1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 *
11 *
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include "opt_ktrace.h"
75 #include "opt_vm.h"
76
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mman.h>
81 #include <sys/mutex.h>
82 #include <sys/pctrie.h>
83 #include <sys/proc.h>
84 #include <sys/racct.h>
85 #include <sys/refcount.h>
86 #include <sys/resourcevar.h>
87 #include <sys/rwlock.h>
88 #include <sys/sched.h>
89 #include <sys/sf_buf.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_reserv.h>
111
112 #define PFBAK 4
113 #define PFFOR 4
114
115 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
116
117 #define VM_FAULT_DONTNEED_MIN 1048576
118
119 struct faultstate {
120 /* Fault parameters. */
121 vm_offset_t vaddr;
122 vm_page_t *m_hold;
123 vm_prot_t fault_type;
124 vm_prot_t prot;
125 int fault_flags;
126 boolean_t wired;
127
128 /* Control state. */
129 struct timeval oom_start_time;
130 bool oom_started;
131 int nera;
132 bool can_read_lock;
133
134 /* Page reference for cow. */
135 vm_page_t m_cow;
136
137 /* Current object. */
138 vm_object_t object;
139 vm_pindex_t pindex;
140 vm_page_t m;
141
142 /* Top-level map object. */
143 vm_object_t first_object;
144 vm_pindex_t first_pindex;
145 vm_page_t first_m;
146
147 /* Map state. */
148 vm_map_t map;
149 vm_map_entry_t entry;
150 int map_generation;
151 bool lookup_still_valid;
152
153 /* Vnode if locked. */
154 struct vnode *vp;
155 };
156
157 /*
158 * Return codes for internal fault routines.
159 */
160 enum fault_status {
161 FAULT_SUCCESS = 10000, /* Return success to user. */
162 FAULT_FAILURE, /* Return failure to user. */
163 FAULT_CONTINUE, /* Continue faulting. */
164 FAULT_RESTART, /* Restart fault. */
165 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */
166 FAULT_HARD, /* Performed I/O. */
167 FAULT_SOFT, /* Found valid page. */
168 FAULT_PROTECTION_FAILURE, /* Invalid access. */
169 };
170
171 enum fault_next_status {
172 FAULT_NEXT_GOTOBJ = 1,
173 FAULT_NEXT_NOOBJ,
174 FAULT_NEXT_RESTART,
175 };
176
177 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
178 int ahead);
179 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
180 int backward, int forward, bool obj_locked);
181
182 static int vm_pfault_oom_attempts = 3;
183 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
184 &vm_pfault_oom_attempts, 0,
185 "Number of page allocation attempts in page fault handler before it "
186 "triggers OOM handling");
187
188 static int vm_pfault_oom_wait = 10;
189 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
190 &vm_pfault_oom_wait, 0,
191 "Number of seconds to wait for free pages before retrying "
192 "the page fault handler");
193
194 static inline void
vm_fault_page_release(vm_page_t * mp)195 vm_fault_page_release(vm_page_t *mp)
196 {
197 vm_page_t m;
198
199 m = *mp;
200 if (m != NULL) {
201 /*
202 * We are likely to loop around again and attempt to busy
203 * this page. Deactivating it leaves it available for
204 * pageout while optimizing fault restarts.
205 */
206 vm_page_deactivate(m);
207 if (vm_page_xbusied(m))
208 vm_page_xunbusy(m);
209 else
210 vm_page_sunbusy(m);
211 *mp = NULL;
212 }
213 }
214
215 static inline void
vm_fault_page_free(vm_page_t * mp)216 vm_fault_page_free(vm_page_t *mp)
217 {
218 vm_page_t m;
219
220 m = *mp;
221 if (m != NULL) {
222 VM_OBJECT_ASSERT_WLOCKED(m->object);
223 if (!vm_page_wired(m))
224 vm_page_free(m);
225 else
226 vm_page_xunbusy(m);
227 *mp = NULL;
228 }
229 }
230
231 /*
232 * Return true if a vm_pager_get_pages() call is needed in order to check
233 * whether the pager might have a particular page, false if it can be determined
234 * immediately that the pager can not have a copy. For swap objects, this can
235 * be checked quickly.
236 */
237 static inline bool
vm_fault_object_needs_getpages(vm_object_t object)238 vm_fault_object_needs_getpages(vm_object_t object)
239 {
240 VM_OBJECT_ASSERT_LOCKED(object);
241
242 return ((object->flags & OBJ_SWAP) == 0 ||
243 !pctrie_is_empty(&object->un_pager.swp.swp_blks));
244 }
245
246 static inline void
vm_fault_unlock_map(struct faultstate * fs)247 vm_fault_unlock_map(struct faultstate *fs)
248 {
249
250 if (fs->lookup_still_valid) {
251 vm_map_lookup_done(fs->map, fs->entry);
252 fs->lookup_still_valid = false;
253 }
254 }
255
256 static void
vm_fault_unlock_vp(struct faultstate * fs)257 vm_fault_unlock_vp(struct faultstate *fs)
258 {
259
260 if (fs->vp != NULL) {
261 vput(fs->vp);
262 fs->vp = NULL;
263 }
264 }
265
266 static bool
vm_fault_might_be_cow(struct faultstate * fs)267 vm_fault_might_be_cow(struct faultstate *fs)
268 {
269 return (fs->object != fs->first_object);
270 }
271
272 static void
vm_fault_deallocate(struct faultstate * fs)273 vm_fault_deallocate(struct faultstate *fs)
274 {
275
276 vm_fault_page_release(&fs->m_cow);
277 vm_fault_page_release(&fs->m);
278 vm_object_pip_wakeup(fs->object);
279 if (vm_fault_might_be_cow(fs)) {
280 VM_OBJECT_WLOCK(fs->first_object);
281 vm_fault_page_free(&fs->first_m);
282 VM_OBJECT_WUNLOCK(fs->first_object);
283 vm_object_pip_wakeup(fs->first_object);
284 }
285 vm_object_deallocate(fs->first_object);
286 vm_fault_unlock_map(fs);
287 vm_fault_unlock_vp(fs);
288 }
289
290 static void
vm_fault_unlock_and_deallocate(struct faultstate * fs)291 vm_fault_unlock_and_deallocate(struct faultstate *fs)
292 {
293
294 VM_OBJECT_UNLOCK(fs->object);
295 vm_fault_deallocate(fs);
296 }
297
298 static void
vm_fault_dirty(struct faultstate * fs,vm_page_t m)299 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
300 {
301 bool need_dirty;
302
303 if (((fs->prot & VM_PROT_WRITE) == 0 &&
304 (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
305 (m->oflags & VPO_UNMANAGED) != 0)
306 return;
307
308 VM_PAGE_OBJECT_BUSY_ASSERT(m);
309
310 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
311 (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
312 (fs->fault_flags & VM_FAULT_DIRTY) != 0;
313
314 vm_object_set_writeable_dirty(m->object);
315
316 /*
317 * If the fault is a write, we know that this page is being
318 * written NOW so dirty it explicitly to save on
319 * pmap_is_modified() calls later.
320 *
321 * Also, since the page is now dirty, we can possibly tell
322 * the pager to release any swap backing the page.
323 */
324 if (need_dirty && vm_page_set_dirty(m) == 0) {
325 /*
326 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
327 * if the page is already dirty to prevent data written with
328 * the expectation of being synced from not being synced.
329 * Likewise if this entry does not request NOSYNC then make
330 * sure the page isn't marked NOSYNC. Applications sharing
331 * data should use the same flags to avoid ping ponging.
332 */
333 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
334 vm_page_aflag_set(m, PGA_NOSYNC);
335 else
336 vm_page_aflag_clear(m, PGA_NOSYNC);
337 }
338
339 }
340
341 static bool
vm_fault_is_read(const struct faultstate * fs)342 vm_fault_is_read(const struct faultstate *fs)
343 {
344 return ((fs->prot & VM_PROT_WRITE) == 0 &&
345 (fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0);
346 }
347
348 /*
349 * Unlocks fs.first_object and fs.map on success.
350 */
351 static enum fault_status
vm_fault_soft_fast(struct faultstate * fs)352 vm_fault_soft_fast(struct faultstate *fs)
353 {
354 vm_page_t m, m_map;
355 #if VM_NRESERVLEVEL > 0
356 vm_page_t m_super;
357 int flags;
358 #endif
359 int psind;
360 vm_offset_t vaddr;
361
362 MPASS(fs->vp == NULL);
363
364 /*
365 * If we fail, vast majority of the time it is because the page is not
366 * there to begin with. Opportunistically perform the lookup and
367 * subsequent checks without the object lock, revalidate later.
368 *
369 * Note: a busy page can be mapped for read|execute access.
370 */
371 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
372 if (m == NULL || !vm_page_all_valid(m) ||
373 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
374 VM_OBJECT_WLOCK(fs->first_object);
375 return (FAULT_FAILURE);
376 }
377
378 vaddr = fs->vaddr;
379
380 VM_OBJECT_RLOCK(fs->first_object);
381
382 /*
383 * Now that we stabilized the state, revalidate the page is in the shape
384 * we encountered above.
385 */
386
387 if (m->object != fs->first_object || m->pindex != fs->first_pindex)
388 goto fail;
389
390 vm_object_busy(fs->first_object);
391
392 if (!vm_page_all_valid(m) ||
393 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
394 goto fail_busy;
395
396 m_map = m;
397 psind = 0;
398 #if VM_NRESERVLEVEL > 0
399 if ((m->flags & PG_FICTITIOUS) == 0 &&
400 (m_super = vm_reserv_to_superpage(m)) != NULL) {
401 psind = m_super->psind;
402 KASSERT(psind > 0,
403 ("psind %d of m_super %p < 1", psind, m_super));
404 flags = PS_ALL_VALID;
405 if ((fs->prot & VM_PROT_WRITE) != 0) {
406 /*
407 * Create a superpage mapping allowing write access
408 * only if none of the constituent pages are busy and
409 * all of them are already dirty (except possibly for
410 * the page that was faulted on).
