xref: /freebsd/sys/vm/vm_fault.c (revision d8bfcacd12aba73188c44a157c707908e275825d)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include "opt_ktrace.h"
75 #include "opt_vm.h"
76 
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mman.h>
81 #include <sys/mutex.h>
82 #include <sys/pctrie.h>
83 #include <sys/proc.h>
84 #include <sys/racct.h>
85 #include <sys/refcount.h>
86 #include <sys/resourcevar.h>
87 #include <sys/rwlock.h>
88 #include <sys/sched.h>
89 #include <sys/sf_buf.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_reserv.h>
111 
112 #define PFBAK 4
113 #define PFFOR 4
114 
115 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
116 
117 #define	VM_FAULT_DONTNEED_MIN	1048576
118 
119 struct faultstate {
120 	/* Fault parameters. */
121 	vm_offset_t	vaddr;
122 	vm_page_t	*m_hold;
123 	vm_prot_t	fault_type;
124 	vm_prot_t	prot;
125 	int		fault_flags;
126 	boolean_t	wired;
127 
128 	/* Control state. */
129 	struct timeval	oom_start_time;
130 	bool		oom_started;
131 	int		nera;
132 	bool		can_read_lock;
133 
134 	/* Page reference for cow. */
135 	vm_page_t m_cow;
136 
137 	/* Current object. */
138 	vm_object_t	object;
139 	vm_pindex_t	pindex;
140 	vm_page_t	m;
141 
142 	/* Top-level map object. */
143 	vm_object_t	first_object;
144 	vm_pindex_t	first_pindex;
145 	vm_page_t	first_m;
146 
147 	/* Map state. */
148 	vm_map_t	map;
149 	vm_map_entry_t	entry;
150 	int		map_generation;
151 	bool		lookup_still_valid;
152 
153 	/* Vnode if locked. */
154 	struct vnode	*vp;
155 };
156 
157 /*
158  * Return codes for internal fault routines.
159  */
160 enum fault_status {
161 	FAULT_SUCCESS = 10000,	/* Return success to user. */
162 	FAULT_FAILURE,		/* Return failure to user. */
163 	FAULT_CONTINUE,		/* Continue faulting. */
164 	FAULT_RESTART,		/* Restart fault. */
165 	FAULT_OUT_OF_BOUNDS,	/* Invalid address for pager. */
166 	FAULT_HARD,		/* Performed I/O. */
167 	FAULT_SOFT,		/* Found valid page. */
168 	FAULT_PROTECTION_FAILURE, /* Invalid access. */
169 };
170 
171 enum fault_next_status {
172 	FAULT_NEXT_GOTOBJ = 1,
173 	FAULT_NEXT_NOOBJ,
174 	FAULT_NEXT_RESTART,
175 };
176 
177 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
178 	    int ahead);
179 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
180 	    int backward, int forward, bool obj_locked);
181 
182 static int vm_pfault_oom_attempts = 3;
183 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
184     &vm_pfault_oom_attempts, 0,
185     "Number of page allocation attempts in page fault handler before it "
186     "triggers OOM handling");
187 
188 static int vm_pfault_oom_wait = 10;
189 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
190     &vm_pfault_oom_wait, 0,
191     "Number of seconds to wait for free pages before retrying "
192     "the page fault handler");
193 
194 static inline void
vm_fault_page_release(vm_page_t * mp)195 vm_fault_page_release(vm_page_t *mp)
196 {
197 	vm_page_t m;
198 
199 	m = *mp;
200 	if (m != NULL) {
201 		/*
202 		 * We are likely to loop around again and attempt to busy
203 		 * this page.  Deactivating it leaves it available for
204 		 * pageout while optimizing fault restarts.
205 		 */
206 		vm_page_deactivate(m);
207 		if (vm_page_xbusied(m))
208 			vm_page_xunbusy(m);
209 		else
210 			vm_page_sunbusy(m);
211 		*mp = NULL;
212 	}
213 }
214 
215 static inline void
vm_fault_page_free(vm_page_t * mp)216 vm_fault_page_free(vm_page_t *mp)
217 {
218 	vm_page_t m;
219 
220 	m = *mp;
221 	if (m != NULL) {
222 		VM_OBJECT_ASSERT_WLOCKED(m->object);
223 		if (!vm_page_wired(m))
224 			vm_page_free(m);
225 		else
226 			vm_page_xunbusy(m);
227 		*mp = NULL;
228 	}
229 }
230 
231 /*
232  * Return true if a vm_pager_get_pages() call is needed in order to check
233  * whether the pager might have a particular page, false if it can be determined
234  * immediately that the pager can not have a copy.  For swap objects, this can
235  * be checked quickly.
236  */
237 static inline bool
vm_fault_object_needs_getpages(vm_object_t object)238 vm_fault_object_needs_getpages(vm_object_t object)
239 {
240 	VM_OBJECT_ASSERT_LOCKED(object);
241 
242 	return ((object->flags & OBJ_SWAP) == 0 ||
243 	    !pctrie_is_empty(&object->un_pager.swp.swp_blks));
244 }
245 
246 static inline void
vm_fault_unlock_map(struct faultstate * fs)247 vm_fault_unlock_map(struct faultstate *fs)
248 {
249 
250 	if (fs->lookup_still_valid) {
251 		vm_map_lookup_done(fs->map, fs->entry);
252 		fs->lookup_still_valid = false;
253 	}
254 }
255 
256 static void
vm_fault_unlock_vp(struct faultstate * fs)257 vm_fault_unlock_vp(struct faultstate *fs)
258 {
259 
260 	if (fs->vp != NULL) {
261 		vput(fs->vp);
262 		fs->vp = NULL;
263 	}
264 }
265 
266 static bool
vm_fault_might_be_cow(struct faultstate * fs)267 vm_fault_might_be_cow(struct faultstate *fs)
268 {
269 	return (fs->object != fs->first_object);
270 }
271 
272 static void
vm_fault_deallocate(struct faultstate * fs)273 vm_fault_deallocate(struct faultstate *fs)
274 {
275 
276 	vm_fault_page_release(&fs->m_cow);
277 	vm_fault_page_release(&fs->m);
278 	vm_object_pip_wakeup(fs->object);
279 	if (vm_fault_might_be_cow(fs)) {
280 		VM_OBJECT_WLOCK(fs->first_object);
281 		vm_fault_page_free(&fs->first_m);
282 		VM_OBJECT_WUNLOCK(fs->first_object);
283 		vm_object_pip_wakeup(fs->first_object);
284 	}
285 	vm_object_deallocate(fs->first_object);
286 	vm_fault_unlock_map(fs);
287 	vm_fault_unlock_vp(fs);
288 }
289 
290 static void
vm_fault_unlock_and_deallocate(struct faultstate * fs)291 vm_fault_unlock_and_deallocate(struct faultstate *fs)
292 {
293 
294 	VM_OBJECT_UNLOCK(fs->object);
295 	vm_fault_deallocate(fs);
296 }
297 
298 static void
vm_fault_dirty(struct faultstate * fs,vm_page_t m)299 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
300 {
301 	bool need_dirty;
302 
303 	if (((fs->prot & VM_PROT_WRITE) == 0 &&
304 	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
305 	    (m->oflags & VPO_UNMANAGED) != 0)
306 		return;
307 
308 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
309 
310 	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
311 	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
312 	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
313 
314 	vm_object_set_writeable_dirty(m->object);
315 
316 	/*
317 	 * If the fault is a write, we know that this page is being
318 	 * written NOW so dirty it explicitly to save on
319 	 * pmap_is_modified() calls later.
320 	 *
321 	 * Also, since the page is now dirty, we can possibly tell
322 	 * the pager to release any swap backing the page.
323 	 */
324 	if (need_dirty && vm_page_set_dirty(m) == 0) {
325 		/*
326 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
327 		 * if the page is already dirty to prevent data written with
328 		 * the expectation of being synced from not being synced.
329 		 * Likewise if this entry does not request NOSYNC then make
330 		 * sure the page isn't marked NOSYNC.  Applications sharing
331 		 * data should use the same flags to avoid ping ponging.
332 		 */
333 		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
334 			vm_page_aflag_set(m, PGA_NOSYNC);
335 		else
336 			vm_page_aflag_clear(m, PGA_NOSYNC);
337 	}
338 
339 }
340 
341 static bool
vm_fault_is_read(const struct faultstate * fs)342 vm_fault_is_read(const struct faultstate *fs)
343 {
344 	return ((fs->prot & VM_PROT_WRITE) == 0 &&
345 	    (fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0);
346 }
347 
348 /*
349  * Unlocks fs.first_object and fs.map on success.
350  */
351 static enum fault_status
vm_fault_soft_fast(struct faultstate * fs)352 vm_fault_soft_fast(struct faultstate *fs)
353 {
354 	vm_page_t m, m_map;
355 #if VM_NRESERVLEVEL > 0
356 	vm_page_t m_super;
357 	int flags;
358 #endif
359 	int psind;
360 	vm_offset_t vaddr;
361 
362 	MPASS(fs->vp == NULL);
363 
364 	/*
365 	 * If we fail, vast majority of the time it is because the page is not
366 	 * there to begin with. Opportunistically perform the lookup and
367 	 * subsequent checks without the object lock, revalidate later.
368 	 *
369 	 * Note: a busy page can be mapped for read|execute access.
370 	 */
371 	m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
372 	if (m == NULL || !vm_page_all_valid(m) ||
373 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
374 		VM_OBJECT_WLOCK(fs->first_object);
375 		return (FAULT_FAILURE);
376 	}
377 
378 	vaddr = fs->vaddr;
379 
380 	VM_OBJECT_RLOCK(fs->first_object);
381 
382 	/*
383 	 * Now that we stabilized the state, revalidate the page is in the shape
384 	 * we encountered above.
