1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 *
11 *
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include <sys/cdefs.h>
75 #include "opt_ktrace.h"
76 #include "opt_vm.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/lock.h>
82 #include <sys/mman.h>
83 #include <sys/mutex.h>
84 #include <sys/pctrie.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/refcount.h>
88 #include <sys/resourcevar.h>
89 #include <sys/rwlock.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_reserv.h>
111
112 #define PFBAK 4
113 #define PFFOR 4
114
115 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
116
117 #define VM_FAULT_DONTNEED_MIN 1048576
118
119 struct faultstate {
120 /* Fault parameters. */
121 vm_offset_t vaddr;
122 vm_page_t *m_hold;
123 vm_prot_t fault_type;
124 vm_prot_t prot;
125 int fault_flags;
126 boolean_t wired;
127
128 /* Control state. */
129 struct timeval oom_start_time;
130 bool oom_started;
131 int nera;
132 bool can_read_lock;
133
134 /* Page reference for cow. */
135 vm_page_t m_cow;
136
137 /* Current object. */
138 vm_object_t object;
139 vm_pindex_t pindex;
140 vm_page_t m;
141
142 /* Top-level map object. */
143 vm_object_t first_object;
144 vm_pindex_t first_pindex;
145 vm_page_t first_m;
146
147 /* Map state. */
148 vm_map_t map;
149 vm_map_entry_t entry;
150 int map_generation;
151 bool lookup_still_valid;
152
153 /* Vnode if locked. */
154 struct vnode *vp;
155 };
156
157 /*
158 * Return codes for internal fault routines.
159 */
160 enum fault_status {
161 FAULT_SUCCESS = 10000, /* Return success to user. */
162 FAULT_FAILURE, /* Return failure to user. */
163 FAULT_CONTINUE, /* Continue faulting. */
164 FAULT_RESTART, /* Restart fault. */
165 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */
166 FAULT_HARD, /* Performed I/O. */
167 FAULT_SOFT, /* Found valid page. */
168 FAULT_PROTECTION_FAILURE, /* Invalid access. */
169 };
170
171 enum fault_next_status {
172 FAULT_NEXT_GOTOBJ = 1,
173 FAULT_NEXT_NOOBJ,
174 FAULT_NEXT_RESTART,
175 };
176
177 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
178 int ahead);
179 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
180 int backward, int forward, bool obj_locked);
181
182 static int vm_pfault_oom_attempts = 3;
183 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
184 &vm_pfault_oom_attempts, 0,
185 "Number of page allocation attempts in page fault handler before it "
186 "triggers OOM handling");
187
188 static int vm_pfault_oom_wait = 10;
189 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
190 &vm_pfault_oom_wait, 0,
191 "Number of seconds to wait for free pages before retrying "
192 "the page fault handler");
193
194 static inline void
vm_fault_page_release(vm_page_t * mp)195 vm_fault_page_release(vm_page_t *mp)
196 {
197 vm_page_t m;
198
199 m = *mp;
200 if (m != NULL) {
201 /*
202 * We are likely to loop around again and attempt to busy
203 * this page. Deactivating it leaves it available for
204 * pageout while optimizing fault restarts.
205 */
206 vm_page_deactivate(m);
207 vm_page_xunbusy(m);
208 *mp = NULL;
209 }
210 }
211
212 static inline void
vm_fault_page_free(vm_page_t * mp)213 vm_fault_page_free(vm_page_t *mp)
214 {
215 vm_page_t m;
216
217 m = *mp;
218 if (m != NULL) {
219 VM_OBJECT_ASSERT_WLOCKED(m->object);
220 if (!vm_page_wired(m))
221 vm_page_free(m);
222 else
223 vm_page_xunbusy(m);
224 *mp = NULL;
225 }
226 }
227
228 /*
229 * Return true if a vm_pager_get_pages() call is needed in order to check
230 * whether the pager might have a particular page, false if it can be determined
231 * immediately that the pager can not have a copy. For swap objects, this can
232 * be checked quickly.
233 */
234 static inline bool
vm_fault_object_needs_getpages(vm_object_t object)235 vm_fault_object_needs_getpages(vm_object_t object)
236 {
237 VM_OBJECT_ASSERT_LOCKED(object);
238
239 return ((object->flags & OBJ_SWAP) == 0 ||
240 !pctrie_is_empty(&object->un_pager.swp.swp_blks));
241 }
242
243 static inline void
vm_fault_unlock_map(struct faultstate * fs)244 vm_fault_unlock_map(struct faultstate *fs)
245 {
246
247 if (fs->lookup_still_valid) {
248 vm_map_lookup_done(fs->map, fs->entry);
249 fs->lookup_still_valid = false;
250 }
251 }
252
253 static void
vm_fault_unlock_vp(struct faultstate * fs)254 vm_fault_unlock_vp(struct faultstate *fs)
255 {
256
257 if (fs->vp != NULL) {
258 vput(fs->vp);
259 fs->vp = NULL;
260 }
261 }
262
263 static void
vm_fault_deallocate(struct faultstate * fs)264 vm_fault_deallocate(struct faultstate *fs)
265 {
266
267 vm_fault_page_release(&fs->m_cow);
268 vm_fault_page_release(&fs->m);
269 vm_object_pip_wakeup(fs->object);
270 if (fs->object != fs->first_object) {
271 VM_OBJECT_WLOCK(fs->first_object);
272 vm_fault_page_free(&fs->first_m);
273 VM_OBJECT_WUNLOCK(fs->first_object);
274 vm_object_pip_wakeup(fs->first_object);
275 }
276 vm_object_deallocate(fs->first_object);
277 vm_fault_unlock_map(fs);
278 vm_fault_unlock_vp(fs);
279 }
280
281 static void
vm_fault_unlock_and_deallocate(struct faultstate * fs)282 vm_fault_unlock_and_deallocate(struct faultstate *fs)
283 {
284
285 VM_OBJECT_UNLOCK(fs->object);
286 vm_fault_deallocate(fs);
287 }
288
289 static void
vm_fault_dirty(struct faultstate * fs,vm_page_t m)290 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
291 {
292 bool need_dirty;
293
294 if (((fs->prot & VM_PROT_WRITE) == 0 &&
295 (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
296 (m->oflags & VPO_UNMANAGED) != 0)
297 return;
298
299 VM_PAGE_OBJECT_BUSY_ASSERT(m);
300
301 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
302 (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
303 (fs->fault_flags & VM_FAULT_DIRTY) != 0;
304
305 vm_object_set_writeable_dirty(m->object);
306
307 /*
308 * If the fault is a write, we know that this page is being
309 * written NOW so dirty it explicitly to save on
310 * pmap_is_modified() calls later.
311 *
312 * Also, since the page is now dirty, we can possibly tell
313 * the pager to release any swap backing the page.
314 */
315 if (need_dirty && vm_page_set_dirty(m) == 0) {
316 /*
317 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
318 * if the page is already dirty to prevent data written with
319 * the expectation of being synced from not being synced.
320 * Likewise if this entry does not request NOSYNC then make
321 * sure the page isn't marked NOSYNC. Applications sharing
322 * data should use the same flags to avoid ping ponging.
323 */
324 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
325 vm_page_aflag_set(m, PGA_NOSYNC);
326 else
327 vm_page_aflag_clear(m, PGA_NOSYNC);
328 }
329
330 }
331
332 /*
333 * Unlocks fs.first_object and fs.map on success.
334 */
335 static enum fault_status
vm_fault_soft_fast(struct faultstate * fs)336 vm_fault_soft_fast(struct faultstate *fs)
337 {
338 vm_page_t m, m_map;
339 #if VM_NRESERVLEVEL > 0
340 vm_page_t m_super;
341 int flags;
342 #endif
343 int psind;
344 vm_offset_t vaddr;
345
346 MPASS(fs->vp == NULL);
347
348 /*
349 * If we fail, vast majority of the time it is because the page is not
350 * there to begin with. Opportunistically perform the lookup and
351 * subsequent checks without the object lock, revalidate later.
352 *
353 * Note: a busy page can be mapped for read|execute access.
354 */
355 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
356 if (m == NULL || !vm_page_all_valid(m) ||
357 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
358 VM_OBJECT_WLOCK(fs->first_object);
359 return (FAULT_FAILURE);
360 }
361
362 vaddr = fs->vaddr;
363
364 VM_OBJECT_RLOCK(fs->first_object);
365
366 /*
367 * Now that we stabilized the state, revalidate the page is in the shape
368 * we encountered above.
369 */
370
371 if (m->object != fs->first_object || m->pindex != fs->first_pindex)
372 goto fail;
373
374 vm_object_busy(fs->first_object);
375
376 if (!vm_page_all_valid(m) ||
377 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
378 goto fail_busy;
379
380 m_map = m;
381 psind = 0;
382 #if VM_NRESERVLEVEL > 0
383 if ((m->flags & PG_FICTITIOUS) == 0 &&
384 (m_super = vm_reserv_to_superpage(m)) != NULL) {
385 psind = m_super->psind;
386 KASSERT(psind > 0,
387 ("psind %d of m_super %p < 1", psind, m_super));
388 flags = PS_ALL_VALID;
389 if ((fs->prot & VM_PROT_WRITE) != 0) {
390 /*
391 * Create a superpage mapping allowing write access
392 * only if none of the constituent pages are busy and
393 * all of them are already dirty (except possibly for
394 * the page that was faulted on).