411 */
412 flags |= PS_NONE_BUSY;
413 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
414 flags |= PS_ALL_DIRTY;
415 }
416 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
417 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
418 (vaddr & (pagesizes[psind] - 1)) !=
419 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
420 !vm_page_ps_test(m_super, psind, flags, m) ||
421 !pmap_ps_enabled(fs->map->pmap)) {
422 psind--;
423 if (psind == 0)
424 break;
425 m_super += rounddown2(m - m_super,
426 atop(pagesizes[psind]));
427 KASSERT(m_super->psind >= psind,
428 ("psind %d of m_super %p < %d", m_super->psind,
429 m_super, psind));
430 }
431 if (psind > 0) {
432 m_map = m_super;
433 vaddr = rounddown2(vaddr, pagesizes[psind]);
434 /* Preset the modified bit for dirty superpages. */
435 if ((flags & PS_ALL_DIRTY) != 0)
436 fs->fault_type |= VM_PROT_WRITE;
437 }
438 }
439 #endif
440 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
441 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
442 KERN_SUCCESS)
443 goto fail_busy;
444 if (fs->m_hold != NULL) {
445 (*fs->m_hold) = m;
446 vm_page_wire(m);
447 }
448 if (psind == 0 && !fs->wired)
449 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
450 VM_OBJECT_RUNLOCK(fs->first_object);
451 vm_fault_dirty(fs, m);
452 vm_object_unbusy(fs->first_object);
453 vm_map_lookup_done(fs->map, fs->entry);
454 curthread->td_ru.ru_minflt++;
455 return (FAULT_SUCCESS);
456 fail_busy:
457 vm_object_unbusy(fs->first_object);
458 fail:
459 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
460 VM_OBJECT_RUNLOCK(fs->first_object);
461 VM_OBJECT_WLOCK(fs->first_object);
462 }
463 return (FAULT_FAILURE);
464 }
465
466 static void
vm_fault_restore_map_lock(struct faultstate * fs)467 vm_fault_restore_map_lock(struct faultstate *fs)
468 {
469
470 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
471 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
472
473 if (!vm_map_trylock_read(fs->map)) {
474 VM_OBJECT_WUNLOCK(fs->first_object);
475 vm_map_lock_read(fs->map);
476 VM_OBJECT_WLOCK(fs->first_object);
477 }
478 fs->lookup_still_valid = true;
479 }
480
481 static void
vm_fault_populate_check_page(vm_page_t m)482 vm_fault_populate_check_page(vm_page_t m)
483 {
484
485 /*
486 * Check each page to ensure that the pager is obeying the
487 * interface: the page must be installed in the object, fully
488 * valid, and exclusively busied.
489 */
490 MPASS(m != NULL);
491 MPASS(vm_page_all_valid(m));
492 MPASS(vm_page_xbusied(m));
493 }
494
495 static void
vm_fault_populate_cleanup(vm_object_t object,vm_pindex_t first,vm_pindex_t last)496 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
497 vm_pindex_t last)
498 {
499 struct pctrie_iter pages;
500 vm_page_t m;
501
502 VM_OBJECT_ASSERT_WLOCKED(object);
503 MPASS(first <= last);
504 vm_page_iter_limit_init(&pages, object, last + 1);
505 VM_RADIX_FORALL_FROM(m, &pages, first) {
506 vm_fault_populate_check_page(m);
507 vm_page_deactivate(m);
508 vm_page_xunbusy(m);
509 }
510 KASSERT(pages.index == last, ("%s: pindex mismatch", __func__));
511 }
512
513 static enum fault_status
vm_fault_populate(struct faultstate * fs)514 vm_fault_populate(struct faultstate *fs)
515 {
516 vm_offset_t vaddr;
517 vm_page_t m;
518 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
519 int bdry_idx, i, npages, psind, rv;
520 enum fault_status res;
521
522 MPASS(fs->object == fs->first_object);
523 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
524 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
525 MPASS(fs->first_object->backing_object == NULL);
526 MPASS(fs->lookup_still_valid);
527
528 pager_first = OFF_TO_IDX(fs->entry->offset);
529 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
530 vm_fault_unlock_map(fs);
531 vm_fault_unlock_vp(fs);
532
533 res = FAULT_SUCCESS;
534
535 /*
536 * Call the pager (driver) populate() method.
537 *
538 * There is no guarantee that the method will be called again
539 * if the current fault is for read, and a future fault is
540 * for write. Report the entry's maximum allowed protection
541 * to the driver.
542 */
543 rv = vm_pager_populate(fs->first_object, fs->first_pindex,
544 fs->fault_type, fs->entry->max_protection, &pager_first,
545 &pager_last);
546
547 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
548 if (rv == VM_PAGER_BAD) {
549 /*
550 * VM_PAGER_BAD is the backdoor for a pager to request
551 * normal fault handling.
552 */
553 vm_fault_restore_map_lock(fs);
554 if (fs->map->timestamp != fs->map_generation)
555 return (FAULT_RESTART);
556 return (FAULT_CONTINUE);
557 }
558 if (rv != VM_PAGER_OK)
559 return (FAULT_FAILURE); /* AKA SIGSEGV */
560
561 /* Ensure that the driver is obeying the interface. */
562 MPASS(pager_first <= pager_last);
563 MPASS(fs->first_pindex <= pager_last);
564 MPASS(fs->first_pindex >= pager_first);
565 MPASS(pager_last < fs->first_object->size);
566
567 vm_fault_restore_map_lock(fs);
568 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
569 if (fs->map->timestamp != fs->map_generation) {
570 if (bdry_idx == 0) {
571 vm_fault_populate_cleanup(fs->first_object, pager_first,
572 pager_last);
573 } else {
574 m = vm_page_lookup(fs->first_object, pager_first);
575 if (m != fs->m)
576 vm_page_xunbusy(m);
577 }
578 return (FAULT_RESTART);
579 }
580
581 /*
582 * The map is unchanged after our last unlock. Process the fault.
583 *
584 * First, the special case of largepage mappings, where
585 * populate only busies the first page in superpage run.
586 */
587 if (bdry_idx != 0) {
588 KASSERT(PMAP_HAS_LARGEPAGES,
589 ("missing pmap support for large pages"));
590 m = vm_page_lookup(fs->first_object, pager_first);
591 vm_fault_populate_check_page(m);
592 VM_OBJECT_WUNLOCK(fs->first_object);
593 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
594 fs->entry->offset;
595 /* assert alignment for entry */
596 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
597 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
598 (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
599 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
600 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
601 ("unaligned superpage m %p %#jx", m,
602 (uintmax_t)VM_PAGE_TO_PHYS(m)));
603 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
604 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
605 PMAP_ENTER_LARGEPAGE, bdry_idx);
606 VM_OBJECT_WLOCK(fs->first_object);
607 vm_page_xunbusy(m);
608 if (rv != KERN_SUCCESS) {
609 res = FAULT_FAILURE;
610 goto out;
611 }
612 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
613 for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
614 vm_page_wire(m + i);
615 }
616 if (fs->m_hold != NULL) {
617 *fs->m_hold = m + (fs->first_pindex - pager_first);
618 vm_page_wire(*fs->m_hold);
619 }
620 goto out;
621 }
622
623 /*
624 * The range [pager_first, pager_last] that is given to the
625 * pager is only a hint. The pager may populate any range
626 * within the object that includes the requested page index.
627 * In case the pager expanded the range, clip it to fit into
628 * the map entry.
629 */
630 map_first = OFF_TO_IDX(fs->entry->offset);
631 if (map_first > pager_first) {
632 vm_fault_populate_cleanup(fs->first_object, pager_first,
633 map_first - 1);
634 pager_first = map_first;
635 }
636 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
637 if (map_last < pager_last) {
638 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
639 pager_last);
640 pager_last = map_last;
641 }
642 for (pidx = pager_first; pidx <= pager_last; pidx += npages) {
643 m = vm_page_lookup(fs->first_object, pidx);
644 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
645 KASSERT(m != NULL && m->pindex == pidx,
646 ("%s: pindex mismatch", __func__));
647 psind = m->psind;
648 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
649 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
650 !pmap_ps_enabled(fs->map->pmap)))
651 psind--;
652
653 npages = atop(pagesizes[psind]);
654 for (i = 0; i < npages; i++) {
655 vm_fault_populate_check_page(&m[i]);
656 vm_fault_dirty(fs, &m[i]);
657 }
658 VM_OBJECT_WUNLOCK(fs->first_object);
659 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
660 (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
661
662 /*
663 * pmap_enter() may fail for a superpage mapping if additional
664 * protection policies prevent the full mapping.
665 * For example, this will happen on amd64 if the entire
666 * address range does not share the same userspace protection
667 * key. Revert to single-page mappings if this happens.
668 */
669 MPASS(rv == KERN_SUCCESS ||
670 (psind > 0 && rv == KERN_PROTECTION_FAILURE));
671 if (__predict_false(psind > 0 &&
672 rv == KERN_PROTECTION_FAILURE)) {
673 MPASS(!fs->wired);
674 for (i = 0; i < npages; i++) {
675 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
676 &m[i], fs->prot, fs->fault_type, 0);
677 MPASS(rv == KERN_SUCCESS);
678 }
679 }
680
681 VM_OBJECT_WLOCK(fs->first_object);
682 for (i = 0; i < npages; i++) {
683 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
684 m[i].pindex == fs->first_pindex)
685 vm_page_wire(&m[i]);
686 else
687 vm_page_activate(&m[i]);
688 if (fs->m_hold != NULL &&
689 m[i].pindex == fs->first_pindex) {
690 (*fs->m_hold) = &m[i];
691 vm_page_wire(&m[i]);
692 }
693 vm_page_xunbusy(&m[i]);
694 }
695 }
696 out:
697 curthread->td_ru.ru_majflt++;
698 return (res);
699 }
700
701 static int prot_fault_translation;
702 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
703 &prot_fault_translation, 0,
704 "Control signal to deliver on protection fault");
705
706 /* compat definition to keep common code for signal translation */
707 #define UCODE_PAGEFLT 12
708 #ifdef T_PAGEFLT
709 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
710 #endif
711
712 /*
713 * vm_fault_trap:
714 *
715 * Helper for the page fault trap handlers, wrapping vm_fault().
716 * Issues ktrace(2) tracepoints for the faults.
