xref: /illumos-gate/usr/src/uts/intel/io/vmm/vmm_cpuid.c (revision 8ed63bc6926cb5db26dff2588e5d1622eda438ab)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*
29  * This file and its contents are supplied under the terms of the
30  * Common Development and Distribution License ("CDDL"), version 1.0.
31  * You may only use this file in accordance with the terms of version
32  * 1.0 of the CDDL.
33  *
34  * A full copy of the text of the CDDL should have accompanied this
35  * source.  A copy of the CDDL is also available via the Internet at
36  * http://www.illumos.org/license/CDDL.
37  *
38  * Copyright 2014 Pluribus Networks Inc.
39  * Copyright 2018 Joyent, Inc.
40  * Copyright 2025 Oxide Computer Company
41  */
42 
43 #include <sys/types.h>
44 #include <sys/stdbool.h>
45 #include <sys/errno.h>
46 
47 #include <machine/md_var.h>
48 #include <machine/specialreg.h>
49 
50 #include <machine/vmm.h>
51 #include <sys/vmm_kernel.h>
52 
53 #include "vmm_host.h"
54 #include "vmm_util.h"
55 #include "vlapic.h"
56 
57 /*
58  * CPUID Emulation
59  *
60  * All CPUID instruction exits are handled by the in-kernel emulation.
61  *
62  * ----------------
63  * Legacy Emulation
64  * ----------------
65  *
66  * Originally, the kernel vmm portion of bhyve relied on fixed logic to filter
67  * and/or generate CPUID results based on what was reported by the host CPU, as
68  * well as attributes of the VM (such as CPU topology, and enabled features).
69  * This is largely adequate to expose CPU capabilities to the guest in manner
70  * which allows it to operate properly.
71  *
72  * ------------------------------
73  * Userspace-Controlled Emulation
74  * ------------------------------
75  *
76  * In certain situations, more control over the CPUID emulation results present
77  * to the guest is desired.  Live migration between physical hosts is one such
78  * example, where the underlying CPUs, or at least their microcode, may differ
79  * between the source and destination.  In such cases, where changes to the
80  * CPUID results cannot be tolerated, the userspace portion of the VMM can be in
81  * complete control over the leaves which are presented to the guest.  It may
82  * still consult the "legacy" CPUID data for guidance about which CPU features
83  * are safe to expose (due to hypervisor limitations, etc).  This leaf
84  * information is configured on a per-vCPU basis.
85  *
86  * The emulation entries provided by userspace are expected to be in sorted
87  * order, running from lowest function and index to highest.
88  *
89  * For example:
90  * (func: 00h idx: 00h) ->
91  *     (flags: 0, eax: highest std leaf, ebx-edx: vendor id)
92  * (func: 0Dh idx: 00h) ->
93  *     (flags: VCE_FLAG_MATCH_INDEX, eax - edx: XCR0/XSAVE info)
94  * (func: 0Dh idx: 01h) ->
95  *     (flags: VCE_FLAG_MATCH_INDEX, eax - edx: XSAVE/XSAVEOPT details)
96  *     ...
97  * (func: 0Dh idx: 07H) ->
98  *     (flags: VCE_FLAG_MATCH_INDEX, eax - edx: AVX-512 details)
99  * (func: 8000000h idx: 0h) ->
100  *     (flags: 0, eax: highest extd leaf ...)
101  *     ...
102  */
103 
104 
105 #define	CPUID_TYPE_MASK	0xf0000000
106 #define	CPUID_TYPE_STD	0x00000000
107 #define	CPUID_TYPE_EXTD	0x80000000
108 
109 #define	CPUID_0000_0000	(0x0)
110 #define	CPUID_0000_0001	(0x1)
111 #define	CPUID_0000_0002	(0x2)
112 #define	CPUID_0000_0003	(0x3)
113 #define	CPUID_0000_0004	(0x4)
114 #define	CPUID_0000_0006	(0x6)
115 #define	CPUID_0000_0007	(0x7)
116 #define	CPUID_0000_000A	(0xA)
117 #define	CPUID_0000_000B	(0xB)
118 #define	CPUID_0000_000D	(0xD)
119 #define	CPUID_0000_000F	(0xF)
120 #define	CPUID_0000_0010	(0x10)
121 #define	CPUID_0000_0015	(0x15)
122 #define	CPUID_8000_0000	(0x80000000)
123 #define	CPUID_8000_0001	(0x80000001)
124 #define	CPUID_8000_0002	(0x80000002)
125 #define	CPUID_8000_0003	(0x80000003)
126 #define	CPUID_8000_0004	(0x80000004)
127 #define	CPUID_8000_0006	(0x80000006)
128 #define	CPUID_8000_0007	(0x80000007)
129 #define	CPUID_8000_0008	(0x80000008)
130 #define	CPUID_8000_001D	(0x8000001D)
131 #define	CPUID_8000_001E	(0x8000001E)
132 
133 #define	CPUID_VM_HIGH	0x40000000
134 
135 static const struct vcpu_cpuid_entry cpuid_empty_entry = { 0 };
136 
137 /*
138  * Given the CPUID configuration for a vCPU, locate the entry which matches the
139  * provided function/index tuple.  The entries list is walked in order, and the
140  * first valid match based on the function/index and flags will be emitted.
