1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 /*
29 * This file and its contents are supplied under the terms of the
30 * Common Development and Distribution License ("CDDL"), version 1.0.
31 * You may only use this file in accordance with the terms of version
32 * 1.0 of the CDDL.
33 *
34 * A full copy of the text of the CDDL should have accompanied this
35 * source. A copy of the CDDL is also available via the Internet at
36 * http://www.illumos.org/license/CDDL.
37 *
38 * Copyright 2015 Pluribus Networks Inc.
39 * Copyright 2019 Joyent, Inc.
40 * Copyright 2022 Oxide Computer Company
41 */
42
43 #include <sys/cdefs.h>
44
45 #include <sys/param.h>
46 #include <sys/sysctl.h>
47 #include <sys/ioctl.h>
48 #include <sys/mman.h>
49 #include <sys/module.h>
50 #include <sys/_iovec.h>
51 #include <sys/cpuset.h>
52
53 #include <errno.h>
54 #include <stdbool.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <assert.h>
58 #include <string.h>
59 #include <fcntl.h>
60 #include <unistd.h>
61
62 #include <libutil.h>
63
64 #include <machine/vmm.h>
65 #include <machine/vmm_dev.h>
66
67 #include "vmmapi.h"
68 #include "internal.h"
69
70 #define MB (1024 * 1024UL)
71 #define GB (1024 * 1024 * 1024UL)
72
73 #define VM_LOWMEM_LIMIT (3 * GB)
74 #define VM_HIGHMEM_BASE (4 * GB)
75
76 #ifndef __FreeBSD__
77 /* shim to no-op for now */
78 #define MAP_NOCORE 0
79 #define MAP_ALIGNED_SUPER 0
80
81 /* Rely on PROT_NONE for guard purposes */
82 #define MAP_GUARD (MAP_PRIVATE | MAP_ANON | MAP_NORESERVE)
83
84 #define _Thread_local __thread
85 #endif
86
87 /*
88 * Size of the guard region before and after the virtual address space
89 * mapping the guest physical memory. This must be a multiple of the
90 * superpage size for performance reasons.
91 */
92 #define VM_MMAP_GUARD_SIZE (4 * MB)
93
94 #define PROT_RW (PROT_READ | PROT_WRITE)
95 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC)
96
97 struct vmctx {
98 int fd;
99 uint32_t lowmem_limit;
100 int memflags;
101 size_t lowmem;
102 size_t highmem;
103 char *baseaddr;
104 char *name;
105 };
106
107 #ifdef __FreeBSD__
108 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
109 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
110 #endif
111
112 static int
vm_device_open(const char * name)113 vm_device_open(const char *name)
114 {
115 int fd, len;
116 char *vmfile;
117
118 len = strlen("/dev/vmm/") + strlen(name) + 1;
119 vmfile = malloc(len);
120 assert(vmfile != NULL);
121 snprintf(vmfile, len, "/dev/vmm/%s", name);
122
123 /* Open the device file */
124 fd = open(vmfile, O_RDWR, 0);
125
126 free(vmfile);
127 return (fd);
128 }
129
130 #ifdef __FreeBSD__
131 int
vm_create(const char * name)132 vm_create(const char *name)
133 {
134 /* Try to load vmm(4) module before creating a guest. */
135 if (modfind("vmm") < 0)
136 kldload("vmm");
137 return (CREATE(name));
138 }
139 #else
140 static int
vm_do_ctl(int cmd,void * req)141 vm_do_ctl(int cmd, void *req)
142 {
143 int ctl_fd;
144
145 ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR);
146 if (ctl_fd < 0) {
147 return (-1);
148 }
149
150 if (ioctl(ctl_fd, cmd, req) == -1) {
151 int err = errno;
152
153 /* Do not lose ioctl errno through the close(2) */
154 (void) close(ctl_fd);
155 errno = err;
156 return (-1);
157 }
158 (void) close(ctl_fd);
159
160 return (0);
161 }
162
163 int
vm_create(const char * name,uint64_t flags)164 vm_create(const char *name, uint64_t flags)
165 {
166 struct vm_create_req req;
167
168 (void) strncpy(req.name, name, VM_MAX_NAMELEN);
169 req.flags = flags;
170
171 return (vm_do_ctl(VMM_CREATE_VM, &req));
172 }
173 #endif
174
175 struct vmctx *
vm_open(const char * name)176 vm_open(const char *name)
177 {
178 struct vmctx *vm;
179 int saved_errno;
180
181 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
182 assert(vm != NULL);
183
184 vm->fd = -1;
185 vm->memflags = 0;
186 vm->lowmem_limit = 3 * GB;
187 vm->name = (char *)(vm + 1);
188 strcpy(vm->name, name);
189
190 if ((vm->fd = vm_device_open(vm->name)) < 0)
191 goto err;
192
193 return (vm);
194 err:
195 saved_errno = errno;
196 free(vm);
197 errno = saved_errno;
198 return (NULL);
199 }
200
201 #ifdef __FreeBSD__
202 void
vm_close(struct vmctx * vm)203 vm_close(struct vmctx *vm)
204 {
205 assert(vm != NULL);
206
207 close(vm->fd);
208 free(vm);
209 }
210
211 void
vm_destroy(struct vmctx * vm)212 vm_destroy(struct vmctx *vm)
213 {
214 assert(vm != NULL);
215
216 if (vm->fd >= 0)
217 close(vm->fd);
218 DESTROY(vm->name);
219
220 free(vm);
221 }
222 #else
223 void
vm_close(struct vmctx * vm)224 vm_close(struct vmctx *vm)
225 {
226 assert(vm != NULL);
227 assert(vm->fd >= 0);
228
229 (void) close(vm->fd);
230
231 free(vm);
232 }
233
234 void
vm_destroy(struct vmctx * vm)235 vm_destroy(struct vmctx *vm)
236 {
237 assert(vm != NULL);
238
239 if (vm->fd >= 0) {
240 (void) ioctl(vm->fd, VM_DESTROY_SELF, 0);
241 (void) close(vm->fd);
242 vm->fd = -1;
243 }
244
245 free(vm);
246 }
247 #endif
248
249 struct vcpu *
vm_vcpu_open(struct vmctx * ctx,int vcpuid)250 vm_vcpu_open(struct vmctx *ctx, int vcpuid)
251 {
252 struct vcpu *vcpu;
253
254 vcpu = malloc(sizeof(*vcpu));
255 #ifndef __FreeBSD__
256 if (vcpu == NULL)
257 return (vcpu);
258 #endif
259 vcpu->ctx = ctx;
260 vcpu->vcpuid = vcpuid;
261 return (vcpu);
262 }
263
264 void
vm_vcpu_close(struct vcpu * vcpu)265 vm_vcpu_close(struct vcpu *vcpu)
266 {
267 free(vcpu);
268 }
269
270 int
vcpu_id(struct vcpu * vcpu)271 vcpu_id(struct vcpu *vcpu)
272 {
273 return (vcpu->vcpuid);
274 }
275
276 struct vmctx *
vcpu_ctx(struct vcpu * vcpu)277 vcpu_ctx(struct vcpu *vcpu)
278 {
279 return (vcpu->ctx);
280 }
281
282 int
vm_parse_memsize(const char * opt,size_t * ret_memsize)283 vm_parse_memsize(const char *opt, size_t *ret_memsize)
284 {
285 char *endptr;
286 size_t optval;
287 int error;
288
289 optval = strtoul(opt, &endptr, 0);
290 if (*opt != '\0' && *endptr == '\0') {
291 /*
292 * For the sake of backward compatibility if the memory size
293 * specified on the command line is less than a megabyte then
294 * it is interpreted as being in units of MB.
295 */
296 if (optval < MB)
297 optval *= MB;
298 *ret_memsize = optval;
299 error = 0;
300 } else
301 error = expand_number(opt, ret_memsize);
302
303 return (error);
304 }
305
306 uint32_t
vm_get_lowmem_limit(struct vmctx * ctx)307 vm_get_lowmem_limit(struct vmctx *ctx)
308 {
309
310 return (ctx->lowmem_limit);
311 }
312
313 void
vm_set_lowmem_limit(struct vmctx * ctx,uint32_t limit)314 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
315 {
316
317 ctx->lowmem_limit = limit;
318 }
319
320 void
vm_set_memflags(struct vmctx * ctx,int flags)321 vm_set_memflags(struct vmctx *ctx, int flags)
322 {
323
324 ctx->memflags = flags;
325 }
326
327 int
vm_get_memflags(struct vmctx * ctx)328 vm_get_memflags(struct vmctx *ctx)
329 {
330
331 return (ctx->memflags);
332 }
333
334 /*
335 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
336 */
337 int
vm_mmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,int segid,vm_ooffset_t off,size_t len,int prot)338 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
339 size_t len, int prot)
340 {
341 struct vm_memmap memmap;
342 int error, flags;
343
344 memmap.gpa = gpa;
345 memmap.segid = segid;
346 memmap.segoff = off;
347 memmap.len = len;
348 memmap.prot = prot;
349 memmap.flags = 0;
350
351 if (ctx->memflags & VM_MEM_F_WIRED)
352 memmap.flags |= VM_MEMMAP_F_WIRED;
353
354 /*
355 * If this mapping already exists then don't create it again. This
356 * is the common case for SYSMEM mappings created by bhyveload(8).