385 	 */
386 
387 	if (m->object != fs->first_object || m->pindex != fs->first_pindex)
388 		goto fail;
389 
390 	vm_object_busy(fs->first_object);
391 
392 	if (!vm_page_all_valid(m) ||
393 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
394 		goto fail_busy;
395 
396 	m_map = m;
397 	psind = 0;
398 #if VM_NRESERVLEVEL > 0
399 	if ((m->flags & PG_FICTITIOUS) == 0 &&
400 	    (m_super = vm_reserv_to_superpage(m)) != NULL) {
401 		psind = m_super->psind;
402 		KASSERT(psind > 0,
403 		    ("psind %d of m_super %p < 1", psind, m_super));
404 		flags = PS_ALL_VALID;
405 		if ((fs->prot & VM_PROT_WRITE) != 0) {
406 			/*
407 			 * Create a superpage mapping allowing write access
408 			 * only if none of the constituent pages are busy and
409 			 * all of them are already dirty (except possibly for
410 			 * the page that was faulted on).
411 			 */
412 			flags |= PS_NONE_BUSY;
413 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
414 				flags |= PS_ALL_DIRTY;
415 		}
416 		while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
417 		    roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
418 		    (vaddr & (pagesizes[psind] - 1)) !=
419 		    (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
420 		    !vm_page_ps_test(m_super, psind, flags, m) ||
421 		    !pmap_ps_enabled(fs->map->pmap)) {
422 			psind--;
423 			if (psind == 0)
424 				break;
425 			m_super += rounddown2(m - m_super,
426 			    atop(pagesizes[psind]));
427 			KASSERT(m_super->psind >= psind,
428 			    ("psind %d of m_super %p < %d", m_super->psind,
429 			    m_super, psind));
430 		}
431 		if (psind > 0) {
432 			m_map = m_super;
433 			vaddr = rounddown2(vaddr, pagesizes[psind]);
434 			/* Preset the modified bit for dirty superpages. */
435 			if ((flags & PS_ALL_DIRTY) != 0)
436 				fs->fault_type |= VM_PROT_WRITE;
437 		}
438 	}
439 #endif
440 	if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
441 	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
442 	    KERN_SUCCESS)
443 		goto fail_busy;
444 	if (fs->m_hold != NULL) {
445 		(*fs->m_hold) = m;
446 		vm_page_wire(m);
447 	}
448 	if (psind == 0 && !fs->wired)
449 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
450 	VM_OBJECT_RUNLOCK(fs->first_object);
451 	vm_fault_dirty(fs, m);
452 	vm_object_unbusy(fs->first_object);
453 	vm_map_lookup_done(fs->map, fs->entry);
454 	curthread->td_ru.ru_minflt++;
455 	return (FAULT_SUCCESS);
456 fail_busy:
457 	vm_object_unbusy(fs->first_object);
458 fail:
459 	if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
460 		VM_OBJECT_RUNLOCK(fs->first_object);
461 		VM_OBJECT_WLOCK(fs->first_object);
462 	}
463 	return (FAULT_FAILURE);
464 }
465 
466 static void
vm_fault_restore_map_lock(struct faultstate * fs)467 vm_fault_restore_map_lock(struct faultstate *fs)
468 {
469 
470 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
471 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
472 
473 	if (!vm_map_trylock_read(fs->map)) {
474 		VM_OBJECT_WUNLOCK(fs->first_object);
475 		vm_map_lock_read(fs->map);
476 		VM_OBJECT_WLOCK(fs->first_object);
477 	}
478 	fs->lookup_still_valid = true;
479 }
480 
481 static void
vm_fault_populate_check_page(vm_page_t m)482 vm_fault_populate_check_page(vm_page_t m)
483 {
484 
485 	/*
486 	 * Check each page to ensure that the pager is obeying the
487 	 * interface: the page must be installed in the object, fully
488 	 * valid, and exclusively busied.
489 	 */
490 	MPASS(m != NULL);
491 	MPASS(vm_page_all_valid(m));
492 	MPASS(vm_page_xbusied(m));
493 }
494 
495 static void
vm_fault_populate_cleanup(vm_object_t object,vm_pindex_t first,vm_pindex_t last)496 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
497     vm_pindex_t last)
498 {
499 	struct pctrie_iter pages;
500 	vm_page_t m;
501 
502 	VM_OBJECT_ASSERT_WLOCKED(object);
503 	MPASS(first <= last);
504 	vm_page_iter_limit_init(&pages, object, last + 1);
505 	VM_RADIX_FORALL_FROM(m, &pages, first) {
506 		vm_fault_populate_check_page(m);
507 		vm_page_deactivate(m);
508 		vm_page_xunbusy(m);
509 	}
510 	KASSERT(pages.index == last, ("%s: pindex mismatch", __func__));
511 }
512 
513 static enum fault_status
vm_fault_populate(struct faultstate * fs)514 vm_fault_populate(struct faultstate *fs)
515 {
516 	vm_offset_t vaddr;
517 	vm_page_t m;
518 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
519 	int bdry_idx, i, npages, psind, rv;
520 	enum fault_status res;
521 
522 	MPASS(fs->object == fs->first_object);
523 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
524 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
525 	MPASS(fs->first_object->backing_object == NULL);
526 	MPASS(fs->lookup_still_valid);
527 
528 	pager_first = OFF_TO_IDX(fs->entry->offset);
529 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
530 	vm_fault_unlock_map(fs);
531 	vm_fault_unlock_vp(fs);
532 
533 	res = FAULT_SUCCESS;
534 
535 	/*
536 	 * Call the pager (driver) populate() method.
537 	 *
538 	 * There is no guarantee that the method will be called again
539 	 * if the current fault is for read, and a future fault is
540 	 * for write.  Report the entry's maximum allowed protection
541 	 * to the driver.
542 	 */
543 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
544 	    fs->fault_type, fs->entry->max_protection, &pager_first,
545 	    &pager_last);
546 
547 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
548 	if (rv == VM_PAGER_BAD) {
549 		/*
550 		 * VM_PAGER_BAD is the backdoor for a pager to request
551 		 * normal fault handling.
552 		 */
553 		vm_fault_restore_map_lock(fs);
554 		if (fs->map->timestamp != fs->map_generation)
555 			return (FAULT_RESTART);
556 		return (FAULT_CONTINUE);
557 	}
558 	if (rv != VM_PAGER_OK)
559 		return (FAULT_FAILURE); /* AKA SIGSEGV */
560 
561 	/* Ensure that the driver is obeying the interface. */
562 	MPASS(pager_first <= pager_last);
563 	MPASS(fs->first_pindex <= pager_last);
564 	MPASS(fs->first_pindex >= pager_first);
565 	MPASS(pager_last < fs->first_object->size);
566 
567 	vm_fault_restore_map_lock(fs);
568 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
569 	if (fs->map->timestamp != fs->map_generation) {
570 		if (bdry_idx == 0) {
571 			vm_fault_populate_cleanup(fs->first_object, pager_first,
572 			    pager_last);
573 		} else {
574 			m = vm_page_lookup(fs->first_object, pager_first);
575 			if (m != fs->m)
576 				vm_page_xunbusy(m);
577 		}
578 		return (FAULT_RESTART);
579 	}
580 
581 	/*
582 	 * The map is unchanged after our last unlock.  Process the fault.
583 	 *
584 	 * First, the special case of largepage mappings, where
585 	 * populate only busies the first page in superpage run.
586 	 */
587 	if (bdry_idx != 0) {
588 		KASSERT(PMAP_HAS_LARGEPAGES,
589 		    ("missing pmap support for large pages"));
590 		m = vm_page_lookup(fs->first_object, pager_first);
591 		vm_fault_populate_check_page(m);
592 		VM_OBJECT_WUNLOCK(fs->first_object);
593 		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
594 		    fs->entry->offset;
595 		/* assert alignment for entry */
596 		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
597     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
598 		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
599 		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
600 		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
601 		    ("unaligned superpage m %p %#jx", m,
602 		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
603 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
604 		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
605 		    PMAP_ENTER_LARGEPAGE, bdry_idx);
606 		VM_OBJECT_WLOCK(fs->first_object);
607 		vm_page_xunbusy(m);
608 		if (rv != KERN_SUCCESS) {
609 			res = FAULT_FAILURE;
610 			goto out;
611 		}
612 		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
613 			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
614 				vm_page_wire(m + i);
615 		}
616 		if (fs->m_hold != NULL) {
617 			*fs->m_hold = m + (fs->first_pindex - pager_first);
618 			vm_page_wire(*fs->m_hold);
619 		}
620 		goto out;
621 	}
622 
623 	/*
624 	 * The range [pager_first, pager_last] that is given to the
625 	 * pager is only a hint.  The pager may populate any range
626 	 * within the object that includes the requested page index.
627 	 * In case the pager expanded the range, clip it to fit into
628 	 * the map entry.
629 	 */
630 	map_first = OFF_TO_IDX(fs->entry->offset);
631 	if (map_first > pager_first) {
632 		vm_fault_populate_cleanup(fs->first_object, pager_first,
633 		    map_first - 1);
634 		pager_first = map_first;
635 	}
636 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
637 	if (map_last < pager_last) {
638 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
639 		    pager_last);
640 		pager_last = map_last;
641 	}
642 	for (pidx = pager_first; pidx <= pager_last; pidx += npages) {
643 		m = vm_page_lookup(fs->first_object, pidx);
644 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
645 		KASSERT(m != NULL && m->pindex == pidx,
646 		    ("%s: pindex mismatch", __func__));
647 		psind = m->psind;
648 		while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
649 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
650 		    !pmap_ps_enabled(fs->map->pmap)))
651 			psind--;
652 
653 		npages = atop(pagesizes[psind]);
654 		for (i = 0; i < npages; i++) {
655 			vm_fault_populate_check_page(&m[i]);
656 			vm_fault_dirty(fs, &m[i]);
657 		}
658 		VM_OBJECT_WUNLOCK(fs->first_object);
659 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
660 		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
661 
662 		/*
663 		 * pmap_enter() may fail for a superpage mapping if additional
664 		 * protection policies prevent the full mapping.