717 *
718 * If a fault cannot be handled successfully by satisfying the
719 * required mapping, and the faulted instruction cannot be restarted,
720 * the signal number and si_code values are returned for trapsignal()
721 * to deliver.
722 *
723 * Returns Mach error codes, but callers should only check for
724 * KERN_SUCCESS.
725 */
726 int
vm_fault_trap(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,int * signo,int * ucode)727 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
728 int fault_flags, int *signo, int *ucode)
729 {
730 int result;
731
732 MPASS(signo == NULL || ucode != NULL);
733 #ifdef KTRACE
734 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
735 ktrfault(vaddr, fault_type);
736 #endif
737 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
738 NULL);
739 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
740 result == KERN_INVALID_ADDRESS ||
741 result == KERN_RESOURCE_SHORTAGE ||
742 result == KERN_PROTECTION_FAILURE ||
743 result == KERN_OUT_OF_BOUNDS,
744 ("Unexpected Mach error %d from vm_fault()", result));
745 #ifdef KTRACE
746 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
747 ktrfaultend(result);
748 #endif
749 if (result != KERN_SUCCESS && signo != NULL) {
750 switch (result) {
751 case KERN_FAILURE:
752 case KERN_INVALID_ADDRESS:
753 *signo = SIGSEGV;
754 *ucode = SEGV_MAPERR;
755 break;
756 case KERN_RESOURCE_SHORTAGE:
757 *signo = SIGBUS;
758 *ucode = BUS_OOMERR;
759 break;
760 case KERN_OUT_OF_BOUNDS:
761 *signo = SIGBUS;
762 *ucode = BUS_OBJERR;
763 break;
764 case KERN_PROTECTION_FAILURE:
765 if (prot_fault_translation == 0) {
766 /*
767 * Autodetect. This check also covers
768 * the images without the ABI-tag ELF
769 * note.
770 */
771 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
772 curproc->p_osrel >= P_OSREL_SIGSEGV) {
773 *signo = SIGSEGV;
774 *ucode = SEGV_ACCERR;
775 } else {
776 *signo = SIGBUS;
777 *ucode = UCODE_PAGEFLT;
778 }
779 } else if (prot_fault_translation == 1) {
780 /* Always compat mode. */
781 *signo = SIGBUS;
782 *ucode = UCODE_PAGEFLT;
783 } else {
784 /* Always SIGSEGV mode. */
785 *signo = SIGSEGV;
786 *ucode = SEGV_ACCERR;
787 }
788 break;
789 default:
790 KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
791 result));
792 break;
793 }
794 }
795 return (result);
796 }
797
798 static bool
vm_fault_object_ensure_wlocked(struct faultstate * fs)799 vm_fault_object_ensure_wlocked(struct faultstate *fs)
800 {
801 if (fs->object == fs->first_object)
802 VM_OBJECT_ASSERT_WLOCKED(fs->object);
803
804 if (!fs->can_read_lock) {
805 VM_OBJECT_ASSERT_WLOCKED(fs->object);
806 return (true);
807 }
808
809 if (VM_OBJECT_WOWNED(fs->object))
810 return (true);
811
812 if (VM_OBJECT_TRYUPGRADE(fs->object))
813 return (true);
814
815 return (false);
816 }
817
818 static enum fault_status
vm_fault_lock_vnode(struct faultstate * fs,bool objlocked)819 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
820 {
821 struct vnode *vp;
822 int error, locked;
823
824 if (fs->object->type != OBJT_VNODE)
825 return (FAULT_CONTINUE);
826 vp = fs->object->handle;
827 if (vp == fs->vp) {
828 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
829 return (FAULT_CONTINUE);
830 }
831
832 /*
833 * Perform an unlock in case the desired vnode changed while
834 * the map was unlocked during a retry.
835 */
836 vm_fault_unlock_vp(fs);
837
838 locked = VOP_ISLOCKED(vp);
839 if (locked != LK_EXCLUSIVE)
840 locked = LK_SHARED;
841
842 /*
843 * We must not sleep acquiring the vnode lock while we have
844 * the page exclusive busied or the object's
845 * paging-in-progress count incremented. Otherwise, we could
846 * deadlock.
847 */
848 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
849 if (error == 0) {
850 fs->vp = vp;
851 return (FAULT_CONTINUE);
852 }
853
854 vhold(vp);
855 if (objlocked)
856 vm_fault_unlock_and_deallocate(fs);
857 else
858 vm_fault_deallocate(fs);
859 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
860 vdrop(vp);
861 fs->vp = vp;
862 KASSERT(error == 0, ("vm_fault: vget failed %d", error));
863 return (FAULT_RESTART);
864 }
865
866 /*
867 * Calculate the desired readahead. Handle drop-behind.
868 *
869 * Returns the number of readahead blocks to pass to the pager.
870 */
871 static int
vm_fault_readahead(struct faultstate * fs)872 vm_fault_readahead(struct faultstate *fs)
873 {
874 int era, nera;
875 u_char behavior;
876
877 KASSERT(fs->lookup_still_valid, ("map unlocked"));
878 era = fs->entry->read_ahead;
879 behavior = vm_map_entry_behavior(fs->entry);
880 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
881 nera = 0;
882 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
883 nera = VM_FAULT_READ_AHEAD_MAX;
884 if (fs->vaddr == fs->entry->next_read)
885 vm_fault_dontneed(fs, fs->vaddr, nera);
886 } else if (fs->vaddr == fs->entry->next_read) {
887 /*
888 * This is a sequential fault. Arithmetically
889 * increase the requested number of pages in
890 * the read-ahead window. The requested
891 * number of pages is "# of sequential faults
892 * x (read ahead min + 1) + read ahead min"
893 */
894 nera = VM_FAULT_READ_AHEAD_MIN;
895 if (era > 0) {
896 nera += era + 1;
897 if (nera > VM_FAULT_READ_AHEAD_MAX)
898 nera = VM_FAULT_READ_AHEAD_MAX;
899 }
900 if (era == VM_FAULT_READ_AHEAD_MAX)
901 vm_fault_dontneed(fs, fs->vaddr, nera);
902 } else {
903 /*
904 * This is a non-sequential fault.
905 */
906 nera = 0;
907 }
908 if (era != nera) {
909 /*
910 * A read lock on the map suffices to update
911 * the read ahead count safely.
912 */
913 fs->entry->read_ahead = nera;
914 }
915
916 return (nera);
917 }
918
919 static int
vm_fault_lookup(struct faultstate * fs)920 vm_fault_lookup(struct faultstate *fs)
921 {
922 int result;
923
924 KASSERT(!fs->lookup_still_valid,
925 ("vm_fault_lookup: Map already locked."));
926 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
927 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
928 &fs->first_pindex, &fs->prot, &fs->wired);
929 if (result != KERN_SUCCESS) {
930 vm_fault_unlock_vp(fs);
931 return (result);
932 }
933
934 fs->map_generation = fs->map->timestamp;
935
936 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
937 panic("%s: fault on nofault entry, addr: %#lx",
938 __func__, (u_long)fs->vaddr);
939 }
940
941 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
942 fs->entry->wiring_thread != curthread) {
943 vm_map_unlock_read(fs->map);
944 vm_map_lock(fs->map);
945 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
946 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
947 vm_fault_unlock_vp(fs);
948 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
949 vm_map_unlock_and_wait(fs->map, 0);
950 } else
951 vm_map_unlock(fs->map);
952 return (KERN_RESOURCE_SHORTAGE);
953 }
954
955 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
956
957 if (fs->wired)
958 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
959 else
960 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
961 ("!fs->wired && VM_FAULT_WIRE"));
962 fs->lookup_still_valid = true;
963
964 return (KERN_SUCCESS);
965 }
966
967 static int
vm_fault_relookup(struct faultstate * fs)968 vm_fault_relookup(struct faultstate *fs)
969 {
970 vm_object_t retry_object;
971 vm_pindex_t retry_pindex;
972 vm_prot_t retry_prot;
973 int result;
974
975 if (!vm_map_trylock_read(fs->map))
976 return (KERN_RESTART);
977
978 fs->lookup_still_valid = true;
979 if (fs->map->timestamp == fs->map_generation)
980 return (KERN_SUCCESS);
981
982 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
983 &fs->entry, &retry_object, &retry_pindex, &retry_prot,
984 &fs->wired);
985 if (result != KERN_SUCCESS) {
986 /*
987 * If retry of map lookup would have blocked then
988 * retry fault from start.
989 */
990 if (result == KERN_FAILURE)
991 return (KERN_RESTART);
992 return (result);
993 }
994 if (retry_object != fs->first_object ||
995 retry_pindex != fs->first_pindex)
996 return (KERN_RESTART);
997
998 /*
999 * Check whether the protection has changed or the object has
1000 * been copied while we left the map unlocked. Changing from
1001 * read to write permission is OK - we leave the page
1002 * write-protected, and catch the write fault. Changing from
1003 * write to read permission means that we can't mark the page
1004 * write-enabled after all.
1005 */
1006 fs->prot &= retry_prot;
1007 fs->fault_type &= retry_prot;
1008 if (fs->prot == 0)
1009 return (KERN_RESTART);
1010
1011 /* Reassert because wired may have changed. */
1012 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1013 ("!wired && VM_FAULT_WIRE"));
1014
1015 return (KERN_SUCCESS);
1016 }
1017
1018 static bool
vm_fault_can_cow_rename(struct faultstate * fs)1019 vm_fault_can_cow_rename(struct faultstate *fs)
1020 {
1021 return (
1022 /* Only one shadow object and no other refs. */
1023 fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1024 /* No other ways to look the object up. */
1025 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0);
1026 }
1027
1028 static void
vm_fault_cow(struct faultstate * fs)1029 vm_fault_cow(struct faultstate *fs)
1030 {
1031 bool is_first_object_locked, rename_cow;
1032
1033 KASSERT(vm_fault_might_be_cow(fs),
1034 ("source and target COW objects are identical"));
1035
1036 /*
1037 * This allows pages to be virtually copied from a backing_object
1038 * into the first_object, where the backing object has no other
1039 * refs to it, and cannot gain any more refs. Instead of a bcopy,
1040 * we just move the page from the backing object to the first
1041 * object. Note that we must mark the page dirty in the first
1042 * object so that it will go out to swap when needed.
