1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "opt_bhyve_snapshot.h"
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/module.h>
35 #include <sys/sysctl.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sx.h>
45 #include <sys/vnode.h>
46
47 #include <vm/vm.h>
48 #include <vm/vm_param.h>
49 #include <vm/vm_extern.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vm_kern.h>
56 #include <vm/vnode_pager.h>
57 #include <vm/swap_pager.h>
58 #include <vm/uma.h>
59
60 #include <machine/cpu.h>
61 #include <machine/pcb.h>
62 #include <machine/smp.h>
63 #include <machine/md_var.h>
64 #include <x86/psl.h>
65 #include <x86/apicreg.h>
66 #include <x86/ifunc.h>
67
68 #include <machine/vmm.h>
69 #include <machine/vmm_instruction_emul.h>
70 #include <machine/vmm_snapshot.h>
71
72 #include <dev/vmm/vmm_dev.h>
73 #include <dev/vmm/vmm_ktr.h>
74 #include <dev/vmm/vmm_mem.h>
75
76 #include "vmm_ioport.h"
77 #include "vmm_host.h"
78 #include "vmm_mem.h"
79 #include "vmm_util.h"
80 #include "vatpic.h"
81 #include "vatpit.h"
82 #include "vhpet.h"
83 #include "vioapic.h"
84 #include "vlapic.h"
85 #include "vpmtmr.h"
86 #include "vrtc.h"
87 #include "vmm_stat.h"
88 #include "vmm_lapic.h"
89
90 #include "io/ppt.h"
91 #include "io/iommu.h"
92
93 struct vlapic;
94
95 /*
96 * Initialization:
97 * (a) allocated when vcpu is created
98 * (i) initialized when vcpu is created and when it is reinitialized
99 * (o) initialized the first time the vcpu is created
100 * (x) initialized before use
101 */
102 struct vcpu {
103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
104 enum vcpu_state state; /* (o) vcpu state */
105 int vcpuid; /* (o) */
106 int hostcpu; /* (o) vcpu's host cpu */
107 int reqidle; /* (i) request vcpu to idle */
108 struct vm *vm; /* (o) */
109 void *cookie; /* (i) cpu-specific data */
110 struct vlapic *vlapic; /* (i) APIC device model */
111 enum x2apic_state x2apic_state; /* (i) APIC mode */
112 uint64_t exitintinfo; /* (i) events pending at VM exit */
113 int nmi_pending; /* (i) NMI pending */
114 int extint_pending; /* (i) INTR pending */
115 int exception_pending; /* (i) exception pending */
116 int exc_vector; /* (x) exception collateral */
117 int exc_errcode_valid;
118 uint32_t exc_errcode;
119 struct savefpu *guestfpu; /* (a,i) guest fpu state */
120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
121 void *stats; /* (a,i) statistics */
122 struct vm_exit exitinfo; /* (x) exit reason and collateral */
123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */
124 uint64_t nextrip; /* (x) next instruction to execute */
125 uint64_t tsc_offset; /* (o) TSC offsetting */
126 };
127
128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
133
134 /*
135 * Initialization:
136 * (o) initialized the first time the VM is created
137 * (i) initialized when VM is created and when it is reinitialized
138 * (x) initialized before use
139 *
140 * Locking:
141 * [m] mem_segs_lock
142 * [r] rendezvous_mtx
143 * [v] reads require one frozen vcpu, writes require freezing all vcpus
144 */
145 struct vm {
146 void *cookie; /* (i) cpu-specific data */
147 void *iommu; /* (x) iommu-specific data */
148 struct vhpet *vhpet; /* (i) virtual HPET */
149 struct vioapic *vioapic; /* (i) virtual ioapic */
150 struct vatpic *vatpic; /* (i) virtual atpic */
151 struct vatpit *vatpit; /* (i) virtual atpit */
152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
153 struct vrtc *vrtc; /* (o) virtual RTC */
154 volatile cpuset_t active_cpus; /* (i) active vcpus */
155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
156 cpuset_t startup_cpus; /* (i) [r] waiting for startup */
157 int suspend; /* (i) stop VM execution */
158 bool dying; /* (o) is dying */
159 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
160 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
161 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */
162 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */
163 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */
164 vm_rendezvous_func_t rendezvous_func;
165 struct mtx rendezvous_mtx; /* (o) rendezvous lock */
166 struct vm_mem mem; /* (i) [m+v] guest memory */
167 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
168 struct vcpu **vcpu; /* (o) guest vcpus */
169 /* The following describe the vm cpu topology */
170 uint16_t sockets; /* (o) num of sockets */
171 uint16_t cores; /* (o) num of cores/socket */
172 uint16_t threads; /* (o) num of threads/core */
173 uint16_t maxcpus; /* (o) max pluggable cpus */
174 struct sx vcpus_init_lock; /* (o) */
175 };
176
177 #define VMM_CTR0(vcpu, format) \
178 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
179
180 #define VMM_CTR1(vcpu, format, p1) \
181 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
182
183 #define VMM_CTR2(vcpu, format, p1, p2) \
184 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
185
186 #define VMM_CTR3(vcpu, format, p1, p2, p3) \
187 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
188
189 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \
190 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
191
192 static int vmm_initialized;
193
194 static void vmmops_panic(void);
195
196 static void
vmmops_panic(void)197 vmmops_panic(void)
198 {
199 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
200 }
201
202 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \
203 DEFINE_IFUNC(, ret_type, vmmops_##opname, args) \
204 { \
205 if (vmm_is_intel()) \
206 return (vmm_ops_intel.opname); \
207 else if (vmm_is_svm()) \
208 return (vmm_ops_amd.opname); \
209 else \
210 return ((ret_type (*)args)vmmops_panic); \
211 }
212
213 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
214 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
215 DEFINE_VMMOPS_IFUNC(void, modsuspend, (void))
216 DEFINE_VMMOPS_IFUNC(void, modresume, (void))
217 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
218 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
219 struct vm_eventinfo *info))
220 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
221 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
222 int vcpu_id))
223 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
224 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
225 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
226 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
227 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
228 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
229 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
230 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
231 vm_offset_t max))
232 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
233 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
234 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
235 #ifdef BHYVE_SNAPSHOT
236 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
237 struct vm_snapshot_meta *meta))
238 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
239 #endif
240
241 SDT_PROVIDER_DEFINE(vmm);
242
243 static MALLOC_DEFINE(M_VM, "vm", "vm");
244
245 /* statistics */
246 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
247
248 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
249 NULL);
250
251 /*
252 * Halt the guest if all vcpus are executing a HLT instruction with
253 * interrupts disabled.
254 */
255 static int halt_detection_enabled = 1;
256 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
257 &halt_detection_enabled, 0,
258 "Halt VM if all vcpus execute HLT with interrupts disabled");
259
260 static int vmm_ipinum;
261 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
262 "IPI vector used for vcpu notifications");
263
264 static int trace_guest_exceptions;
265 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
266 &trace_guest_exceptions, 0,
267 "Trap into hypervisor on all guest exceptions and reflect them back");
268
269 static int trap_wbinvd;
270 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
271 "WBINVD triggers a VM-exit");
272
273 u_int vm_maxcpu;
274 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
275 &vm_maxcpu, 0, "Maximum number of vCPUs");
276
277 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
278
279 /* global statistics */
280 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus");
281 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
282 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt");
283 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted");
284 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted");
285 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted");
286 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted");
287 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits");
288 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted");
289 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening");
290 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening");
291 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted");
292 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted");
293 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault");
294 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation");
295 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason");
296 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit");
297 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit");
298 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace");
299 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit");
300 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions");
301
302 /*
303 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU
304 * counts as well as range of vpid values for VT-x and by the capacity
305 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in
306 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below.