665 		 * For example, this will happen on amd64 if the entire
666 		 * address range does not share the same userspace protection
667 		 * key.  Revert to single-page mappings if this happens.
668 		 */
669 		MPASS(rv == KERN_SUCCESS ||
670 		    (psind > 0 && rv == KERN_PROTECTION_FAILURE));
671 		if (__predict_false(psind > 0 &&
672 		    rv == KERN_PROTECTION_FAILURE)) {
673 			MPASS(!fs->wired);
674 			for (i = 0; i < npages; i++) {
675 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
676 				    &m[i], fs->prot, fs->fault_type, 0);
677 				MPASS(rv == KERN_SUCCESS);
678 			}
679 		}
680 
681 		VM_OBJECT_WLOCK(fs->first_object);
682 		for (i = 0; i < npages; i++) {
683 			if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
684 			    m[i].pindex == fs->first_pindex)
685 				vm_page_wire(&m[i]);
686 			else
687 				vm_page_activate(&m[i]);
688 			if (fs->m_hold != NULL &&
689 			    m[i].pindex == fs->first_pindex) {
690 				(*fs->m_hold) = &m[i];
691 				vm_page_wire(&m[i]);
692 			}
693 			vm_page_xunbusy(&m[i]);
694 		}
695 	}
696 out:
697 	curthread->td_ru.ru_majflt++;
698 	return (res);
699 }
700 
701 static int prot_fault_translation;
702 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
703     &prot_fault_translation, 0,
704     "Control signal to deliver on protection fault");
705 
706 /* compat definition to keep common code for signal translation */
707 #define	UCODE_PAGEFLT	12
708 #ifdef T_PAGEFLT
709 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
710 #endif
711 
712 /*
713  * vm_fault_trap:
714  *
715  * Helper for the page fault trap handlers, wrapping vm_fault().
716  * Issues ktrace(2) tracepoints for the faults.
717  *
718  * If a fault cannot be handled successfully by satisfying the
719  * required mapping, and the faulted instruction cannot be restarted,
720  * the signal number and si_code values are returned for trapsignal()
721  * to deliver.
722  *
723  * Returns Mach error codes, but callers should only check for
724  * KERN_SUCCESS.
725  */
726 int
vm_fault_trap(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,int * signo,int * ucode)727 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
728     int fault_flags, int *signo, int *ucode)
729 {
730 	int result;
731 
732 	MPASS(signo == NULL || ucode != NULL);
733 #ifdef KTRACE
734 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
735 		ktrfault(vaddr, fault_type);
736 #endif
737 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
738 	    NULL);
739 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
740 	    result == KERN_INVALID_ADDRESS ||
741 	    result == KERN_RESOURCE_SHORTAGE ||
742 	    result == KERN_PROTECTION_FAILURE ||
743 	    result == KERN_OUT_OF_BOUNDS,
744 	    ("Unexpected Mach error %d from vm_fault()", result));
745 #ifdef KTRACE
746 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
747 		ktrfaultend(result);
748 #endif
749 	if (result != KERN_SUCCESS && signo != NULL) {
750 		switch (result) {
751 		case KERN_FAILURE:
752 		case KERN_INVALID_ADDRESS:
753 			*signo = SIGSEGV;
754 			*ucode = SEGV_MAPERR;
755 			break;
756 		case KERN_RESOURCE_SHORTAGE:
757 			*signo = SIGBUS;
758 			*ucode = BUS_OOMERR;
759 			break;
760 		case KERN_OUT_OF_BOUNDS:
761 			*signo = SIGBUS;
762 			*ucode = BUS_OBJERR;
763 			break;
764 		case KERN_PROTECTION_FAILURE:
765 			if (prot_fault_translation == 0) {
766 				/*
767 				 * Autodetect.  This check also covers
768 				 * the images without the ABI-tag ELF
769 				 * note.
770 				 */
771 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
772 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
773 					*signo = SIGSEGV;
774 					*ucode = SEGV_ACCERR;
775 				} else {
776 					*signo = SIGBUS;
777 					*ucode = UCODE_PAGEFLT;
778 				}
779 			} else if (prot_fault_translation == 1) {
780 				/* Always compat mode. */
781 				*signo = SIGBUS;
782 				*ucode = UCODE_PAGEFLT;
783 			} else {
784 				/* Always SIGSEGV mode. */
785 				*signo = SIGSEGV;
786 				*ucode = SEGV_ACCERR;
787 			}
788 			break;
789 		default:
790 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
791 			    result));
792 			break;
793 		}
794 	}
795 	return (result);
796 }
797 
798 static bool
vm_fault_object_ensure_wlocked(struct faultstate * fs)799 vm_fault_object_ensure_wlocked(struct faultstate *fs)
800 {
801 	if (fs->object == fs->first_object)
802 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
803 
804 	if (!fs->can_read_lock)  {
805 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
806 		return (true);
807 	}
808 
809 	if (VM_OBJECT_WOWNED(fs->object))
810 		return (true);
811 
812 	if (VM_OBJECT_TRYUPGRADE(fs->object))
813 		return (true);
814 
815 	return (false);
816 }
817 
818 static enum fault_status
vm_fault_lock_vnode(struct faultstate * fs,bool objlocked)819 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
820 {
821 	struct vnode *vp;
822 	int error, locked;
823 
824 	if (fs->object->type != OBJT_VNODE)
825 		return (FAULT_CONTINUE);
826 	vp = fs->object->handle;
827 	if (vp == fs->vp) {
828 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
829 		return (FAULT_CONTINUE);
830 	}
831 
832 	/*
833 	 * Perform an unlock in case the desired vnode changed while
834 	 * the map was unlocked during a retry.
835 	 */
836 	vm_fault_unlock_vp(fs);
837 
838 	locked = VOP_ISLOCKED(vp);
839 	if (locked != LK_EXCLUSIVE)
840 		locked = LK_SHARED;
841 
842 	/*
843 	 * We must not sleep acquiring the vnode lock while we have
844 	 * the page exclusive busied or the object's
845 	 * paging-in-progress count incremented.  Otherwise, we could
846 	 * deadlock.
847 	 */
848 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
849 	if (error == 0) {
850 		fs->vp = vp;
851 		return (FAULT_CONTINUE);
852 	}
853 
854 	vhold(vp);
855 	if (objlocked)
856 		vm_fault_unlock_and_deallocate(fs);
857 	else
858 		vm_fault_deallocate(fs);
859 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
860 	vdrop(vp);
861 	fs->vp = vp;
862 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
863 	return (FAULT_RESTART);
864 }
865 
866 /*
867  * Calculate the desired readahead.  Handle drop-behind.
868  *
869  * Returns the number of readahead blocks to pass to the pager.
870  */
871 static int
vm_fault_readahead(struct faultstate * fs)872 vm_fault_readahead(struct faultstate *fs)
873 {
874 	int era, nera;
875 	u_char behavior;
876 
877 	KASSERT(fs->lookup_still_valid, ("map unlocked"));
878 	era = fs->entry->read_ahead;
879 	behavior = vm_map_entry_behavior(fs->entry);
880 	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
881 		nera = 0;
882 	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
883 		nera = VM_FAULT_READ_AHEAD_MAX;
884 		if (fs->vaddr == fs->entry->next_read)
885 			vm_fault_dontneed(fs, fs->vaddr, nera);
886 	} else if (fs->vaddr == fs->entry->next_read) {
887 		/*
888 		 * This is a sequential fault.  Arithmetically
889 		 * increase the requested number of pages in
890 		 * the read-ahead window.  The requested
891 		 * number of pages is "# of sequential faults
892 		 * x (read ahead min + 1) + read ahead min"
893 		 */
894 		nera = VM_FAULT_READ_AHEAD_MIN;
895 		if (era > 0) {
896 			nera += era + 1;
897 			if (nera > VM_FAULT_READ_AHEAD_MAX)
898 				nera = VM_FAULT_READ_AHEAD_MAX;
899 		}
900 		if (era == VM_FAULT_READ_AHEAD_MAX)
901 			vm_fault_dontneed(fs, fs->vaddr, nera);
902 	} else {
903 		/*
904 		 * This is a non-sequential fault.
905 		 */
906 		nera = 0;
907 	}
908 	if (era != nera) {
909 		/*
910 		 * A read lock on the map suffices to update
911 		 * the read ahead count safely.
