &m->valid, pagebits);
5587 #if 0 /* NOT YET */
5588 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5589 frag = DEV_BSIZE - frag;
5590 base += frag;
5591 size -= frag;
5592 if (size < 0)
5593 size = 0;
5594 }
5595 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5596 #endif
5597 if (base == 0 && size == PAGE_SIZE) {
5598 /*
5599 * The page can only be modified within the pmap if it is
5600 * mapped, and it can only be mapped if it was previously
5601 * fully valid.
5602 */
5603 if (oldvalid == VM_PAGE_BITS_ALL)
5604 /*
5605 * Perform the pmap_clear_modify() first. Otherwise,
5606 * a concurrent pmap operation, such as
5607 * pmap_protect(), could clear a modification in the
5608 * pmap and set the dirty field on the page before
5609 * pmap_clear_modify() had begun and after the dirty
5610 * field was cleared here.
5611 */
5612 pmap_clear_modify(m);
5613 m->dirty = 0;
5614 vm_page_aflag_clear(m, PGA_NOSYNC);
5615 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5616 m->dirty &= ~pagebits;
5617 else
5618 vm_page_clear_dirty_mask(m, pagebits);
5619 }
5620
5621 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5622 vm_page_clear_dirty(vm_page_t m, int base, int size)
5623 {
5624
5625 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5626 }
5627
5628 /*
5629 * vm_page_set_invalid:
5630 *
5631 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5632 * valid and dirty bits for the effected areas are cleared.
5633 */
5634 void
vm_page_set_invalid(vm_page_t m,int base,int size)5635 vm_page_set_invalid(vm_page_t m, int base, int size)
5636 {
5637 vm_page_bits_t bits;
5638 vm_object_t object;
5639
5640 /*
5641 * The object lock is required so that pages can't be mapped
5642 * read-only while we're in the process of invalidating them.
5643 */
5644 object = m->object;
5645 VM_OBJECT_ASSERT_WLOCKED(object);
5646 vm_page_assert_busied(m);
5647
5648 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5649 size >= object->un_pager.vnp.vnp_size)
5650 bits = VM_PAGE_BITS_ALL;
5651 else
5652 bits = vm_page_bits(base, size);
5653 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5654 pmap_remove_all(m);
5655 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5656 !pmap_page_is_mapped(m),
5657 ("vm_page_set_invalid: page %p is mapped", m));
5658 if (vm_page_xbusied(m)) {
5659 m->valid &= ~bits;
5660 m->dirty &= ~bits;
5661 } else {
5662 vm_page_bits_clear(m, &m->valid, bits);
5663 vm_page_bits_clear(m, &m->dirty, bits);
5664 }
5665 }
5666
5667 /*
5668 * vm_page_invalid:
5669 *
5670 * Invalidates the entire page. The page must be busy, unmapped, and
5671 * the enclosing object must be locked. The object locks protects
5672 * against concurrent read-only pmap enter which is done without
5673 * busy.
5674 */
5675 void
vm_page_invalid(vm_page_t m)5676 vm_page_invalid(vm_page_t m)
5677 {
5678
5679 vm_page_assert_busied(m);
5680 VM_OBJECT_ASSERT_WLOCKED(m->object);
5681 MPASS(!pmap_page_is_mapped(m));
5682
5683 if (vm_page_xbusied(m))
5684 m->valid = 0;
5685 else
5686 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5687 }
5688
5689 /*
5690 * vm_page_zero_invalid()
5691 *
5692 * The kernel assumes that the invalid portions of a page contain
5693 * garbage, but such pages can be mapped into memory by user code.
5694 * When this occurs, we must zero out the non-valid portions of the
5695 * page so user code sees what it expects.
5696 *
5697 * Pages are most often semi-valid when the end of a file is mapped
5698 * into memory and the file's size is not page aligned.
5699 */
5700 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5701 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5702 {
5703 int b;
5704 int i;
5705
5706 /*
5707 * Scan the valid bits looking for invalid sections that
5708 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5709 * valid bit may be set ) have already been zeroed by
5710 * vm_page_set_validclean().
5711 */
5712 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5713 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5714 (m->valid & ((vm_page_bits_t)1 << i))) {
5715 if (i > b) {
5716 pmap_zero_page_area(m,
5717 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5718 }
5719 b = i + 1;
5720 }
5721 }
5722
5723 /*
5724 * setvalid is TRUE when we can safely set the zero'd areas
5725 * as being valid. We can do this if there are no cache consistency
5726 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5727 */
5728 if (setvalid)
5729 vm_page_valid(m);
5730 }
5731
5732 /*
5733 * vm_page_is_valid:
5734 *
5735 * Is (partial) page valid? Note that the case where size == 0
5736 * will return FALSE in the degenerate case where the page is
5737 * entirely invalid, and TRUE otherwise.
5738 *
5739 * Some callers envoke this routine without the busy lock held and
5740 * handle races via higher level locks. Typical callers should
5741 * hold a busy lock to prevent invalidation.
5742 */
5743 int
vm_page_is_valid(vm_page_t m,int base,int size)5744 vm_page_is_valid(vm_page_t m, int base, int size)
5745 {
5746 vm_page_bits_t bits;
5747
5748 bits = vm_page_bits(base, size);
5749 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5750 }
5751
5752 /*
5753 * Returns true if all of the specified predicates are true for the entire
5754 * (super)page and false otherwise.