357 */
358 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
359 if (error == 0 && gpa == memmap.gpa) {
360 if (segid != memmap.segid || off != memmap.segoff ||
361 prot != memmap.prot || flags != memmap.flags) {
362 errno = EEXIST;
363 return (-1);
364 } else {
365 return (0);
366 }
367 }
368
369 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
370 return (error);
371 }
372
373 #ifdef __FreeBSD__
374 int
vm_get_guestmem_from_ctx(struct vmctx * ctx,char ** guest_baseaddr,size_t * lowmem_size,size_t * highmem_size)375 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr,
376 size_t *lowmem_size, size_t *highmem_size)
377 {
378
379 *guest_baseaddr = ctx->baseaddr;
380 *lowmem_size = ctx->lowmem;
381 *highmem_size = ctx->highmem;
382 return (0);
383 }
384 #endif
385
386 int
vm_munmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,size_t len)387 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
388 {
389 struct vm_munmap munmap;
390 int error;
391
392 munmap.gpa = gpa;
393 munmap.len = len;
394
395 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
396 return (error);
397 }
398
399 int
vm_mmap_getnext(struct vmctx * ctx,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)400 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
401 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
402 {
403 struct vm_memmap memmap;
404 int error;
405
406 bzero(&memmap, sizeof(struct vm_memmap));
407 memmap.gpa = *gpa;
408 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
409 if (error == 0) {
410 *gpa = memmap.gpa;
411 *segid = memmap.segid;
412 *segoff = memmap.segoff;
413 *len = memmap.len;
414 *prot = memmap.prot;
415 *flags = memmap.flags;
416 }
417 return (error);
418 }
419
420 /*
421 * Return 0 if the segments are identical and non-zero otherwise.
422 *
423 * This is slightly complicated by the fact that only device memory segments
424 * are named.
425 */
426 static int
cmpseg(size_t len,const char * str,size_t len2,const char * str2)427 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
428 {
429
430 if (len == len2) {
431 if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
432 return (0);
433 }
434 return (-1);
435 }
436
437 static int
vm_alloc_memseg(struct vmctx * ctx,int segid,size_t len,const char * name)438 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
439 {
440 struct vm_memseg memseg;
441 size_t n;
442 int error;
443
444 /*
445 * If the memory segment has already been created then just return.
446 * This is the usual case for the SYSMEM segment created by userspace
447 * loaders like bhyveload(8).
448 */
449 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
450 sizeof(memseg.name));
451 if (error)
452 return (error);
453
454 if (memseg.len != 0) {
455 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
456 errno = EINVAL;
457 return (-1);
458 } else {
459 return (0);
460 }
461 }
462
463 bzero(&memseg, sizeof(struct vm_memseg));
464 memseg.segid = segid;
465 memseg.len = len;
466 if (name != NULL) {
467 n = strlcpy(memseg.name, name, sizeof(memseg.name));
468 if (n >= sizeof(memseg.name)) {
469 errno = ENAMETOOLONG;
470 return (-1);
471 }
472 }
473
474 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
475 return (error);
476 }
477
478 int
vm_get_memseg(struct vmctx * ctx,int segid,size_t * lenp,char * namebuf,size_t bufsize)479 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
480 size_t bufsize)
481 {
482 struct vm_memseg memseg;
483 size_t n;
484 int error;
485
486 memseg.segid = segid;
487 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
488 if (error == 0) {
489 *lenp = memseg.len;
490 n = strlcpy(namebuf, memseg.name, bufsize);
491 if (n >= bufsize) {
492 errno = ENAMETOOLONG;
493 error = -1;
494 }
495 }
496 return (error);
497 }
498
499 static int
500 #ifdef __FreeBSD__
setup_memory_segment(struct vmctx * ctx,vm_paddr_t gpa,size_t len,char * base)501 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
502 #else
503 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len,
504 char *base)
505 #endif
506 {
507 char *ptr;
508 int error, flags;
509
510 /* Map 'len' bytes starting at 'gpa' in the guest address space */
511 #ifdef __FreeBSD__
512 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
513 #else
514 /*
515 * As we use two segments for lowmem/highmem the offset within the
516 * segment is 0 on illumos.
517 */
518 error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL);
519 #endif
520 if (error)
521 return (error);
522
523 flags = MAP_SHARED | MAP_FIXED;
524 if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
525 flags |= MAP_NOCORE;
526
527 /* mmap into the process address space on the host */
528 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
529 if (ptr == MAP_FAILED)
530 return (-1);
531
532 return (0);
533 }
534
535 int
vm_setup_memory(struct vmctx * ctx,size_t memsize,enum vm_mmap_style vms)536 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
537 {
538 size_t objsize, len;
539 vm_paddr_t gpa;
540 char *baseaddr, *ptr;
541 int error;
542
543 assert(vms == VM_MMAP_ALL);
544
545 /*
546 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
547 * create another 'highmem' segment above 4GB for the remainder.
548 */
549 if (memsize > ctx->lowmem_limit) {
550 ctx->lowmem = ctx->lowmem_limit;
551 ctx->highmem = memsize - ctx->lowmem_limit;
552 objsize = 4*GB + ctx->highmem;
553 } else {
554 ctx->lowmem = memsize;
555 ctx->highmem = 0;
556 objsize = ctx->lowmem;
557 }
558
559 #ifdef __FreeBSD__
560 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
561 if (error)
562 return (error);
563 #endif
564
565 /*
566 * Stake out a contiguous region covering the guest physical memory
567 * and the adjoining guard regions.
568 */
569 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
570 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
571 if (ptr == MAP_FAILED)
572 return (-1);
573
574 baseaddr = ptr + VM_MMAP_GUARD_SIZE;
575
576 #ifdef __FreeBSD__
577 if (ctx->highmem > 0) {
578 gpa = 4*GB;
579 len = ctx->highmem;
580 error = setup_memory_segment(ctx, gpa, len, baseaddr);
581 if (error)
582 return (error);
583 }
584
585 if (ctx->lowmem > 0) {
586 gpa = 0;
587 len = ctx->lowmem;
588 error = setup_memory_segment(ctx, gpa, len, baseaddr);
589 if (error)
590 return (error);
591 }
592 #else
593 if (ctx->highmem > 0) {
594 error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL);
595 if (error)
596 return (error);
597 gpa = 4*GB;
598 len = ctx->highmem;
599 error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr);
600 if (error)
601 return (error);
602 }
603
604 if (ctx->lowmem > 0) {
605 error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL);
606 if (error)
607 return (error);
608 gpa = 0;
609 len = ctx->lowmem;
610 error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr);
611 if (error)
612 return (error);
613 }
614 #endif
615
616 ctx->baseaddr = baseaddr;
617
618 return (0);
619 }
620
621 /*
622 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
623 * the lowmem or highmem regions.
624 *
625 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
626 * The instruction emulation code depends on this behavior.