307 */
308 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
309
310 #ifdef KTR
311 static const char *
vcpu_state2str(enum vcpu_state state)312 vcpu_state2str(enum vcpu_state state)
313 {
314
315 switch (state) {
316 case VCPU_IDLE:
317 return ("idle");
318 case VCPU_FROZEN:
319 return ("frozen");
320 case VCPU_RUNNING:
321 return ("running");
322 case VCPU_SLEEPING:
323 return ("sleeping");
324 default:
325 return ("unknown");
326 }
327 }
328 #endif
329
330 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)331 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
332 {
333 vmmops_vlapic_cleanup(vcpu->vlapic);
334 vmmops_vcpu_cleanup(vcpu->cookie);
335 vcpu->cookie = NULL;
336 if (destroy) {
337 vmm_stat_free(vcpu->stats);
338 fpu_save_area_free(vcpu->guestfpu);
339 vcpu_lock_destroy(vcpu);
340 free(vcpu, M_VM);
341 }
342 }
343
344 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)345 vcpu_alloc(struct vm *vm, int vcpu_id)
346 {
347 struct vcpu *vcpu;
348
349 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
350 ("vcpu_init: invalid vcpu %d", vcpu_id));
351
352 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
353 vcpu_lock_init(vcpu);
354 vcpu->state = VCPU_IDLE;
355 vcpu->hostcpu = NOCPU;
356 vcpu->vcpuid = vcpu_id;
357 vcpu->vm = vm;
358 vcpu->guestfpu = fpu_save_area_alloc();
359 vcpu->stats = vmm_stat_alloc();
360 vcpu->tsc_offset = 0;
361 return (vcpu);
362 }
363
364 static void
vcpu_init(struct vcpu * vcpu)365 vcpu_init(struct vcpu *vcpu)
366 {
367 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
368 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
369 vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
370 vcpu->reqidle = 0;
371 vcpu->exitintinfo = 0;
372 vcpu->nmi_pending = 0;
373 vcpu->extint_pending = 0;
374 vcpu->exception_pending = 0;
375 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
376 fpu_save_area_reset(vcpu->guestfpu);
377 vmm_stat_init(vcpu->stats);
378 }
379
380 int
vcpu_trace_exceptions(struct vcpu * vcpu)381 vcpu_trace_exceptions(struct vcpu *vcpu)
382 {
383
384 return (trace_guest_exceptions);
385 }
386
387 int
vcpu_trap_wbinvd(struct vcpu * vcpu)388 vcpu_trap_wbinvd(struct vcpu *vcpu)
389 {
390 return (trap_wbinvd);
391 }
392
393 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)394 vm_exitinfo(struct vcpu *vcpu)
395 {
396 return (&vcpu->exitinfo);
397 }
398
399 cpuset_t *
vm_exitinfo_cpuset(struct vcpu * vcpu)400 vm_exitinfo_cpuset(struct vcpu *vcpu)
401 {
402 return (&vcpu->exitinfo_cpuset);
403 }
404
405 static int
vmm_init(void)406 vmm_init(void)
407 {
408 if (!vmm_is_hw_supported())
409 return (ENXIO);
410
411 vm_maxcpu = mp_ncpus;
412 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
413
414 if (vm_maxcpu > VM_MAXCPU) {
415 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
416 vm_maxcpu = VM_MAXCPU;
417 }
418 if (vm_maxcpu == 0)
419 vm_maxcpu = 1;
420
421 vmm_host_state_init();
422
423 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
424 &IDTVEC(justreturn));
425 if (vmm_ipinum < 0)
426 vmm_ipinum = IPI_AST;
427
428 vmm_suspend_p = vmmops_modsuspend;
429 vmm_resume_p = vmmops_modresume;
430
431 return (vmmops_modinit(vmm_ipinum));
432 }
433
434 static int
vmm_handler(module_t mod,int what,void * arg)435 vmm_handler(module_t mod, int what, void *arg)
436 {
437 int error;
438
439 switch (what) {
440 case MOD_LOAD:
441 if (vmm_is_hw_supported()) {
442 error = vmmdev_init();
443 if (error != 0)
444 break;
445 error = vmm_init();
446 if (error == 0)
447 vmm_initialized = 1;
448 else
449 (void)vmmdev_cleanup();
450 } else {
451 error = ENXIO;
452 }
453 break;
454 case MOD_UNLOAD:
455 if (vmm_is_hw_supported()) {
456 error = vmmdev_cleanup();
457 if (error == 0) {
458 vmm_suspend_p = NULL;
459 vmm_resume_p = NULL;
460 iommu_cleanup();
461 if (vmm_ipinum != IPI_AST)
462 lapic_ipi_free(vmm_ipinum);
463 error = vmmops_modcleanup();
464 /*
465 * Something bad happened - prevent new
466 * VMs from being created
467 */
468 if (error)
469 vmm_initialized = 0;
470 }
471 } else {
472 error = 0;
473 }
474 break;
475 default:
476 error = 0;
477 break;
478 }
479 return (error);
480 }
481
482 static moduledata_t vmm_kmod = {
483 "vmm",
484 vmm_handler,
485 NULL
486 };
487
488 /*
489 * vmm initialization has the following dependencies:
490 *
491 * - VT-x initialization requires smp_rendezvous() and therefore must happen
492 * after SMP is fully functional (after SI_SUB_SMP).
493 * - vmm device initialization requires an initialized devfs.
494 */
495 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
496 MODULE_VERSION(vmm, 1);
497
498 static void
vm_init(struct vm * vm,bool create)499 vm_init(struct vm *vm, bool create)
500 {
501 vm->cookie = vmmops_init(vm, vmspace_pmap(vm_vmspace(vm)));
502 vm->iommu = NULL;
503 vm->vioapic = vioapic_init(vm);
504 vm->vhpet = vhpet_init(vm);
505 vm->vatpic = vatpic_init(vm);
506 vm->vatpit = vatpit_init(vm);
507 vm->vpmtmr = vpmtmr_init(vm);
508 if (create)
509 vm->vrtc = vrtc_init(vm);
510
511 CPU_ZERO(&vm->active_cpus);
512 CPU_ZERO(&vm->debug_cpus);
513 CPU_ZERO(&vm->startup_cpus);
514
515 vm->suspend = 0;
516 CPU_ZERO(&vm->suspended_cpus);
517
518 if (!create) {
519 for (int i = 0; i < vm->maxcpus; i++) {
520 if (vm->vcpu[i] != NULL)
521 vcpu_init(vm->vcpu[i]);
522 }
523 }
524 }
525
526 void
vm_disable_vcpu_creation(struct vm * vm)527 vm_disable_vcpu_creation(struct vm *vm)
528 {
529 sx_xlock(&vm->vcpus_init_lock);
530 vm->dying = true;
531 sx_xunlock(&vm->vcpus_init_lock);
532 }
533
534 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)535 vm_alloc_vcpu(struct vm *vm, int vcpuid)
536 {
537 struct vcpu *vcpu;
538
539 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
540 return (NULL);
541
542 vcpu = (struct vcpu *)
543 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
544 if (__predict_true(vcpu != NULL))
545 return (vcpu);
546
547 sx_xlock(&vm->vcpus_init_lock);
548 vcpu = vm->vcpu[vcpuid];
549 if (vcpu == NULL && !vm->dying) {
550 vcpu = vcpu_alloc(vm, vcpuid);
551 vcpu_init(vcpu);
552
553 /*
554 * Ensure vCPU is fully created before updating pointer
555 * to permit unlocked reads above.
556 */
557 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
558 (uintptr_t)vcpu);
559 }
560 sx_xunlock(&vm->vcpus_init_lock);
561 return (vcpu);
562 }
563
564 void
vm_slock_vcpus(struct vm * vm)565 vm_slock_vcpus(struct vm *vm)
566 {
567 sx_slock(&vm->vcpus_init_lock);
568 }
569
570 void
vm_unlock_vcpus(struct vm * vm)571 vm_unlock_vcpus(struct vm *vm)
572 {
573 sx_unlock(&vm->vcpus_init_lock);
574 }
575
576 /*
577 * The default CPU topology is a single thread per package.
578 */
579 u_int cores_per_package = 1;
580 u_int threads_per_core = 1;
581
582 int
vm_create(const char * name,struct vm ** retvm)583 vm_create(const char *name, struct vm **retvm)
584 {
585 struct vm *vm;
586 int error;
587
588 /*
589 * If vmm.ko could not be successfully initialized then don't attempt
590 * to create the virtual machine.
591 */
592 if (!vmm_initialized)
593 return (ENXIO);
594
595 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
596 VM_MAX_NAMELEN + 1)
597 return (EINVAL);
598
599 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
600 error = vm_mem_init(&vm->mem, 0, VM_MAXUSER_ADDRESS_LA48);
601 if (error != 0) {
602 free(vm, M_VM);
603 return (error);
604 }
605 strcpy(vm->name, name);
606 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
607 sx_init(&vm->vcpus_init_lock, "vm vcpus");
608 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
609 M_ZERO);
610
611 vm->sockets = 1;
612 vm->cores = cores_per_package; /* XXX backwards compatibility */
613 vm->threads = threads_per_core; /* XXX backwards compatibility */
614 vm->maxcpus = vm_maxcpu;
615
616 vm_init(vm, true);
617
618 *retvm = vm;
619 return (0);
620 }
621
622 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)623 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
624 uint16_t *threads, uint16_t *maxcpus)
625 {
626 *sockets = vm->sockets;
627 *cores = vm->cores;
628 *threads = vm->threads;
629 *maxcpus = vm->maxcpus;
630 }
631
632 uint16_t
vm_get_maxcpus(struct vm * vm)633 vm_get_maxcpus(struct vm *vm)
634 {
635 return (vm->maxcpus);
636 }
637
638 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus __unused)639 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
640 uint16_t threads, uint16_t maxcpus __unused)
641 {
642 /* Ignore maxcpus. */
643 if ((sockets * cores * threads) > vm->maxcpus)
644 return (EINVAL);
645 vm->sockets = sockets;
646 vm->cores = cores;
647 vm->threads = threads;
648 return(0);
649 }
650
651 static void
vm_cleanup(struct vm * vm,bool destroy)652 vm_cleanup(struct vm *vm, bool destroy)
653 {
654 if (destroy)
655 vm_xlock_memsegs(vm);
656 else
657 vm_assert_memseg_xlocked(vm);
658
659 ppt_unassign_all(vm);
660
661 if (vm->iommu != NULL)
662 iommu_destroy_domain(vm->iommu);
663
664 if (destroy)
665 vrtc_cleanup(vm->vrtc);
666 else
667 vrtc_reset(vm->vrtc);
668 vpmtmr_cleanup(vm->vpmtmr);
669 vatpit_cleanup(vm->vatpit);
670 vhpet_cleanup(vm->vhpet);
671 vatpic_cleanup(vm->vatpic);
672 vioapic_cleanup(vm->vioapic);
673
674 for (int i = 0; i < vm->maxcpus; i++) {
675 if (vm->vcpu[i] != NULL)
676 vcpu_cleanup(vm->vcpu[i], destroy);
677 }
678
679 vmmops_cleanup(vm->cookie);
680
681 vm_mem_cleanup(vm);
682
683 if (destroy) {
684 vm_mem_destroy(vm);
685
686 free(vm->vcpu, M_VM);
687 sx_destroy(&vm->vcpus_init_lock);
688 mtx_destroy(&vm->rendezvous_mtx);
689 }
690 }
691
692 void
vm_destroy(struct vm * vm)693 vm_destroy(struct vm *vm)
694 {
695 vm_cleanup(vm, true);
696 free(vm, M_VM);
697 }
698
699 int
vm_reinit(struct vm * vm)700 vm_reinit(struct vm *vm)
701 {
702 int error;
703
704 /*
705 * A virtual machine can be reset only if all vcpus are suspended.
