1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory mapping module.
63 */
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/elf.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/mman.h>
75 #include <sys/vnode.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_radix.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98
99 /*
100 * Virtual memory maps provide for the mapping, protection,
101 * and sharing of virtual memory objects. In addition,
102 * this module provides for an efficient virtual copy of
103 * memory from one map to another.
104 *
105 * Synchronization is required prior to most operations.
106 *
107 * Maps consist of an ordered doubly-linked list of simple
108 * entries; a self-adjusting binary search tree of these
109 * entries is used to speed up lookups.
110 *
111 * Since portions of maps are specified by start/end addresses,
112 * which may not align with existing map entries, all
113 * routines merely "clip" entries to these start/end values.
114 * [That is, an entry is split into two, bordering at a
115 * start or end value.] Note that these clippings may not
116 * always be necessary (as the two resulting entries are then
117 * not changed); however, the clipping is done for convenience.
118 *
119 * As mentioned above, virtual copy operations are performed
120 * by copying VM object references from one map to
121 * another, and then marking both regions as copy-on-write.
122 */
123
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t vmspace_zone;
128 static int vmspace_zinit(void *mem, int size, int flags);
129 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
130 vm_offset_t max);
131 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
132 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
133 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
134 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
135 vm_map_entry_t gap_entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
142 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
143 int cow);
144 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
145 vm_offset_t failed_addr);
146
147 #define CONTAINS_BITS(set, bits) ((~(set) & (bits)) == 0)
148
149 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
150 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
151 !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
152
153 /*
154 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
155 * stable.
156 */
157 #define PROC_VMSPACE_LOCK(p) do { } while (0)
158 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
159
160 /*
161 * VM_MAP_RANGE_CHECK: [ internal use only ]
162 *
163 * Asserts that the starting and ending region
164 * addresses fall within the valid range of the map.
165 */
166 #define VM_MAP_RANGE_CHECK(map, start, end) \
167 { \
168 if (start < vm_map_min(map)) \
169 start = vm_map_min(map); \
170 if (end > vm_map_max(map)) \
171 end = vm_map_max(map); \
172 if (start > end) \
173 start = end; \
174 }
175
176 #ifndef UMA_USE_DMAP
177
178 /*
179 * Allocate a new slab for kernel map entries. The kernel map may be locked or
180 * unlocked, depending on whether the request is coming from the kernel map or a
181 * submap. This function allocates a virtual address range directly from the
182 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
183 * lock and also to avoid triggering allocator recursion in the vmem boundary
184 * tag allocator.
185 */
186 static void *
kmapent_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)187 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
188 int wait)
189 {
190 vm_offset_t addr;
191 int error, locked;
192
193 *pflag = UMA_SLAB_PRIV;
194
195 if (!(locked = vm_map_locked(kernel_map)))
196 vm_map_lock(kernel_map);
197 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
198 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
199 panic("%s: kernel map is exhausted", __func__);
200 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
201 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
202 if (error != KERN_SUCCESS)
203 panic("%s: vm_map_insert() failed: %d", __func__, error);
204 if (!locked)
205 vm_map_unlock(kernel_map);
206 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
207 M_USE_RESERVE | (wait & M_ZERO));
208 if (error == KERN_SUCCESS) {
209 return ((void *)addr);
210 } else {
211 if (!locked)
212 vm_map_lock(kernel_map);
213 vm_map_delete(kernel_map, addr, bytes);
214 if (!locked)
215 vm_map_unlock(kernel_map);
216 return (NULL);
217 }
218 }
219
220 static void
kmapent_free(void * item,vm_size_t size,uint8_t pflag)221 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
222 {
223 vm_offset_t addr;
224 int error __diagused;
225
226 if ((pflag & UMA_SLAB_PRIV) == 0)
227 /* XXX leaked */
228 return;
229
230 addr = (vm_offset_t)item;
231 kmem_unback(kernel_object, addr, size);
232 error = vm_map_remove(kernel_map, addr, addr + size);
233 KASSERT(error == KERN_SUCCESS,
234 ("%s: vm_map_remove failed: %d", __func__, error));
235 }
236
237 /*
238 * The worst-case upper bound on the number of kernel map entries that may be
239 * created before the zone must be replenished in _vm_map_unlock().
240 */
241 #define KMAPENT_RESERVE 1
242
243 #endif /* !UMD_MD_SMALL_ALLOC */
244
245 /*
246 * vm_map_startup:
247 *
248 * Initialize the vm_map module. Must be called before any other vm_map
249 * routines.
250 *
251 * User map and entry structures are allocated from the general purpose
252 * memory pool. Kernel maps are statically defined. Kernel map entries
253 * require special handling to avoid recursion; see the comments above
254 * kmapent_alloc() and in vm_map_entry_create().
255 */
256 void
vm_map_startup(void)257 vm_map_startup(void)
258 {
259 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
260
261 /*
262 * Disable the use of per-CPU buckets: map entry allocation is
263 * serialized by the kernel map lock.
264 */
265 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
266 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
267 UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
268 #ifndef UMA_USE_DMAP
269 /* Reserve an extra map entry for use when replenishing the reserve. */
270 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
271 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
272 uma_zone_set_allocf(kmapentzone, kmapent_alloc);
273 uma_zone_set_freef(kmapentzone, kmapent_free);
274 #endif
275
276 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
277 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
278 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
279 #ifdef INVARIANTS
280 vmspace_zdtor,
281 #else
282 NULL,
283 #endif
284 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
285 }
286
287 static int
vmspace_zinit(void * mem,int size,int flags)288 vmspace_zinit(void *mem, int size, int flags)
289 {
290 struct vmspace *vm;
291 vm_map_t map;
292
293 vm = (struct vmspace *)mem;
294 map = &vm->vm_map;
295
296 memset(map, 0, sizeof(*map)); /* set MAP_SYSTEM_MAP to false */
297 sx_init(&map->lock, "vm map (user)");
298 PMAP_LOCK_INIT(vmspace_pmap(vm));
299 return (0);
300 }
301
302 #ifdef INVARIANTS
303 static void
vmspace_zdtor(void * mem,int size,void * arg)304 vmspace_zdtor(void *mem, int size, void *arg)
305 {
306 struct vmspace *vm;
307
308 vm = (struct vmspace *)mem;
309 KASSERT(vm->vm_map.nentries == 0,
310 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
311 KASSERT(vm->vm_map.size == 0,
312 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
313 }
314 #endif /* INVARIANTS */
315
316 /*
317 * Allocate a vmspace structure, including a vm_map and pmap,
318 * and initialize those structures. The refcnt is set to 1.
319 */
320 struct vmspace *
vmspace_alloc(vm_offset_t min,vm_offset_t max,pmap_pinit_t pinit)321 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
322 {
323 struct vmspace *vm;
324
325 vm = uma_zalloc(vmspace_zone, M_WAITOK);
326 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
327 if (!pinit(vmspace_pmap(vm))) {
328 uma_zfree(vmspace_zone, vm);
329 return (NULL);
330 }
331 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
332 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
333 refcount_init(&vm->vm_refcnt, 1);
334 vm->vm_shm = NULL;
335 vm->vm_swrss = 0;
336 vm->vm_tsize = 0;
337 vm->vm_dsize = 0;
338 vm->vm_ssize = 0;
339 vm->vm_taddr = 0;
340 vm->vm_daddr = 0;
341 vm->vm_maxsaddr = 0;
342 return (vm);
343 }
344
345 #ifdef RACCT
346 static void
vmspace_container_reset(struct proc * p)347 vmspace_container_reset(struct proc *p)
348 {
349
350 PROC_LOCK(p);
351 racct_set(p, RACCT_DATA, 0);
352 racct_set(p, RACCT_STACK, 0);
353 racct_set(p, RACCT_RSS, 0);
354 racct_set(p, RACCT_MEMLOCK, 0);
355 racct_set(p, RACCT_VMEM, 0);
356 PROC_UNLOCK(p);
357 }
358 #endif
359
360 static inline void
vmspace_dofree(struct vmspace * vm)361 vmspace_dofree(struct vmspace *vm)
362 {
363
364 CTR1(KTR_VM, "vmspace_free: %p", vm);
365
366 /*
367 * Make sure any SysV shm is freed, it might not have been in
368 * exit1().
369 */
370 shmexit(vm);
371
372 /*
373 * Lock the map, to wait out all other references to it.
374 * Delete all of the mappings and pages they hold, then call
375 * the pmap module to reclaim anything left.
376 */
377 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
378 vm_map_max(&vm->vm_map));
379
380 pmap_release(vmspace_pmap(vm));
381 vm->vm_map.pmap = NULL;
382 uma_zfree(vmspace_zone, vm);
383 }
384
385 void
vmspace_free(struct vmspace * vm)386 vmspace_free(struct vmspace *vm)
387 {
388
389 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
390 "vmspace_free() called");
391
392 if (refcount_release(&vm->vm_refcnt))
393 vmspace_dofree(vm);
394 }
395
396 void
vmspace_exitfree(struct proc * p)397 vmspace_exitfree(struct proc *p)
398 {
399 struct vmspace *vm;
400
401 PROC_VMSPACE_LOCK(p);
402 vm = p->p_vmspace;
403 p->p_vmspace = NULL;
404 PROC_VMSPACE_UNLOCK(p);
405 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
406 vmspace_free(vm);
407 }
408
409 void
vmspace_exit(struct thread * td)410 vmspace_exit(struct thread *td)
411 {
412 struct vmspace *vm;
413 struct proc *p;
414 bool released;
415
416 p = td->td_proc;
417 vm = p->p_vmspace;
418
419 /*
420 * Prepare to release the vmspace reference. The thread that releases
421 * the last reference is responsible for tearing down the vmspace.
422 * However, threads not releasing the final reference must switch to the
423 * kernel's vmspace0 before the decrement so that the subsequent pmap
424 * deactivation does not modify a freed vmspace.
425 */
426 refcount_acquire(&vmspace0.vm_refcnt);
427 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
428 if (p->p_vmspace != &vmspace0) {
429 PROC_VMSPACE_LOCK(p);
430 p->p_vmspace = &vmspace0;
431 PROC_VMSPACE_UNLOCK(p);
432 pmap_activate(td);
433 }
434 released = refcount_release(&vm->vm_refcnt);
435 }
436 if (released) {
437 /*
438 * pmap_remove_pages() expects the pmap to be active, so switch
439 * back first if necessary.
440 */
441 if (p->p_vmspace != vm) {
442 PROC_VMSPACE_LOCK(p);
443 p->p_vmspace = vm;
444 PROC_VMSPACE_UNLOCK(p);
445 pmap_activate(td);
446 }
447 pmap_remove_pages(vmspace_pmap(vm));
448 PROC_VMSPACE_LOCK(p);
449 p->p_vmspace = &vmspace0;
450 PROC_VMSPACE_UNLOCK(p);
451 pmap_activate(td);
452 vmspace_dofree(vm);
453 }
454 #ifdef RACCT
455 if (racct_enable)
456 vmspace_container_reset(p);
457 #endif
458 }
459
460 /* Acquire reference to vmspace owned by another process. */
461
462 struct vmspace *
vmspace_acquire_ref(struct proc * p)463 vmspace_acquire_ref(struct proc *p)
464 {
465 struct vmspace *vm;
466
467 PROC_VMSPACE_LOCK(p);
468 vm = p->p_vmspace;
469 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
470 PROC_VMSPACE_UNLOCK(p);
471 return (NULL);
472 }
473 if (vm != p->p_vmspace) {
474 PROC_VMSPACE_UNLOCK(p);
475 vmspace_free(vm);
476 return (NULL);
477 }
478 PROC_VMSPACE_UNLOCK(p);
479 return (vm);
480 }
481
482 /*
483 * Switch between vmspaces in an AIO kernel process.
484 *
485 * The new vmspace is either the vmspace of a user process obtained
486 * from an active AIO request or the initial vmspace of the AIO kernel
487 * process (when it is idling). Because user processes will block to
488 * drain any active AIO requests before proceeding in exit() or
489 * execve(), the reference count for vmspaces from AIO requests can
490 * never be 0. Similarly, AIO kernel processes hold an extra
491 * reference on their initial vmspace for the life of the process. As
492 * a result, the 'newvm' vmspace always has a non-zero reference
493 * count. This permits an additional reference on 'newvm' to be
494 * acquired via a simple atomic increment rather than the loop in
495 * vmspace_acquire_ref() above.
496 */
497 void
vmspace_switch_aio(struct vmspace * newvm)498 vmspace_switch_aio(struct vmspace *newvm)
499 {
500 struct vmspace *oldvm;
501
502 /* XXX: Need some way to assert that this is an aio daemon. */
503
504 KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
505 ("vmspace_switch_aio: newvm unreferenced"));
506
507 oldvm = curproc->p_vmspace;
508 if (oldvm == newvm)
509 return;
510
511 /*
512 * Point to the new address space and refer to it.
513 */
514 curproc->p_vmspace = newvm;
515 refcount_acquire(&newvm->vm_refcnt);
516
517 /* Activate the new mapping. */
518 pmap_activate(curthread);
519
520 vmspace_free(oldvm);
521 }
522
523 void
_vm_map_lock(vm_map_t map,const char * file,int line)524 _vm_map_lock(vm_map_t map, const char *file, int line)
525 {
526
527 if (vm_map_is_system(map))
528 mtx_lock_flags_(&map->system_mtx, 0, file, line);
529 else
530 sx_xlock_(&map->lock, file, line);
531 map->timestamp++;
532 }
533
534 void
vm_map_entry_set_vnode_text(vm_map_entry_t entry,bool add)535 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
536 {
537 vm_object_t object;
538 struct vnode *vp;
539 bool vp_held;
540
541 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
542 return;
543 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
544 ("Submap with execs"));
545 object = entry->object.vm_object;
546 KASSERT(object != NULL, ("No object for text, entry %p", entry));
547 if ((object->flags & OBJ_ANON) != 0)
548 object = object->handle;
549 else
550 KASSERT(object->backing_object == NULL,
551 ("non-anon object %p shadows", object));
552 KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
553 entry, entry->object.vm_object));
554
555 /*
556 * Mostly, we do not lock the backing object. It is
557 * referenced by the entry we are processing, so it cannot go
558 * away.
559 */
560 vm_pager_getvp(object, &vp, &vp_held);
561 if (vp != NULL) {
562 if (add) {
563 VOP_SET_TEXT_CHECKED(vp);
564 } else {
565 vn_lock(vp, LK_SHARED | LK_RETRY);
566 VOP_UNSET_TEXT_CHECKED(vp);
567 VOP_UNLOCK(vp);
568 }
569 if (vp_held)
570 vdrop(vp);
571 }
572 }
573
574 /*
575 * Use a different name for this vm_map_entry field when it's use
576 * is not consistent with its use as part of an ordered search tree.
577 */
578 #define defer_next right
579
580 static void
vm_map_process_deferred(void)581 vm_map_process_deferred(void)
582 {
583 struct thread *td;
584 vm_map_entry_t entry, next;
585 vm_object_t object;
586
587 td = curthread;
588 entry = td->td_map_def_user;
589 td->td_map_def_user = NULL;
590 while (entry != NULL) {
591 next = entry->defer_next;
592 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
593 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
594 MAP_ENTRY_VN_EXEC));
595 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
596 /*
597 * Decrement the object's writemappings and
598 * possibly the vnode's v_writecount.
599 */
600 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
601 ("Submap with writecount"));
602 object = entry->object.vm_object;
603 KASSERT(object != NULL, ("No object for writecount"));
604 vm_pager_release_writecount(object, entry->start,
605 entry->end);
606 }
607 vm_map_entry_set_vnode_text(entry, false);
608 vm_map_entry_deallocate(entry, FALSE);
609 entry = next;
610 }
611 }
612
613 #ifdef INVARIANTS
614 static void
_vm_map_assert_locked(vm_map_t map,const char * file,int line)615 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
616 {
617
618 if (vm_map_is_system(map))
619 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
620 else
621 sx_assert_(&map->lock, SA_XLOCKED, file, line);
622 }
623
624 #define VM_MAP_ASSERT_LOCKED(map) \
625 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
626
627 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
628 #ifdef DIAGNOSTIC
629 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
630 #else
631 static int enable_vmmap_check = VMMAP_CHECK_NONE;
632 #endif
633 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
634 &enable_vmmap_check, 0, "Enable vm map consistency checking");
635
636 static void _vm_map_assert_consistent(vm_map_t map, int check);
637
638 #define VM_MAP_ASSERT_CONSISTENT(map) \
639 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
640 #ifdef DIAGNOSTIC
641 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \
642 if (map->nupdates > map->nentries) { \
643 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \
644 map->nupdates = 0; \
645 } \
646 } while (0)
647 #else
648 #define VM_MAP_UNLOCK_CONSISTENT(map)
649 #endif
650 #else
651 #define VM_MAP_ASSERT_LOCKED(map)
652 #define VM_MAP_ASSERT_CONSISTENT(map)
653 #define VM_MAP_UNLOCK_CONSISTENT(map)
654 #endif /* INVARIANTS */
655
656 void
_vm_map_unlock(vm_map_t map,const char * file,int line)657 _vm_map_unlock(vm_map_t map, const char *file, int line)
658 {
659
660 VM_MAP_UNLOCK_CONSISTENT(map);
661 if (vm_map_is_system(map)) {
662 #ifndef UMA_USE_DMAP
663 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
664 uma_prealloc(kmapentzone, 1);
665 map->flags &= ~MAP_REPLENISH;
666 }
667 #endif
668 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
669 } else {
670 sx_xunlock_(&map->lock, file, line);
671 vm_map_process_deferred();
672 }
673 }
674
675 void
_vm_map_lock_read(vm_map_t map,const char * file,int line)676 _vm_map_lock_read(vm_map_t map, const char *file, int line)
677 {
678
679 if (vm_map_is_system(map))
680 mtx_lock_flags_(&map->system_mtx, 0, file, line);
681 else
682 sx_slock_(&map->lock, file, line);
683 }
684
685 void
_vm_map_unlock_read(vm_map_t map,const char * file,int line)686 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
687 {
688
689 if (vm_map_is_system(map)) {
690 KASSERT((map->flags & MAP_REPLENISH) == 0,
691 ("%s: MAP_REPLENISH leaked", __func__));
692 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
693 } else {
694 sx_sunlock_(&map->lock, file, line);
695 vm_map_process_deferred();
696 }
697 }
698
699 int
_vm_map_trylock(vm_map_t map,const char * file,int line)700 _vm_map_trylock(vm_map_t map, const char *file, int line)
701 {
702 int error;
703
704 error = vm_map_is_system(map) ?
705 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
706 !sx_try_xlock_(&map->lock, file, line);
707 if (error == 0)
708 map->timestamp++;
709 return (error == 0);
710 }
711
712 int
_vm_map_trylock_read(vm_map_t map,const char * file,int line)713 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
714 {
715 int error;
716
717 error = vm_map_is_system(map) ?
718 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
719 !sx_try_slock_(&map->lock, file, line);
720 return (error == 0);
721 }
722
723 /*
724 * _vm_map_lock_upgrade: [ internal use only ]
725 *
726 * Tries to upgrade a read (shared) lock on the specified map to a write
727 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a
728 * non-zero value if the upgrade fails. If the upgrade fails, the map is
729 * returned without a read or write lock held.
730 *
731 * Requires that the map be read locked.
732 */
733 int
_vm_map_lock_upgrade(vm_map_t map,const char * file,int line)734 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
735 {
736 unsigned int last_timestamp;
737
738 if (vm_map_is_system(map)) {
739 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
740 } else {
741 if (!sx_try_upgrade_(&map->lock, file, line)) {
742 last_timestamp = map->timestamp;
743 sx_sunlock_(&map->lock, file, line);
744 vm_map_process_deferred();
745 /*
746 * If the map's timestamp does not change while the
747 * map is unlocked, then the upgrade succeeds.
748 */
749 sx_xlock_(&map->lock, file, line);
750 if (last_timestamp != map->timestamp) {
751 sx_xunlock_(&map->lock, file, line);
752 return (1);
753 }
754 }
755 }
756 map->timestamp++;
757 return (0);
758 }
759
760 void
_vm_map_lock_downgrade(vm_map_t map,const char * file,int line)761 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
762 {
763
764 if (vm_map_is_system(map)) {
765 KASSERT((map->flags & MAP_REPLENISH) == 0,
766 ("%s: MAP_REPLENISH leaked", __func__));
767 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
768 } else {
769 VM_MAP_UNLOCK_CONSISTENT(map);
770 sx_downgrade_(&map->lock, file, line);
771 }
772 }
773
774 /*
775 * vm_map_locked:
776 *
777 * Returns a non-zero value if the caller holds a write (exclusive) lock
778 * on the specified map and the value "0" otherwise.
779 */
780 int
vm_map_locked(vm_map_t map)781 vm_map_locked(vm_map_t map)
782 {
783
784 if (vm_map_is_system(map))
785 return (mtx_owned(&map->system_mtx));
786 return (sx_xlocked(&map->lock));
787 }
788
789 /*
790 * _vm_map_unlock_and_wait:
791 *
792 * Atomically releases the lock on the specified map and puts the calling
793 * thread to sleep. The calling thread will remain asleep until either
794 * vm_map_wakeup() is performed on the map or the specified timeout is
795 * exceeded.
796 *
797 * WARNING! This function does not perform deferred deallocations of
798 * objects and map entries. Therefore, the calling thread is expected to
799 * reacquire the map lock after reawakening and later perform an ordinary
800 * unlock operation, such as vm_map_unlock(), before completing its
801 * operation on the map.
802 */
803 int
_vm_map_unlock_and_wait(vm_map_t map,int timo,const char * file,int line)804 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
805 {
806
807 VM_MAP_UNLOCK_CONSISTENT(map);
808 mtx_lock(&map_sleep_mtx);
809 if (vm_map_is_system(map)) {
810 KASSERT((map->flags & MAP_REPLENISH) == 0,
811 ("%s: MAP_REPLENISH leaked", __func__));
812 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
813 } else {
814 sx_xunlock_(&map->lock, file, line);
815 }
816 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
817 timo));
818 }
819
820 /*
821 * vm_map_wakeup:
822 *
823 * Awaken any threads that have slept on the map using
824 * vm_map_unlock_and_wait().