141  *
142  * If no match is found, but Intel-style fallback is configured, then the
143  * highest standard leaf encountered will be emitted.
144  */
145 static const struct vcpu_cpuid_entry *
cpuid_find_entry(const vcpu_cpuid_config_t * cfg,uint32_t func,uint32_t idx)146 cpuid_find_entry(const vcpu_cpuid_config_t *cfg, uint32_t func, uint32_t idx)
147 {
148 	const struct vcpu_cpuid_entry *last_std = NULL;
149 	const bool intel_fallback =
150 	    (cfg->vcc_flags & VCC_FLAG_INTEL_FALLBACK) != 0;
151 	bool matched_leaf = false;
152 
153 	ASSERT0(cfg->vcc_flags & VCC_FLAG_LEGACY_HANDLING);
154 
155 	for (uint_t i = 0; i < cfg->vcc_nent; i++) {
156 		const struct vcpu_cpuid_entry *ent = &cfg->vcc_entries[i];
157 		const bool ent_is_std =
158 		    (ent->vce_function & CPUID_TYPE_MASK) == CPUID_TYPE_STD;
159 		const bool ent_must_match_idx =
160 		    (ent->vce_flags & VCE_FLAG_MATCH_INDEX) != 0;
161 
162 		if (ent_is_std) {
163 			/*
164 			 * Keep track of the last "standard" leaf for
165 			 * Intel-style fallback behavior.
166 			 *
167 			 * This does currently not account for the sub-leaf
168 			 * index matching behavior for fallback described in the
169 			 * SDM.  It is not clear if any consumers rely on such
170 			 * matching when encountering fallback.
171 			 */
172 			last_std = ent;
173 		}
174 		if (ent->vce_function == func) {
175 			if (ent->vce_index == idx || !ent_must_match_idx) {
176 				return (ent);
177 			}
178 			/*
179 			 * Make note of when the top-level leaf matches, even
180 			 * when the index does not.
181 			 */
182 			matched_leaf = true;
183 		} else if (ent->vce_function > func) {
184 			if ((ent->vce_function & CPUID_TYPE_MASK) ==
185 			    (func & CPUID_TYPE_MASK)) {
186 				/*
187 				 * We are beyond a valid leaf to match, but have
188 				 * not exceeded the maximum leaf for this "type"
189 				 * (standard, extended, hvm, etc), so return an
190 				 * empty entry.
191 				 */
192 				return (&cpuid_empty_entry);
193 			} else {
194 				/*
195 				 * Otherwise, we can stop now, having gone
196 				 * beyond the last entry which could match the
197 				 * target function in a sorted list.
198 				 */
199 				break;
200 			}
201 		}
202 	}
203 
204 	if (matched_leaf || !intel_fallback) {
205 		return (&cpuid_empty_entry);
206 	} else {
207 		return (last_std);
208 	}
209 }
210 
211 /*
212  * Updates a previously-populated set of CPUID return values to account for the
213  * runtime state of the executing vCPU, i.e., the values in its control
214  * registers and MSRs that influence the values returned by the CPUID
215  * instruction.
216  *
217  * This function does not account for "static" properties of the vCPU or VM,
218  * such as the enablement of VM-wide features and capabilities (like x2APIC or
219  * INVPCID support) or settings that vary only with the vCPU's ID (like the
220  * values returned from its topology leaves).
221  *
222  * This function assumes that it is called from within VMRUN(), which guarantees
223  * that the guest's FPU state is loaded. This is required to obtain the correct
224  * values for leaves whose values depend on the guest values of %xcr0 and the
225  * IA32_XSS MSR.
226  */
227 static void
cpuid_apply_runtime_reg_state(struct vm * vm,int vcpuid,uint32_t func,uint32_t index,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)228 cpuid_apply_runtime_reg_state(struct vm *vm, int vcpuid, uint32_t func,
229     uint32_t index, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
230 {
231 	uint64_t cr4;
232 	int error;
233 	unsigned int regs[4];
234 
235 	switch (func) {
236 	case CPUID_0000_0001:
237 		/*
238 		 * If CPUID2_XSAVE is being advertised and the
239 		 * guest has set CR4_XSAVE, set CPUID2_OSXSAVE.
240 		 */
241 		*ecx &= ~CPUID2_OSXSAVE;
242 		if ((*ecx & CPUID2_XSAVE) != 0) {
243 			error = vm_get_register(vm, vcpuid,
244 			    VM_REG_GUEST_CR4, &cr4);
245 			VERIFY0(error);
246 			if ((cr4 & CR4_XSAVE) != 0) {
247 				*ecx |= CPUID2_OSXSAVE;
248 			}
249 		}
250 
251 		/*
252 		 * AMD APM vol. 3 rev. 3.36 section E.3.2 notes that this bit is
253 		 * set only if the "APIC exists and is enabled." Vol. 3 of the
254 		 * June 2024 Intel SDM notes in section 11.4.3 that "[t]he CPUID
255 		 * feature flag for the APIC ... is also set to 0" when the APIC
256 		 * enable bit is cleared.
257 		 */
258 		if (vlapic_hw_disabled(vm_lapic(vm, vcpuid))) {
259 			*edx &= ~CPUID_APIC;
260 		}
261 		break;
262 
263 	case CPUID_0000_000D:
264 		/*
265 		 * Leaf D reports XSAVE area sizes that vary with the current
266 		 * value of %xcr0. Since this function is called with %xcr0
267 		 * still set to its guest value, the easiest way to get the
268 		 * correct output is to execute CPUID on the host and copy out
269 		 * the relevant values.