706 */
707 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
708 vm_cleanup(vm, false);
709 vm_init(vm, false);
710 error = 0;
711 } else {
712 error = EBUSY;
713 }
714
715 return (error);
716 }
717
718 const char *
vm_name(struct vm * vm)719 vm_name(struct vm *vm)
720 {
721 return (vm->name);
722 }
723
724 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)725 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
726 {
727 vm_object_t obj;
728
729 if ((obj = vmm_mmio_alloc(vm_vmspace(vm), gpa, len, hpa)) == NULL)
730 return (ENOMEM);
731 else
732 return (0);
733 }
734
735 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)736 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
737 {
738
739 vmm_mmio_free(vm_vmspace(vm), gpa, len);
740 return (0);
741 }
742
743 static int
vm_iommu_map(struct vm * vm)744 vm_iommu_map(struct vm *vm)
745 {
746 pmap_t pmap;
747 vm_paddr_t gpa, hpa;
748 struct vm_mem_map *mm;
749 int error, i;
750
751 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
752
753 pmap = vmspace_pmap(vm_vmspace(vm));
754 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
755 if (!vm_memseg_sysmem(vm, i))
756 continue;
757
758 mm = &vm->mem.mem_maps[i];
759 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
760 ("iommu map found invalid memmap %#lx/%#lx/%#x",
761 mm->gpa, mm->len, mm->flags));
762 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
763 continue;
764 mm->flags |= VM_MEMMAP_F_IOMMU;
765
766 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
767 hpa = pmap_extract(pmap, gpa);
768
769 /*
770 * All mappings in the vmm vmspace must be
771 * present since they are managed by vmm in this way.
772 * Because we are in pass-through mode, the
773 * mappings must also be wired. This implies
774 * that all pages must be mapped and wired,
775 * allowing to use pmap_extract() and avoiding the
776 * need to use vm_gpa_hold_global().
777 *
778 * This could change if/when we start
779 * supporting page faults on IOMMU maps.
780 */
781 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)),
782 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired",
783 vm, (uintmax_t)gpa, (uintmax_t)hpa));
784
785 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE);
786 }
787 }
788
789 error = iommu_invalidate_tlb(iommu_host_domain());
790 return (error);
791 }
792
793 static int
vm_iommu_unmap(struct vm * vm)794 vm_iommu_unmap(struct vm *vm)
795 {
796 vm_paddr_t gpa;
797 struct vm_mem_map *mm;
798 int error, i;
799
800 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
801
802 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
803 if (!vm_memseg_sysmem(vm, i))
804 continue;
805
806 mm = &vm->mem.mem_maps[i];
807 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
808 continue;
809 mm->flags &= ~VM_MEMMAP_F_IOMMU;
810 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
811 ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
812 mm->gpa, mm->len, mm->flags));
813
814 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
815 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract(
816 vmspace_pmap(vm_vmspace(vm)), gpa))),
817 ("vm_iommu_unmap: vm %p gpa %jx not wired",
818 vm, (uintmax_t)gpa));
819 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE);
820 }
821 }
822
823 /*
824 * Invalidate the cached translations associated with the domain
825 * from which pages were removed.
826 */
827 error = iommu_invalidate_tlb(vm->iommu);
828 return (error);
829 }
830
831 int
vm_unassign_pptdev(struct vm * vm,int bus,int slot,int func)832 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
833 {
834 int error;
835
836 error = ppt_unassign_device(vm, bus, slot, func);
837 if (error)
838 return (error);
839
840 if (ppt_assigned_devices(vm) == 0)
841 error = vm_iommu_unmap(vm);
842
843 return (error);
844 }
845
846 int
vm_assign_pptdev(struct vm * vm,int bus,int slot,int func)847 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
848 {
849 int error;
850 vm_paddr_t maxaddr;
851 bool map = false;
852
853 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
854 if (ppt_assigned_devices(vm) == 0) {
855 KASSERT(vm->iommu == NULL,
856 ("vm_assign_pptdev: iommu must be NULL"));
857 maxaddr = vmm_sysmem_maxaddr(vm);
858 vm->iommu = iommu_create_domain(maxaddr);
859 if (vm->iommu == NULL)
860 return (ENXIO);
861 map = true;
862 }
863
864 error = ppt_assign_device(vm, bus, slot, func);
865 if (error == 0 && map)
866 error = vm_iommu_map(vm);
867 return (error);
868 }
869
870 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)871 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
872 {
873
874 if (reg >= VM_REG_LAST)
875 return (EINVAL);
876
877 return (vmmops_getreg(vcpu->cookie, reg, retval));
878 }
879
880 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)881 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
882 {
883 int error;
884
885 if (reg >= VM_REG_LAST)
886 return (EINVAL);
887
888 error = vmmops_setreg(vcpu->cookie, reg, val);
889 if (error || reg != VM_REG_GUEST_RIP)
890 return (error);
891
892 /* Set 'nextrip' to match the value of %rip */
893 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
894 vcpu->nextrip = val;
895 return (0);
896 }
897
898 static bool
is_descriptor_table(int reg)899 is_descriptor_table(int reg)
900 {
901
902 switch (reg) {
903 case VM_REG_GUEST_IDTR:
904 case VM_REG_GUEST_GDTR:
905 return (true);
906 default:
907 return (false);
908 }
909 }
910
911 static bool
is_segment_register(int reg)912 is_segment_register(int reg)
913 {
914
915 switch (reg) {
916 case VM_REG_GUEST_ES:
917 case VM_REG_GUEST_CS:
918 case VM_REG_GUEST_SS:
919 case VM_REG_GUEST_DS:
920 case VM_REG_GUEST_FS:
921 case VM_REG_GUEST_GS:
922 case VM_REG_GUEST_TR:
923 case VM_REG_GUEST_LDTR:
924 return (true);
925 default:
926 return (false);
927 }
928 }
929
930 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)931 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
932 {
933
934 if (!is_segment_register(reg) && !is_descriptor_table(reg))
935 return (EINVAL);
936
937 return (vmmops_getdesc(vcpu->cookie, reg, desc));
938 }
939
940 int
vm_set_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)941 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
942 {
943
944 if (!is_segment_register(reg) && !is_descriptor_table(reg))
945 return (EINVAL);
946
947 return (vmmops_setdesc(vcpu->cookie, reg, desc));
948 }
949
950 static void
restore_guest_fpustate(struct vcpu * vcpu)951 restore_guest_fpustate(struct vcpu *vcpu)
952 {
953
954 /* flush host state to the pcb */
955 fpuexit(curthread);
956
957 /* restore guest FPU state */
958 fpu_enable();
959 fpurestore(vcpu->guestfpu);
960
961 /* restore guest XCR0 if XSAVE is enabled in the host */
962 if (rcr4() & CR4_XSAVE)
963 load_xcr(0, vcpu->guest_xcr0);
964
965 /*
966 * The FPU is now "dirty" with the guest's state so disable
967 * the FPU to trap any access by the host.
968 */
969 fpu_disable();
970 }
971
972 static void
save_guest_fpustate(struct vcpu * vcpu)973 save_guest_fpustate(struct vcpu *vcpu)
974 {
975
976 if ((rcr0() & CR0_TS) == 0)
977 panic("fpu emulation not enabled in host!");
978
979 /* save guest XCR0 and restore host XCR0 */
980 if (rcr4() & CR4_XSAVE) {
981 vcpu->guest_xcr0 = rxcr(0);
982 load_xcr(0, vmm_get_host_xcr0());
983 }
984
985 /* save guest FPU state */
986 fpu_enable();
987 fpusave(vcpu->guestfpu);
988 fpu_disable();
989 }
990
991 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
992
993 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)994 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
995 bool from_idle)
996 {
997 int error;
998
999 vcpu_assert_locked(vcpu);
1000
1001 /*
1002 * State transitions from the vmmdev_ioctl() must always begin from
1003 * the VCPU_IDLE state. This guarantees that there is only a single
1004 * ioctl() operating on a vcpu at any point.
