1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_bhyve_snapshot.h"
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/sysctl.h>
37 #include <sys/malloc.h>
38 #include <sys/pcpu.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rwlock.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/sx.h>
46 #include <sys/vnode.h>
47
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_extern.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_page.h>
53 #include <vm/pmap.h>
54 #include <vm/vm_map.h>
55 #include <vm/vm_pager.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vnode_pager.h>
58 #include <vm/swap_pager.h>
59 #include <vm/uma.h>
60
61 #include <machine/cpu.h>
62 #include <machine/pcb.h>
63 #include <machine/smp.h>
64 #include <machine/md_var.h>
65 #include <x86/psl.h>
66 #include <x86/apicreg.h>
67 #include <x86/ifunc.h>
68
69 #include <machine/vmm.h>
70 #include <machine/vmm_instruction_emul.h>
71 #include <machine/vmm_snapshot.h>
72
73 #include <dev/vmm/vmm_dev.h>
74 #include <dev/vmm/vmm_ktr.h>
75
76 #include "vmm_ioport.h"
77 #include "vmm_host.h"
78 #include "vmm_mem.h"
79 #include "vmm_util.h"
80 #include "vatpic.h"
81 #include "vatpit.h"
82 #include "vhpet.h"
83 #include "vioapic.h"
84 #include "vlapic.h"
85 #include "vpmtmr.h"
86 #include "vrtc.h"
87 #include "vmm_stat.h"
88 #include "vmm_lapic.h"
89
90 #include "io/ppt.h"
91 #include "io/iommu.h"
92
93 struct vlapic;
94
95 /*
96 * Initialization:
97 * (a) allocated when vcpu is created
98 * (i) initialized when vcpu is created and when it is reinitialized
99 * (o) initialized the first time the vcpu is created
100 * (x) initialized before use
101 */
102 struct vcpu {
103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
104 enum vcpu_state state; /* (o) vcpu state */
105 int vcpuid; /* (o) */
106 int hostcpu; /* (o) vcpu's host cpu */
107 int reqidle; /* (i) request vcpu to idle */
108 struct vm *vm; /* (o) */
109 void *cookie; /* (i) cpu-specific data */
110 struct vlapic *vlapic; /* (i) APIC device model */
111 enum x2apic_state x2apic_state; /* (i) APIC mode */
112 uint64_t exitintinfo; /* (i) events pending at VM exit */
113 int nmi_pending; /* (i) NMI pending */
114 int extint_pending; /* (i) INTR pending */
115 int exception_pending; /* (i) exception pending */
116 int exc_vector; /* (x) exception collateral */
117 int exc_errcode_valid;
118 uint32_t exc_errcode;
119 struct savefpu *guestfpu; /* (a,i) guest fpu state */
120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
121 void *stats; /* (a,i) statistics */
122 struct vm_exit exitinfo; /* (x) exit reason and collateral */
123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */
124 uint64_t nextrip; /* (x) next instruction to execute */
125 uint64_t tsc_offset; /* (o) TSC offsetting */
126 };
127
128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
133
134 struct mem_seg {
135 size_t len;
136 bool sysmem;
137 struct vm_object *object;
138 };
139 #define VM_MAX_MEMSEGS 4
140
141 struct mem_map {
142 vm_paddr_t gpa;
143 size_t len;
144 vm_ooffset_t segoff;
145 int segid;
146 int prot;
147 int flags;
148 };
149 #define VM_MAX_MEMMAPS 8
150
151 /*
152 * Initialization:
153 * (o) initialized the first time the VM is created
154 * (i) initialized when VM is created and when it is reinitialized
155 * (x) initialized before use
156 *
157 * Locking:
158 * [m] mem_segs_lock
159 * [r] rendezvous_mtx
160 * [v] reads require one frozen vcpu, writes require freezing all vcpus
161 */
162 struct vm {
163 void *cookie; /* (i) cpu-specific data */
164 void *iommu; /* (x) iommu-specific data */
165 struct vhpet *vhpet; /* (i) virtual HPET */
166 struct vioapic *vioapic; /* (i) virtual ioapic */
167 struct vatpic *vatpic; /* (i) virtual atpic */
168 struct vatpit *vatpit; /* (i) virtual atpit */
169 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
170 struct vrtc *vrtc; /* (o) virtual RTC */
171 volatile cpuset_t active_cpus; /* (i) active vcpus */
172 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
173 cpuset_t startup_cpus; /* (i) [r] waiting for startup */
174 int suspend; /* (i) stop VM execution */
175 bool dying; /* (o) is dying */
176 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
177 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
178 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */
179 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */
180 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */
181 vm_rendezvous_func_t rendezvous_func;
182 struct mtx rendezvous_mtx; /* (o) rendezvous lock */
183 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */
184 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */
185 struct vmspace *vmspace; /* (o) guest's address space */
186 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
187 struct vcpu **vcpu; /* (o) guest vcpus */
188 /* The following describe the vm cpu topology */
189 uint16_t sockets; /* (o) num of sockets */
190 uint16_t cores; /* (o) num of cores/socket */
191 uint16_t threads; /* (o) num of threads/core */
192 uint16_t maxcpus; /* (o) max pluggable cpus */
193 struct sx mem_segs_lock; /* (o) */
194 struct sx vcpus_init_lock; /* (o) */
195 };
196
197 #define VMM_CTR0(vcpu, format) \
198 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
199
200 #define VMM_CTR1(vcpu, format, p1) \
201 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
202
203 #define VMM_CTR2(vcpu, format, p1, p2) \
204 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
205
206 #define VMM_CTR3(vcpu, format, p1, p2, p3) \
207 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
208
209 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \
210 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
211
212 static int vmm_initialized;
213
214 static void vmmops_panic(void);
215
216 static void
vmmops_panic(void)217 vmmops_panic(void)
218 {
219 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
220 }
221
222 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \
223 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \
224 { \
225 if (vmm_is_intel()) \
226 return (vmm_ops_intel.opname); \
227 else if (vmm_is_svm()) \
228 return (vmm_ops_amd.opname); \
229 else \
230 return ((ret_type (*)args)vmmops_panic); \
231 }
232
233 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
234 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
235 DEFINE_VMMOPS_IFUNC(void, modsuspend, (void))
236 DEFINE_VMMOPS_IFUNC(void, modresume, (void))
237 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
238 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
239 struct vm_eventinfo *info))
240 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
241 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
242 int vcpu_id))
243 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
244 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
245 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
246 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
247 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
248 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
249 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
250 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
251 vm_offset_t max))
252 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
253 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
254 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
255 #ifdef BHYVE_SNAPSHOT
256 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
257 struct vm_snapshot_meta *meta))
258 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
259 #endif
260
261 SDT_PROVIDER_DEFINE(vmm);
262
263 static MALLOC_DEFINE(M_VM, "vm", "vm");
264
265 /* statistics */
266 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
267
268 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
269 NULL);
270
271 /*
272 * Halt the guest if all vcpus are executing a HLT instruction with
273 * interrupts disabled.
274 */
275 static int halt_detection_enabled = 1;
276 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
277 &halt_detection_enabled, 0,
278 "Halt VM if all vcpus execute HLT with interrupts disabled");
279
280 static int vmm_ipinum;
281 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
282 "IPI vector used for vcpu notifications");
283
284 static int trace_guest_exceptions;
285 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
286 &trace_guest_exceptions, 0,
287 "Trap into hypervisor on all guest exceptions and reflect them back");
288
289 static int trap_wbinvd;
290 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
291 "WBINVD triggers a VM-exit");
292
293 u_int vm_maxcpu;
294 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
295 &vm_maxcpu, 0, "Maximum number of vCPUs");
296
297 static void vm_free_memmap(struct vm *vm, int ident);
298 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
299 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
300
301 /* global statistics */
302 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus");
303 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
304 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt");
305 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted");
306 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted");
307 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted");
308 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted");
309 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits");
310 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted");
311 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening");
312 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening");
313 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted");
314 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted");
315 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault");
316 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation");
317 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason");
318 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit");
319 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit");
320 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace");
321 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit");
322 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions");
323
324 /*
325 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU
326 * counts as well as range of vpid values for VT-x and by the capacity
327 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in
328 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below.
329 */
330 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
331
332 #ifdef KTR
333 static const char *
vcpu_state2str(enum vcpu_state state)334 vcpu_state2str(enum vcpu_state state)
335 {
336
337 switch (state) {
338 case VCPU_IDLE:
339 return ("idle");
340 case VCPU_FROZEN:
341 return ("frozen");
342 case VCPU_RUNNING:
343 return ("running");
344 case VCPU_SLEEPING:
345 return ("sleeping");
346 default:
347 return ("unknown");
348 }
349 }
350 #endif
351
352 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)353 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
354 {
355 vmmops_vlapic_cleanup(vcpu->vlapic);
356 vmmops_vcpu_cleanup(vcpu->cookie);
357 vcpu->cookie = NULL;
358 if (destroy) {
359 vmm_stat_free(vcpu->stats);
360 fpu_save_area_free(vcpu->guestfpu);
361 vcpu_lock_destroy(vcpu);
362 free(vcpu, M_VM);
363 }
364 }
365
366 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)367 vcpu_alloc(struct vm *vm, int vcpu_id)
368 {
369 struct vcpu *vcpu;
370
371 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
372 ("vcpu_init: invalid vcpu %d", vcpu_id));
373
374 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
375 vcpu_lock_init(vcpu);
376 vcpu->state = VCPU_IDLE;
377 vcpu->hostcpu = NOCPU;
378 vcpu->vcpuid = vcpu_id;
379 vcpu->vm = vm;
380 vcpu->guestfpu = fpu_save_area_alloc();
381 vcpu->stats = vmm_stat_alloc();
382 vcpu->tsc_offset = 0;
383 return (vcpu);
384 }
385
386 static void
vcpu_init(struct vcpu * vcpu)387 vcpu_init(struct vcpu *vcpu)
388 {
389 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
390 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
391 vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
392 vcpu->reqidle = 0;
393 vcpu->exitintinfo = 0;
394 vcpu->nmi_pending = 0;
395 vcpu->extint_pending = 0;
396 vcpu->exception_pending = 0;
397 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
398 fpu_save_area_reset(vcpu->guestfpu);
399 vmm_stat_init(vcpu->stats);
400 }
401
402 int
vcpu_trace_exceptions(struct vcpu * vcpu)403 vcpu_trace_exceptions(struct vcpu *vcpu)
404 {
405
406 return (trace_guest_exceptions);
407 }
408
409 int
vcpu_trap_wbinvd(struct vcpu * vcpu)410 vcpu_trap_wbinvd(struct vcpu *vcpu)
411 {
412 return (trap_wbinvd);
413 }
414
415 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)416 vm_exitinfo(struct vcpu *vcpu)
417 {
418 return (&vcpu->exitinfo);
419 }
420
421 cpuset_t *
vm_exitinfo_cpuset(struct vcpu * vcpu)422 vm_exitinfo_cpuset(struct vcpu *vcpu)
423 {
424 return (&vcpu->exitinfo_cpuset);
425 }
426
427 static int
vmm_init(void)428 vmm_init(void)
429 {
430 int error;
431
432 if (!vmm_is_hw_supported())
433 return (ENXIO);
434
435 vm_maxcpu = mp_ncpus;
436 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
437
438 if (vm_maxcpu > VM_MAXCPU) {
439 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
440 vm_maxcpu = VM_MAXCPU;
441 }
442 if (vm_maxcpu == 0)
443 vm_maxcpu = 1;
444
445 vmm_host_state_init();
446
447 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
448 &IDTVEC(justreturn));
449 if (vmm_ipinum < 0)
450 vmm_ipinum = IPI_AST;
451
452 error = vmm_mem_init();
453 if (error)
454 return (error);
455
456 vmm_suspend_p = vmmops_modsuspend;
457 vmm_resume_p = vmmops_modresume;
458
459 return (vmmops_modinit(vmm_ipinum));
460 }
461
462 static int
vmm_handler(module_t mod,int what,void * arg)463 vmm_handler(module_t mod, int what, void *arg)
464 {
465 int error;
466
467 switch (what) {
468 case MOD_LOAD:
469 if (vmm_is_hw_supported()) {
470 error = vmmdev_init();
471 if (error != 0)
472 break;
473 error = vmm_init();
474 if (error == 0)
475 vmm_initialized = 1;
476 } else {
477 error = ENXIO;
478 }
479 break;
480 case MOD_UNLOAD:
481 if (vmm_is_hw_supported()) {
482 error = vmmdev_cleanup();
483 if (error == 0) {
484 vmm_suspend_p = NULL;
485 vmm_resume_p = NULL;
486 iommu_cleanup();
487 if (vmm_ipinum != IPI_AST)
488 lapic_ipi_free(vmm_ipinum);
489 error = vmmops_modcleanup();
490 /*
491 * Something bad happened - prevent new
492 * VMs from being created
493 */
494 if (error)
495 vmm_initialized = 0;
496 }
497 } else {
498 error = 0;
499 }
500 break;
501 default:
502 error = 0;
503 break;
504 }
505 return (error);
506 }
507
508 static moduledata_t vmm_kmod = {
509 "vmm",
510 vmm_handler,
511 NULL
512 };
513
514 /*
515 * vmm initialization has the following dependencies:
516 *
517 * - VT-x initialization requires smp_rendezvous() and therefore must happen
518 * after SMP is fully functional (after SI_SUB_SMP).