825 */
826 void
vm_map_wakeup(vm_map_t map)827 vm_map_wakeup(vm_map_t map)
828 {
829
830 /*
831 * Acquire and release map_sleep_mtx to prevent a wakeup()
832 * from being performed (and lost) between the map unlock
833 * and the msleep() in _vm_map_unlock_and_wait().
834 */
835 mtx_lock(&map_sleep_mtx);
836 mtx_unlock(&map_sleep_mtx);
837 wakeup(&map->root);
838 }
839
840 void
vm_map_busy(vm_map_t map)841 vm_map_busy(vm_map_t map)
842 {
843
844 VM_MAP_ASSERT_LOCKED(map);
845 map->busy++;
846 }
847
848 void
vm_map_unbusy(vm_map_t map)849 vm_map_unbusy(vm_map_t map)
850 {
851
852 VM_MAP_ASSERT_LOCKED(map);
853 KASSERT(map->busy, ("vm_map_unbusy: not busy"));
854 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
855 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
856 wakeup(&map->busy);
857 }
858 }
859
860 void
vm_map_wait_busy(vm_map_t map)861 vm_map_wait_busy(vm_map_t map)
862 {
863
864 VM_MAP_ASSERT_LOCKED(map);
865 while (map->busy) {
866 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
867 if (vm_map_is_system(map))
868 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
869 else
870 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
871 }
872 map->timestamp++;
873 }
874
875 long
vmspace_resident_count(struct vmspace * vmspace)876 vmspace_resident_count(struct vmspace *vmspace)
877 {
878 return pmap_resident_count(vmspace_pmap(vmspace));
879 }
880
881 /*
882 * Initialize an existing vm_map structure
883 * such as that in the vmspace structure.
884 */
885 static void
_vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
887 {
888
889 map->header.eflags = MAP_ENTRY_HEADER;
890 map->pmap = pmap;
891 map->header.end = min;
892 map->header.start = max;
893 map->flags = 0;
894 map->header.left = map->header.right = &map->header;
895 map->root = NULL;
896 map->timestamp = 0;
897 map->busy = 0;
898 map->anon_loc = 0;
899 #ifdef DIAGNOSTIC
900 map->nupdates = 0;
901 #endif
902 }
903
904 void
vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)905 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
906 {
907 _vm_map_init(map, pmap, min, max);
908 sx_init(&map->lock, "vm map (user)");
909 }
910
911 void
vm_map_init_system(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)912 vm_map_init_system(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914 _vm_map_init(map, pmap, min, max);
915 vm_map_modflags(map, MAP_SYSTEM_MAP, 0);
916 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF |
917 MTX_DUPOK);
918 }
919
920 /*
921 * vm_map_entry_dispose: [ internal use only ]
922 *
923 * Inverse of vm_map_entry_create.
924 */
925 static void
vm_map_entry_dispose(vm_map_t map,vm_map_entry_t entry)926 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
927 {
928 uma_zfree(vm_map_is_system(map) ? kmapentzone : mapentzone, entry);
929 }
930
931 /*
932 * vm_map_entry_create: [ internal use only ]
933 *
934 * Allocates a VM map entry for insertion.
935 * No entry fields are filled in.
936 */
937 static vm_map_entry_t
vm_map_entry_create(vm_map_t map)938 vm_map_entry_create(vm_map_t map)
939 {
940 vm_map_entry_t new_entry;
941
942 #ifndef UMA_USE_DMAP
943 if (map == kernel_map) {
944 VM_MAP_ASSERT_LOCKED(map);
945
946 /*
947 * A new slab of kernel map entries cannot be allocated at this
948 * point because the kernel map has not yet been updated to
949 * reflect the caller's request. Therefore, we allocate a new
950 * map entry, dipping into the reserve if necessary, and set a
951 * flag indicating that the reserve must be replenished before
952 * the map is unlocked.
953 */
954 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
955 if (new_entry == NULL) {
956 new_entry = uma_zalloc(kmapentzone,
957 M_NOWAIT | M_NOVM | M_USE_RESERVE);
958 kernel_map->flags |= MAP_REPLENISH;
959 }
960 } else
961 #endif
962 if (vm_map_is_system(map)) {
963 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
964 } else {
965 new_entry = uma_zalloc(mapentzone, M_WAITOK);
966 }
967 KASSERT(new_entry != NULL,
968 ("vm_map_entry_create: kernel resources exhausted"));
969 return (new_entry);
970 }
971
972 /*
973 * vm_map_entry_set_behavior:
974 *
975 * Set the expected access behavior, either normal, random, or
976 * sequential.
977 */
978 static inline void
vm_map_entry_set_behavior(vm_map_entry_t entry,u_char behavior)979 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
980 {
981 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
982 (behavior & MAP_ENTRY_BEHAV_MASK);
983 }
984
985 /*
986 * vm_map_entry_max_free_{left,right}:
987 *
988 * Compute the size of the largest free gap between two entries,
989 * one the root of a tree and the other the ancestor of that root
990 * that is the least or greatest ancestor found on the search path.
991 */
992 static inline vm_size_t
vm_map_entry_max_free_left(vm_map_entry_t root,vm_map_entry_t left_ancestor)993 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
994 {
995
996 return (root->left != left_ancestor ?
997 root->left->max_free : root->start - left_ancestor->end);
998 }
999
1000 static inline vm_size_t
vm_map_entry_max_free_right(vm_map_entry_t root,vm_map_entry_t right_ancestor)1001 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1002 {
1003
1004 return (root->right != right_ancestor ?
1005 root->right->max_free : right_ancestor->start - root->end);
1006 }
1007
1008 /*
1009 * vm_map_entry_{pred,succ}:
1010 *
1011 * Find the {predecessor, successor} of the entry by taking one step
1012 * in the appropriate direction and backtracking as much as necessary.
1013 * vm_map_entry_succ is defined in vm_map.h.
1014 */
1015 static inline vm_map_entry_t
vm_map_entry_pred(vm_map_entry_t entry)1016 vm_map_entry_pred(vm_map_entry_t entry)
1017 {
1018 vm_map_entry_t prior;
1019
1020 prior = entry->left;
1021 if (prior->right->start < entry->start) {
1022 do
1023 prior = prior->right;
1024 while (prior->right != entry);
1025 }
1026 return (prior);
1027 }
1028
1029 static inline vm_size_t
vm_size_max(vm_size_t a,vm_size_t b)1030 vm_size_max(vm_size_t a, vm_size_t b)
1031 {
1032
1033 return (a > b ? a : b);
1034 }
1035
1036 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \
1037 vm_map_entry_t z; \
1038 vm_size_t max_free; \
1039 \
1040 /* \
1041 * Infer root->right->max_free == root->max_free when \
1042 * y->max_free < root->max_free || root->max_free == 0. \
1043 * Otherwise, look right to find it. \
1044 */ \
1045 y = root->left; \
1046 max_free = root->max_free; \
1047 KASSERT(max_free == vm_size_max( \
1048 vm_map_entry_max_free_left(root, llist), \
1049 vm_map_entry_max_free_right(root, rlist)), \
1050 ("%s: max_free invariant fails", __func__)); \
1051 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \
1052 max_free = vm_map_entry_max_free_right(root, rlist); \
1053 if (y != llist && (test)) { \
1054 /* Rotate right and make y root. */ \
1055 z = y->right; \
1056 if (z != root) { \
1057 root->left = z; \
1058 y->right = root; \
1059 if (max_free < y->max_free) \
1060 root->max_free = max_free = \
1061 vm_size_max(max_free, z->max_free); \
1062 } else if (max_free < y->max_free) \
1063 root->max_free = max_free = \
1064 vm_size_max(max_free, root->start - y->end);\
1065 root = y; \
1066 y = root->left; \
1067 } \
1068 /* Copy right->max_free. Put root on rlist. */ \
1069 root->max_free = max_free; \
1070 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \
1071 ("%s: max_free not copied from right", __func__)); \
1072 root->left = rlist; \
1073 rlist = root; \
1074 root = y != llist ? y : NULL; \
1075 } while (0)
1076
1077 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \
1078 vm_map_entry_t z; \
1079 vm_size_t max_free; \
1080 \
1081 /* \
1082 * Infer root->left->max_free == root->max_free when \
1083 * y->max_free < root->max_free || root->max_free == 0. \
1084 * Otherwise, look left to find it. \
1085 */ \
1086 y = root->right; \
1087 max_free = root->max_free; \
1088 KASSERT(max_free == vm_size_max( \
1089 vm_map_entry_max_free_left(root, llist), \
1090 vm_map_entry_max_free_right(root, rlist)), \
1091 ("%s: max_free invariant fails", __func__)); \
1092 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \
1093 max_free = vm_map_entry_max_free_left(root, llist); \
1094 if (y != rlist && (test)) { \
1095 /* Rotate left and make y root. */ \
1096 z = y->left; \
1097 if (z != root) { \
1098 root->right = z; \
1099 y->left = root; \
1100 if (max_free < y->max_free) \
1101 root->max_free = max_free = \
1102 vm_size_max(max_free, z->max_free); \
1103 } else if (max_free < y->max_free) \
1104 root->max_free = max_free = \
1105 vm_size_max(max_free, y->start - root->end);\
1106 root = y; \
1107 y = root->right; \
1108 } \
1109 /* Copy left->max_free. Put root on llist. */ \
1110 root->max_free = max_free; \
1111 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \
1112 ("%s: max_free not copied from left", __func__)); \
1113 root->right = llist; \
1114 llist = root; \
1115 root = y != rlist ? y : NULL; \
1116 } while (0)
1117
1118 /*
1119 * Walk down the tree until we find addr or a gap where addr would go, breaking
1120 * off left and right subtrees of nodes less than, or greater than addr. Treat
1121 * subtrees with root->max_free < length as empty trees. llist and rlist are
1122 * the two sides in reverse order (bottom-up), with llist linked by the right
1123 * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1124 * lists terminated by &map->header. This function, and the subsequent call to
1125 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1126 * values in &map->header.
1127 */
1128 static __always_inline vm_map_entry_t
vm_map_splay_split(vm_map_t map,vm_offset_t addr,vm_size_t length,vm_map_entry_t * llist,vm_map_entry_t * rlist)1129 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1130 vm_map_entry_t *llist, vm_map_entry_t *rlist)
1131 {
1132 vm_map_entry_t left, right, root, y;
1133
1134 left = right = &map->header;
1135 root = map->root;
1136 while (root != NULL && root->max_free >= length) {
1137 KASSERT(left->end <= root->start &&
1138 root->end <= right->start,
1139 ("%s: root not within tree bounds", __func__));
1140 if (addr < root->start) {
1141 SPLAY_LEFT_STEP(root, y, left, right,
1142 y->max_free >= length && addr < y->start);
1143 } else if (addr >= root->end) {
1144 SPLAY_RIGHT_STEP(root, y, left, right,
1145 y->max_free >= length && addr >= y->end);
1146 } else
1147 break;
1148 }
1149 *llist = left;
1150 *rlist = right;
1151 return (root);
1152 }
1153
1154 static __always_inline void
vm_map_splay_findnext(vm_map_entry_t root,vm_map_entry_t * rlist)1155 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1156 {
1157 vm_map_entry_t hi, right, y;
1158
1159 right = *rlist;
1160 hi = root->right == right ? NULL : root->right;
1161 if (hi == NULL)
1162 return;
1163 do
1164 SPLAY_LEFT_STEP(hi, y, root, right, true);
1165 while (hi != NULL);
1166 *rlist = right;
1167 }
1168
1169 static __always_inline void
vm_map_splay_findprev(vm_map_entry_t root,vm_map_entry_t * llist)1170 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1171 {
1172 vm_map_entry_t left, lo, y;
1173
1174 left = *llist;
1175 lo = root->left == left ? NULL : root->left;
1176 if (lo == NULL)
1177 return;
1178 do
1179 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1180 while (lo != NULL);
1181 *llist = left;
1182 }
1183
1184 static inline void
vm_map_entry_swap(vm_map_entry_t * a,vm_map_entry_t * b)1185 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1186 {
1187 vm_map_entry_t tmp;
1188
1189 tmp = *b;
1190 *b = *a;
1191 *a = tmp;
1192 }
1193
1194 /*
1195 * Walk back up the two spines, flip the pointers and set max_free. The
1196 * subtrees of the root go at the bottom of llist and rlist.
1197 */
1198 static vm_size_t
vm_map_splay_merge_left_walk(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t tail,vm_size_t max_free,vm_map_entry_t llist)1199 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1200 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1201 {
1202 do {
1203 /*
1204 * The max_free values of the children of llist are in
1205 * llist->max_free and max_free. Update with the
1206 * max value.
1207 */
1208 llist->max_free = max_free =
1209 vm_size_max(llist->max_free, max_free);
1210 vm_map_entry_swap(&llist->right, &tail);
1211 vm_map_entry_swap(&tail, &llist);
1212 } while (llist != header);
1213 root->left = tail;
1214 return (max_free);
1215 }
1216
1217 /*
1218 * When llist is known to be the predecessor of root.
1219 */
1220 static inline vm_size_t
vm_map_splay_merge_pred(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t llist)1221 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1222 vm_map_entry_t llist)
1223 {
1224 vm_size_t max_free;
1225
1226 max_free = root->start - llist->end;
1227 if (llist != header) {
1228 max_free = vm_map_splay_merge_left_walk(header, root,
1229 root, max_free, llist);
1230 } else {
1231 root->left = header;
1232 header->right = root;
1233 }
1234 return (max_free);
1235 }
1236
1237 /*
1238 * When llist may or may not be the predecessor of root.
1239 */
1240 static inline vm_size_t
vm_map_splay_merge_left(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t llist)1241 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1242 vm_map_entry_t llist)
1243 {
1244 vm_size_t max_free;
1245
1246 max_free = vm_map_entry_max_free_left(root, llist);
1247 if (llist != header) {
1248 max_free = vm_map_splay_merge_left_walk(header, root,
1249 root->left == llist ? root : root->left,
1250 max_free, llist);
1251 }
1252 return (max_free);
1253 }
1254
1255 static vm_size_t
vm_map_splay_merge_right_walk(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t tail,vm_size_t max_free,vm_map_entry_t rlist)1256 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1257 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1258 {
1259 do {
1260 /*
1261 * The max_free values of the children of rlist are in
1262 * rlist->max_free and max_free. Update with the
1263 * max value.
1264 */
1265 rlist->max_free = max_free =
1266 vm_size_max(rlist->max_free, max_free);
1267 vm_map_entry_swap(&rlist->left, &tail);
1268 vm_map_entry_swap(&tail, &rlist);
1269 } while (rlist != header);
1270 root->right = tail;
1271 return (max_free);
1272 }
1273
1274 /*
1275 * When rlist is known to be the succecessor of root.
1276 */
1277 static inline vm_size_t
vm_map_splay_merge_succ(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t rlist)1278 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1279 vm_map_entry_t rlist)
1280 {
1281 vm_size_t max_free;
1282
1283 max_free = rlist->start - root->end;
1284 if (rlist != header) {
1285 max_free = vm_map_splay_merge_right_walk(header, root,
1286 root, max_free, rlist);
1287 } else {
1288 root->right = header;
1289 header->left = root;
1290 }
1291 return (max_free);
1292 }
1293
1294 /*
1295 * When rlist may or may not be the succecessor of root.
1296 */
1297 static inline vm_size_t
vm_map_splay_merge_right(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t rlist)1298 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1299 vm_map_entry_t rlist)
1300 {
1301 vm_size_t max_free;
1302
1303 max_free = vm_map_entry_max_free_right(root, rlist);
1304 if (rlist != header) {
1305 max_free = vm_map_splay_merge_right_walk(header, root,
1306 root->right == rlist ? root : root->right,
1307 max_free, rlist);
1308 }
1309 return (max_free);
1310 }
1311
1312 /*
1313 * vm_map_splay:
1314 *
1315 * The Sleator and Tarjan top-down splay algorithm with the
1316 * following variation. Max_free must be computed bottom-up, so
1317 * on the downward pass, maintain the left and right spines in
1318 * reverse order. Then, make a second pass up each side to fix
1319 * the pointers and compute max_free. The time bound is O(log n)
1320 * amortized.
1321 *
1322 * The tree is threaded, which means that there are no null pointers.
1323 * When a node has no left child, its left pointer points to its
1324 * predecessor, which the last ancestor on the search path from the root
1325 * where the search branched right. Likewise, when a node has no right
1326 * child, its right pointer points to its successor. The map header node
1327 * is the predecessor of the first map entry, and the successor of the
1328 * last.
1329 *
1330 * The new root is the vm_map_entry containing "addr", or else an
1331 * adjacent entry (lower if possible) if addr is not in the tree.
1332 *
1333 * The map must be locked, and leaves it so.
1334 *
1335 * Returns: the new root.
1336 */
1337 static vm_map_entry_t
vm_map_splay(vm_map_t map,vm_offset_t addr)1338 vm_map_splay(vm_map_t map, vm_offset_t addr)
1339 {
1340 vm_map_entry_t header, llist, rlist, root;
1341 vm_size_t max_free_left, max_free_right;
1342
1343 header = &map->header;
1344 root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1345 if (root != NULL) {
1346 max_free_left = vm_map_splay_merge_left(header, root, llist);
1347 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1348 } else if (llist != header) {
1349 /*
1350 * Recover the greatest node in the left
1351 * subtree and make it the root.
1352 */
1353 root = llist;
1354 llist = root->right;
1355 max_free_left = vm_map_splay_merge_left(header, root, llist);
1356 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1357 } else if (rlist != header) {
1358 /*
1359 * Recover the least node in the right
1360 * subtree and make it the root.
1361 */
1362 root = rlist;
1363 rlist = root->left;
1364 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1365 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1366 } else {
1367 /* There is no root. */
1368 return (NULL);
1369 }
1370 root->max_free = vm_size_max(max_free_left, max_free_right);
1371 map->root = root;
1372 VM_MAP_ASSERT_CONSISTENT(map);
1373 return (root);
1374 }
1375
1376 /*
1377 * vm_map_entry_{un,}link:
1378 *
1379 * Insert/remove entries from maps. On linking, if new entry clips
1380 * existing entry, trim existing entry to avoid overlap, and manage
1381 * offsets. On unlinking, merge disappearing entry with neighbor, if
1382 * called for, and manage offsets. Callers should not modify fields in
1383 * entries already mapped.
1384 */
1385 static void
vm_map_entry_link(vm_map_t map,vm_map_entry_t entry)1386 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1387 {
1388 vm_map_entry_t header, llist, rlist, root;
1389 vm_size_t max_free_left, max_free_right;
1390
1391 CTR3(KTR_VM,
1392 "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1393 map->nentries, entry);
1394 VM_MAP_ASSERT_LOCKED(map);
1395 map->nentries++;
1396 header = &map->header;
1397 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1398 if (root == NULL) {
1399 /*
1400 * The new entry does not overlap any existing entry in the
1401 * map, so it becomes the new root of the map tree.
1402 */
1403 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1404 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1405 } else if (entry->start == root->start) {
1406 /*
1407 * The new entry is a clone of root, with only the end field
1408 * changed. The root entry will be shrunk to abut the new
1409 * entry, and will be the right child of the new root entry in
1410 * the modified map.
1411 */
1412 KASSERT(entry->end < root->end,
1413 ("%s: clip_start not within entry", __func__));
1414 vm_map_splay_findprev(root, &llist);
1415 if ((root->eflags & MAP_ENTRY_STACK_GAP) == 0)
1416 root->offset += entry->end - root->start;
1417 root->start = entry->end;
1418 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419 max_free_right = root->max_free = vm_size_max(
1420 vm_map_splay_merge_pred(entry, root, entry),
1421 vm_map_splay_merge_right(header, root, rlist));
1422 } else {
1423 /*
1424 * The new entry is a clone of root, with only the start field
1425 * changed. The root entry will be shrunk to abut the new
1426 * entry, and will be the left child of the new root entry in
1427 * the modified map.
1428 */
1429 KASSERT(entry->end == root->end,
1430 ("%s: clip_start not within entry", __func__));
1431 vm_map_splay_findnext(root, &rlist);
1432 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
1433 entry->offset += entry->start - root->start;
1434 root->end = entry->start;
1435 max_free_left = root->max_free = vm_size_max(
1436 vm_map_splay_merge_left(header, root, llist),
1437 vm_map_splay_merge_succ(entry, root, entry));
1438 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1439 }
1440 entry->max_free = vm_size_max(max_free_left, max_free_right);
1441 map->root = entry;
1442 VM_MAP_ASSERT_CONSISTENT(map);
1443 }
1444
1445 enum unlink_merge_type {
1446 UNLINK_MERGE_NONE,
1447 UNLINK_MERGE_NEXT
1448 };
1449
1450 static void
vm_map_entry_unlink(vm_map_t map,vm_map_entry_t entry,enum unlink_merge_type op)1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1452 enum unlink_merge_type op)
1453 {
1454 vm_map_entry_t header, llist, rlist, root;
1455 vm_size_t max_free_left, max_free_right;
1456
1457 VM_MAP_ASSERT_LOCKED(map);
1458 header = &map->header;
1459 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1460 KASSERT(root != NULL,
1461 ("vm_map_entry_unlink: unlink object not mapped"));
1462
1463 vm_map_splay_findprev(root, &llist);
1464 vm_map_splay_findnext(root, &rlist);
1465 if (op == UNLINK_MERGE_NEXT) {
1466 rlist->start = root->start;
1467 MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP) == 0);
1468 rlist->offset = root->offset;
1469 }
1470 if (llist != header) {
1471 root = llist;
1472 llist = root->right;
1473 max_free_left = vm_map_splay_merge_left(header, root, llist);
1474 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1475 } else if (rlist != header) {
1476 root = rlist;
1477 rlist = root->left;
1478 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1479 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1480 } else {
1481 header->left = header->right = header;
1482 root = NULL;
1483 }
1484 if (root != NULL)
1485 root->max_free = vm_size_max(max_free_left, max_free_right);
1486 map->root = root;
1487 VM_MAP_ASSERT_CONSISTENT(map);
1488 map->nentries--;
1489 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1490 map->nentries, entry);
1491 }
1492
1493 /*
1494 * vm_map_entry_resize:
1495 *
1496 * Resize a vm_map_entry, recompute the amount of free space that
1497 * follows it and propagate that value up the tree.