270 		 */
271 		cpuid_count(func, index, regs);
272 		switch (index) {
273 		case 0:
274 			/*
275 			 * %eax, %ecx, and %edx return information about the
276 			 * complete set of features the processor supports, not
277 			 * just the ones that are enabled. The caller is
278 			 * presumed to have set these already, so just update
279 			 * %ebx.
280 			 */
281 			*ebx = regs[1];
282 			break;
283 		case 1:
284 			/*
285 			 * Subleaf 1 reports the XSAVE area size required for
286 			 * features enabled in %xcr0 and the IA32_XSS MSR via
287 			 * %ebx. As with subleaf 0, the caller is presumed to
288 			 * have set the other three output register values
289 			 * already.
290 			 *
291 			 * AMD APM vol. 3 rev. 3.36 and the June 2024 edition of
292 			 * volume 2 of the Intel SDM specify slightly different
293 			 * behavior here: the SDM says that the value returned
294 			 * in %ebx depends in part on whether %eax advertises
295 			 * XSAVEC and IA32_XSS support, but the APM does not. To
296 			 * handle these cases:
297 			 *
298 			 * 1. If the guest isn't a VMX guest, just copy the
299 			 *    current reported save area size.
300 			 * 2. If both the XSAVEC and XSAVES bits are clear in
301 			 *    %eax, return a save area size of 0 in %ebx to
302 			 *    match the SDM description.
303 			 * 3. Otherwise, copy the host's reported save area
304 			 *    size.
305 			 *
306 			 * Note that, because XSAVES saves a superset of the
307 			 * state saved by XSAVEC, it's OK to report the host's
308 			 * save area size even if the host and guest report
309 			 * different feature bits in %eax:
310 			 *
311 			 * - If the host supports XSAVES and the guest doesn't,
312 			 *   the reported save area size will be too large, but
313 			 *   the guest can still use XSAVEC safely.
314 			 * - If the VM's explicit CPUID values advertise XSAVES
315 			 *   support, but the host doesn't support XSAVES, the
316 			 *   host's reported save area size will still be large
317 			 *   enough for the xcr0-controlled state saved by
318 			 *   XSAVEC. The area will be undersized for XSAVES,
319 			 *   but this is OK because the guest can't execute
320 			 *   XSAVES anyway (it will #UD).
321 			 */
322 			if (!vmm_is_intel()) {
323 				*ebx = regs[1];
324 			} else {
325 				if ((*eax & (CPUID_EXTSTATE_XSAVEC |
326 				    CPUID_EXTSTATE_XSAVES)) == 0) {
327 					*ebx = 0;
328 				} else {
329 					*ebx = regs[1];
330 				}
331 			}
332 			break;
333 		default:
334 			/*
335 			 * Other subleaves of leaf D report the relative sizes
336 			 * and offsets of the state required for specific
337 			 * features in the relevant offset masks. These don't
338 			 * depend on the current enabled features (only the
339 			 * supported ones), so no enabled-feature specialization
340 			 * is required.
341 			 */
342 			break;
343 		}
344 		break;
345 	}
346 }
347 
348 /*
349  * Emulates the CPUID instruction on the specified vCPU and returns its outputs
350  * in the rax/rbx/rcx/rdx variables.
351  *
352  * This function assumes it is called from within VMRUN(), which guarantees that
353  * certain guest state (e.g. FPU state) remains loaded.
354  */
355 void
vcpu_emulate_cpuid(struct vm * vm,int vcpuid,uint64_t * rax,uint64_t * rbx,uint64_t * rcx,uint64_t * rdx)356 vcpu_emulate_cpuid(struct vm *vm, int vcpuid, uint64_t *rax, uint64_t *rbx,
357     uint64_t *rcx, uint64_t *rdx)
358 {
359 	const vcpu_cpuid_config_t *cfg = vm_cpuid_config(vm, vcpuid);
360 	uint32_t func, index;
361 
362 	ASSERT3P(rax, !=, NULL);
363 	ASSERT3P(rbx, !=, NULL);
364 	ASSERT3P(rcx, !=, NULL);
365 	ASSERT3P(rdx, !=, NULL);
366 
367 	uint32_t regs[4] = { *rax, 0, *rcx, 0 };
368 	func = (uint32_t)*rax;
369 	index = (uint32_t)*rcx;
370 
371 	/* Fall back to legacy handling if specified */
372 	if ((cfg->vcc_flags & VCC_FLAG_LEGACY_HANDLING) != 0) {
373 		legacy_emulate_cpuid(vm, vcpuid, &regs[0], &regs[1], &regs[2],
374 		    &regs[3]);
375 	} else {
376 		const struct vcpu_cpuid_entry *ent = cpuid_find_entry(cfg, func,
377 		    index);
378 		ASSERT(ent != NULL);
379 
380 		/*
381 		 * The function and index in the found entry may differ from
382 		 * what the guest requested (if the entry was chosen via the
383 		 * "highest leaf" fallback described above). Use the values
384 		 * from the entry to ensure that the correct vCPU state fixups
385 		 * get applied below.