1005 */
1006 if (from_idle) {
1007 while (vcpu->state != VCPU_IDLE) {
1008 vcpu->reqidle = 1;
1009 vcpu_notify_event_locked(vcpu, false);
1010 VMM_CTR1(vcpu, "vcpu state change from %s to "
1011 "idle requested", vcpu_state2str(vcpu->state));
1012 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1013 }
1014 } else {
1015 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1016 "vcpu idle state"));
1017 }
1018
1019 if (vcpu->state == VCPU_RUNNING) {
1020 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1021 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1022 } else {
1023 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1024 "vcpu that is not running", vcpu->hostcpu));
1025 }
1026
1027 /*
1028 * The following state transitions are allowed:
1029 * IDLE -> FROZEN -> IDLE
1030 * FROZEN -> RUNNING -> FROZEN
1031 * FROZEN -> SLEEPING -> FROZEN
1032 */
1033 switch (vcpu->state) {
1034 case VCPU_IDLE:
1035 case VCPU_RUNNING:
1036 case VCPU_SLEEPING:
1037 error = (newstate != VCPU_FROZEN);
1038 break;
1039 case VCPU_FROZEN:
1040 error = (newstate == VCPU_FROZEN);
1041 break;
1042 default:
1043 error = 1;
1044 break;
1045 }
1046
1047 if (error)
1048 return (EBUSY);
1049
1050 VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
1051 vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1052
1053 vcpu->state = newstate;
1054 if (newstate == VCPU_RUNNING)
1055 vcpu->hostcpu = curcpu;
1056 else
1057 vcpu->hostcpu = NOCPU;
1058
1059 if (newstate == VCPU_IDLE)
1060 wakeup(&vcpu->state);
1061
1062 return (0);
1063 }
1064
1065 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1066 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1067 {
1068 int error;
1069
1070 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1071 panic("Error %d setting state to %d\n", error, newstate);
1072 }
1073
1074 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1075 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1076 {
1077 int error;
1078
1079 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1080 panic("Error %d setting state to %d", error, newstate);
1081 }
1082
1083 static int
vm_handle_rendezvous(struct vcpu * vcpu)1084 vm_handle_rendezvous(struct vcpu *vcpu)
1085 {
1086 struct vm *vm = vcpu->vm;
1087 struct thread *td;
1088 int error, vcpuid;
1089
1090 error = 0;
1091 vcpuid = vcpu->vcpuid;
1092 td = curthread;
1093 mtx_lock(&vm->rendezvous_mtx);
1094 while (vm->rendezvous_func != NULL) {
1095 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1096 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus);
1097
1098 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1099 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1100 VMM_CTR0(vcpu, "Calling rendezvous func");
1101 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
1102 CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1103 }
1104 if (CPU_CMP(&vm->rendezvous_req_cpus,
1105 &vm->rendezvous_done_cpus) == 0) {
1106 VMM_CTR0(vcpu, "Rendezvous completed");
1107 CPU_ZERO(&vm->rendezvous_req_cpus);
1108 vm->rendezvous_func = NULL;
1109 wakeup(&vm->rendezvous_func);
1110 break;
1111 }
1112 VMM_CTR0(vcpu, "Wait for rendezvous completion");
1113 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1114 "vmrndv", hz);
1115 if (td_ast_pending(td, TDA_SUSPEND)) {
1116 mtx_unlock(&vm->rendezvous_mtx);
1117 error = thread_check_susp(td, true);
1118 if (error != 0)
1119 return (error);
1120 mtx_lock(&vm->rendezvous_mtx);
1121 }
1122 }
1123 mtx_unlock(&vm->rendezvous_mtx);
1124 return (0);
1125 }
1126
1127 /*
1128 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1129 */
1130 static int
vm_handle_hlt(struct vcpu * vcpu,bool intr_disabled,bool * retu)1131 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
1132 {
1133 struct vm *vm = vcpu->vm;
1134 const char *wmesg;
1135 struct thread *td;
1136 int error, t, vcpuid, vcpu_halted, vm_halted;
1137
1138 vcpuid = vcpu->vcpuid;
1139 vcpu_halted = 0;
1140 vm_halted = 0;
1141 error = 0;
1142 td = curthread;
1143
1144 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1145
1146 vcpu_lock(vcpu);
1147 while (1) {
1148 /*
1149 * Do a final check for pending NMI or interrupts before
1150 * really putting this thread to sleep. Also check for
1151 * software events that would cause this vcpu to wakeup.
1152 *
1153 * These interrupts/events could have happened after the
1154 * vcpu returned from vmmops_run() and before it acquired the
1155 * vcpu lock above.
1156 */
1157 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1158 break;
1159 if (vm_nmi_pending(vcpu))
1160 break;
1161 if (!intr_disabled) {
1162 if (vm_extint_pending(vcpu) ||
1163 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1164 break;
1165 }
1166 }
1167
1168 /* Don't go to sleep if the vcpu thread needs to yield */
1169 if (vcpu_should_yield(vcpu))
1170 break;
1171
1172 if (vcpu_debugged(vcpu))
1173 break;
1174
1175 /*
1176 * Some Linux guests implement "halt" by having all vcpus
1177 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1178 * track of the vcpus that have entered this state. When all
1179 * vcpus enter the halted state the virtual machine is halted.
1180 */
1181 if (intr_disabled) {
1182 wmesg = "vmhalt";
1183 VMM_CTR0(vcpu, "Halted");
1184 if (!vcpu_halted && halt_detection_enabled) {
1185 vcpu_halted = 1;
1186 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1187 }
1188 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1189 vm_halted = 1;
1190 break;
1191 }
1192 } else {
1193 wmesg = "vmidle";
1194 }
1195
1196 t = ticks;
1197 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1198 /*
1199 * XXX msleep_spin() cannot be interrupted by signals so
1200 * wake up periodically to check pending signals.
1201 */
1202 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1203 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1204 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
1205 if (td_ast_pending(td, TDA_SUSPEND)) {
1206 vcpu_unlock(vcpu);
1207 error = thread_check_susp(td, false);
1208 if (error != 0) {
1209 if (vcpu_halted) {
1210 CPU_CLR_ATOMIC(vcpuid,
1211 &vm->halted_cpus);
1212 }
1213 return (error);
1214 }
1215 vcpu_lock(vcpu);
1216 }
1217 }
1218
1219 if (vcpu_halted)
1220 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1221
1222 vcpu_unlock(vcpu);
1223
1224 if (vm_halted)
1225 vm_suspend(vm, VM_SUSPEND_HALT);
1226
1227 return (0);
1228 }
1229
1230 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1231 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1232 {
1233 struct vm *vm = vcpu->vm;
1234 int rv, ftype;
1235 struct vm_map *map;
1236 struct vm_exit *vme;
1237
1238 vme = &vcpu->exitinfo;
1239
1240 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1241 __func__, vme->inst_length));
1242
1243 ftype = vme->u.paging.fault_type;
1244 KASSERT(ftype == VM_PROT_READ ||
1245 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1246 ("vm_handle_paging: invalid fault_type %d", ftype));
1247
1248 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1249 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm_vmspace(vm)),
1250 vme->u.paging.gpa, ftype);
1251 if (rv == 0) {
1252 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
1253 ftype == VM_PROT_READ ? "accessed" : "dirty",
1254 vme->u.paging.gpa);
1255 goto done;
1256 }
1257 }
1258
1259 map = &vm_vmspace(vm)->vm_map;
1260 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1261
1262 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
1263 "ftype = %d", rv, vme->u.paging.gpa, ftype);
1264
1265 if (rv != KERN_SUCCESS)
1266 return (EFAULT);
1267 done:
1268 return (0);
1269 }
1270
1271 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)1272 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1273 {
1274 struct vie *vie;
1275 struct vm_exit *vme;
1276 uint64_t gla, gpa, cs_base;
1277 struct vm_guest_paging *paging;
1278 mem_region_read_t mread;
1279 mem_region_write_t mwrite;
1280 enum vm_cpu_mode cpu_mode;
1281 int cs_d, error, fault;
1282
1283 vme = &vcpu->exitinfo;
1284
1285 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1286 __func__, vme->inst_length));
1287
1288 gla = vme->u.inst_emul.gla;
1289 gpa = vme->u.inst_emul.gpa;
1290 cs_base = vme->u.inst_emul.cs_base;
1291 cs_d = vme->u.inst_emul.cs_d;
1292 vie = &vme->u.inst_emul.vie;
1293 paging = &vme->u.inst_emul.paging;
1294 cpu_mode = paging->cpu_mode;
1295
1296 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
1297
1298 /* Fetch, decode and emulate the faulting instruction */
1299 if (vie->num_valid == 0) {
1300 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
1301 VIE_INST_SIZE, vie, &fault);
1302 } else {
1303 /*
1304 * The instruction bytes have already been copied into 'vie'
1305 */
1306 error = fault = 0;
1307 }
1308 if (error || fault)
1309 return (error);
1310
1311 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
1312 VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
1313 vme->rip + cs_base);
1314 *retu = true; /* dump instruction bytes in userspace */
1315 return (0);
1316 }
1317
1318 /*
1319 * Update 'nextrip' based on the length of the emulated instruction.
1320 */
1321 vme->inst_length = vie->num_processed;
1322 vcpu->nextrip += vie->num_processed;
1323 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
1324 vcpu->nextrip);
1325
1326 /* return to userland unless this is an in-kernel emulated device */
1327 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1328 mread = lapic_mmio_read;
1329 mwrite = lapic_mmio_write;
1330 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1331 mread = vioapic_mmio_read;
1332 mwrite = vioapic_mmio_write;
1333 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1334 mread = vhpet_mmio_read;
1335 mwrite = vhpet_mmio_write;
1336 } else {
1337 *retu = true;
1338 return (0);
1339 }
1340
1341 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
1342 retu);
1343
1344 return (error);
1345 }
1346
1347 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1348 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1349 {
1350 struct vm *vm = vcpu->vm;
1351 int error, i;
1352 struct thread *td;
1353
1354 error = 0;
1355 td = curthread;
1356
1357 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1358
1359 /*
1360 * Wait until all 'active_cpus' have suspended themselves.
1361 *
1362 * Since a VM may be suspended at any time including when one or
1363 * more vcpus are doing a rendezvous we need to call the rendezvous
1364 * handler while we are waiting to prevent a deadlock.
1365 */
1366 vcpu_lock(vcpu);
1367 while (error == 0) {
1368 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1369 VMM_CTR0(vcpu, "All vcpus suspended");
1370 break;
1371 }
1372
1373 if (vm->rendezvous_func == NULL) {
1374 VMM_CTR0(vcpu, "Sleeping during suspend");
1375 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1376 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1377 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1378 if (td_ast_pending(td, TDA_SUSPEND)) {
1379 vcpu_unlock(vcpu);
1380 error = thread_check_susp(td, false);
1381 vcpu_lock(vcpu);
1382 }
1383 } else {
1384 VMM_CTR0(vcpu, "Rendezvous during suspend");
1385 vcpu_unlock(vcpu);
1386 error = vm_handle_rendezvous(vcpu);
1387 vcpu_lock(vcpu);
1388 }
1389 }
1390 vcpu_unlock(vcpu);
1391
1392 /*
1393 * Wakeup the other sleeping vcpus and return to userspace.