519 * - vmm device initialization requires an initialized devfs.
520 */
521 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
522 MODULE_VERSION(vmm, 1);
523
524 static void
vm_init(struct vm * vm,bool create)525 vm_init(struct vm *vm, bool create)
526 {
527 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace));
528 vm->iommu = NULL;
529 vm->vioapic = vioapic_init(vm);
530 vm->vhpet = vhpet_init(vm);
531 vm->vatpic = vatpic_init(vm);
532 vm->vatpit = vatpit_init(vm);
533 vm->vpmtmr = vpmtmr_init(vm);
534 if (create)
535 vm->vrtc = vrtc_init(vm);
536
537 CPU_ZERO(&vm->active_cpus);
538 CPU_ZERO(&vm->debug_cpus);
539 CPU_ZERO(&vm->startup_cpus);
540
541 vm->suspend = 0;
542 CPU_ZERO(&vm->suspended_cpus);
543
544 if (!create) {
545 for (int i = 0; i < vm->maxcpus; i++) {
546 if (vm->vcpu[i] != NULL)
547 vcpu_init(vm->vcpu[i]);
548 }
549 }
550 }
551
552 void
vm_disable_vcpu_creation(struct vm * vm)553 vm_disable_vcpu_creation(struct vm *vm)
554 {
555 sx_xlock(&vm->vcpus_init_lock);
556 vm->dying = true;
557 sx_xunlock(&vm->vcpus_init_lock);
558 }
559
560 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)561 vm_alloc_vcpu(struct vm *vm, int vcpuid)
562 {
563 struct vcpu *vcpu;
564
565 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
566 return (NULL);
567
568 vcpu = (struct vcpu *)
569 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
570 if (__predict_true(vcpu != NULL))
571 return (vcpu);
572
573 sx_xlock(&vm->vcpus_init_lock);
574 vcpu = vm->vcpu[vcpuid];
575 if (vcpu == NULL && !vm->dying) {
576 vcpu = vcpu_alloc(vm, vcpuid);
577 vcpu_init(vcpu);
578
579 /*
580 * Ensure vCPU is fully created before updating pointer
581 * to permit unlocked reads above.
582 */
583 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
584 (uintptr_t)vcpu);
585 }
586 sx_xunlock(&vm->vcpus_init_lock);
587 return (vcpu);
588 }
589
590 void
vm_slock_vcpus(struct vm * vm)591 vm_slock_vcpus(struct vm *vm)
592 {
593 sx_slock(&vm->vcpus_init_lock);
594 }
595
596 void
vm_unlock_vcpus(struct vm * vm)597 vm_unlock_vcpus(struct vm *vm)
598 {
599 sx_unlock(&vm->vcpus_init_lock);
600 }
601
602 /*
603 * The default CPU topology is a single thread per package.
604 */
605 u_int cores_per_package = 1;
606 u_int threads_per_core = 1;
607
608 int
vm_create(const char * name,struct vm ** retvm)609 vm_create(const char *name, struct vm **retvm)
610 {
611 struct vm *vm;
612 struct vmspace *vmspace;
613
614 /*
615 * If vmm.ko could not be successfully initialized then don't attempt
616 * to create the virtual machine.
617 */
618 if (!vmm_initialized)
619 return (ENXIO);
620
621 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
622 VM_MAX_NAMELEN + 1)
623 return (EINVAL);
624
625 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48);
626 if (vmspace == NULL)
627 return (ENOMEM);
628
629 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
630 strcpy(vm->name, name);
631 vm->vmspace = vmspace;
632 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
633 sx_init(&vm->mem_segs_lock, "vm mem_segs");
634 sx_init(&vm->vcpus_init_lock, "vm vcpus");
635 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
636 M_ZERO);
637
638 vm->sockets = 1;
639 vm->cores = cores_per_package; /* XXX backwards compatibility */
640 vm->threads = threads_per_core; /* XXX backwards compatibility */
641 vm->maxcpus = vm_maxcpu;
642
643 vm_init(vm, true);
644
645 *retvm = vm;
646 return (0);
647 }
648
649 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)650 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
651 uint16_t *threads, uint16_t *maxcpus)
652 {
653 *sockets = vm->sockets;
654 *cores = vm->cores;
655 *threads = vm->threads;
656 *maxcpus = vm->maxcpus;
657 }
658
659 uint16_t
vm_get_maxcpus(struct vm * vm)660 vm_get_maxcpus(struct vm *vm)
661 {
662 return (vm->maxcpus);
663 }
664
665 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus __unused)666 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
667 uint16_t threads, uint16_t maxcpus __unused)
668 {
669 /* Ignore maxcpus. */
670 if ((sockets * cores * threads) > vm->maxcpus)
671 return (EINVAL);
672 vm->sockets = sockets;
673 vm->cores = cores;
674 vm->threads = threads;
675 return(0);
676 }
677
678 static void
vm_cleanup(struct vm * vm,bool destroy)679 vm_cleanup(struct vm *vm, bool destroy)
680 {
681 struct mem_map *mm;
682 int i;
683
684 if (destroy)
685 vm_xlock_memsegs(vm);
686
687 ppt_unassign_all(vm);
688
689 if (vm->iommu != NULL)
690 iommu_destroy_domain(vm->iommu);
691
692 if (destroy)
693 vrtc_cleanup(vm->vrtc);
694 else
695 vrtc_reset(vm->vrtc);
696 vpmtmr_cleanup(vm->vpmtmr);
697 vatpit_cleanup(vm->vatpit);
698 vhpet_cleanup(vm->vhpet);
699 vatpic_cleanup(vm->vatpic);
700 vioapic_cleanup(vm->vioapic);
701
702 for (i = 0; i < vm->maxcpus; i++) {
703 if (vm->vcpu[i] != NULL)
704 vcpu_cleanup(vm->vcpu[i], destroy);
705 }
706
707 vmmops_cleanup(vm->cookie);
708
709 /*
710 * System memory is removed from the guest address space only when
711 * the VM is destroyed. This is because the mapping remains the same
712 * across VM reset.
713 *
714 * Device memory can be relocated by the guest (e.g. using PCI BARs)
715 * so those mappings are removed on a VM reset.
716 */
717 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
718 mm = &vm->mem_maps[i];
719 if (destroy || !sysmem_mapping(vm, mm))
720 vm_free_memmap(vm, i);
721 }
722
723 if (destroy) {
724 for (i = 0; i < VM_MAX_MEMSEGS; i++)
725 vm_free_memseg(vm, i);
726 vm_unlock_memsegs(vm);
727
728 vmmops_vmspace_free(vm->vmspace);
729 vm->vmspace = NULL;
730
731 free(vm->vcpu, M_VM);
732 sx_destroy(&vm->vcpus_init_lock);
733 sx_destroy(&vm->mem_segs_lock);
734 mtx_destroy(&vm->rendezvous_mtx);
735 }
736 }
737
738 void
vm_destroy(struct vm * vm)739 vm_destroy(struct vm *vm)
740 {
741 vm_cleanup(vm, true);
742 free(vm, M_VM);
743 }
744
745 int
vm_reinit(struct vm * vm)746 vm_reinit(struct vm *vm)
747 {
748 int error;
749
750 /*
751 * A virtual machine can be reset only if all vcpus are suspended.
752 */
753 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
754 vm_cleanup(vm, false);
755 vm_init(vm, false);
756 error = 0;
757 } else {
758 error = EBUSY;
759 }
760
761 return (error);
762 }
763
764 const char *
vm_name(struct vm * vm)765 vm_name(struct vm *vm)
766 {
767 return (vm->name);
768 }
769
770 void
vm_slock_memsegs(struct vm * vm)771 vm_slock_memsegs(struct vm *vm)
772 {
773 sx_slock(&vm->mem_segs_lock);
774 }
775
776 void
vm_xlock_memsegs(struct vm * vm)777 vm_xlock_memsegs(struct vm *vm)
778 {
779 sx_xlock(&vm->mem_segs_lock);
780 }
781
782 void
vm_unlock_memsegs(struct vm * vm)783 vm_unlock_memsegs(struct vm *vm)
784 {
785 sx_unlock(&vm->mem_segs_lock);
786 }
787
788 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)789 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
790 {
791 vm_object_t obj;
792
793 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
794 return (ENOMEM);
795 else
796 return (0);
797 }
798
799 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)800 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
801 {
802
803 vmm_mmio_free(vm->vmspace, gpa, len);
804 return (0);
805 }
806
807 /*
808 * Return 'true' if 'gpa' is allocated in the guest address space.
809 *
810 * This function is called in the context of a running vcpu which acts as
811 * an implicit lock on 'vm->mem_maps[]'.