386 		 *
387 		 * The found entry may also be an all-zero empty entry (if the
388 		 * requested leaf is invalid but is less than the maximum valid
389 		 * leaf). It's OK to fall through in this case because leaf 0
390 		 * never has any CPU state-based fixups to apply.
391 		 */
392 		func = ent->vce_function;
393 		index = ent->vce_index;
394 		regs[0] = ent->vce_eax;
395 		regs[1] = ent->vce_ebx;
396 		regs[2] = ent->vce_ecx;
397 		regs[3] = ent->vce_edx;
398 	}
399 
400 	/* Fix up any returned values that vary with guest register state. */
401 	cpuid_apply_runtime_reg_state(vm, vcpuid, func, index, &regs[0],
402 	    &regs[1], &regs[2], &regs[3]);
403 
404 	/* CPUID clears the upper 32-bits of the long-mode registers. */
405 	*rax = regs[0];
406 	*rbx = regs[1];
407 	*rcx = regs[2];
408 	*rdx = regs[3];
409 }
410 
411 /*
412  * Get the current CPUID emulation configuration for this vCPU.
413  *
414  * Only the existing flags will be emitted if the vCPU is configured for legacy
415  * operation via the VCC_FLAG_LEGACY_HANDLING flag.  If in userspace-controlled
416  * mode, then we will attempt to copy the existing entries into vcc_entries,
417  * its side specified by vcc_nent.
418  *
419  * Regardless of whether vcc_entries is adequately sized (or even present),
420  * vcc_nent will be set to the number of existing entries.
421  */
422 int
vm_get_cpuid(struct vm * vm,int vcpuid,vcpu_cpuid_config_t * res)423 vm_get_cpuid(struct vm *vm, int vcpuid, vcpu_cpuid_config_t *res)
424 {
425 	if (vcpuid < 0 || vcpuid > VM_MAXCPU) {
426 		return (EINVAL);
427 	}
428 
429 	const vcpu_cpuid_config_t *src = vm_cpuid_config(vm, vcpuid);
430 	if (src->vcc_nent > res->vcc_nent) {
431 		res->vcc_nent = src->vcc_nent;
432 		return (E2BIG);
433 	} else if (src->vcc_nent != 0) {
434 		bcopy(src->vcc_entries, res->vcc_entries,
435 		    src->vcc_nent * sizeof (struct vcpu_cpuid_entry));
436 	}
437 	res->vcc_flags = src->vcc_flags;
438 	res->vcc_nent = src->vcc_nent;
439 	return (0);
440 }
441 
442 /*
443  * Set the CPUID emulation configuration for this vCPU.
444  *
445  * If VCC_FLAG_LEGACY_HANDLING is set in vcc_flags, then vcc_nent is expected to
446  * be set to 0, as configuring a list of entries would be useless when using the
447  * legacy handling.
448  *
449  * Any existing entries which are configured are freed, and the newly provided
450  * ones will be copied into their place.
451  */
452 int
vm_set_cpuid(struct vm * vm,int vcpuid,const vcpu_cpuid_config_t * src)453 vm_set_cpuid(struct vm *vm, int vcpuid, const vcpu_cpuid_config_t *src)
454 {
455 	if (vcpuid < 0 || vcpuid > VM_MAXCPU) {
456 		return (EINVAL);
457 	}
458 	if (src->vcc_nent > VMM_MAX_CPUID_ENTRIES) {
459 		return (EINVAL);
460 	}
461 	if ((src->vcc_flags & ~VCC_FLAGS_VALID) != 0) {
462 		return (EINVAL);
463 	}
464 	if ((src->vcc_flags & VCC_FLAG_LEGACY_HANDLING) != 0 &&
465 	    src->vcc_nent != 0) {
466 		/* No entries should be provided if using legacy handling */
467 		return (EINVAL);
468 	}
469 	for (uint_t i = 0; i < src->vcc_nent; i++) {
470 		/* Ensure all entries carry valid flags */
471 		if ((src->vcc_entries[i].vce_flags & ~VCE_FLAGS_VALID) != 0) {
472 			return (EINVAL);
473 		}
474 	}
475 
476 	vcpu_cpuid_config_t *cfg = vm_cpuid_config(vm, vcpuid);
477 
478 	/* Free any existing entries first */
479 	vcpu_cpuid_cleanup(cfg);
480 
481 	/* Copy supplied entries into freshly allocated space */
482 	if (src->vcc_nent != 0) {
483 		const size_t entries_sz =
484 		    src->vcc_nent * sizeof (struct vcpu_cpuid_entry);
485 
486 		cfg->vcc_nent = src->vcc_nent;
487 		cfg->vcc_entries = kmem_alloc(entries_sz, KM_SLEEP);
488 		bcopy(src->vcc_entries, cfg->vcc_entries, entries_sz);
489 	}
490 	cfg->vcc_flags = src->vcc_flags;
491 
492 	return (0);
493 }
494 
495 void
vcpu_cpuid_init(vcpu_cpuid_config_t * cfg)496 vcpu_cpuid_init(vcpu_cpuid_config_t *cfg)
497 {
498 	/* Default to legacy-style handling */
499 	cfg->vcc_flags = VCC_FLAG_LEGACY_HANDLING;
500 	cfg->vcc_nent = 0;
501 	cfg->vcc_entries = NULL;
502 }
503 
504 void
vcpu_cpuid_cleanup(vcpu_cpuid_config_t * cfg)505 vcpu_cpuid_cleanup(vcpu_cpuid_config_t *cfg)
506 {
507 	if (cfg->vcc_nent != 0) {
508 		ASSERT3P(cfg->vcc_entries, !=, NULL);
509 
510 		kmem_free(cfg->vcc_entries,
511 		    cfg->vcc_nent * sizeof (struct vcpu_cpuid_entry));
512 
513 		cfg->vcc_nent = 0;
514 		cfg->vcc_entries = NULL;
515 	}
516 }
517 
518 static const char bhyve_id[12] = "bhyve bhyve ";
519 
520 /*
521  * Force exposition of the invariant TSC capability, regardless of whether the
522  * host CPU reports having it.