1394 */
1395 for (i = 0; i < vm->maxcpus; i++) {
1396 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1397 vcpu_notify_event(vm_vcpu(vm, i), false);
1398 }
1399 }
1400
1401 *retu = true;
1402 return (error);
1403 }
1404
1405 static int
vm_handle_reqidle(struct vcpu * vcpu,bool * retu)1406 vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
1407 {
1408 vcpu_lock(vcpu);
1409 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1410 vcpu->reqidle = 0;
1411 vcpu_unlock(vcpu);
1412 *retu = true;
1413 return (0);
1414 }
1415
1416 static int
vm_handle_db(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1417 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1418 {
1419 int error, fault;
1420 uint64_t rsp;
1421 uint64_t rflags;
1422 struct vm_copyinfo copyinfo[2];
1423
1424 *retu = true;
1425 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) {
1426 return (0);
1427 }
1428
1429 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
1430 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
1431 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault);
1432 if (error != 0 || fault != 0) {
1433 *retu = false;
1434 return (EINVAL);
1435 }
1436
1437 /* Read pushed rflags value from top of stack. */
1438 vm_copyin(copyinfo, &rflags, sizeof(uint64_t));
1439
1440 /* Clear TF bit. */
1441 rflags &= ~(PSL_T);
1442
1443 /* Write updated value back to memory. */
1444 vm_copyout(&rflags, copyinfo, sizeof(uint64_t));
1445 vm_copy_teardown(copyinfo, nitems(copyinfo));
1446
1447 return (0);
1448 }
1449
1450 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1451 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1452 {
1453 int i;
1454
1455 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1456 return (EINVAL);
1457
1458 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1459 VM_CTR2(vm, "virtual machine already suspended %d/%d",
1460 vm->suspend, how);
1461 return (EALREADY);
1462 }
1463
1464 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1465
1466 /*
1467 * Notify all active vcpus that they are now suspended.
1468 */
1469 for (i = 0; i < vm->maxcpus; i++) {
1470 if (CPU_ISSET(i, &vm->active_cpus))
1471 vcpu_notify_event(vm_vcpu(vm, i), false);
1472 }
1473
1474 return (0);
1475 }
1476
1477 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t rip)1478 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
1479 {
1480 struct vm *vm = vcpu->vm;
1481 struct vm_exit *vmexit;
1482
1483 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1484 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1485
1486 vmexit = vm_exitinfo(vcpu);
1487 vmexit->rip = rip;
1488 vmexit->inst_length = 0;
1489 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1490 vmexit->u.suspended.how = vm->suspend;
1491 }
1492
1493 void
vm_exit_debug(struct vcpu * vcpu,uint64_t rip)1494 vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
1495 {
1496 struct vm_exit *vmexit;
1497
1498 vmexit = vm_exitinfo(vcpu);
1499 vmexit->rip = rip;
1500 vmexit->inst_length = 0;
1501 vmexit->exitcode = VM_EXITCODE_DEBUG;
1502 }
1503
1504 void
vm_exit_rendezvous(struct vcpu * vcpu,uint64_t rip)1505 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
1506 {
1507 struct vm_exit *vmexit;
1508
1509 vmexit = vm_exitinfo(vcpu);
1510 vmexit->rip = rip;
1511 vmexit->inst_length = 0;
1512 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1513 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
1514 }
1515
1516 void
vm_exit_reqidle(struct vcpu * vcpu,uint64_t rip)1517 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
1518 {
1519 struct vm_exit *vmexit;
1520
1521 vmexit = vm_exitinfo(vcpu);
1522 vmexit->rip = rip;
1523 vmexit->inst_length = 0;
1524 vmexit->exitcode = VM_EXITCODE_REQIDLE;
1525 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
1526 }
1527
1528 void
vm_exit_astpending(struct vcpu * vcpu,uint64_t rip)1529 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
1530 {
1531 struct vm_exit *vmexit;
1532
1533 vmexit = vm_exitinfo(vcpu);
1534 vmexit->rip = rip;
1535 vmexit->inst_length = 0;
1536 vmexit->exitcode = VM_EXITCODE_BOGUS;
1537 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
1538 }
1539
1540 int
vm_run(struct vcpu * vcpu)1541 vm_run(struct vcpu *vcpu)
1542 {
1543 struct vm *vm = vcpu->vm;
1544 struct vm_eventinfo evinfo;
1545 int error, vcpuid;
1546 struct pcb *pcb;
1547 uint64_t tscval;
1548 struct vm_exit *vme;
1549 bool retu, intr_disabled;
1550 pmap_t pmap;
1551
1552 vcpuid = vcpu->vcpuid;
1553
1554 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1555 return (EINVAL);
1556
1557 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1558 return (EINVAL);
1559
1560 pmap = vmspace_pmap(vm_vmspace(vm));
1561 vme = &vcpu->exitinfo;
1562 evinfo.rptr = &vm->rendezvous_req_cpus;
1563 evinfo.sptr = &vm->suspend;
1564 evinfo.iptr = &vcpu->reqidle;
1565 restart:
1566 critical_enter();
1567
1568 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1569 ("vm_run: absurd pm_active"));
1570
1571 tscval = rdtsc();
1572
1573 pcb = PCPU_GET(curpcb);
1574 set_pcb_flags(pcb, PCB_FULL_IRET);
1575
1576 restore_guest_fpustate(vcpu);
1577
1578 vcpu_require_state(vcpu, VCPU_RUNNING);
1579 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
1580 vcpu_require_state(vcpu, VCPU_FROZEN);
1581
1582 save_guest_fpustate(vcpu);
1583
1584 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1585
1586 critical_exit();
1587
1588 if (error == 0) {
1589 retu = false;
1590 vcpu->nextrip = vme->rip + vme->inst_length;
1591 switch (vme->exitcode) {
1592 case VM_EXITCODE_REQIDLE:
1593 error = vm_handle_reqidle(vcpu, &retu);
1594 break;
1595 case VM_EXITCODE_SUSPENDED:
1596 error = vm_handle_suspend(vcpu, &retu);
1597 break;
1598 case VM_EXITCODE_IOAPIC_EOI:
1599 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
1600 break;
1601 case VM_EXITCODE_RENDEZVOUS:
1602 error = vm_handle_rendezvous(vcpu);
1603 break;
1604 case VM_EXITCODE_HLT:
1605 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1606 error = vm_handle_hlt(vcpu, intr_disabled, &retu);
1607 break;
1608 case VM_EXITCODE_PAGING:
1609 error = vm_handle_paging(vcpu, &retu);
1610 break;
1611 case VM_EXITCODE_INST_EMUL:
1612 error = vm_handle_inst_emul(vcpu, &retu);
1613 break;
1614 case VM_EXITCODE_INOUT:
1615 case VM_EXITCODE_INOUT_STR:
1616 error = vm_handle_inout(vcpu, vme, &retu);
1617 break;
1618 case VM_EXITCODE_DB:
1619 error = vm_handle_db(vcpu, vme, &retu);
1620 break;
1621 case VM_EXITCODE_MONITOR:
1622 case VM_EXITCODE_MWAIT:
1623 case VM_EXITCODE_VMINSN:
1624 vm_inject_ud(vcpu);
1625 break;
1626 default:
1627 retu = true; /* handled in userland */
1628 break;
1629 }
1630 }
1631
1632 /*
1633 * VM_EXITCODE_INST_EMUL could access the apic which could transform the
1634 * exit code into VM_EXITCODE_IPI.
1635 */
1636 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
1637 error = vm_handle_ipi(vcpu, vme, &retu);
1638
1639 if (error == 0 && retu == false)
1640 goto restart;
1641
1642 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
1643 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
1644
1645 return (error);
1646 }
1647
1648 int
vm_restart_instruction(struct vcpu * vcpu)1649 vm_restart_instruction(struct vcpu *vcpu)
1650 {
1651 enum vcpu_state state;
1652 uint64_t rip;
1653 int error __diagused;
1654
1655 state = vcpu_get_state(vcpu, NULL);
1656 if (state == VCPU_RUNNING) {
1657 /*
1658 * When a vcpu is "running" the next instruction is determined
1659 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1660 * Thus setting 'inst_length' to zero will cause the current
1661 * instruction to be restarted.
1662 */
1663 vcpu->exitinfo.inst_length = 0;
1664 VMM_CTR1(vcpu, "restarting instruction at %#lx by "
1665 "setting inst_length to zero", vcpu->exitinfo.rip);
1666 } else if (state == VCPU_FROZEN) {
1667 /*
1668 * When a vcpu is "frozen" it is outside the critical section
1669 * around vmmops_run() and 'nextrip' points to the next
1670 * instruction. Thus instruction restart is achieved by setting
1671 * 'nextrip' to the vcpu's %rip.
1672 */
1673 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
1674 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1675 VMM_CTR2(vcpu, "restarting instruction by updating "
1676 "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1677 vcpu->nextrip = rip;
1678 } else {
1679 panic("%s: invalid state %d", __func__, state);
1680 }
1681 return (0);
1682 }
1683
1684 int
vm_exit_intinfo(struct vcpu * vcpu,uint64_t info)1685 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
1686 {
1687 int type, vector;
1688
1689 if (info & VM_INTINFO_VALID) {
1690 type = info & VM_INTINFO_TYPE;
1691 vector = info & 0xff;
1692 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1693 return (EINVAL);
1694 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1695 return (EINVAL);
1696 if (info & VM_INTINFO_RSVD)
1697 return (EINVAL);
1698 } else {
1699 info = 0;
1700 }
1701 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
1702 vcpu->exitintinfo = info;
1703 return (0);
1704 }
1705
1706 enum exc_class {
1707 EXC_BENIGN,
1708 EXC_CONTRIBUTORY,
1709 EXC_PAGEFAULT
1710 };
1711
1712 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
1713
1714 static enum exc_class
exception_class(uint64_t info)1715 exception_class(uint64_t info)
1716 {
1717 int type, vector;
1718
1719 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1720 type = info & VM_INTINFO_TYPE;
1721 vector = info & 0xff;
1722
1723 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1724 switch (type) {
1725 case VM_INTINFO_HWINTR:
1726 case VM_INTINFO_SWINTR:
1727 case VM_INTINFO_NMI:
1728 return (EXC_BENIGN);
1729 default:
1730 /*
1731 * Hardware exception.