812 */
813 bool
vm_mem_allocated(struct vcpu * vcpu,vm_paddr_t gpa)814 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa)
815 {
816 struct vm *vm = vcpu->vm;
817 struct mem_map *mm;
818 int i;
819
820 #ifdef INVARIANTS
821 int hostcpu, state;
822 state = vcpu_get_state(vcpu, &hostcpu);
823 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
824 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
825 #endif
826
827 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
828 mm = &vm->mem_maps[i];
829 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
830 return (true); /* 'gpa' is sysmem or devmem */
831 }
832
833 if (ppt_is_mmio(vm, gpa))
834 return (true); /* 'gpa' is pci passthru mmio */
835
836 return (false);
837 }
838
839 int
vm_alloc_memseg(struct vm * vm,int ident,size_t len,bool sysmem)840 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
841 {
842 struct mem_seg *seg;
843 vm_object_t obj;
844
845 sx_assert(&vm->mem_segs_lock, SX_XLOCKED);
846
847 if (ident < 0 || ident >= VM_MAX_MEMSEGS)
848 return (EINVAL);
849
850 if (len == 0 || (len & PAGE_MASK))
851 return (EINVAL);
852
853 seg = &vm->mem_segs[ident];
854 if (seg->object != NULL) {
855 if (seg->len == len && seg->sysmem == sysmem)
856 return (EEXIST);
857 else
858 return (EINVAL);
859 }
860
861 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT);
862 if (obj == NULL)
863 return (ENOMEM);
864
865 seg->len = len;
866 seg->object = obj;
867 seg->sysmem = sysmem;
868 return (0);
869 }
870
871 int
vm_get_memseg(struct vm * vm,int ident,size_t * len,bool * sysmem,vm_object_t * objptr)872 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
873 vm_object_t *objptr)
874 {
875 struct mem_seg *seg;
876
877 sx_assert(&vm->mem_segs_lock, SX_LOCKED);
878
879 if (ident < 0 || ident >= VM_MAX_MEMSEGS)
880 return (EINVAL);
881
882 seg = &vm->mem_segs[ident];
883 if (len)
884 *len = seg->len;
885 if (sysmem)
886 *sysmem = seg->sysmem;
887 if (objptr)
888 *objptr = seg->object;
889 return (0);
890 }
891
892 void
vm_free_memseg(struct vm * vm,int ident)893 vm_free_memseg(struct vm *vm, int ident)
894 {
895 struct mem_seg *seg;
896
897 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
898 ("%s: invalid memseg ident %d", __func__, ident));
899
900 seg = &vm->mem_segs[ident];
901 if (seg->object != NULL) {
902 vm_object_deallocate(seg->object);
903 bzero(seg, sizeof(struct mem_seg));
904 }
905 }
906
907 int
vm_mmap_memseg(struct vm * vm,vm_paddr_t gpa,int segid,vm_ooffset_t first,size_t len,int prot,int flags)908 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
909 size_t len, int prot, int flags)
910 {
911 struct mem_seg *seg;
912 struct mem_map *m, *map;
913 vm_ooffset_t last;
914 int i, error;
915
916 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
917 return (EINVAL);
918
919 if (flags & ~VM_MEMMAP_F_WIRED)
920 return (EINVAL);
921
922 if (segid < 0 || segid >= VM_MAX_MEMSEGS)
923 return (EINVAL);
924
925 seg = &vm->mem_segs[segid];
926 if (seg->object == NULL)
927 return (EINVAL);
928
929 last = first + len;
930 if (first < 0 || first >= last || last > seg->len)
931 return (EINVAL);
932
933 if ((gpa | first | last) & PAGE_MASK)
934 return (EINVAL);
935
936 map = NULL;
937 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
938 m = &vm->mem_maps[i];
939 if (m->len == 0) {
940 map = m;
941 break;
942 }
943 }
944
945 if (map == NULL)
946 return (ENOSPC);
947
948 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
949 len, 0, VMFS_NO_SPACE, prot, prot, 0);
950 if (error != KERN_SUCCESS)
951 return (EFAULT);
952
953 vm_object_reference(seg->object);
954
955 if (flags & VM_MEMMAP_F_WIRED) {
956 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
957 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
958 if (error != KERN_SUCCESS) {
959 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
960 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM :
961 EFAULT);
962 }
963 }
964
965 map->gpa = gpa;
966 map->len = len;
967 map->segoff = first;
968 map->segid = segid;
969 map->prot = prot;
970 map->flags = flags;
971 return (0);
972 }
973
974 int
vm_munmap_memseg(struct vm * vm,vm_paddr_t gpa,size_t len)975 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len)
976 {
977 struct mem_map *m;
978 int i;
979
980 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
981 m = &vm->mem_maps[i];
982 if (m->gpa == gpa && m->len == len &&
983 (m->flags & VM_MEMMAP_F_IOMMU) == 0) {
984 vm_free_memmap(vm, i);
985 return (0);
986 }
987 }
988
989 return (EINVAL);
990 }
991
992 int
vm_mmap_getnext(struct vm * vm,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)993 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
994 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
995 {
996 struct mem_map *mm, *mmnext;
997 int i;
998
999 mmnext = NULL;
1000 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1001 mm = &vm->mem_maps[i];
1002 if (mm->len == 0 || mm->gpa < *gpa)
1003 continue;
1004 if (mmnext == NULL || mm->gpa < mmnext->gpa)
1005 mmnext = mm;
1006 }
1007
1008 if (mmnext != NULL) {
1009 *gpa = mmnext->gpa;
1010 if (segid)
1011 *segid = mmnext->segid;
1012 if (segoff)
1013 *segoff = mmnext->segoff;
1014 if (len)
1015 *len = mmnext->len;
1016 if (prot)
1017 *prot = mmnext->prot;
1018 if (flags)
1019 *flags = mmnext->flags;
1020 return (0);
1021 } else {
1022 return (ENOENT);
1023 }
1024 }
1025
1026 static void
vm_free_memmap(struct vm * vm,int ident)1027 vm_free_memmap(struct vm *vm, int ident)
1028 {
1029 struct mem_map *mm;
1030 int error __diagused;
1031
1032 mm = &vm->mem_maps[ident];
1033 if (mm->len) {
1034 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
1035 mm->gpa + mm->len);
1036 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
1037 __func__, error));
1038 bzero(mm, sizeof(struct mem_map));
1039 }
1040 }
1041
1042 static __inline bool
sysmem_mapping(struct vm * vm,struct mem_map * mm)1043 sysmem_mapping(struct vm *vm, struct mem_map *mm)
1044 {
1045
1046 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
1047 return (true);
1048 else
1049 return (false);
1050 }
1051
1052 vm_paddr_t
vmm_sysmem_maxaddr(struct vm * vm)1053 vmm_sysmem_maxaddr(struct vm *vm)
1054 {
1055 struct mem_map *mm;
1056 vm_paddr_t maxaddr;
1057 int i;
1058
1059 maxaddr = 0;
1060 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1061 mm = &vm->mem_maps[i];
1062 if (sysmem_mapping(vm, mm)) {
1063 if (maxaddr < mm->gpa + mm->len)
1064 maxaddr = mm->gpa + mm->len;
1065 }
1066 }
1067 return (maxaddr);
1068 }
1069
1070 static void
vm_iommu_map(struct vm * vm)1071 vm_iommu_map(struct vm *vm)
1072 {
1073 vm_paddr_t gpa, hpa;
1074 struct mem_map *mm;
1075 int i;
1076
1077 sx_assert(&vm->mem_segs_lock, SX_LOCKED);
1078
1079 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1080 mm = &vm->mem_maps[i];
1081 if (!sysmem_mapping(vm, mm))
1082 continue;
1083
1084 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
1085 ("iommu map found invalid memmap %#lx/%#lx/%#x",
1086 mm->gpa, mm->len, mm->flags));
1087 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
1088 continue;
1089 mm->flags |= VM_MEMMAP_F_IOMMU;
1090
1091 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
1092 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa);
1093
1094 /*
1095 * All mappings in the vmm vmspace must be
1096 * present since they are managed by vmm in this way.
1097 * Because we are in pass-through mode, the
1098 * mappings must also be wired. This implies
1099 * that all pages must be mapped and wired,
1100 * allowing to use pmap_extract() and avoiding the
1101 * need to use vm_gpa_hold_global().
1102 *
1103 * This could change if/when we start
1104 * supporting page faults on IOMMU maps.
1105 */
1106 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)),
1107 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired",
1108 vm, (uintmax_t)gpa, (uintmax_t)hpa));
1109
1110 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE);
1111 }
1112 }
1113
1114 iommu_invalidate_tlb(iommu_host_domain());
1115 }
1116
1117 static void
vm_iommu_unmap(struct vm * vm)1118 vm_iommu_unmap(struct vm *vm)
1119 {
1120 vm_paddr_t gpa;
1121 struct mem_map *mm;
1122 int i;
1123
1124 sx_assert(&vm->mem_segs_lock, SX_LOCKED);
1125
1126 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1127 mm = &vm->mem_maps[i];
1128 if (!sysmem_mapping(vm, mm))
1129 continue;
1130
1131 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
1132 continue;
1133 mm->flags &= ~VM_MEMMAP_F_IOMMU;
1134 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
1135 ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
1136 mm->gpa, mm->len, mm->flags));
1137
1138 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
1139 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract(
1140 vmspace_pmap(vm->vmspace), gpa))),
1141 ("vm_iommu_unmap: vm %p gpa %jx not wired",
1142 vm, (uintmax_t)gpa));
1143 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE);
1144 }
1145 }
1146
1147 /*
1148 * Invalidate the cached translations associated with the domain
1149 * from which pages were removed.
1150 */
1151 iommu_invalidate_tlb(vm->iommu);
1152 }
1153
1154 int
vm_unassign_pptdev(struct vm * vm,int bus,int slot,int func)1155 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
1156 {
1157 int error;
1158
1159 error = ppt_unassign_device(vm, bus, slot, func);
1160 if (error)
1161 return (error);
1162
1163 if (ppt_assigned_devices(vm) == 0)
1164 vm_iommu_unmap(vm);
1165
1166 return (0);
1167 }
1168
1169 int
vm_assign_pptdev(struct vm * vm,int bus,int slot,int func)1170 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
1171 {
1172 int error;
1173 vm_paddr_t maxaddr;
1174
1175 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
1176 if (ppt_assigned_devices(vm) == 0) {
1177 KASSERT(vm->iommu == NULL,
1178 ("vm_assign_pptdev: iommu must be NULL"));
1179 maxaddr = vmm_sysmem_maxaddr(vm);
1180 vm->iommu = iommu_create_domain(maxaddr);
1181 if (vm->iommu == NULL)
1182 return (ENXIO);
1183 vm_iommu_map(vm);
1184 }
1185
1186 error = ppt_assign_device(vm, bus, slot, func);
1187 return (error);
1188 }
1189
1190 static void *
_vm_gpa_hold(struct vm * vm,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)1191 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
1192 void **cookie)
1193 {
1194 int i, count, pageoff;
1195 struct mem_map *mm;
1196 vm_page_t m;
1197
1198 pageoff = gpa & PAGE_MASK;
1199 if (len > PAGE_SIZE - pageoff)
1200 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
1201
1202 count = 0;
1203 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1204 mm = &vm->mem_maps[i];
1205 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) {
1206 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
1207 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
1208 break;
1209 }
1210 }
1211
1212 if (count == 1) {
1213 *cookie = m;
1214 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
1215 } else {
1216 *cookie = NULL;
1217 return (NULL);
1218 }
1219 }
1220
1221 void *
vm_gpa_hold(struct vcpu * vcpu,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)1222 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot,
1223 void **cookie)
1224 {
1225 #ifdef INVARIANTS
1226 /*
1227 * The current vcpu should be frozen to ensure 'vm_memmap[]'
1228 * stability.