5755 */
5756 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5757 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5758 {
5759 vm_object_t object;
5760 int i, npages;
5761
5762 object = m->object;
5763 if (skip_m != NULL && skip_m->object != object)
5764 return (false);
5765 VM_OBJECT_ASSERT_LOCKED(object);
5766 KASSERT(psind <= m->psind,
5767 ("psind %d > psind %d of m %p", psind, m->psind, m));
5768 npages = atop(pagesizes[psind]);
5769
5770 /*
5771 * The physically contiguous pages that make up a superpage, i.e., a
5772 * page with a page size index ("psind") greater than zero, will
5773 * occupy adjacent entries in vm_page_array[].
5774 */
5775 for (i = 0; i < npages; i++) {
5776 /* Always test object consistency, including "skip_m". */
5777 if (m[i].object != object)
5778 return (false);
5779 if (&m[i] == skip_m)
5780 continue;
5781 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5782 return (false);
5783 if ((flags & PS_ALL_DIRTY) != 0) {
5784 /*
5785 * Calling vm_page_test_dirty() or pmap_is_modified()
5786 * might stop this case from spuriously returning
5787 * "false". However, that would require a write lock
5788 * on the object containing "m[i]".
5789 */
5790 if (m[i].dirty != VM_PAGE_BITS_ALL)
5791 return (false);
5792 }
5793 if ((flags & PS_ALL_VALID) != 0 &&
5794 m[i].valid != VM_PAGE_BITS_ALL)
5795 return (false);
5796 }
5797 return (true);
5798 }
5799
5800 /*
5801 * Set the page's dirty bits if the page is modified.
5802 */
5803 void
vm_page_test_dirty(vm_page_t m)5804 vm_page_test_dirty(vm_page_t m)
5805 {
5806
5807 vm_page_assert_busied(m);
5808 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5809 vm_page_dirty(m);
5810 }
5811
5812 void
vm_page_valid(vm_page_t m)5813 vm_page_valid(vm_page_t m)
5814 {
5815
5816 vm_page_assert_busied(m);
5817 if (vm_page_xbusied(m))
5818 m->valid = VM_PAGE_BITS_ALL;
5819 else
5820 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5821 }
5822
5823 void
vm_page_lock_KBI(vm_page_t m,const char * file,int line)5824 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5825 {
5826
5827 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5828 }
5829
5830 void
vm_page_unlock_KBI(vm_page_t m,const char * file,int line)5831 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5832 {
5833
5834 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5835 }
5836
5837 int
vm_page_trylock_KBI(vm_page_t m,const char * file,int line)5838 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5839 {
5840
5841 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5842 }
5843
5844 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5845 void
vm_page_assert_locked_KBI(vm_page_t m,const char * file,int line)5846 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5847 {
5848
5849 vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5850 }
5851
5852 void
vm_page_lock_assert_KBI(vm_page_t m,int a,const char * file,int line)5853 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5854 {
5855
5856 mtx_assert_(vm_page_lockptr(m), a, file, line);
5857 }
5858 #endif
5859
5860 #ifdef INVARIANTS
5861 void
vm_page_object_busy_assert(vm_page_t m)5862 vm_page_object_busy_assert(vm_page_t m)
5863 {
5864
5865 /*
5866 * Certain of the page's fields may only be modified by the
5867 * holder of a page or object busy.
5868 */
5869 if (m->object != NULL && !vm_page_busied(m))
5870 VM_OBJECT_ASSERT_BUSY(m->object);
5871 }
5872
5873 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5874 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5875 {
5876
5877 if ((bits & PGA_WRITEABLE) == 0)
5878 return;
5879
5880 /*
5881 * The PGA_WRITEABLE flag can only be set if the page is
5882 * managed, is exclusively busied or the object is locked.
5883 * Currently, this flag is only set by pmap_enter().
5884 */
5885 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5886 ("PGA_WRITEABLE on unmanaged page"));
5887 if (!vm_page_xbusied(m))
5888 VM_OBJECT_ASSERT_BUSY(m->object);
5889 }
5890 #endif
5891
5892 #include "opt_ddb.h"
5893 #ifdef DDB
5894 #include <sys/kernel.h>
5895
5896 #include <ddb/ddb.h>
5897
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5898 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5899 {
5900
5901 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5902 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5903 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5904 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5905 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5906 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5907 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5908 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5909 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5910 }
5911
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5912 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5913 {
5914 int dom;
5915
5916 db_printf("pq_free %d\n", vm_free_count());
5917 for (dom = 0; dom < vm_ndomains; dom++) {
5918 db_printf(
5919 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5920 dom,
5921 vm_dom[dom].vmd_page_count,
5922 vm_dom[dom].vmd_free_count,
5923 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5924 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5925 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5926 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5927 }
5928 }
5929
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5930 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5931 {
5932 vm_page_t m;
5933 boolean_t phys, virt;
5934
5935 if (!have_addr) {
5936 db_printf("show pginfo addr\n");
5937 return;
5938 }
5939
5940 phys = strchr(modif, 'p') != NULL;
5941 virt = strchr(modif, 'v') != NULL;
5942 if (virt)
5943 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5944 else if (phys)
5945 m = PHYS_TO_VM_PAGE(addr);
5946 else
5947 m = (vm_page_t)addr;
5948 db_printf(
5949 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5950 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5951 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5952 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5953 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5954 }
5955 #endif /* DDB */
5956