912 		 */
913 		fs->entry->read_ahead = nera;
914 	}
915 
916 	return (nera);
917 }
918 
919 static int
vm_fault_lookup(struct faultstate * fs)920 vm_fault_lookup(struct faultstate *fs)
921 {
922 	int result;
923 
924 	KASSERT(!fs->lookup_still_valid,
925 	   ("vm_fault_lookup: Map already locked."));
926 	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
927 	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
928 	    &fs->first_pindex, &fs->prot, &fs->wired);
929 	if (result != KERN_SUCCESS) {
930 		vm_fault_unlock_vp(fs);
931 		return (result);
932 	}
933 
934 	fs->map_generation = fs->map->timestamp;
935 
936 	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
937 		panic("%s: fault on nofault entry, addr: %#lx",
938 		    __func__, (u_long)fs->vaddr);
939 	}
940 
941 	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
942 	    fs->entry->wiring_thread != curthread) {
943 		vm_map_unlock_read(fs->map);
944 		vm_map_lock(fs->map);
945 		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
946 		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
947 			vm_fault_unlock_vp(fs);
948 			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
949 			vm_map_unlock_and_wait(fs->map, 0);
950 		} else
951 			vm_map_unlock(fs->map);
952 		return (KERN_RESOURCE_SHORTAGE);
953 	}
954 
955 	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
956 
957 	if (fs->wired)
958 		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
959 	else
960 		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
961 		    ("!fs->wired && VM_FAULT_WIRE"));
962 	fs->lookup_still_valid = true;
963 
964 	return (KERN_SUCCESS);
965 }
966 
967 static int
vm_fault_relookup(struct faultstate * fs)968 vm_fault_relookup(struct faultstate *fs)
969 {
970 	vm_object_t retry_object;
971 	vm_pindex_t retry_pindex;
972 	vm_prot_t retry_prot;
973 	int result;
974 
975 	if (!vm_map_trylock_read(fs->map))
976 		return (KERN_RESTART);
977 
978 	fs->lookup_still_valid = true;
979 	if (fs->map->timestamp == fs->map_generation)
980 		return (KERN_SUCCESS);
981 
982 	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
983 	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
984 	    &fs->wired);
985 	if (result != KERN_SUCCESS) {
986 		/*
987 		 * If retry of map lookup would have blocked then
988 		 * retry fault from start.
989 		 */
990 		if (result == KERN_FAILURE)
991 			return (KERN_RESTART);
992 		return (result);
993 	}
994 	if (retry_object != fs->first_object ||
995 	    retry_pindex != fs->first_pindex)
996 		return (KERN_RESTART);
997 
998 	/*
999 	 * Check whether the protection has changed or the object has
1000 	 * been copied while we left the map unlocked. Changing from
1001 	 * read to write permission is OK - we leave the page
1002 	 * write-protected, and catch the write fault. Changing from
1003 	 * write to read permission means that we can't mark the page
1004 	 * write-enabled after all.
1005 	 */
1006 	fs->prot &= retry_prot;
1007 	fs->fault_type &= retry_prot;
1008 	if (fs->prot == 0)
1009 		return (KERN_RESTART);
1010 
1011 	/* Reassert because wired may have changed. */
1012 	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1013 	    ("!wired && VM_FAULT_WIRE"));
1014 
1015 	return (KERN_SUCCESS);
1016 }
1017 
1018 static bool
vm_fault_can_cow_rename(struct faultstate * fs)1019 vm_fault_can_cow_rename(struct faultstate *fs)
1020 {
1021 	return (
1022 	    /* Only one shadow object and no other refs. */
1023 	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1024 	    /* No other ways to look the object up. */
1025 	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0);
1026 }
1027 
1028 static void
vm_fault_cow(struct faultstate * fs)1029 vm_fault_cow(struct faultstate *fs)
1030 {
1031 	bool is_first_object_locked, rename_cow;
1032 
1033 	KASSERT(vm_fault_might_be_cow(fs),
1034 	    ("source and target COW objects are identical"));
1035 
1036 	/*
1037 	 * This allows pages to be virtually copied from a backing_object
1038 	 * into the first_object, where the backing object has no other
1039 	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
1040 	 * we just move the page from the backing object to the first
1041 	 * object.  Note that we must mark the page dirty in the first
1042 	 * object so that it will go out to swap when needed.
1043 	 */
1044 	is_first_object_locked = false;
1045 	rename_cow = false;
1046 
1047 	if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) {
1048 		/*
1049 		 * Check that we don't chase down the shadow chain and
1050 		 * we can acquire locks.  Recheck the conditions for
1051 		 * rename after the shadow chain is stable after the
1052 		 * object locking.
1053 		 */
1054 		is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object);
1055 		if (is_first_object_locked &&
1056 		    fs->object == fs->first_object->backing_object) {
1057 			if (VM_OBJECT_TRYWLOCK(fs->object)) {
1058 				rename_cow = vm_fault_can_cow_rename(fs);
1059 				if (!rename_cow)
1060 					VM_OBJECT_WUNLOCK(fs->object);
1061 			}
1062 		}
1063 	}
1064 
1065 	if (rename_cow) {
1066 		vm_page_assert_xbusied(fs->m);
1067 
1068 		/*
1069 		 * Remove but keep xbusy for replace.  fs->m is moved into
1070 		 * fs->first_object and left busy while fs->first_m is
1071 		 * conditionally freed.
1072 		 */
1073 		vm_page_remove_xbusy(fs->m);
1074 		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1075 		    fs->first_m);
1076 		vm_page_dirty(fs->m);
1077 #if VM_NRESERVLEVEL > 0
1078 		/*
1079 		 * Rename the reservation.
1080 		 */
1081 		vm_reserv_rename(fs->m, fs->first_object, fs->object,
1082 		    OFF_TO_IDX(fs->first_object->backing_object_offset));
1083 #endif
1084 		VM_OBJECT_WUNLOCK(fs->object);
1085 		VM_OBJECT_WUNLOCK(fs->first_object);
1086 		fs->first_m = fs->m;
1087 		fs->m = NULL;
1088 		VM_CNT_INC(v_cow_optim);
1089 	} else {
1090 		if (is_first_object_locked)
1091 			VM_OBJECT_WUNLOCK(fs->first_object);
1092 		/*
1093 		 * Oh, well, lets copy it.
1094 		 */
1095 		pmap_copy_page(fs->m, fs->first_m);
1096 		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1097 			vm_page_wire(fs->first_m);
1098 			vm_page_unwire(fs->m, PQ_INACTIVE);
1099 		}
1100 		/*
1101 		 * Save the COW page to be released after pmap_enter is
1102 		 * complete.  The new copy will be marked valid when we're ready
1103 		 * to map it.
1104 		 */
1105 		fs->m_cow = fs->m;
1106 		fs->m = NULL;
1107 
1108 		/*
1109 		 * Typically, the shadow object is either private to this
1110 		 * address space (OBJ_ONEMAPPING) or its pages are read only.
1111 		 * In the highly unusual case where the pages of a shadow object
1112 		 * are read/write shared between this and other address spaces,
1113 		 * we need to ensure that any pmap-level mappings to the
1114 		 * original, copy-on-write page from the backing object are
1115 		 * removed from those other address spaces.
1116 		 *
1117 		 * The flag check is racy, but this is tolerable: if
1118 		 * OBJ_ONEMAPPING is cleared after the check, the busy state
1119 		 * ensures that new mappings of m_cow can't be created.
1120 		 * pmap_enter() will replace an existing mapping in the current
1121 		 * address space.  If OBJ_ONEMAPPING is set after the check,
1122 		 * removing mappings will at worse trigger some unnecessary page
1123 		 * faults.
1124 		 *
1125 		 * In the fs->m shared busy case, the xbusy state of
1126 		 * fs->first_m prevents new mappings of fs->m from
1127 		 * being created because a parallel fault on this
1128 		 * shadow chain should wait for xbusy on fs->first_m.
1129 		 */
1130 		if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1131 			pmap_remove_all(fs->m_cow);
1132 	}
1133 
1134 	vm_object_pip_wakeup(fs->object);
1135 
1136 	/*
1137 	 * Only use the new page below...
1138 	 */
1139 	fs->object = fs->first_object;
1140 	fs->pindex = fs->first_pindex;
1141 	fs->m = fs->first_m;
1142 	VM_CNT_INC(v_cow_faults);
1143 	curthread->td_cow++;
1144 }
1145 
1146 static enum fault_next_status
vm_fault_next(struct faultstate * fs)1147 vm_fault_next(struct faultstate *fs)
1148 {
1149 	vm_object_t next_object;
1150 
1151 	if (fs->object == fs->first_object || !fs->can_read_lock)
1152 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1153 	else
1154 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1155 
1156 	/*
1157 	 * The requested page does not exist at this object/
1158 	 * offset.  Remove the invalid page from the object,
1159 	 * waking up anyone waiting for it, and continue on to
1160 	 * the next object.  However, if this is the top-level
1161 	 * object, we must leave the busy page in place to
1162 	 * prevent another process from rushing past us, and
1163 	 * inserting the page in that object at the same time
1164 	 * that we are.
1165 	 */
1166 	if (fs->object == fs->first_object) {
1167 		fs->first_m = fs->m;
1168 		fs->m = NULL;
1169 	} else if (fs->m != NULL) {
1170 		if (!vm_fault_object_ensure_wlocked(fs)) {
1171 			fs->can_read_lock = false;
1172 			vm_fault_unlock_and_deallocate(fs);
1173 			return (FAULT_NEXT_RESTART);
1174 		}
1175 		vm_fault_page_free(&fs->m);
1176 	}
1177 
1178 	/*
1179 	 * Move on to the next object.  Lock the next object before
1180 	 * unlocking the current one.
1181 	 */
1182 	next_object = fs->object->backing_object;
1183 	if (next_object == NULL)
1184 		return (FAULT_NEXT_NOOBJ);
1185 	MPASS(fs->first_m != NULL);
1186 	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1187 	if (fs->can_read_lock)
1188 		VM_OBJECT_RLOCK(next_object);
1189 	else
1190 		VM_OBJECT_WLOCK(next_object);
1191 	vm_object_pip_add(next_object, 1);
1192 	if (fs->object != fs->first_object)
1193 		vm_object_pip_wakeup(fs->object);
1194 	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1195 	VM_OBJECT_UNLOCK(fs->object);
1196 	fs->object = next_object;
1197 
1198 	return (FAULT_NEXT_GOTOBJ);
1199 }
1200 
1201 static void
vm_fault_zerofill(struct faultstate * fs)1202 vm_fault_zerofill(struct faultstate *fs)
1203 {
1204 
1205 	/*
1206 	 * If there's no object left, fill the page in the top
1207 	 * object with zeros.