1229 */
1230 int state = vcpu_get_state(vcpu, NULL);
1231 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
1232 __func__, state));
1233 #endif
1234 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie));
1235 }
1236
1237 void *
vm_gpa_hold_global(struct vm * vm,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)1238 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
1239 void **cookie)
1240 {
1241 sx_assert(&vm->mem_segs_lock, SX_LOCKED);
1242 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie));
1243 }
1244
1245 void
vm_gpa_release(void * cookie)1246 vm_gpa_release(void *cookie)
1247 {
1248 vm_page_t m = cookie;
1249
1250 vm_page_unwire(m, PQ_ACTIVE);
1251 }
1252
1253 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)1254 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
1255 {
1256
1257 if (reg >= VM_REG_LAST)
1258 return (EINVAL);
1259
1260 return (vmmops_getreg(vcpu->cookie, reg, retval));
1261 }
1262
1263 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)1264 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
1265 {
1266 int error;
1267
1268 if (reg >= VM_REG_LAST)
1269 return (EINVAL);
1270
1271 error = vmmops_setreg(vcpu->cookie, reg, val);
1272 if (error || reg != VM_REG_GUEST_RIP)
1273 return (error);
1274
1275 /* Set 'nextrip' to match the value of %rip */
1276 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
1277 vcpu->nextrip = val;
1278 return (0);
1279 }
1280
1281 static bool
is_descriptor_table(int reg)1282 is_descriptor_table(int reg)
1283 {
1284
1285 switch (reg) {
1286 case VM_REG_GUEST_IDTR:
1287 case VM_REG_GUEST_GDTR:
1288 return (true);
1289 default:
1290 return (false);
1291 }
1292 }
1293
1294 static bool
is_segment_register(int reg)1295 is_segment_register(int reg)
1296 {
1297
1298 switch (reg) {
1299 case VM_REG_GUEST_ES:
1300 case VM_REG_GUEST_CS:
1301 case VM_REG_GUEST_SS:
1302 case VM_REG_GUEST_DS:
1303 case VM_REG_GUEST_FS:
1304 case VM_REG_GUEST_GS:
1305 case VM_REG_GUEST_TR:
1306 case VM_REG_GUEST_LDTR:
1307 return (true);
1308 default:
1309 return (false);
1310 }
1311 }
1312
1313 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)1314 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
1315 {
1316
1317 if (!is_segment_register(reg) && !is_descriptor_table(reg))
1318 return (EINVAL);
1319
1320 return (vmmops_getdesc(vcpu->cookie, reg, desc));
1321 }
1322
1323 int
vm_set_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)1324 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
1325 {
1326
1327 if (!is_segment_register(reg) && !is_descriptor_table(reg))
1328 return (EINVAL);
1329
1330 return (vmmops_setdesc(vcpu->cookie, reg, desc));
1331 }
1332
1333 static void
restore_guest_fpustate(struct vcpu * vcpu)1334 restore_guest_fpustate(struct vcpu *vcpu)
1335 {
1336
1337 /* flush host state to the pcb */
1338 fpuexit(curthread);
1339
1340 /* restore guest FPU state */
1341 fpu_enable();
1342 fpurestore(vcpu->guestfpu);
1343
1344 /* restore guest XCR0 if XSAVE is enabled in the host */
1345 if (rcr4() & CR4_XSAVE)
1346 load_xcr(0, vcpu->guest_xcr0);
1347
1348 /*
1349 * The FPU is now "dirty" with the guest's state so disable
1350 * the FPU to trap any access by the host.
1351 */
1352 fpu_disable();
1353 }
1354
1355 static void
save_guest_fpustate(struct vcpu * vcpu)1356 save_guest_fpustate(struct vcpu *vcpu)
1357 {
1358
1359 if ((rcr0() & CR0_TS) == 0)
1360 panic("fpu emulation not enabled in host!");
1361
1362 /* save guest XCR0 and restore host XCR0 */
1363 if (rcr4() & CR4_XSAVE) {
1364 vcpu->guest_xcr0 = rxcr(0);
1365 load_xcr(0, vmm_get_host_xcr0());
1366 }
1367
1368 /* save guest FPU state */
1369 fpu_enable();
1370 fpusave(vcpu->guestfpu);
1371 fpu_disable();
1372 }
1373
1374 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
1375
1376 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1377 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
1378 bool from_idle)
1379 {
1380 int error;
1381
1382 vcpu_assert_locked(vcpu);
1383
1384 /*
1385 * State transitions from the vmmdev_ioctl() must always begin from
1386 * the VCPU_IDLE state. This guarantees that there is only a single
1387 * ioctl() operating on a vcpu at any point.
1388 */
1389 if (from_idle) {
1390 while (vcpu->state != VCPU_IDLE) {
1391 vcpu->reqidle = 1;
1392 vcpu_notify_event_locked(vcpu, false);
1393 VMM_CTR1(vcpu, "vcpu state change from %s to "
1394 "idle requested", vcpu_state2str(vcpu->state));
1395 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1396 }
1397 } else {
1398 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1399 "vcpu idle state"));
1400 }
1401
1402 if (vcpu->state == VCPU_RUNNING) {
1403 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1404 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1405 } else {
1406 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1407 "vcpu that is not running", vcpu->hostcpu));
1408 }
1409
1410 /*
1411 * The following state transitions are allowed:
1412 * IDLE -> FROZEN -> IDLE
1413 * FROZEN -> RUNNING -> FROZEN
1414 * FROZEN -> SLEEPING -> FROZEN
1415 */
1416 switch (vcpu->state) {
1417 case VCPU_IDLE:
1418 case VCPU_RUNNING:
1419 case VCPU_SLEEPING:
1420 error = (newstate != VCPU_FROZEN);
1421 break;
1422 case VCPU_FROZEN:
1423 error = (newstate == VCPU_FROZEN);
1424 break;
1425 default:
1426 error = 1;
1427 break;
1428 }
1429
1430 if (error)
1431 return (EBUSY);
1432
1433 VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
1434 vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1435
1436 vcpu->state = newstate;
1437 if (newstate == VCPU_RUNNING)
1438 vcpu->hostcpu = curcpu;
1439 else
1440 vcpu->hostcpu = NOCPU;
1441
1442 if (newstate == VCPU_IDLE)
1443 wakeup(&vcpu->state);
1444
1445 return (0);
1446 }
1447
1448 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1449 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1450 {
1451 int error;
1452
1453 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1454 panic("Error %d setting state to %d\n", error, newstate);
1455 }
1456
1457 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1458 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1459 {
1460 int error;
1461
1462 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1463 panic("Error %d setting state to %d", error, newstate);
1464 }
1465
1466 static int
vm_handle_rendezvous(struct vcpu * vcpu)1467 vm_handle_rendezvous(struct vcpu *vcpu)
1468 {
1469 struct vm *vm = vcpu->vm;
1470 struct thread *td;
1471 int error, vcpuid;
1472
1473 error = 0;
1474 vcpuid = vcpu->vcpuid;
1475 td = curthread;
1476 mtx_lock(&vm->rendezvous_mtx);
1477 while (vm->rendezvous_func != NULL) {
1478 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1479 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus);
1480
1481 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1482 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1483 VMM_CTR0(vcpu, "Calling rendezvous func");
1484 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
1485 CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1486 }
1487 if (CPU_CMP(&vm->rendezvous_req_cpus,
1488 &vm->rendezvous_done_cpus) == 0) {
1489 VMM_CTR0(vcpu, "Rendezvous completed");
1490 CPU_ZERO(&vm->rendezvous_req_cpus);
1491 vm->rendezvous_func = NULL;
1492 wakeup(&vm->rendezvous_func);
1493 break;
1494 }
1495 VMM_CTR0(vcpu, "Wait for rendezvous completion");
1496 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1497 "vmrndv", hz);
1498 if (td_ast_pending(td, TDA_SUSPEND)) {
1499 mtx_unlock(&vm->rendezvous_mtx);
1500 error = thread_check_susp(td, true);
1501 if (error != 0)
1502 return (error);
1503 mtx_lock(&vm->rendezvous_mtx);
1504 }
1505 }
1506 mtx_unlock(&vm->rendezvous_mtx);
1507 return (0);
1508 }
1509
1510 /*
1511 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1512 */
1513 static int
vm_handle_hlt(struct vcpu * vcpu,bool intr_disabled,bool * retu)1514 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
1515 {
1516 struct vm *vm = vcpu->vm;
1517 const char *wmesg;
1518 struct thread *td;
1519 int error, t, vcpuid, vcpu_halted, vm_halted;
1520
1521 vcpuid = vcpu->vcpuid;
1522 vcpu_halted = 0;
1523 vm_halted = 0;
1524 error = 0;
1525 td = curthread;
1526
1527 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1528
1529 vcpu_lock(vcpu);
1530 while (1) {
1531 /*
1532 * Do a final check for pending NMI or interrupts before
1533 * really putting this thread to sleep. Also check for
1534 * software events that would cause this vcpu to wakeup.
1535 *
1536 * These interrupts/events could have happened after the
1537 * vcpu returned from vmmops_run() and before it acquired the
1538 * vcpu lock above.
1539 */
1540 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1541 break;
1542 if (vm_nmi_pending(vcpu))
1543 break;
1544 if (!intr_disabled) {
1545 if (vm_extint_pending(vcpu) ||
1546 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1547 break;
1548 }
1549 }
1550
1551 /* Don't go to sleep if the vcpu thread needs to yield */
1552 if (vcpu_should_yield(vcpu))
1553 break;
1554
1555 if (vcpu_debugged(vcpu))
1556 break;
1557
1558 /*
1559 * Some Linux guests implement "halt" by having all vcpus
1560 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1561 * track of the vcpus that have entered this state. When all
1562 * vcpus enter the halted state the virtual machine is halted.
1563 */
1564 if (intr_disabled) {
1565 wmesg = "vmhalt";
1566 VMM_CTR0(vcpu, "Halted");
1567 if (!vcpu_halted && halt_detection_enabled) {
1568 vcpu_halted = 1;
1569 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1570 }
1571 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1572 vm_halted = 1;
1573 break;
1574 }
1575 } else {
1576 wmesg = "vmidle";
1577 }
1578
1579 t = ticks;
1580 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1581 /*
1582 * XXX msleep_spin() cannot be interrupted by signals so
1583 * wake up periodically to check pending signals.