1732 *
1733 * SVM and VT-x use identical type values to represent NMI,
1734 * hardware interrupt and software interrupt.
1735 *
1736 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1737 * for exceptions except #BP and #OF. #BP and #OF use a type
1738 * value of '5' or '6'. Therefore we don't check for explicit
1739 * values of 'type' to classify 'intinfo' into a hardware
1740 * exception.
1741 */
1742 break;
1743 }
1744
1745 switch (vector) {
1746 case IDT_PF:
1747 case IDT_VE:
1748 return (EXC_PAGEFAULT);
1749 case IDT_DE:
1750 case IDT_TS:
1751 case IDT_NP:
1752 case IDT_SS:
1753 case IDT_GP:
1754 return (EXC_CONTRIBUTORY);
1755 default:
1756 return (EXC_BENIGN);
1757 }
1758 }
1759
1760 static int
nested_fault(struct vcpu * vcpu,uint64_t info1,uint64_t info2,uint64_t * retinfo)1761 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
1762 uint64_t *retinfo)
1763 {
1764 enum exc_class exc1, exc2;
1765 int type1, vector1;
1766
1767 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1768 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1769
1770 /*
1771 * If an exception occurs while attempting to call the double-fault
1772 * handler the processor enters shutdown mode (aka triple fault).
1773 */
1774 type1 = info1 & VM_INTINFO_TYPE;
1775 vector1 = info1 & 0xff;
1776 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1777 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
1778 info1, info2);
1779 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
1780 *retinfo = 0;
1781 return (0);
1782 }
1783
1784 /*
1785 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1786 */
1787 exc1 = exception_class(info1);
1788 exc2 = exception_class(info2);
1789 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1790 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1791 /* Convert nested fault into a double fault. */
1792 *retinfo = IDT_DF;
1793 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1794 *retinfo |= VM_INTINFO_DEL_ERRCODE;
1795 } else {
1796 /* Handle exceptions serially */
1797 *retinfo = info2;
1798 }
1799 return (1);
1800 }
1801
1802 static uint64_t
vcpu_exception_intinfo(struct vcpu * vcpu)1803 vcpu_exception_intinfo(struct vcpu *vcpu)
1804 {
1805 uint64_t info = 0;
1806
1807 if (vcpu->exception_pending) {
1808 info = vcpu->exc_vector & 0xff;
1809 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1810 if (vcpu->exc_errcode_valid) {
1811 info |= VM_INTINFO_DEL_ERRCODE;
1812 info |= (uint64_t)vcpu->exc_errcode << 32;
1813 }
1814 }
1815 return (info);
1816 }
1817
1818 int
vm_entry_intinfo(struct vcpu * vcpu,uint64_t * retinfo)1819 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
1820 {
1821 uint64_t info1, info2;
1822 int valid;
1823
1824 info1 = vcpu->exitintinfo;
1825 vcpu->exitintinfo = 0;
1826
1827 info2 = 0;
1828 if (vcpu->exception_pending) {
1829 info2 = vcpu_exception_intinfo(vcpu);
1830 vcpu->exception_pending = 0;
1831 VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
1832 vcpu->exc_vector, info2);
1833 }
1834
1835 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1836 valid = nested_fault(vcpu, info1, info2, retinfo);
1837 } else if (info1 & VM_INTINFO_VALID) {
1838 *retinfo = info1;
1839 valid = 1;
1840 } else if (info2 & VM_INTINFO_VALID) {
1841 *retinfo = info2;
1842 valid = 1;
1843 } else {
1844 valid = 0;
1845 }
1846
1847 if (valid) {
1848 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
1849 "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1850 }
1851
1852 return (valid);
1853 }
1854
1855 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)1856 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1857 {
1858 *info1 = vcpu->exitintinfo;
1859 *info2 = vcpu_exception_intinfo(vcpu);
1860 return (0);
1861 }
1862
1863 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)1864 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
1865 uint32_t errcode, int restart_instruction)
1866 {
1867 uint64_t regval;
1868 int error __diagused;
1869
1870 if (vector < 0 || vector >= 32)
1871 return (EINVAL);
1872
1873 /*
1874 * A double fault exception should never be injected directly into
1875 * the guest. It is a derived exception that results from specific
1876 * combinations of nested faults.
1877 */
1878 if (vector == IDT_DF)
1879 return (EINVAL);
1880
1881 if (vcpu->exception_pending) {
1882 VMM_CTR2(vcpu, "Unable to inject exception %d due to "
1883 "pending exception %d", vector, vcpu->exc_vector);
1884 return (EBUSY);
1885 }
1886
1887 if (errcode_valid) {
1888 /*
1889 * Exceptions don't deliver an error code in real mode.
1890 */
1891 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val);
1892 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
1893 if (!(regval & CR0_PE))
1894 errcode_valid = 0;
1895 }
1896
1897 /*
1898 * From section 26.6.1 "Interruptibility State" in Intel SDM:
1899 *
1900 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
1901 * one instruction or incurs an exception.
1902 */
1903 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
1904 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
1905 __func__, error));
1906
1907 if (restart_instruction)
1908 vm_restart_instruction(vcpu);
1909
1910 vcpu->exception_pending = 1;
1911 vcpu->exc_vector = vector;
1912 vcpu->exc_errcode = errcode;
1913 vcpu->exc_errcode_valid = errcode_valid;
1914 VMM_CTR1(vcpu, "Exception %d pending", vector);
1915 return (0);
1916 }
1917
1918 void
vm_inject_fault(struct vcpu * vcpu,int vector,int errcode_valid,int errcode)1919 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
1920 {
1921 int error __diagused, restart_instruction;
1922
1923 restart_instruction = 1;
1924
1925 error = vm_inject_exception(vcpu, vector, errcode_valid,
1926 errcode, restart_instruction);
1927 KASSERT(error == 0, ("vm_inject_exception error %d", error));
1928 }
1929
1930 void
vm_inject_pf(struct vcpu * vcpu,int error_code,uint64_t cr2)1931 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
1932 {
1933 int error __diagused;
1934
1935 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
1936 error_code, cr2);
1937
1938 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
1939 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
1940
1941 vm_inject_fault(vcpu, IDT_PF, 1, error_code);
1942 }
1943
1944 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
1945
1946 int
vm_inject_nmi(struct vcpu * vcpu)1947 vm_inject_nmi(struct vcpu *vcpu)
1948 {
1949
1950 vcpu->nmi_pending = 1;
1951 vcpu_notify_event(vcpu, false);
1952 return (0);
1953 }
1954
1955 int
vm_nmi_pending(struct vcpu * vcpu)1956 vm_nmi_pending(struct vcpu *vcpu)
1957 {
1958 return (vcpu->nmi_pending);
1959 }
1960
1961 void
vm_nmi_clear(struct vcpu * vcpu)1962 vm_nmi_clear(struct vcpu *vcpu)
1963 {
1964 if (vcpu->nmi_pending == 0)
1965 panic("vm_nmi_clear: inconsistent nmi_pending state");
1966
1967 vcpu->nmi_pending = 0;
1968 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
1969 }
1970
1971 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
1972
1973 int
vm_inject_extint(struct vcpu * vcpu)1974 vm_inject_extint(struct vcpu *vcpu)
1975 {
1976
1977 vcpu->extint_pending = 1;
1978 vcpu_notify_event(vcpu, false);
1979 return (0);
1980 }
1981
1982 int
vm_extint_pending(struct vcpu * vcpu)1983 vm_extint_pending(struct vcpu *vcpu)
1984 {
1985 return (vcpu->extint_pending);
1986 }
1987
1988 void
vm_extint_clear(struct vcpu * vcpu)1989 vm_extint_clear(struct vcpu *vcpu)
1990 {
1991 if (vcpu->extint_pending == 0)
1992 panic("vm_extint_clear: inconsistent extint_pending state");
1993
1994 vcpu->extint_pending = 0;
1995 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
1996 }
1997
1998 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)1999 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
2000 {
2001 if (type < 0 || type >= VM_CAP_MAX)
2002 return (EINVAL);
2003
2004 return (vmmops_getcap(vcpu->cookie, type, retval));
2005 }
2006
2007 int
vm_set_capability(struct vcpu * vcpu,int type,int val)2008 vm_set_capability(struct vcpu *vcpu, int type, int val)
2009 {
2010 if (type < 0 || type >= VM_CAP_MAX)
2011 return (EINVAL);
2012
2013 return (vmmops_setcap(vcpu->cookie, type, val));
2014 }
2015
2016 struct vm *
vcpu_vm(struct vcpu * vcpu)2017 vcpu_vm(struct vcpu *vcpu)
2018 {
2019 return (vcpu->vm);
2020 }
2021
2022 int
vcpu_vcpuid(struct vcpu * vcpu)2023 vcpu_vcpuid(struct vcpu *vcpu)
2024 {
2025 return (vcpu->vcpuid);
2026 }
2027
2028 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)2029 vm_vcpu(struct vm *vm, int vcpuid)
2030 {
2031 return (vm->vcpu[vcpuid]);
2032 }
2033
2034 struct vlapic *
vm_lapic(struct vcpu * vcpu)2035 vm_lapic(struct vcpu *vcpu)
2036 {
2037 return (vcpu->vlapic);
2038 }
2039
2040 struct vioapic *
vm_ioapic(struct vm * vm)2041 vm_ioapic(struct vm *vm)
2042 {
2043
2044 return (vm->vioapic);
2045 }
2046
2047 struct vhpet *
vm_hpet(struct vm * vm)2048 vm_hpet(struct vm *vm)
2049 {
2050
2051 return (vm->vhpet);
2052 }
2053
2054 bool
vmm_is_pptdev(int bus,int slot,int func)2055 vmm_is_pptdev(int bus, int slot, int func)
2056 {
2057 int b, f, i, n, s;
2058 char *val, *cp, *cp2;
2059 bool found;
2060
2061 /*
2062 * XXX
2063 * The length of an environment variable is limited to 128 bytes which
2064 * puts an upper limit on the number of passthru devices that may be
2065 * specified using a single environment variable.