1208 	 */
1209 	if (vm_fault_might_be_cow(fs)) {
1210 		vm_object_pip_wakeup(fs->object);
1211 		fs->object = fs->first_object;
1212 		fs->pindex = fs->first_pindex;
1213 	}
1214 	MPASS(fs->first_m != NULL);
1215 	MPASS(fs->m == NULL);
1216 	fs->m = fs->first_m;
1217 	fs->first_m = NULL;
1218 
1219 	/*
1220 	 * Zero the page if necessary and mark it valid.
1221 	 */
1222 	if ((fs->m->flags & PG_ZERO) == 0) {
1223 		pmap_zero_page(fs->m);
1224 	} else {
1225 #ifdef INVARIANTS
1226 		if (vm_check_pg_zero) {
1227 			struct sf_buf *sf;
1228 			unsigned long *p;
1229 			int i;
1230 
1231 			sched_pin();
1232 			sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
1233 			p = (unsigned long *)sf_buf_kva(sf);
1234 			for (i = 0; i < PAGE_SIZE / sizeof(*p); i++, p++) {
1235 				KASSERT(*p == 0,
1236 				    ("zerocheck failed page %p PG_ZERO %d %jx",
1237 				    fs->m, i, (uintmax_t)*p));
1238 			}
1239 			sf_buf_free(sf);
1240 			sched_unpin();
1241 		}
1242 #endif
1243 		VM_CNT_INC(v_ozfod);
1244 	}
1245 	VM_CNT_INC(v_zfod);
1246 	vm_page_valid(fs->m);
1247 }
1248 
1249 /*
1250  * Initiate page fault after timeout.  Returns true if caller should
1251  * do vm_waitpfault() after the call.
1252  */
1253 static bool
vm_fault_allocate_oom(struct faultstate * fs)1254 vm_fault_allocate_oom(struct faultstate *fs)
1255 {
1256 	struct timeval now;
1257 
1258 	vm_fault_unlock_and_deallocate(fs);
1259 	if (vm_pfault_oom_attempts < 0)
1260 		return (true);
1261 	if (!fs->oom_started) {
1262 		fs->oom_started = true;
1263 		getmicrotime(&fs->oom_start_time);
1264 		return (true);
1265 	}
1266 
1267 	getmicrotime(&now);
1268 	timevalsub(&now, &fs->oom_start_time);
1269 	if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1270 		return (true);
1271 
1272 	if (bootverbose)
1273 		printf(
1274 	    "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1275 		    curproc->p_pid, curproc->p_comm);
1276 	vm_pageout_oom(VM_OOM_MEM_PF);
1277 	fs->oom_started = false;
1278 	return (false);
1279 }
1280 
1281 /*
1282  * Allocate a page directly or via the object populate method.
1283  */
1284 static enum fault_status
vm_fault_allocate(struct faultstate * fs,struct pctrie_iter * pages)1285 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
1286 {
1287 	struct domainset *dset;
1288 	enum fault_status res;
1289 
1290 	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1291 		res = vm_fault_lock_vnode(fs, true);
1292 		MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1293 		if (res == FAULT_RESTART)
1294 			return (res);
1295 	}
1296 
1297 	if (fs->pindex >= fs->object->size) {
1298 		vm_fault_unlock_and_deallocate(fs);
1299 		return (FAULT_OUT_OF_BOUNDS);
1300 	}
1301 
1302 	if (fs->object == fs->first_object &&
1303 	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1304 	    fs->first_object->shadow_count == 0) {
1305 		res = vm_fault_populate(fs);
1306 		switch (res) {
1307 		case FAULT_SUCCESS:
1308 		case FAULT_FAILURE:
1309 		case FAULT_RESTART:
1310 			vm_fault_unlock_and_deallocate(fs);
1311 			return (res);
1312 		case FAULT_CONTINUE:
1313 			pctrie_iter_reset(pages);
1314 			/*
1315 			 * Pager's populate() method
1316 			 * returned VM_PAGER_BAD.
1317 			 */
1318 			break;
1319 		default:
1320 			panic("inconsistent return codes");
1321 		}
1322 	}
1323 
1324 	/*
1325 	 * Allocate a new page for this object/offset pair.
1326 	 *
1327 	 * If the process has a fatal signal pending, prioritize the allocation
1328 	 * with the expectation that the process will exit shortly and free some
1329 	 * pages.  In particular, the signal may have been posted by the page
1330 	 * daemon in an attempt to resolve an out-of-memory condition.
1331 	 *
1332 	 * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1333 	 * might be not observed here, and allocation fails, causing a restart
1334 	 * and new reading of the p_flag.
1335 	 */
1336 	dset = fs->object->domain.dr_policy;
1337 	if (dset == NULL)
1338 		dset = curthread->td_domain.dr_policy;
1339 	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1340 #if VM_NRESERVLEVEL > 0
1341 		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1342 #endif
1343 		if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1344 			vm_fault_unlock_and_deallocate(fs);
1345 			return (FAULT_FAILURE);
1346 		}
1347 		fs->m = vm_page_alloc_iter(fs->object, fs->pindex,
1348 		    P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages);
1349 	}
1350 	if (fs->m == NULL) {
1351 		if (vm_fault_allocate_oom(fs))
1352 			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1353 		return (FAULT_RESTART);
1354 	}
1355 	fs->oom_started = false;
1356 
1357 	return (FAULT_CONTINUE);
1358 }
1359 
1360 /*
1361  * Call the pager to retrieve the page if there is a chance
1362  * that the pager has it, and potentially retrieve additional
1363  * pages at the same time.
1364  */
1365 static enum fault_status
vm_fault_getpages(struct faultstate * fs,int * behindp,int * aheadp)1366 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1367 {
1368 	vm_offset_t e_end, e_start;
1369 	int ahead, behind, cluster_offset, rv;
1370 	enum fault_status status;
1371 	u_char behavior;
1372 
1373 	/*
1374 	 * Prepare for unlocking the map.  Save the map
1375 	 * entry's start and end addresses, which are used to
1376 	 * optimize the size of the pager operation below.
1377 	 * Even if the map entry's addresses change after
1378 	 * unlocking the map, using the saved addresses is
1379 	 * safe.
1380 	 */
1381 	e_start = fs->entry->start;
1382 	e_end = fs->entry->end;
1383 	behavior = vm_map_entry_behavior(fs->entry);
1384 
1385 	/*
1386 	 * If the pager for the current object might have
1387 	 * the page, then determine the number of additional
1388 	 * pages to read and potentially reprioritize
1389 	 * previously read pages for earlier reclamation.
1390 	 * These operations should only be performed once per
1391 	 * page fault.  Even if the current pager doesn't
1392 	 * have the page, the number of additional pages to
1393 	 * read will apply to subsequent objects in the
1394 	 * shadow chain.
1395 	 */
1396 	if (fs->nera == -1 && !P_KILLED(curproc))
1397 		fs->nera = vm_fault_readahead(fs);
1398 
1399 	/*
1400 	 * Release the map lock before locking the vnode or
1401 	 * sleeping in the pager.  (If the current object has
1402 	 * a shadow, then an earlier iteration of this loop
1403 	 * may have already unlocked the map.)
1404 	 */
1405 	vm_fault_unlock_map(fs);
1406 
1407 	status = vm_fault_lock_vnode(fs, false);
1408 	MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1409 	if (status == FAULT_RESTART)
1410 		return (status);
1411 	KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1412 	    ("vm_fault: vnode-backed object mapped by system map"));
1413 
1414 	/*
1415 	 * Page in the requested page and hint the pager,
1416 	 * that it may bring up surrounding pages.
1417 	 */
1418 	if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1419 	    P_KILLED(curproc)) {
1420 		behind = 0;
1421 		ahead = 0;
1422 	} else {
1423 		/* Is this a sequential fault? */
1424 		if (fs->nera > 0) {
1425 			behind = 0;
1426 			ahead = fs->nera;
1427 		} else {
1428 			/*
1429 			 * Request a cluster of pages that is
1430 			 * aligned to a VM_FAULT_READ_DEFAULT
1431 			 * page offset boundary within the
1432 			 * object.  Alignment to a page offset
1433 			 * boundary is more likely to coincide
1434 			 * with the underlying file system
1435 			 * block than alignment to a virtual
1436 			 * address boundary.
1437 			 */
1438 			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1439 			behind = ulmin(cluster_offset,
1440 			    atop(fs->vaddr - e_start));
1441 			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1442 		}
1443 		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1444 	}
1445 	*behindp = behind;
1446 	*aheadp = ahead;
1447 	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1448 	if (rv == VM_PAGER_OK)
1449 		return (FAULT_HARD);
1450 	if (rv == VM_PAGER_ERROR)
1451 		printf("vm_fault: pager read error, pid %d (%s)\n",
1452 		    curproc->p_pid, curproc->p_comm);
1453 	/*
1454 	 * If an I/O error occurred or the requested page was
1455 	 * outside the range of the pager, clean up and return
1456 	 * an error.
1457 	 */
1458 	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1459 		VM_OBJECT_WLOCK(fs->object);
1460 		vm_fault_page_free(&fs->m);
1461 		vm_fault_unlock_and_deallocate(fs);
1462 		return (FAULT_OUT_OF_BOUNDS);
1463 	}
1464 	KASSERT(rv == VM_PAGER_FAIL,
1465 	    ("%s: unexpected pager error %d", __func__, rv));
1466 	return (FAULT_CONTINUE);
1467 }
1468 
1469 /*
1470  * Wait/Retry if the page is busy.  We have to do this if the page is
1471  * either exclusive or shared busy because the vm_pager may be using
1472  * read busy for pageouts (and even pageins if it is the vnode pager),
1473  * and we could end up trying to pagein and pageout the same page
1474  * simultaneously.