1584 */
1585 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1586 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1587 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
1588 if (td_ast_pending(td, TDA_SUSPEND)) {
1589 vcpu_unlock(vcpu);
1590 error = thread_check_susp(td, false);
1591 if (error != 0) {
1592 if (vcpu_halted) {
1593 CPU_CLR_ATOMIC(vcpuid,
1594 &vm->halted_cpus);
1595 }
1596 return (error);
1597 }
1598 vcpu_lock(vcpu);
1599 }
1600 }
1601
1602 if (vcpu_halted)
1603 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1604
1605 vcpu_unlock(vcpu);
1606
1607 if (vm_halted)
1608 vm_suspend(vm, VM_SUSPEND_HALT);
1609
1610 return (0);
1611 }
1612
1613 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1614 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1615 {
1616 struct vm *vm = vcpu->vm;
1617 int rv, ftype;
1618 struct vm_map *map;
1619 struct vm_exit *vme;
1620
1621 vme = &vcpu->exitinfo;
1622
1623 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1624 __func__, vme->inst_length));
1625
1626 ftype = vme->u.paging.fault_type;
1627 KASSERT(ftype == VM_PROT_READ ||
1628 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1629 ("vm_handle_paging: invalid fault_type %d", ftype));
1630
1631 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1632 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1633 vme->u.paging.gpa, ftype);
1634 if (rv == 0) {
1635 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
1636 ftype == VM_PROT_READ ? "accessed" : "dirty",
1637 vme->u.paging.gpa);
1638 goto done;
1639 }
1640 }
1641
1642 map = &vm->vmspace->vm_map;
1643 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1644
1645 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
1646 "ftype = %d", rv, vme->u.paging.gpa, ftype);
1647
1648 if (rv != KERN_SUCCESS)
1649 return (EFAULT);
1650 done:
1651 return (0);
1652 }
1653
1654 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)1655 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1656 {
1657 struct vie *vie;
1658 struct vm_exit *vme;
1659 uint64_t gla, gpa, cs_base;
1660 struct vm_guest_paging *paging;
1661 mem_region_read_t mread;
1662 mem_region_write_t mwrite;
1663 enum vm_cpu_mode cpu_mode;
1664 int cs_d, error, fault;
1665
1666 vme = &vcpu->exitinfo;
1667
1668 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1669 __func__, vme->inst_length));
1670
1671 gla = vme->u.inst_emul.gla;
1672 gpa = vme->u.inst_emul.gpa;
1673 cs_base = vme->u.inst_emul.cs_base;
1674 cs_d = vme->u.inst_emul.cs_d;
1675 vie = &vme->u.inst_emul.vie;
1676 paging = &vme->u.inst_emul.paging;
1677 cpu_mode = paging->cpu_mode;
1678
1679 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
1680
1681 /* Fetch, decode and emulate the faulting instruction */
1682 if (vie->num_valid == 0) {
1683 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
1684 VIE_INST_SIZE, vie, &fault);
1685 } else {
1686 /*
1687 * The instruction bytes have already been copied into 'vie'
1688 */
1689 error = fault = 0;
1690 }
1691 if (error || fault)
1692 return (error);
1693
1694 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
1695 VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
1696 vme->rip + cs_base);
1697 *retu = true; /* dump instruction bytes in userspace */
1698 return (0);
1699 }
1700
1701 /*
1702 * Update 'nextrip' based on the length of the emulated instruction.
1703 */
1704 vme->inst_length = vie->num_processed;
1705 vcpu->nextrip += vie->num_processed;
1706 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
1707 vcpu->nextrip);
1708
1709 /* return to userland unless this is an in-kernel emulated device */
1710 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1711 mread = lapic_mmio_read;
1712 mwrite = lapic_mmio_write;
1713 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1714 mread = vioapic_mmio_read;
1715 mwrite = vioapic_mmio_write;
1716 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1717 mread = vhpet_mmio_read;
1718 mwrite = vhpet_mmio_write;
1719 } else {
1720 *retu = true;
1721 return (0);
1722 }
1723
1724 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
1725 retu);
1726
1727 return (error);
1728 }
1729
1730 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1731 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1732 {
1733 struct vm *vm = vcpu->vm;
1734 int error, i;
1735 struct thread *td;
1736
1737 error = 0;
1738 td = curthread;
1739
1740 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1741
1742 /*
1743 * Wait until all 'active_cpus' have suspended themselves.
1744 *
1745 * Since a VM may be suspended at any time including when one or
1746 * more vcpus are doing a rendezvous we need to call the rendezvous
1747 * handler while we are waiting to prevent a deadlock.
1748 */
1749 vcpu_lock(vcpu);
1750 while (error == 0) {
1751 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1752 VMM_CTR0(vcpu, "All vcpus suspended");
1753 break;
1754 }
1755
1756 if (vm->rendezvous_func == NULL) {
1757 VMM_CTR0(vcpu, "Sleeping during suspend");
1758 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1759 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1760 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1761 if (td_ast_pending(td, TDA_SUSPEND)) {
1762 vcpu_unlock(vcpu);
1763 error = thread_check_susp(td, false);
1764 vcpu_lock(vcpu);
1765 }
1766 } else {
1767 VMM_CTR0(vcpu, "Rendezvous during suspend");
1768 vcpu_unlock(vcpu);
1769 error = vm_handle_rendezvous(vcpu);
1770 vcpu_lock(vcpu);
1771 }
1772 }
1773 vcpu_unlock(vcpu);
1774
1775 /*
1776 * Wakeup the other sleeping vcpus and return to userspace.
1777 */
1778 for (i = 0; i < vm->maxcpus; i++) {
1779 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1780 vcpu_notify_event(vm_vcpu(vm, i), false);
1781 }
1782 }
1783
1784 *retu = true;
1785 return (error);
1786 }
1787
1788 static int
vm_handle_reqidle(struct vcpu * vcpu,bool * retu)1789 vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
1790 {
1791 vcpu_lock(vcpu);
1792 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1793 vcpu->reqidle = 0;
1794 vcpu_unlock(vcpu);
1795 *retu = true;
1796 return (0);
1797 }
1798
1799 static int
vm_handle_db(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1800 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1801 {
1802 int error, fault;
1803 uint64_t rsp;
1804 uint64_t rflags;
1805 struct vm_copyinfo copyinfo[2];
1806
1807 *retu = true;
1808 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) {
1809 return (0);
1810 }
1811
1812 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
1813 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
1814 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault);
1815 if (error != 0 || fault != 0) {
1816 *retu = false;
1817 return (EINVAL);
1818 }
1819
1820 /* Read pushed rflags value from top of stack. */
1821 vm_copyin(copyinfo, &rflags, sizeof(uint64_t));
1822
1823 /* Clear TF bit. */
1824 rflags &= ~(PSL_T);
1825
1826 /* Write updated value back to memory. */
1827 vm_copyout(&rflags, copyinfo, sizeof(uint64_t));
1828 vm_copy_teardown(copyinfo, nitems(copyinfo));
1829
1830 return (0);
1831 }
1832
1833 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1834 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1835 {
1836 int i;
1837
1838 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1839 return (EINVAL);
1840
1841 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1842 VM_CTR2(vm, "virtual machine already suspended %d/%d",
1843 vm->suspend, how);
1844 return (EALREADY);
1845 }
1846
1847 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1848
1849 /*
1850 * Notify all active vcpus that they are now suspended.
1851 */
1852 for (i = 0; i < vm->maxcpus; i++) {
1853 if (CPU_ISSET(i, &vm->active_cpus))
1854 vcpu_notify_event(vm_vcpu(vm, i), false);
1855 }
1856
1857 return (0);
1858 }
1859
1860 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t rip)1861 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
1862 {
1863 struct vm *vm = vcpu->vm;
1864 struct vm_exit *vmexit;
1865
1866 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1867 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1868
1869 vmexit = vm_exitinfo(vcpu);
1870 vmexit->rip = rip;
1871 vmexit->inst_length = 0;
1872 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1873 vmexit->u.suspended.how = vm->suspend;
1874 }
1875
1876 void
vm_exit_debug(struct vcpu * vcpu,uint64_t rip)1877 vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
1878 {
1879 struct vm_exit *vmexit;
1880
1881 vmexit = vm_exitinfo(vcpu);
1882 vmexit->rip = rip;
1883 vmexit->inst_length = 0;
1884 vmexit->exitcode = VM_EXITCODE_DEBUG;
1885 }
1886
1887 void
vm_exit_rendezvous(struct vcpu * vcpu,uint64_t rip)1888 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
1889 {
1890 struct vm_exit *vmexit;
1891
1892 vmexit = vm_exitinfo(vcpu);
1893 vmexit->rip = rip;
1894 vmexit->inst_length = 0;
1895 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1896 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
1897 }
1898
1899 void
vm_exit_reqidle(struct vcpu * vcpu,uint64_t rip)1900 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
1901 {
1902 struct vm_exit *vmexit;
1903
1904 vmexit = vm_exitinfo(vcpu);
1905 vmexit->rip = rip;
1906 vmexit->inst_length = 0;
1907 vmexit->exitcode = VM_EXITCODE_REQIDLE;
1908 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
1909 }
1910
1911 void
vm_exit_astpending(struct vcpu * vcpu,uint64_t rip)1912 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
1913 {
1914 struct vm_exit *vmexit;
1915
1916 vmexit = vm_exitinfo(vcpu);
1917 vmexit->rip = rip;
1918 vmexit->inst_length = 0;
1919 vmexit->exitcode = VM_EXITCODE_BOGUS;
1920 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
1921 }
1922
1923 int
vm_run(struct vcpu * vcpu)1924 vm_run(struct vcpu *vcpu)
1925 {
1926 struct vm *vm = vcpu->vm;
1927 struct vm_eventinfo evinfo;
1928 int error, vcpuid;
1929 struct pcb *pcb;
1930 uint64_t tscval;
1931 struct vm_exit *vme;
1932 bool retu, intr_disabled;
1933 pmap_t pmap;
1934
1935 vcpuid = vcpu->vcpuid;
1936
1937 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1938 return (EINVAL);
1939
1940 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1941 return (EINVAL);
1942
1943 pmap = vmspace_pmap(vm->vmspace);
1944 vme = &vcpu->exitinfo;
1945 evinfo.rptr = &vm->rendezvous_req_cpus;
1946 evinfo.sptr = &vm->suspend;
1947 evinfo.iptr = &vcpu->reqidle;
1948 restart:
1949 critical_enter();
1950
1951 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1952 ("vm_run: absurd pm_active"));
1953
1954 tscval = rdtsc();
1955
1956 pcb = PCPU_GET(curpcb);
1957 set_pcb_flags(pcb, PCB_FULL_IRET);
1958
1959 restore_guest_fpustate(vcpu);
1960
1961 vcpu_require_state(vcpu, VCPU_RUNNING);
1962 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
1963 vcpu_require_state(vcpu, VCPU_FROZEN);
1964
1965 save_guest_fpustate(vcpu);
1966
1967 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1968
1969 critical_exit();
1970
1971 if (error == 0) {
1972 retu = false;
1973 vcpu->nextrip = vme->rip + vme->inst_length;
1974 switch (vme->exitcode) {
1975 case VM_EXITCODE_REQIDLE:
1976 error = vm_handle_reqidle(vcpu, &retu);
1977 break;
1978 case VM_EXITCODE_SUSPENDED:
1979 error = vm_handle_suspend(vcpu, &retu);
1980 break;
1981 case VM_EXITCODE_IOAPIC_EOI:
1982 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
1983 break;
1984 case VM_EXITCODE_RENDEZVOUS:
1985 error = vm_handle_rendezvous(vcpu);
1986 break;
1987 case VM_EXITCODE_HLT:
1988 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1989 error = vm_handle_hlt(vcpu, intr_disabled, &retu);
1990 break;
1991 case VM_EXITCODE_PAGING:
1992 error = vm_handle_paging(vcpu, &retu);
1993 break;
1994 case VM_EXITCODE_INST_EMUL:
1995 error = vm_handle_inst_emul(vcpu, &retu);
1996 break;
1997 case VM_EXITCODE_INOUT:
1998 case VM_EXITCODE_INOUT_STR:
1999 error = vm_handle_inout(vcpu, vme, &retu);
2000 break;
2001 case VM_EXITCODE_DB:
2002 error = vm_handle_db(vcpu, vme, &retu);
2003 break;
2004 case VM_EXITCODE_MONITOR:
2005 case VM_EXITCODE_MWAIT:
2006 case VM_EXITCODE_VMINSN:
2007 vm_inject_ud(vcpu);
2008 break;
2009 default:
2010 retu = true; /* handled in userland */
2011 break;
2012 }
2013 }
2014
2015 /*
2016 * VM_EXITCODE_INST_EMUL could access the apic which could transform the
2017 * exit code into VM_EXITCODE_IPI.