627 */
628 void *
vm_map_gpa(struct vmctx * ctx,vm_paddr_t gaddr,size_t len)629 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
630 {
631
632 if (ctx->lowmem > 0) {
633 if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
634 gaddr + len <= ctx->lowmem)
635 return (ctx->baseaddr + gaddr);
636 }
637
638 if (ctx->highmem > 0) {
639 if (gaddr >= 4*GB) {
640 if (gaddr < 4*GB + ctx->highmem &&
641 len <= ctx->highmem &&
642 gaddr + len <= 4*GB + ctx->highmem)
643 return (ctx->baseaddr + gaddr);
644 }
645 }
646
647 return (NULL);
648 }
649
650 #ifdef __FreeBSD__
651 vm_paddr_t
vm_rev_map_gpa(struct vmctx * ctx,void * addr)652 vm_rev_map_gpa(struct vmctx *ctx, void *addr)
653 {
654 vm_paddr_t offaddr;
655
656 offaddr = (char *)addr - ctx->baseaddr;
657
658 if (ctx->lowmem > 0)
659 if (offaddr <= ctx->lowmem)
660 return (offaddr);
661
662 if (ctx->highmem > 0)
663 if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem)
664 return (offaddr);
665
666 return ((vm_paddr_t)-1);
667 }
668
669 const char *
vm_get_name(struct vmctx * ctx)670 vm_get_name(struct vmctx *ctx)
671 {
672
673 return (ctx->name);
674 }
675 #endif /* __FreeBSD__ */
676
677 size_t
vm_get_lowmem_size(struct vmctx * ctx)678 vm_get_lowmem_size(struct vmctx *ctx)
679 {
680
681 return (ctx->lowmem);
682 }
683
684 vm_paddr_t
vm_get_highmem_base(struct vmctx * ctx __unused)685 vm_get_highmem_base(struct vmctx *ctx __unused)
686 {
687 return (VM_HIGHMEM_BASE);
688 }
689
690 size_t
vm_get_highmem_size(struct vmctx * ctx)691 vm_get_highmem_size(struct vmctx *ctx)
692 {
693
694 return (ctx->highmem);
695 }
696
697 #ifndef __FreeBSD__
698 int
vm_get_devmem_offset(struct vmctx * ctx,int segid,off_t * mapoff)699 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff)
700 {
701 struct vm_devmem_offset vdo;
702 int error;
703
704 vdo.segid = segid;
705 error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo);
706 if (error == 0)
707 *mapoff = vdo.offset;
708
709 return (error);
710 }
711 #endif
712
713 void *
vm_create_devmem(struct vmctx * ctx,int segid,const char * name,size_t len)714 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
715 {
716 #ifdef __FreeBSD__
717 char pathname[MAXPATHLEN];
718 #endif
719 size_t len2;
720 char *base, *ptr;
721 int fd, error, flags;
722 off_t mapoff;
723
724 fd = -1;
725 ptr = MAP_FAILED;
726 if (name == NULL || strlen(name) == 0) {
727 errno = EINVAL;
728 goto done;
729 }
730
731 error = vm_alloc_memseg(ctx, segid, len, name);
732 if (error)
733 goto done;
734
735 #ifdef __FreeBSD__
736 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
737 strlcat(pathname, ctx->name, sizeof(pathname));
738 strlcat(pathname, ".", sizeof(pathname));
739 strlcat(pathname, name, sizeof(pathname));
740
741 fd = open(pathname, O_RDWR);
742 if (fd < 0)
743 goto done;
744 #else
745 if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0)
746 goto done;
747 #endif
748
749 /*
750 * Stake out a contiguous region covering the device memory and the
751 * adjoining guard regions.
752 */
753 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
754 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
755 0);
756 if (base == MAP_FAILED)
757 goto done;
758
759 flags = MAP_SHARED | MAP_FIXED;
760 if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
761 flags |= MAP_NOCORE;
762
763 #ifdef __FreeBSD__
764 /* mmap the devmem region in the host address space */
765 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
766 #else
767 /* mmap the devmem region in the host address space */
768 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd,
769 mapoff);
770 #endif
771 done:
772 if (fd >= 0)
773 close(fd);
774 return (ptr);
775 }
776
777 #ifdef __FreeBSD__
778 static int
vcpu_ioctl(struct vcpu * vcpu,u_long cmd,void * arg)779 vcpu_ioctl(struct vcpu *vcpu, u_long cmd, void *arg)
780 {
781 /*
782 * XXX: fragile, handle with care
783 * Assumes that the first field of the ioctl data
784 * is the vcpuid.
785 */
786 *(int *)arg = vcpu->vcpuid;
787 return (ioctl(vcpu->cfx->fd, cmd, arg));
788 }
789 #else
790 /*
791 * Rather than use the fragile function above, we continue to explicitly set
792 * the vcpu field in the command struct, and use the following function to
793 * wrap the invocations, to continue to minimise the upstream diff.
794 */
795 static int
vcpu_ioctl(struct vcpu * vcpu,u_long cmd,void * arg)796 vcpu_ioctl(struct vcpu *vcpu, u_long cmd, void *arg)
797 {
798 return (ioctl(vcpu->ctx->fd, cmd, arg));
799 }
800 #endif
801
802 int
vm_set_desc(struct vcpu * vcpu,int reg,uint64_t base,uint32_t limit,uint32_t access)803 vm_set_desc(struct vcpu *vcpu, int reg,
804 uint64_t base, uint32_t limit, uint32_t access)
805 {
806 int error;
807 struct vm_seg_desc vmsegdesc;
808
809 bzero(&vmsegdesc, sizeof(vmsegdesc));
810 vmsegdesc.cpuid = vcpu->vcpuid;
811 vmsegdesc.regnum = reg;
812 vmsegdesc.desc.base = base;
813 vmsegdesc.desc.limit = limit;
814 vmsegdesc.desc.access = access;
815
816 error = vcpu_ioctl(vcpu, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
817 return (error);
818 }
819
820 int
vm_get_desc(struct vcpu * vcpu,int reg,uint64_t * base,uint32_t * limit,uint32_t * access)821 vm_get_desc(struct vcpu *vcpu, int reg, uint64_t *base, uint32_t *limit,
822 uint32_t *access)
823 {
824 int error;
825 struct vm_seg_desc vmsegdesc;
826
827 bzero(&vmsegdesc, sizeof(vmsegdesc));
828 vmsegdesc.cpuid = vcpu->vcpuid;
829 vmsegdesc.regnum = reg;
830
831 error = vcpu_ioctl(vcpu, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
832 if (error == 0) {
833 *base = vmsegdesc.desc.base;
834 *limit = vmsegdesc.desc.limit;
835 *access = vmsegdesc.desc.access;
836 }
837 return (error);
838 }
839
840 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * seg_desc)841 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *seg_desc)
842 {
843 int error;
844
845 error = vm_get_desc(vcpu, reg, &seg_desc->base, &seg_desc->limit,
846 &seg_desc->access);
847 return (error);
848 }
849
850 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)851 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
852 {
853 int error;
854 struct vm_register vmreg;
855
856 bzero(&vmreg, sizeof(vmreg));
857 vmreg.cpuid = vcpu->vcpuid;
858 vmreg.regnum = reg;
859 vmreg.regval = val;
860
861 error = vcpu_ioctl(vcpu, VM_SET_REGISTER, &vmreg);
862 return (error);
863 }
864
865 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * ret_val)866 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *ret_val)
867 {
868 int error;
869 struct vm_register vmreg;
870
871 bzero(&vmreg, sizeof(vmreg));
872 vmreg.cpuid = vcpu->vcpuid;
873 vmreg.regnum = reg;
874
875 error = vcpu_ioctl(vcpu, VM_GET_REGISTER, &vmreg);
876 *ret_val = vmreg.regval;
877 return (error);
878 }
879
880 int
vm_set_register_set(struct vcpu * vcpu,unsigned int count,const int * regnums,uint64_t * regvals)881 vm_set_register_set(struct vcpu *vcpu, unsigned int count,
882 const int *regnums, uint64_t *regvals)
883 {
884 int error;
885 struct vm_register_set vmregset;
886
887 bzero(&vmregset, sizeof(vmregset));
888 vmregset.cpuid = vcpu->vcpuid;
889 vmregset.count = count;
890 vmregset.regnums = regnums;
891 vmregset.regvals = regvals;
892
893 error = vcpu_ioctl(vcpu, VM_SET_REGISTER_SET, &vmregset);
894 return (error);
895 }
896
897 int
vm_get_register_set(struct vcpu * vcpu,unsigned int count,const int * regnums,uint64_t * regvals)898 vm_get_register_set(struct vcpu *vcpu, unsigned int count,
899 const int *regnums, uint64_t *regvals)
900 {
901 int error;
902 struct vm_register_set vmregset;
903
904 bzero(&vmregset, sizeof(vmregset));
905 vmregset.cpuid = vcpu->vcpuid;
906 vmregset.count = count;
907 vmregset.regnums = regnums;
908 vmregset.regvals = regvals;
909
910 error = vcpu_ioctl(vcpu, VM_GET_REGISTER_SET, &vmregset);
911 return (error);
912 }
913
914 #ifdef __FreeBSD__
915 int
vm_run(struct vcpu * vcpu,struct vm_exit * vmexit)916 vm_run(struct vcpu *vcpu, struct vm_exit *vmexit)
917 {
918 int error;
919 struct vm_run vmrun;
920
921 bzero(&vmrun, sizeof(vmrun));
922
923 error = vcpu_ioctl(vcpu, VM_RUN, &vmrun);
924 bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit));
925 return (error);
926 }
927 #else
928 int
vm_run(struct vcpu * vcpu,const struct vm_entry * vm_entry,struct vm_exit * vm_exit)929 vm_run(struct vcpu *vcpu, const struct vm_entry *vm_entry,
930 struct vm_exit *vm_exit)
931 {
932 struct vm_entry entry;
933
934 bcopy(vm_entry, &entry, sizeof (entry));
935 entry.cpuid = vcpu->vcpuid;
936 entry.exit_data = vm_exit;
937
938 return (vcpu_ioctl(vcpu, VM_RUN, &entry));
939 }
940 #endif
941
942 int
vm_suspend(struct vmctx * ctx,enum vm_suspend_how how)943 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
944 {
945 struct vm_suspend vmsuspend;
946
947 bzero(&vmsuspend, sizeof(vmsuspend));
948 vmsuspend.how = how;
949 #ifndef __FreeBSD__
950 /*
951 * The existing userspace does not (currently) inject targeted
952 * triple-fault suspend states, so it does not need to specify source.