1498 *
1499 * The map must be locked, and leaves it so.
1500 */
1501 static void
vm_map_entry_resize(vm_map_t map,vm_map_entry_t entry,vm_size_t grow_amount)1502 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1503 {
1504 vm_map_entry_t header, llist, rlist, root;
1505
1506 VM_MAP_ASSERT_LOCKED(map);
1507 header = &map->header;
1508 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1509 KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1510 vm_map_splay_findnext(root, &rlist);
1511 entry->end += grow_amount;
1512 root->max_free = vm_size_max(
1513 vm_map_splay_merge_left(header, root, llist),
1514 vm_map_splay_merge_succ(header, root, rlist));
1515 map->root = root;
1516 VM_MAP_ASSERT_CONSISTENT(map);
1517 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1518 __func__, map, map->nentries, entry);
1519 }
1520
1521 /*
1522 * vm_map_lookup_entry: [ internal use only ]
1523 *
1524 * Finds the map entry containing (or
1525 * immediately preceding) the specified address
1526 * in the given map; the entry is returned
1527 * in the "entry" parameter. The boolean
1528 * result indicates whether the address is
1529 * actually contained in the map.
1530 */
1531 boolean_t
vm_map_lookup_entry(vm_map_t map,vm_offset_t address,vm_map_entry_t * entry)1532 vm_map_lookup_entry(
1533 vm_map_t map,
1534 vm_offset_t address,
1535 vm_map_entry_t *entry) /* OUT */
1536 {
1537 vm_map_entry_t cur, header, lbound, ubound;
1538 boolean_t locked;
1539
1540 /*
1541 * If the map is empty, then the map entry immediately preceding
1542 * "address" is the map's header.
1543 */
1544 header = &map->header;
1545 cur = map->root;
1546 if (cur == NULL) {
1547 *entry = header;
1548 return (FALSE);
1549 }
1550 if (address >= cur->start && cur->end > address) {
1551 *entry = cur;
1552 return (TRUE);
1553 }
1554 if ((locked = vm_map_locked(map)) ||
1555 sx_try_upgrade(&map->lock)) {
1556 /*
1557 * Splay requires a write lock on the map. However, it only
1558 * restructures the binary search tree; it does not otherwise
1559 * change the map. Thus, the map's timestamp need not change
1560 * on a temporary upgrade.
1561 */
1562 cur = vm_map_splay(map, address);
1563 if (!locked) {
1564 VM_MAP_UNLOCK_CONSISTENT(map);
1565 sx_downgrade(&map->lock);
1566 }
1567
1568 /*
1569 * If "address" is contained within a map entry, the new root
1570 * is that map entry. Otherwise, the new root is a map entry
1571 * immediately before or after "address".
1572 */
1573 if (address < cur->start) {
1574 *entry = header;
1575 return (FALSE);
1576 }
1577 *entry = cur;
1578 return (address < cur->end);
1579 }
1580 /*
1581 * Since the map is only locked for read access, perform a
1582 * standard binary search tree lookup for "address".
1583 */
1584 lbound = ubound = header;
1585 for (;;) {
1586 if (address < cur->start) {
1587 ubound = cur;
1588 cur = cur->left;
1589 if (cur == lbound)
1590 break;
1591 } else if (cur->end <= address) {
1592 lbound = cur;
1593 cur = cur->right;
1594 if (cur == ubound)
1595 break;
1596 } else {
1597 *entry = cur;
1598 return (TRUE);
1599 }
1600 }
1601 *entry = lbound;
1602 return (FALSE);
1603 }
1604
1605 /*
1606 * vm_map_insert1() is identical to vm_map_insert() except that it
1607 * returns the newly inserted map entry in '*res'. In case the new
1608 * entry is coalesced with a neighbor or an existing entry was
1609 * resized, that entry is returned. In any case, the returned entry
1610 * covers the specified address range.
1611 */
1612 static int
vm_map_insert1(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_offset_t end,vm_prot_t prot,vm_prot_t max,int cow,vm_map_entry_t * res)1613 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1614 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1615 vm_map_entry_t *res)
1616 {
1617 vm_map_entry_t new_entry, next_entry, prev_entry;
1618 struct ucred *cred;
1619 vm_eflags_t protoeflags;
1620 vm_inherit_t inheritance;
1621 u_long bdry;
1622 u_int bidx;
1623
1624 VM_MAP_ASSERT_LOCKED(map);
1625 KASSERT(object != kernel_object ||
1626 (cow & MAP_COPY_ON_WRITE) == 0,
1627 ("vm_map_insert: kernel object and COW"));
1628 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1629 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1630 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1631 object, cow));
1632 KASSERT((prot & ~max) == 0,
1633 ("prot %#x is not subset of max_prot %#x", prot, max));
1634
1635 /*
1636 * Check that the start and end points are not bogus.
1637 */
1638 if (start == end || !vm_map_range_valid(map, start, end))
1639 return (KERN_INVALID_ADDRESS);
1640
1641 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1642 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1643 return (KERN_PROTECTION_FAILURE);
1644
1645 /*
1646 * Find the entry prior to the proposed starting address; if it's part
1647 * of an existing entry, this range is bogus.
1648 */
1649 if (vm_map_lookup_entry(map, start, &prev_entry))
1650 return (KERN_NO_SPACE);
1651
1652 /*
1653 * Assert that the next entry doesn't overlap the end point.
1654 */
1655 next_entry = vm_map_entry_succ(prev_entry);
1656 if (next_entry->start < end)
1657 return (KERN_NO_SPACE);
1658
1659 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1660 max != VM_PROT_NONE))
1661 return (KERN_INVALID_ARGUMENT);
1662
1663 protoeflags = 0;
1664 if (cow & MAP_COPY_ON_WRITE)
1665 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1666 if (cow & MAP_NOFAULT)
1667 protoeflags |= MAP_ENTRY_NOFAULT;
1668 if (cow & MAP_DISABLE_SYNCER)
1669 protoeflags |= MAP_ENTRY_NOSYNC;
1670 if (cow & MAP_DISABLE_COREDUMP)
1671 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1672 if (cow & MAP_STACK_AREA)
1673 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1674 if (cow & MAP_WRITECOUNT)
1675 protoeflags |= MAP_ENTRY_WRITECNT;
1676 if (cow & MAP_VN_EXEC)
1677 protoeflags |= MAP_ENTRY_VN_EXEC;
1678 if ((cow & MAP_CREATE_GUARD) != 0)
1679 protoeflags |= MAP_ENTRY_GUARD;
1680 if ((cow & MAP_CREATE_STACK_GAP) != 0)
1681 protoeflags |= MAP_ENTRY_STACK_GAP;
1682 if (cow & MAP_INHERIT_SHARE)
1683 inheritance = VM_INHERIT_SHARE;
1684 else
1685 inheritance = VM_INHERIT_DEFAULT;
1686 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1687 /* This magically ignores index 0, for usual page size. */
1688 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1689 MAP_SPLIT_BOUNDARY_SHIFT;
1690 if (bidx >= MAXPAGESIZES)
1691 return (KERN_INVALID_ARGUMENT);
1692 bdry = pagesizes[bidx] - 1;
1693 if ((start & bdry) != 0 || (end & bdry) != 0)
1694 return (KERN_INVALID_ARGUMENT);
1695 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1696 }
1697
1698 cred = NULL;
1699 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1700 goto charged;
1701 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1702 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1703 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1704 return (KERN_RESOURCE_SHORTAGE);
1705 KASSERT(object == NULL ||
1706 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1707 object->cred == NULL,
1708 ("overcommit: vm_map_insert o %p", object));
1709 cred = curthread->td_ucred;
1710 }
1711
1712 charged:
1713 /* Expand the kernel pmap, if necessary. */
1714 if (map == kernel_map && end > kernel_vm_end) {
1715 int rv;
1716
1717 rv = pmap_growkernel(end);
1718 if (rv != KERN_SUCCESS)
1719 return (rv);
1720 }
1721 if (object != NULL) {
1722 /*
1723 * OBJ_ONEMAPPING must be cleared unless this mapping
1724 * is trivially proven to be the only mapping for any
1725 * of the object's pages. (Object granularity
1726 * reference counting is insufficient to recognize
1727 * aliases with precision.)
1728 */
1729 if ((object->flags & OBJ_ANON) != 0) {
1730 VM_OBJECT_WLOCK(object);
1731 if (object->ref_count > 1 || object->shadow_count != 0)
1732 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1733 VM_OBJECT_WUNLOCK(object);
1734 }
1735 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1736 protoeflags &&
1737 (cow & (MAP_STACK_AREA | MAP_VN_EXEC)) == 0 &&
1738 prev_entry->end == start && (prev_entry->cred == cred ||
1739 (prev_entry->object.vm_object != NULL &&
1740 prev_entry->object.vm_object->cred == cred)) &&
1741 vm_object_coalesce(prev_entry->object.vm_object,
1742 prev_entry->offset,
1743 (vm_size_t)(prev_entry->end - prev_entry->start),
1744 (vm_size_t)(end - prev_entry->end), cred != NULL &&
1745 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1746 /*
1747 * We were able to extend the object. Determine if we
1748 * can extend the previous map entry to include the
1749 * new range as well.
1750 */
1751 if (prev_entry->inheritance == inheritance &&
1752 prev_entry->protection == prot &&
1753 prev_entry->max_protection == max &&
1754 prev_entry->wired_count == 0) {
1755 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1756 0, ("prev_entry %p has incoherent wiring",
1757 prev_entry));
1758 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1759 map->size += end - prev_entry->end;
1760 vm_map_entry_resize(map, prev_entry,
1761 end - prev_entry->end);
1762 *res = vm_map_try_merge_entries(map, prev_entry,
1763 next_entry);
1764 return (KERN_SUCCESS);
1765 }
1766
1767 /*
1768 * If we can extend the object but cannot extend the
1769 * map entry, we have to create a new map entry. We
1770 * must bump the ref count on the extended object to
1771 * account for it. object may be NULL.
1772 */
1773 object = prev_entry->object.vm_object;
1774 offset = prev_entry->offset +
1775 (prev_entry->end - prev_entry->start);
1776 vm_object_reference(object);
1777 if (cred != NULL && object != NULL && object->cred != NULL &&
1778 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1779 /* Object already accounts for this uid. */
1780 cred = NULL;
1781 }
1782 }
1783 if (cred != NULL)
1784 crhold(cred);
1785
1786 /*
1787 * Create a new entry
1788 */
1789 new_entry = vm_map_entry_create(map);
1790 new_entry->start = start;
1791 new_entry->end = end;
1792 new_entry->cred = NULL;
1793
1794 new_entry->eflags = protoeflags;
1795 new_entry->object.vm_object = object;
1796 new_entry->offset = offset;
1797
1798 new_entry->inheritance = inheritance;
1799 new_entry->protection = prot;
1800 new_entry->max_protection = max;
1801 new_entry->wired_count = 0;
1802 new_entry->wiring_thread = NULL;
1803 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1804 new_entry->next_read = start;
1805
1806 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1807 ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1808 new_entry->cred = cred;
1809
1810 /*
1811 * Insert the new entry into the list
1812 */
1813 vm_map_entry_link(map, new_entry);
1814 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1815 map->size += new_entry->end - new_entry->start;
1816
1817 /*
1818 * Try to coalesce the new entry with both the previous and next
1819 * entries in the list. Previously, we only attempted to coalesce
1820 * with the previous entry when object is NULL. Here, we handle the
1821 * other cases, which are less common.
1822 */
1823 vm_map_try_merge_entries(map, prev_entry, new_entry);
1824 *res = vm_map_try_merge_entries(map, new_entry, next_entry);
1825
1826 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1827 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1828 end - start, cow & MAP_PREFAULT_PARTIAL);
1829 }
1830
1831 return (KERN_SUCCESS);
1832 }
1833
1834 /*
1835 * vm_map_insert:
1836 *
1837 * Inserts the given VM object into the target map at the
1838 * specified address range.
1839 *
1840 * Requires that the map be locked, and leaves it so.
1841 *
1842 * If object is non-NULL, ref count must be bumped by caller
1843 * prior to making call to account for the new entry.
1844 */
1845 int
vm_map_insert(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_offset_t end,vm_prot_t prot,vm_prot_t max,int cow)1846 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1847 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1848 {
1849 vm_map_entry_t res;
1850
1851 return (vm_map_insert1(map, object, offset, start, end, prot, max,
1852 cow, &res));
1853 }
1854
1855 /*
1856 * vm_map_findspace:
1857 *
1858 * Find the first fit (lowest VM address) for "length" free bytes
1859 * beginning at address >= start in the given map.
1860 *
1861 * In a vm_map_entry, "max_free" is the maximum amount of
1862 * contiguous free space between an entry in its subtree and a
1863 * neighbor of that entry. This allows finding a free region in
1864 * one path down the tree, so O(log n) amortized with splay
1865 * trees.
1866 *
1867 * The map must be locked, and leaves it so.
1868 *
1869 * Returns: starting address if sufficient space,
1870 * vm_map_max(map)-length+1 if insufficient space.
1871 */
1872 vm_offset_t
vm_map_findspace(vm_map_t map,vm_offset_t start,vm_size_t length)1873 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1874 {
1875 vm_map_entry_t header, llist, rlist, root, y;
1876 vm_size_t left_length, max_free_left, max_free_right;
1877 vm_offset_t gap_end;
1878
1879 VM_MAP_ASSERT_LOCKED(map);
1880
1881 /*
1882 * Request must fit within min/max VM address and must avoid
1883 * address wrap.
1884 */
1885 start = MAX(start, vm_map_min(map));
1886 if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1887 return (vm_map_max(map) - length + 1);
1888
1889 /* Empty tree means wide open address space. */
1890 if (map->root == NULL)
1891 return (start);
1892
1893 /*
1894 * After splay_split, if start is within an entry, push it to the start
1895 * of the following gap. If rlist is at the end of the gap containing
1896 * start, save the end of that gap in gap_end to see if the gap is big
1897 * enough; otherwise set gap_end to start skip gap-checking and move
1898 * directly to a search of the right subtree.
1899 */
1900 header = &map->header;
1901 root = vm_map_splay_split(map, start, length, &llist, &rlist);
1902 gap_end = rlist->start;
1903 if (root != NULL) {
1904 start = root->end;
1905 if (root->right != rlist)
1906 gap_end = start;
1907 max_free_left = vm_map_splay_merge_left(header, root, llist);
1908 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1909 } else if (rlist != header) {
1910 root = rlist;
1911 rlist = root->left;
1912 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1913 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1914 } else {
1915 root = llist;
1916 llist = root->right;
1917 max_free_left = vm_map_splay_merge_left(header, root, llist);
1918 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1919 }
1920 root->max_free = vm_size_max(max_free_left, max_free_right);
1921 map->root = root;
1922 VM_MAP_ASSERT_CONSISTENT(map);
1923 if (length <= gap_end - start)
1924 return (start);
1925
1926 /* With max_free, can immediately tell if no solution. */
1927 if (root->right == header || length > root->right->max_free)
1928 return (vm_map_max(map) - length + 1);
1929
1930 /*
1931 * Splay for the least large-enough gap in the right subtree.
1932 */
1933 llist = rlist = header;
1934 for (left_length = 0;;
1935 left_length = vm_map_entry_max_free_left(root, llist)) {
1936 if (length <= left_length)
1937 SPLAY_LEFT_STEP(root, y, llist, rlist,
1938 length <= vm_map_entry_max_free_left(y, llist));
1939 else
1940 SPLAY_RIGHT_STEP(root, y, llist, rlist,
1941 length > vm_map_entry_max_free_left(y, root));
1942 if (root == NULL)
1943 break;
1944 }
1945 root = llist;
1946 llist = root->right;
1947 max_free_left = vm_map_splay_merge_left(header, root, llist);
1948 if (rlist == header) {
1949 root->max_free = vm_size_max(max_free_left,
1950 vm_map_splay_merge_succ(header, root, rlist));
1951 } else {
1952 y = rlist;
1953 rlist = y->left;
1954 y->max_free = vm_size_max(
1955 vm_map_splay_merge_pred(root, y, root),
1956 vm_map_splay_merge_right(header, y, rlist));
1957 root->max_free = vm_size_max(max_free_left, y->max_free);
1958 }
1959 map->root = root;
1960 VM_MAP_ASSERT_CONSISTENT(map);
1961 return (root->end);
1962 }
1963
1964 int
vm_map_fixed(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_size_t length,vm_prot_t prot,vm_prot_t max,int cow)1965 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1966 vm_offset_t start, vm_size_t length, vm_prot_t prot,
1967 vm_prot_t max, int cow)
1968 {
1969 vm_offset_t end;
1970 int result;
1971
1972 end = start + length;
1973 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
1974 ("vm_map_fixed: non-NULL backing object for stack"));
1975 vm_map_lock(map);
1976 VM_MAP_RANGE_CHECK(map, start, end);
1977 if ((cow & MAP_CHECK_EXCL) == 0) {
1978 result = vm_map_delete(map, start, end);
1979 if (result != KERN_SUCCESS)
1980 goto out;
1981 }
1982 if ((cow & MAP_STACK_AREA) != 0) {
1983 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1984 prot, max, cow);
1985 } else {
1986 result = vm_map_insert(map, object, offset, start, end,
1987 prot, max, cow);
1988 }
1989 out:
1990 vm_map_unlock(map);
1991 return (result);
1992 }
1993
1994 #if VM_NRESERVLEVEL <= 1
1995 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1996 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1997 #elif VM_NRESERVLEVEL == 2
1998 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10};
1999 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4};
2000 #else
2001 #error "Unsupported VM_NRESERVLEVEL"
2002 #endif
2003
2004 static int cluster_anon = 1;
2005 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2006 &cluster_anon, 0,
2007 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2008
2009 static bool
clustering_anon_allowed(vm_offset_t addr,int cow)2010 clustering_anon_allowed(vm_offset_t addr, int cow)
2011 {
2012
2013 switch (cluster_anon) {
2014 case 0:
2015 return (false);
2016 case 1:
2017 return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2018 case 2:
2019 default:
2020 return (true);
2021 }
2022 }
2023
2024 static long aslr_restarts;
2025 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2026 &aslr_restarts, 0,
2027 "Number of aslr failures");
2028
2029 /*
2030 * Searches for the specified amount of free space in the given map with the
2031 * specified alignment. Performs an address-ordered, first-fit search from
2032 * the given address "*addr", with an optional upper bound "max_addr". If the
2033 * parameter "alignment" is zero, then the alignment is computed from the
2034 * given (object, offset) pair so as to enable the greatest possible use of
2035 * superpage mappings. Returns KERN_SUCCESS and the address of the free space
2036 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE.
2037 *
2038 * The map must be locked. Initially, there must be at least "length" bytes
2039 * of free space at the given address.
2040 */
2041 static int
vm_map_alignspace(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,vm_offset_t alignment)2042 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2043 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2044 vm_offset_t alignment)
2045 {
2046 vm_offset_t aligned_addr, free_addr;
2047
2048 VM_MAP_ASSERT_LOCKED(map);
2049 free_addr = *addr;
2050 KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2051 ("caller failed to provide space %#jx at address %p",
2052 (uintmax_t)length, (void *)free_addr));
2053 for (;;) {
2054 /*
2055 * At the start of every iteration, the free space at address
2056 * "*addr" is at least "length" bytes.
2057 */
2058 if (alignment == 0)
2059 pmap_align_superpage(object, offset, addr, length);
2060 else
2061 *addr = roundup2(*addr, alignment);
2062 aligned_addr = *addr;
2063 if (aligned_addr == free_addr) {
2064 /*
2065 * Alignment did not change "*addr", so "*addr" must
2066 * still provide sufficient free space.
2067 */
2068 return (KERN_SUCCESS);
2069 }
2070
2071 /*
2072 * Test for address wrap on "*addr". A wrapped "*addr" could
2073 * be a valid address, in which case vm_map_findspace() cannot
2074 * be relied upon to fail.
2075 */
2076 if (aligned_addr < free_addr)
2077 return (KERN_NO_SPACE);
2078 *addr = vm_map_findspace(map, aligned_addr, length);
2079 if (*addr + length > vm_map_max(map) ||
2080 (max_addr != 0 && *addr + length > max_addr))
2081 return (KERN_NO_SPACE);
2082 free_addr = *addr;
2083 if (free_addr == aligned_addr) {
2084 /*
2085 * If a successful call to vm_map_findspace() did not
2086 * change "*addr", then "*addr" must still be aligned
2087 * and provide sufficient free space.
2088 */
2089 return (KERN_SUCCESS);
2090 }
2091 }
2092 }
2093
2094 int
vm_map_find_aligned(vm_map_t map,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,vm_offset_t alignment)2095 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2096 vm_offset_t max_addr, vm_offset_t alignment)
2097 {
2098 /* XXXKIB ASLR eh ? */
2099 *addr = vm_map_findspace(map, *addr, length);
2100 if (*addr + length > vm_map_max(map) ||
2101 (max_addr != 0 && *addr + length > max_addr))
2102 return (KERN_NO_SPACE);
2103 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2104 alignment));
2105 }
2106
2107 /*
2108 * vm_map_find finds an unallocated region in the target address
2109 * map with the given length. The search is defined to be
2110 * first-fit from the specified address; the region found is
2111 * returned in the same parameter.