2018 */
2019 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
2020 error = vm_handle_ipi(vcpu, vme, &retu);
2021
2022 if (error == 0 && retu == false)
2023 goto restart;
2024
2025 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
2026 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
2027
2028 return (error);
2029 }
2030
2031 int
vm_restart_instruction(struct vcpu * vcpu)2032 vm_restart_instruction(struct vcpu *vcpu)
2033 {
2034 enum vcpu_state state;
2035 uint64_t rip;
2036 int error __diagused;
2037
2038 state = vcpu_get_state(vcpu, NULL);
2039 if (state == VCPU_RUNNING) {
2040 /*
2041 * When a vcpu is "running" the next instruction is determined
2042 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
2043 * Thus setting 'inst_length' to zero will cause the current
2044 * instruction to be restarted.
2045 */
2046 vcpu->exitinfo.inst_length = 0;
2047 VMM_CTR1(vcpu, "restarting instruction at %#lx by "
2048 "setting inst_length to zero", vcpu->exitinfo.rip);
2049 } else if (state == VCPU_FROZEN) {
2050 /*
2051 * When a vcpu is "frozen" it is outside the critical section
2052 * around vmmops_run() and 'nextrip' points to the next
2053 * instruction. Thus instruction restart is achieved by setting
2054 * 'nextrip' to the vcpu's %rip.
2055 */
2056 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
2057 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
2058 VMM_CTR2(vcpu, "restarting instruction by updating "
2059 "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
2060 vcpu->nextrip = rip;
2061 } else {
2062 panic("%s: invalid state %d", __func__, state);
2063 }
2064 return (0);
2065 }
2066
2067 int
vm_exit_intinfo(struct vcpu * vcpu,uint64_t info)2068 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
2069 {
2070 int type, vector;
2071
2072 if (info & VM_INTINFO_VALID) {
2073 type = info & VM_INTINFO_TYPE;
2074 vector = info & 0xff;
2075 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
2076 return (EINVAL);
2077 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
2078 return (EINVAL);
2079 if (info & VM_INTINFO_RSVD)
2080 return (EINVAL);
2081 } else {
2082 info = 0;
2083 }
2084 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
2085 vcpu->exitintinfo = info;
2086 return (0);
2087 }
2088
2089 enum exc_class {
2090 EXC_BENIGN,
2091 EXC_CONTRIBUTORY,
2092 EXC_PAGEFAULT
2093 };
2094
2095 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
2096
2097 static enum exc_class
exception_class(uint64_t info)2098 exception_class(uint64_t info)
2099 {
2100 int type, vector;
2101
2102 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
2103 type = info & VM_INTINFO_TYPE;
2104 vector = info & 0xff;
2105
2106 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
2107 switch (type) {
2108 case VM_INTINFO_HWINTR:
2109 case VM_INTINFO_SWINTR:
2110 case VM_INTINFO_NMI:
2111 return (EXC_BENIGN);
2112 default:
2113 /*
2114 * Hardware exception.
2115 *
2116 * SVM and VT-x use identical type values to represent NMI,
2117 * hardware interrupt and software interrupt.
2118 *
2119 * SVM uses type '3' for all exceptions. VT-x uses type '3'
2120 * for exceptions except #BP and #OF. #BP and #OF use a type
2121 * value of '5' or '6'. Therefore we don't check for explicit
2122 * values of 'type' to classify 'intinfo' into a hardware
2123 * exception.
2124 */
2125 break;
2126 }
2127
2128 switch (vector) {
2129 case IDT_PF:
2130 case IDT_VE:
2131 return (EXC_PAGEFAULT);
2132 case IDT_DE:
2133 case IDT_TS:
2134 case IDT_NP:
2135 case IDT_SS:
2136 case IDT_GP:
2137 return (EXC_CONTRIBUTORY);
2138 default:
2139 return (EXC_BENIGN);
2140 }
2141 }
2142
2143 static int
nested_fault(struct vcpu * vcpu,uint64_t info1,uint64_t info2,uint64_t * retinfo)2144 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
2145 uint64_t *retinfo)
2146 {
2147 enum exc_class exc1, exc2;
2148 int type1, vector1;
2149
2150 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
2151 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
2152
2153 /*
2154 * If an exception occurs while attempting to call the double-fault
2155 * handler the processor enters shutdown mode (aka triple fault).
2156 */
2157 type1 = info1 & VM_INTINFO_TYPE;
2158 vector1 = info1 & 0xff;
2159 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
2160 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
2161 info1, info2);
2162 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
2163 *retinfo = 0;
2164 return (0);
2165 }
2166
2167 /*
2168 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
2169 */
2170 exc1 = exception_class(info1);
2171 exc2 = exception_class(info2);
2172 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
2173 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
2174 /* Convert nested fault into a double fault. */
2175 *retinfo = IDT_DF;
2176 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
2177 *retinfo |= VM_INTINFO_DEL_ERRCODE;
2178 } else {
2179 /* Handle exceptions serially */
2180 *retinfo = info2;
2181 }
2182 return (1);
2183 }
2184
2185 static uint64_t
vcpu_exception_intinfo(struct vcpu * vcpu)2186 vcpu_exception_intinfo(struct vcpu *vcpu)
2187 {
2188 uint64_t info = 0;
2189
2190 if (vcpu->exception_pending) {
2191 info = vcpu->exc_vector & 0xff;
2192 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
2193 if (vcpu->exc_errcode_valid) {
2194 info |= VM_INTINFO_DEL_ERRCODE;
2195 info |= (uint64_t)vcpu->exc_errcode << 32;
2196 }
2197 }
2198 return (info);
2199 }
2200
2201 int
vm_entry_intinfo(struct vcpu * vcpu,uint64_t * retinfo)2202 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
2203 {
2204 uint64_t info1, info2;
2205 int valid;
2206
2207 info1 = vcpu->exitintinfo;
2208 vcpu->exitintinfo = 0;
2209
2210 info2 = 0;
2211 if (vcpu->exception_pending) {
2212 info2 = vcpu_exception_intinfo(vcpu);
2213 vcpu->exception_pending = 0;
2214 VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
2215 vcpu->exc_vector, info2);
2216 }
2217
2218 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
2219 valid = nested_fault(vcpu, info1, info2, retinfo);
2220 } else if (info1 & VM_INTINFO_VALID) {
2221 *retinfo = info1;
2222 valid = 1;
2223 } else if (info2 & VM_INTINFO_VALID) {
2224 *retinfo = info2;
2225 valid = 1;
2226 } else {
2227 valid = 0;
2228 }
2229
2230 if (valid) {
2231 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
2232 "retinfo(%#lx)", __func__, info1, info2, *retinfo);
2233 }
2234
2235 return (valid);
2236 }
2237
2238 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)2239 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
2240 {
2241 *info1 = vcpu->exitintinfo;
2242 *info2 = vcpu_exception_intinfo(vcpu);
2243 return (0);
2244 }
2245
2246 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)2247 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
2248 uint32_t errcode, int restart_instruction)
2249 {
2250 uint64_t regval;
2251 int error __diagused;
2252
2253 if (vector < 0 || vector >= 32)
2254 return (EINVAL);
2255
2256 /*
2257 * A double fault exception should never be injected directly into
2258 * the guest. It is a derived exception that results from specific
2259 * combinations of nested faults.
2260 */
2261 if (vector == IDT_DF)
2262 return (EINVAL);
2263
2264 if (vcpu->exception_pending) {
2265 VMM_CTR2(vcpu, "Unable to inject exception %d due to "
2266 "pending exception %d", vector, vcpu->exc_vector);
2267 return (EBUSY);
2268 }
2269
2270 if (errcode_valid) {
2271 /*
2272 * Exceptions don't deliver an error code in real mode.
2273 */
2274 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val);
2275 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
2276 if (!(regval & CR0_PE))
2277 errcode_valid = 0;
2278 }
2279
2280 /*
2281 * From section 26.6.1 "Interruptibility State" in Intel SDM:
2282 *
2283 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
2284 * one instruction or incurs an exception.