953 */
954 vmsuspend.source = -1;
955 #endif /* __FreeBSD__ */
956 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
957 }
958
959 #ifdef __FreeBSD__
960 int
vm_reinit(struct vmctx * ctx)961 vm_reinit(struct vmctx *ctx)
962 {
963
964 return (ioctl(ctx->fd, VM_REINIT, 0));
965 }
966 #else
967 int
vm_reinit(struct vmctx * ctx,uint64_t flags)968 vm_reinit(struct vmctx *ctx, uint64_t flags)
969 {
970 struct vm_reinit reinit = {
971 .flags = flags
972 };
973
974 return (ioctl(ctx->fd, VM_REINIT, &reinit));
975 }
976 #endif
977
978 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)979 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
980 uint32_t errcode, int restart_instruction)
981 {
982 struct vm_exception exc;
983
984 exc.cpuid = vcpu->vcpuid;
985 exc.vector = vector;
986 exc.error_code = errcode;
987 exc.error_code_valid = errcode_valid;
988 exc.restart_instruction = restart_instruction;
989
990 return (vcpu_ioctl(vcpu, VM_INJECT_EXCEPTION, &exc));
991 }
992
993 #ifndef __FreeBSD__
994 void
vm_inject_fault(struct vcpu * vcpu,int vector,int errcode_valid,int errcode)995 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid,
996 int errcode)
997 {
998 int error;
999 struct vm_exception exc;
1000
1001 exc.cpuid = vcpu->vcpuid;
1002 exc.vector = vector;
1003 exc.error_code = errcode;
1004 exc.error_code_valid = errcode_valid;
1005 exc.restart_instruction = 1;
1006 error = vcpu_ioctl(vcpu, VM_INJECT_EXCEPTION, &exc);
1007
1008 assert(error == 0);
1009 }
1010 #endif /* __FreeBSD__ */
1011
1012 int
vm_apicid2vcpu(struct vmctx * ctx __unused,int apicid)1013 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid)
1014 {
1015 /*
1016 * The apic id associated with the 'vcpu' has the same numerical value
1017 * as the 'vcpu' itself.
1018 */
1019 return (apicid);
1020 }
1021
1022 int
vm_lapic_irq(struct vcpu * vcpu,int vector)1023 vm_lapic_irq(struct vcpu *vcpu, int vector)
1024 {
1025 struct vm_lapic_irq vmirq;
1026
1027 bzero(&vmirq, sizeof(vmirq));
1028 vmirq.cpuid = vcpu->vcpuid;
1029 vmirq.vector = vector;
1030
1031 return (vcpu_ioctl(vcpu, VM_LAPIC_IRQ, &vmirq));
1032 }
1033
1034 int
vm_lapic_local_irq(struct vcpu * vcpu,int vector)1035 vm_lapic_local_irq(struct vcpu *vcpu, int vector)
1036 {
1037 struct vm_lapic_irq vmirq;
1038
1039 bzero(&vmirq, sizeof(vmirq));
1040 vmirq.cpuid = vcpu->vcpuid;
1041 vmirq.vector = vector;
1042
1043 return (vcpu_ioctl(vcpu, VM_LAPIC_LOCAL_IRQ, &vmirq));
1044 }
1045
1046 int
vm_lapic_msi(struct vmctx * ctx,uint64_t addr,uint64_t msg)1047 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
1048 {
1049 struct vm_lapic_msi vmmsi;
1050
1051 bzero(&vmmsi, sizeof(vmmsi));
1052 vmmsi.addr = addr;
1053 vmmsi.msg = msg;
1054
1055 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
1056 }
1057
1058 int
vm_ioapic_assert_irq(struct vmctx * ctx,int irq)1059 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
1060 {
1061 struct vm_ioapic_irq ioapic_irq;
1062
1063 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
1064 ioapic_irq.irq = irq;
1065
1066 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
1067 }
1068
1069 int
vm_ioapic_deassert_irq(struct vmctx * ctx,int irq)1070 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
1071 {
1072 struct vm_ioapic_irq ioapic_irq;
1073
1074 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
1075 ioapic_irq.irq = irq;
1076
1077 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
1078 }
1079
1080 int
vm_ioapic_pulse_irq(struct vmctx * ctx,int irq)1081 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
1082 {
1083 struct vm_ioapic_irq ioapic_irq;
1084
1085 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
1086 ioapic_irq.irq = irq;
1087
1088 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
1089 }
1090
1091 int
vm_ioapic_pincount(struct vmctx * ctx,int * pincount)1092 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
1093 {
1094
1095 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
1096 }
1097
1098 int
vm_readwrite_kernemu_device(struct vcpu * vcpu,vm_paddr_t gpa,bool write,int size,uint64_t * value)1099 vm_readwrite_kernemu_device(struct vcpu *vcpu, vm_paddr_t gpa,
1100 bool write, int size, uint64_t *value)
1101 {
1102 struct vm_readwrite_kernemu_device irp = {
1103 .vcpuid = vcpu->vcpuid,
1104 .access_width = fls(size) - 1,
1105 .gpa = gpa,
1106 .value = write ? *value : ~0ul,
1107 };
1108 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
1109 int rc;
1110
1111 rc = vcpu_ioctl(vcpu, cmd, &irp);
1112 if (rc == 0 && !write)
1113 *value = irp.value;
1114 return (rc);
1115 }
1116
1117 int
vm_isa_assert_irq(struct vmctx * ctx,int atpic_irq,int ioapic_irq)1118 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
1119 {
1120 struct vm_isa_irq isa_irq;
1121
1122 bzero(&isa_irq, sizeof(struct vm_isa_irq));
1123 isa_irq.atpic_irq = atpic_irq;
1124 isa_irq.ioapic_irq = ioapic_irq;
1125
1126 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
1127 }
1128
1129 int
vm_isa_deassert_irq(struct vmctx * ctx,int atpic_irq,int ioapic_irq)1130 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
1131 {
1132 struct vm_isa_irq isa_irq;
1133
1134 bzero(&isa_irq, sizeof(struct vm_isa_irq));
1135 isa_irq.atpic_irq = atpic_irq;
1136 isa_irq.ioapic_irq = ioapic_irq;
1137
1138 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
1139 }
1140
1141 int
vm_isa_pulse_irq(struct vmctx * ctx,int atpic_irq,int ioapic_irq)1142 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
1143 {
1144 struct vm_isa_irq isa_irq;
1145
1146 bzero(&isa_irq, sizeof(struct vm_isa_irq));
1147 isa_irq.atpic_irq = atpic_irq;
1148 isa_irq.ioapic_irq = ioapic_irq;
1149
1150 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
1151 }
1152
1153 int
vm_isa_set_irq_trigger(struct vmctx * ctx,int atpic_irq,enum vm_intr_trigger trigger)1154 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
1155 enum vm_intr_trigger trigger)
1156 {
1157 struct vm_isa_irq_trigger isa_irq_trigger;
1158
1159 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
1160 isa_irq_trigger.atpic_irq = atpic_irq;
1161 isa_irq_trigger.trigger = trigger;
1162
1163 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
1164 }
1165
1166 int
vm_inject_nmi(struct vcpu * vcpu)1167 vm_inject_nmi(struct vcpu *vcpu)
1168 {
1169 struct vm_nmi vmnmi;
1170
1171 bzero(&vmnmi, sizeof(vmnmi));
1172 vmnmi.cpuid = vcpu->vcpuid;
1173
1174 return (vcpu_ioctl(vcpu, VM_INJECT_NMI, &vmnmi));
1175 }
1176
1177 static const char *capstrmap[] = {
1178 [VM_CAP_HALT_EXIT] = "hlt_exit",
1179 [VM_CAP_MTRAP_EXIT] = "mtrap_exit",
1180 [VM_CAP_PAUSE_EXIT] = "pause_exit",
1181 #ifdef __FreeBSD__
1182 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
1183 #endif
1184 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
1185 [VM_CAP_BPT_EXIT] = "bpt_exit",
1186 };
1187
1188 int
vm_capability_name2type(const char * capname)1189 vm_capability_name2type(const char *capname)
1190 {
1191 int i;
1192
1193 for (i = 0; i < (int)nitems(capstrmap); i++) {
1194 if (strcmp(capstrmap[i], capname) == 0)
1195 return (i);
1196 }
1197
1198 return (-1);
1199 }
1200
1201 const char *
vm_capability_type2name(int type)1202 vm_capability_type2name(int type)
1203 {
1204 if (type >= 0 && type < (int)nitems(capstrmap))
1205 return (capstrmap[type]);
1206
1207 return (NULL);
1208 }
1209
1210 int
vm_get_capability(struct vcpu * vcpu,enum vm_cap_type cap,int * retval)1211 vm_get_capability(struct vcpu *vcpu, enum vm_cap_type cap,
1212 int *retval)
1213 {
1214 int error;
1215 struct vm_capability vmcap;
1216
1217 bzero(&vmcap, sizeof(vmcap));