1043 */
1044 is_first_object_locked = false;
1045 rename_cow = false;
1046
1047 if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) {
1048 /*
1049 * Check that we don't chase down the shadow chain and
1050 * we can acquire locks. Recheck the conditions for
1051 * rename after the shadow chain is stable after the
1052 * object locking.
1053 */
1054 is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object);
1055 if (is_first_object_locked &&
1056 fs->object == fs->first_object->backing_object) {
1057 if (VM_OBJECT_TRYWLOCK(fs->object)) {
1058 rename_cow = vm_fault_can_cow_rename(fs);
1059 if (!rename_cow)
1060 VM_OBJECT_WUNLOCK(fs->object);
1061 }
1062 }
1063 }
1064
1065 if (rename_cow) {
1066 vm_page_assert_xbusied(fs->m);
1067
1068 /*
1069 * Remove but keep xbusy for replace. fs->m is moved into
1070 * fs->first_object and left busy while fs->first_m is
1071 * conditionally freed.
1072 */
1073 vm_page_remove_xbusy(fs->m);
1074 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1075 fs->first_m);
1076 vm_page_dirty(fs->m);
1077 #if VM_NRESERVLEVEL > 0
1078 /*
1079 * Rename the reservation.
1080 */
1081 vm_reserv_rename(fs->m, fs->first_object, fs->object,
1082 OFF_TO_IDX(fs->first_object->backing_object_offset));
1083 #endif
1084 VM_OBJECT_WUNLOCK(fs->object);
1085 VM_OBJECT_WUNLOCK(fs->first_object);
1086 fs->first_m = fs->m;
1087 fs->m = NULL;
1088 VM_CNT_INC(v_cow_optim);
1089 } else {
1090 if (is_first_object_locked)
1091 VM_OBJECT_WUNLOCK(fs->first_object);
1092 /*
1093 * Oh, well, lets copy it.
1094 */
1095 pmap_copy_page(fs->m, fs->first_m);
1096 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1097 vm_page_wire(fs->first_m);
1098 vm_page_unwire(fs->m, PQ_INACTIVE);
1099 }
1100 /*
1101 * Save the COW page to be released after pmap_enter is
1102 * complete. The new copy will be marked valid when we're ready
1103 * to map it.
1104 */
1105 fs->m_cow = fs->m;
1106 fs->m = NULL;
1107
1108 /*
1109 * Typically, the shadow object is either private to this
1110 * address space (OBJ_ONEMAPPING) or its pages are read only.
1111 * In the highly unusual case where the pages of a shadow object
1112 * are read/write shared between this and other address spaces,
1113 * we need to ensure that any pmap-level mappings to the
1114 * original, copy-on-write page from the backing object are
1115 * removed from those other address spaces.
1116 *
1117 * The flag check is racy, but this is tolerable: if
1118 * OBJ_ONEMAPPING is cleared after the check, the busy state
1119 * ensures that new mappings of m_cow can't be created.
1120 * pmap_enter() will replace an existing mapping in the current
1121 * address space. If OBJ_ONEMAPPING is set after the check,
1122 * removing mappings will at worse trigger some unnecessary page
1123 * faults.
1124 *
1125 * In the fs->m shared busy case, the xbusy state of
1126 * fs->first_m prevents new mappings of fs->m from
1127 * being created because a parallel fault on this
1128 * shadow chain should wait for xbusy on fs->first_m.
1129 */
1130 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1131 pmap_remove_all(fs->m_cow);
1132 }
1133
1134 vm_object_pip_wakeup(fs->object);
1135
1136 /*
1137 * Only use the new page below...
1138 */
1139 fs->object = fs->first_object;
1140 fs->pindex = fs->first_pindex;
1141 fs->m = fs->first_m;
1142 VM_CNT_INC(v_cow_faults);
1143 curthread->td_cow++;
1144 }
1145
1146 static enum fault_next_status
vm_fault_next(struct faultstate * fs)1147 vm_fault_next(struct faultstate *fs)
1148 {
1149 vm_object_t next_object;
1150
1151 if (fs->object == fs->first_object || !fs->can_read_lock)
1152 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1153 else
1154 VM_OBJECT_ASSERT_LOCKED(fs->object);
1155
1156 /*
1157 * The requested page does not exist at this object/
1158 * offset. Remove the invalid page from the object,
1159 * waking up anyone waiting for it, and continue on to
1160 * the next object. However, if this is the top-level
1161 * object, we must leave the busy page in place to
1162 * prevent another process from rushing past us, and
1163 * inserting the page in that object at the same time
1164 * that we are.
1165 */
1166 if (fs->object == fs->first_object) {
1167 fs->first_m = fs->m;
1168 fs->m = NULL;
1169 } else if (fs->m != NULL) {
1170 if (!vm_fault_object_ensure_wlocked(fs)) {
1171 fs->can_read_lock = false;
1172 vm_fault_unlock_and_deallocate(fs);
1173 return (FAULT_NEXT_RESTART);
1174 }
1175 vm_fault_page_free(&fs->m);
1176 }
1177
1178 /*
1179 * Move on to the next object. Lock the next object before
1180 * unlocking the current one.
1181 */
1182 next_object = fs->object->backing_object;
1183 if (next_object == NULL)
1184 return (FAULT_NEXT_NOOBJ);
1185 MPASS(fs->first_m != NULL);
1186 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1187 if (fs->can_read_lock)
1188 VM_OBJECT_RLOCK(next_object);
1189 else
1190 VM_OBJECT_WLOCK(next_object);
1191 vm_object_pip_add(next_object, 1);
1192 if (fs->object != fs->first_object)
1193 vm_object_pip_wakeup(fs->object);
1194 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1195 VM_OBJECT_UNLOCK(fs->object);
1196 fs->object = next_object;
1197
1198 return (FAULT_NEXT_GOTOBJ);
1199 }
1200
1201 static void
vm_fault_zerofill(struct faultstate * fs)1202 vm_fault_zerofill(struct faultstate *fs)
1203 {
1204
1205 /*
1206 * If there's no object left, fill the page in the top
1207 * object with zeros.
1208 */
1209 if (vm_fault_might_be_cow(fs)) {
1210 vm_object_pip_wakeup(fs->object);
1211 fs->object = fs->first_object;
1212 fs->pindex = fs->first_pindex;
1213 }
1214 MPASS(fs->first_m != NULL);
1215 MPASS(fs->m == NULL);
1216 fs->m = fs->first_m;
1217 fs->first_m = NULL;
1218
1219 /*
1220 * Zero the page if necessary and mark it valid.
1221 */
1222 if ((fs->m->flags & PG_ZERO) == 0) {
1223 pmap_zero_page(fs->m);
1224 } else {
1225 #ifdef INVARIANTS
1226 if (vm_check_pg_zero) {
1227 struct sf_buf *sf;
1228 unsigned long *p;
1229 int i;
1230
1231 sched_pin();
1232 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
1233 p = (unsigned long *)sf_buf_kva(sf);
1234 for (i = 0; i < PAGE_SIZE / sizeof(*p); i++, p++) {
1235 KASSERT(*p == 0,
1236 ("zerocheck failed page %p PG_ZERO %d %jx",
1237 fs->m, i, (uintmax_t)*p));
1238 }
1239 sf_buf_free(sf);
1240 sched_unpin();
1241 }
1242 #endif
1243 VM_CNT_INC(v_ozfod);
1244 }
1245 VM_CNT_INC(v_zfod);
1246 vm_page_valid(fs->m);
1247 }
1248
1249 /*
1250 * Initiate page fault after timeout. Returns true if caller should
1251 * do vm_waitpfault() after the call.
1252 */
1253 static bool
vm_fault_allocate_oom(struct faultstate * fs)1254 vm_fault_allocate_oom(struct faultstate *fs)
1255 {
1256 struct timeval now;
1257
1258 vm_fault_unlock_and_deallocate(fs);
1259 if (vm_pfault_oom_attempts < 0)
1260 return (true);
1261 if (!fs->oom_started) {
1262 fs->oom_started = true;
1263 getmicrotime(&fs->oom_start_time);
1264 return (true);
1265 }
1266
1267 getmicrotime(&now);
1268 timevalsub(&now, &fs->oom_start_time);
1269 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1270 return (true);
1271
1272 if (bootverbose)
1273 printf(
1274 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1275 curproc->p_pid, curproc->p_comm);
1276 vm_pageout_oom(VM_OOM_MEM_PF);
1277 fs->oom_started = false;
1278 return (false);
1279 }
1280
1281 /*
1282 * Allocate a page directly or via the object populate method.
1283 */
1284 static enum fault_status
vm_fault_allocate(struct faultstate * fs,struct pctrie_iter * pages)1285 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
1286 {
1287 struct domainset *dset;
1288 enum fault_status res;
1289
1290 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1291 res = vm_fault_lock_vnode(fs, true);
1292 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1293 if (res == FAULT_RESTART)
1294 return (res);
1295 }
1296
1297 if (fs->pindex >= fs->object->size) {
1298 vm_fault_unlock_and_deallocate(fs);
1299 return (FAULT_OUT_OF_BOUNDS);
1300 }
1301
1302 if (fs->object == fs->first_object &&
1303 (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1304 fs->first_object->shadow_count == 0) {
1305 res = vm_fault_populate(fs);
1306 switch (res) {
1307 case FAULT_SUCCESS:
1308 case FAULT_FAILURE:
1309 case FAULT_RESTART:
1310 vm_fault_unlock_and_deallocate(fs);
1311 return (res);
1312 case FAULT_CONTINUE:
1313 pctrie_iter_reset(pages);
1314 /*
1315 * Pager's populate() method
1316 * returned VM_PAGER_BAD.
1317 */
1318 break;
1319 default:
1320 panic("inconsistent return codes");
1321 }
1322 }
1323
1324 /*
1325 * Allocate a new page for this object/offset pair.
1326 *
1327 * If the process has a fatal signal pending, prioritize the allocation
1328 * with the expectation that the process will exit shortly and free some
1329 * pages. In particular, the signal may have been posted by the page
1330 * daemon in an attempt to resolve an out-of-memory condition.
1331 *
1332 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED
1333 * might be not observed here, and allocation fails, causing a restart
1334 * and new reading of the p_flag.