2285 */
2286 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
2287 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
2288 __func__, error));
2289
2290 if (restart_instruction)
2291 vm_restart_instruction(vcpu);
2292
2293 vcpu->exception_pending = 1;
2294 vcpu->exc_vector = vector;
2295 vcpu->exc_errcode = errcode;
2296 vcpu->exc_errcode_valid = errcode_valid;
2297 VMM_CTR1(vcpu, "Exception %d pending", vector);
2298 return (0);
2299 }
2300
2301 void
vm_inject_fault(struct vcpu * vcpu,int vector,int errcode_valid,int errcode)2302 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
2303 {
2304 int error __diagused, restart_instruction;
2305
2306 restart_instruction = 1;
2307
2308 error = vm_inject_exception(vcpu, vector, errcode_valid,
2309 errcode, restart_instruction);
2310 KASSERT(error == 0, ("vm_inject_exception error %d", error));
2311 }
2312
2313 void
vm_inject_pf(struct vcpu * vcpu,int error_code,uint64_t cr2)2314 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
2315 {
2316 int error __diagused;
2317
2318 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
2319 error_code, cr2);
2320
2321 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
2322 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2323
2324 vm_inject_fault(vcpu, IDT_PF, 1, error_code);
2325 }
2326
2327 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2328
2329 int
vm_inject_nmi(struct vcpu * vcpu)2330 vm_inject_nmi(struct vcpu *vcpu)
2331 {
2332
2333 vcpu->nmi_pending = 1;
2334 vcpu_notify_event(vcpu, false);
2335 return (0);
2336 }
2337
2338 int
vm_nmi_pending(struct vcpu * vcpu)2339 vm_nmi_pending(struct vcpu *vcpu)
2340 {
2341 return (vcpu->nmi_pending);
2342 }
2343
2344 void
vm_nmi_clear(struct vcpu * vcpu)2345 vm_nmi_clear(struct vcpu *vcpu)
2346 {
2347 if (vcpu->nmi_pending == 0)
2348 panic("vm_nmi_clear: inconsistent nmi_pending state");
2349
2350 vcpu->nmi_pending = 0;
2351 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
2352 }
2353
2354 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2355
2356 int
vm_inject_extint(struct vcpu * vcpu)2357 vm_inject_extint(struct vcpu *vcpu)
2358 {
2359
2360 vcpu->extint_pending = 1;
2361 vcpu_notify_event(vcpu, false);
2362 return (0);
2363 }
2364
2365 int
vm_extint_pending(struct vcpu * vcpu)2366 vm_extint_pending(struct vcpu *vcpu)
2367 {
2368 return (vcpu->extint_pending);
2369 }
2370
2371 void
vm_extint_clear(struct vcpu * vcpu)2372 vm_extint_clear(struct vcpu *vcpu)
2373 {
2374 if (vcpu->extint_pending == 0)
2375 panic("vm_extint_clear: inconsistent extint_pending state");
2376
2377 vcpu->extint_pending = 0;
2378 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
2379 }
2380
2381 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)2382 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
2383 {
2384 if (type < 0 || type >= VM_CAP_MAX)
2385 return (EINVAL);
2386
2387 return (vmmops_getcap(vcpu->cookie, type, retval));
2388 }
2389
2390 int
vm_set_capability(struct vcpu * vcpu,int type,int val)2391 vm_set_capability(struct vcpu *vcpu, int type, int val)
2392 {
2393 if (type < 0 || type >= VM_CAP_MAX)
2394 return (EINVAL);
2395
2396 return (vmmops_setcap(vcpu->cookie, type, val));
2397 }
2398
2399 struct vm *
vcpu_vm(struct vcpu * vcpu)2400 vcpu_vm(struct vcpu *vcpu)
2401 {
2402 return (vcpu->vm);
2403 }
2404
2405 int
vcpu_vcpuid(struct vcpu * vcpu)2406 vcpu_vcpuid(struct vcpu *vcpu)
2407 {
2408 return (vcpu->vcpuid);
2409 }
2410
2411 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)2412 vm_vcpu(struct vm *vm, int vcpuid)
2413 {
2414 return (vm->vcpu[vcpuid]);
2415 }
2416
2417 struct vlapic *
vm_lapic(struct vcpu * vcpu)2418 vm_lapic(struct vcpu *vcpu)
2419 {
2420 return (vcpu->vlapic);
2421 }
2422
2423 struct vioapic *
vm_ioapic(struct vm * vm)2424 vm_ioapic(struct vm *vm)
2425 {
2426
2427 return (vm->vioapic);
2428 }
2429
2430 struct vhpet *
vm_hpet(struct vm * vm)2431 vm_hpet(struct vm *vm)
2432 {
2433
2434 return (vm->vhpet);
2435 }
2436
2437 bool
vmm_is_pptdev(int bus,int slot,int func)2438 vmm_is_pptdev(int bus, int slot, int func)
2439 {
2440 int b, f, i, n, s;
2441 char *val, *cp, *cp2;
2442 bool found;
2443
2444 /*
2445 * XXX
2446 * The length of an environment variable is limited to 128 bytes which
2447 * puts an upper limit on the number of passthru devices that may be
2448 * specified using a single environment variable.
2449 *
2450 * Work around this by scanning multiple environment variable
2451 * names instead of a single one - yuck!
2452 */
2453 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2454
2455 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2456 found = false;
2457 for (i = 0; names[i] != NULL && !found; i++) {
2458 cp = val = kern_getenv(names[i]);
2459 while (cp != NULL && *cp != '\0') {
2460 if ((cp2 = strchr(cp, ' ')) != NULL)
2461 *cp2 = '\0';
2462
2463 n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2464 if (n == 3 && bus == b && slot == s && func == f) {
2465 found = true;
2466 break;
2467 }
2468
2469 if (cp2 != NULL)
2470 *cp2++ = ' ';
2471
2472 cp = cp2;
2473 }
2474 freeenv(val);
2475 }
2476 return (found);
2477 }
2478
2479 void *
vm_iommu_domain(struct vm * vm)2480 vm_iommu_domain(struct vm *vm)
2481 {
2482
2483 return (vm->iommu);
2484 }
2485
2486 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)2487 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
2488 {
2489 int error;
2490
2491 vcpu_lock(vcpu);
2492 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
2493 vcpu_unlock(vcpu);
2494
2495 return (error);
2496 }
2497
2498 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)2499 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
2500 {
2501 enum vcpu_state state;
2502
2503 vcpu_lock(vcpu);
2504 state = vcpu->state;
2505 if (hostcpu != NULL)
2506 *hostcpu = vcpu->hostcpu;
2507 vcpu_unlock(vcpu);
2508
2509 return (state);
2510 }
2511
2512 int
vm_activate_cpu(struct vcpu * vcpu)2513 vm_activate_cpu(struct vcpu *vcpu)
2514 {
2515 struct vm *vm = vcpu->vm;
2516
2517 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2518 return (EBUSY);
2519
2520 VMM_CTR0(vcpu, "activated");
2521 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
2522 return (0);
2523 }
2524
2525 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)2526 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
2527 {
2528 if (vcpu == NULL) {
2529 vm->debug_cpus = vm->active_cpus;
2530 for (int i = 0; i < vm->maxcpus; i++) {
2531 if (CPU_ISSET(i, &vm->active_cpus))
2532 vcpu_notify_event(vm_vcpu(vm, i), false);
2533 }
2534 } else {
2535 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2536 return (EINVAL);
2537
2538 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2539 vcpu_notify_event(vcpu, false);
2540 }
2541 return (0);
2542 }
2543
2544 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)2545 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
2546 {
2547
2548 if (vcpu == NULL) {
2549 CPU_ZERO(&vm->debug_cpus);
2550 } else {
2551 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
2552 return (EINVAL);
2553
2554 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2555 }
2556 return (0);
2557 }
2558
2559 int
vcpu_debugged(struct vcpu * vcpu)2560 vcpu_debugged(struct vcpu *vcpu)
2561 {
2562
2563 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
2564 }
2565
2566 cpuset_t
vm_active_cpus(struct vm * vm)2567 vm_active_cpus(struct vm *vm)
2568 {
2569
2570 return (vm->active_cpus);
2571 }
2572
2573 cpuset_t
vm_debug_cpus(struct vm * vm)2574 vm_debug_cpus(struct vm *vm)
2575 {
2576
2577 return (vm->debug_cpus);
2578 }
2579
2580 cpuset_t
vm_suspended_cpus(struct vm * vm)2581 vm_suspended_cpus(struct vm *vm)
2582 {
2583
2584 return (vm->suspended_cpus);
2585 }
2586
2587 /*
2588 * Returns the subset of vCPUs in tostart that are awaiting startup.
2589 * These vCPUs are also marked as no longer awaiting startup.
2590 */
2591 cpuset_t
vm_start_cpus(struct vm * vm,const cpuset_t * tostart)2592 vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
2593 {
2594 cpuset_t set;
2595
2596 mtx_lock(&vm->rendezvous_mtx);
2597 CPU_AND(&set, &vm->startup_cpus, tostart);
2598 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
2599 mtx_unlock(&vm->rendezvous_mtx);
2600 return (set);
2601 }
2602
2603 void
vm_await_start(struct vm * vm,const cpuset_t * waiting)2604 vm_await_start(struct vm *vm, const cpuset_t *waiting)
2605 {
2606 mtx_lock(&vm->rendezvous_mtx);
2607 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
2608 mtx_unlock(&vm->rendezvous_mtx);
2609 }
2610
2611 void *
vcpu_stats(struct vcpu * vcpu)2612 vcpu_stats(struct vcpu *vcpu)
2613 {
2614
2615 return (vcpu->stats);
2616 }
2617
2618 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)2619 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
2620 {
2621 *state = vcpu->x2apic_state;
2622
2623 return (0);
2624 }
2625
2626 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)2627 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
2628 {
2629 if (state >= X2APIC_STATE_LAST)
2630 return (EINVAL);
2631
2632 vcpu->x2apic_state = state;
2633
2634 vlapic_set_x2apic_state(vcpu, state);
2635
2636 return (0);
2637 }
2638
2639 /*
2640 * This function is called to ensure that a vcpu "sees" a pending event
2641 * as soon as possible:
2642 * - If the vcpu thread is sleeping then it is woken up.
2643 * - If the vcpu is running on a different host_cpu then an IPI will be directed
2644 * to the host_cpu to cause the vcpu to trap into the hypervisor.
2645 */
2646 static void
vcpu_notify_event_locked(struct vcpu * vcpu,bool lapic_intr)2647 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2648 {
2649 int hostcpu;
2650
2651 hostcpu = vcpu->hostcpu;
2652 if (vcpu->state == VCPU_RUNNING) {
2653 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2654 if (hostcpu != curcpu) {
2655 if (lapic_intr) {
2656 vlapic_post_intr(vcpu->vlapic, hostcpu,
2657 vmm_ipinum);
2658 } else {
2659 ipi_cpu(hostcpu, vmm_ipinum);
2660 }
2661 } else {
2662 /*
2663 * If the 'vcpu' is running on 'curcpu' then it must
2664 * be sending a notification to itself (e.g. SELF_IPI).
2665 * The pending event will be picked up when the vcpu
2666 * transitions back to guest context.
2667 */
2668 }
2669 } else {
2670 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2671 "with hostcpu %d", vcpu->state, hostcpu));
2672 if (vcpu->state == VCPU_SLEEPING)
2673 wakeup_one(vcpu);
2674 }
2675 }
2676
2677 void
vcpu_notify_event(struct vcpu * vcpu,bool lapic_intr)2678 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr)
2679 {
2680 vcpu_lock(vcpu);
2681 vcpu_notify_event_locked(vcpu, lapic_intr);
2682 vcpu_unlock(vcpu);
2683 }
2684
2685 struct vmspace *
vm_get_vmspace(struct vm * vm)2686 vm_get_vmspace(struct vm *vm)
2687 {
2688
2689 return (vm->vmspace);
2690 }
2691
2692 int
vm_apicid2vcpuid(struct vm * vm,int apicid)2693 vm_apicid2vcpuid(struct vm *vm, int apicid)
2694 {
2695 /*
2696 * XXX apic id is assumed to be numerically identical to vcpu id
2697 */
2698 return (apicid);
2699 }
2700
2701 int
vm_smp_rendezvous(struct vcpu * vcpu,cpuset_t dest,vm_rendezvous_func_t func,void * arg)2702 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
2703 vm_rendezvous_func_t func, void *arg)
2704 {
2705 struct vm *vm = vcpu->vm;
2706 int error, i;
2707
2708 /*
2709 * Enforce that this function is called without any locks
2710 */
2711 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2712
2713 restart:
2714 mtx_lock(&vm->rendezvous_mtx);
2715 if (vm->rendezvous_func != NULL) {
2716 /*
2717 * If a rendezvous is already in progress then we need to
2718 * call the rendezvous handler in case this 'vcpu' is one
2719 * of the targets of the rendezvous.