1218 vmcap.cpuid = vcpu->vcpuid;
1219 vmcap.captype = cap;
1220
1221 error = vcpu_ioctl(vcpu, VM_GET_CAPABILITY, &vmcap);
1222 *retval = vmcap.capval;
1223 return (error);
1224 }
1225
1226 int
vm_set_capability(struct vcpu * vcpu,enum vm_cap_type cap,int val)1227 vm_set_capability(struct vcpu *vcpu, enum vm_cap_type cap, int val)
1228 {
1229 struct vm_capability vmcap;
1230
1231 bzero(&vmcap, sizeof(vmcap));
1232 vmcap.cpuid = vcpu->vcpuid;
1233 vmcap.captype = cap;
1234 vmcap.capval = val;
1235
1236 return (vcpu_ioctl(vcpu, VM_SET_CAPABILITY, &vmcap));
1237 }
1238
1239 #ifdef __FreeBSD__
1240 int
vm_assign_pptdev(struct vmctx * ctx,int bus,int slot,int func)1241 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1242 {
1243 struct vm_pptdev pptdev;
1244
1245 bzero(&pptdev, sizeof(pptdev));
1246 pptdev.bus = bus;
1247 pptdev.slot = slot;
1248 pptdev.func = func;
1249
1250 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1251 }
1252
1253 int
vm_unassign_pptdev(struct vmctx * ctx,int bus,int slot,int func)1254 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1255 {
1256 struct vm_pptdev pptdev;
1257
1258 bzero(&pptdev, sizeof(pptdev));
1259 pptdev.bus = bus;
1260 pptdev.slot = slot;
1261 pptdev.func = func;
1262
1263 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1264 }
1265
1266 int
vm_map_pptdev_mmio(struct vmctx * ctx,int bus,int slot,int func,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)1267 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1268 vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
1269 {
1270 struct vm_pptdev_mmio pptmmio;
1271
1272 bzero(&pptmmio, sizeof(pptmmio));
1273 pptmmio.bus = bus;
1274 pptmmio.slot = slot;
1275 pptmmio.func = func;
1276 pptmmio.gpa = gpa;
1277 pptmmio.len = len;
1278 pptmmio.hpa = hpa;
1279
1280 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1281 }
1282
1283 int
vm_unmap_pptdev_mmio(struct vmctx * ctx,int bus,int slot,int func,vm_paddr_t gpa,size_t len)1284 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1285 vm_paddr_t gpa, size_t len)
1286 {
1287 struct vm_pptdev_mmio pptmmio;
1288
1289 bzero(&pptmmio, sizeof(pptmmio));
1290 pptmmio.bus = bus;
1291 pptmmio.slot = slot;
1292 pptmmio.func = func;
1293 pptmmio.gpa = gpa;
1294 pptmmio.len = len;
1295
1296 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1297 }
1298
1299 int
vm_setup_pptdev_msi(struct vmctx * ctx,int bus,int slot,int func,uint64_t addr,uint64_t msg,int numvec)1300 vm_setup_pptdev_msi(struct vmctx *ctx, int bus, int slot, int func,
1301 uint64_t addr, uint64_t msg, int numvec)
1302 {
1303 struct vm_pptdev_msi pptmsi;
1304
1305 bzero(&pptmsi, sizeof(pptmsi));
1306 pptmsi.bus = bus;
1307 pptmsi.slot = slot;
1308 pptmsi.func = func;
1309 pptmsi.msg = msg;
1310 pptmsi.addr = addr;
1311 pptmsi.numvec = numvec;
1312
1313 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1314 }
1315
1316 int
vm_setup_pptdev_msix(struct vmctx * ctx,int bus,int slot,int func,int idx,uint64_t addr,uint64_t msg,uint32_t vector_control)1317 vm_setup_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func,
1318 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
1319 {
1320 struct vm_pptdev_msix pptmsix;
1321
1322 bzero(&pptmsix, sizeof(pptmsix));
1323 pptmsix.bus = bus;
1324 pptmsix.slot = slot;
1325 pptmsix.func = func;
1326 pptmsix.idx = idx;
1327 pptmsix.msg = msg;
1328 pptmsix.addr = addr;
1329 pptmsix.vector_control = vector_control;
1330
1331 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1332 }
1333
1334 int
vm_disable_pptdev_msix(struct vmctx * ctx,int bus,int slot,int func)1335 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func)
1336 {
1337 struct vm_pptdev ppt;
1338
1339 bzero(&ppt, sizeof(ppt));
1340 ppt.bus = bus;
1341 ppt.slot = slot;
1342 ppt.func = func;
1343
1344 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt);
1345 }
1346
1347 #else /* __FreeBSD__ */
1348
1349 int
vm_assign_pptdev(struct vmctx * ctx,int pptfd)1350 vm_assign_pptdev(struct vmctx *ctx, int pptfd)
1351 {
1352 struct vm_pptdev pptdev;
1353
1354 pptdev.pptfd = pptfd;
1355 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1356 }
1357
1358 int
vm_unassign_pptdev(struct vmctx * ctx,int pptfd)1359 vm_unassign_pptdev(struct vmctx *ctx, int pptfd)
1360 {
1361 struct vm_pptdev pptdev;
1362
1363 pptdev.pptfd = pptfd;
1364 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1365 }
1366
1367 int
vm_map_pptdev_mmio(struct vmctx * ctx,int pptfd,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)1368 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len,
1369 vm_paddr_t hpa)
1370 {
1371 struct vm_pptdev_mmio pptmmio;
1372
1373 pptmmio.pptfd = pptfd;
1374 pptmmio.gpa = gpa;
1375 pptmmio.len = len;
1376 pptmmio.hpa = hpa;
1377 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1378 }
1379
1380 int
vm_unmap_pptdev_mmio(struct vmctx * ctx,int pptfd,vm_paddr_t gpa,size_t len)1381 vm_unmap_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len)
1382 {
1383 struct vm_pptdev_mmio pptmmio;
1384
1385 bzero(&pptmmio, sizeof(pptmmio));
1386 pptmmio.pptfd = pptfd;
1387 pptmmio.gpa = gpa;
1388 pptmmio.len = len;
1389
1390 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1391 }
1392
1393 int
vm_setup_pptdev_msi(struct vmctx * ctx,int pptfd,uint64_t addr,uint64_t msg,int numvec)1394 vm_setup_pptdev_msi(struct vmctx *ctx, int pptfd, uint64_t addr,
1395 uint64_t msg, int numvec)
1396 {
1397 struct vm_pptdev_msi pptmsi;
1398
1399 pptmsi.pptfd = pptfd;
1400 pptmsi.msg = msg;
1401 pptmsi.addr = addr;
1402 pptmsi.numvec = numvec;
1403 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1404 }
1405
1406 int
vm_setup_pptdev_msix(struct vmctx * ctx,int pptfd,int idx,uint64_t addr,uint64_t msg,uint32_t vector_control)1407 vm_setup_pptdev_msix(struct vmctx *ctx, int pptfd, int idx,
1408 uint64_t addr, uint64_t msg, uint32_t vector_control)
1409 {
1410 struct vm_pptdev_msix pptmsix;
1411
1412 pptmsix.pptfd = pptfd;
1413 pptmsix.idx = idx;
1414 pptmsix.msg = msg;
1415 pptmsix.addr = addr;
1416 pptmsix.vector_control = vector_control;
1417 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1418 }
1419
1420 int
vm_get_pptdev_limits(struct vmctx * ctx,int pptfd,int * msi_limit,int * msix_limit)1421 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit,
1422 int *msix_limit)
1423 {
1424 struct vm_pptdev_limits pptlimits;
1425 int error;
1426
1427 bzero(&pptlimits, sizeof (pptlimits));
1428 pptlimits.pptfd = pptfd;
1429 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1430
1431 *msi_limit = pptlimits.msi_limit;
1432 *msix_limit = pptlimits.msix_limit;
1433 return (error);
1434 }
1435
1436 int
vm_disable_pptdev_msix(struct vmctx * ctx,int pptfd)1437 vm_disable_pptdev_msix(struct vmctx *ctx, int pptfd)
1438 {
1439 struct vm_pptdev pptdev;
1440
1441 pptdev.pptfd = pptfd;
1442 return (ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &pptdev));
1443 }
1444 #endif /* __FreeBSD__ */
1445
1446 uint64_t *
vm_get_stats(struct vcpu * vcpu,struct timeval * ret_tv,int * ret_entries)1447 vm_get_stats(struct vcpu *vcpu, struct timeval *ret_tv,
1448 int *ret_entries)
1449 {
1450 static _Thread_local uint64_t *stats_buf;
1451 static _Thread_local uint32_t stats_count;
1452 uint64_t *new_stats;
1453 struct vm_stats vmstats;
1454 uint32_t count, index;
1455 bool have_stats;
1456
1457 have_stats = false;
1458 vmstats.cpuid = vcpu->vcpuid;
1459 count = 0;
1460 for (index = 0;; index += nitems(vmstats.statbuf)) {
1461 vmstats.index = index;
1462 if (vcpu_ioctl(vcpu, VM_STATS_IOC, &vmstats) != 0)