1335 */
1336 dset = fs->object->domain.dr_policy;
1337 if (dset == NULL)
1338 dset = curthread->td_domain.dr_policy;
1339 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1340 #if VM_NRESERVLEVEL > 0
1341 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1342 #endif
1343 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1344 vm_fault_unlock_and_deallocate(fs);
1345 return (FAULT_FAILURE);
1346 }
1347 fs->m = vm_page_alloc_iter(fs->object, fs->pindex,
1348 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages);
1349 }
1350 if (fs->m == NULL) {
1351 if (vm_fault_allocate_oom(fs))
1352 vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1353 return (FAULT_RESTART);
1354 }
1355 fs->oom_started = false;
1356
1357 return (FAULT_CONTINUE);
1358 }
1359
1360 /*
1361 * Call the pager to retrieve the page if there is a chance
1362 * that the pager has it, and potentially retrieve additional
1363 * pages at the same time.
1364 */
1365 static enum fault_status
vm_fault_getpages(struct faultstate * fs,int * behindp,int * aheadp)1366 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1367 {
1368 vm_offset_t e_end, e_start;
1369 int ahead, behind, cluster_offset, rv;
1370 enum fault_status status;
1371 u_char behavior;
1372
1373 /*
1374 * Prepare for unlocking the map. Save the map
1375 * entry's start and end addresses, which are used to
1376 * optimize the size of the pager operation below.
1377 * Even if the map entry's addresses change after
1378 * unlocking the map, using the saved addresses is
1379 * safe.
1380 */
1381 e_start = fs->entry->start;
1382 e_end = fs->entry->end;
1383 behavior = vm_map_entry_behavior(fs->entry);
1384
1385 /*
1386 * If the pager for the current object might have
1387 * the page, then determine the number of additional
1388 * pages to read and potentially reprioritize
1389 * previously read pages for earlier reclamation.
1390 * These operations should only be performed once per
1391 * page fault. Even if the current pager doesn't
1392 * have the page, the number of additional pages to
1393 * read will apply to subsequent objects in the
1394 * shadow chain.
1395 */
1396 if (fs->nera == -1 && !P_KILLED(curproc))
1397 fs->nera = vm_fault_readahead(fs);
1398
1399 /*
1400 * Release the map lock before locking the vnode or
1401 * sleeping in the pager. (If the current object has
1402 * a shadow, then an earlier iteration of this loop
1403 * may have already unlocked the map.)
1404 */
1405 vm_fault_unlock_map(fs);
1406
1407 status = vm_fault_lock_vnode(fs, false);
1408 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1409 if (status == FAULT_RESTART)
1410 return (status);
1411 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1412 ("vm_fault: vnode-backed object mapped by system map"));
1413
1414 /*
1415 * Page in the requested page and hint the pager,
1416 * that it may bring up surrounding pages.
1417 */
1418 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1419 P_KILLED(curproc)) {
1420 behind = 0;
1421 ahead = 0;
1422 } else {
1423 /* Is this a sequential fault? */
1424 if (fs->nera > 0) {
1425 behind = 0;
1426 ahead = fs->nera;
1427 } else {
1428 /*
1429 * Request a cluster of pages that is
1430 * aligned to a VM_FAULT_READ_DEFAULT
1431 * page offset boundary within the
1432 * object. Alignment to a page offset
1433 * boundary is more likely to coincide
1434 * with the underlying file system
1435 * block than alignment to a virtual
1436 * address boundary.
1437 */
1438 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1439 behind = ulmin(cluster_offset,
1440 atop(fs->vaddr - e_start));
1441 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1442 }
1443 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1444 }
1445 *behindp = behind;
1446 *aheadp = ahead;
1447 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1448 if (rv == VM_PAGER_OK)
1449 return (FAULT_HARD);
1450 if (rv == VM_PAGER_ERROR)
1451 printf("vm_fault: pager read error, pid %d (%s)\n",
1452 curproc->p_pid, curproc->p_comm);
1453 /*
1454 * If an I/O error occurred or the requested page was
1455 * outside the range of the pager, clean up and return
1456 * an error.
1457 */
1458 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1459 VM_OBJECT_WLOCK(fs->object);
1460 vm_fault_page_free(&fs->m);
1461 vm_fault_unlock_and_deallocate(fs);
1462 return (FAULT_OUT_OF_BOUNDS);
1463 }
1464 KASSERT(rv == VM_PAGER_FAIL,
1465 ("%s: unexpected pager error %d", __func__, rv));
1466 return (FAULT_CONTINUE);
1467 }
1468
1469 /*
1470 * Wait/Retry if the page is busy. We have to do this if the page is
1471 * either exclusive or shared busy because the vm_pager may be using
1472 * read busy for pageouts (and even pageins if it is the vnode pager),
1473 * and we could end up trying to pagein and pageout the same page
1474 * simultaneously.
1475 *
1476 * We allow the busy case on a read fault if the page is valid. We
1477 * cannot under any circumstances mess around with a shared busied
1478 * page except, perhaps, to pmap it. This is controlled by the
1479 * VM_ALLOC_SBUSY bit in the allocflags argument.
1480 */
1481 static void
vm_fault_busy_sleep(struct faultstate * fs,int allocflags)1482 vm_fault_busy_sleep(struct faultstate *fs, int allocflags)
1483 {
1484 /*
1485 * Reference the page before unlocking and
1486 * sleeping so that the page daemon is less
1487 * likely to reclaim it.
1488 */
1489 vm_page_aflag_set(fs->m, PGA_REFERENCED);
1490 if (vm_fault_might_be_cow(fs)) {
1491 vm_fault_page_release(&fs->first_m);
1492 vm_object_pip_wakeup(fs->first_object);
1493 }
1494 vm_object_pip_wakeup(fs->object);
1495 vm_fault_unlock_map(fs);
1496 if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags))
1497 VM_OBJECT_UNLOCK(fs->object);
1498 VM_CNT_INC(v_intrans);
1499 vm_object_deallocate(fs->first_object);
1500 }
1501
1502 /*
1503 * Handle page lookup, populate, allocate, page-in for the current
1504 * object.
1505 *
1506 * The object is locked on entry and will remain locked with a return
1507 * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1508 * Otherwise, the object will be unlocked upon return.
1509 */
1510 static enum fault_status
vm_fault_object(struct faultstate * fs,int * behindp,int * aheadp)1511 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1512 {
1513 struct pctrie_iter pages;
1514 enum fault_status res;
1515 bool dead;
1516
1517 if (fs->object == fs->first_object || !fs->can_read_lock)
1518 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1519 else
1520 VM_OBJECT_ASSERT_LOCKED(fs->object);
1521
1522 /*
1523 * If the object is marked for imminent termination, we retry
1524 * here, since the collapse pass has raced with us. Otherwise,
1525 * if we see terminally dead object, return fail.
1526 */
1527 if ((fs->object->flags & OBJ_DEAD) != 0) {
1528 dead = fs->object->type == OBJT_DEAD;
1529 vm_fault_unlock_and_deallocate(fs);
1530 if (dead)
1531 return (FAULT_PROTECTION_FAILURE);
1532 pause("vmf_de", 1);
1533 return (FAULT_RESTART);
1534 }
1535
1536 /*
1537 * See if the page is resident.
1538 */
1539 vm_page_iter_init(&pages, fs->object);
1540 fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
1541 if (fs->m != NULL) {
1542 /*
1543 * If the found page is valid, will be either shadowed
1544 * or mapped read-only, and will not be renamed for
1545 * COW, then busy it in shared mode. This allows
1546 * other faults needing this page to proceed in
1547 * parallel.
1548 *
1549 * Unlocked check for validity, rechecked after busy
1550 * is obtained.
1551 */
1552 if (vm_page_all_valid(fs->m) &&
1553 /*
1554 * No write permissions for the new fs->m mapping,
1555 * or the first object has only one mapping, so
1556 * other writeable COW mappings of fs->m cannot
1557 * appear under us.
1558 */
1559 (vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) &&
1560 /*
1561 * fs->m cannot be renamed from object to
1562 * first_object. These conditions will be
1563 * re-checked with proper synchronization in
1564 * vm_fault_cow().
1565 */
1566 (!vm_fault_can_cow_rename(fs) ||
1567 fs->object != fs->first_object->backing_object)) {
1568 if (!vm_page_trysbusy(fs->m)) {
1569 vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY);
1570 return (FAULT_RESTART);
1571 }
1572
1573 /*
1574 * Now make sure that racily checked
1575 * conditions are still valid.
1576 */
1577 if (__predict_true(vm_page_all_valid(fs->m) &&
1578 (vm_fault_is_read(fs) ||
1579 vm_fault_might_be_cow(fs)))) {
1580 VM_OBJECT_UNLOCK(fs->object);
1581 return (FAULT_SOFT);
1582 }
1583
1584 vm_page_sunbusy(fs->m);
1585 }
1586
1587 if (!vm_page_tryxbusy(fs->m)) {
1588 vm_fault_busy_sleep(fs, 0);
1589 return (FAULT_RESTART);
1590 }
1591
1592 /*
1593 * The page is marked busy for other processes and the
1594 * pagedaemon. If it is still completely valid we are
1595 * done.
1596 */
1597 if (vm_page_all_valid(fs->m)) {
1598 VM_OBJECT_UNLOCK(fs->object);
1599 return (FAULT_SOFT);
1600 }
1601 }
1602
1603 /*
1604 * Page is not resident. If the pager might contain the page
1605 * or this is the beginning of the search, allocate a new
1606 * page.
1607 */
1608 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1609 fs->object == fs->first_object)) {
1610 if (!vm_fault_object_ensure_wlocked(fs)) {
1611 fs->can_read_lock = false;
1612 vm_fault_unlock_and_deallocate(fs);
1613 return (FAULT_RESTART);
1614 }
1615 res = vm_fault_allocate(fs, &pages);
1616 if (res != FAULT_CONTINUE)
1617 return (res);
1618 }
1619
1620 /*
1621 * Check to see if the pager can possibly satisfy this fault.
1622 * If not, skip to the next object without dropping the lock to
1623 * preserve atomicity of shadow faults.