2066 *
2067 * Work around this by scanning multiple environment variable
2068 * names instead of a single one - yuck!
2069 */
2070 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2071
2072 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2073 found = false;
2074 for (i = 0; names[i] != NULL && !found; i++) {
2075 cp = val = kern_getenv(names[i]);
2076 while (cp != NULL && *cp != '\0') {
2077 if ((cp2 = strchr(cp, ' ')) != NULL)
2078 *cp2 = '\0';
2079
2080 n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2081 if (n == 3 && bus == b && slot == s && func == f) {
2082 found = true;
2083 break;
2084 }
2085
2086 if (cp2 != NULL)
2087 *cp2++ = ' ';
2088
2089 cp = cp2;
2090 }
2091 freeenv(val);
2092 }
2093 return (found);
2094 }
2095
2096 void *
vm_iommu_domain(struct vm * vm)2097 vm_iommu_domain(struct vm *vm)
2098 {
2099
2100 return (vm->iommu);
2101 }
2102
2103 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)2104 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
2105 {
2106 int error;
2107
2108 vcpu_lock(vcpu);
2109 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
2110 vcpu_unlock(vcpu);
2111
2112 return (error);
2113 }
2114
2115 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)2116 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
2117 {
2118 enum vcpu_state state;
2119
2120 vcpu_lock(vcpu);
2121 state = vcpu->state;
2122 if (hostcpu != NULL)
2123 *hostcpu = vcpu->hostcpu;
2124 vcpu_unlock(vcpu);
2125
2126 return (state);
2127 }
2128
2129 int
vm_activate_cpu(struct vcpu * vcpu)2130 vm_activate_cpu(struct vcpu *vcpu)
2131 {
2132 struct vm *vm = vcpu->vm;
2133
2134 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2135 return (EBUSY);
2136
2137 VMM_CTR0(vcpu, "activated");
2138 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
2139 return (0);
2140 }
2141
2142 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)2143 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
2144 {
2145 if (vcpu == NULL) {
2146 vm->debug_cpus = vm->active_cpus;
2147 for (int i = 0; i < vm->maxcpus; i++) {
2148 if (CPU_ISSET(i, &vm->active_cpus))
2149 vcpu_notify_event(vm_vcpu(vm, i), false);
2150 }
2151 } else {
2152 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2153 return (EINVAL);
2154
2155 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2156 vcpu_notify_event(vcpu, false);
2157 }
2158 return (0);
2159 }
2160
2161 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)2162 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
2163 {
2164
2165 if (vcpu == NULL) {
2166 CPU_ZERO(&vm->debug_cpus);
2167 } else {
2168 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
2169 return (EINVAL);
2170
2171 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2172 }
2173 return (0);
2174 }
2175
2176 int
vcpu_debugged(struct vcpu * vcpu)2177 vcpu_debugged(struct vcpu *vcpu)
2178 {
2179
2180 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
2181 }
2182
2183 cpuset_t
vm_active_cpus(struct vm * vm)2184 vm_active_cpus(struct vm *vm)
2185 {
2186
2187 return (vm->active_cpus);
2188 }
2189
2190 cpuset_t
vm_debug_cpus(struct vm * vm)2191 vm_debug_cpus(struct vm *vm)
2192 {
2193
2194 return (vm->debug_cpus);
2195 }
2196
2197 cpuset_t
vm_suspended_cpus(struct vm * vm)2198 vm_suspended_cpus(struct vm *vm)
2199 {
2200
2201 return (vm->suspended_cpus);
2202 }
2203
2204 /*
2205 * Returns the subset of vCPUs in tostart that are awaiting startup.
2206 * These vCPUs are also marked as no longer awaiting startup.
2207 */
2208 cpuset_t
vm_start_cpus(struct vm * vm,const cpuset_t * tostart)2209 vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
2210 {
2211 cpuset_t set;
2212
2213 mtx_lock(&vm->rendezvous_mtx);
2214 CPU_AND(&set, &vm->startup_cpus, tostart);
2215 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
2216 mtx_unlock(&vm->rendezvous_mtx);
2217 return (set);
2218 }
2219
2220 void
vm_await_start(struct vm * vm,const cpuset_t * waiting)2221 vm_await_start(struct vm *vm, const cpuset_t *waiting)
2222 {
2223 mtx_lock(&vm->rendezvous_mtx);
2224 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
2225 mtx_unlock(&vm->rendezvous_mtx);
2226 }
2227
2228 void *
vcpu_stats(struct vcpu * vcpu)2229 vcpu_stats(struct vcpu *vcpu)
2230 {
2231
2232 return (vcpu->stats);
2233 }
2234
2235 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)2236 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
2237 {
2238 *state = vcpu->x2apic_state;
2239
2240 return (0);
2241 }
2242
2243 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)2244 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
2245 {
2246 if (state >= X2APIC_STATE_LAST)
2247 return (EINVAL);
2248
2249 vcpu->x2apic_state = state;
2250
2251 vlapic_set_x2apic_state(vcpu, state);
2252
2253 return (0);
2254 }
2255
2256 /*
2257 * This function is called to ensure that a vcpu "sees" a pending event
2258 * as soon as possible:
2259 * - If the vcpu thread is sleeping then it is woken up.
2260 * - If the vcpu is running on a different host_cpu then an IPI will be directed
2261 * to the host_cpu to cause the vcpu to trap into the hypervisor.
2262 */
2263 static void
vcpu_notify_event_locked(struct vcpu * vcpu,bool lapic_intr)2264 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2265 {
2266 int hostcpu;
2267
2268 hostcpu = vcpu->hostcpu;
2269 if (vcpu->state == VCPU_RUNNING) {
2270 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2271 if (hostcpu != curcpu) {
2272 if (lapic_intr) {
2273 vlapic_post_intr(vcpu->vlapic, hostcpu,
2274 vmm_ipinum);
2275 } else {
2276 ipi_cpu(hostcpu, vmm_ipinum);
2277 }
2278 } else {
2279 /*
2280 * If the 'vcpu' is running on 'curcpu' then it must
2281 * be sending a notification to itself (e.g. SELF_IPI).
2282 * The pending event will be picked up when the vcpu
2283 * transitions back to guest context.
2284 */
2285 }
2286 } else {
2287 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2288 "with hostcpu %d", vcpu->state, hostcpu));
2289 if (vcpu->state == VCPU_SLEEPING)
2290 wakeup_one(vcpu);
2291 }
2292 }
2293
2294 void
vcpu_notify_event(struct vcpu * vcpu,bool lapic_intr)2295 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr)
2296 {
2297 vcpu_lock(vcpu);
2298 vcpu_notify_event_locked(vcpu, lapic_intr);
2299 vcpu_unlock(vcpu);
2300 }
2301
2302 struct vm_mem *
vm_mem(struct vm * vm)2303 vm_mem(struct vm *vm)
2304 {
2305 return (&vm->mem);
2306 }
2307
2308 int
vm_apicid2vcpuid(struct vm * vm,int apicid)2309 vm_apicid2vcpuid(struct vm *vm, int apicid)
2310 {
2311 /*
2312 * XXX apic id is assumed to be numerically identical to vcpu id
2313 */
2314 return (apicid);
2315 }
2316
2317 int
vm_smp_rendezvous(struct vcpu * vcpu,cpuset_t dest,vm_rendezvous_func_t func,void * arg)2318 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
2319 vm_rendezvous_func_t func, void *arg)
2320 {
2321 struct vm *vm = vcpu->vm;
2322 int error, i;
2323
2324 /*
2325 * Enforce that this function is called without any locks
2326 */
2327 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2328
2329 restart:
2330 mtx_lock(&vm->rendezvous_mtx);
2331 if (vm->rendezvous_func != NULL) {
2332 /*
2333 * If a rendezvous is already in progress then we need to
2334 * call the rendezvous handler in case this 'vcpu' is one
2335 * of the targets of the rendezvous.
2336 */
2337 VMM_CTR0(vcpu, "Rendezvous already in progress");
2338 mtx_unlock(&vm->rendezvous_mtx);
2339 error = vm_handle_rendezvous(vcpu);
2340 if (error != 0)
2341 return (error);
2342 goto restart;
2343 }
2344 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2345 "rendezvous is still in progress"));
2346
2347 VMM_CTR0(vcpu, "Initiating rendezvous");
2348 vm->rendezvous_req_cpus = dest;
2349 CPU_ZERO(&vm->rendezvous_done_cpus);
2350 vm->rendezvous_arg = arg;
2351 vm->rendezvous_func = func;
2352 mtx_unlock(&vm->rendezvous_mtx);
2353
2354 /*
2355 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2356 * vcpus so they handle the rendezvous as soon as possible.