2112 *
2113 * If object is non-NULL, ref count must be bumped by caller
2114 * prior to making call to account for the new entry.
2115 */
2116 int
vm_map_find(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2117 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2118 vm_offset_t *addr, /* IN/OUT */
2119 vm_size_t length, vm_offset_t max_addr, int find_space,
2120 vm_prot_t prot, vm_prot_t max, int cow)
2121 {
2122 int rv;
2123
2124 vm_map_lock(map);
2125 rv = vm_map_find_locked(map, object, offset, addr, length, max_addr,
2126 find_space, prot, max, cow);
2127 vm_map_unlock(map);
2128 return (rv);
2129 }
2130
2131 int
vm_map_find_locked(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2132 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2133 vm_offset_t *addr, /* IN/OUT */
2134 vm_size_t length, vm_offset_t max_addr, int find_space,
2135 vm_prot_t prot, vm_prot_t max, int cow)
2136 {
2137 vm_offset_t alignment, curr_min_addr, min_addr;
2138 int gap, pidx, rv, try;
2139 bool cluster, en_aslr, update_anon;
2140
2141 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
2142 ("non-NULL backing object for stack"));
2143 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2144 (cow & MAP_STACK_AREA) == 0));
2145 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2146 (object->flags & OBJ_COLORED) == 0))
2147 find_space = VMFS_ANY_SPACE;
2148 if (find_space >> 8 != 0) {
2149 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2150 alignment = (vm_offset_t)1 << (find_space >> 8);
2151 } else
2152 alignment = 0;
2153 en_aslr = (map->flags & MAP_ASLR) != 0;
2154 update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2155 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2156 find_space != VMFS_NO_SPACE && object == NULL &&
2157 (cow & (MAP_INHERIT_SHARE | MAP_STACK_AREA)) == 0 &&
2158 prot != PROT_NONE;
2159 curr_min_addr = min_addr = *addr;
2160 if (en_aslr && min_addr == 0 && !cluster &&
2161 find_space != VMFS_NO_SPACE &&
2162 (map->flags & MAP_ASLR_IGNSTART) != 0)
2163 curr_min_addr = min_addr = vm_map_min(map);
2164 try = 0;
2165 if (cluster) {
2166 curr_min_addr = map->anon_loc;
2167 if (curr_min_addr == 0)
2168 cluster = false;
2169 }
2170 if (find_space != VMFS_NO_SPACE) {
2171 KASSERT(find_space == VMFS_ANY_SPACE ||
2172 find_space == VMFS_OPTIMAL_SPACE ||
2173 find_space == VMFS_SUPER_SPACE ||
2174 alignment != 0, ("unexpected VMFS flag"));
2175 again:
2176 /*
2177 * When creating an anonymous mapping, try clustering
2178 * with an existing anonymous mapping first.
2179 *
2180 * We make up to two attempts to find address space
2181 * for a given find_space value. The first attempt may
2182 * apply randomization or may cluster with an existing
2183 * anonymous mapping. If this first attempt fails,
2184 * perform a first-fit search of the available address
2185 * space.
2186 *
2187 * If all tries failed, and find_space is
2188 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2189 * Again enable clustering and randomization.
2190 */
2191 try++;
2192 MPASS(try <= 2);
2193
2194 if (try == 2) {
2195 /*
2196 * Second try: we failed either to find a
2197 * suitable region for randomizing the
2198 * allocation, or to cluster with an existing
2199 * mapping. Retry with free run.
2200 */
2201 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2202 vm_map_min(map) : min_addr;
2203 atomic_add_long(&aslr_restarts, 1);
2204 }
2205
2206 if (try == 1 && en_aslr && !cluster) {
2207 /*
2208 * Find space for allocation, including
2209 * gap needed for later randomization.
2210 */
2211 pidx = 0;
2212 #if VM_NRESERVLEVEL > 0
2213 if ((find_space == VMFS_SUPER_SPACE ||
2214 find_space == VMFS_OPTIMAL_SPACE) &&
2215 pagesizes[VM_NRESERVLEVEL] != 0) {
2216 /*
2217 * Do not pointlessly increase the space that
2218 * is requested from vm_map_findspace().
2219 * pmap_align_superpage() will only change a
2220 * mapping's alignment if that mapping is at
2221 * least a superpage in size.
2222 */
2223 pidx = VM_NRESERVLEVEL;
2224 while (pidx > 0 && length < pagesizes[pidx])
2225 pidx--;
2226 }
2227 #endif
2228 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2229 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2230 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2231 *addr = vm_map_findspace(map, curr_min_addr,
2232 length + gap * pagesizes[pidx]);
2233 if (*addr + length + gap * pagesizes[pidx] >
2234 vm_map_max(map))
2235 goto again;
2236 /* And randomize the start address. */
2237 *addr += (arc4random() % gap) * pagesizes[pidx];
2238 if (max_addr != 0 && *addr + length > max_addr)
2239 goto again;
2240 } else {
2241 *addr = vm_map_findspace(map, curr_min_addr, length);
2242 if (*addr + length > vm_map_max(map) ||
2243 (max_addr != 0 && *addr + length > max_addr)) {
2244 if (cluster) {
2245 cluster = false;
2246 MPASS(try == 1);
2247 goto again;
2248 }
2249 return (KERN_NO_SPACE);
2250 }
2251 }
2252
2253 if (find_space != VMFS_ANY_SPACE &&
2254 (rv = vm_map_alignspace(map, object, offset, addr, length,
2255 max_addr, alignment)) != KERN_SUCCESS) {
2256 if (find_space == VMFS_OPTIMAL_SPACE) {
2257 find_space = VMFS_ANY_SPACE;
2258 curr_min_addr = min_addr;
2259 cluster = update_anon;
2260 try = 0;
2261 goto again;
2262 }
2263 return (rv);
2264 }
2265 } else if ((cow & MAP_REMAP) != 0) {
2266 if (!vm_map_range_valid(map, *addr, *addr + length))
2267 return (KERN_INVALID_ADDRESS);
2268 rv = vm_map_delete(map, *addr, *addr + length);
2269 if (rv != KERN_SUCCESS)
2270 return (rv);
2271 }
2272 if ((cow & MAP_STACK_AREA) != 0) {
2273 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2274 max, cow);
2275 } else {
2276 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2277 prot, max, cow);
2278 }
2279
2280 /*
2281 * Update the starting address for clustered anonymous memory mappings
2282 * if a starting address was not previously defined or an ASLR restart
2283 * placed an anonymous memory mapping at a lower address.
2284 */
2285 if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 ||
2286 *addr < map->anon_loc))
2287 map->anon_loc = *addr;
2288 return (rv);
2289 }
2290
2291 /*
2292 * vm_map_find_min() is a variant of vm_map_find() that takes an
2293 * additional parameter ("default_addr") and treats the given address
2294 * ("*addr") differently. Specifically, it treats "*addr" as a hint
2295 * and not as the minimum address where the mapping is created.
2296 *
2297 * This function works in two phases. First, it tries to
2298 * allocate above the hint. If that fails and the hint is
2299 * greater than "default_addr", it performs a second pass, replacing
2300 * the hint with "default_addr" as the minimum address for the
2301 * allocation.
2302 */
2303 int
vm_map_find_min(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t default_addr,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2304 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2305 vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2306 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2307 int cow)
2308 {
2309 vm_offset_t hint;
2310 int rv;
2311
2312 hint = *addr;
2313 if (hint == 0) {
2314 cow |= MAP_NO_HINT;
2315 *addr = hint = default_addr;
2316 }
2317 for (;;) {
2318 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2319 find_space, prot, max, cow);
2320 if (rv == KERN_SUCCESS || default_addr >= hint)
2321 return (rv);
2322 *addr = hint = default_addr;
2323 }
2324 }
2325
2326 /*
2327 * A map entry with any of the following flags set must not be merged with
2328 * another entry.
2329 */
2330 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | \
2331 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2332 MAP_ENTRY_STACK_GAP)
2333
2334 static bool
vm_map_mergeable_neighbors(vm_map_entry_t prev,vm_map_entry_t entry)2335 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2336 {
2337
2338 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2339 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2340 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2341 prev, entry));
2342 return (prev->end == entry->start &&
2343 prev->object.vm_object == entry->object.vm_object &&
2344 (prev->object.vm_object == NULL ||
2345 prev->offset + (prev->end - prev->start) == entry->offset) &&
2346 prev->eflags == entry->eflags &&
2347 prev->protection == entry->protection &&
2348 prev->max_protection == entry->max_protection &&
2349 prev->inheritance == entry->inheritance &&
2350 prev->wired_count == entry->wired_count &&
2351 prev->cred == entry->cred);
2352 }
2353
2354 static void
vm_map_merged_neighbor_dispose(vm_map_t map,vm_map_entry_t entry)2355 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2356 {
2357
2358 /*
2359 * If the backing object is a vnode object, vm_object_deallocate()
2360 * calls vrele(). However, vrele() does not lock the vnode because
2361 * the vnode has additional references. Thus, the map lock can be
2362 * kept without causing a lock-order reversal with the vnode lock.
2363 *
2364 * Since we count the number of virtual page mappings in
2365 * object->un_pager.vnp.writemappings, the writemappings value
2366 * should not be adjusted when the entry is disposed of.
2367 */
2368 if (entry->object.vm_object != NULL)
2369 vm_object_deallocate(entry->object.vm_object);
2370 if (entry->cred != NULL)
2371 crfree(entry->cred);
2372 vm_map_entry_dispose(map, entry);
2373 }
2374
2375 /*
2376 * vm_map_try_merge_entries:
2377 *
2378 * Compare two map entries that represent consecutive ranges. If
2379 * the entries can be merged, expand the range of the second to
2380 * cover the range of the first and delete the first. Then return
2381 * the map entry that includes the first range.
2382 *
2383 * The map must be locked.
2384 */
2385 vm_map_entry_t
vm_map_try_merge_entries(vm_map_t map,vm_map_entry_t prev_entry,vm_map_entry_t entry)2386 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2387 vm_map_entry_t entry)
2388 {
2389
2390 VM_MAP_ASSERT_LOCKED(map);
2391 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2392 vm_map_mergeable_neighbors(prev_entry, entry)) {
2393 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2394 vm_map_merged_neighbor_dispose(map, prev_entry);
2395 return (entry);
2396 }
2397 return (prev_entry);
2398 }
2399
2400 /*
2401 * vm_map_entry_back:
2402 *
2403 * Allocate an object to back a map entry.
2404 */
2405 static inline void
vm_map_entry_back(vm_map_entry_t entry)2406 vm_map_entry_back(vm_map_entry_t entry)
2407 {
2408 vm_object_t object;
2409
2410 KASSERT(entry->object.vm_object == NULL,
2411 ("map entry %p has backing object", entry));
2412 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2413 ("map entry %p is a submap", entry));
2414 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2415 entry->cred, entry->end - entry->start);
2416 entry->object.vm_object = object;
2417 entry->offset = 0;
2418 entry->cred = NULL;
2419 }
2420
2421 /*
2422 * vm_map_entry_charge_object
2423 *
2424 * If there is no object backing this entry, create one. Otherwise, if
2425 * the entry has cred, give it to the backing object.
2426 */
2427 static inline void
vm_map_entry_charge_object(vm_map_t map,vm_map_entry_t entry)2428 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2429 {
2430
2431 VM_MAP_ASSERT_LOCKED(map);
2432 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2433 ("map entry %p is a submap", entry));
2434 if (entry->object.vm_object == NULL && !vm_map_is_system(map) &&
2435 (entry->eflags & MAP_ENTRY_GUARD) == 0)
2436 vm_map_entry_back(entry);
2437 else if (entry->object.vm_object != NULL &&
2438 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2439 entry->cred != NULL) {
2440 VM_OBJECT_WLOCK(entry->object.vm_object);
2441 KASSERT(entry->object.vm_object->cred == NULL,
2442 ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2443 entry->object.vm_object->cred = entry->cred;
2444 entry->object.vm_object->charge = entry->end - entry->start;
2445 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2446 entry->cred = NULL;
2447 }
2448 }
2449
2450 /*
2451 * vm_map_entry_clone
2452 *
2453 * Create a duplicate map entry for clipping.
2454 */
2455 static vm_map_entry_t
vm_map_entry_clone(vm_map_t map,vm_map_entry_t entry)2456 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2457 {
2458 vm_map_entry_t new_entry;
2459
2460 VM_MAP_ASSERT_LOCKED(map);
2461
2462 /*
2463 * Create a backing object now, if none exists, so that more individual
2464 * objects won't be created after the map entry is split.
2465 */
2466 vm_map_entry_charge_object(map, entry);
2467
2468 /* Clone the entry. */
2469 new_entry = vm_map_entry_create(map);
2470 *new_entry = *entry;
2471 if (new_entry->cred != NULL)
2472 crhold(entry->cred);
2473 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2474 vm_object_reference(new_entry->object.vm_object);
2475 vm_map_entry_set_vnode_text(new_entry, true);
2476 /*
2477 * The object->un_pager.vnp.writemappings for the object of
2478 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The
2479 * virtual pages are re-distributed among the clipped entries,
2480 * so the sum is left the same.
2481 */
2482 }
2483 return (new_entry);
2484 }
2485
2486 /*
2487 * vm_map_clip_start: [ internal use only ]
2488 *
2489 * Asserts that the given entry begins at or after
2490 * the specified address; if necessary,
2491 * it splits the entry into two.
2492 */
2493 static int
vm_map_clip_start(vm_map_t map,vm_map_entry_t entry,vm_offset_t startaddr)2494 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2495 {
2496 vm_map_entry_t new_entry;
2497 int bdry_idx;
2498
2499 if (!vm_map_is_system(map))
2500 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2501 "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2502 (uintmax_t)startaddr);
2503
2504 if (startaddr <= entry->start)
2505 return (KERN_SUCCESS);
2506
2507 VM_MAP_ASSERT_LOCKED(map);
2508 KASSERT(entry->end > startaddr && entry->start < startaddr,
2509 ("%s: invalid clip of entry %p", __func__, entry));
2510
2511 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2512 if (bdry_idx != 0) {
2513 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2514 return (KERN_INVALID_ARGUMENT);
2515 }
2516
2517 new_entry = vm_map_entry_clone(map, entry);
2518
2519 /*
2520 * Split off the front portion. Insert the new entry BEFORE this one,
2521 * so that this entry has the specified starting address.
2522 */
2523 new_entry->end = startaddr;
2524 vm_map_entry_link(map, new_entry);
2525 return (KERN_SUCCESS);
2526 }
2527
2528 /*
2529 * vm_map_lookup_clip_start:
2530 *
2531 * Find the entry at or just after 'start', and clip it if 'start' is in
2532 * the interior of the entry. Return entry after 'start', and in
2533 * prev_entry set the entry before 'start'.
2534 */
2535 static int
vm_map_lookup_clip_start(vm_map_t map,vm_offset_t start,vm_map_entry_t * res_entry,vm_map_entry_t * prev_entry)2536 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2537 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2538 {
2539 vm_map_entry_t entry;
2540 int rv;
2541
2542 if (!vm_map_is_system(map))
2543 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2544 "%s: map %p start 0x%jx prev %p", __func__, map,
2545 (uintmax_t)start, prev_entry);
2546
2547 if (vm_map_lookup_entry(map, start, prev_entry)) {
2548 entry = *prev_entry;
2549 rv = vm_map_clip_start(map, entry, start);
2550 if (rv != KERN_SUCCESS)
2551 return (rv);
2552 *prev_entry = vm_map_entry_pred(entry);
2553 } else
2554 entry = vm_map_entry_succ(*prev_entry);
2555 *res_entry = entry;
2556 return (KERN_SUCCESS);
2557 }
2558
2559 /*
2560 * vm_map_clip_end: [ internal use only ]
2561 *
2562 * Asserts that the given entry ends at or before
2563 * the specified address; if necessary,
2564 * it splits the entry into two.
2565 */
2566 static int
vm_map_clip_end(vm_map_t map,vm_map_entry_t entry,vm_offset_t endaddr)2567 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2568 {
2569 vm_map_entry_t new_entry;
2570 int bdry_idx;
2571
2572 if (!vm_map_is_system(map))
2573 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2574 "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2575 (uintmax_t)endaddr);
2576
2577 if (endaddr >= entry->end)
2578 return (KERN_SUCCESS);
2579
2580 VM_MAP_ASSERT_LOCKED(map);
2581 KASSERT(entry->start < endaddr && entry->end > endaddr,
2582 ("%s: invalid clip of entry %p", __func__, entry));
2583
2584 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2585 if (bdry_idx != 0) {
2586 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2587 return (KERN_INVALID_ARGUMENT);
2588 }
2589
2590 new_entry = vm_map_entry_clone(map, entry);
2591
2592 /*
2593 * Split off the back portion. Insert the new entry AFTER this one,
2594 * so that this entry has the specified ending address.
2595 */
2596 new_entry->start = endaddr;
2597 vm_map_entry_link(map, new_entry);
2598
2599 return (KERN_SUCCESS);
2600 }
2601
2602 /*
2603 * vm_map_submap: [ kernel use only ]
2604 *
2605 * Mark the given range as handled by a subordinate map.
2606 *
2607 * This range must have been created with vm_map_find,
2608 * and no other operations may have been performed on this
2609 * range prior to calling vm_map_submap.
2610 *
2611 * Only a limited number of operations can be performed
2612 * within this rage after calling vm_map_submap:
2613 * vm_fault
2614 * [Don't try vm_map_copy!]
2615 *
2616 * To remove a submapping, one must first remove the
2617 * range from the superior map, and then destroy the
2618 * submap (if desired). [Better yet, don't try it.]
2619 */
2620 int
vm_map_submap(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_map_t submap)2621 vm_map_submap(
2622 vm_map_t map,
2623 vm_offset_t start,
2624 vm_offset_t end,
2625 vm_map_t submap)
2626 {
2627 vm_map_entry_t entry;
2628 int result;
2629
2630 result = KERN_INVALID_ARGUMENT;
2631
2632 vm_map_lock(submap);
2633 submap->flags |= MAP_IS_SUB_MAP;
2634 vm_map_unlock(submap);
2635
2636 vm_map_lock(map);
2637 VM_MAP_RANGE_CHECK(map, start, end);
2638 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2639 (entry->eflags & MAP_ENTRY_COW) == 0 &&
2640 entry->object.vm_object == NULL) {
2641 result = vm_map_clip_start(map, entry, start);
2642 if (result != KERN_SUCCESS)
2643 goto unlock;
2644 result = vm_map_clip_end(map, entry, end);
2645 if (result != KERN_SUCCESS)
2646 goto unlock;
2647 entry->object.sub_map = submap;
2648 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2649 result = KERN_SUCCESS;
2650 }
2651 unlock:
2652 vm_map_unlock(map);
2653
2654 if (result != KERN_SUCCESS) {
2655 vm_map_lock(submap);
2656 submap->flags &= ~MAP_IS_SUB_MAP;
2657 vm_map_unlock(submap);
2658 }
2659 return (result);
2660 }
2661
2662 /*
2663 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2664 */
2665 #define MAX_INIT_PT 96
2666
2667 /*
2668 * vm_map_pmap_enter:
2669 *
2670 * Preload the specified map's pmap with mappings to the specified
2671 * object's memory-resident pages. No further physical pages are
2672 * allocated, and no further virtual pages are retrieved from secondary
2673 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a
2674 * limited number of page mappings are created at the low-end of the
2675 * specified address range. (For this purpose, a superpage mapping
2676 * counts as one page mapping.) Otherwise, all resident pages within
2677 * the specified address range are mapped.
2678 */
2679 static void
vm_map_pmap_enter(vm_map_t map,vm_offset_t addr,vm_prot_t prot,vm_object_t object,vm_pindex_t pindex,vm_size_t size,int flags)2680 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2681 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2682 {
2683 struct pctrie_iter pages;
2684 vm_offset_t start;
2685 vm_page_t p, p_start;
2686 vm_pindex_t jump, mask, psize, threshold, tmpidx;
2687 int psind;
2688
2689 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2690 return;
2691 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2692 VM_OBJECT_WLOCK(object);
2693 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2694 pmap_object_init_pt(map->pmap, addr, object, pindex,
2695 size);
2696 VM_OBJECT_WUNLOCK(object);
2697 return;
2698 }
2699 VM_OBJECT_LOCK_DOWNGRADE(object);
2700 } else
2701 VM_OBJECT_RLOCK(object);
2702
2703 psize = atop(size);
2704 if (psize + pindex > object->size) {
2705 if (pindex >= object->size) {
2706 VM_OBJECT_RUNLOCK(object);
2707 return;
2708 }
2709 psize = object->size - pindex;
2710 }
2711
2712 start = 0;
2713 p_start = NULL;
2714 threshold = MAX_INIT_PT;
2715
2716 vm_page_iter_limit_init(&pages, object, pindex + psize);
2717 for (p = vm_radix_iter_lookup_ge(&pages, pindex); p != NULL;
2718 p = vm_radix_iter_jump(&pages, jump)) {
2719 /*
2720 * don't allow an madvise to blow away our really
2721 * free pages allocating pv entries.