1624 */
1625 if (vm_fault_object_needs_getpages(fs->object)) {
1626 /*
1627 * At this point, we have either allocated a new page
1628 * or found an existing page that is only partially
1629 * valid.
1630 *
1631 * We hold a reference on the current object and the
1632 * page is exclusive busied. The exclusive busy
1633 * prevents simultaneous faults and collapses while
1634 * the object lock is dropped.
1635 */
1636 VM_OBJECT_UNLOCK(fs->object);
1637 res = vm_fault_getpages(fs, behindp, aheadp);
1638 if (res == FAULT_CONTINUE)
1639 VM_OBJECT_WLOCK(fs->object);
1640 } else {
1641 res = FAULT_CONTINUE;
1642 }
1643 return (res);
1644 }
1645
1646 /*
1647 * vm_fault:
1648 *
1649 * Handle a page fault occurring at the given address, requiring the
1650 * given permissions, in the map specified. If successful, the page
1651 * is inserted into the associated physical map, and optionally
1652 * referenced and returned in *m_hold.
1653 *
1654 * The given address should be truncated to the proper page address.
1655 *
1656 * KERN_SUCCESS is returned if the page fault is handled; otherwise, a
1657 * Mach error specifying why the fault is fatal is returned.
1658 *
1659 * The map in question must be alive, either being the map for current
1660 * process, or the owner process hold count incremented to prevent
1661 * exit().
1662 *
1663 * If the thread private TDP_NOFAULTING flag is set, any fault results
1664 * in immediate protection failure. Otherwise the fault is processed,
1665 * and caller may hold no locks.
1666 */
1667 int
vm_fault(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,vm_page_t * m_hold)1668 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1669 int fault_flags, vm_page_t *m_hold)
1670 {
1671 struct pctrie_iter pages;
1672 struct faultstate fs;
1673 int ahead, behind, faultcount, rv;
1674 enum fault_status res;
1675 enum fault_next_status res_next;
1676 bool hardfault;
1677
1678 VM_CNT_INC(v_vm_faults);
1679
1680 if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1681 return (KERN_PROTECTION_FAILURE);
1682
1683 fs.vp = NULL;
1684 fs.vaddr = vaddr;
1685 fs.m_hold = m_hold;
1686 fs.fault_flags = fault_flags;
1687 fs.map = map;
1688 fs.lookup_still_valid = false;
1689 fs.oom_started = false;
1690 fs.nera = -1;
1691 fs.can_read_lock = true;
1692 faultcount = 0;
1693 hardfault = false;
1694
1695 RetryFault:
1696 fs.fault_type = fault_type;
1697
1698 /*
1699 * Find the backing store object and offset into it to begin the
1700 * search.
1701 */
1702 rv = vm_fault_lookup(&fs);
1703 if (rv != KERN_SUCCESS) {
1704 if (rv == KERN_RESOURCE_SHORTAGE)
1705 goto RetryFault;
1706 return (rv);
1707 }
1708
1709 /*
1710 * Try to avoid lock contention on the top-level object through
1711 * special-case handling of some types of page faults, specifically,
1712 * those that are mapping an existing page from the top-level object.
1713 * Under this condition, a read lock on the object suffices, allowing
1714 * multiple page faults of a similar type to run in parallel.
1715 */
1716 if (fs.vp == NULL /* avoid locked vnode leak */ &&
1717 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1718 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1719 res = vm_fault_soft_fast(&fs);
1720 if (res == FAULT_SUCCESS) {
1721 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1722 return (KERN_SUCCESS);
1723 }
1724 VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1725 } else {
1726 vm_page_iter_init(&pages, fs.first_object);
1727 VM_OBJECT_WLOCK(fs.first_object);
1728 }
1729
1730 /*
1731 * Make a reference to this object to prevent its disposal while we
1732 * are messing with it. Once we have the reference, the map is free
1733 * to be diddled. Since objects reference their shadows (and copies),
1734 * they will stay around as well.
1735 *
1736 * Bump the paging-in-progress count to prevent size changes (e.g.
1737 * truncation operations) during I/O.
1738 */
1739 vm_object_reference_locked(fs.first_object);
1740 vm_object_pip_add(fs.first_object, 1);
1741
1742 fs.m_cow = fs.m = fs.first_m = NULL;
1743
1744 /*
1745 * Search for the page at object/offset.
1746 */
1747 fs.object = fs.first_object;
1748 fs.pindex = fs.first_pindex;
1749
1750 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1751 res = vm_fault_allocate(&fs, &pages);
1752 switch (res) {
1753 case FAULT_RESTART:
1754 goto RetryFault;
1755 case FAULT_SUCCESS:
1756 return (KERN_SUCCESS);
1757 case FAULT_FAILURE:
1758 return (KERN_FAILURE);
1759 case FAULT_OUT_OF_BOUNDS:
1760 return (KERN_OUT_OF_BOUNDS);
1761 case FAULT_CONTINUE:
1762 break;
1763 default:
1764 panic("vm_fault: Unhandled status %d", res);
1765 }
1766 }
1767
1768 while (TRUE) {
1769 KASSERT(fs.m == NULL,
1770 ("page still set %p at loop start", fs.m));
1771
1772 res = vm_fault_object(&fs, &behind, &ahead);
1773 switch (res) {
1774 case FAULT_SOFT:
1775 goto found;
1776 case FAULT_HARD:
1777 faultcount = behind + 1 + ahead;
1778 hardfault = true;
1779 goto found;
1780 case FAULT_RESTART:
1781 goto RetryFault;
1782 case FAULT_SUCCESS:
1783 return (KERN_SUCCESS);
1784 case FAULT_FAILURE:
1785 return (KERN_FAILURE);
1786 case FAULT_OUT_OF_BOUNDS:
1787 return (KERN_OUT_OF_BOUNDS);
1788 case FAULT_PROTECTION_FAILURE:
1789 return (KERN_PROTECTION_FAILURE);
1790 case FAULT_CONTINUE:
1791 break;
1792 default:
1793 panic("vm_fault: Unhandled status %d", res);
1794 }
1795
1796 /*
1797 * The page was not found in the current object. Try to
1798 * traverse into a backing object or zero fill if none is
1799 * found.
1800 */
1801 res_next = vm_fault_next(&fs);
1802 if (res_next == FAULT_NEXT_RESTART)
1803 goto RetryFault;
1804 else if (res_next == FAULT_NEXT_GOTOBJ)
1805 continue;
1806 MPASS(res_next == FAULT_NEXT_NOOBJ);
1807 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1808 if (fs.first_object == fs.object)
1809 vm_fault_page_free(&fs.first_m);
1810 vm_fault_unlock_and_deallocate(&fs);
1811 return (KERN_OUT_OF_BOUNDS);
1812 }
1813 VM_OBJECT_UNLOCK(fs.object);
1814 vm_fault_zerofill(&fs);
1815 /* Don't try to prefault neighboring pages. */
1816 faultcount = 1;
1817 break;
1818 }
1819
1820 found:
1821 /*
1822 * A valid page has been found and busied. The object lock
1823 * must no longer be held if the page was busied.
1824 *
1825 * Regardless of the busy state of fs.m, fs.first_m is always
1826 * exclusively busied after the first iteration of the loop
1827 * calling vm_fault_object(). This is an ordering point for
1828 * the parallel faults occuring in on the same page.
1829 */
1830 vm_page_assert_busied(fs.m);
1831 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1832
1833 /*
1834 * If the page is being written, but isn't already owned by the
1835 * top-level object, we have to copy it into a new page owned by the
1836 * top-level object.
1837 */
1838 if (vm_fault_might_be_cow(&fs)) {
1839 /*
1840 * We only really need to copy if we want to write it.
1841 */
1842 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1843 vm_fault_cow(&fs);
1844 /*
1845 * We only try to prefault read-only mappings to the
1846 * neighboring pages when this copy-on-write fault is
1847 * a hard fault. In other cases, trying to prefault
1848 * is typically wasted effort.
1849 */
1850 if (faultcount == 0)
1851 faultcount = 1;
1852
1853 } else {
1854 fs.prot &= ~VM_PROT_WRITE;
1855 }
1856 }
1857
1858 /*
1859 * We must verify that the maps have not changed since our last
1860 * lookup.
1861 */
1862 if (!fs.lookup_still_valid) {
1863 rv = vm_fault_relookup(&fs);
1864 if (rv != KERN_SUCCESS) {
1865 vm_fault_deallocate(&fs);
1866 if (rv == KERN_RESTART)
1867 goto RetryFault;
1868 return (rv);
1869 }
1870 }
1871 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1872
1873 /*
1874 * If the page was filled by a pager, save the virtual address that
1875 * should be faulted on next under a sequential access pattern to the
1876 * map entry. A read lock on the map suffices to update this address
1877 * safely.
1878 */
1879 if (hardfault)
1880 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1881
1882 /*
1883 * If the page to be mapped was copied from a backing object, we defer
1884 * marking it valid until here, where the fault handler is guaranteed to
1885 * succeed. Otherwise we can end up with a shadowed, mapped page in the
1886 * backing object, which violates an invariant of vm_object_collapse()
1887 * that shadowed pages are not mapped.
1888 */
1889 if (fs.m_cow != NULL) {
1890 KASSERT(vm_page_none_valid(fs.m),
1891 ("vm_fault: page %p is already valid", fs.m_cow));
1892 vm_page_valid(fs.m);
1893 }
1894
1895 /*
1896 * Page must be completely valid or it is not fit to
1897 * map into user space. vm_pager_get_pages() ensures this.
1898 */
1899 vm_page_assert_busied(fs.m);
1900 KASSERT(vm_page_all_valid(fs.m),
1901 ("vm_fault: page %p partially invalid", fs.m));
1902
1903 vm_fault_dirty(&fs, fs.m);
1904
1905 /*
1906 * Put this page into the physical map. We had to do the unlock above
1907 * because pmap_enter() may sleep. We don't put the page
1908 * back on the active queue until later so that the pageout daemon
1909 * won't find it (yet).
1910 */
1911 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1912 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1913 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1914 fs.wired == 0)
1915 vm_fault_prefault(&fs, vaddr,
1916 faultcount > 0 ? behind : PFBAK,
1917 faultcount > 0 ? ahead : PFFOR, false);
1918
1919 /*
1920 * If the page is not wired down, then put it where the pageout daemon
1921 * can find it.