523  */
524 static int vmm_force_invariant_tsc = 0;
525 
526 /*
527  * CPUID instruction Fn0000_0001:
528  */
529 #define	CPUID_0000_0001_APICID_SHIFT	24
530 
531 
532 /*
533  * Compute ceil(log2(x)).  Returns -1 if x is zero.
534  */
535 static __inline int
log2(uint_t x)536 log2(uint_t x)
537 {
538 	return (x == 0 ? -1 : fls(x - 1));
539 }
540 
541 /*
542  * The "legacy" bhyve cpuid emulation, which largly applies statically defined
543  * masks to the data provided by the host CPU.
544  */
545 void
legacy_emulate_cpuid(struct vm * vm,int vcpu_id,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)546 legacy_emulate_cpuid(struct vm *vm, int vcpu_id, uint32_t *eax, uint32_t *ebx,
547     uint32_t *ecx, uint32_t *edx)
548 {
549 	const struct xsave_limits *limits;
550 	int error, enable_invpcid, level, width = 0, x2apic_id = 0;
551 	unsigned int func, regs[4], logical_cpus = 0, param;
552 	enum x2apic_state x2apic_state;
553 	uint16_t cores, maxcpus, sockets, threads;
554 
555 	/*
556 	 * The function of CPUID is controlled through the provided value of
557 	 * %eax (and secondarily %ecx, for certain leaf data).
558 	 */
559 	func = (uint32_t)*eax;
560 	param = (uint32_t)*ecx;
561 
562 	/*
563 	 * Requests for invalid CPUID levels should map to the highest
564 	 * available level instead.
565 	 */
566 	if (cpu_exthigh != 0 && func >= 0x80000000) {
567 		if (func > cpu_exthigh)
568 			func = cpu_exthigh;
569 	} else if (func >= 0x40000000) {
570 		if (func > CPUID_VM_HIGH)
571 			func = CPUID_VM_HIGH;
572 	} else if (func > cpu_high) {
573 		func = cpu_high;
574 	}
575 
576 	/*
577 	 * In general the approach used for CPU topology is to
578 	 * advertise a flat topology where all CPUs are packages with
579 	 * no multi-core or SMT.
580 	 */
581 	switch (func) {
582 		/*
583 		 * Pass these through to the guest
584 		 */
585 		case CPUID_0000_0000:
586 		case CPUID_0000_0002:
587 		case CPUID_0000_0003:
588 		case CPUID_8000_0000:
589 		case CPUID_8000_0002:
590 		case CPUID_8000_0003:
591 		case CPUID_8000_0004:
592 		case CPUID_8000_0006:
593 			cpuid_count(func, param, regs);
594 			break;
595 		case CPUID_8000_0008:
596 			cpuid_count(func, param, regs);
597 			if (vmm_is_svm()) {
598 				/*
599 				 * As on Intel (0000_0007:0, EDX), mask out
600 				 * unsupported or unsafe AMD extended features
601 				 * (8000_0008 EBX).
602 				 */
603 				regs[1] &= (AMDFEID_CLZERO | AMDFEID_IRPERF |
604 				    AMDFEID_XSAVEERPTR);
605 
606 				vm_get_topology(vm, &sockets, &cores, &threads,
607 				    &maxcpus);
608 				/*
609 				 * Here, width is ApicIdCoreIdSize, present on
610 				 * at least Family 15h and newer.  It
611 				 * represents the "number of bits in the
612 				 * initial apicid that indicate thread id
613 				 * within a package."
614 				 *
615 				 * Our topo_probe_amd() uses it for
616 				 * pkg_id_shift and other OSes may rely on it.
617 				 */
618 				width = MIN(0xF, log2(threads * cores));
619 				if (width < 0x4)
620 					width = 0;
621 				logical_cpus = MIN(0xFF, threads * cores - 1);
622 				regs[2] = (width << AMDID_COREID_SIZE_SHIFT) |
623 				    logical_cpus;
624 			}
625 			break;
626 
627 		case CPUID_8000_0001:
628 			cpuid_count(func, param, regs);
629 
630 			/*
631 			 * Hide SVM from guest.
632 			 */
633 			regs[2] &= ~AMDID2_SVM;
634 
635 			/*
636 			 * Don't advertise extended performance counter MSRs
637 			 * to the guest.
638 			 */
639 			regs[2] &= ~AMDID2_PCXC;
640 			regs[2] &= ~AMDID2_PNXC;
641 			regs[2] &= ~AMDID2_PTSCEL2I;
642 
643 			/*
644 			 * Don't advertise Instruction Based Sampling feature.