1475  *
1476  * We allow the busy case on a read fault if the page is valid.  We
1477  * cannot under any circumstances mess around with a shared busied
1478  * page except, perhaps, to pmap it.  This is controlled by the
1479  * VM_ALLOC_SBUSY bit in the allocflags argument.
1480  */
1481 static void
vm_fault_busy_sleep(struct faultstate * fs,int allocflags)1482 vm_fault_busy_sleep(struct faultstate *fs, int allocflags)
1483 {
1484 	/*
1485 	 * Reference the page before unlocking and
1486 	 * sleeping so that the page daemon is less
1487 	 * likely to reclaim it.
1488 	 */
1489 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1490 	if (vm_fault_might_be_cow(fs)) {
1491 		vm_fault_page_release(&fs->first_m);
1492 		vm_object_pip_wakeup(fs->first_object);
1493 	}
1494 	vm_object_pip_wakeup(fs->object);
1495 	vm_fault_unlock_map(fs);
1496 	if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags))
1497 		VM_OBJECT_UNLOCK(fs->object);
1498 	VM_CNT_INC(v_intrans);
1499 	vm_object_deallocate(fs->first_object);
1500 }
1501 
1502 /*
1503  * Handle page lookup, populate, allocate, page-in for the current
1504  * object.
1505  *
1506  * The object is locked on entry and will remain locked with a return
1507  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1508  * Otherwise, the object will be unlocked upon return.
1509  */
1510 static enum fault_status
vm_fault_object(struct faultstate * fs,int * behindp,int * aheadp)1511 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1512 {
1513 	struct pctrie_iter pages;
1514 	enum fault_status res;
1515 	bool dead;
1516 
1517 	if (fs->object == fs->first_object || !fs->can_read_lock)
1518 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1519 	else
1520 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1521 
1522 	/*
1523 	 * If the object is marked for imminent termination, we retry
1524 	 * here, since the collapse pass has raced with us.  Otherwise,
1525 	 * if we see terminally dead object, return fail.
1526 	 */
1527 	if ((fs->object->flags & OBJ_DEAD) != 0) {
1528 		dead = fs->object->type == OBJT_DEAD;
1529 		vm_fault_unlock_and_deallocate(fs);
1530 		if (dead)
1531 			return (FAULT_PROTECTION_FAILURE);
1532 		pause("vmf_de", 1);
1533 		return (FAULT_RESTART);
1534 	}
1535 
1536 	/*
1537 	 * See if the page is resident.
1538 	 */
1539 	vm_page_iter_init(&pages, fs->object);
1540 	fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
1541 	if (fs->m != NULL) {
1542 		/*
1543 		 * If the found page is valid, will be either shadowed
1544 		 * or mapped read-only, and will not be renamed for
1545 		 * COW, then busy it in shared mode.  This allows
1546 		 * other faults needing this page to proceed in
1547 		 * parallel.
1548 		 *
1549 		 * Unlocked check for validity, rechecked after busy
1550 		 * is obtained.
1551 		 */
1552 		if (vm_page_all_valid(fs->m) &&
1553 		    /*
1554 		     * No write permissions for the new fs->m mapping,
1555 		     * or the first object has only one mapping, so
1556 		     * other writeable COW mappings of fs->m cannot
1557 		     * appear under us.
1558 		     */
1559 		    (vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) &&
1560 		    /*
1561 		     * fs->m cannot be renamed from object to
1562 		     * first_object.  These conditions will be
1563 		     * re-checked with proper synchronization in
1564 		     * vm_fault_cow().
1565 		     */
1566 		    (!vm_fault_can_cow_rename(fs) ||
1567 		    fs->object != fs->first_object->backing_object)) {
1568 			if (!vm_page_trysbusy(fs->m)) {
1569 				vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY);
1570 				return (FAULT_RESTART);
1571 			}
1572 
1573 			/*
1574 			 * Now make sure that racily checked
1575 			 * conditions are still valid.
1576 			 */
1577 			if (__predict_true(vm_page_all_valid(fs->m) &&
1578 			    (vm_fault_is_read(fs) ||
1579 			    vm_fault_might_be_cow(fs)))) {
1580 				VM_OBJECT_UNLOCK(fs->object);
1581 				return (FAULT_SOFT);
1582 			}
1583 
1584 			vm_page_sunbusy(fs->m);
1585 		}
1586 
1587 		if (!vm_page_tryxbusy(fs->m)) {
1588 			vm_fault_busy_sleep(fs, 0);
1589 			return (FAULT_RESTART);
1590 		}
1591 
1592 		/*
1593 		 * The page is marked busy for other processes and the
1594 		 * pagedaemon.  If it is still completely valid we are
1595 		 * done.
1596 		 */
1597 		if (vm_page_all_valid(fs->m)) {
1598 			VM_OBJECT_UNLOCK(fs->object);
1599 			return (FAULT_SOFT);
1600 		}
1601 	}
1602 
1603 	/*
1604 	 * Page is not resident.  If the pager might contain the page
1605 	 * or this is the beginning of the search, allocate a new
1606 	 * page.
1607 	 */
1608 	if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1609 	    fs->object == fs->first_object)) {
1610 		if (!vm_fault_object_ensure_wlocked(fs)) {
1611 			fs->can_read_lock = false;
1612 			vm_fault_unlock_and_deallocate(fs);
1613 			return (FAULT_RESTART);
1614 		}
1615 		res = vm_fault_allocate(fs, &pages);
1616 		if (res != FAULT_CONTINUE)
1617 			return (res);
1618 	}
1619 
1620 	/*
1621 	 * Check to see if the pager can possibly satisfy this fault.
1622 	 * If not, skip to the next object without dropping the lock to
1623 	 * preserve atomicity of shadow faults.
1624 	 */
1625 	if (vm_fault_object_needs_getpages(fs->object)) {
1626 		/*
1627 		 * At this point, we have either allocated a new page
1628 		 * or found an existing page that is only partially
1629 		 * valid.
1630 		 *
1631 		 * We hold a reference on the current object and the
1632 		 * page is exclusive busied.  The exclusive busy
1633 		 * prevents simultaneous faults and collapses while
1634 		 * the object lock is dropped.
1635 		 */
1636 		VM_OBJECT_UNLOCK(fs->object);
1637 		res = vm_fault_getpages(fs, behindp, aheadp);
1638 		if (res == FAULT_CONTINUE)
1639 			VM_OBJECT_WLOCK(fs->object);
1640 	} else {
1641 		res = FAULT_CONTINUE;
1642 	}
1643 	return (res);
1644 }
1645 
1646 /*
1647  * vm_fault:
1648  *
1649  * Handle a page fault occurring at the given address, requiring the
1650  * given permissions, in the map specified.  If successful, the page
1651  * is inserted into the associated physical map, and optionally
1652  * referenced and returned in *m_hold.
1653  *
1654  * The given address should be truncated to the proper page address.
1655  *
1656  * KERN_SUCCESS is returned if the page fault is handled; otherwise, a
1657  * Mach error specifying why the fault is fatal is returned.
1658  *
1659  * The map in question must be alive, either being the map for current
1660  * process, or the owner process hold count incremented to prevent
1661  * exit().
1662  *
1663  * If the thread private TDP_NOFAULTING flag is set, any fault results
1664  * in immediate protection failure.  Otherwise the fault is processed,
1665  * and caller may hold no locks.
1666  */
1667 int
vm_fault(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,vm_page_t * m_hold)1668 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1669     int fault_flags, vm_page_t *m_hold)
1670 {
1671 	struct pctrie_iter pages;
1672 	struct faultstate fs;
1673 	int ahead, behind, faultcount, rv;
1674 	enum fault_status res;
1675 	enum fault_next_status res_next;
1676 	bool hardfault;
1677 
1678 	VM_CNT_INC(v_vm_faults);
1679 
1680 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1681 		return (KERN_PROTECTION_FAILURE);
1682 
1683 	fs.vp = NULL;
1684 	fs.vaddr = vaddr;
1685 	fs.m_hold = m_hold;
1686 	fs.fault_flags = fault_flags;
1687 	fs.map = map;
1688 	fs.lookup_still_valid = false;
1689 	fs.oom_started = false;
1690 	fs.nera = -1;
1691 	fs.can_read_lock = true;
1692 	faultcount = 0;
1693 	hardfault = false;
1694 
1695 RetryFault:
1696 	fs.fault_type = fault_type;
1697 
1698 	/*
1699 	 * Find the backing store object and offset into it to begin the
1700 	 * search.
1701 	 */
1702 	rv = vm_fault_lookup(&fs);
1703 	if (rv != KERN_SUCCESS) {
1704 		if (rv == KERN_RESOURCE_SHORTAGE)
1705 			goto RetryFault;
1706 		return (rv);
1707 	}
1708 
1709 	/*
1710 	 * Try to avoid lock contention on the top-level object through
1711 	 * special-case handling of some types of page faults, specifically,
1712 	 * those that are mapping an existing page from the top-level object.
1713 	 * Under this condition, a read lock on the object suffices, allowing
1714 	 * multiple page faults of a similar type to run in parallel.
1715 	 */
1716 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1717 	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1718 	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1719 		res = vm_fault_soft_fast(&fs);
1720 		if (res == FAULT_SUCCESS) {
1721 			VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1722 			return (KERN_SUCCESS);
1723 		}
1724 		VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1725 	} else {
1726 		vm_page_iter_init(&pages, fs.first_object);
1727 		VM_OBJECT_WLOCK(fs.first_object);
1728 	}
1729 
1730 	/*
1731 	 * Make a reference to this object to prevent its disposal while we
1732 	 * are messing with it.  Once we have the reference, the map is free
1733 	 * to be diddled.  Since objects reference their shadows (and copies),
1734 	 * they will stay around as well.