1922 */
1923 if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1924 vm_page_wire(fs.m);
1925 else
1926 vm_page_activate(fs.m);
1927 if (fs.m_hold != NULL) {
1928 (*fs.m_hold) = fs.m;
1929 vm_page_wire(fs.m);
1930 }
1931
1932 KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m),
1933 ("first_m must be xbusy"));
1934 if (vm_page_xbusied(fs.m))
1935 vm_page_xunbusy(fs.m);
1936 else
1937 vm_page_sunbusy(fs.m);
1938 fs.m = NULL;
1939
1940 /*
1941 * Unlock everything, and return
1942 */
1943 vm_fault_deallocate(&fs);
1944 if (hardfault) {
1945 VM_CNT_INC(v_io_faults);
1946 curthread->td_ru.ru_majflt++;
1947 #ifdef RACCT
1948 if (racct_enable && fs.object->type == OBJT_VNODE) {
1949 PROC_LOCK(curproc);
1950 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1951 racct_add_force(curproc, RACCT_WRITEBPS,
1952 PAGE_SIZE + behind * PAGE_SIZE);
1953 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1954 } else {
1955 racct_add_force(curproc, RACCT_READBPS,
1956 PAGE_SIZE + ahead * PAGE_SIZE);
1957 racct_add_force(curproc, RACCT_READIOPS, 1);
1958 }
1959 PROC_UNLOCK(curproc);
1960 }
1961 #endif
1962 } else
1963 curthread->td_ru.ru_minflt++;
1964
1965 return (KERN_SUCCESS);
1966 }
1967
1968 /*
1969 * Speed up the reclamation of pages that precede the faulting pindex within
1970 * the first object of the shadow chain. Essentially, perform the equivalent
1971 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1972 * the faulting pindex by the cluster size when the pages read by vm_fault()
1973 * cross a cluster-size boundary. The cluster size is the greater of the
1974 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1975 *
1976 * When "fs->first_object" is a shadow object, the pages in the backing object
1977 * that precede the faulting pindex are deactivated by vm_fault(). So, this
1978 * function must only be concerned with pages in the first object.
1979 */
1980 static void
vm_fault_dontneed(const struct faultstate * fs,vm_offset_t vaddr,int ahead)1981 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1982 {
1983 struct pctrie_iter pages;
1984 vm_map_entry_t entry;
1985 vm_object_t first_object;
1986 vm_offset_t end, start;
1987 vm_page_t m;
1988 vm_size_t size;
1989
1990 VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1991 first_object = fs->first_object;
1992 /* Neither fictitious nor unmanaged pages can be reclaimed. */
1993 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1994 VM_OBJECT_RLOCK(first_object);
1995 size = VM_FAULT_DONTNEED_MIN;
1996 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1997 size = pagesizes[1];
1998 end = rounddown2(vaddr, size);
1999 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
2000 (entry = fs->entry)->start < end) {
2001 if (end - entry->start < size)
2002 start = entry->start;
2003 else
2004 start = end - size;
2005 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
2006 vm_page_iter_limit_init(&pages, first_object,
2007 OFF_TO_IDX(entry->offset) +
2008 atop(end - entry->start));
2009 VM_RADIX_FOREACH_FROM(m, &pages,
2010 OFF_TO_IDX(entry->offset) +
2011 atop(start - entry->start)) {
2012 if (!vm_page_all_valid(m) ||
2013 vm_page_busied(m))
2014 continue;
2015
2016 /*
2017 * Don't clear PGA_REFERENCED, since it would
2018 * likely represent a reference by a different
2019 * process.
2020 *
2021 * Typically, at this point, prefetched pages
2022 * are still in the inactive queue. Only
2023 * pages that triggered page faults are in the
2024 * active queue. The test for whether the page
2025 * is in the inactive queue is racy; in the
2026 * worst case we will requeue the page
2027 * unnecessarily.
2028 */
2029 if (!vm_page_inactive(m))
2030 vm_page_deactivate(m);
2031 }
2032 }
2033 VM_OBJECT_RUNLOCK(first_object);
2034 }
2035 }
2036
2037 /*
2038 * vm_fault_prefault provides a quick way of clustering
2039 * pagefaults into a processes address space. It is a "cousin"
2040 * of vm_map_pmap_enter, except it runs at page fault time instead
2041 * of mmap time.
2042 */
2043 static void
vm_fault_prefault(const struct faultstate * fs,vm_offset_t addra,int backward,int forward,bool obj_locked)2044 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
2045 int backward, int forward, bool obj_locked)
2046 {
2047 pmap_t pmap;
2048 vm_map_entry_t entry;
2049 vm_object_t backing_object, lobject;
2050 vm_offset_t addr, starta;
2051 vm_pindex_t pindex;
2052 vm_page_t m;
2053 vm_prot_t prot;
2054 int i;
2055
2056 pmap = fs->map->pmap;
2057 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
2058 return;
2059
2060 entry = fs->entry;
2061
2062 if (addra < backward * PAGE_SIZE) {
2063 starta = entry->start;
2064 } else {
2065 starta = addra - backward * PAGE_SIZE;
2066 if (starta < entry->start)
2067 starta = entry->start;
2068 }
2069 prot = entry->protection;
2070
2071 /*
2072 * If pmap_enter() has enabled write access on a nearby mapping, then
2073 * don't attempt promotion, because it will fail.
2074 */
2075 if ((fs->prot & VM_PROT_WRITE) != 0)
2076 prot |= VM_PROT_NO_PROMOTE;
2077
2078 /*
2079 * Generate the sequence of virtual addresses that are candidates for
2080 * prefaulting in an outward spiral from the faulting virtual address,
2081 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
2082 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
2083 * If the candidate address doesn't have a backing physical page, then
2084 * the loop immediately terminates.
2085 */
2086 for (i = 0; i < 2 * imax(backward, forward); i++) {
2087 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
2088 PAGE_SIZE);
2089 if (addr > addra + forward * PAGE_SIZE)
2090 addr = 0;
2091
2092 if (addr < starta || addr >= entry->end)
2093 continue;
2094
2095 if (!pmap_is_prefaultable(pmap, addr))
2096 continue;
2097
2098 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2099 lobject = entry->object.vm_object;
2100 if (!obj_locked)
2101 VM_OBJECT_RLOCK(lobject);
2102 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2103 !vm_fault_object_needs_getpages(lobject) &&
2104 (backing_object = lobject->backing_object) != NULL) {
2105 KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
2106 0, ("vm_fault_prefault: unaligned object offset"));
2107 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2108 VM_OBJECT_RLOCK(backing_object);
2109 if (!obj_locked || lobject != entry->object.vm_object)
2110 VM_OBJECT_RUNLOCK(lobject);
2111 lobject = backing_object;
2112 }
2113 if (m == NULL) {
2114 if (!obj_locked || lobject != entry->object.vm_object)
2115 VM_OBJECT_RUNLOCK(lobject);
2116 break;
2117 }
2118 if (vm_page_all_valid(m) &&
2119 (m->flags & PG_FICTITIOUS) == 0)
2120 pmap_enter_quick(pmap, addr, m, prot);
2121 if (!obj_locked || lobject != entry->object.vm_object)
2122 VM_OBJECT_RUNLOCK(lobject);
2123 }
2124 }
2125
2126 /*
2127 * Hold each of the physical pages that are mapped by the specified
2128 * range of virtual addresses, ["addr", "addr" + "len"), if those
2129 * mappings are valid and allow the specified types of access, "prot".
2130 * If all of the implied pages are successfully held, then the number
2131 * of held pages is assigned to *ppages_count, together with pointers
2132 * to those pages in the array "ma". The returned value is zero.
2133 *
2134 * However, if any of the pages cannot be held, an error is returned,
2135 * and no pages are held.
2136 * Error values:
2137 * ENOMEM - the range is not valid
2138 * EINVAL - the provided vm_page array is too small to hold all pages
2139 * EAGAIN - a page was not mapped, and the thread is in nofaulting mode
2140 * EFAULT - a page with requested permissions cannot be mapped
2141 * (more detailed result from vm_fault() is lost)
2142 */
2143 int
vm_fault_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count,int * ppages_count)2144 vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2145 vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count)
2146 {
2147 vm_offset_t end, va;
2148 vm_page_t *mp;
2149 int count, error;
2150 boolean_t pmap_failed;
2151
2152 if (len == 0) {
2153 *ppages_count = 0;
2154 return (0);
2155 }
2156 end = round_page(addr + len);
2157 addr = trunc_page(addr);
2158
2159 if (!vm_map_range_valid(map, addr, end))
2160 return (ENOMEM);
2161
2162 if (atop(end - addr) > max_count)
2163 return (EINVAL);
2164 count = atop(end - addr);
2165
2166 /*
2167 * Most likely, the physical pages are resident in the pmap, so it is
2168 * faster to try pmap_extract_and_hold() first.
2169 */
2170 pmap_failed = FALSE;
2171 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2172 *mp = pmap_extract_and_hold(map->pmap, va, prot);
2173 if (*mp == NULL)
2174 pmap_failed = TRUE;
2175 else if ((prot & VM_PROT_WRITE) != 0 &&
2176 (*mp)->dirty != VM_PAGE_BITS_ALL) {
2177 /*
2178 * Explicitly dirty the physical page. Otherwise, the
2179 * caller's changes may go unnoticed because they are
2180 * performed through an unmanaged mapping or by a DMA
2181 * operation.
2182 *
2183 * The object lock is not held here.
2184 * See vm_page_clear_dirty_mask().
2185 */
2186 vm_page_dirty(*mp);
2187 }
2188 }
2189 if (pmap_failed) {
2190 /*
2191 * One or more pages could not be held by the pmap. Either no
2192 * page was mapped at the specified virtual address or that
2193 * mapping had insufficient permissions. Attempt to fault in
2194 * and hold these pages.
2195 *
2196 * If vm_fault_disable_pagefaults() was called,
2197 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2198 * acquire MD VM locks, which means we must not call
2199 * vm_fault(). Some (out of tree) callers mark
2200 * too wide a code area with vm_fault_disable_pagefaults()
2201 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2202 * the proper behaviour explicitly.