2720 */
2721 VMM_CTR0(vcpu, "Rendezvous already in progress");
2722 mtx_unlock(&vm->rendezvous_mtx);
2723 error = vm_handle_rendezvous(vcpu);
2724 if (error != 0)
2725 return (error);
2726 goto restart;
2727 }
2728 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2729 "rendezvous is still in progress"));
2730
2731 VMM_CTR0(vcpu, "Initiating rendezvous");
2732 vm->rendezvous_req_cpus = dest;
2733 CPU_ZERO(&vm->rendezvous_done_cpus);
2734 vm->rendezvous_arg = arg;
2735 vm->rendezvous_func = func;
2736 mtx_unlock(&vm->rendezvous_mtx);
2737
2738 /*
2739 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2740 * vcpus so they handle the rendezvous as soon as possible.
2741 */
2742 for (i = 0; i < vm->maxcpus; i++) {
2743 if (CPU_ISSET(i, &dest))
2744 vcpu_notify_event(vm_vcpu(vm, i), false);
2745 }
2746
2747 return (vm_handle_rendezvous(vcpu));
2748 }
2749
2750 struct vatpic *
vm_atpic(struct vm * vm)2751 vm_atpic(struct vm *vm)
2752 {
2753 return (vm->vatpic);
2754 }
2755
2756 struct vatpit *
vm_atpit(struct vm * vm)2757 vm_atpit(struct vm *vm)
2758 {
2759 return (vm->vatpit);
2760 }
2761
2762 struct vpmtmr *
vm_pmtmr(struct vm * vm)2763 vm_pmtmr(struct vm *vm)
2764 {
2765
2766 return (vm->vpmtmr);
2767 }
2768
2769 struct vrtc *
vm_rtc(struct vm * vm)2770 vm_rtc(struct vm *vm)
2771 {
2772
2773 return (vm->vrtc);
2774 }
2775
2776 enum vm_reg_name
vm_segment_name(int seg)2777 vm_segment_name(int seg)
2778 {
2779 static enum vm_reg_name seg_names[] = {
2780 VM_REG_GUEST_ES,
2781 VM_REG_GUEST_CS,
2782 VM_REG_GUEST_SS,
2783 VM_REG_GUEST_DS,
2784 VM_REG_GUEST_FS,
2785 VM_REG_GUEST_GS
2786 };
2787
2788 KASSERT(seg >= 0 && seg < nitems(seg_names),
2789 ("%s: invalid segment encoding %d", __func__, seg));
2790 return (seg_names[seg]);
2791 }
2792
2793 void
vm_copy_teardown(struct vm_copyinfo * copyinfo,int num_copyinfo)2794 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
2795 {
2796 int idx;
2797
2798 for (idx = 0; idx < num_copyinfo; idx++) {
2799 if (copyinfo[idx].cookie != NULL)
2800 vm_gpa_release(copyinfo[idx].cookie);
2801 }
2802 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2803 }
2804
2805 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,int num_copyinfo,int * fault)2806 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
2807 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2808 int num_copyinfo, int *fault)
2809 {
2810 int error, idx, nused;
2811 size_t n, off, remaining;
2812 void *hva, *cookie;
2813 uint64_t gpa;
2814
2815 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2816
2817 nused = 0;
2818 remaining = len;
2819 while (remaining > 0) {
2820 if (nused >= num_copyinfo)
2821 return (EFAULT);
2822 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
2823 if (error || *fault)
2824 return (error);
2825 off = gpa & PAGE_MASK;
2826 n = min(remaining, PAGE_SIZE - off);
2827 copyinfo[nused].gpa = gpa;
2828 copyinfo[nused].len = n;
2829 remaining -= n;
2830 gla += n;
2831 nused++;
2832 }
2833
2834 for (idx = 0; idx < nused; idx++) {
2835 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
2836 copyinfo[idx].len, prot, &cookie);
2837 if (hva == NULL)
2838 break;
2839 copyinfo[idx].hva = hva;
2840 copyinfo[idx].cookie = cookie;
2841 }
2842
2843 if (idx != nused) {
2844 vm_copy_teardown(copyinfo, num_copyinfo);
2845 return (EFAULT);
2846 } else {
2847 *fault = 0;
2848 return (0);
2849 }
2850 }
2851
2852 void
vm_copyin(struct vm_copyinfo * copyinfo,void * kaddr,size_t len)2853 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
2854 {
2855 char *dst;
2856 int idx;
2857
2858 dst = kaddr;
2859 idx = 0;
2860 while (len > 0) {
2861 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2862 len -= copyinfo[idx].len;
2863 dst += copyinfo[idx].len;
2864 idx++;
2865 }
2866 }
2867
2868 void
vm_copyout(const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)2869 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
2870 {
2871 const char *src;
2872 int idx;
2873
2874 src = kaddr;
2875 idx = 0;
2876 while (len > 0) {
2877 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2878 len -= copyinfo[idx].len;
2879 src += copyinfo[idx].len;
2880 idx++;
2881 }
2882 }
2883
2884 /*
2885 * Return the amount of in-use and wired memory for the VM. Since
2886 * these are global stats, only return the values with for vCPU 0
2887 */
2888 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2889 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2890
2891 static void
vm_get_rescnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2892 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2893 {
2894
2895 if (vcpu->vcpuid == 0) {
2896 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
2897 vmspace_resident_count(vcpu->vm->vmspace));
2898 }
2899 }
2900
2901 static void
vm_get_wiredcnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2902 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2903 {
2904
2905 if (vcpu->vcpuid == 0) {
2906 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
2907 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace)));
2908 }
2909 }
2910
2911 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2912 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2913
2914 #ifdef BHYVE_SNAPSHOT
2915 static int
vm_snapshot_vcpus(struct vm * vm,struct vm_snapshot_meta * meta)2916 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
2917 {
2918 uint64_t tsc, now;
2919 int ret;
2920 struct vcpu *vcpu;
2921 uint16_t i, maxcpus;
2922
2923 now = rdtsc();
2924 maxcpus = vm_get_maxcpus(vm);
2925 for (i = 0; i < maxcpus; i++) {
2926 vcpu = vm->vcpu[i];
2927 if (vcpu == NULL)
2928 continue;
2929
2930 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
2931 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
2932 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
2933 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
2934 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
2935 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
2936 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
2937 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2938
2939 /*
2940 * Save the absolute TSC value by adding now to tsc_offset.
2941 *
2942 * It will be turned turned back into an actual offset when the
2943 * TSC restore function is called
2944 */
2945 tsc = now + vcpu->tsc_offset;
2946 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
2947 if (meta->op == VM_SNAPSHOT_RESTORE)
2948 vcpu->tsc_offset = tsc;
2949 }
2950
2951 done:
2952 return (ret);
2953 }
2954
2955 static int
vm_snapshot_vm(struct vm * vm,struct vm_snapshot_meta * meta)2956 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
2957 {
2958 int ret;
2959
2960 ret = vm_snapshot_vcpus(vm, meta);
2961 if (ret != 0)
2962 goto done;
2963
2964 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
2965 done:
2966 return (ret);
2967 }
2968
2969 static int
vm_snapshot_vcpu(struct vm * vm,struct vm_snapshot_meta * meta)2970 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
2971 {
2972 int error;
2973 struct vcpu *vcpu;
2974 uint16_t i, maxcpus;
2975
2976 error = 0;
2977
2978 maxcpus = vm_get_maxcpus(vm);
2979 for (i = 0; i < maxcpus; i++) {
2980 vcpu = vm->vcpu[i];
2981 if (vcpu == NULL)
2982 continue;
2983
2984 error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
2985 if (error != 0) {
2986 printf("%s: failed to snapshot vmcs/vmcb data for "
2987 "vCPU: %d; error: %d\n", __func__, i, error);
2988 goto done;
2989 }
2990 }
2991
2992 done:
2993 return (error);
2994 }
2995
2996 /*
2997 * Save kernel-side structures to user-space for snapshotting.
2998 */
2999 int
vm_snapshot_req(struct vm * vm,struct vm_snapshot_meta * meta)3000 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
3001 {
3002 int ret = 0;
3003
3004 switch (meta->dev_req) {
3005 case STRUCT_VMCX:
3006 ret = vm_snapshot_vcpu(vm, meta);
3007 break;
3008 case STRUCT_VM:
3009 ret = vm_snapshot_vm(vm, meta);
3010 break;
3011 case STRUCT_VIOAPIC:
3012 ret = vioapic_snapshot(vm_ioapic(vm), meta);
3013 break;
3014 case STRUCT_VLAPIC:
3015 ret = vlapic_snapshot(vm, meta);
3016 break;
3017 case STRUCT_VHPET:
3018 ret = vhpet_snapshot(vm_hpet(vm), meta);
3019 break;
3020 case STRUCT_VATPIC:
3021 ret = vatpic_snapshot(vm_atpic(vm), meta);
3022 break;
3023 case STRUCT_VATPIT:
3024 ret = vatpit_snapshot(vm_atpit(vm), meta);
3025 break;
3026 case STRUCT_VPMTMR:
3027 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
3028 break;
3029 case STRUCT_VRTC:
3030 ret = vrtc_snapshot(vm_rtc(vm), meta);
3031 break;
3032 default:
3033 printf("%s: failed to find the requested type %#x\n",
3034 __func__, meta->dev_req);
3035 ret = (EINVAL);
3036 }
3037 return (ret);
3038 }
3039
3040 void
vm_set_tsc_offset(struct vcpu * vcpu,uint64_t offset)3041 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
3042 {
3043 vcpu->tsc_offset = offset;
3044 }
3045
3046 int
vm_restore_time(struct vm * vm)3047 vm_restore_time(struct vm *vm)
3048 {
3049 int error;
3050 uint64_t now;
3051 struct vcpu *vcpu;
3052 uint16_t i, maxcpus;
3053
3054 now = rdtsc();
3055
3056 error = vhpet_restore_time(vm_hpet(vm));
3057 if (error)
3058 return (error);
3059
3060 maxcpus = vm_get_maxcpus(vm);
3061 for (i = 0; i < maxcpus; i++) {
3062 vcpu = vm->vcpu[i];
3063 if (vcpu == NULL)
3064 continue;
3065
3066 error = vmmops_restore_tsc(vcpu->cookie,
3067 vcpu->tsc_offset - now);
3068 if (error)
3069 return (error);
3070 }
3071
3072 return (0);
3073 }
3074 #endif
3075