2722 */
2723 tmpidx = p->pindex - pindex;
2724 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2725 vm_page_count_severe()) ||
2726 ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2727 tmpidx >= threshold)) {
2728 psize = tmpidx;
2729 break;
2730 }
2731 jump = 1;
2732 if (vm_page_all_valid(p)) {
2733 if (p_start == NULL) {
2734 start = addr + ptoa(tmpidx);
2735 p_start = p;
2736 }
2737 /* Jump ahead if a superpage mapping is possible. */
2738 for (psind = p->psind; psind > 0; psind--) {
2739 if (((addr + ptoa(tmpidx)) &
2740 (pagesizes[psind] - 1)) == 0) {
2741 mask = atop(pagesizes[psind]) - 1;
2742 if (tmpidx + mask < psize &&
2743 vm_page_ps_test(p, psind,
2744 PS_ALL_VALID, NULL)) {
2745 jump += mask;
2746 threshold += mask;
2747 break;
2748 }
2749 }
2750 }
2751 } else if (p_start != NULL) {
2752 pmap_enter_object(map->pmap, start, addr +
2753 ptoa(tmpidx), p_start, prot);
2754 p_start = NULL;
2755 }
2756 }
2757 if (p_start != NULL)
2758 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2759 p_start, prot);
2760 VM_OBJECT_RUNLOCK(object);
2761 }
2762
2763 static void
vm_map_protect_guard(vm_map_entry_t entry,vm_prot_t new_prot,vm_prot_t new_maxprot,int flags)2764 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2765 vm_prot_t new_maxprot, int flags)
2766 {
2767 vm_prot_t old_prot;
2768
2769 MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2770 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
2771 return;
2772
2773 old_prot = PROT_EXTRACT(entry->offset);
2774 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2775 entry->offset = PROT_MAX(new_maxprot) |
2776 (new_maxprot & old_prot);
2777 }
2778 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2779 entry->offset = new_prot | PROT_MAX(
2780 PROT_MAX_EXTRACT(entry->offset));
2781 }
2782 }
2783
2784 /*
2785 * vm_map_protect:
2786 *
2787 * Sets the protection and/or the maximum protection of the
2788 * specified address region in the target map.
2789 */
2790 int
vm_map_protect(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t new_prot,vm_prot_t new_maxprot,int flags)2791 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2792 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2793 {
2794 vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2795 vm_object_t obj;
2796 struct ucred *cred;
2797 vm_offset_t orig_start;
2798 vm_prot_t check_prot, max_prot, old_prot;
2799 int rv;
2800
2801 if (start == end)
2802 return (KERN_SUCCESS);
2803
2804 if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2805 VM_MAP_PROTECT_SET_MAXPROT) &&
2806 !CONTAINS_BITS(new_maxprot, new_prot))
2807 return (KERN_OUT_OF_BOUNDS);
2808
2809 orig_start = start;
2810 again:
2811 in_tran = NULL;
2812 start = orig_start;
2813 vm_map_lock(map);
2814
2815 if ((map->flags & MAP_WXORX) != 0 &&
2816 (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2817 CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2818 vm_map_unlock(map);
2819 return (KERN_PROTECTION_FAILURE);
2820 }
2821
2822 /*
2823 * Ensure that we are not concurrently wiring pages. vm_map_wire() may
2824 * need to fault pages into the map and will drop the map lock while
2825 * doing so, and the VM object may end up in an inconsistent state if we
2826 * update the protection on the map entry in between faults.
2827 */
2828 vm_map_wait_busy(map);
2829
2830 VM_MAP_RANGE_CHECK(map, start, end);
2831
2832 if (!vm_map_lookup_entry(map, start, &first_entry))
2833 first_entry = vm_map_entry_succ(first_entry);
2834
2835 if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2836 (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2837 /*
2838 * Handle Linux's PROT_GROWSDOWN flag.
2839 * It means that protection is applied down to the
2840 * whole stack, including the specified range of the
2841 * mapped region, and the grow down region (AKA
2842 * guard).
2843 */
2844 while (!CONTAINS_BITS(first_entry->eflags,
2845 MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP) &&
2846 first_entry != vm_map_entry_first(map))
2847 first_entry = vm_map_entry_pred(first_entry);
2848 start = first_entry->start;
2849 }
2850
2851 /*
2852 * Make a first pass to check for protection violations.
2853 */
2854 check_prot = 0;
2855 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2856 check_prot |= new_prot;
2857 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2858 check_prot |= new_maxprot;
2859 for (entry = first_entry; entry->start < end;
2860 entry = vm_map_entry_succ(entry)) {
2861 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2862 vm_map_unlock(map);
2863 return (KERN_INVALID_ARGUMENT);
2864 }
2865 if ((entry->eflags & (MAP_ENTRY_GUARD |
2866 MAP_ENTRY_STACK_GAP)) == MAP_ENTRY_GUARD)
2867 continue;
2868 max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 ?
2869 PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2870 if (!CONTAINS_BITS(max_prot, check_prot)) {
2871 vm_map_unlock(map);
2872 return (KERN_PROTECTION_FAILURE);
2873 }
2874 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2875 in_tran = entry;
2876 }
2877
2878 /*
2879 * Postpone the operation until all in-transition map entries have
2880 * stabilized. An in-transition entry might already have its pages
2881 * wired and wired_count incremented, but not yet have its
2882 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call
2883 * vm_fault_copy_entry() in the final loop below.
2884 */
2885 if (in_tran != NULL) {
2886 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2887 vm_map_unlock_and_wait(map, 0);
2888 goto again;
2889 }
2890
2891 /*
2892 * Before changing the protections, try to reserve swap space for any
2893 * private (i.e., copy-on-write) mappings that are transitioning from
2894 * read-only to read/write access. If a reservation fails, break out
2895 * of this loop early and let the next loop simplify the entries, since
2896 * some may now be mergeable.
2897 */
2898 rv = vm_map_clip_start(map, first_entry, start);
2899 if (rv != KERN_SUCCESS) {
2900 vm_map_unlock(map);
2901 return (rv);
2902 }
2903 for (entry = first_entry; entry->start < end;
2904 entry = vm_map_entry_succ(entry)) {
2905 rv = vm_map_clip_end(map, entry, end);
2906 if (rv != KERN_SUCCESS) {
2907 vm_map_unlock(map);
2908 return (rv);
2909 }
2910
2911 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2912 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2913 ENTRY_CHARGED(entry) ||
2914 (entry->eflags & MAP_ENTRY_GUARD) != 0)
2915 continue;
2916
2917 cred = curthread->td_ucred;
2918 obj = entry->object.vm_object;
2919
2920 if (obj == NULL ||
2921 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2922 if (!swap_reserve(entry->end - entry->start)) {
2923 rv = KERN_RESOURCE_SHORTAGE;
2924 end = entry->end;
2925 break;
2926 }
2927 crhold(cred);
2928 entry->cred = cred;
2929 continue;
2930 }
2931
2932 VM_OBJECT_WLOCK(obj);
2933 if ((obj->flags & OBJ_SWAP) == 0) {
2934 VM_OBJECT_WUNLOCK(obj);
2935 continue;
2936 }
2937
2938 /*
2939 * Charge for the whole object allocation now, since
2940 * we cannot distinguish between non-charged and
2941 * charged clipped mapping of the same object later.
2942 */
2943 KASSERT(obj->charge == 0,
2944 ("vm_map_protect: object %p overcharged (entry %p)",
2945 obj, entry));
2946 if (!swap_reserve(ptoa(obj->size))) {
2947 VM_OBJECT_WUNLOCK(obj);
2948 rv = KERN_RESOURCE_SHORTAGE;
2949 end = entry->end;
2950 break;
2951 }
2952
2953 crhold(cred);
2954 obj->cred = cred;
2955 obj->charge = ptoa(obj->size);
2956 VM_OBJECT_WUNLOCK(obj);
2957 }
2958
2959 /*
2960 * If enough swap space was available, go back and fix up protections.
2961 * Otherwise, just simplify entries, since some may have been modified.
2962 * [Note that clipping is not necessary the second time.]
2963 */
2964 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2965 entry->start < end;
2966 vm_map_try_merge_entries(map, prev_entry, entry),
2967 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2968 if (rv != KERN_SUCCESS)
2969 continue;
2970
2971 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2972 vm_map_protect_guard(entry, new_prot, new_maxprot,
2973 flags);
2974 continue;
2975 }
2976
2977 old_prot = entry->protection;
2978
2979 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2980 entry->max_protection = new_maxprot;
2981 entry->protection = new_maxprot & old_prot;
2982 }
2983 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2984 entry->protection = new_prot;
2985
2986 /*
2987 * For user wired map entries, the normal lazy evaluation of
2988 * write access upgrades through soft page faults is
2989 * undesirable. Instead, immediately copy any pages that are
2990 * copy-on-write and enable write access in the physical map.
2991 */
2992 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2993 (entry->protection & VM_PROT_WRITE) != 0 &&
2994 (old_prot & VM_PROT_WRITE) == 0)
2995 vm_fault_copy_entry(map, map, entry, entry, NULL);
2996
2997 /*
2998 * When restricting access, update the physical map. Worry
2999 * about copy-on-write here.
3000 */
3001 if ((old_prot & ~entry->protection) != 0) {
3002 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
3003 VM_PROT_ALL)
3004 pmap_protect(map->pmap, entry->start,
3005 entry->end,
3006 entry->protection & MASK(entry));
3007 #undef MASK
3008 }
3009 }
3010 vm_map_try_merge_entries(map, prev_entry, entry);
3011 vm_map_unlock(map);
3012 return (rv);
3013 }
3014
3015 /*
3016 * vm_map_madvise:
3017 *
3018 * This routine traverses a processes map handling the madvise
3019 * system call. Advisories are classified as either those effecting
3020 * the vm_map_entry structure, or those effecting the underlying
3021 * objects.
3022 */
3023 int
vm_map_madvise(vm_map_t map,vm_offset_t start,vm_offset_t end,int behav)3024 vm_map_madvise(
3025 vm_map_t map,
3026 vm_offset_t start,
3027 vm_offset_t end,
3028 int behav)
3029 {
3030 vm_map_entry_t entry, prev_entry;
3031 int rv;
3032 bool modify_map;
3033
3034 /*
3035 * Some madvise calls directly modify the vm_map_entry, in which case
3036 * we need to use an exclusive lock on the map and we need to perform
3037 * various clipping operations. Otherwise we only need a read-lock
3038 * on the map.
3039 */
3040 switch(behav) {
3041 case MADV_NORMAL:
3042 case MADV_SEQUENTIAL:
3043 case MADV_RANDOM:
3044 case MADV_NOSYNC:
3045 case MADV_AUTOSYNC:
3046 case MADV_NOCORE:
3047 case MADV_CORE:
3048 if (start == end)
3049 return (0);
3050 modify_map = true;
3051 vm_map_lock(map);
3052 break;
3053 case MADV_WILLNEED:
3054 case MADV_DONTNEED:
3055 case MADV_FREE:
3056 if (start == end)
3057 return (0);
3058 modify_map = false;
3059 vm_map_lock_read(map);
3060 break;
3061 default:
3062 return (EINVAL);
3063 }
3064
3065 /*
3066 * Locate starting entry and clip if necessary.
3067 */
3068 VM_MAP_RANGE_CHECK(map, start, end);
3069
3070 if (modify_map) {
3071 /*
3072 * madvise behaviors that are implemented in the vm_map_entry.
3073 *
3074 * We clip the vm_map_entry so that behavioral changes are
3075 * limited to the specified address range.
3076 */
3077 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3078 if (rv != KERN_SUCCESS) {
3079 vm_map_unlock(map);
3080 return (vm_mmap_to_errno(rv));
3081 }
3082
3083 for (; entry->start < end; prev_entry = entry,
3084 entry = vm_map_entry_succ(entry)) {
3085 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3086 continue;
3087
3088 rv = vm_map_clip_end(map, entry, end);
3089 if (rv != KERN_SUCCESS) {
3090 vm_map_unlock(map);
3091 return (vm_mmap_to_errno(rv));
3092 }
3093
3094 switch (behav) {
3095 case MADV_NORMAL:
3096 vm_map_entry_set_behavior(entry,
3097 MAP_ENTRY_BEHAV_NORMAL);
3098 break;
3099 case MADV_SEQUENTIAL:
3100 vm_map_entry_set_behavior(entry,
3101 MAP_ENTRY_BEHAV_SEQUENTIAL);
3102 break;
3103 case MADV_RANDOM:
3104 vm_map_entry_set_behavior(entry,
3105 MAP_ENTRY_BEHAV_RANDOM);
3106 break;
3107 case MADV_NOSYNC:
3108 entry->eflags |= MAP_ENTRY_NOSYNC;
3109 break;
3110 case MADV_AUTOSYNC:
3111 entry->eflags &= ~MAP_ENTRY_NOSYNC;
3112 break;
3113 case MADV_NOCORE:
3114 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3115 break;
3116 case MADV_CORE:
3117 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3118 break;
3119 default:
3120 break;
3121 }
3122 vm_map_try_merge_entries(map, prev_entry, entry);
3123 }
3124 vm_map_try_merge_entries(map, prev_entry, entry);
3125 vm_map_unlock(map);
3126 } else {
3127 vm_pindex_t pstart, pend;
3128
3129 /*
3130 * madvise behaviors that are implemented in the underlying
3131 * vm_object.
3132 *
3133 * Since we don't clip the vm_map_entry, we have to clip
3134 * the vm_object pindex and count.
3135 */
3136 if (!vm_map_lookup_entry(map, start, &entry))
3137 entry = vm_map_entry_succ(entry);
3138 for (; entry->start < end;
3139 entry = vm_map_entry_succ(entry)) {
3140 vm_offset_t useEnd, useStart;
3141
3142 if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3143 MAP_ENTRY_GUARD)) != 0)
3144 continue;
3145
3146 /*
3147 * MADV_FREE would otherwise rewind time to
3148 * the creation of the shadow object. Because
3149 * we hold the VM map read-locked, neither the
3150 * entry's object nor the presence of a
3151 * backing object can change.
3152 */
3153 if (behav == MADV_FREE &&
3154 entry->object.vm_object != NULL &&
3155 entry->object.vm_object->backing_object != NULL)
3156 continue;
3157
3158 pstart = OFF_TO_IDX(entry->offset);
3159 pend = pstart + atop(entry->end - entry->start);
3160 useStart = entry->start;
3161 useEnd = entry->end;
3162
3163 if (entry->start < start) {
3164 pstart += atop(start - entry->start);
3165 useStart = start;
3166 }
3167 if (entry->end > end) {
3168 pend -= atop(entry->end - end);
3169 useEnd = end;
3170 }
3171
3172 if (pstart >= pend)
3173 continue;
3174
3175 /*
3176 * Perform the pmap_advise() before clearing
3177 * PGA_REFERENCED in vm_page_advise(). Otherwise, a
3178 * concurrent pmap operation, such as pmap_remove(),
3179 * could clear a reference in the pmap and set
3180 * PGA_REFERENCED on the page before the pmap_advise()
3181 * had completed. Consequently, the page would appear
3182 * referenced based upon an old reference that
3183 * occurred before this pmap_advise() ran.
3184 */
3185 if (behav == MADV_DONTNEED || behav == MADV_FREE)
3186 pmap_advise(map->pmap, useStart, useEnd,
3187 behav);
3188
3189 vm_object_madvise(entry->object.vm_object, pstart,
3190 pend, behav);
3191
3192 /*
3193 * Pre-populate paging structures in the
3194 * WILLNEED case. For wired entries, the
3195 * paging structures are already populated.
3196 */
3197 if (behav == MADV_WILLNEED &&
3198 entry->wired_count == 0) {
3199 vm_map_pmap_enter(map,
3200 useStart,
3201 entry->protection,
3202 entry->object.vm_object,
3203 pstart,
3204 ptoa(pend - pstart),
3205 MAP_PREFAULT_MADVISE
3206 );
3207 }
3208 }
3209 vm_map_unlock_read(map);
3210 }
3211 return (0);
3212 }
3213
3214 /*
3215 * vm_map_inherit:
3216 *
3217 * Sets the inheritance of the specified address
3218 * range in the target map. Inheritance
3219 * affects how the map will be shared with
3220 * child maps at the time of vmspace_fork.
3221 */
3222 int
vm_map_inherit(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_inherit_t new_inheritance)3223 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3224 vm_inherit_t new_inheritance)
3225 {
3226 vm_map_entry_t entry, lentry, prev_entry, start_entry;
3227 int rv;
3228
3229 switch (new_inheritance) {
3230 case VM_INHERIT_NONE:
3231 case VM_INHERIT_COPY:
3232 case VM_INHERIT_SHARE:
3233 case VM_INHERIT_ZERO:
3234 break;
3235 default:
3236 return (KERN_INVALID_ARGUMENT);
3237 }
3238 if (start == end)
3239 return (KERN_SUCCESS);
3240 vm_map_lock(map);
3241 VM_MAP_RANGE_CHECK(map, start, end);
3242 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3243 if (rv != KERN_SUCCESS)
3244 goto unlock;
3245 if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3246 rv = vm_map_clip_end(map, lentry, end);
3247 if (rv != KERN_SUCCESS)
3248 goto unlock;
3249 }
3250 if (new_inheritance == VM_INHERIT_COPY) {
3251 for (entry = start_entry; entry->start < end;
3252 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3253 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3254 != 0) {
3255 rv = KERN_INVALID_ARGUMENT;
3256 goto unlock;
3257 }
3258 }
3259 }
3260 for (entry = start_entry; entry->start < end; prev_entry = entry,
3261 entry = vm_map_entry_succ(entry)) {
3262 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3263 entry, (uintmax_t)entry->end, (uintmax_t)end));
3264 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3265 new_inheritance != VM_INHERIT_ZERO)
3266 entry->inheritance = new_inheritance;
3267 vm_map_try_merge_entries(map, prev_entry, entry);
3268 }
3269 vm_map_try_merge_entries(map, prev_entry, entry);
3270 unlock:
3271 vm_map_unlock(map);
3272 return (rv);
3273 }
3274
3275 /*
3276 * vm_map_entry_in_transition:
3277 *
3278 * Release the map lock, and sleep until the entry is no longer in
3279 * transition. Awake and acquire the map lock. If the map changed while
3280 * another held the lock, lookup a possibly-changed entry at or after the
3281 * 'start' position of the old entry.
3282 */
3283 static vm_map_entry_t
vm_map_entry_in_transition(vm_map_t map,vm_offset_t in_start,vm_offset_t * io_end,bool holes_ok,vm_map_entry_t in_entry)3284 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3285 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3286 {
3287 vm_map_entry_t entry;
3288 vm_offset_t start;
3289 u_int last_timestamp;
3290
3291 VM_MAP_ASSERT_LOCKED(map);
3292 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3293 ("not in-tranition map entry %p", in_entry));
3294 /*
3295 * We have not yet clipped the entry.
3296 */
3297 start = MAX(in_start, in_entry->start);
3298 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3299 last_timestamp = map->timestamp;
3300 if (vm_map_unlock_and_wait(map, 0)) {
3301 /*
3302 * Allow interruption of user wiring/unwiring?
3303 */
3304 }
3305 vm_map_lock(map);
3306 if (last_timestamp + 1 == map->timestamp)
3307 return (in_entry);
3308
3309 /*
3310 * Look again for the entry because the map was modified while it was
3311 * unlocked. Specifically, the entry may have been clipped, merged, or
3312 * deleted.
3313 */
3314 if (!vm_map_lookup_entry(map, start, &entry)) {
3315 if (!holes_ok) {
3316 *io_end = start;
3317 return (NULL);
3318 }
3319 entry = vm_map_entry_succ(entry);
3320 }
3321 return (entry);
3322 }
3323
3324 /*
3325 * vm_map_unwire:
3326 *
3327 * Implements both kernel and user unwiring.
3328 */
3329 int
vm_map_unwire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3330 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3331 int flags)
3332 {
3333 vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3334 int rv;
3335 bool holes_ok, need_wakeup, user_unwire;
3336
3337 if (start == end)
3338 return (KERN_SUCCESS);
3339 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3340 user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3341 vm_map_lock(map);
3342 VM_MAP_RANGE_CHECK(map, start, end);
3343 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3344 if (holes_ok)
3345 first_entry = vm_map_entry_succ(first_entry);
3346 else {
3347 vm_map_unlock(map);
3348 return (KERN_INVALID_ADDRESS);
3349 }
3350 }
3351 rv = KERN_SUCCESS;
3352 for (entry = first_entry; entry->start < end; entry = next_entry) {
3353 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3354 /*
3355 * We have not yet clipped the entry.
3356 */
3357 next_entry = vm_map_entry_in_transition(map, start,
3358 &end, holes_ok, entry);
3359 if (next_entry == NULL) {
3360 if (entry == first_entry) {
3361 vm_map_unlock(map);
3362 return (KERN_INVALID_ADDRESS);
3363 }
3364 rv = KERN_INVALID_ADDRESS;
3365 break;
3366 }
3367 first_entry = (entry == first_entry) ?
3368 next_entry : NULL;
3369 continue;
3370 }
3371 rv = vm_map_clip_start(map, entry, start);
3372 if (rv != KERN_SUCCESS)
3373 break;
3374 rv = vm_map_clip_end(map, entry, end);
3375 if (rv != KERN_SUCCESS)
3376 break;
3377
3378 /*
3379 * Mark the entry in case the map lock is released. (See
3380 * above.)
3381 */
3382 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3383 entry->wiring_thread == NULL,
3384 ("owned map entry %p", entry));
3385 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3386 entry->wiring_thread = curthread;
3387 next_entry = vm_map_entry_succ(entry);
3388 /*
3389 * Check the map for holes in the specified region.
3390 * If holes_ok, skip this check.
3391 */
3392 if (!holes_ok &&
3393 entry->end < end && next_entry->start > entry->end) {
3394 end = entry->end;
3395 rv = KERN_INVALID_ADDRESS;
3396 break;
3397 }
3398 /*
3399 * If system unwiring, require that the entry is system wired.
3400 */
3401 if (!user_unwire &&
3402 vm_map_entry_system_wired_count(entry) == 0) {
3403 end = entry->end;
3404 rv = KERN_INVALID_ARGUMENT;
3405 break;
3406 }
3407 }
3408 need_wakeup = false;
3409 if (first_entry == NULL &&
3410 !vm_map_lookup_entry(map, start, &first_entry)) {
3411 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3412 prev_entry = first_entry;
3413 entry = vm_map_entry_succ(first_entry);
3414 } else {
3415 prev_entry = vm_map_entry_pred(first_entry);
3416 entry = first_entry;
3417 }
3418 for (; entry->start < end;
3419 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3420 /*
3421 * If holes_ok was specified, an empty
3422 * space in the unwired region could have been mapped
3423 * while the map lock was dropped for draining
3424 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread
3425 * could be simultaneously wiring this new mapping
3426 * entry. Detect these cases and skip any entries
3427 * marked as in transition by us.