395 */
396 flags |= PS_NONE_BUSY;
397 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
398 flags |= PS_ALL_DIRTY;
399 }
400 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
401 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
402 (vaddr & (pagesizes[psind] - 1)) !=
403 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
404 !vm_page_ps_test(m_super, psind, flags, m) ||
405 !pmap_ps_enabled(fs->map->pmap)) {
406 psind--;
407 if (psind == 0)
408 break;
409 m_super += rounddown2(m - m_super,
410 atop(pagesizes[psind]));
411 KASSERT(m_super->psind >= psind,
412 ("psind %d of m_super %p < %d", m_super->psind,
413 m_super, psind));
414 }
415 if (psind > 0) {
416 m_map = m_super;
417 vaddr = rounddown2(vaddr, pagesizes[psind]);
418 /* Preset the modified bit for dirty superpages. */
419 if ((flags & PS_ALL_DIRTY) != 0)
420 fs->fault_type |= VM_PROT_WRITE;
421 }
422 }
423 #endif
424 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
425 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
426 KERN_SUCCESS)
427 goto fail_busy;
428 if (fs->m_hold != NULL) {
429 (*fs->m_hold) = m;
430 vm_page_wire(m);
431 }
432 if (psind == 0 && !fs->wired)
433 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
434 VM_OBJECT_RUNLOCK(fs->first_object);
435 vm_fault_dirty(fs, m);
436 vm_object_unbusy(fs->first_object);
437 vm_map_lookup_done(fs->map, fs->entry);
438 curthread->td_ru.ru_minflt++;
439 return (FAULT_SUCCESS);
440 fail_busy:
441 vm_object_unbusy(fs->first_object);
442 fail:
443 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
444 VM_OBJECT_RUNLOCK(fs->first_object);
445 VM_OBJECT_WLOCK(fs->first_object);
446 }
447 return (FAULT_FAILURE);
448 }
449
450 static void
vm_fault_restore_map_lock(struct faultstate * fs)451 vm_fault_restore_map_lock(struct faultstate *fs)
452 {
453
454 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
455 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
456
457 if (!vm_map_trylock_read(fs->map)) {
458 VM_OBJECT_WUNLOCK(fs->first_object);
459 vm_map_lock_read(fs->map);
460 VM_OBJECT_WLOCK(fs->first_object);
461 }
462 fs->lookup_still_valid = true;
463 }
464
465 static void
vm_fault_populate_check_page(vm_page_t m)466 vm_fault_populate_check_page(vm_page_t m)
467 {
468
469 /*
470 * Check each page to ensure that the pager is obeying the
471 * interface: the page must be installed in the object, fully
472 * valid, and exclusively busied.
473 */
474 MPASS(m != NULL);
475 MPASS(vm_page_all_valid(m));
476 MPASS(vm_page_xbusied(m));
477 }
478
479 static void
vm_fault_populate_cleanup(vm_object_t object,vm_pindex_t first,vm_pindex_t last)480 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
481 vm_pindex_t last)
482 {
483 vm_page_t m;
484 vm_pindex_t pidx;
485
486 VM_OBJECT_ASSERT_WLOCKED(object);
487 MPASS(first <= last);
488 for (pidx = first, m = vm_page_lookup(object, pidx);
489 pidx <= last; pidx++, m = TAILQ_NEXT(m, listq)) {
490 KASSERT(m != NULL && m->pindex == pidx,
491 ("%s: pindex mismatch", __func__));
492 vm_fault_populate_check_page(m);
493 vm_page_deactivate(m);
494 vm_page_xunbusy(m);
495 }
496 }
497
498 static enum fault_status
vm_fault_populate(struct faultstate * fs)499 vm_fault_populate(struct faultstate *fs)
500 {
501 vm_offset_t vaddr;
502 vm_page_t m;
503 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
504 int bdry_idx, i, npages, psind, rv;
505 enum fault_status res;
506
507 MPASS(fs->object == fs->first_object);
508 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
509 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
510 MPASS(fs->first_object->backing_object == NULL);
511 MPASS(fs->lookup_still_valid);
512
513 pager_first = OFF_TO_IDX(fs->entry->offset);
514 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
515 vm_fault_unlock_map(fs);
516 vm_fault_unlock_vp(fs);
517
518 res = FAULT_SUCCESS;
519
520 /*
521 * Call the pager (driver) populate() method.
522 *
523 * There is no guarantee that the method will be called again
524 * if the current fault is for read, and a future fault is
525 * for write. Report the entry's maximum allowed protection
526 * to the driver.
527 */
528 rv = vm_pager_populate(fs->first_object, fs->first_pindex,
529 fs->fault_type, fs->entry->max_protection, &pager_first,
530 &pager_last);
531
532 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
533 if (rv == VM_PAGER_BAD) {
534 /*
535 * VM_PAGER_BAD is the backdoor for a pager to request
536 * normal fault handling.
537 */
538 vm_fault_restore_map_lock(fs);
539 if (fs->map->timestamp != fs->map_generation)
540 return (FAULT_RESTART);
541 return (FAULT_CONTINUE);
542 }
543 if (rv != VM_PAGER_OK)
544 return (FAULT_FAILURE); /* AKA SIGSEGV */
545
546 /* Ensure that the driver is obeying the interface. */
547 MPASS(pager_first <= pager_last);
548 MPASS(fs->first_pindex <= pager_last);
549 MPASS(fs->first_pindex >= pager_first);
550 MPASS(pager_last < fs->first_object->size);
551
552 vm_fault_restore_map_lock(fs);
553 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
554 if (fs->map->timestamp != fs->map_generation) {
555 if (bdry_idx == 0) {
556 vm_fault_populate_cleanup(fs->first_object, pager_first,
557 pager_last);
558 } else {
559 m = vm_page_lookup(fs->first_object, pager_first);
560 if (m != fs->m)
561 vm_page_xunbusy(m);
562 }
563 return (FAULT_RESTART);
564 }
565
566 /*
567 * The map is unchanged after our last unlock. Process the fault.
568 *
569 * First, the special case of largepage mappings, where
570 * populate only busies the first page in superpage run.
571 */
572 if (bdry_idx != 0) {
573 KASSERT(PMAP_HAS_LARGEPAGES,
574 ("missing pmap support for large pages"));
575 m = vm_page_lookup(fs->first_object, pager_first);
576 vm_fault_populate_check_page(m);
577 VM_OBJECT_WUNLOCK(fs->first_object);
578 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
579 fs->entry->offset;
580 /* assert alignment for entry */
581 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
582 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
583 (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
584 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
585 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
586 ("unaligned superpage m %p %#jx", m,
587 (uintmax_t)VM_PAGE_TO_PHYS(m)));
588 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
589 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
590 PMAP_ENTER_LARGEPAGE, bdry_idx);
591 VM_OBJECT_WLOCK(fs->first_object);
592 vm_page_xunbusy(m);
593 if (rv != KERN_SUCCESS) {
594 res = FAULT_FAILURE;
595 goto out;
596 }
597 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
598 for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
599 vm_page_wire(m + i);
600 }
601 if (fs->m_hold != NULL) {
602 *fs->m_hold = m + (fs->first_pindex - pager_first);
603 vm_page_wire(*fs->m_hold);
604 }
605 goto out;
606 }
607
608 /*
609 * The range [pager_first, pager_last] that is given to the
610 * pager is only a hint. The pager may populate any range
611 * within the object that includes the requested page index.
612 * In case the pager expanded the range, clip it to fit into
613 * the map entry.
614 */
615 map_first = OFF_TO_IDX(fs->entry->offset);
616 if (map_first > pager_first) {
617 vm_fault_populate_cleanup(fs->first_object, pager_first,
618 map_first - 1);
619 pager_first = map_first;
620 }
621 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
622 if (map_last < pager_last) {
623 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
624 pager_last);
625 pager_last = map_last;
626 }
627 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
628 pidx <= pager_last;
629 pidx += npages, m = TAILQ_NEXT(&m[npages - 1], listq)) {
630 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
631 KASSERT(m != NULL && m->pindex == pidx,
632 ("%s: pindex mismatch", __func__));
633 psind = m->psind;
634 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
635 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
636 !pmap_ps_enabled(fs->map->pmap)))
637 psind--;
638
639 npages = atop(pagesizes[psind]);
640 for (i = 0; i < npages; i++) {
641 vm_fault_populate_check_page(&m[i]);
642 vm_fault_dirty(fs, &m[i]);
643 }
644 VM_OBJECT_WUNLOCK(fs->first_object);
645 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
646 (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
647
648 /*
649 * pmap_enter() may fail for a superpage mapping if additional
650 * protection policies prevent the full mapping.
651 * For example, this will happen on amd64 if the entire
652 * address range does not share the same userspace protection
653 * key. Revert to single-page mappings if this happens.