1735 	 *
1736 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1737 	 * truncation operations) during I/O.
1738 	 */
1739 	vm_object_reference_locked(fs.first_object);
1740 	vm_object_pip_add(fs.first_object, 1);
1741 
1742 	fs.m_cow = fs.m = fs.first_m = NULL;
1743 
1744 	/*
1745 	 * Search for the page at object/offset.
1746 	 */
1747 	fs.object = fs.first_object;
1748 	fs.pindex = fs.first_pindex;
1749 
1750 	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1751 		res = vm_fault_allocate(&fs, &pages);
1752 		switch (res) {
1753 		case FAULT_RESTART:
1754 			goto RetryFault;
1755 		case FAULT_SUCCESS:
1756 			return (KERN_SUCCESS);
1757 		case FAULT_FAILURE:
1758 			return (KERN_FAILURE);
1759 		case FAULT_OUT_OF_BOUNDS:
1760 			return (KERN_OUT_OF_BOUNDS);
1761 		case FAULT_CONTINUE:
1762 			break;
1763 		default:
1764 			panic("vm_fault: Unhandled status %d", res);
1765 		}
1766 	}
1767 
1768 	while (TRUE) {
1769 		KASSERT(fs.m == NULL,
1770 		    ("page still set %p at loop start", fs.m));
1771 
1772 		res = vm_fault_object(&fs, &behind, &ahead);
1773 		switch (res) {
1774 		case FAULT_SOFT:
1775 			goto found;
1776 		case FAULT_HARD:
1777 			faultcount = behind + 1 + ahead;
1778 			hardfault = true;
1779 			goto found;
1780 		case FAULT_RESTART:
1781 			goto RetryFault;
1782 		case FAULT_SUCCESS:
1783 			return (KERN_SUCCESS);
1784 		case FAULT_FAILURE:
1785 			return (KERN_FAILURE);
1786 		case FAULT_OUT_OF_BOUNDS:
1787 			return (KERN_OUT_OF_BOUNDS);
1788 		case FAULT_PROTECTION_FAILURE:
1789 			return (KERN_PROTECTION_FAILURE);
1790 		case FAULT_CONTINUE:
1791 			break;
1792 		default:
1793 			panic("vm_fault: Unhandled status %d", res);
1794 		}
1795 
1796 		/*
1797 		 * The page was not found in the current object.  Try to
1798 		 * traverse into a backing object or zero fill if none is
1799 		 * found.
1800 		 */
1801 		res_next = vm_fault_next(&fs);
1802 		if (res_next == FAULT_NEXT_RESTART)
1803 			goto RetryFault;
1804 		else if (res_next == FAULT_NEXT_GOTOBJ)
1805 			continue;
1806 		MPASS(res_next == FAULT_NEXT_NOOBJ);
1807 		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1808 			if (fs.first_object == fs.object)
1809 				vm_fault_page_free(&fs.first_m);
1810 			vm_fault_unlock_and_deallocate(&fs);
1811 			return (KERN_OUT_OF_BOUNDS);
1812 		}
1813 		VM_OBJECT_UNLOCK(fs.object);
1814 		vm_fault_zerofill(&fs);
1815 		/* Don't try to prefault neighboring pages. */
1816 		faultcount = 1;
1817 		break;
1818 	}
1819 
1820 found:
1821 	/*
1822 	 * A valid page has been found and busied.  The object lock
1823 	 * must no longer be held if the page was busied.
1824 	 *
1825 	 * Regardless of the busy state of fs.m, fs.first_m is always
1826 	 * exclusively busied after the first iteration of the loop
1827 	 * calling vm_fault_object().  This is an ordering point for
1828 	 * the parallel faults occuring in on the same page.
1829 	 */
1830 	vm_page_assert_busied(fs.m);
1831 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1832 
1833 	/*
1834 	 * If the page is being written, but isn't already owned by the
1835 	 * top-level object, we have to copy it into a new page owned by the
1836 	 * top-level object.
1837 	 */
1838 	if (vm_fault_might_be_cow(&fs)) {
1839 		/*
1840 		 * We only really need to copy if we want to write it.
1841 		 */
1842 		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1843 			vm_fault_cow(&fs);
1844 			/*
1845 			 * We only try to prefault read-only mappings to the
1846 			 * neighboring pages when this copy-on-write fault is
1847 			 * a hard fault.  In other cases, trying to prefault
1848 			 * is typically wasted effort.
1849 			 */
1850 			if (faultcount == 0)
1851 				faultcount = 1;
1852 
1853 		} else {
1854 			fs.prot &= ~VM_PROT_WRITE;
1855 		}
1856 	}
1857 
1858 	/*
1859 	 * We must verify that the maps have not changed since our last
1860 	 * lookup.
1861 	 */
1862 	if (!fs.lookup_still_valid) {
1863 		rv = vm_fault_relookup(&fs);
1864 		if (rv != KERN_SUCCESS) {
1865 			vm_fault_deallocate(&fs);
1866 			if (rv == KERN_RESTART)
1867 				goto RetryFault;
1868 			return (rv);
1869 		}
1870 	}
1871 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1872 
1873 	/*
1874 	 * If the page was filled by a pager, save the virtual address that
1875 	 * should be faulted on next under a sequential access pattern to the
1876 	 * map entry.  A read lock on the map suffices to update this address
1877 	 * safely.
1878 	 */
1879 	if (hardfault)
1880 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1881 
1882 	/*
1883 	 * If the page to be mapped was copied from a backing object, we defer
1884 	 * marking it valid until here, where the fault handler is guaranteed to
1885 	 * succeed.  Otherwise we can end up with a shadowed, mapped page in the
1886 	 * backing object, which violates an invariant of vm_object_collapse()
1887 	 * that shadowed pages are not mapped.
1888 	 */
1889 	if (fs.m_cow != NULL) {
1890 		KASSERT(vm_page_none_valid(fs.m),
1891 		    ("vm_fault: page %p is already valid", fs.m_cow));
1892 		vm_page_valid(fs.m);
1893 	}
1894 
1895 	/*
1896 	 * Page must be completely valid or it is not fit to
1897 	 * map into user space.  vm_pager_get_pages() ensures this.
1898 	 */
1899 	vm_page_assert_busied(fs.m);
1900 	KASSERT(vm_page_all_valid(fs.m),
1901 	    ("vm_fault: page %p partially invalid", fs.m));
1902 
1903 	vm_fault_dirty(&fs, fs.m);
1904 
1905 	/*
1906 	 * Put this page into the physical map.  We had to do the unlock above
1907 	 * because pmap_enter() may sleep.  We don't put the page
1908 	 * back on the active queue until later so that the pageout daemon
1909 	 * won't find it (yet).
1910 	 */
1911 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1912 	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1913 	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1914 	    fs.wired == 0)
1915 		vm_fault_prefault(&fs, vaddr,
1916 		    faultcount > 0 ? behind : PFBAK,
1917 		    faultcount > 0 ? ahead : PFFOR, false);
1918 
1919 	/*
1920 	 * If the page is not wired down, then put it where the pageout daemon
1921 	 * can find it.
1922 	 */
1923 	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1924 		vm_page_wire(fs.m);
1925 	else
1926 		vm_page_activate(fs.m);
1927 	if (fs.m_hold != NULL) {
1928 		(*fs.m_hold) = fs.m;
1929 		vm_page_wire(fs.m);
1930 	}
1931 
1932 	KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m),
1933 	    ("first_m must be xbusy"));
1934 	if (vm_page_xbusied(fs.m))
1935 		vm_page_xunbusy(fs.m);
1936 	else
1937 		vm_page_sunbusy(fs.m);
1938 	fs.m = NULL;
1939 
1940 	/*
1941 	 * Unlock everything, and return
1942 	 */
1943 	vm_fault_deallocate(&fs);
1944 	if (hardfault) {
1945 		VM_CNT_INC(v_io_faults);
1946 		curthread->td_ru.ru_majflt++;
1947 #ifdef RACCT
1948 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1949 			PROC_LOCK(curproc);
1950 			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1951 				racct_add_force(curproc, RACCT_WRITEBPS,
1952 				    PAGE_SIZE + behind * PAGE_SIZE);
1953 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1954 			} else {
1955 				racct_add_force(curproc, RACCT_READBPS,
1956 				    PAGE_SIZE + ahead * PAGE_SIZE);
1957 				racct_add_force(curproc, RACCT_READIOPS, 1);
1958 			}
1959 			PROC_UNLOCK(curproc);
1960 		}
1961 #endif
1962 	} else
1963 		curthread->td_ru.ru_minflt++;
1964 
1965 	return (KERN_SUCCESS);
1966 }
1967 
1968 /*
1969  * Speed up the reclamation of pages that precede the faulting pindex within
1970  * the first object of the shadow chain.  Essentially, perform the equivalent
1971  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1972  * the faulting pindex by the cluster size when the pages read by vm_fault()
1973  * cross a cluster-size boundary.  The cluster size is the greater of the
1974  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1975  *
1976  * When "fs->first_object" is a shadow object, the pages in the backing object
1977  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1978  * function must only be concerned with pages in the first object.