1463 break;
1464 if (stats_count < index + vmstats.num_entries) {
1465 new_stats = reallocarray(stats_buf,
1466 index + vmstats.num_entries, sizeof(uint64_t));
1467 if (new_stats == NULL) {
1468 errno = ENOMEM;
1469 return (NULL);
1470 }
1471 stats_count = index + vmstats.num_entries;
1472 stats_buf = new_stats;
1473 }
1474 memcpy(stats_buf + index, vmstats.statbuf,
1475 vmstats.num_entries * sizeof(uint64_t));
1476 count += vmstats.num_entries;
1477 have_stats = true;
1478
1479 if (vmstats.num_entries != nitems(vmstats.statbuf))
1480 break;
1481 }
1482 if (have_stats) {
1483 if (ret_entries)
1484 *ret_entries = count;
1485 if (ret_tv)
1486 *ret_tv = vmstats.tv;
1487 return (stats_buf);
1488 } else {
1489 return (NULL);
1490 }
1491 }
1492
1493 const char *
vm_get_stat_desc(struct vmctx * ctx,int index)1494 vm_get_stat_desc(struct vmctx *ctx, int index)
1495 {
1496 static struct vm_stat_desc statdesc;
1497
1498 statdesc.index = index;
1499 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
1500 return (statdesc.desc);
1501 else
1502 return (NULL);
1503 }
1504
1505 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)1506 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
1507 {
1508 int error;
1509 struct vm_x2apic x2apic;
1510
1511 bzero(&x2apic, sizeof(x2apic));
1512 x2apic.cpuid = vcpu->vcpuid;
1513
1514 error = vcpu_ioctl(vcpu, VM_GET_X2APIC_STATE, &x2apic);
1515 *state = x2apic.state;
1516 return (error);
1517 }
1518
1519 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)1520 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
1521 {
1522 int error;
1523 struct vm_x2apic x2apic;
1524
1525 bzero(&x2apic, sizeof(x2apic));
1526 x2apic.cpuid = vcpu->vcpuid;
1527 x2apic.state = state;
1528
1529 error = vcpu_ioctl(vcpu, VM_SET_X2APIC_STATE, &x2apic);
1530
1531 return (error);
1532 }
1533
1534 #ifndef __FreeBSD__
1535 int
vcpu_reset(struct vcpu * vcpu)1536 vcpu_reset(struct vcpu *vcpu)
1537 {
1538 struct vm_vcpu_reset vvr;
1539
1540 vvr.vcpuid = vcpu->vcpuid;
1541 vvr.kind = VRK_RESET;
1542
1543 return (vcpu_ioctl(vcpu, VM_RESET_CPU, &vvr));
1544 }
1545 #else /* __FreeBSD__ */
1546 /*
1547 * From Intel Vol 3a:
1548 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1549 */
1550 int
vcpu_reset(struct vcpu * vcpu)1551 vcpu_reset(struct vcpu *vcpu)
1552 {
1553 int error;
1554 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1555 uint32_t desc_access, desc_limit;
1556 uint16_t sel;
1557
1558 zero = 0;
1559
1560 rflags = 0x2;
1561 error = vm_set_register(vcpu, VM_REG_GUEST_RFLAGS, rflags);
1562 if (error)
1563 goto done;
1564
1565 rip = 0xfff0;
1566 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1567 goto done;
1568
1569 /*
1570 * According to Intels Software Developer Manual CR0 should be
1571 * initialized with CR0_ET | CR0_NW | CR0_CD but that crashes some
1572 * guests like Windows.
1573 */
1574 cr0 = CR0_NE;
1575 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1576 goto done;
1577
1578 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR2, zero)) != 0)
1579 goto done;
1580
1581 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1582 goto done;
1583
1584 cr4 = 0;
1585 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1586 goto done;
1587
1588 /*
1589 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1590 */
1591 desc_base = 0xffff0000;
1592 desc_limit = 0xffff;
1593 desc_access = 0x0093;
1594 error = vm_set_desc(vcpu, VM_REG_GUEST_CS,
1595 desc_base, desc_limit, desc_access);
1596 if (error)
1597 goto done;
1598
1599 sel = 0xf000;
1600 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CS, sel)) != 0)
1601 goto done;
1602
1603 /*
1604 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1605 */
1606 desc_base = 0;
1607 desc_limit = 0xffff;
1608 desc_access = 0x0093;
1609 error = vm_set_desc(vcpu, VM_REG_GUEST_SS,
1610 desc_base, desc_limit, desc_access);
1611 if (error)
1612 goto done;
1613
1614 error = vm_set_desc(vcpu, VM_REG_GUEST_DS,
1615 desc_base, desc_limit, desc_access);
1616 if (error)
1617 goto done;
1618
1619 error = vm_set_desc(vcpu, VM_REG_GUEST_ES,
1620 desc_base, desc_limit, desc_access);
1621 if (error)
1622 goto done;
1623
1624 error = vm_set_desc(vcpu, VM_REG_GUEST_FS,
1625 desc_base, desc_limit, desc_access);
1626 if (error)
1627 goto done;
1628
1629 error = vm_set_desc(vcpu, VM_REG_GUEST_GS,
1630 desc_base, desc_limit, desc_access);
1631 if (error)
1632 goto done;
1633
1634 sel = 0;
1635 if ((error = vm_set_register(vcpu, VM_REG_GUEST_SS, sel)) != 0)
1636 goto done;
1637 if ((error = vm_set_register(vcpu, VM_REG_GUEST_DS, sel)) != 0)
1638 goto done;
1639 if ((error = vm_set_register(vcpu, VM_REG_GUEST_ES, sel)) != 0)
1640 goto done;
1641 if ((error = vm_set_register(vcpu, VM_REG_GUEST_FS, sel)) != 0)
1642 goto done;
1643 if ((error = vm_set_register(vcpu, VM_REG_GUEST_GS, sel)) != 0)
1644 goto done;
1645
1646 if ((error = vm_set_register(vcpu, VM_REG_GUEST_EFER, zero)) != 0)
1647 goto done;
1648
1649 /* General purpose registers */
1650 rdx = 0xf00;
1651 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1652 goto done;
1653 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1654 goto done;
1655 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1656 goto done;
1657 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1658 goto done;
1659 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1660 goto done;
1661 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1662 goto done;
1663 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1664 goto done;
1665 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1666 goto done;
1667 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R8, zero)) != 0)
1668 goto done;
1669 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R9, zero)) != 0)
1670 goto done;
1671 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R10, zero)) != 0)
1672 goto done;
1673 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R11, zero)) != 0)
1674 goto done;
1675 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R12, zero)) != 0)
1676 goto done;
1677 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R13, zero)) != 0)
1678 goto done;
1679 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R14, zero)) != 0)
1680 goto done;
1681 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R15, zero)) != 0)
1682 goto done;
1683
1684 /* GDTR, IDTR */
1685 desc_base = 0;
1686 desc_limit = 0xffff;
1687 desc_access = 0;
1688 error = vm_set_desc(vcpu, VM_REG_GUEST_GDTR,
1689 desc_base, desc_limit, desc_access);
1690 if (error != 0)
1691 goto done;
1692
1693 error = vm_set_desc(vcpu, VM_REG_GUEST_IDTR,
1694 desc_base, desc_limit, desc_access);
1695 if (error != 0)
1696 goto done;
1697
1698 /* TR */
1699 desc_base = 0;
1700 desc_limit = 0xffff;
1701 desc_access = 0x0000008b;
1702 error = vm_set_desc(vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1703 if (error)
1704 goto done;
1705
1706 sel = 0;
1707 if ((error = vm_set_register(vcpu, VM_REG_GUEST_TR, sel)) != 0)
1708 goto done;
1709
1710 /* LDTR */
1711 desc_base = 0;
1712 desc_limit = 0xffff;
1713 desc_access = 0x00000082;
1714 error = vm_set_desc(vcpu, VM_REG_GUEST_LDTR, desc_base,
1715 desc_limit, desc_access);
1716 if (error)
1717 goto done;
1718
1719 sel = 0;
1720 if ((error = vm_set_register(vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1721 goto done;
1722
1723 if ((error = vm_set_register(vcpu, VM_REG_GUEST_DR6,
1724 0xffff0ff0)) != 0)
1725 goto done;
1726 if ((error = vm_set_register(vcpu, VM_REG_GUEST_DR7, 0x400)) !=
1727 0)
1728 goto done;