3428 */
3429 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3430 entry->wiring_thread != curthread) {
3431 KASSERT(holes_ok,
3432 ("vm_map_unwire: !HOLESOK and new/changed entry"));
3433 continue;
3434 }
3435
3436 if (rv == KERN_SUCCESS && (!user_unwire ||
3437 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3438 if (entry->wired_count == 1)
3439 vm_map_entry_unwire(map, entry);
3440 else
3441 entry->wired_count--;
3442 if (user_unwire)
3443 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3444 }
3445 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3446 ("vm_map_unwire: in-transition flag missing %p", entry));
3447 KASSERT(entry->wiring_thread == curthread,
3448 ("vm_map_unwire: alien wire %p", entry));
3449 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3450 entry->wiring_thread = NULL;
3451 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3452 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3453 need_wakeup = true;
3454 }
3455 vm_map_try_merge_entries(map, prev_entry, entry);
3456 }
3457 vm_map_try_merge_entries(map, prev_entry, entry);
3458 vm_map_unlock(map);
3459 if (need_wakeup)
3460 vm_map_wakeup(map);
3461 return (rv);
3462 }
3463
3464 static void
vm_map_wire_user_count_sub(u_long npages)3465 vm_map_wire_user_count_sub(u_long npages)
3466 {
3467
3468 atomic_subtract_long(&vm_user_wire_count, npages);
3469 }
3470
3471 static bool
vm_map_wire_user_count_add(u_long npages)3472 vm_map_wire_user_count_add(u_long npages)
3473 {
3474 u_long wired;
3475
3476 wired = vm_user_wire_count;
3477 do {
3478 if (npages + wired > vm_page_max_user_wired)
3479 return (false);
3480 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3481 npages + wired));
3482
3483 return (true);
3484 }
3485
3486 /*
3487 * vm_map_wire_entry_failure:
3488 *
3489 * Handle a wiring failure on the given entry.
3490 *
3491 * The map should be locked.
3492 */
3493 static void
vm_map_wire_entry_failure(vm_map_t map,vm_map_entry_t entry,vm_offset_t failed_addr)3494 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3495 vm_offset_t failed_addr)
3496 {
3497
3498 VM_MAP_ASSERT_LOCKED(map);
3499 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3500 entry->wired_count == 1,
3501 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3502 KASSERT(failed_addr < entry->end,
3503 ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3504
3505 /*
3506 * If any pages at the start of this entry were successfully wired,
3507 * then unwire them.
3508 */
3509 if (failed_addr > entry->start) {
3510 pmap_unwire(map->pmap, entry->start, failed_addr);
3511 vm_object_unwire(entry->object.vm_object, entry->offset,
3512 failed_addr - entry->start, PQ_ACTIVE);
3513 }
3514
3515 /*
3516 * Assign an out-of-range value to represent the failure to wire this
3517 * entry.
3518 */
3519 entry->wired_count = -1;
3520 }
3521
3522 int
vm_map_wire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3523 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3524 {
3525 int rv;
3526
3527 vm_map_lock(map);
3528 rv = vm_map_wire_locked(map, start, end, flags);
3529 vm_map_unlock(map);
3530 return (rv);
3531 }
3532
3533 /*
3534 * vm_map_wire_locked:
3535 *
3536 * Implements both kernel and user wiring. Returns with the map locked,
3537 * the map lock may be dropped.
3538 */
3539 int
vm_map_wire_locked(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3540 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3541 {
3542 vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3543 vm_offset_t faddr, saved_end, saved_start;
3544 u_long incr, npages;
3545 u_int bidx, last_timestamp;
3546 int rv;
3547 bool holes_ok, need_wakeup, user_wire;
3548 vm_prot_t prot;
3549
3550 VM_MAP_ASSERT_LOCKED(map);
3551
3552 if (start == end)
3553 return (KERN_SUCCESS);
3554 prot = 0;
3555 if (flags & VM_MAP_WIRE_WRITE)
3556 prot |= VM_PROT_WRITE;
3557 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3558 user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3559 VM_MAP_RANGE_CHECK(map, start, end);
3560 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3561 if (holes_ok)
3562 first_entry = vm_map_entry_succ(first_entry);
3563 else
3564 return (KERN_INVALID_ADDRESS);
3565 }
3566 for (entry = first_entry; entry->start < end; entry = next_entry) {
3567 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3568 /*
3569 * We have not yet clipped the entry.
3570 */
3571 next_entry = vm_map_entry_in_transition(map, start,
3572 &end, holes_ok, entry);
3573 if (next_entry == NULL) {
3574 if (entry == first_entry)
3575 return (KERN_INVALID_ADDRESS);
3576 rv = KERN_INVALID_ADDRESS;
3577 goto done;
3578 }
3579 first_entry = (entry == first_entry) ?
3580 next_entry : NULL;
3581 continue;
3582 }
3583 rv = vm_map_clip_start(map, entry, start);
3584 if (rv != KERN_SUCCESS)
3585 goto done;
3586 rv = vm_map_clip_end(map, entry, end);
3587 if (rv != KERN_SUCCESS)
3588 goto done;
3589
3590 /*
3591 * Mark the entry in case the map lock is released. (See
3592 * above.)
3593 */
3594 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3595 entry->wiring_thread == NULL,
3596 ("owned map entry %p", entry));
3597 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3598 entry->wiring_thread = curthread;
3599 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3600 || (entry->protection & prot) != prot) {
3601 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3602 if (!holes_ok) {
3603 end = entry->end;
3604 rv = KERN_INVALID_ADDRESS;
3605 goto done;
3606 }
3607 } else if (entry->wired_count == 0) {
3608 entry->wired_count++;
3609
3610 npages = atop(entry->end - entry->start);
3611 if (user_wire && !vm_map_wire_user_count_add(npages)) {
3612 vm_map_wire_entry_failure(map, entry,
3613 entry->start);
3614 end = entry->end;
3615 rv = KERN_RESOURCE_SHORTAGE;
3616 goto done;
3617 }
3618
3619 /*
3620 * Release the map lock, relying on the in-transition
3621 * mark. Mark the map busy for fork.
3622 */
3623 saved_start = entry->start;
3624 saved_end = entry->end;
3625 last_timestamp = map->timestamp;
3626 bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3627 incr = pagesizes[bidx];
3628 vm_map_busy(map);
3629 vm_map_unlock(map);
3630
3631 for (faddr = saved_start; faddr < saved_end;
3632 faddr += incr) {
3633 /*
3634 * Simulate a fault to get the page and enter
3635 * it into the physical map.
3636 */
3637 rv = vm_fault(map, faddr, VM_PROT_NONE,
3638 VM_FAULT_WIRE, NULL);
3639 if (rv != KERN_SUCCESS)
3640 break;
3641 }
3642 vm_map_lock(map);
3643 vm_map_unbusy(map);
3644 if (last_timestamp + 1 != map->timestamp) {
3645 /*
3646 * Look again for the entry because the map was
3647 * modified while it was unlocked. The entry
3648 * may have been clipped, but NOT merged or
3649 * deleted.
3650 */
3651 if (!vm_map_lookup_entry(map, saved_start,
3652 &next_entry))
3653 KASSERT(false,
3654 ("vm_map_wire: lookup failed"));
3655 first_entry = (entry == first_entry) ?
3656 next_entry : NULL;
3657 for (entry = next_entry; entry->end < saved_end;
3658 entry = vm_map_entry_succ(entry)) {
3659 /*
3660 * In case of failure, handle entries
3661 * that were not fully wired here;
3662 * fully wired entries are handled
3663 * later.
3664 */
3665 if (rv != KERN_SUCCESS &&
3666 faddr < entry->end)
3667 vm_map_wire_entry_failure(map,
3668 entry, faddr);
3669 }
3670 }
3671 if (rv != KERN_SUCCESS) {
3672 vm_map_wire_entry_failure(map, entry, faddr);
3673 if (user_wire)
3674 vm_map_wire_user_count_sub(npages);
3675 end = entry->end;
3676 goto done;
3677 }
3678 } else if (!user_wire ||
3679 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3680 entry->wired_count++;
3681 }
3682 /*
3683 * Check the map for holes in the specified region.
3684 * If holes_ok was specified, skip this check.
3685 */
3686 next_entry = vm_map_entry_succ(entry);
3687 if (!holes_ok &&
3688 entry->end < end && next_entry->start > entry->end) {
3689 end = entry->end;
3690 rv = KERN_INVALID_ADDRESS;
3691 goto done;
3692 }
3693 }
3694 rv = KERN_SUCCESS;
3695 done:
3696 need_wakeup = false;
3697 if (first_entry == NULL &&
3698 !vm_map_lookup_entry(map, start, &first_entry)) {
3699 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3700 prev_entry = first_entry;
3701 entry = vm_map_entry_succ(first_entry);
3702 } else {
3703 prev_entry = vm_map_entry_pred(first_entry);
3704 entry = first_entry;
3705 }
3706 for (; entry->start < end;
3707 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3708 /*
3709 * If holes_ok was specified, an empty
3710 * space in the unwired region could have been mapped
3711 * while the map lock was dropped for faulting in the
3712 * pages or draining MAP_ENTRY_IN_TRANSITION.
3713 * Moreover, another thread could be simultaneously
3714 * wiring this new mapping entry. Detect these cases
3715 * and skip any entries marked as in transition not by us.
3716 *
3717 * Another way to get an entry not marked with
3718 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3719 * which set rv to KERN_INVALID_ARGUMENT.
3720 */
3721 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3722 entry->wiring_thread != curthread) {
3723 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3724 ("vm_map_wire: !HOLESOK and new/changed entry"));
3725 continue;
3726 }
3727
3728 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3729 /* do nothing */
3730 } else if (rv == KERN_SUCCESS) {
3731 if (user_wire)
3732 entry->eflags |= MAP_ENTRY_USER_WIRED;
3733 } else if (entry->wired_count == -1) {
3734 /*
3735 * Wiring failed on this entry. Thus, unwiring is
3736 * unnecessary.
3737 */
3738 entry->wired_count = 0;
3739 } else if (!user_wire ||
3740 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3741 /*
3742 * Undo the wiring. Wiring succeeded on this entry
3743 * but failed on a later entry.
3744 */
3745 if (entry->wired_count == 1) {
3746 vm_map_entry_unwire(map, entry);
3747 if (user_wire)
3748 vm_map_wire_user_count_sub(
3749 atop(entry->end - entry->start));
3750 } else
3751 entry->wired_count--;
3752 }
3753 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3754 ("vm_map_wire: in-transition flag missing %p", entry));
3755 KASSERT(entry->wiring_thread == curthread,
3756 ("vm_map_wire: alien wire %p", entry));
3757 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3758 MAP_ENTRY_WIRE_SKIPPED);
3759 entry->wiring_thread = NULL;
3760 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3761 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3762 need_wakeup = true;
3763 }
3764 vm_map_try_merge_entries(map, prev_entry, entry);
3765 }
3766 vm_map_try_merge_entries(map, prev_entry, entry);
3767 if (need_wakeup)
3768 vm_map_wakeup(map);
3769 return (rv);
3770 }
3771
3772 /*
3773 * vm_map_sync
3774 *
3775 * Push any dirty cached pages in the address range to their pager.
3776 * If syncio is TRUE, dirty pages are written synchronously.
3777 * If invalidate is TRUE, any cached pages are freed as well.
3778 *
3779 * If the size of the region from start to end is zero, we are
3780 * supposed to flush all modified pages within the region containing
3781 * start. Unfortunately, a region can be split or coalesced with
3782 * neighboring regions, making it difficult to determine what the
3783 * original region was. Therefore, we approximate this requirement by
3784 * flushing the current region containing start.
3785 *
3786 * Returns an error if any part of the specified range is not mapped.
3787 */
3788 int
vm_map_sync(vm_map_t map,vm_offset_t start,vm_offset_t end,boolean_t syncio,boolean_t invalidate)3789 vm_map_sync(
3790 vm_map_t map,
3791 vm_offset_t start,
3792 vm_offset_t end,
3793 boolean_t syncio,
3794 boolean_t invalidate)
3795 {
3796 vm_map_entry_t entry, first_entry, next_entry;
3797 vm_size_t size;
3798 vm_object_t object;
3799 vm_ooffset_t offset;
3800 unsigned int last_timestamp;
3801 int bdry_idx;
3802 boolean_t failed;
3803
3804 vm_map_lock_read(map);
3805 VM_MAP_RANGE_CHECK(map, start, end);
3806 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3807 vm_map_unlock_read(map);
3808 return (KERN_INVALID_ADDRESS);
3809 } else if (start == end) {
3810 start = first_entry->start;
3811 end = first_entry->end;
3812 }
3813
3814 /*
3815 * Make a first pass to check for user-wired memory, holes,
3816 * and partial invalidation of largepage mappings.
3817 */
3818 for (entry = first_entry; entry->start < end; entry = next_entry) {
3819 if (invalidate) {
3820 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3821 vm_map_unlock_read(map);
3822 return (KERN_INVALID_ARGUMENT);
3823 }
3824 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3825 if (bdry_idx != 0 &&
3826 ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3827 (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3828 vm_map_unlock_read(map);
3829 return (KERN_INVALID_ARGUMENT);
3830 }
3831 }
3832 next_entry = vm_map_entry_succ(entry);
3833 if (end > entry->end &&
3834 entry->end != next_entry->start) {
3835 vm_map_unlock_read(map);
3836 return (KERN_INVALID_ADDRESS);
3837 }
3838 }
3839
3840 if (invalidate)
3841 pmap_remove(map->pmap, start, end);
3842 failed = FALSE;
3843
3844 /*
3845 * Make a second pass, cleaning/uncaching pages from the indicated
3846 * objects as we go.
3847 */
3848 for (entry = first_entry; entry->start < end;) {
3849 offset = entry->offset + (start - entry->start);
3850 size = (end <= entry->end ? end : entry->end) - start;
3851 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3852 vm_map_t smap;
3853 vm_map_entry_t tentry;
3854 vm_size_t tsize;
3855
3856 smap = entry->object.sub_map;
3857 vm_map_lock_read(smap);
3858 (void) vm_map_lookup_entry(smap, offset, &tentry);
3859 tsize = tentry->end - offset;
3860 if (tsize < size)
3861 size = tsize;
3862 object = tentry->object.vm_object;
3863 offset = tentry->offset + (offset - tentry->start);
3864 vm_map_unlock_read(smap);
3865 } else {
3866 object = entry->object.vm_object;
3867 }
3868 vm_object_reference(object);
3869 last_timestamp = map->timestamp;
3870 vm_map_unlock_read(map);
3871 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3872 failed = TRUE;
3873 start += size;
3874 vm_object_deallocate(object);
3875 vm_map_lock_read(map);
3876 if (last_timestamp == map->timestamp ||
3877 !vm_map_lookup_entry(map, start, &entry))
3878 entry = vm_map_entry_succ(entry);
3879 }
3880
3881 vm_map_unlock_read(map);
3882 return (failed ? KERN_FAILURE : KERN_SUCCESS);
3883 }
3884
3885 /*
3886 * vm_map_entry_unwire: [ internal use only ]
3887 *
3888 * Make the region specified by this entry pageable.
3889 *
3890 * The map in question should be locked.
3891 * [This is the reason for this routine's existence.]
3892 */
3893 static void
vm_map_entry_unwire(vm_map_t map,vm_map_entry_t entry)3894 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3895 {
3896 vm_size_t size;
3897
3898 VM_MAP_ASSERT_LOCKED(map);
3899 KASSERT(entry->wired_count > 0,
3900 ("vm_map_entry_unwire: entry %p isn't wired", entry));
3901
3902 size = entry->end - entry->start;
3903 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3904 vm_map_wire_user_count_sub(atop(size));
3905 pmap_unwire(map->pmap, entry->start, entry->end);
3906 vm_object_unwire(entry->object.vm_object, entry->offset, size,
3907 PQ_ACTIVE);
3908 entry->wired_count = 0;
3909 }
3910
3911 static void
vm_map_entry_deallocate(vm_map_entry_t entry,boolean_t system_map)3912 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3913 {
3914
3915 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3916 vm_object_deallocate(entry->object.vm_object);
3917 uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3918 }
3919
3920 /*
3921 * vm_map_entry_delete: [ internal use only ]
3922 *
3923 * Deallocate the given entry from the target map.
3924 */
3925 static void
vm_map_entry_delete(vm_map_t map,vm_map_entry_t entry)3926 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3927 {
3928 vm_object_t object;
3929 vm_pindex_t offidxstart, offidxend, size1;
3930 vm_size_t size;
3931
3932 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3933 object = entry->object.vm_object;
3934
3935 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3936 MPASS(entry->cred == NULL);
3937 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3938 MPASS(object == NULL);
3939 vm_map_entry_deallocate(entry, vm_map_is_system(map));
3940 return;
3941 }
3942
3943 size = entry->end - entry->start;
3944 map->size -= size;
3945
3946 if (entry->cred != NULL) {
3947 swap_release_by_cred(size, entry->cred);
3948 crfree(entry->cred);
3949 }
3950
3951 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3952 entry->object.vm_object = NULL;
3953 } else if ((object->flags & OBJ_ANON) != 0 ||
3954 object == kernel_object) {
3955 KASSERT(entry->cred == NULL || object->cred == NULL ||
3956 (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3957 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3958 offidxstart = OFF_TO_IDX(entry->offset);
3959 offidxend = offidxstart + atop(size);
3960 VM_OBJECT_WLOCK(object);
3961 if (object->ref_count != 1 &&
3962 ((object->flags & OBJ_ONEMAPPING) != 0 ||
3963 object == kernel_object)) {
3964 vm_object_collapse(object);
3965
3966 /*
3967 * The option OBJPR_NOTMAPPED can be passed here
3968 * because vm_map_delete() already performed
3969 * pmap_remove() on the only mapping to this range
3970 * of pages.
3971 */
3972 vm_object_page_remove(object, offidxstart, offidxend,
3973 OBJPR_NOTMAPPED);
3974 if (offidxend >= object->size &&
3975 offidxstart < object->size) {
3976 size1 = object->size;
3977 object->size = offidxstart;
3978 if (object->cred != NULL) {
3979 size1 -= object->size;
3980 KASSERT(object->charge >= ptoa(size1),
3981 ("object %p charge < 0", object));
3982 swap_release_by_cred(ptoa(size1),
3983 object->cred);
3984 object->charge -= ptoa(size1);
3985 }
3986 }
3987 }
3988 VM_OBJECT_WUNLOCK(object);
3989 }
3990 if (vm_map_is_system(map))
3991 vm_map_entry_deallocate(entry, TRUE);
3992 else {
3993 entry->defer_next = curthread->td_map_def_user;
3994 curthread->td_map_def_user = entry;
3995 }
3996 }
3997
3998 /*
3999 * vm_map_delete: [ internal use only ]
4000 *
4001 * Deallocates the given address range from the target
4002 * map.
4003 */
4004 int
vm_map_delete(vm_map_t map,vm_offset_t start,vm_offset_t end)4005 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
4006 {
4007 vm_map_entry_t entry, next_entry, scratch_entry;
4008 int rv;
4009
4010 VM_MAP_ASSERT_LOCKED(map);
4011
4012 if (start == end)
4013 return (KERN_SUCCESS);
4014
4015 /*
4016 * Find the start of the region, and clip it.
4017 * Step through all entries in this region.
4018 */
4019 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
4020 if (rv != KERN_SUCCESS)
4021 return (rv);
4022 for (; entry->start < end; entry = next_entry) {
4023 /*
4024 * Wait for wiring or unwiring of an entry to complete.
4025 * Also wait for any system wirings to disappear on
4026 * user maps.
4027 */
4028 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
4029 (vm_map_pmap(map) != kernel_pmap &&
4030 vm_map_entry_system_wired_count(entry) != 0)) {
4031 unsigned int last_timestamp;
4032 vm_offset_t saved_start;
4033
4034 saved_start = entry->start;
4035 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4036 last_timestamp = map->timestamp;
4037 (void) vm_map_unlock_and_wait(map, 0);
4038 vm_map_lock(map);
4039 if (last_timestamp + 1 != map->timestamp) {
4040 /*
4041 * Look again for the entry because the map was
4042 * modified while it was unlocked.
4043 * Specifically, the entry may have been
4044 * clipped, merged, or deleted.
4045 */
4046 rv = vm_map_lookup_clip_start(map, saved_start,
4047 &next_entry, &scratch_entry);
4048 if (rv != KERN_SUCCESS)
4049 break;
4050 } else
4051 next_entry = entry;
4052 continue;
4053 }
4054
4055 /* XXXKIB or delete to the upper superpage boundary ? */
4056 rv = vm_map_clip_end(map, entry, end);
4057 if (rv != KERN_SUCCESS)
4058 break;
4059 next_entry = vm_map_entry_succ(entry);
4060
4061 /*
4062 * Unwire before removing addresses from the pmap; otherwise,
4063 * unwiring will put the entries back in the pmap.
4064 */
4065 if (entry->wired_count != 0)
4066 vm_map_entry_unwire(map, entry);
4067
4068 /*
4069 * Remove mappings for the pages, but only if the
4070 * mappings could exist. For instance, it does not
4071 * make sense to call pmap_remove() for guard entries.
4072 */
4073 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4074 entry->object.vm_object != NULL)
4075 pmap_map_delete(map->pmap, entry->start, entry->end);
4076
4077 /*
4078 * Delete the entry only after removing all pmap
4079 * entries pointing to its pages. (Otherwise, its
4080 * page frames may be reallocated, and any modify bits
4081 * will be set in the wrong object!)
4082 */
4083 vm_map_entry_delete(map, entry);
4084 }
4085 return (rv);
4086 }
4087
4088 /*
4089 * vm_map_remove:
4090 *
4091 * Remove the given address range from the target map.
4092 * This is the exported form of vm_map_delete.