654 */
655 MPASS(rv == KERN_SUCCESS ||
656 (psind > 0 && rv == KERN_PROTECTION_FAILURE));
657 if (__predict_false(psind > 0 &&
658 rv == KERN_PROTECTION_FAILURE)) {
659 MPASS(!fs->wired);
660 for (i = 0; i < npages; i++) {
661 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
662 &m[i], fs->prot, fs->fault_type, 0);
663 MPASS(rv == KERN_SUCCESS);
664 }
665 }
666
667 VM_OBJECT_WLOCK(fs->first_object);
668 for (i = 0; i < npages; i++) {
669 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
670 m[i].pindex == fs->first_pindex)
671 vm_page_wire(&m[i]);
672 else
673 vm_page_activate(&m[i]);
674 if (fs->m_hold != NULL &&
675 m[i].pindex == fs->first_pindex) {
676 (*fs->m_hold) = &m[i];
677 vm_page_wire(&m[i]);
678 }
679 vm_page_xunbusy(&m[i]);
680 }
681 }
682 out:
683 curthread->td_ru.ru_majflt++;
684 return (res);
685 }
686
687 static int prot_fault_translation;
688 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
689 &prot_fault_translation, 0,
690 "Control signal to deliver on protection fault");
691
692 /* compat definition to keep common code for signal translation */
693 #define UCODE_PAGEFLT 12
694 #ifdef T_PAGEFLT
695 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
696 #endif
697
698 /*
699 * vm_fault_trap:
700 *
701 * Handle a page fault occurring at the given address,
702 * requiring the given permissions, in the map specified.
703 * If successful, the page is inserted into the
704 * associated physical map.
705 *
706 * NOTE: the given address should be truncated to the
707 * proper page address.
708 *
709 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
710 * a standard error specifying why the fault is fatal is returned.
711 *
712 * The map in question must be referenced, and remains so.
713 * Caller may hold no locks.
714 */
715 int
vm_fault_trap(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,int * signo,int * ucode)716 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
717 int fault_flags, int *signo, int *ucode)
718 {
719 int result;
720
721 MPASS(signo == NULL || ucode != NULL);
722 #ifdef KTRACE
723 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
724 ktrfault(vaddr, fault_type);
725 #endif
726 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
727 NULL);
728 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
729 result == KERN_INVALID_ADDRESS ||
730 result == KERN_RESOURCE_SHORTAGE ||
731 result == KERN_PROTECTION_FAILURE ||
732 result == KERN_OUT_OF_BOUNDS,
733 ("Unexpected Mach error %d from vm_fault()", result));
734 #ifdef KTRACE
735 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
736 ktrfaultend(result);
737 #endif
738 if (result != KERN_SUCCESS && signo != NULL) {
739 switch (result) {
740 case KERN_FAILURE:
741 case KERN_INVALID_ADDRESS:
742 *signo = SIGSEGV;
743 *ucode = SEGV_MAPERR;
744 break;
745 case KERN_RESOURCE_SHORTAGE:
746 *signo = SIGBUS;
747 *ucode = BUS_OOMERR;
748 break;
749 case KERN_OUT_OF_BOUNDS:
750 *signo = SIGBUS;
751 *ucode = BUS_OBJERR;
752 break;
753 case KERN_PROTECTION_FAILURE:
754 if (prot_fault_translation == 0) {
755 /*
756 * Autodetect. This check also covers
757 * the images without the ABI-tag ELF
758 * note.
759 */
760 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
761 curproc->p_osrel >= P_OSREL_SIGSEGV) {
762 *signo = SIGSEGV;
763 *ucode = SEGV_ACCERR;
764 } else {
765 *signo = SIGBUS;
766 *ucode = UCODE_PAGEFLT;
767 }
768 } else if (prot_fault_translation == 1) {
769 /* Always compat mode. */
770 *signo = SIGBUS;
771 *ucode = UCODE_PAGEFLT;
772 } else {
773 /* Always SIGSEGV mode. */
774 *signo = SIGSEGV;
775 *ucode = SEGV_ACCERR;
776 }
777 break;
778 default:
779 KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
780 result));
781 break;
782 }
783 }
784 return (result);
785 }
786
787 static bool
vm_fault_object_ensure_wlocked(struct faultstate * fs)788 vm_fault_object_ensure_wlocked(struct faultstate *fs)
789 {
790 if (fs->object == fs->first_object)
791 VM_OBJECT_ASSERT_WLOCKED(fs->object);
792
793 if (!fs->can_read_lock) {
794 VM_OBJECT_ASSERT_WLOCKED(fs->object);
795 return (true);
796 }
797
798 if (VM_OBJECT_WOWNED(fs->object))
799 return (true);
800
801 if (VM_OBJECT_TRYUPGRADE(fs->object))
802 return (true);
803
804 return (false);
805 }
806
807 static enum fault_status
vm_fault_lock_vnode(struct faultstate * fs,bool objlocked)808 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
809 {
810 struct vnode *vp;
811 int error, locked;
812
813 if (fs->object->type != OBJT_VNODE)
814 return (FAULT_CONTINUE);
815 vp = fs->object->handle;
816 if (vp == fs->vp) {
817 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
818 return (FAULT_CONTINUE);
819 }
820
821 /*
822 * Perform an unlock in case the desired vnode changed while
823 * the map was unlocked during a retry.
824 */
825 vm_fault_unlock_vp(fs);
826
827 locked = VOP_ISLOCKED(vp);
828 if (locked != LK_EXCLUSIVE)
829 locked = LK_SHARED;
830
831 /*
832 * We must not sleep acquiring the vnode lock while we have
833 * the page exclusive busied or the object's
834 * paging-in-progress count incremented. Otherwise, we could
835 * deadlock.
836 */
837 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
838 if (error == 0) {
839 fs->vp = vp;
840 return (FAULT_CONTINUE);
841 }
842
843 vhold(vp);
844 if (objlocked)
845 vm_fault_unlock_and_deallocate(fs);
846 else
847 vm_fault_deallocate(fs);
848 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
849 vdrop(vp);
850 fs->vp = vp;
851 KASSERT(error == 0, ("vm_fault: vget failed %d", error));
852 return (FAULT_RESTART);
853 }
854
855 /*
856 * Calculate the desired readahead. Handle drop-behind.
857 *
858 * Returns the number of readahead blocks to pass to the pager.
859 */
860 static int
vm_fault_readahead(struct faultstate * fs)861 vm_fault_readahead(struct faultstate *fs)
862 {
863 int era, nera;
864 u_char behavior;
865
866 KASSERT(fs->lookup_still_valid, ("map unlocked"));
867 era = fs->entry->read_ahead;
868 behavior = vm_map_entry_behavior(fs->entry);
869 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
870 nera = 0;
871 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
872 nera = VM_FAULT_READ_AHEAD_MAX;
873 if (fs->vaddr == fs->entry->next_read)
874 vm_fault_dontneed(fs, fs->vaddr, nera);
875 } else if (fs->vaddr == fs->entry->next_read) {
876 /*
877 * This is a sequential fault. Arithmetically
878 * increase the requested number of pages in
879 * the read-ahead window. The requested
880 * number of pages is "# of sequential faults
881 * x (read ahead min + 1) + read ahead min"
882 */
883 nera = VM_FAULT_READ_AHEAD_MIN;
884 if (era > 0) {
885 nera += era + 1;
886 if (nera > VM_FAULT_READ_AHEAD_MAX)
887 nera = VM_FAULT_READ_AHEAD_MAX;
888 }
889 if (era == VM_FAULT_READ_AHEAD_MAX)
890 vm_fault_dontneed(fs, fs->vaddr, nera);
891 } else {
892 /*
893 * This is a non-sequential fault.
894 */
895 nera = 0;
896 }
897 if (era != nera) {
898 /*
899 * A read lock on the map suffices to update
900 * the read ahead count safely.
901 */
902 fs->entry->read_ahead = nera;
903 }
904
905 return (nera);
906 }
907
908 static int
vm_fault_lookup(struct faultstate * fs)909 vm_fault_lookup(struct faultstate *fs)
910 {
911 int result;
912
913 KASSERT(!fs->lookup_still_valid,
914 ("vm_fault_lookup: Map already locked."));
915 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
916 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
917 &fs->first_pindex, &fs->prot, &fs->wired);
918 if (result != KERN_SUCCESS) {
919 vm_fault_unlock_vp(fs);
920 return (result);
921 }
922
923 fs->map_generation = fs->map->timestamp;
924
925 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
926 panic("%s: fault on nofault entry, addr: %#lx",
927 __func__, (u_long)fs->vaddr);
928 }
929
930 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
931 fs->entry->wiring_thread != curthread) {
932 vm_map_unlock_read(fs->map);
933 vm_map_lock(fs->map);
934 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
935 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
936 vm_fault_unlock_vp(fs);
937 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
938 vm_map_unlock_and_wait(fs->map, 0);
939 } else
940 vm_map_unlock(fs->map);
941 return (KERN_RESOURCE_SHORTAGE);
942 }
943
944 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
945
946 if (fs->wired)
947 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
948 else
949 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
950 ("!fs->wired && VM_FAULT_WIRE"));
951 fs->lookup_still_valid = true;
952
953 return (KERN_SUCCESS);
954 }
955
956 static int
vm_fault_relookup(struct faultstate * fs)957 vm_fault_relookup(struct faultstate *fs)
958 {
959 vm_object_t retry_object;
960 vm_pindex_t retry_pindex;
961 vm_prot_t retry_prot;
962 int result;
963
964 if (!vm_map_trylock_read(fs->map))
965 return (KERN_RESTART);
966
967 fs->lookup_still_valid = true;
968 if (fs->map->timestamp == fs->map_generation)
969 return (KERN_SUCCESS);
970
971 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
972 &fs->entry, &retry_object, &retry_pindex, &retry_prot,
973 &fs->wired);
974 if (result != KERN_SUCCESS) {
975 /*
976 * If retry of map lookup would have blocked then
977 * retry fault from start.