645 			 */
646 			regs[2] &= ~AMDID2_IBS;
647 
648 			/* NodeID MSR not available */
649 			regs[2] &= ~AMDID2_NODE_ID;
650 
651 			/* Don't advertise the OS visible workaround feature */
652 			regs[2] &= ~AMDID2_OSVW;
653 
654 			/* Hide mwaitx/monitorx capability from the guest */
655 			regs[2] &= ~AMDID2_MWAITX;
656 
657 #ifndef __FreeBSD__
658 			/*
659 			 * Detection routines for TCE and FFXSR are missing
660 			 * from our vm_cpuid_capability() detection logic
661 			 * today.  Mask them out until that is remedied.
662 			 * They do not appear to be in common usage, so their
663 			 * absence should not cause undue trouble.
664 			 */
665 			regs[2] &= ~AMDID2_TCE;
666 			regs[3] &= ~AMDID_FFXSR;
667 #endif
668 
669 			/*
670 			 * Hide rdtscp/ia32_tsc_aux until we know how
671 			 * to deal with them.
672 			 */
673 			regs[3] &= ~AMDID_RDTSCP;
674 			break;
675 
676 		case CPUID_8000_0007:
677 			cpuid_count(func, param, regs);
678 			/*
679 			 * AMD uses this leaf to advertise the processor's
680 			 * power monitoring and RAS capabilities. These
681 			 * features are hardware-specific and exposing
682 			 * them to a guest doesn't make a lot of sense.
683 			 *
684 			 * Intel uses this leaf only to advertise the
685 			 * "Invariant TSC" feature with all other bits
686 			 * being reserved (set to zero).
687 			 */
688 			regs[0] = 0;
689 			regs[1] = 0;
690 			regs[2] = 0;
691 
692 			/*
693 			 * If the host system possesses an invariant TSC, then
694 			 * it is safe to expose to the guest.
695 			 *
696 			 * If there is measured skew between host TSCs, it will
697 			 * be properly offset so guests do not observe any
698 			 * change between CPU migrations.
699 			 */
700 			regs[3] &= AMDPM_TSC_INVARIANT;
701 
702 			/*
703 			 * Since illumos avoids deep C-states on CPUs which do
704 			 * not support an invariant TSC, it may be safe (and
705 			 * desired) to unconditionally expose that capability to
706 			 * the guest.
707 			 */
708 			if (vmm_force_invariant_tsc != 0) {
709 				regs[3] |= AMDPM_TSC_INVARIANT;
710 			}
711 			break;
712 
713 		case CPUID_8000_001D:
714 			/* AMD Cache topology, like 0000_0004 for Intel. */
715 			if (!vmm_is_svm())
716 				goto default_leaf;
717 
718 			/*
719 			 * Similar to Intel, generate a fictitious cache
720 			 * topology for the guest with L3 shared by the
721 			 * package, and L1 and L2 local to a core.
722 			 */
723 			vm_get_topology(vm, &sockets, &cores, &threads,
724 			    &maxcpus);
725 			switch (param) {
726 			case 0:
727 				logical_cpus = threads;
728 				level = 1;
729 				func = 1;	/* data cache */
730 				break;
731 			case 1:
732 				logical_cpus = threads;
733 				level = 2;
734 				func = 3;	/* unified cache */
735 				break;
736 			case 2:
737 				logical_cpus = threads * cores;
738 				level = 3;
739 				func = 3;	/* unified cache */
740 				break;
741 			default:
742 				logical_cpus = 0;
743 				level = 0;
744 				func = 0;
745 				break;
746 			}
747 
748 			if (level == 0) {
749 				regs[0] = 0;
750 				regs[1] = 0;
751 			} else {
752 				logical_cpus = MIN(0xfff, logical_cpus - 1);
753 				regs[0] = (logical_cpus << 14) | (1 << 8) |
754 				    (level << 5) | func;
755 				regs[1] = func > 0 ? _CACHE_LINE_SIZE - 1 : 0;
756 			}
757 			regs[2] = 0;
758 			regs[3] = 0;
759 			break;
760 
761 		case CPUID_8000_001E:
762 			/*
763 			 * AMD Family 16h+ and Hygon Family 18h additional
764 			 * identifiers.
765 			 */
766 			if (!vmm_is_svm() || CPUID_TO_FAMILY(cpu_id) < 0x16)
767 				goto default_leaf;
768 
769 			vm_get_topology(vm, &sockets, &cores, &threads,
770 			    &maxcpus);
771 			regs[0] = vcpu_id;
772 			threads = MIN(0xFF, threads - 1);
773 			regs[1] = (threads << 8) |
774 			    (vcpu_id >> log2(threads + 1));
775 			/*
776 			 * XXX Bhyve topology cannot yet represent >1 node per
777 			 * processor.
778 			 */
779 			regs[2] = 0;
780 			regs[3] = 0;
781 			break;
782 
783 		case CPUID_0000_0001:
784 			do_cpuid(1, regs);
785 
786 			error = vm_get_x2apic_state(vm, vcpu_id, &x2apic_state);
787 			VERIFY0(error);
788 
789 			/*
790 			 * Override the APIC ID only in ebx
791 			 */
792 			regs[1] &= ~(CPUID_LOCAL_APIC_ID);
793 			regs[1] |= (vcpu_id << CPUID_0000_0001_APICID_SHIFT);
794 
795 			/*
796 			 * Don't expose VMX, SpeedStep, TME or SMX capability.