2357 */
2358 for (i = 0; i < vm->maxcpus; i++) {
2359 if (CPU_ISSET(i, &dest))
2360 vcpu_notify_event(vm_vcpu(vm, i), false);
2361 }
2362
2363 return (vm_handle_rendezvous(vcpu));
2364 }
2365
2366 struct vatpic *
vm_atpic(struct vm * vm)2367 vm_atpic(struct vm *vm)
2368 {
2369 return (vm->vatpic);
2370 }
2371
2372 struct vatpit *
vm_atpit(struct vm * vm)2373 vm_atpit(struct vm *vm)
2374 {
2375 return (vm->vatpit);
2376 }
2377
2378 struct vpmtmr *
vm_pmtmr(struct vm * vm)2379 vm_pmtmr(struct vm *vm)
2380 {
2381
2382 return (vm->vpmtmr);
2383 }
2384
2385 struct vrtc *
vm_rtc(struct vm * vm)2386 vm_rtc(struct vm *vm)
2387 {
2388
2389 return (vm->vrtc);
2390 }
2391
2392 enum vm_reg_name
vm_segment_name(int seg)2393 vm_segment_name(int seg)
2394 {
2395 static enum vm_reg_name seg_names[] = {
2396 VM_REG_GUEST_ES,
2397 VM_REG_GUEST_CS,
2398 VM_REG_GUEST_SS,
2399 VM_REG_GUEST_DS,
2400 VM_REG_GUEST_FS,
2401 VM_REG_GUEST_GS
2402 };
2403
2404 KASSERT(seg >= 0 && seg < nitems(seg_names),
2405 ("%s: invalid segment encoding %d", __func__, seg));
2406 return (seg_names[seg]);
2407 }
2408
2409 void
vm_copy_teardown(struct vm_copyinfo * copyinfo,int num_copyinfo)2410 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
2411 {
2412 int idx;
2413
2414 for (idx = 0; idx < num_copyinfo; idx++) {
2415 if (copyinfo[idx].cookie != NULL)
2416 vm_gpa_release(copyinfo[idx].cookie);
2417 }
2418 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2419 }
2420
2421 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,int num_copyinfo,int * fault)2422 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
2423 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2424 int num_copyinfo, int *fault)
2425 {
2426 int error, idx, nused;
2427 size_t n, off, remaining;
2428 void *hva, *cookie;
2429 uint64_t gpa;
2430
2431 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2432
2433 nused = 0;
2434 remaining = len;
2435 while (remaining > 0) {
2436 if (nused >= num_copyinfo)
2437 return (EFAULT);
2438 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
2439 if (error || *fault)
2440 return (error);
2441 off = gpa & PAGE_MASK;
2442 n = min(remaining, PAGE_SIZE - off);
2443 copyinfo[nused].gpa = gpa;
2444 copyinfo[nused].len = n;
2445 remaining -= n;
2446 gla += n;
2447 nused++;
2448 }
2449
2450 for (idx = 0; idx < nused; idx++) {
2451 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
2452 copyinfo[idx].len, prot, &cookie);
2453 if (hva == NULL)
2454 break;
2455 copyinfo[idx].hva = hva;
2456 copyinfo[idx].cookie = cookie;
2457 }
2458
2459 if (idx != nused) {
2460 vm_copy_teardown(copyinfo, num_copyinfo);
2461 return (EFAULT);
2462 } else {
2463 *fault = 0;
2464 return (0);
2465 }
2466 }
2467
2468 void
vm_copyin(struct vm_copyinfo * copyinfo,void * kaddr,size_t len)2469 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
2470 {
2471 char *dst;
2472 int idx;
2473
2474 dst = kaddr;
2475 idx = 0;
2476 while (len > 0) {
2477 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2478 len -= copyinfo[idx].len;
2479 dst += copyinfo[idx].len;
2480 idx++;
2481 }
2482 }
2483
2484 void
vm_copyout(const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)2485 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
2486 {
2487 const char *src;
2488 int idx;
2489
2490 src = kaddr;
2491 idx = 0;
2492 while (len > 0) {
2493 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2494 len -= copyinfo[idx].len;
2495 src += copyinfo[idx].len;
2496 idx++;
2497 }
2498 }
2499
2500 /*
2501 * Return the amount of in-use and wired memory for the VM. Since
2502 * these are global stats, only return the values with for vCPU 0
2503 */
2504 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2505 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2506
2507 static void
vm_get_rescnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2508 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2509 {
2510
2511 if (vcpu->vcpuid == 0) {
2512 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
2513 vmspace_resident_count(vm_vmspace(vcpu->vm)));
2514 }
2515 }
2516
2517 static void
vm_get_wiredcnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2518 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2519 {
2520
2521 if (vcpu->vcpuid == 0) {
2522 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
2523 pmap_wired_count(vmspace_pmap(vm_vmspace(vcpu->vm))));
2524 }
2525 }
2526
2527 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2528 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2529
2530 #ifdef BHYVE_SNAPSHOT
2531 static int
vm_snapshot_vcpus(struct vm * vm,struct vm_snapshot_meta * meta)2532 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
2533 {
2534 uint64_t tsc, now;
2535 int ret;
2536 struct vcpu *vcpu;
2537 uint16_t i, maxcpus;
2538
2539 now = rdtsc();
2540 maxcpus = vm_get_maxcpus(vm);
2541 for (i = 0; i < maxcpus; i++) {
2542 vcpu = vm->vcpu[i];
2543 if (vcpu == NULL)
2544 continue;
2545
2546 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
2547 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
2548 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
2549 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
2550 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
2551 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
2552 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
2553 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2554
2555 /*
2556 * Save the absolute TSC value by adding now to tsc_offset.
2557 *
2558 * It will be turned turned back into an actual offset when the
2559 * TSC restore function is called
2560 */
2561 tsc = now + vcpu->tsc_offset;
2562 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
2563 if (meta->op == VM_SNAPSHOT_RESTORE)
2564 vcpu->tsc_offset = tsc;
2565 }
2566
2567 done:
2568 return (ret);
2569 }
2570
2571 static int
vm_snapshot_vm(struct vm * vm,struct vm_snapshot_meta * meta)2572 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
2573 {
2574 int ret;
2575
2576 ret = vm_snapshot_vcpus(vm, meta);
2577 if (ret != 0)
2578 goto done;
2579
2580 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
2581 done:
2582 return (ret);
2583 }
2584
2585 static int
vm_snapshot_vcpu(struct vm * vm,struct vm_snapshot_meta * meta)2586 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
2587 {
2588 int error;
2589 struct vcpu *vcpu;
2590 uint16_t i, maxcpus;
2591
2592 error = 0;
2593
2594 maxcpus = vm_get_maxcpus(vm);
2595 for (i = 0; i < maxcpus; i++) {
2596 vcpu = vm->vcpu[i];
2597 if (vcpu == NULL)
2598 continue;
2599
2600 error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
2601 if (error != 0) {
2602 printf("%s: failed to snapshot vmcs/vmcb data for "
2603 "vCPU: %d; error: %d\n", __func__, i, error);
2604 goto done;
2605 }
2606 }
2607
2608 done:
2609 return (error);
2610 }
2611
2612 /*
2613 * Save kernel-side structures to user-space for snapshotting.
2614 */
2615 int
vm_snapshot_req(struct vm * vm,struct vm_snapshot_meta * meta)2616 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
2617 {
2618 int ret = 0;
2619
2620 switch (meta->dev_req) {
2621 case STRUCT_VMCX:
2622 ret = vm_snapshot_vcpu(vm, meta);
2623 break;
2624 case STRUCT_VM:
2625 ret = vm_snapshot_vm(vm, meta);
2626 break;
2627 case STRUCT_VIOAPIC:
2628 ret = vioapic_snapshot(vm_ioapic(vm), meta);
2629 break;
2630 case STRUCT_VLAPIC:
2631 ret = vlapic_snapshot(vm, meta);
2632 break;
2633 case STRUCT_VHPET:
2634 ret = vhpet_snapshot(vm_hpet(vm), meta);
2635 break;
2636 case STRUCT_VATPIC:
2637 ret = vatpic_snapshot(vm_atpic(vm), meta);
2638 break;
2639 case STRUCT_VATPIT:
2640 ret = vatpit_snapshot(vm_atpit(vm), meta);
2641 break;
2642 case STRUCT_VPMTMR:
2643 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
2644 break;
2645 case STRUCT_VRTC:
2646 ret = vrtc_snapshot(vm_rtc(vm), meta);
2647 break;
2648 default:
2649 printf("%s: failed to find the requested type %#x\n",
2650 __func__, meta->dev_req);
2651 ret = (EINVAL);
2652 }
2653 return (ret);
2654 }
2655
2656 void
vm_set_tsc_offset(struct vcpu * vcpu,uint64_t offset)2657 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
2658 {
2659 vcpu->tsc_offset = offset;
2660 }
2661
2662 int
vm_restore_time(struct vm * vm)2663 vm_restore_time(struct vm *vm)
2664 {
2665 int error;
2666 uint64_t now;
2667 struct vcpu *vcpu;
2668 uint16_t i, maxcpus;
2669
2670 now = rdtsc();
2671
2672 error = vhpet_restore_time(vm_hpet(vm));
2673 if (error)
2674 return (error);
2675
2676 maxcpus = vm_get_maxcpus(vm);
2677 for (i = 0; i < maxcpus; i++) {
2678 vcpu = vm->vcpu[i];
2679 if (vcpu == NULL)
2680 continue;
2681
2682 error = vmmops_restore_tsc(vcpu->cookie,
2683 vcpu->tsc_offset - now);
2684 if (error)
2685 return (error);
2686 }
2687
2688 return (0);
2689 }
2690 #endif
2691