978 */
979 if (result == KERN_FAILURE)
980 return (KERN_RESTART);
981 return (result);
982 }
983 if (retry_object != fs->first_object ||
984 retry_pindex != fs->first_pindex)
985 return (KERN_RESTART);
986
987 /*
988 * Check whether the protection has changed or the object has
989 * been copied while we left the map unlocked. Changing from
990 * read to write permission is OK - we leave the page
991 * write-protected, and catch the write fault. Changing from
992 * write to read permission means that we can't mark the page
993 * write-enabled after all.
994 */
995 fs->prot &= retry_prot;
996 fs->fault_type &= retry_prot;
997 if (fs->prot == 0)
998 return (KERN_RESTART);
999
1000 /* Reassert because wired may have changed. */
1001 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1002 ("!wired && VM_FAULT_WIRE"));
1003
1004 return (KERN_SUCCESS);
1005 }
1006
1007 static void
vm_fault_cow(struct faultstate * fs)1008 vm_fault_cow(struct faultstate *fs)
1009 {
1010 bool is_first_object_locked;
1011
1012 KASSERT(fs->object != fs->first_object,
1013 ("source and target COW objects are identical"));
1014
1015 /*
1016 * This allows pages to be virtually copied from a backing_object
1017 * into the first_object, where the backing object has no other
1018 * refs to it, and cannot gain any more refs. Instead of a bcopy,
1019 * we just move the page from the backing object to the first
1020 * object. Note that we must mark the page dirty in the first
1021 * object so that it will go out to swap when needed.
1022 */
1023 is_first_object_locked = false;
1024 if (
1025 /*
1026 * Only one shadow object and no other refs.
1027 */
1028 fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1029 /*
1030 * No other ways to look the object up
1031 */
1032 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
1033 /*
1034 * We don't chase down the shadow chain and we can acquire locks.
1035 */
1036 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
1037 fs->object == fs->first_object->backing_object &&
1038 VM_OBJECT_TRYWLOCK(fs->object)) {
1039 /*
1040 * Remove but keep xbusy for replace. fs->m is moved into
1041 * fs->first_object and left busy while fs->first_m is
1042 * conditionally freed.
1043 */
1044 vm_page_remove_xbusy(fs->m);
1045 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1046 fs->first_m);
1047 vm_page_dirty(fs->m);
1048 #if VM_NRESERVLEVEL > 0
1049 /*
1050 * Rename the reservation.
1051 */
1052 vm_reserv_rename(fs->m, fs->first_object, fs->object,
1053 OFF_TO_IDX(fs->first_object->backing_object_offset));
1054 #endif
1055 VM_OBJECT_WUNLOCK(fs->object);
1056 VM_OBJECT_WUNLOCK(fs->first_object);
1057 fs->first_m = fs->m;
1058 fs->m = NULL;
1059 VM_CNT_INC(v_cow_optim);
1060 } else {
1061 if (is_first_object_locked)
1062 VM_OBJECT_WUNLOCK(fs->first_object);
1063 /*
1064 * Oh, well, lets copy it.
1065 */
1066 pmap_copy_page(fs->m, fs->first_m);
1067 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1068 vm_page_wire(fs->first_m);
1069 vm_page_unwire(fs->m, PQ_INACTIVE);
1070 }
1071 /*
1072 * Save the COW page to be released after pmap_enter is
1073 * complete. The new copy will be marked valid when we're ready
1074 * to map it.
1075 */
1076 fs->m_cow = fs->m;
1077 fs->m = NULL;
1078
1079 /*
1080 * Typically, the shadow object is either private to this
1081 * address space (OBJ_ONEMAPPING) or its pages are read only.
1082 * In the highly unusual case where the pages of a shadow object
1083 * are read/write shared between this and other address spaces,
1084 * we need to ensure that any pmap-level mappings to the
1085 * original, copy-on-write page from the backing object are
1086 * removed from those other address spaces.
1087 *
1088 * The flag check is racy, but this is tolerable: if
1089 * OBJ_ONEMAPPING is cleared after the check, the busy state
1090 * ensures that new mappings of m_cow can't be created.
1091 * pmap_enter() will replace an existing mapping in the current
1092 * address space. If OBJ_ONEMAPPING is set after the check,
1093 * removing mappings will at worse trigger some unnecessary page
1094 * faults.
1095 */
1096 vm_page_assert_xbusied(fs->m_cow);
1097 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1098 pmap_remove_all(fs->m_cow);
1099 }
1100
1101 vm_object_pip_wakeup(fs->object);
1102
1103 /*
1104 * Only use the new page below...
1105 */
1106 fs->object = fs->first_object;
1107 fs->pindex = fs->first_pindex;
1108 fs->m = fs->first_m;
1109 VM_CNT_INC(v_cow_faults);
1110 curthread->td_cow++;
1111 }
1112
1113 static enum fault_next_status
vm_fault_next(struct faultstate * fs)1114 vm_fault_next(struct faultstate *fs)
1115 {
1116 vm_object_t next_object;
1117
1118 if (fs->object == fs->first_object || !fs->can_read_lock)
1119 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1120 else
1121 VM_OBJECT_ASSERT_LOCKED(fs->object);
1122
1123 /*
1124 * The requested page does not exist at this object/
1125 * offset. Remove the invalid page from the object,
1126 * waking up anyone waiting for it, and continue on to
1127 * the next object. However, if this is the top-level
1128 * object, we must leave the busy page in place to
1129 * prevent another process from rushing past us, and
1130 * inserting the page in that object at the same time
1131 * that we are.
1132 */
1133 if (fs->object == fs->first_object) {
1134 fs->first_m = fs->m;
1135 fs->m = NULL;
1136 } else if (fs->m != NULL) {
1137 if (!vm_fault_object_ensure_wlocked(fs)) {
1138 fs->can_read_lock = false;
1139 vm_fault_unlock_and_deallocate(fs);
1140 return (FAULT_NEXT_RESTART);
1141 }
1142 vm_fault_page_free(&fs->m);
1143 }
1144
1145 /*
1146 * Move on to the next object. Lock the next object before
1147 * unlocking the current one.
1148 */
1149 next_object = fs->object->backing_object;
1150 if (next_object == NULL)
1151 return (FAULT_NEXT_NOOBJ);
1152 MPASS(fs->first_m != NULL);
1153 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1154 if (fs->can_read_lock)
1155 VM_OBJECT_RLOCK(next_object);
1156 else
1157 VM_OBJECT_WLOCK(next_object);
1158 vm_object_pip_add(next_object, 1);
1159 if (fs->object != fs->first_object)
1160 vm_object_pip_wakeup(fs->object);
1161 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1162 VM_OBJECT_UNLOCK(fs->object);
1163 fs->object = next_object;
1164
1165 return (FAULT_NEXT_GOTOBJ);
1166 }
1167
1168 static void
vm_fault_zerofill(struct faultstate * fs)1169 vm_fault_zerofill(struct faultstate *fs)
1170 {
1171
1172 /*
1173 * If there's no object left, fill the page in the top
1174 * object with zeros.
1175 */
1176 if (fs->object != fs->first_object) {
1177 vm_object_pip_wakeup(fs->object);
1178 fs->object = fs->first_object;
1179 fs->pindex = fs->first_pindex;
1180 }
1181 MPASS(fs->first_m != NULL);
1182 MPASS(fs->m == NULL);
1183 fs->m = fs->first_m;
1184 fs->first_m = NULL;
1185
1186 /*
1187 * Zero the page if necessary and mark it valid.
1188 */
1189 if ((fs->m->flags & PG_ZERO) == 0) {
1190 pmap_zero_page(fs->m);
1191 } else {
1192 VM_CNT_INC(v_ozfod);
1193 }
1194 VM_CNT_INC(v_zfod);
1195 vm_page_valid(fs->m);
1196 }
1197
1198 /*
1199 * Initiate page fault after timeout. Returns true if caller should
1200 * do vm_waitpfault() after the call.
1201 */
1202 static bool
vm_fault_allocate_oom(struct faultstate * fs)1203 vm_fault_allocate_oom(struct faultstate *fs)
1204 {
1205 struct timeval now;
1206
1207 vm_fault_unlock_and_deallocate(fs);
1208 if (vm_pfault_oom_attempts < 0)
1209 return (true);
1210 if (!fs->oom_started) {
1211 fs->oom_started = true;
1212 getmicrotime(&fs->oom_start_time);
1213 return (true);
1214 }
1215
1216 getmicrotime(&now);
1217 timevalsub(&now, &fs->oom_start_time);
1218 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1219 return (true);
1220
1221 if (bootverbose)
1222 printf(
1223 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1224 curproc->p_pid, curproc->p_comm);
1225 vm_pageout_oom(VM_OOM_MEM_PF);
1226 fs->oom_started = false;
1227 return (false);
1228 }
1229
1230 /*
1231 * Allocate a page directly or via the object populate method.
1232 */
1233 static enum fault_status
vm_fault_allocate(struct faultstate * fs,struct pctrie_iter * pages)1234 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
1235 {
1236 struct domainset *dset;
1237 enum fault_status res;
1238
1239 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1240 res = vm_fault_lock_vnode(fs, true);
1241 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1242 if (res == FAULT_RESTART)
1243 return (res);
1244 }
1245
1246 if (fs->pindex >= fs->object->size) {
1247 vm_fault_unlock_and_deallocate(fs);
1248 return (FAULT_OUT_OF_BOUNDS);
1249 }
1250
1251 if (fs->object == fs->first_object &&
1252 (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1253 fs->first_object->shadow_count == 0) {
1254 res = vm_fault_populate(fs);
1255 switch (res) {
1256 case FAULT_SUCCESS:
1257 case FAULT_FAILURE:
1258 case FAULT_RESTART:
1259 vm_fault_unlock_and_deallocate(fs);
1260 return (res);
1261 case FAULT_CONTINUE:
1262 /*
1263 * Pager's populate() method
1264 * returned VM_PAGER_BAD.