797 			 * Advertise x2APIC capability and Hypervisor guest.
798 			 */
799 			regs[2] &= ~(CPUID2_VMX | CPUID2_EST | CPUID2_TM2);
800 			regs[2] &= ~(CPUID2_SMX);
801 
802 			regs[2] |= CPUID2_HV;
803 
804 			if (x2apic_state != X2APIC_DISABLED)
805 				regs[2] |= CPUID2_X2APIC;
806 			else
807 				regs[2] &= ~CPUID2_X2APIC;
808 
809 			/*
810 			 * Only advertise CPUID2_XSAVE in the guest if
811 			 * the host is using XSAVE.
812 			 */
813 			if (!(regs[2] & CPUID2_OSXSAVE))
814 				regs[2] &= ~CPUID2_XSAVE;
815 
816 			/*
817 			 * Hide monitor/mwait until we know how to deal with
818 			 * these instructions.
819 			 */
820 			regs[2] &= ~CPUID2_MON;
821 
822 			/*
823 			 * Hide the performance and debug features.
824 			 */
825 			regs[2] &= ~CPUID2_PDCM;
826 
827 			/*
828 			 * No TSC deadline support in the APIC yet
829 			 */
830 			regs[2] &= ~CPUID2_TSCDLT;
831 
832 			/*
833 			 * Hide thermal monitoring
834 			 */
835 			regs[3] &= ~(CPUID_ACPI | CPUID_TM);
836 
837 			/*
838 			 * Hide the debug store capability.
839 			 */
840 			regs[3] &= ~CPUID_DS;
841 
842 			/*
843 			 * Advertise the Machine Check and MTRR capability.
844 			 *
845 			 * Some guest OSes (e.g. Windows) will not boot if
846 			 * these features are absent.
847 			 */
848 			regs[3] |= (CPUID_MCA | CPUID_MCE | CPUID_MTRR);
849 
850 			vm_get_topology(vm, &sockets, &cores, &threads,
851 			    &maxcpus);
852 			logical_cpus = threads * cores;
853 			regs[1] &= ~CPUID_HTT_CORES;
854 			regs[1] |= (logical_cpus & 0xff) << 16;
855 			regs[3] |= CPUID_HTT;
856 			break;
857 
858 		case CPUID_0000_0004:
859 			cpuid_count(func, param, regs);
860 
861 			if (regs[0] || regs[1] || regs[2] || regs[3]) {
862 				vm_get_topology(vm, &sockets, &cores, &threads,
863 				    &maxcpus);
864 				regs[0] &= 0x3ff;
865 				regs[0] |= (cores - 1) << 26;
866 				/*
867 				 * Cache topology:
868 				 * - L1 and L2 are shared only by the logical
869 				 *   processors in a single core.
870 				 * - L3 and above are shared by all logical
871 				 *   processors in the package.
872 				 */
873 				logical_cpus = threads;
874 				level = (regs[0] >> 5) & 0x7;
875 				if (level >= 3)
876 					logical_cpus *= cores;
877 				regs[0] |= (logical_cpus - 1) << 14;
878 			}
879 			break;
880 
881 		case CPUID_0000_0007:
882 			regs[0] = 0;
883 			regs[1] = 0;
884 			regs[2] = 0;
885 			regs[3] = 0;
886 
887 			/* leaf 0 */
888 			if (param == 0) {
889 				cpuid_count(func, param, regs);
890 
891 				/* Only leaf 0 is supported */
892 				regs[0] = 0;
893 
894 				/*
895 				 * Expose known-safe features.
896 				 */
897 				regs[1] &= CPUID_STDEXT_FSGSBASE |
898 				    CPUID_STDEXT_BMI1 | CPUID_STDEXT_HLE |
899 				    CPUID_STDEXT_AVX2 | CPUID_STDEXT_SMEP |
900 				    CPUID_STDEXT_BMI2 |
901 				    CPUID_STDEXT_ERMS | CPUID_STDEXT_RTM |
902 				    CPUID_STDEXT_AVX512F |
903 				    CPUID_STDEXT_AVX512DQ |
904 				    CPUID_STDEXT_RDSEED |
905 				    CPUID_STDEXT_SMAP |
906 				    CPUID_STDEXT_AVX512PF |
907 				    CPUID_STDEXT_AVX512ER |
908 				    CPUID_STDEXT_AVX512CD | CPUID_STDEXT_SHA |
909 				    CPUID_STDEXT_AVX512BW |
910 				    CPUID_STDEXT_AVX512VL;
911 				regs[2] &= CPUID_STDEXT2_VAES |
912 				    CPUID_STDEXT2_VPCLMULQDQ;
913 				regs[3] &= CPUID_STDEXT3_MD_CLEAR;
914 
915 				/* Advertise INVPCID if it is enabled. */
916 				error = vm_get_capability(vm, vcpu_id,
917 				    VM_CAP_ENABLE_INVPCID, &enable_invpcid);
918 				if (error == 0 && enable_invpcid)
919 					regs[1] |= CPUID_STDEXT_INVPCID;
920 			}
921 			break;
922 
923 		case CPUID_0000_0006:
924 			regs[0] = CPUTPM1_ARAT;
925 			regs[1] = 0;
926 			regs[2] = 0;
927 			regs[3] = 0;
928 			break;
929 
930 		case CPUID_0000_000A:
931 			/*
932 			 * Handle the access, but report 0 for
933 			 * all options
934 			 */
935 			regs[0] = 0;