1729
1730 if ((error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW,
1731 zero)) != 0)
1732 goto done;
1733
1734 error = 0;
1735 done:
1736 return (error);
1737 }
1738 #endif /* __FreeBSD__ */
1739
1740 int
vm_get_gpa_pmap(struct vmctx * ctx,uint64_t gpa,uint64_t * pte,int * num)1741 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1742 {
1743 int error, i;
1744 struct vm_gpa_pte gpapte;
1745
1746 bzero(&gpapte, sizeof(gpapte));
1747 gpapte.gpa = gpa;
1748
1749 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1750
1751 if (error == 0) {
1752 *num = gpapte.ptenum;
1753 for (i = 0; i < gpapte.ptenum; i++)
1754 pte[i] = gpapte.pte[i];
1755 }
1756
1757 return (error);
1758 }
1759
1760 int
vm_get_hpet_capabilities(struct vmctx * ctx,uint32_t * capabilities)1761 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1762 {
1763 int error;
1764 struct vm_hpet_cap cap;
1765
1766 bzero(&cap, sizeof(struct vm_hpet_cap));
1767 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1768 if (capabilities != NULL)
1769 *capabilities = cap.capabilities;
1770 return (error);
1771 }
1772
1773 int
vm_gla2gpa(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)1774 vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
1775 uint64_t gla, int prot, uint64_t *gpa, int *fault)
1776 {
1777 struct vm_gla2gpa gg;
1778 int error;
1779
1780 bzero(&gg, sizeof(struct vm_gla2gpa));
1781 gg.vcpuid = vcpu->vcpuid;
1782 gg.prot = prot;
1783 gg.gla = gla;
1784 gg.paging = *paging;
1785
1786 error = vcpu_ioctl(vcpu, VM_GLA2GPA, &gg);
1787 if (error == 0) {
1788 *fault = gg.fault;
1789 *gpa = gg.gpa;
1790 }
1791 return (error);
1792 }
1793
1794 int
vm_gla2gpa_nofault(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)1795 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
1796 uint64_t gla, int prot, uint64_t *gpa, int *fault)
1797 {
1798 struct vm_gla2gpa gg;
1799 int error;
1800
1801 bzero(&gg, sizeof(struct vm_gla2gpa));
1802 gg.vcpuid = vcpu->vcpuid;
1803 gg.prot = prot;
1804 gg.gla = gla;
1805 gg.paging = *paging;
1806
1807 error = vcpu_ioctl(vcpu, VM_GLA2GPA_NOFAULT, &gg);
1808 if (error == 0) {
1809 *fault = gg.fault;
1810 *gpa = gg.gpa;
1811 }
1812 return (error);
1813 }
1814
1815 #ifndef min
1816 #define min(a,b) (((a) < (b)) ? (a) : (b))
1817 #endif
1818
1819 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct iovec * iov,int iovcnt,int * fault)1820 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
1821 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1822 int *fault)
1823 {
1824 void *va;
1825 uint64_t gpa, off;
1826 int error, i, n;
1827
1828 for (i = 0; i < iovcnt; i++) {
1829 iov[i].iov_base = 0;
1830 iov[i].iov_len = 0;
1831 }
1832
1833 while (len) {
1834 assert(iovcnt > 0);
1835 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
1836 if (error || *fault)
1837 return (error);
1838
1839 off = gpa & PAGE_MASK;
1840 n = MIN(len, PAGE_SIZE - off);
1841
1842 va = vm_map_gpa(vcpu->ctx, gpa, n);
1843 if (va == NULL)
1844 return (EFAULT);
1845
1846 iov->iov_base = va;
1847 iov->iov_len = n;
1848 iov++;
1849 iovcnt--;
1850
1851 gla += n;
1852 len -= n;
1853 }
1854 return (0);
1855 }
1856
1857 void
vm_copy_teardown(struct iovec * iov __unused,int iovcnt __unused)1858 vm_copy_teardown(struct iovec *iov __unused, int iovcnt __unused)
1859 {
1860 /*
1861 * Intentionally empty. This is used by the instruction
1862 * emulation code shared with the kernel. The in-kernel
1863 * version of this is non-empty.
1864 */
1865 }
1866
1867 void
vm_copyin(struct iovec * iov,void * vp,size_t len)1868 vm_copyin(struct iovec *iov, void *vp, size_t len)
1869 {
1870 const char *src;
1871 char *dst;
1872 size_t n;
1873
1874 dst = vp;
1875 while (len) {
1876 assert(iov->iov_len);
1877 n = min(len, iov->iov_len);
1878 src = iov->iov_base;
1879 bcopy(src, dst, n);
1880
1881 iov++;
1882 dst += n;
1883 len -= n;
1884 }
1885 }
1886
1887 void
vm_copyout(const void * vp,struct iovec * iov,size_t len)1888 vm_copyout(const void *vp, struct iovec *iov, size_t len)
1889 {
1890 const char *src;
1891 char *dst;
1892 size_t n;
1893
1894 src = vp;
1895 while (len) {
1896 assert(iov->iov_len);
1897 n = min(len, iov->iov_len);
1898 dst = iov->iov_base;
1899 bcopy(src, dst, n);
1900
1901 iov++;
1902 src += n;
1903 len -= n;
1904 }
1905 }
1906
1907 static int
vm_get_cpus(struct vmctx * ctx,int which,cpuset_t * cpus)1908 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1909 {
1910 struct vm_cpuset vm_cpuset;
1911 int error;
1912
1913 bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1914 vm_cpuset.which = which;
1915 vm_cpuset.cpusetsize = sizeof(cpuset_t);
1916 vm_cpuset.cpus = cpus;
1917
1918 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1919 return (error);
1920 }
1921
1922 int
vm_active_cpus(struct vmctx * ctx,cpuset_t * cpus)1923 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1924 {
1925
1926 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1927 }
1928
1929 #ifdef __FreeBSD__
1930 int
vm_suspended_cpus(struct vmctx * ctx,cpuset_t * cpus)1931 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1932 {
1933
1934 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1935 }
1936 #endif /* __FreeBSD__ */
1937
1938 int
vm_debug_cpus(struct vmctx * ctx,cpuset_t * cpus)1939 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1940 {
1941
1942 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1943 }
1944
1945 int
vm_activate_cpu(struct vcpu * vcpu)1946 vm_activate_cpu(struct vcpu *vcpu)
1947 {
1948 struct vm_activate_cpu ac;
1949 int error;
1950
1951 bzero(&ac, sizeof(struct vm_activate_cpu));
1952 ac.vcpuid = vcpu->vcpuid;
1953 error = vcpu_ioctl(vcpu, VM_ACTIVATE_CPU, &ac);
1954 return (error);
1955 }
1956
1957 int
vm_suspend_all_cpus(struct vmctx * ctx)1958 vm_suspend_all_cpus(struct vmctx *ctx)
1959 {
1960 struct vm_activate_cpu ac;
1961 int error;
1962
1963 bzero(&ac, sizeof(struct vm_activate_cpu));
1964 ac.vcpuid = -1;
1965 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1966 return (error);
1967 }
1968
1969 int
vm_suspend_cpu(struct vcpu * vcpu)1970 vm_suspend_cpu(struct vcpu *vcpu)
1971 {
1972 struct vm_activate_cpu ac;
1973 int error;
1974
1975 bzero(&ac, sizeof(struct vm_activate_cpu));
1976 ac.vcpuid = vcpu->vcpuid;
1977 error = vcpu_ioctl(vcpu, VM_SUSPEND_CPU, &ac);
1978 return (error);
1979 }
1980
1981 int
vm_resume_cpu(struct vcpu * vcpu)1982 vm_resume_cpu(struct vcpu *vcpu)
1983 {
1984 struct vm_activate_cpu ac;
1985 int error;
1986
1987 bzero(&ac, sizeof(struct vm_activate_cpu));
1988 ac.vcpuid = vcpu->vcpuid;
1989 error = vcpu_ioctl(vcpu, VM_RESUME_CPU, &ac);
1990 return (error);
1991 }
1992
1993 int
vm_resume_all_cpus(struct vmctx * ctx)1994 vm_resume_all_cpus(struct vmctx *ctx)
1995 {
1996 struct vm_activate_cpu ac;
1997 int error;
1998
1999 bzero(&ac, sizeof(struct vm_activate_cpu));
2000 ac.vcpuid = -1;
2001 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
2002 return (error);
2003 }
2004
2005 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)2006 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
2007 {
2008 struct vm_intinfo vmii;
2009 int error;
2010
2011 bzero(&vmii, sizeof(struct vm_intinfo));
2012 vmii.vcpuid = vcpu->vcpuid;
2013 error = vcpu_ioctl(vcpu, VM_GET_INTINFO, &vmii);
2014 if (error == 0) {
2015 *info1 = vmii.info1;
2016 *info2 = vmii.info2;
2017 }
2018 return (error);
2019 }
2020
2021 int
vm_set_intinfo(struct vcpu * vcpu,uint64_t info1)2022 vm_set_intinfo(struct vcpu *vcpu, uint64_t info1)
2023 {
2024 struct vm_intinfo vmii;
2025 int error;
2026