1265 */
1266 break;
1267 default:
1268 panic("inconsistent return codes");
1269 }
1270 }
1271
1272 /*
1273 * Allocate a new page for this object/offset pair.
1274 *
1275 * If the process has a fatal signal pending, prioritize the allocation
1276 * with the expectation that the process will exit shortly and free some
1277 * pages. In particular, the signal may have been posted by the page
1278 * daemon in an attempt to resolve an out-of-memory condition.
1279 *
1280 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED
1281 * might be not observed here, and allocation fails, causing a restart
1282 * and new reading of the p_flag.
1283 */
1284 dset = fs->object->domain.dr_policy;
1285 if (dset == NULL)
1286 dset = curthread->td_domain.dr_policy;
1287 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1288 #if VM_NRESERVLEVEL > 0
1289 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1290 #endif
1291 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1292 vm_fault_unlock_and_deallocate(fs);
1293 return (FAULT_FAILURE);
1294 }
1295 fs->m = vm_page_alloc_after(fs->object, fs->pindex,
1296 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0,
1297 vm_radix_iter_lookup_lt(pages, fs->pindex));
1298 }
1299 if (fs->m == NULL) {
1300 if (vm_fault_allocate_oom(fs))
1301 vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1302 return (FAULT_RESTART);
1303 }
1304 fs->oom_started = false;
1305
1306 return (FAULT_CONTINUE);
1307 }
1308
1309 /*
1310 * Call the pager to retrieve the page if there is a chance
1311 * that the pager has it, and potentially retrieve additional
1312 * pages at the same time.
1313 */
1314 static enum fault_status
vm_fault_getpages(struct faultstate * fs,int * behindp,int * aheadp)1315 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1316 {
1317 vm_offset_t e_end, e_start;
1318 int ahead, behind, cluster_offset, rv;
1319 enum fault_status status;
1320 u_char behavior;
1321
1322 /*
1323 * Prepare for unlocking the map. Save the map
1324 * entry's start and end addresses, which are used to
1325 * optimize the size of the pager operation below.
1326 * Even if the map entry's addresses change after
1327 * unlocking the map, using the saved addresses is
1328 * safe.
1329 */
1330 e_start = fs->entry->start;
1331 e_end = fs->entry->end;
1332 behavior = vm_map_entry_behavior(fs->entry);
1333
1334 /*
1335 * If the pager for the current object might have
1336 * the page, then determine the number of additional
1337 * pages to read and potentially reprioritize
1338 * previously read pages for earlier reclamation.
1339 * These operations should only be performed once per
1340 * page fault. Even if the current pager doesn't
1341 * have the page, the number of additional pages to
1342 * read will apply to subsequent objects in the
1343 * shadow chain.
1344 */
1345 if (fs->nera == -1 && !P_KILLED(curproc))
1346 fs->nera = vm_fault_readahead(fs);
1347
1348 /*
1349 * Release the map lock before locking the vnode or
1350 * sleeping in the pager. (If the current object has
1351 * a shadow, then an earlier iteration of this loop
1352 * may have already unlocked the map.)
1353 */
1354 vm_fault_unlock_map(fs);
1355
1356 status = vm_fault_lock_vnode(fs, false);
1357 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1358 if (status == FAULT_RESTART)
1359 return (status);
1360 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1361 ("vm_fault: vnode-backed object mapped by system map"));
1362
1363 /*
1364 * Page in the requested page and hint the pager,
1365 * that it may bring up surrounding pages.
1366 */
1367 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1368 P_KILLED(curproc)) {
1369 behind = 0;
1370 ahead = 0;
1371 } else {
1372 /* Is this a sequential fault? */
1373 if (fs->nera > 0) {
1374 behind = 0;
1375 ahead = fs->nera;
1376 } else {
1377 /*
1378 * Request a cluster of pages that is
1379 * aligned to a VM_FAULT_READ_DEFAULT
1380 * page offset boundary within the
1381 * object. Alignment to a page offset
1382 * boundary is more likely to coincide
1383 * with the underlying file system
1384 * block than alignment to a virtual
1385 * address boundary.
1386 */
1387 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1388 behind = ulmin(cluster_offset,
1389 atop(fs->vaddr - e_start));
1390 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1391 }
1392 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1393 }
1394 *behindp = behind;
1395 *aheadp = ahead;
1396 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1397 if (rv == VM_PAGER_OK)
1398 return (FAULT_HARD);
1399 if (rv == VM_PAGER_ERROR)
1400 printf("vm_fault: pager read error, pid %d (%s)\n",
1401 curproc->p_pid, curproc->p_comm);
1402 /*
1403 * If an I/O error occurred or the requested page was
1404 * outside the range of the pager, clean up and return
1405 * an error.
1406 */
1407 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1408 VM_OBJECT_WLOCK(fs->object);
1409 vm_fault_page_free(&fs->m);
1410 vm_fault_unlock_and_deallocate(fs);
1411 return (FAULT_OUT_OF_BOUNDS);
1412 }
1413 KASSERT(rv == VM_PAGER_FAIL,
1414 ("%s: unexpected pager error %d", __func__, rv));
1415 return (FAULT_CONTINUE);
1416 }
1417
1418 /*
1419 * Wait/Retry if the page is busy. We have to do this if the page is
1420 * either exclusive or shared busy because the vm_pager may be using
1421 * read busy for pageouts (and even pageins if it is the vnode pager),
1422 * and we could end up trying to pagein and pageout the same page
1423 * simultaneously.
1424 *
1425 * We can theoretically allow the busy case on a read fault if the page
1426 * is marked valid, but since such pages are typically already pmap'd,
1427 * putting that special case in might be more effort then it is worth.
1428 * We cannot under any circumstances mess around with a shared busied
1429 * page except, perhaps, to pmap it.
1430 */
1431 static void
vm_fault_busy_sleep(struct faultstate * fs)1432 vm_fault_busy_sleep(struct faultstate *fs)
1433 {
1434 /*
1435 * Reference the page before unlocking and
1436 * sleeping so that the page daemon is less
1437 * likely to reclaim it.
1438 */
1439 vm_page_aflag_set(fs->m, PGA_REFERENCED);
1440 if (fs->object != fs->first_object) {
1441 vm_fault_page_release(&fs->first_m);
1442 vm_object_pip_wakeup(fs->first_object);
1443 }
1444 vm_object_pip_wakeup(fs->object);
1445 vm_fault_unlock_map(fs);
1446 if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1447 !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1448 VM_OBJECT_UNLOCK(fs->object);
1449 VM_CNT_INC(v_intrans);
1450 vm_object_deallocate(fs->first_object);
1451 }
1452
1453 /*
1454 * Handle page lookup, populate, allocate, page-in for the current
1455 * object.
1456 *
1457 * The object is locked on entry and will remain locked with a return
1458 * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1459 * Otherwise, the object will be unlocked upon return.
1460 */
1461 static enum fault_status
vm_fault_object(struct faultstate * fs,int * behindp,int * aheadp)1462 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1463 {
1464 struct pctrie_iter pages;
1465 enum fault_status res;
1466 bool dead;
1467
1468 if (fs->object == fs->first_object || !fs->can_read_lock)
1469 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1470 else
1471 VM_OBJECT_ASSERT_LOCKED(fs->object);
1472
1473 /*
1474 * If the object is marked for imminent termination, we retry
1475 * here, since the collapse pass has raced with us. Otherwise,
1476 * if we see terminally dead object, return fail.
1477 */
1478 if ((fs->object->flags & OBJ_DEAD) != 0) {
1479 dead = fs->object->type == OBJT_DEAD;
1480 vm_fault_unlock_and_deallocate(fs);
1481 if (dead)
1482 return (FAULT_PROTECTION_FAILURE);
1483 pause("vmf_de", 1);
1484 return (FAULT_RESTART);
1485 }
1486
1487 /*
1488 * See if the page is resident.
1489 */
1490 vm_page_iter_init(&pages, fs->object);
1491 fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
1492 if (fs->m != NULL) {
1493 if (!vm_page_tryxbusy(fs->m)) {
1494 vm_fault_busy_sleep(fs);
1495 return (FAULT_RESTART);
1496 }
1497
1498 /*
1499 * The page is marked busy for other processes and the
1500 * pagedaemon. If it is still completely valid we are
1501 * done.
1502 */
1503 if (vm_page_all_valid(fs->m)) {
1504 VM_OBJECT_UNLOCK(fs->object);
1505 return (FAULT_SOFT);
1506 }
1507 }
1508
1509 /*
1510 * Page is not resident. If the pager might contain the page
1511 * or this is the beginning of the search, allocate a new
1512 * page.
1513 */
1514 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1515 fs->object == fs->first_object)) {
1516 if (!vm_fault_object_ensure_wlocked(fs)) {
1517 fs->can_read_lock = false;
1518 vm_fault_unlock_and_deallocate(fs);
1519 return (FAULT_RESTART);
1520 }
1521 res = vm_fault_allocate(fs, &pages);
1522 if (res != FAULT_CONTINUE)
1523 return (res);
1524 }
1525
1526 /*
1527 * Check to see if the pager can possibly satisfy this fault.