936 			regs[1] = 0;
937 			regs[2] = 0;
938 			regs[3] = 0;
939 			break;
940 
941 		case CPUID_0000_000B:
942 			/*
943 			 * Intel processor topology enumeration
944 			 */
945 			if (vmm_is_intel()) {
946 				vm_get_topology(vm, &sockets, &cores, &threads,
947 				    &maxcpus);
948 				if (param == 0) {
949 					logical_cpus = threads;
950 					width = log2(logical_cpus);
951 					level = CPUID_TYPE_SMT;
952 					x2apic_id = vcpu_id;
953 				}
954 
955 				if (param == 1) {
956 					logical_cpus = threads * cores;
957 					width = log2(logical_cpus);
958 					level = CPUID_TYPE_CORE;
959 					x2apic_id = vcpu_id;
960 				}
961 
962 				if (param >= 2) {
963 					width = 0;
964 					logical_cpus = 0;
965 					level = 0;
966 					x2apic_id = 0;
967 				}
968 
969 				regs[0] = width & 0x1f;
970 				regs[1] = logical_cpus & 0xffff;
971 				regs[2] = (level << 8) | (param & 0xff);
972 				regs[3] = x2apic_id;
973 			} else {
974 				regs[0] = 0;
975 				regs[1] = 0;
976 				regs[2] = 0;
977 				regs[3] = 0;
978 			}
979 			break;
980 
981 		case CPUID_0000_000D:
982 			limits = vmm_get_xsave_limits();
983 			if (!limits->xsave_enabled) {
984 				regs[0] = 0;
985 				regs[1] = 0;
986 				regs[2] = 0;
987 				regs[3] = 0;
988 				break;
989 			}
990 
991 			cpuid_count(func, param, regs);
992 			switch (param) {
993 			case 0:
994 				/*
995 				 * Only permit the guest to use bits
996 				 * that are active in the host in
997 				 * %xcr0.  Also, claim that the
998 				 * maximum save area size is
999 				 * equivalent to the host's current
1000 				 * save area size.  Since this runs
1001 				 * "inside" of vmrun(), it runs with
1002 				 * the guest's xcr0, so the current
1003 				 * save area size is correct as-is.
1004 				 */
1005 				regs[0] &= limits->xcr0_allowed;
1006 				regs[2] = limits->xsave_max_size;
1007 				regs[3] &= (limits->xcr0_allowed >> 32);
1008 				break;
1009 			case 1:
1010 				/* Only permit XSAVEOPT. */
1011 				regs[0] &= CPUID_EXTSTATE_XSAVEOPT;
1012 				regs[1] = 0;
1013 				regs[2] = 0;
1014 				regs[3] = 0;
1015 				break;
1016 			default:
1017 				/*
1018 				 * If the leaf is for a permitted feature,
1019 				 * pass through as-is, otherwise return
1020 				 * all zeroes.
1021 				 */
1022 				if (!(limits->xcr0_allowed & (1ul << param))) {
1023 					regs[0] = 0;
1024 					regs[1] = 0;
1025 					regs[2] = 0;
1026 					regs[3] = 0;
1027 				}
1028 				break;
1029 			}
1030 			break;
1031 
1032 		case CPUID_0000_000F:
1033 		case CPUID_0000_0010:
1034 			/*
1035 			 * Do not report any Resource Director Technology
1036 			 * capabilities.  Exposing control of cache or memory
1037 			 * controller resource partitioning to the guest is not
1038 			 * at all sensible.
1039 			 *
1040 			 * This is already hidden at a high level by masking of
1041 			 * leaf 0x7.  Even still, a guest may look here for
1042 			 * detailed capability information.
1043 			 */
1044 			regs[0] = 0;
1045 			regs[1] = 0;
1046 			regs[2] = 0;
1047 			regs[3] = 0;
1048 			break;
1049 
1050 		case CPUID_0000_0015:
1051 			/*
1052 			 * Don't report CPU TSC/Crystal ratio and clock
1053 			 * values since guests may use these to derive the
1054 			 * local APIC frequency..
1055 			 */
1056 			regs[0] = 0;
1057 			regs[1] = 0;
1058 			regs[2] = 0;
1059 			regs[3] = 0;
1060 			break;
1061 
1062 		case 0x40000000:
1063 			regs[0] = CPUID_VM_HIGH;
1064 			bcopy(bhyve_id, &regs[1], 4);
1065 			bcopy(bhyve_id + 4, &regs[2], 4);
1066 			bcopy(bhyve_id + 8, &regs[3], 4);
1067 			break;
1068 
1069 		default:
1070 default_leaf:
1071 			/*
1072 			 * The leaf value has already been clamped so
1073 			 * simply pass this through.
1074 			 */
1075 			cpuid_count(func, param, regs);
1076 			break;
1077 	}
1078 
1079 	*eax = regs[0];
1080 	*ebx = regs[1];
1081 	*ecx = regs[2];
1082 	*edx = regs[3];
1083 }
1084