2203 */
2204 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2205 (curthread->td_pflags & TDP_NOFAULTING) != 0) {
2206 error = EAGAIN;
2207 goto fail;
2208 }
2209 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2210 if (*mp == NULL && vm_fault(map, va, prot,
2211 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) {
2212 error = EFAULT;
2213 goto fail;
2214 }
2215 }
2216 }
2217 *ppages_count = count;
2218 return (0);
2219 fail:
2220 for (mp = ma; mp < ma + count; mp++)
2221 if (*mp != NULL)
2222 vm_page_unwire(*mp, PQ_INACTIVE);
2223 return (error);
2224 }
2225
2226 /*
2227 * Hold each of the physical pages that are mapped by the specified range of
2228 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2229 * and allow the specified types of access, "prot". If all of the implied
2230 * pages are successfully held, then the number of held pages is returned
2231 * together with pointers to those pages in the array "ma". However, if any
2232 * of the pages cannot be held, -1 is returned.
2233 */
2234 int
vm_fault_quick_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count)2235 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2236 vm_prot_t prot, vm_page_t *ma, int max_count)
2237 {
2238 int error, pages_count;
2239
2240 error = vm_fault_hold_pages(map, addr, len, prot, ma,
2241 max_count, &pages_count);
2242 if (error != 0) {
2243 if (error == EINVAL)
2244 panic("vm_fault_quick_hold_pages: count > max_count");
2245 return (-1);
2246 }
2247 return (pages_count);
2248 }
2249
2250 /*
2251 * Routine:
2252 * vm_fault_copy_entry
2253 * Function:
2254 * Create new object backing dst_entry with private copy of all
2255 * underlying pages. When src_entry is equal to dst_entry, function
2256 * implements COW for wired-down map entry. Otherwise, it forks
2257 * wired entry into dst_map.
2258 *
2259 * In/out conditions:
2260 * The source and destination maps must be locked for write.
2261 * The source map entry must be wired down (or be a sharing map
2262 * entry corresponding to a main map entry that is wired down).
2263 */
2264 void
vm_fault_copy_entry(vm_map_t dst_map,vm_map_t src_map __unused,vm_map_entry_t dst_entry,vm_map_entry_t src_entry,vm_ooffset_t * fork_charge)2265 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2266 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2267 vm_ooffset_t *fork_charge)
2268 {
2269 struct pctrie_iter pages;
2270 vm_object_t backing_object, dst_object, object, src_object;
2271 vm_pindex_t dst_pindex, pindex, src_pindex;
2272 vm_prot_t access, prot;
2273 vm_offset_t vaddr;
2274 vm_page_t dst_m;
2275 vm_page_t src_m;
2276 bool upgrade;
2277
2278 upgrade = src_entry == dst_entry;
2279 KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2280 ("vm_fault_copy_entry: vm_object not NULL"));
2281
2282 /*
2283 * If not an upgrade, then enter the mappings in the pmap as
2284 * read and/or execute accesses. Otherwise, enter them as
2285 * write accesses.
2286 *
2287 * A writeable large page mapping is only created if all of
2288 * the constituent small page mappings are modified. Marking
2289 * PTEs as modified on inception allows promotion to happen
2290 * without taking potentially large number of soft faults.
2291 */
2292 access = prot = dst_entry->protection;
2293 if (!upgrade)
2294 access &= ~VM_PROT_WRITE;
2295
2296 src_object = src_entry->object.vm_object;
2297 src_pindex = OFF_TO_IDX(src_entry->offset);
2298
2299 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2300 dst_object = src_object;
2301 vm_object_reference(dst_object);
2302 } else {
2303 /*
2304 * Create the top-level object for the destination entry.
2305 * Doesn't actually shadow anything - we copy the pages
2306 * directly.
2307 */
2308 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2309 dst_entry->start), NULL, NULL, 0);
2310 #if VM_NRESERVLEVEL > 0
2311 dst_object->flags |= OBJ_COLORED;
2312 dst_object->pg_color = atop(dst_entry->start);
2313 #endif
2314 dst_object->domain = src_object->domain;
2315 dst_object->charge = dst_entry->end - dst_entry->start;
2316
2317 dst_entry->object.vm_object = dst_object;
2318 dst_entry->offset = 0;
2319 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2320 }
2321
2322 VM_OBJECT_WLOCK(dst_object);
2323 if (fork_charge != NULL) {
2324 KASSERT(dst_entry->cred == NULL,
2325 ("vm_fault_copy_entry: leaked swp charge"));
2326 dst_object->cred = curthread->td_ucred;
2327 crhold(dst_object->cred);
2328 *fork_charge += dst_object->charge;
2329 } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2330 dst_object->cred == NULL) {
2331 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2332 dst_entry));
2333 dst_object->cred = dst_entry->cred;
2334 dst_entry->cred = NULL;
2335 }
2336
2337 /*
2338 * Loop through all of the virtual pages within the entry's
2339 * range, copying each page from the source object to the
2340 * destination object. Since the source is wired, those pages
2341 * must exist. In contrast, the destination is pageable.
2342 * Since the destination object doesn't share any backing storage
2343 * with the source object, all of its pages must be dirtied,
2344 * regardless of whether they can be written.
2345 */
2346 vm_page_iter_init(&pages, dst_object);
2347 for (vaddr = dst_entry->start, dst_pindex = 0;
2348 vaddr < dst_entry->end;
2349 vaddr += PAGE_SIZE, dst_pindex++) {
2350 again:
2351 /*
2352 * Find the page in the source object, and copy it in.
2353 * Because the source is wired down, the page will be
2354 * in memory.
2355 */
2356 if (src_object != dst_object)
2357 VM_OBJECT_RLOCK(src_object);
2358 object = src_object;
2359 pindex = src_pindex + dst_pindex;
2360 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2361 (backing_object = object->backing_object) != NULL) {
2362 /*
2363 * Unless the source mapping is read-only or
2364 * it is presently being upgraded from
2365 * read-only, the first object in the shadow
2366 * chain should provide all of the pages. In
2367 * other words, this loop body should never be
2368 * executed when the source mapping is already
2369 * read/write.
2370 */
2371 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2372 upgrade,
2373 ("vm_fault_copy_entry: main object missing page"));
2374
2375 VM_OBJECT_RLOCK(backing_object);
2376 pindex += OFF_TO_IDX(object->backing_object_offset);
2377 if (object != dst_object)
2378 VM_OBJECT_RUNLOCK(object);
2379 object = backing_object;
2380 }
2381 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2382
2383 if (object != dst_object) {
2384 /*
2385 * Allocate a page in the destination object.
2386 */
2387 pindex = (src_object == dst_object ? src_pindex : 0) +
2388 dst_pindex;
2389 dst_m = vm_page_alloc_iter(dst_object, pindex,
2390 VM_ALLOC_NORMAL, &pages);
2391 if (dst_m == NULL) {
2392 VM_OBJECT_WUNLOCK(dst_object);
2393 VM_OBJECT_RUNLOCK(object);
2394 vm_wait(dst_object);
2395 VM_OBJECT_WLOCK(dst_object);
2396 pctrie_iter_reset(&pages);
2397 goto again;
2398 }
2399
2400 /*
2401 * See the comment in vm_fault_cow().
2402 */
2403 if (src_object == dst_object &&
2404 (object->flags & OBJ_ONEMAPPING) == 0)
2405 pmap_remove_all(src_m);
2406 pmap_copy_page(src_m, dst_m);
2407
2408 /*
2409 * The object lock does not guarantee that "src_m" will
2410 * transition from invalid to valid, but it does ensure
2411 * that "src_m" will not transition from valid to
2412 * invalid.
2413 */
2414 dst_m->dirty = dst_m->valid = src_m->valid;
2415 VM_OBJECT_RUNLOCK(object);
2416 } else {
2417 dst_m = src_m;
2418 if (vm_page_busy_acquire(
2419 dst_m, VM_ALLOC_WAITFAIL) == 0) {
2420 pctrie_iter_reset(&pages);
2421 goto again;
2422 }
2423 if (dst_m->pindex >= dst_object->size) {
2424 /*
2425 * We are upgrading. Index can occur
2426 * out of bounds if the object type is
2427 * vnode and the file was truncated.
2428 */
2429 vm_page_xunbusy(dst_m);
2430 break;
2431 }
2432 }
2433
2434 /*
2435 * Enter it in the pmap. If a wired, copy-on-write
2436 * mapping is being replaced by a write-enabled
2437 * mapping, then wire that new mapping.
2438 *
2439 * The page can be invalid if the user called
2440 * msync(MS_INVALIDATE) or truncated the backing vnode
2441 * or shared memory object. In this case, do not
2442 * insert it into pmap, but still do the copy so that
2443 * all copies of the wired map entry have similar
2444 * backing pages.
2445 */
2446 if (vm_page_all_valid(dst_m)) {
2447 VM_OBJECT_WUNLOCK(dst_object);
2448 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2449 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2450 VM_OBJECT_WLOCK(dst_object);
2451 }
2452
2453 /*
2454 * Mark it no longer busy, and put it on the active list.
2455 */
2456 if (upgrade) {
2457 if (src_m != dst_m) {
2458 vm_page_unwire(src_m, PQ_INACTIVE);
2459 vm_page_wire(dst_m);
2460 } else {
2461 KASSERT(vm_page_wired(dst_m),
2462 ("dst_m %p is not wired", dst_m));
2463 }
2464 } else {
2465 vm_page_activate(dst_m);
2466 }
2467 vm_page_xunbusy(dst_m);
2468 }
2469 VM_OBJECT_WUNLOCK(dst_object);
2470 if (upgrade) {
2471 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2472 vm_object_deallocate(src_object);
2473 }
2474 }
2475
2476 /*
2477 * Block entry into the machine-independent layer's page fault handler by
2478 * the calling thread. Subsequent calls to vm_fault() by that thread will
2479 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
2480 * spurious page faults.
2481 */
2482 int
vm_fault_disable_pagefaults(void)2483 vm_fault_disable_pagefaults(void)
2484 {
2485
2486 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2487 }
2488
2489 void
vm_fault_enable_pagefaults(int save)2490 vm_fault_enable_pagefaults(int save)
2491 {
2492
2493 curthread_pflags_restore(save);
2494 }
2495