1528 * If not, skip to the next object without dropping the lock to
1529 * preserve atomicity of shadow faults.
1530 */
1531 if (vm_fault_object_needs_getpages(fs->object)) {
1532 /*
1533 * At this point, we have either allocated a new page
1534 * or found an existing page that is only partially
1535 * valid.
1536 *
1537 * We hold a reference on the current object and the
1538 * page is exclusive busied. The exclusive busy
1539 * prevents simultaneous faults and collapses while
1540 * the object lock is dropped.
1541 */
1542 VM_OBJECT_UNLOCK(fs->object);
1543 res = vm_fault_getpages(fs, behindp, aheadp);
1544 if (res == FAULT_CONTINUE)
1545 VM_OBJECT_WLOCK(fs->object);
1546 } else {
1547 res = FAULT_CONTINUE;
1548 }
1549 return (res);
1550 }
1551
1552 int
vm_fault(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,vm_page_t * m_hold)1553 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1554 int fault_flags, vm_page_t *m_hold)
1555 {
1556 struct pctrie_iter pages;
1557 struct faultstate fs;
1558 int ahead, behind, faultcount, rv;
1559 enum fault_status res;
1560 enum fault_next_status res_next;
1561 bool hardfault;
1562
1563 VM_CNT_INC(v_vm_faults);
1564
1565 if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1566 return (KERN_PROTECTION_FAILURE);
1567
1568 fs.vp = NULL;
1569 fs.vaddr = vaddr;
1570 fs.m_hold = m_hold;
1571 fs.fault_flags = fault_flags;
1572 fs.map = map;
1573 fs.lookup_still_valid = false;
1574 fs.oom_started = false;
1575 fs.nera = -1;
1576 fs.can_read_lock = true;
1577 faultcount = 0;
1578 hardfault = false;
1579
1580 RetryFault:
1581 fs.fault_type = fault_type;
1582
1583 /*
1584 * Find the backing store object and offset into it to begin the
1585 * search.
1586 */
1587 rv = vm_fault_lookup(&fs);
1588 if (rv != KERN_SUCCESS) {
1589 if (rv == KERN_RESOURCE_SHORTAGE)
1590 goto RetryFault;
1591 return (rv);
1592 }
1593
1594 /*
1595 * Try to avoid lock contention on the top-level object through
1596 * special-case handling of some types of page faults, specifically,
1597 * those that are mapping an existing page from the top-level object.
1598 * Under this condition, a read lock on the object suffices, allowing
1599 * multiple page faults of a similar type to run in parallel.
1600 */
1601 if (fs.vp == NULL /* avoid locked vnode leak */ &&
1602 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1603 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1604 res = vm_fault_soft_fast(&fs);
1605 if (res == FAULT_SUCCESS) {
1606 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1607 return (KERN_SUCCESS);
1608 }
1609 VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1610 } else {
1611 vm_page_iter_init(&pages, fs.first_object);
1612 VM_OBJECT_WLOCK(fs.first_object);
1613 }
1614
1615 /*
1616 * Make a reference to this object to prevent its disposal while we
1617 * are messing with it. Once we have the reference, the map is free
1618 * to be diddled. Since objects reference their shadows (and copies),
1619 * they will stay around as well.
1620 *
1621 * Bump the paging-in-progress count to prevent size changes (e.g.
1622 * truncation operations) during I/O.
1623 */
1624 vm_object_reference_locked(fs.first_object);
1625 vm_object_pip_add(fs.first_object, 1);
1626
1627 fs.m_cow = fs.m = fs.first_m = NULL;
1628
1629 /*
1630 * Search for the page at object/offset.
1631 */
1632 fs.object = fs.first_object;
1633 fs.pindex = fs.first_pindex;
1634
1635 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1636 res = vm_fault_allocate(&fs, &pages);
1637 switch (res) {
1638 case FAULT_RESTART:
1639 goto RetryFault;
1640 case FAULT_SUCCESS:
1641 return (KERN_SUCCESS);
1642 case FAULT_FAILURE:
1643 return (KERN_FAILURE);
1644 case FAULT_OUT_OF_BOUNDS:
1645 return (KERN_OUT_OF_BOUNDS);
1646 case FAULT_CONTINUE:
1647 break;
1648 default:
1649 panic("vm_fault: Unhandled status %d", res);
1650 }
1651 }
1652
1653 while (TRUE) {
1654 KASSERT(fs.m == NULL,
1655 ("page still set %p at loop start", fs.m));
1656
1657 res = vm_fault_object(&fs, &behind, &ahead);
1658 switch (res) {
1659 case FAULT_SOFT:
1660 goto found;
1661 case FAULT_HARD:
1662 faultcount = behind + 1 + ahead;
1663 hardfault = true;
1664 goto found;
1665 case FAULT_RESTART:
1666 goto RetryFault;
1667 case FAULT_SUCCESS:
1668 return (KERN_SUCCESS);
1669 case FAULT_FAILURE:
1670 return (KERN_FAILURE);
1671 case FAULT_OUT_OF_BOUNDS:
1672 return (KERN_OUT_OF_BOUNDS);
1673 case FAULT_PROTECTION_FAILURE:
1674 return (KERN_PROTECTION_FAILURE);
1675 case FAULT_CONTINUE:
1676 break;
1677 default:
1678 panic("vm_fault: Unhandled status %d", res);
1679 }
1680
1681 /*
1682 * The page was not found in the current object. Try to
1683 * traverse into a backing object or zero fill if none is
1684 * found.
1685 */
1686 res_next = vm_fault_next(&fs);
1687 if (res_next == FAULT_NEXT_RESTART)
1688 goto RetryFault;
1689 else if (res_next == FAULT_NEXT_GOTOBJ)
1690 continue;
1691 MPASS(res_next == FAULT_NEXT_NOOBJ);
1692 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1693 if (fs.first_object == fs.object)
1694 vm_fault_page_free(&fs.first_m);
1695 vm_fault_unlock_and_deallocate(&fs);
1696 return (KERN_OUT_OF_BOUNDS);
1697 }
1698 VM_OBJECT_UNLOCK(fs.object);
1699 vm_fault_zerofill(&fs);
1700 /* Don't try to prefault neighboring pages. */
1701 faultcount = 1;
1702 break;
1703 }
1704
1705 found:
1706 /*
1707 * A valid page has been found and exclusively busied. The
1708 * object lock must no longer be held.
1709 */
1710 vm_page_assert_xbusied(fs.m);
1711 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1712
1713 /*
1714 * If the page is being written, but isn't already owned by the
1715 * top-level object, we have to copy it into a new page owned by the
1716 * top-level object.
1717 */
1718 if (fs.object != fs.first_object) {
1719 /*
1720 * We only really need to copy if we want to write it.
1721 */
1722 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1723 vm_fault_cow(&fs);
1724 /*
1725 * We only try to prefault read-only mappings to the
1726 * neighboring pages when this copy-on-write fault is
1727 * a hard fault. In other cases, trying to prefault
1728 * is typically wasted effort.
1729 */
1730 if (faultcount == 0)
1731 faultcount = 1;
1732
1733 } else {
1734 fs.prot &= ~VM_PROT_WRITE;
1735 }
1736 }
1737
1738 /*
1739 * We must verify that the maps have not changed since our last
1740 * lookup.
1741 */
1742 if (!fs.lookup_still_valid) {
1743 rv = vm_fault_relookup(&fs);
1744 if (rv != KERN_SUCCESS) {
1745 vm_fault_deallocate(&fs);
1746 if (rv == KERN_RESTART)
1747 goto RetryFault;
1748 return (rv);
1749 }
1750 }
1751 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1752
1753 /*
1754 * If the page was filled by a pager, save the virtual address that
1755 * should be faulted on next under a sequential access pattern to the
1756 * map entry. A read lock on the map suffices to update this address
1757 * safely.
1758 */
1759 if (hardfault)
1760 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1761
1762 /*
1763 * If the page to be mapped was copied from a backing object, we defer
1764 * marking it valid until here, where the fault handler is guaranteed to
1765 * succeed. Otherwise we can end up with a shadowed, mapped page in the
1766 * backing object, which violates an invariant of vm_object_collapse()
1767 * that shadowed pages are not mapped.
1768 */
1769 if (fs.m_cow != NULL) {
1770 KASSERT(vm_page_none_valid(fs.m),
1771 ("vm_fault: page %p is already valid", fs.m_cow));
1772 vm_page_valid(fs.m);
1773 }
1774
1775 /*
1776 * Page must be completely valid or it is not fit to
1777 * map into user space. vm_pager_get_pages() ensures this.
1778 */
1779 vm_page_assert_xbusied(fs.m);
1780 KASSERT(vm_page_all_valid(fs.m),
1781 ("vm_fault: page %p partially invalid", fs.m));
1782
1783 vm_fault_dirty(&fs, fs.m);
1784
1785 /*
1786 * Put this page into the physical map. We had to do the unlock above
1787 * because pmap_enter() may sleep. We don't put the page
1788 * back on the active queue until later so that the pageout daemon
1789 * won't find it (yet).
1790 */
1791 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1792 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1793 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1794 fs.wired == 0)
1795 vm_fault_prefault(&fs, vaddr,
1796 faultcount > 0 ? behind : PFBAK,
1797 faultcount > 0 ? ahead : PFFOR, false);
1798
1799 /*
1800 * If the page is not wired down, then put it where the pageout daemon
1801 * can find it.