4093 */
4094 int
vm_map_remove(vm_map_t map,vm_offset_t start,vm_offset_t end)4095 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4096 {
4097 int result;
4098
4099 vm_map_lock(map);
4100 VM_MAP_RANGE_CHECK(map, start, end);
4101 result = vm_map_delete(map, start, end);
4102 vm_map_unlock(map);
4103 return (result);
4104 }
4105
4106 /*
4107 * vm_map_check_protection:
4108 *
4109 * Assert that the target map allows the specified privilege on the
4110 * entire address region given. The entire region must be allocated.
4111 *
4112 * WARNING! This code does not and should not check whether the
4113 * contents of the region is accessible. For example a smaller file
4114 * might be mapped into a larger address space.
4115 *
4116 * NOTE! This code is also called by munmap().
4117 *
4118 * The map must be locked. A read lock is sufficient.
4119 */
4120 boolean_t
vm_map_check_protection(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t protection)4121 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4122 vm_prot_t protection)
4123 {
4124 vm_map_entry_t entry;
4125 vm_map_entry_t tmp_entry;
4126
4127 if (!vm_map_lookup_entry(map, start, &tmp_entry))
4128 return (FALSE);
4129 entry = tmp_entry;
4130
4131 while (start < end) {
4132 /*
4133 * No holes allowed!
4134 */
4135 if (start < entry->start)
4136 return (FALSE);
4137 /*
4138 * Check protection associated with entry.
4139 */
4140 if ((entry->protection & protection) != protection)
4141 return (FALSE);
4142 /* go to next entry */
4143 start = entry->end;
4144 entry = vm_map_entry_succ(entry);
4145 }
4146 return (TRUE);
4147 }
4148
4149 /*
4150 *
4151 * vm_map_copy_swap_object:
4152 *
4153 * Copies a swap-backed object from an existing map entry to a
4154 * new one. Carries forward the swap charge. May change the
4155 * src object on return.
4156 */
4157 static void
vm_map_copy_swap_object(vm_map_entry_t src_entry,vm_map_entry_t dst_entry,vm_offset_t size,vm_ooffset_t * fork_charge)4158 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4159 vm_offset_t size, vm_ooffset_t *fork_charge)
4160 {
4161 vm_object_t src_object;
4162 struct ucred *cred;
4163 int charged;
4164
4165 src_object = src_entry->object.vm_object;
4166 charged = ENTRY_CHARGED(src_entry);
4167 if ((src_object->flags & OBJ_ANON) != 0) {
4168 VM_OBJECT_WLOCK(src_object);
4169 vm_object_collapse(src_object);
4170 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4171 vm_object_split(src_entry);
4172 src_object = src_entry->object.vm_object;
4173 }
4174 vm_object_reference_locked(src_object);
4175 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4176 VM_OBJECT_WUNLOCK(src_object);
4177 } else
4178 vm_object_reference(src_object);
4179 if (src_entry->cred != NULL &&
4180 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4181 KASSERT(src_object->cred == NULL,
4182 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4183 src_object));
4184 src_object->cred = src_entry->cred;
4185 src_object->charge = size;
4186 }
4187 dst_entry->object.vm_object = src_object;
4188 if (charged) {
4189 cred = curthread->td_ucred;
4190 crhold(cred);
4191 dst_entry->cred = cred;
4192 *fork_charge += size;
4193 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4194 crhold(cred);
4195 src_entry->cred = cred;
4196 *fork_charge += size;
4197 }
4198 }
4199 }
4200
4201 /*
4202 * vm_map_copy_entry:
4203 *
4204 * Copies the contents of the source entry to the destination
4205 * entry. The entries *must* be aligned properly.
4206 */
4207 static void
vm_map_copy_entry(vm_map_t src_map,vm_map_t dst_map,vm_map_entry_t src_entry,vm_map_entry_t dst_entry,vm_ooffset_t * fork_charge)4208 vm_map_copy_entry(
4209 vm_map_t src_map,
4210 vm_map_t dst_map,
4211 vm_map_entry_t src_entry,
4212 vm_map_entry_t dst_entry,
4213 vm_ooffset_t *fork_charge)
4214 {
4215 vm_object_t src_object;
4216 vm_map_entry_t fake_entry;
4217 vm_offset_t size;
4218
4219 VM_MAP_ASSERT_LOCKED(dst_map);
4220
4221 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4222 return;
4223
4224 if (src_entry->wired_count == 0 ||
4225 (src_entry->protection & VM_PROT_WRITE) == 0) {
4226 /*
4227 * If the source entry is marked needs_copy, it is already
4228 * write-protected.
4229 */
4230 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4231 (src_entry->protection & VM_PROT_WRITE) != 0) {
4232 pmap_protect(src_map->pmap,
4233 src_entry->start,
4234 src_entry->end,
4235 src_entry->protection & ~VM_PROT_WRITE);
4236 }
4237
4238 /*
4239 * Make a copy of the object.
4240 */
4241 size = src_entry->end - src_entry->start;
4242 if ((src_object = src_entry->object.vm_object) != NULL) {
4243 if ((src_object->flags & OBJ_SWAP) != 0) {
4244 vm_map_copy_swap_object(src_entry, dst_entry,
4245 size, fork_charge);
4246 /* May have split/collapsed, reload obj. */
4247 src_object = src_entry->object.vm_object;
4248 } else {
4249 vm_object_reference(src_object);
4250 dst_entry->object.vm_object = src_object;
4251 }
4252 src_entry->eflags |= MAP_ENTRY_COW |
4253 MAP_ENTRY_NEEDS_COPY;
4254 dst_entry->eflags |= MAP_ENTRY_COW |
4255 MAP_ENTRY_NEEDS_COPY;
4256 dst_entry->offset = src_entry->offset;
4257 if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4258 /*
4259 * MAP_ENTRY_WRITECNT cannot
4260 * indicate write reference from
4261 * src_entry, since the entry is
4262 * marked as needs copy. Allocate a
4263 * fake entry that is used to
4264 * decrement object->un_pager writecount
4265 * at the appropriate time. Attach
4266 * fake_entry to the deferred list.
4267 */
4268 fake_entry = vm_map_entry_create(dst_map);
4269 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4270 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4271 vm_object_reference(src_object);
4272 fake_entry->object.vm_object = src_object;
4273 fake_entry->start = src_entry->start;
4274 fake_entry->end = src_entry->end;
4275 fake_entry->defer_next =
4276 curthread->td_map_def_user;
4277 curthread->td_map_def_user = fake_entry;
4278 }
4279
4280 pmap_copy(dst_map->pmap, src_map->pmap,
4281 dst_entry->start, dst_entry->end - dst_entry->start,
4282 src_entry->start);
4283 } else {
4284 dst_entry->object.vm_object = NULL;
4285 if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4286 dst_entry->offset = 0;
4287 if (src_entry->cred != NULL) {
4288 dst_entry->cred = curthread->td_ucred;
4289 crhold(dst_entry->cred);
4290 *fork_charge += size;
4291 }
4292 }
4293 } else {
4294 /*
4295 * We don't want to make writeable wired pages copy-on-write.
4296 * Immediately copy these pages into the new map by simulating
4297 * page faults. The new pages are pageable.
4298 */
4299 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4300 fork_charge);
4301 }
4302 }
4303
4304 /*
4305 * vmspace_map_entry_forked:
4306 * Update the newly-forked vmspace each time a map entry is inherited
4307 * or copied. The values for vm_dsize and vm_tsize are approximate
4308 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4309 */
4310 static void
vmspace_map_entry_forked(const struct vmspace * vm1,struct vmspace * vm2,vm_map_entry_t entry)4311 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4312 vm_map_entry_t entry)
4313 {
4314 vm_size_t entrysize;
4315 vm_offset_t newend;
4316
4317 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4318 return;
4319 entrysize = entry->end - entry->start;
4320 vm2->vm_map.size += entrysize;
4321 if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
4322 vm2->vm_ssize += btoc(entrysize);
4323 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4324 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4325 newend = MIN(entry->end,
4326 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4327 vm2->vm_dsize += btoc(newend - entry->start);
4328 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4329 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4330 newend = MIN(entry->end,
4331 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4332 vm2->vm_tsize += btoc(newend - entry->start);
4333 }
4334 }
4335
4336 /*
4337 * vmspace_fork:
4338 * Create a new process vmspace structure and vm_map
4339 * based on those of an existing process. The new map
4340 * is based on the old map, according to the inheritance
4341 * values on the regions in that map.
4342 *
4343 * XXX It might be worth coalescing the entries added to the new vmspace.
4344 *
4345 * The source map must not be locked.
4346 */
4347 struct vmspace *
vmspace_fork(struct vmspace * vm1,vm_ooffset_t * fork_charge)4348 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4349 {
4350 struct vmspace *vm2;
4351 vm_map_t new_map, old_map;
4352 vm_map_entry_t new_entry, old_entry;
4353 vm_object_t object;
4354 int error, locked __diagused;
4355 vm_inherit_t inh;
4356
4357 old_map = &vm1->vm_map;
4358 /* Copy immutable fields of vm1 to vm2. */
4359 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4360 pmap_pinit);
4361 if (vm2 == NULL)
4362 return (NULL);
4363
4364 vm2->vm_taddr = vm1->vm_taddr;
4365 vm2->vm_daddr = vm1->vm_daddr;
4366 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4367 vm2->vm_stacktop = vm1->vm_stacktop;
4368 vm2->vm_shp_base = vm1->vm_shp_base;
4369 vm_map_lock(old_map);
4370 if (old_map->busy)
4371 vm_map_wait_busy(old_map);
4372 new_map = &vm2->vm_map;
4373 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4374 KASSERT(locked, ("vmspace_fork: lock failed"));
4375
4376 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4377 if (error != 0) {
4378 sx_xunlock(&old_map->lock);
4379 sx_xunlock(&new_map->lock);
4380 vm_map_process_deferred();
4381 vmspace_free(vm2);
4382 return (NULL);
4383 }
4384
4385 new_map->anon_loc = old_map->anon_loc;
4386 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4387 MAP_ASLR_STACK | MAP_WXORX);
4388
4389 VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4390 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4391 panic("vm_map_fork: encountered a submap");
4392
4393 inh = old_entry->inheritance;
4394 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4395 inh != VM_INHERIT_NONE)
4396 inh = VM_INHERIT_COPY;
4397
4398 switch (inh) {
4399 case VM_INHERIT_NONE:
4400 break;
4401
4402 case VM_INHERIT_SHARE:
4403 /*
4404 * Clone the entry, creating the shared object if
4405 * necessary.
4406 */
4407 object = old_entry->object.vm_object;
4408 if (object == NULL) {
4409 vm_map_entry_back(old_entry);
4410 object = old_entry->object.vm_object;
4411 }
4412
4413 /*
4414 * Add the reference before calling vm_object_shadow
4415 * to insure that a shadow object is created.
4416 */
4417 vm_object_reference(object);
4418 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4419 vm_object_shadow(&old_entry->object.vm_object,
4420 &old_entry->offset,
4421 old_entry->end - old_entry->start,
4422 old_entry->cred,
4423 /* Transfer the second reference too. */
4424 true);
4425 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4426 old_entry->cred = NULL;
4427
4428 /*
4429 * As in vm_map_merged_neighbor_dispose(),
4430 * the vnode lock will not be acquired in
4431 * this call to vm_object_deallocate().
4432 */
4433 vm_object_deallocate(object);
4434 object = old_entry->object.vm_object;
4435 } else {
4436 VM_OBJECT_WLOCK(object);
4437 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4438 if (old_entry->cred != NULL) {
4439 KASSERT(object->cred == NULL,
4440 ("vmspace_fork both cred"));
4441 object->cred = old_entry->cred;
4442 object->charge = old_entry->end -
4443 old_entry->start;
4444 old_entry->cred = NULL;
4445 }
4446
4447 /*
4448 * Assert the correct state of the vnode
4449 * v_writecount while the object is locked, to
4450 * not relock it later for the assertion
4451 * correctness.
4452 */
4453 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4454 object->type == OBJT_VNODE) {
4455 KASSERT(((struct vnode *)object->
4456 handle)->v_writecount > 0,
4457 ("vmspace_fork: v_writecount %p",
4458 object));
4459 KASSERT(object->un_pager.vnp.
4460 writemappings > 0,
4461 ("vmspace_fork: vnp.writecount %p",
4462 object));
4463 }
4464 VM_OBJECT_WUNLOCK(object);
4465 }
4466
4467 /*
4468 * Clone the entry, referencing the shared object.
4469 */
4470 new_entry = vm_map_entry_create(new_map);
4471 *new_entry = *old_entry;
4472 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4473 MAP_ENTRY_IN_TRANSITION);
4474 new_entry->wiring_thread = NULL;
4475 new_entry->wired_count = 0;
4476 if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4477 vm_pager_update_writecount(object,
4478 new_entry->start, new_entry->end);
4479 }
4480 vm_map_entry_set_vnode_text(new_entry, true);
4481
4482 /*
4483 * Insert the entry into the new map -- we know we're
4484 * inserting at the end of the new map.
4485 */
4486 vm_map_entry_link(new_map, new_entry);
4487 vmspace_map_entry_forked(vm1, vm2, new_entry);
4488
4489 /*
4490 * Update the physical map
4491 */
4492 pmap_copy(new_map->pmap, old_map->pmap,
4493 new_entry->start,
4494 (old_entry->end - old_entry->start),
4495 old_entry->start);
4496 break;
4497
4498 case VM_INHERIT_COPY:
4499 /*
4500 * Clone the entry and link into the map.
4501 */
4502 new_entry = vm_map_entry_create(new_map);
4503 *new_entry = *old_entry;
4504 /*
4505 * Copied entry is COW over the old object.
4506 */
4507 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4508 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4509 new_entry->wiring_thread = NULL;
4510 new_entry->wired_count = 0;
4511 new_entry->object.vm_object = NULL;
4512 new_entry->cred = NULL;
4513 vm_map_entry_link(new_map, new_entry);
4514 vmspace_map_entry_forked(vm1, vm2, new_entry);
4515 vm_map_copy_entry(old_map, new_map, old_entry,
4516 new_entry, fork_charge);
4517 vm_map_entry_set_vnode_text(new_entry, true);
4518 break;
4519
4520 case VM_INHERIT_ZERO:
4521 /*
4522 * Create a new anonymous mapping entry modelled from
4523 * the old one.
4524 */
4525 new_entry = vm_map_entry_create(new_map);
4526 memset(new_entry, 0, sizeof(*new_entry));
4527
4528 new_entry->start = old_entry->start;
4529 new_entry->end = old_entry->end;
4530 new_entry->eflags = old_entry->eflags &
4531 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4532 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4533 MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4534 new_entry->protection = old_entry->protection;
4535 new_entry->max_protection = old_entry->max_protection;
4536 new_entry->inheritance = VM_INHERIT_ZERO;
4537
4538 vm_map_entry_link(new_map, new_entry);
4539 vmspace_map_entry_forked(vm1, vm2, new_entry);
4540
4541 new_entry->cred = curthread->td_ucred;
4542 crhold(new_entry->cred);
4543 *fork_charge += (new_entry->end - new_entry->start);
4544
4545 break;
4546 }
4547 }
4548 /*
4549 * Use inlined vm_map_unlock() to postpone handling the deferred
4550 * map entries, which cannot be done until both old_map and
4551 * new_map locks are released.
4552 */
4553 sx_xunlock(&old_map->lock);
4554 sx_xunlock(&new_map->lock);
4555 vm_map_process_deferred();
4556
4557 return (vm2);
4558 }
4559
4560 /*
4561 * Create a process's stack for exec_new_vmspace(). This function is never
4562 * asked to wire the newly created stack.
4563 */
4564 int
vm_map_stack(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_prot_t prot,vm_prot_t max,int cow)4565 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4566 vm_prot_t prot, vm_prot_t max, int cow)
4567 {
4568 vm_size_t growsize, init_ssize;
4569 rlim_t vmemlim;
4570 int rv;
4571
4572 MPASS((map->flags & MAP_WIREFUTURE) == 0);
4573 growsize = sgrowsiz;
4574 init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4575 vm_map_lock(map);
4576 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4577 /* If we would blow our VMEM resource limit, no go */
4578 if (map->size + init_ssize > vmemlim) {
4579 rv = KERN_NO_SPACE;
4580 goto out;
4581 }
4582 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4583 max, cow);
4584 out:
4585 vm_map_unlock(map);
4586 return (rv);
4587 }
4588
4589 static int stack_guard_page = 1;
4590 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4591 &stack_guard_page, 0,
4592 "Specifies the number of guard pages for a stack that grows");
4593
4594 static int
vm_map_stack_locked(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_size_t growsize,vm_prot_t prot,vm_prot_t max,int cow)4595 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4596 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4597 {
4598 vm_map_entry_t gap_entry, new_entry, prev_entry;
4599 vm_offset_t bot, gap_bot, gap_top, top;
4600 vm_size_t init_ssize, sgp;
4601 int rv;
4602
4603 KASSERT((cow & MAP_STACK_AREA) != 0,
4604 ("New mapping is not a stack"));
4605
4606 if (max_ssize == 0 ||
4607 !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4608 return (KERN_INVALID_ADDRESS);
4609 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4610 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4611 (vm_size_t)stack_guard_page * PAGE_SIZE;
4612 if (sgp >= max_ssize)
4613 return (KERN_INVALID_ARGUMENT);
4614
4615 init_ssize = growsize;
4616 if (max_ssize < init_ssize + sgp)
4617 init_ssize = max_ssize - sgp;
4618
4619 /* If addr is already mapped, no go */
4620 if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4621 return (KERN_NO_SPACE);
4622
4623 /*
4624 * If we can't accommodate max_ssize in the current mapping, no go.
4625 */
4626 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4627 return (KERN_NO_SPACE);
4628
4629 /*
4630 * We initially map a stack of only init_ssize, at the top of
4631 * the range. We will grow as needed later.
4632 *
4633 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4634 * and cow to be 0. Possibly we should eliminate these as input
4635 * parameters, and just pass these values here in the insert call.
4636 */
4637 bot = addrbos + max_ssize - init_ssize;
4638 top = bot + init_ssize;
4639 gap_bot = addrbos;
4640 gap_top = bot;
4641 rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4642 &new_entry);
4643 if (rv != KERN_SUCCESS)
4644 return (rv);
4645 KASSERT(new_entry->end == top || new_entry->start == bot,
4646 ("Bad entry start/end for new stack entry"));
4647 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4648 ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4649 if (gap_bot == gap_top)
4650 return (KERN_SUCCESS);
4651 rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4652 VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4653 &gap_entry);
4654 if (rv == KERN_SUCCESS) {
4655 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4656 ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4657 KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0,
4658 ("entry %p not stack gap %#x", gap_entry,
4659 gap_entry->eflags));
4660
4661 /*
4662 * Gap can never successfully handle a fault, so
4663 * read-ahead logic is never used for it. Re-use
4664 * next_read of the gap entry to store
4665 * stack_guard_page for vm_map_growstack().
4666 * Similarly, since a gap cannot have a backing object,
4667 * store the original stack protections in the
4668 * object offset.
4669 */
4670 gap_entry->next_read = sgp;
4671 gap_entry->offset = prot | PROT_MAX(max);
4672 } else {
4673 (void)vm_map_delete(map, bot, top);
4674 }
4675 return (rv);
4676 }
4677
4678 /*
4679 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we
4680 * successfully grow the stack.
4681 */
4682 static int
vm_map_growstack(vm_map_t map,vm_offset_t addr,vm_map_entry_t gap_entry)4683 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4684 {
4685 vm_map_entry_t stack_entry;
4686 struct proc *p;
4687 struct vmspace *vm;
4688 vm_offset_t gap_end, gap_start, grow_start;
4689 vm_size_t grow_amount, guard, max_grow, sgp;
4690 vm_prot_t prot, max;
4691 rlim_t lmemlim, stacklim, vmemlim;
4692 int rv, rv1 __diagused;
4693 bool gap_deleted, is_procstack;
4694 #ifdef notyet
4695 uint64_t limit;
4696 #endif
4697 #ifdef RACCT
4698 int error __diagused;
4699 #endif
4700
4701 p = curproc;
4702 vm = p->p_vmspace;
4703
4704 /*
4705 * Disallow stack growth when the access is performed by a
4706 * debugger or AIO daemon. The reason is that the wrong
4707 * resource limits are applied.
4708 */
4709 if (p != initproc && (map != &p->p_vmspace->vm_map ||
4710 p->p_textvp == NULL))
4711 return (KERN_FAILURE);
4712
4713 MPASS(!vm_map_is_system(map));
4714
4715 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4716 stacklim = lim_cur(curthread, RLIMIT_STACK);
4717 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4718 retry:
4719 /* If addr is not in a hole for a stack grow area, no need to grow. */
4720 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4721 return (KERN_FAILURE);
4722 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4723 return (KERN_SUCCESS);
4724 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0) {
4725 stack_entry = vm_map_entry_succ(gap_entry);
4726 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4727 stack_entry->start != gap_entry->end)
4728 return (KERN_FAILURE);
4729 grow_amount = round_page(stack_entry->start - addr);
4730 } else {
4731 return (KERN_FAILURE);
4732 }
4733 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4734 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4735 gap_entry->next_read;
4736 max_grow = gap_entry->end - gap_entry->start;
4737 if (guard > max_grow)
4738 return (KERN_NO_SPACE);
4739 max_grow -= guard;
4740 if (grow_amount > max_grow)
4741 return (KERN_NO_SPACE);
4742
4743 /*
4744 * If this is the main process stack, see if we're over the stack
4745 * limit.