2027 bzero(&vmii, sizeof(struct vm_intinfo));
2028 vmii.vcpuid = vcpu->vcpuid;
2029 vmii.info1 = info1;
2030 error = vcpu_ioctl(vcpu, VM_SET_INTINFO, &vmii);
2031 return (error);
2032 }
2033
2034 int
vm_rtc_write(struct vmctx * ctx,int offset,uint8_t value)2035 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
2036 {
2037 struct vm_rtc_data rtcdata;
2038 int error;
2039
2040 bzero(&rtcdata, sizeof(struct vm_rtc_data));
2041 rtcdata.offset = offset;
2042 rtcdata.value = value;
2043 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
2044 return (error);
2045 }
2046
2047 int
vm_rtc_read(struct vmctx * ctx,int offset,uint8_t * retval)2048 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
2049 {
2050 struct vm_rtc_data rtcdata;
2051 int error;
2052
2053 bzero(&rtcdata, sizeof(struct vm_rtc_data));
2054 rtcdata.offset = offset;
2055 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
2056 if (error == 0)
2057 *retval = rtcdata.value;
2058 return (error);
2059 }
2060
2061 #ifdef __FreeBSD__
2062 int
vm_rtc_settime(struct vmctx * ctx,time_t secs)2063 vm_rtc_settime(struct vmctx *ctx, time_t secs)
2064 {
2065 struct vm_rtc_time rtctime;
2066 int error;
2067
2068 bzero(&rtctime, sizeof(struct vm_rtc_time));
2069 rtctime.secs = secs;
2070 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
2071 return (error);
2072 }
2073
2074 int
vm_rtc_gettime(struct vmctx * ctx,time_t * secs)2075 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
2076 {
2077 struct vm_rtc_time rtctime;
2078 int error;
2079
2080 bzero(&rtctime, sizeof(struct vm_rtc_time));
2081 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
2082 if (error == 0)
2083 *secs = rtctime.secs;
2084 return (error);
2085 }
2086 #else /* __FreeBSD__ */
2087
2088 int
vm_rtc_settime(struct vmctx * ctx,const timespec_t * ts)2089 vm_rtc_settime(struct vmctx *ctx, const timespec_t *ts)
2090 {
2091 return (ioctl(ctx->fd, VM_RTC_SETTIME, ts));
2092 }
2093
2094 int
vm_rtc_gettime(struct vmctx * ctx,timespec_t * ts)2095 vm_rtc_gettime(struct vmctx *ctx, timespec_t *ts)
2096 {
2097 return (ioctl(ctx->fd, VM_RTC_GETTIME, ts));
2098 }
2099
2100 #endif /* __FreeBSD__ */
2101
2102 int
vm_restart_instruction(void * ctxp,int vcpu __unused)2103 vm_restart_instruction(void *ctxp, int vcpu __unused)
2104 {
2105 struct vmctx *ctx = ctxp;
2106 int arg;
2107
2108 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &arg));
2109 }
2110
2111 int
vm_set_topology(struct vmctx * ctx,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)2112 vm_set_topology(struct vmctx *ctx,
2113 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
2114 {
2115 struct vm_cpu_topology topology;
2116
2117 bzero(&topology, sizeof (struct vm_cpu_topology));
2118 topology.sockets = sockets;
2119 topology.cores = cores;
2120 topology.threads = threads;
2121 topology.maxcpus = maxcpus;
2122 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
2123 }
2124
2125 int
vm_get_topology(struct vmctx * ctx,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)2126 vm_get_topology(struct vmctx *ctx,
2127 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
2128 {
2129 struct vm_cpu_topology topology;
2130 int error;
2131
2132 bzero(&topology, sizeof (struct vm_cpu_topology));
2133 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
2134 if (error == 0) {
2135 *sockets = topology.sockets;
2136 *cores = topology.cores;
2137 *threads = topology.threads;
2138 *maxcpus = topology.maxcpus;
2139 }
2140 return (error);
2141 }
2142
2143 #ifdef __FreeBSD__
2144 /* Keep in sync with machine/vmm_dev.h. */
2145 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
2146 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
2147 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER,
2148 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
2149 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
2150 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
2151 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
2152 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
2153 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
2154 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
2155 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
2156 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
2157 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX,
2158 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
2159 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
2160 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
2161 VM_GLA2GPA_NOFAULT,
2162 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
2163 VM_SET_INTINFO, VM_GET_INTINFO,
2164 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
2165 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY,
2166 VM_SNAPSHOT_REQ, VM_RESTORE_TIME
2167 };
2168
2169 int
vm_limit_rights(struct vmctx * ctx)2170 vm_limit_rights(struct vmctx *ctx)
2171 {
2172 cap_rights_t rights;
2173 size_t ncmds;
2174
2175 cap_rights_init(&rights, CAP_IOCTL, CAP_MMAP_RW);
2176 if (caph_rights_limit(ctx->fd, &rights) != 0)
2177 return (-1);
2178 ncmds = nitems(vm_ioctl_cmds);
2179 if (caph_ioctls_limit(ctx->fd, vm_ioctl_cmds, ncmds) != 0)
2180 return (-1);
2181 return (0);
2182 }
2183 #endif
2184
2185 /*
2186 * Avoid using in new code. Operations on the fd should be wrapped here so that
2187 * capability rights can be kept in sync.
2188 */
2189 int
vm_get_device_fd(struct vmctx * ctx)2190 vm_get_device_fd(struct vmctx *ctx)
2191 {
2192
2193 return (ctx->fd);
2194 }
2195
2196 #ifndef __FreeBSD__
2197 int
vm_pmtmr_set_location(struct vmctx * ctx,uint16_t ioport)2198 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport)
2199 {
2200 return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport));
2201 }
2202
2203 int
vm_wrlock_cycle(struct vmctx * ctx)2204 vm_wrlock_cycle(struct vmctx *ctx)
2205 {
2206 if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) {
2207 return (errno);
2208 }
2209 return (0);
2210 }
2211
2212 int
vm_get_run_state(struct vcpu * vcpu,enum vcpu_run_state * state,uint8_t * sipi_vector)2213 vm_get_run_state(struct vcpu *vcpu, enum vcpu_run_state *state,
2214 uint8_t *sipi_vector)
2215 {
2216 struct vm_run_state data;
2217
2218 data.vcpuid = vcpu->vcpuid;
2219 if (vcpu_ioctl(vcpu, VM_GET_RUN_STATE, &data) != 0) {
2220 return (errno);
2221 }
2222
2223 *state = data.state;
2224 *sipi_vector = data.sipi_vector;
2225 return (0);
2226 }
2227
2228 int
vm_set_run_state(struct vcpu * vcpu,enum vcpu_run_state state,uint8_t sipi_vector)2229 vm_set_run_state(struct vcpu *vcpu, enum vcpu_run_state state,
2230 uint8_t sipi_vector)
2231 {
2232 struct vm_run_state data;
2233
2234 data.vcpuid = vcpu->vcpuid;
2235 data.state = state;
2236 data.sipi_vector = sipi_vector;
2237 if (vcpu_ioctl(vcpu, VM_SET_RUN_STATE, &data) != 0) {
2238 return (errno);
2239 }
2240
2241 return (0);
2242 }
2243
2244 int
vm_vcpu_barrier(struct vcpu * vcpu)2245 vm_vcpu_barrier(struct vcpu *vcpu)
2246 {
2247 if (ioctl(vcpu->ctx->fd, VM_VCPU_BARRIER, vcpu->vcpuid) != 0) {
2248 return (errno);
2249 }
2250
2251 return (0);
2252 }
2253 #endif /* __FreeBSD__ */
2254
2255 #ifdef __FreeBSD__
2256 const cap_ioctl_t *
vm_get_ioctls(size_t * len)2257 vm_get_ioctls(size_t *len)
2258 {
2259 cap_ioctl_t *cmds;
2260
2261 if (len == NULL) {
2262 cmds = malloc(sizeof(vm_ioctl_cmds));
2263 if (cmds == NULL)
2264 return (NULL);
2265 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
2266 return (cmds);
2267 }
2268
2269 *len = nitems(vm_ioctl_cmds);
2270 return (NULL);
2271 }
2272 #endif /* __FreeBSD__ */
2273