1802 */
1803 if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1804 vm_page_wire(fs.m);
1805 else
1806 vm_page_activate(fs.m);
1807 if (fs.m_hold != NULL) {
1808 (*fs.m_hold) = fs.m;
1809 vm_page_wire(fs.m);
1810 }
1811 vm_page_xunbusy(fs.m);
1812 fs.m = NULL;
1813
1814 /*
1815 * Unlock everything, and return
1816 */
1817 vm_fault_deallocate(&fs);
1818 if (hardfault) {
1819 VM_CNT_INC(v_io_faults);
1820 curthread->td_ru.ru_majflt++;
1821 #ifdef RACCT
1822 if (racct_enable && fs.object->type == OBJT_VNODE) {
1823 PROC_LOCK(curproc);
1824 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1825 racct_add_force(curproc, RACCT_WRITEBPS,
1826 PAGE_SIZE + behind * PAGE_SIZE);
1827 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1828 } else {
1829 racct_add_force(curproc, RACCT_READBPS,
1830 PAGE_SIZE + ahead * PAGE_SIZE);
1831 racct_add_force(curproc, RACCT_READIOPS, 1);
1832 }
1833 PROC_UNLOCK(curproc);
1834 }
1835 #endif
1836 } else
1837 curthread->td_ru.ru_minflt++;
1838
1839 return (KERN_SUCCESS);
1840 }
1841
1842 /*
1843 * Speed up the reclamation of pages that precede the faulting pindex within
1844 * the first object of the shadow chain. Essentially, perform the equivalent
1845 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1846 * the faulting pindex by the cluster size when the pages read by vm_fault()
1847 * cross a cluster-size boundary. The cluster size is the greater of the
1848 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1849 *
1850 * When "fs->first_object" is a shadow object, the pages in the backing object
1851 * that precede the faulting pindex are deactivated by vm_fault(). So, this
1852 * function must only be concerned with pages in the first object.
1853 */
1854 static void
vm_fault_dontneed(const struct faultstate * fs,vm_offset_t vaddr,int ahead)1855 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1856 {
1857 vm_map_entry_t entry;
1858 vm_object_t first_object;
1859 vm_offset_t end, start;
1860 vm_page_t m, m_next;
1861 vm_pindex_t pend, pstart;
1862 vm_size_t size;
1863
1864 VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1865 first_object = fs->first_object;
1866 /* Neither fictitious nor unmanaged pages can be reclaimed. */
1867 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1868 VM_OBJECT_RLOCK(first_object);
1869 size = VM_FAULT_DONTNEED_MIN;
1870 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1871 size = pagesizes[1];
1872 end = rounddown2(vaddr, size);
1873 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1874 (entry = fs->entry)->start < end) {
1875 if (end - entry->start < size)
1876 start = entry->start;
1877 else
1878 start = end - size;
1879 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1880 pstart = OFF_TO_IDX(entry->offset) + atop(start -
1881 entry->start);
1882 m_next = vm_page_find_least(first_object, pstart);
1883 pend = OFF_TO_IDX(entry->offset) + atop(end -
1884 entry->start);
1885 while ((m = m_next) != NULL && m->pindex < pend) {
1886 m_next = TAILQ_NEXT(m, listq);
1887 if (!vm_page_all_valid(m) ||
1888 vm_page_busied(m))
1889 continue;
1890
1891 /*
1892 * Don't clear PGA_REFERENCED, since it would
1893 * likely represent a reference by a different
1894 * process.
1895 *
1896 * Typically, at this point, prefetched pages
1897 * are still in the inactive queue. Only
1898 * pages that triggered page faults are in the
1899 * active queue. The test for whether the page
1900 * is in the inactive queue is racy; in the
1901 * worst case we will requeue the page
1902 * unnecessarily.
1903 */
1904 if (!vm_page_inactive(m))
1905 vm_page_deactivate(m);
1906 }
1907 }
1908 VM_OBJECT_RUNLOCK(first_object);
1909 }
1910 }
1911
1912 /*
1913 * vm_fault_prefault provides a quick way of clustering
1914 * pagefaults into a processes address space. It is a "cousin"
1915 * of vm_map_pmap_enter, except it runs at page fault time instead
1916 * of mmap time.
1917 */
1918 static void
vm_fault_prefault(const struct faultstate * fs,vm_offset_t addra,int backward,int forward,bool obj_locked)1919 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1920 int backward, int forward, bool obj_locked)
1921 {
1922 pmap_t pmap;
1923 vm_map_entry_t entry;
1924 vm_object_t backing_object, lobject;
1925 vm_offset_t addr, starta;
1926 vm_pindex_t pindex;
1927 vm_page_t m;
1928 vm_prot_t prot;
1929 int i;
1930
1931 pmap = fs->map->pmap;
1932 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1933 return;
1934
1935 entry = fs->entry;
1936
1937 if (addra < backward * PAGE_SIZE) {
1938 starta = entry->start;
1939 } else {
1940 starta = addra - backward * PAGE_SIZE;
1941 if (starta < entry->start)
1942 starta = entry->start;
1943 }
1944 prot = entry->protection;
1945
1946 /*
1947 * If pmap_enter() has enabled write access on a nearby mapping, then
1948 * don't attempt promotion, because it will fail.
1949 */
1950 if ((fs->prot & VM_PROT_WRITE) != 0)
1951 prot |= VM_PROT_NO_PROMOTE;
1952
1953 /*
1954 * Generate the sequence of virtual addresses that are candidates for
1955 * prefaulting in an outward spiral from the faulting virtual address,
1956 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
1957 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1958 * If the candidate address doesn't have a backing physical page, then
1959 * the loop immediately terminates.
1960 */
1961 for (i = 0; i < 2 * imax(backward, forward); i++) {
1962 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1963 PAGE_SIZE);
1964 if (addr > addra + forward * PAGE_SIZE)
1965 addr = 0;
1966
1967 if (addr < starta || addr >= entry->end)
1968 continue;
1969
1970 if (!pmap_is_prefaultable(pmap, addr))
1971 continue;
1972
1973 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1974 lobject = entry->object.vm_object;
1975 if (!obj_locked)
1976 VM_OBJECT_RLOCK(lobject);
1977 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1978 !vm_fault_object_needs_getpages(lobject) &&
1979 (backing_object = lobject->backing_object) != NULL) {
1980 KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1981 0, ("vm_fault_prefault: unaligned object offset"));
1982 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1983 VM_OBJECT_RLOCK(backing_object);
1984 if (!obj_locked || lobject != entry->object.vm_object)
1985 VM_OBJECT_RUNLOCK(lobject);
1986 lobject = backing_object;
1987 }
1988 if (m == NULL) {
1989 if (!obj_locked || lobject != entry->object.vm_object)
1990 VM_OBJECT_RUNLOCK(lobject);
1991 break;
1992 }
1993 if (vm_page_all_valid(m) &&
1994 (m->flags & PG_FICTITIOUS) == 0)
1995 pmap_enter_quick(pmap, addr, m, prot);
1996 if (!obj_locked || lobject != entry->object.vm_object)
1997 VM_OBJECT_RUNLOCK(lobject);
1998 }
1999 }
2000
2001 /*
2002 * Hold each of the physical pages that are mapped by the specified range of
2003 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2004 * and allow the specified types of access, "prot". If all of the implied
2005 * pages are successfully held, then the number of held pages is returned
2006 * together with pointers to those pages in the array "ma". However, if any
2007 * of the pages cannot be held, -1 is returned.
2008 */
2009 int
vm_fault_quick_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count)2010 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2011 vm_prot_t prot, vm_page_t *ma, int max_count)
2012 {
2013 vm_offset_t end, va;
2014 vm_page_t *mp;
2015 int count;
2016 boolean_t pmap_failed;
2017
2018 if (len == 0)
2019 return (0);
2020 end = round_page(addr + len);
2021 addr = trunc_page(addr);
2022
2023 if (!vm_map_range_valid(map, addr, end))
2024 return (-1);
2025
2026 if (atop(end - addr) > max_count)
2027 panic("vm_fault_quick_hold_pages: count > max_count");
2028 count = atop(end - addr);
2029
2030 /*
2031 * Most likely, the physical pages are resident in the pmap, so it is
2032 * faster to try pmap_extract_and_hold() first.
2033 */
2034 pmap_failed = FALSE;
2035 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2036 *mp = pmap_extract_and_hold(map->pmap, va, prot);
2037 if (*mp == NULL)
2038 pmap_failed = TRUE;
2039 else if ((prot & VM_PROT_WRITE) != 0 &&
2040 (*mp)->dirty != VM_PAGE_BITS_ALL) {
2041 /*
2042 * Explicitly dirty the physical page. Otherwise, the
2043 * caller's changes may go unnoticed because they are
2044 * performed through an unmanaged mapping or by a DMA
2045 * operation.
2046 *
2047 * The object lock is not held here.
2048 * See vm_page_clear_dirty_mask().
2049 */
2050 vm_page_dirty(*mp);
2051 }
2052 }
2053 if (pmap_failed) {
2054 /*
2055 * One or more pages could not be held by the pmap. Either no
2056 * page was mapped at the specified virtual address or that
2057 * mapping had insufficient permissions. Attempt to fault in
2058 * and hold these pages.