4746 */
4747 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4748 addr < (vm_offset_t)vm->vm_stacktop;
4749 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4750 return (KERN_NO_SPACE);
4751
4752 #ifdef RACCT
4753 if (racct_enable) {
4754 PROC_LOCK(p);
4755 if (is_procstack && racct_set(p, RACCT_STACK,
4756 ctob(vm->vm_ssize) + grow_amount)) {
4757 PROC_UNLOCK(p);
4758 return (KERN_NO_SPACE);
4759 }
4760 PROC_UNLOCK(p);
4761 }
4762 #endif
4763
4764 grow_amount = roundup(grow_amount, sgrowsiz);
4765 if (grow_amount > max_grow)
4766 grow_amount = max_grow;
4767 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4768 grow_amount = trunc_page((vm_size_t)stacklim) -
4769 ctob(vm->vm_ssize);
4770 }
4771
4772 #ifdef notyet
4773 PROC_LOCK(p);
4774 limit = racct_get_available(p, RACCT_STACK);
4775 PROC_UNLOCK(p);
4776 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4777 grow_amount = limit - ctob(vm->vm_ssize);
4778 #endif
4779
4780 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4781 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4782 rv = KERN_NO_SPACE;
4783 goto out;
4784 }
4785 #ifdef RACCT
4786 if (racct_enable) {
4787 PROC_LOCK(p);
4788 if (racct_set(p, RACCT_MEMLOCK,
4789 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4790 PROC_UNLOCK(p);
4791 rv = KERN_NO_SPACE;
4792 goto out;
4793 }
4794 PROC_UNLOCK(p);
4795 }
4796 #endif
4797 }
4798
4799 /* If we would blow our VMEM resource limit, no go */
4800 if (map->size + grow_amount > vmemlim) {
4801 rv = KERN_NO_SPACE;
4802 goto out;
4803 }
4804 #ifdef RACCT
4805 if (racct_enable) {
4806 PROC_LOCK(p);
4807 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4808 PROC_UNLOCK(p);
4809 rv = KERN_NO_SPACE;
4810 goto out;
4811 }
4812 PROC_UNLOCK(p);
4813 }
4814 #endif
4815
4816 if (vm_map_lock_upgrade(map)) {
4817 gap_entry = NULL;
4818 vm_map_lock_read(map);
4819 goto retry;
4820 }
4821
4822 /*
4823 * The gap_entry "offset" field is overloaded. See
4824 * vm_map_stack_locked().
4825 */
4826 prot = PROT_EXTRACT(gap_entry->offset);
4827 max = PROT_MAX_EXTRACT(gap_entry->offset);
4828 sgp = gap_entry->next_read;
4829
4830 grow_start = gap_entry->end - grow_amount;
4831 if (gap_entry->start + grow_amount == gap_entry->end) {
4832 gap_start = gap_entry->start;
4833 gap_end = gap_entry->end;
4834 vm_map_entry_delete(map, gap_entry);
4835 gap_deleted = true;
4836 } else {
4837 MPASS(gap_entry->start < gap_entry->end - grow_amount);
4838 vm_map_entry_resize(map, gap_entry, -grow_amount);
4839 gap_deleted = false;
4840 }
4841 rv = vm_map_insert(map, NULL, 0, grow_start,
4842 grow_start + grow_amount, prot, max, MAP_STACK_AREA);
4843 if (rv != KERN_SUCCESS) {
4844 if (gap_deleted) {
4845 rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4846 gap_end, VM_PROT_NONE, VM_PROT_NONE,
4847 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4848 &gap_entry);
4849 MPASS(rv1 == KERN_SUCCESS);
4850 gap_entry->next_read = sgp;
4851 gap_entry->offset = prot | PROT_MAX(max);
4852 } else {
4853 vm_map_entry_resize(map, gap_entry,
4854 grow_amount);
4855 }
4856 }
4857 if (rv == KERN_SUCCESS && is_procstack)
4858 vm->vm_ssize += btoc(grow_amount);
4859
4860 /*
4861 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4862 */
4863 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4864 rv = vm_map_wire_locked(map, grow_start,
4865 grow_start + grow_amount,
4866 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4867 }
4868 vm_map_lock_downgrade(map);
4869
4870 out:
4871 #ifdef RACCT
4872 if (racct_enable && rv != KERN_SUCCESS) {
4873 PROC_LOCK(p);
4874 error = racct_set(p, RACCT_VMEM, map->size);
4875 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4876 if (!old_mlock) {
4877 error = racct_set(p, RACCT_MEMLOCK,
4878 ptoa(pmap_wired_count(map->pmap)));
4879 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4880 }
4881 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4882 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4883 PROC_UNLOCK(p);
4884 }
4885 #endif
4886
4887 return (rv);
4888 }
4889
4890 /*
4891 * Unshare the specified VM space for exec. If other processes are
4892 * mapped to it, then create a new one. The new vmspace is null.
4893 */
4894 int
vmspace_exec(struct proc * p,vm_offset_t minuser,vm_offset_t maxuser)4895 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4896 {
4897 struct vmspace *oldvmspace = p->p_vmspace;
4898 struct vmspace *newvmspace;
4899
4900 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4901 ("vmspace_exec recursed"));
4902 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4903 if (newvmspace == NULL)
4904 return (ENOMEM);
4905 newvmspace->vm_swrss = oldvmspace->vm_swrss;
4906 /*
4907 * This code is written like this for prototype purposes. The
4908 * goal is to avoid running down the vmspace here, but let the
4909 * other process's that are still using the vmspace to finally
4910 * run it down. Even though there is little or no chance of blocking
4911 * here, it is a good idea to keep this form for future mods.
4912 */
4913 PROC_VMSPACE_LOCK(p);
4914 p->p_vmspace = newvmspace;
4915 PROC_VMSPACE_UNLOCK(p);
4916 if (p == curthread->td_proc)
4917 pmap_activate(curthread);
4918 curthread->td_pflags |= TDP_EXECVMSPC;
4919 return (0);
4920 }
4921
4922 /*
4923 * Unshare the specified VM space for forcing COW. This
4924 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4925 */
4926 int
vmspace_unshare(struct proc * p)4927 vmspace_unshare(struct proc *p)
4928 {
4929 struct vmspace *oldvmspace = p->p_vmspace;
4930 struct vmspace *newvmspace;
4931 vm_ooffset_t fork_charge;
4932
4933 /*
4934 * The caller is responsible for ensuring that the reference count
4935 * cannot concurrently transition 1 -> 2.
4936 */
4937 if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4938 return (0);
4939 fork_charge = 0;
4940 newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4941 if (newvmspace == NULL)
4942 return (ENOMEM);
4943 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4944 vmspace_free(newvmspace);
4945 return (ENOMEM);
4946 }
4947 PROC_VMSPACE_LOCK(p);
4948 p->p_vmspace = newvmspace;
4949 PROC_VMSPACE_UNLOCK(p);
4950 if (p == curthread->td_proc)
4951 pmap_activate(curthread);
4952 vmspace_free(oldvmspace);
4953 return (0);
4954 }
4955
4956 /*
4957 * vm_map_lookup:
4958 *
4959 * Finds the VM object, offset, and
4960 * protection for a given virtual address in the
4961 * specified map, assuming a page fault of the
4962 * type specified.
4963 *
4964 * Leaves the map in question locked for read; return
4965 * values are guaranteed until a vm_map_lookup_done
4966 * call is performed. Note that the map argument
4967 * is in/out; the returned map must be used in
4968 * the call to vm_map_lookup_done.
4969 *
4970 * A handle (out_entry) is returned for use in
4971 * vm_map_lookup_done, to make that fast.
4972 *
4973 * If a lookup is requested with "write protection"
4974 * specified, the map may be changed to perform virtual
4975 * copying operations, although the data referenced will
4976 * remain the same.
4977 */
4978 int
vm_map_lookup(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)4979 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
4980 vm_offset_t vaddr,
4981 vm_prot_t fault_typea,
4982 vm_map_entry_t *out_entry, /* OUT */
4983 vm_object_t *object, /* OUT */
4984 vm_pindex_t *pindex, /* OUT */
4985 vm_prot_t *out_prot, /* OUT */
4986 boolean_t *wired) /* OUT */
4987 {
4988 vm_map_entry_t entry;
4989 vm_map_t map = *var_map;
4990 vm_prot_t prot;
4991 vm_prot_t fault_type;
4992 vm_object_t eobject;
4993 vm_size_t size;
4994 struct ucred *cred;
4995
4996 RetryLookup:
4997
4998 vm_map_lock_read(map);
4999
5000 RetryLookupLocked:
5001 /*
5002 * Lookup the faulting address.
5003 */
5004 if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5005 vm_map_unlock_read(map);
5006 return (KERN_INVALID_ADDRESS);
5007 }
5008
5009 entry = *out_entry;
5010
5011 /*
5012 * Handle submaps.
5013 */
5014 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5015 vm_map_t old_map = map;
5016
5017 *var_map = map = entry->object.sub_map;
5018 vm_map_unlock_read(old_map);
5019 goto RetryLookup;
5020 }
5021
5022 /*
5023 * Check whether this task is allowed to have this page.
5024 */
5025 prot = entry->protection;
5026 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5027 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5028 if (prot == VM_PROT_NONE && map != kernel_map &&
5029 (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5030 (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 &&
5031 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5032 goto RetryLookupLocked;
5033 }
5034 fault_type = fault_typea & VM_PROT_ALL;
5035 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5036 vm_map_unlock_read(map);
5037 return (KERN_PROTECTION_FAILURE);
5038 }
5039 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5040 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5041 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5042 ("entry %p flags %x", entry, entry->eflags));
5043 if ((fault_typea & VM_PROT_COPY) != 0 &&
5044 (entry->max_protection & VM_PROT_WRITE) == 0 &&
5045 (entry->eflags & MAP_ENTRY_COW) == 0) {
5046 vm_map_unlock_read(map);
5047 return (KERN_PROTECTION_FAILURE);
5048 }
5049
5050 /*
5051 * If this page is not pageable, we have to get it for all possible
5052 * accesses.
5053 */
5054 *wired = (entry->wired_count != 0);
5055 if (*wired)
5056 fault_type = entry->protection;
5057 size = entry->end - entry->start;
5058
5059 /*
5060 * If the entry was copy-on-write, we either ...
5061 */
5062 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5063 /*
5064 * If we want to write the page, we may as well handle that
5065 * now since we've got the map locked.
5066 *
5067 * If we don't need to write the page, we just demote the
5068 * permissions allowed.
5069 */
5070 if ((fault_type & VM_PROT_WRITE) != 0 ||
5071 (fault_typea & VM_PROT_COPY) != 0) {
5072 /*
5073 * Make a new object, and place it in the object
5074 * chain. Note that no new references have appeared
5075 * -- one just moved from the map to the new
5076 * object.
5077 */
5078 if (vm_map_lock_upgrade(map))
5079 goto RetryLookup;
5080
5081 if (entry->cred == NULL) {
5082 /*
5083 * The debugger owner is charged for
5084 * the memory.
5085 */
5086 cred = curthread->td_ucred;
5087 crhold(cred);
5088 if (!swap_reserve_by_cred(size, cred)) {
5089 crfree(cred);
5090 vm_map_unlock(map);
5091 return (KERN_RESOURCE_SHORTAGE);
5092 }
5093 entry->cred = cred;
5094 }
5095 eobject = entry->object.vm_object;
5096 vm_object_shadow(&entry->object.vm_object,
5097 &entry->offset, size, entry->cred, false);
5098 if (eobject == entry->object.vm_object) {
5099 /*
5100 * The object was not shadowed.
5101 */
5102 swap_release_by_cred(size, entry->cred);
5103 crfree(entry->cred);
5104 }
5105 entry->cred = NULL;
5106 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5107
5108 vm_map_lock_downgrade(map);
5109 } else {
5110 /*
5111 * We're attempting to read a copy-on-write page --
5112 * don't allow writes.
5113 */
5114 prot &= ~VM_PROT_WRITE;
5115 }
5116 }
5117
5118 /*
5119 * Create an object if necessary.
5120 */
5121 if (entry->object.vm_object == NULL && !vm_map_is_system(map)) {
5122 if (vm_map_lock_upgrade(map))
5123 goto RetryLookup;
5124 entry->object.vm_object = vm_object_allocate_anon(atop(size),
5125 NULL, entry->cred, size);
5126 entry->offset = 0;
5127 entry->cred = NULL;
5128 vm_map_lock_downgrade(map);
5129 }
5130
5131 /*
5132 * Return the object/offset from this entry. If the entry was
5133 * copy-on-write or empty, it has been fixed up.
5134 */
5135 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5136 *object = entry->object.vm_object;
5137
5138 *out_prot = prot;
5139 return (KERN_SUCCESS);
5140 }
5141
5142 /*
5143 * vm_map_lookup_locked:
5144 *
5145 * Lookup the faulting address. A version of vm_map_lookup that returns
5146 * KERN_FAILURE instead of blocking on map lock or memory allocation.
5147 */
5148 int
vm_map_lookup_locked(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)5149 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
5150 vm_offset_t vaddr,
5151 vm_prot_t fault_typea,
5152 vm_map_entry_t *out_entry, /* OUT */
5153 vm_object_t *object, /* OUT */
5154 vm_pindex_t *pindex, /* OUT */
5155 vm_prot_t *out_prot, /* OUT */
5156 boolean_t *wired) /* OUT */
5157 {
5158 vm_map_entry_t entry;
5159 vm_map_t map = *var_map;
5160 vm_prot_t prot;
5161 vm_prot_t fault_type = fault_typea;
5162
5163 /*
5164 * Lookup the faulting address.
5165 */
5166 if (!vm_map_lookup_entry(map, vaddr, out_entry))
5167 return (KERN_INVALID_ADDRESS);
5168
5169 entry = *out_entry;
5170
5171 /*
5172 * Fail if the entry refers to a submap.
5173 */
5174 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5175 return (KERN_FAILURE);
5176
5177 /*
5178 * Check whether this task is allowed to have this page.
5179 */
5180 prot = entry->protection;
5181 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5182 if ((fault_type & prot) != fault_type)
5183 return (KERN_PROTECTION_FAILURE);
5184
5185 /*
5186 * If this page is not pageable, we have to get it for all possible
5187 * accesses.
5188 */
5189 *wired = (entry->wired_count != 0);
5190 if (*wired)
5191 fault_type = entry->protection;
5192
5193 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5194 /*
5195 * Fail if the entry was copy-on-write for a write fault.
5196 */
5197 if (fault_type & VM_PROT_WRITE)
5198 return (KERN_FAILURE);
5199 /*
5200 * We're attempting to read a copy-on-write page --
5201 * don't allow writes.
5202 */
5203 prot &= ~VM_PROT_WRITE;
5204 }
5205
5206 /*
5207 * Fail if an object should be created.
5208 */
5209 if (entry->object.vm_object == NULL && !vm_map_is_system(map))
5210 return (KERN_FAILURE);
5211
5212 /*
5213 * Return the object/offset from this entry. If the entry was
5214 * copy-on-write or empty, it has been fixed up.
5215 */
5216 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5217 *object = entry->object.vm_object;
5218
5219 *out_prot = prot;
5220 return (KERN_SUCCESS);
5221 }
5222
5223 /*
5224 * vm_map_lookup_done:
5225 *
5226 * Releases locks acquired by a vm_map_lookup
5227 * (according to the handle returned by that lookup).
5228 */
5229 void
vm_map_lookup_done(vm_map_t map,vm_map_entry_t entry)5230 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5231 {
5232 /*
5233 * Unlock the main-level map
5234 */
5235 vm_map_unlock_read(map);
5236 }
5237
5238 vm_offset_t
vm_map_max_KBI(const struct vm_map * map)5239 vm_map_max_KBI(const struct vm_map *map)
5240 {
5241
5242 return (vm_map_max(map));
5243 }
5244
5245 vm_offset_t
vm_map_min_KBI(const struct vm_map * map)5246 vm_map_min_KBI(const struct vm_map *map)
5247 {
5248
5249 return (vm_map_min(map));
5250 }
5251
5252 pmap_t
vm_map_pmap_KBI(vm_map_t map)5253 vm_map_pmap_KBI(vm_map_t map)
5254 {
5255
5256 return (map->pmap);
5257 }
5258
5259 bool
vm_map_range_valid_KBI(vm_map_t map,vm_offset_t start,vm_offset_t end)5260 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5261 {
5262
5263 return (vm_map_range_valid(map, start, end));
5264 }
5265
5266 #ifdef INVARIANTS
5267 static void
_vm_map_assert_consistent(vm_map_t map,int check)5268 _vm_map_assert_consistent(vm_map_t map, int check)
5269 {
5270 vm_map_entry_t entry, prev;
5271 vm_map_entry_t cur, header, lbound, ubound;
5272 vm_size_t max_left, max_right;
5273
5274 #ifdef DIAGNOSTIC
5275 ++map->nupdates;
5276 #endif
5277 if (enable_vmmap_check != check)
5278 return;
5279
5280 header = prev = &map->header;
5281 VM_MAP_ENTRY_FOREACH(entry, map) {
5282 KASSERT(prev->end <= entry->start,
5283 ("map %p prev->end = %jx, start = %jx", map,
5284 (uintmax_t)prev->end, (uintmax_t)entry->start));
5285 KASSERT(entry->start < entry->end,
5286 ("map %p start = %jx, end = %jx", map,
5287 (uintmax_t)entry->start, (uintmax_t)entry->end));
5288 KASSERT(entry->left == header ||
5289 entry->left->start < entry->start,
5290 ("map %p left->start = %jx, start = %jx", map,
5291 (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5292 KASSERT(entry->right == header ||
5293 entry->start < entry->right->start,
5294 ("map %p start = %jx, right->start = %jx", map,
5295 (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5296 cur = map->root;
5297 lbound = ubound = header;
5298 for (;;) {
5299 if (entry->start < cur->start) {
5300 ubound = cur;
5301 cur = cur->left;
5302 KASSERT(cur != lbound,
5303 ("map %p cannot find %jx",
5304 map, (uintmax_t)entry->start));
5305 } else if (cur->end <= entry->start) {
5306 lbound = cur;
5307 cur = cur->right;
5308 KASSERT(cur != ubound,
5309 ("map %p cannot find %jx",
5310 map, (uintmax_t)entry->start));
5311 } else {
5312 KASSERT(cur == entry,
5313 ("map %p cannot find %jx",
5314 map, (uintmax_t)entry->start));
5315 break;
5316 }
5317 }
5318 max_left = vm_map_entry_max_free_left(entry, lbound);
5319 max_right = vm_map_entry_max_free_right(entry, ubound);
5320 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5321 ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5322 (uintmax_t)entry->max_free,
5323 (uintmax_t)max_left, (uintmax_t)max_right));
5324 prev = entry;
5325 }
5326 KASSERT(prev->end <= entry->start,
5327 ("map %p prev->end = %jx, start = %jx", map,
5328 (uintmax_t)prev->end, (uintmax_t)entry->start));
5329 }
5330 #endif
5331
5332 #include "opt_ddb.h"
5333 #ifdef DDB
5334 #include <sys/kernel.h>
5335
5336 #include <ddb/ddb.h>
5337
5338 static void
vm_map_print(vm_map_t map)5339 vm_map_print(vm_map_t map)
5340 {
5341 vm_map_entry_t entry, prev;
5342
5343 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5344 (void *)map,
5345 (void *)map->pmap, map->nentries, map->timestamp);
5346
5347 db_indent += 2;
5348 prev = &map->header;
5349 VM_MAP_ENTRY_FOREACH(entry, map) {
5350 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5351 (void *)entry, (void *)entry->start, (void *)entry->end,
5352 entry->eflags);
5353 {
5354 static const char * const inheritance_name[4] =
5355 {"share", "copy", "none", "donate_copy"};
5356
5357 db_iprintf(" prot=%x/%x/%s",
5358 entry->protection,
5359 entry->max_protection,
5360 inheritance_name[(int)(unsigned char)
5361 entry->inheritance]);
5362 if (entry->wired_count != 0)
5363 db_printf(", wired");
5364 }
5365 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5366 db_printf(", share=%p, offset=0x%jx\n",
5367 (void *)entry->object.sub_map,
5368 (uintmax_t)entry->offset);
5369 if (prev == &map->header ||
5370 prev->object.sub_map !=
5371 entry->object.sub_map) {
5372 db_indent += 2;
5373 vm_map_print((vm_map_t)entry->object.sub_map);
5374 db_indent -= 2;
5375 }
5376 } else {
5377 if (entry->cred != NULL)
5378 db_printf(", ruid %d", entry->cred->cr_ruid);
5379 db_printf(", object=%p, offset=0x%jx",
5380 (void *)entry->object.vm_object,
5381 (uintmax_t)entry->offset);
5382 if (entry->object.vm_object && entry->object.vm_object->cred)
5383 db_printf(", obj ruid %d charge %jx",
5384 entry->object.vm_object->cred->cr_ruid,
5385 (uintmax_t)entry->object.vm_object->charge);
5386 if (entry->eflags & MAP_ENTRY_COW)
5387 db_printf(", copy (%s)",
5388 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5389 db_printf("\n");
5390
5391 if (prev == &map->header ||
5392 prev->object.vm_object !=
5393 entry->object.vm_object) {
5394 db_indent += 2;
5395 vm_object_print((db_expr_t)(intptr_t)
5396 entry->object.vm_object,
5397 0, 0, (char *)0);
5398 db_indent -= 2;
5399 }
5400 }
5401 prev = entry;
5402 }
5403 db_indent -= 2;
5404 }
5405
DB_SHOW_COMMAND(map,map)5406 DB_SHOW_COMMAND(map, map)
5407 {
5408
5409 if (!have_addr) {
5410 db_printf("usage: show map <addr>\n");
5411 return;
5412 }
5413 vm_map_print((vm_map_t)addr);
5414 }
5415
DB_SHOW_COMMAND(procvm,procvm)5416 DB_SHOW_COMMAND(procvm, procvm)
5417 {
5418 struct proc *p;
5419
5420 if (have_addr) {
5421 p = db_lookup_proc(addr);
5422 } else {
5423 p = curproc;
5424 }
5425
5426 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5427 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5428 (void *)vmspace_pmap(p->p_vmspace));
5429
5430 vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5431 }
5432
5433 #endif /* DDB */
5434