2059 *
2060 * If vm_fault_disable_pagefaults() was called,
2061 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2062 * acquire MD VM locks, which means we must not call
2063 * vm_fault(). Some (out of tree) callers mark
2064 * too wide a code area with vm_fault_disable_pagefaults()
2065 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2066 * the proper behaviour explicitly.
2067 */
2068 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2069 (curthread->td_pflags & TDP_NOFAULTING) != 0)
2070 goto error;
2071 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2072 if (*mp == NULL && vm_fault(map, va, prot,
2073 VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2074 goto error;
2075 }
2076 return (count);
2077 error:
2078 for (mp = ma; mp < ma + count; mp++)
2079 if (*mp != NULL)
2080 vm_page_unwire(*mp, PQ_INACTIVE);
2081 return (-1);
2082 }
2083
2084 /*
2085 * Routine:
2086 * vm_fault_copy_entry
2087 * Function:
2088 * Create new object backing dst_entry with private copy of all
2089 * underlying pages. When src_entry is equal to dst_entry, function
2090 * implements COW for wired-down map entry. Otherwise, it forks
2091 * wired entry into dst_map.
2092 *
2093 * In/out conditions:
2094 * The source and destination maps must be locked for write.
2095 * The source map entry must be wired down (or be a sharing map
2096 * entry corresponding to a main map entry that is wired down).
2097 */
2098 void
vm_fault_copy_entry(vm_map_t dst_map,vm_map_t src_map __unused,vm_map_entry_t dst_entry,vm_map_entry_t src_entry,vm_ooffset_t * fork_charge)2099 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2100 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2101 vm_ooffset_t *fork_charge)
2102 {
2103 vm_object_t backing_object, dst_object, object, src_object;
2104 vm_pindex_t dst_pindex, pindex, src_pindex;
2105 vm_prot_t access, prot;
2106 vm_offset_t vaddr;
2107 vm_page_t dst_m, mpred;
2108 vm_page_t src_m;
2109 bool upgrade;
2110
2111 upgrade = src_entry == dst_entry;
2112 KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2113 ("vm_fault_copy_entry: vm_object not NULL"));
2114
2115 /*
2116 * If not an upgrade, then enter the mappings in the pmap as
2117 * read and/or execute accesses. Otherwise, enter them as
2118 * write accesses.
2119 *
2120 * A writeable large page mapping is only created if all of
2121 * the constituent small page mappings are modified. Marking
2122 * PTEs as modified on inception allows promotion to happen
2123 * without taking potentially large number of soft faults.
2124 */
2125 access = prot = dst_entry->protection;
2126 if (!upgrade)
2127 access &= ~VM_PROT_WRITE;
2128
2129 src_object = src_entry->object.vm_object;
2130 src_pindex = OFF_TO_IDX(src_entry->offset);
2131
2132 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2133 dst_object = src_object;
2134 vm_object_reference(dst_object);
2135 } else {
2136 /*
2137 * Create the top-level object for the destination entry.
2138 * Doesn't actually shadow anything - we copy the pages
2139 * directly.
2140 */
2141 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2142 dst_entry->start), NULL, NULL, 0);
2143 #if VM_NRESERVLEVEL > 0
2144 dst_object->flags |= OBJ_COLORED;
2145 dst_object->pg_color = atop(dst_entry->start);
2146 #endif
2147 dst_object->domain = src_object->domain;
2148 dst_object->charge = dst_entry->end - dst_entry->start;
2149
2150 dst_entry->object.vm_object = dst_object;
2151 dst_entry->offset = 0;
2152 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2153 }
2154
2155 VM_OBJECT_WLOCK(dst_object);
2156 if (fork_charge != NULL) {
2157 KASSERT(dst_entry->cred == NULL,
2158 ("vm_fault_copy_entry: leaked swp charge"));
2159 dst_object->cred = curthread->td_ucred;
2160 crhold(dst_object->cred);
2161 *fork_charge += dst_object->charge;
2162 } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2163 dst_object->cred == NULL) {
2164 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2165 dst_entry));
2166 dst_object->cred = dst_entry->cred;
2167 dst_entry->cred = NULL;
2168 }
2169
2170 /*
2171 * Loop through all of the virtual pages within the entry's
2172 * range, copying each page from the source object to the
2173 * destination object. Since the source is wired, those pages
2174 * must exist. In contrast, the destination is pageable.
2175 * Since the destination object doesn't share any backing storage
2176 * with the source object, all of its pages must be dirtied,
2177 * regardless of whether they can be written.
2178 */
2179 mpred = (src_object == dst_object) ?
2180 vm_page_mpred(src_object, src_pindex) : NULL;
2181 for (vaddr = dst_entry->start, dst_pindex = 0;
2182 vaddr < dst_entry->end;
2183 vaddr += PAGE_SIZE, dst_pindex++, mpred = dst_m) {
2184 again:
2185 /*
2186 * Find the page in the source object, and copy it in.
2187 * Because the source is wired down, the page will be
2188 * in memory.
2189 */
2190 if (src_object != dst_object)
2191 VM_OBJECT_RLOCK(src_object);
2192 object = src_object;
2193 pindex = src_pindex + dst_pindex;
2194 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2195 (backing_object = object->backing_object) != NULL) {
2196 /*
2197 * Unless the source mapping is read-only or
2198 * it is presently being upgraded from
2199 * read-only, the first object in the shadow
2200 * chain should provide all of the pages. In
2201 * other words, this loop body should never be
2202 * executed when the source mapping is already
2203 * read/write.
2204 */
2205 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2206 upgrade,
2207 ("vm_fault_copy_entry: main object missing page"));
2208
2209 VM_OBJECT_RLOCK(backing_object);
2210 pindex += OFF_TO_IDX(object->backing_object_offset);
2211 if (object != dst_object)
2212 VM_OBJECT_RUNLOCK(object);
2213 object = backing_object;
2214 }
2215 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2216
2217 if (object != dst_object) {
2218 /*
2219 * Allocate a page in the destination object.
2220 */
2221 pindex = (src_object == dst_object ? src_pindex : 0) +
2222 dst_pindex;
2223 dst_m = vm_page_alloc_after(dst_object, pindex,
2224 VM_ALLOC_NORMAL, mpred);
2225 if (dst_m == NULL) {
2226 VM_OBJECT_WUNLOCK(dst_object);
2227 VM_OBJECT_RUNLOCK(object);
2228 vm_wait(dst_object);
2229 VM_OBJECT_WLOCK(dst_object);
2230 mpred = vm_page_mpred(dst_object, pindex);
2231 goto again;
2232 }
2233
2234 /*
2235 * See the comment in vm_fault_cow().
2236 */
2237 if (src_object == dst_object &&
2238 (object->flags & OBJ_ONEMAPPING) == 0)
2239 pmap_remove_all(src_m);
2240 pmap_copy_page(src_m, dst_m);
2241
2242 /*
2243 * The object lock does not guarantee that "src_m" will
2244 * transition from invalid to valid, but it does ensure
2245 * that "src_m" will not transition from valid to
2246 * invalid.
2247 */
2248 dst_m->dirty = dst_m->valid = src_m->valid;
2249 VM_OBJECT_RUNLOCK(object);
2250 } else {
2251 dst_m = src_m;
2252 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2253 goto again;
2254 if (dst_m->pindex >= dst_object->size) {
2255 /*
2256 * We are upgrading. Index can occur
2257 * out of bounds if the object type is
2258 * vnode and the file was truncated.
2259 */
2260 vm_page_xunbusy(dst_m);
2261 break;
2262 }
2263 }
2264
2265 /*
2266 * Enter it in the pmap. If a wired, copy-on-write
2267 * mapping is being replaced by a write-enabled
2268 * mapping, then wire that new mapping.
2269 *
2270 * The page can be invalid if the user called
2271 * msync(MS_INVALIDATE) or truncated the backing vnode
2272 * or shared memory object. In this case, do not
2273 * insert it into pmap, but still do the copy so that
2274 * all copies of the wired map entry have similar
2275 * backing pages.
2276 */
2277 if (vm_page_all_valid(dst_m)) {
2278 VM_OBJECT_WUNLOCK(dst_object);
2279 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2280 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2281 VM_OBJECT_WLOCK(dst_object);
2282 }
2283
2284 /*
2285 * Mark it no longer busy, and put it on the active list.
2286 */
2287 if (upgrade) {
2288 if (src_m != dst_m) {
2289 vm_page_unwire(src_m, PQ_INACTIVE);
2290 vm_page_wire(dst_m);
2291 } else {
2292 KASSERT(vm_page_wired(dst_m),
2293 ("dst_m %p is not wired", dst_m));
2294 }
2295 } else {
2296 vm_page_activate(dst_m);
2297 }
2298 vm_page_xunbusy(dst_m);
2299 }
2300 VM_OBJECT_WUNLOCK(dst_object);
2301 if (upgrade) {
2302 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2303 vm_object_deallocate(src_object);
2304 }
2305 }
2306
2307 /*
2308 * Block entry into the machine-independent layer's page fault handler by
2309 * the calling thread. Subsequent calls to vm_fault() by that thread will
2310 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
2311 * spurious page faults.
2312 */
2313 int
vm_fault_disable_pagefaults(void)2314 vm_fault_disable_pagefaults(void)
2315 {
2316
2317 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2318 }
2319
2320 void
vm_fault_enable_pagefaults(int save)2321 vm_fault_enable_pagefaults(int save)
2322 {
2323
2324 curthread_pflags_restore(save);
2325 }
2326