1979  */
1980 static void
vm_fault_dontneed(const struct faultstate * fs,vm_offset_t vaddr,int ahead)1981 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1982 {
1983 	struct pctrie_iter pages;
1984 	vm_map_entry_t entry;
1985 	vm_object_t first_object;
1986 	vm_offset_t end, start;
1987 	vm_page_t m;
1988 	vm_size_t size;
1989 
1990 	VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1991 	first_object = fs->first_object;
1992 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1993 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1994 		VM_OBJECT_RLOCK(first_object);
1995 		size = VM_FAULT_DONTNEED_MIN;
1996 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1997 			size = pagesizes[1];
1998 		end = rounddown2(vaddr, size);
1999 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
2000 		    (entry = fs->entry)->start < end) {
2001 			if (end - entry->start < size)
2002 				start = entry->start;
2003 			else
2004 				start = end - size;
2005 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
2006 			vm_page_iter_limit_init(&pages, first_object,
2007 			    OFF_TO_IDX(entry->offset) +
2008 			    atop(end - entry->start));
2009 			VM_RADIX_FOREACH_FROM(m, &pages,
2010 			    OFF_TO_IDX(entry->offset) +
2011 			    atop(start - entry->start)) {
2012 				if (!vm_page_all_valid(m) ||
2013 				    vm_page_busied(m))
2014 					continue;
2015 
2016 				/*
2017 				 * Don't clear PGA_REFERENCED, since it would
2018 				 * likely represent a reference by a different
2019 				 * process.
2020 				 *
2021 				 * Typically, at this point, prefetched pages
2022 				 * are still in the inactive queue.  Only
2023 				 * pages that triggered page faults are in the
2024 				 * active queue.  The test for whether the page
2025 				 * is in the inactive queue is racy; in the
2026 				 * worst case we will requeue the page
2027 				 * unnecessarily.
2028 				 */
2029 				if (!vm_page_inactive(m))
2030 					vm_page_deactivate(m);
2031 			}
2032 		}
2033 		VM_OBJECT_RUNLOCK(first_object);
2034 	}
2035 }
2036 
2037 /*
2038  * vm_fault_prefault provides a quick way of clustering
2039  * pagefaults into a processes address space.  It is a "cousin"
2040  * of vm_map_pmap_enter, except it runs at page fault time instead
2041  * of mmap time.
2042  */
2043 static void
vm_fault_prefault(const struct faultstate * fs,vm_offset_t addra,int backward,int forward,bool obj_locked)2044 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
2045     int backward, int forward, bool obj_locked)
2046 {
2047 	pmap_t pmap;
2048 	vm_map_entry_t entry;
2049 	vm_object_t backing_object, lobject;
2050 	vm_offset_t addr, starta;
2051 	vm_pindex_t pindex;
2052 	vm_page_t m;
2053 	vm_prot_t prot;
2054 	int i;
2055 
2056 	pmap = fs->map->pmap;
2057 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
2058 		return;
2059 
2060 	entry = fs->entry;
2061 
2062 	if (addra < backward * PAGE_SIZE) {
2063 		starta = entry->start;
2064 	} else {
2065 		starta = addra - backward * PAGE_SIZE;
2066 		if (starta < entry->start)
2067 			starta = entry->start;
2068 	}
2069 	prot = entry->protection;
2070 
2071 	/*
2072 	 * If pmap_enter() has enabled write access on a nearby mapping, then
2073 	 * don't attempt promotion, because it will fail.
2074 	 */
2075 	if ((fs->prot & VM_PROT_WRITE) != 0)
2076 		prot |= VM_PROT_NO_PROMOTE;
2077 
2078 	/*
2079 	 * Generate the sequence of virtual addresses that are candidates for
2080 	 * prefaulting in an outward spiral from the faulting virtual address,
2081 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
2082 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
2083 	 * If the candidate address doesn't have a backing physical page, then
2084 	 * the loop immediately terminates.
2085 	 */
2086 	for (i = 0; i < 2 * imax(backward, forward); i++) {
2087 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
2088 		    PAGE_SIZE);
2089 		if (addr > addra + forward * PAGE_SIZE)
2090 			addr = 0;
2091 
2092 		if (addr < starta || addr >= entry->end)
2093 			continue;
2094 
2095 		if (!pmap_is_prefaultable(pmap, addr))
2096 			continue;
2097 
2098 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2099 		lobject = entry->object.vm_object;
2100 		if (!obj_locked)
2101 			VM_OBJECT_RLOCK(lobject);
2102 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2103 		    !vm_fault_object_needs_getpages(lobject) &&
2104 		    (backing_object = lobject->backing_object) != NULL) {
2105 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
2106 			    0, ("vm_fault_prefault: unaligned object offset"));
2107 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2108 			VM_OBJECT_RLOCK(backing_object);
2109 			if (!obj_locked || lobject != entry->object.vm_object)
2110 				VM_OBJECT_RUNLOCK(lobject);
2111 			lobject = backing_object;
2112 		}
2113 		if (m == NULL) {
2114 			if (!obj_locked || lobject != entry->object.vm_object)
2115 				VM_OBJECT_RUNLOCK(lobject);
2116 			break;
2117 		}
2118 		if (vm_page_all_valid(m) &&
2119 		    (m->flags & PG_FICTITIOUS) == 0)
2120 			pmap_enter_quick(pmap, addr, m, prot);
2121 		if (!obj_locked || lobject != entry->object.vm_object)
2122 			VM_OBJECT_RUNLOCK(lobject);
2123 	}
2124 }
2125 
2126 /*
2127  * Hold each of the physical pages that are mapped by the specified
2128  * range of virtual addresses, ["addr", "addr" + "len"), if those
2129  * mappings are valid and allow the specified types of access, "prot".
2130  * If all of the implied pages are successfully held, then the number
2131  * of held pages is assigned to *ppages_count, together with pointers
2132  * to those pages in the array "ma". The returned value is zero.
2133  *
2134  * However, if any of the pages cannot be held, an error is returned,
2135  * and no pages are held.
2136  * Error values:
2137  *   ENOMEM - the range is not valid
2138  *   EINVAL - the provided vm_page array is too small to hold all pages
2139  *   EAGAIN - a page was not mapped, and the thread is in nofaulting mode
2140  *   EFAULT - a page with requested permissions cannot be mapped
2141  *            (more detailed result from vm_fault() is lost)
2142  */
2143 int
vm_fault_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count,int * ppages_count)2144 vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2145     vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count)
2146 {
2147 	vm_offset_t end, va;
2148 	vm_page_t *mp;
2149 	int count, error;
2150 	boolean_t pmap_failed;
2151 
2152 	if (len == 0) {
2153 		*ppages_count = 0;
2154 		return (0);
2155 	}
2156 	end = round_page(addr + len);
2157 	addr = trunc_page(addr);
2158 
2159 	if (!vm_map_range_valid(map, addr, end))
2160 		return (ENOMEM);
2161 
2162 	if (atop(end - addr) > max_count)
2163 		return (EINVAL);
2164 	count = atop(end - addr);
2165 
2166 	/*
2167 	 * Most likely, the physical pages are resident in the pmap, so it is
2168 	 * faster to try pmap_extract_and_hold() first.
2169 	 */
2170 	pmap_failed = FALSE;
2171 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2172 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
2173 		if (*mp == NULL)
2174 			pmap_failed = TRUE;
2175 		else if ((prot & VM_PROT_WRITE) != 0 &&
2176 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
2177 			/*
2178 			 * Explicitly dirty the physical page.  Otherwise, the
2179 			 * caller's changes may go unnoticed because they are
2180 			 * performed through an unmanaged mapping or by a DMA
2181 			 * operation.
2182 			 *
2183 			 * The object lock is not held here.
2184 			 * See vm_page_clear_dirty_mask().
2185 			 */
2186 			vm_page_dirty(*mp);
2187 		}
2188 	}
2189 	if (pmap_failed) {
2190 		/*
2191 		 * One or more pages could not be held by the pmap.  Either no
2192 		 * page was mapped at the specified virtual address or that
2193 		 * mapping had insufficient permissions.  Attempt to fault in
2194 		 * and hold these pages.
2195 		 *
2196 		 * If vm_fault_disable_pagefaults() was called,
2197 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2198 		 * acquire MD VM locks, which means we must not call
2199 		 * vm_fault().  Some (out of tree) callers mark
2200 		 * too wide a code area with vm_fault_disable_pagefaults()
2201 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2202 		 * the proper behaviour explicitly.
2203 		 */
2204 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2205 		    (curthread->td_pflags & TDP_NOFAULTING) != 0) {
2206 			error = EAGAIN;
2207 			goto fail;
2208 		}
2209 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2210 			if (*mp == NULL && vm_fault(map, va, prot,
2211 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS) {
2212 				error = EFAULT;
2213 				goto fail;
2214 			}
2215 		}
2216 	}
2217 	*ppages_count = count;
2218 	return (0);
2219 fail:
2220 	for (mp = ma; mp < ma + count; mp++)
2221 		if (*mp != NULL)
2222 			vm_page_unwire(*mp, PQ_INACTIVE);
2223 	return (error);
2224 }
2225 
2226  /*
2227  * Hold each of the physical pages that are mapped by the specified range of
2228  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2229  * and allow the specified types of access, "prot".  If all of the implied
2230  * pages are successfully held, then the number of held pages is returned
2231  * together with pointers to those pages in the array "ma".  However, if any
2232  * of the pages cannot be held, -1 is returned.
2233  */
2234 int
vm_fault_quick_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count)2235 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2236     vm_prot_t prot, vm_page_t *ma, int max_count)
2237 {
2238 	int error, pages_count;
2239 
2240 	error = vm_fault_hold_pages(map, addr, len, prot, ma,
2241 	    max_count, &pages_count);
2242 	if (error != 0) {
2243 		if (error == EINVAL)
2244 			panic("vm_fault_quick_hold_pages: count > max_count");
2245 		return (-1);
2246 	}
2247 	return (pages_count);
2248 }
2249 
2250 /*
2251  *	Routine:
2252  *		vm_fault_copy_entry
2253  *	Function:
2254  *		Create new object backing dst_entry with private copy of all
2255  *		underlying pages. When src_entry is equal to dst_entry, function
2256  *		implements COW for wired-down map entry. Otherwise, it forks
2257  *		wired entry into dst_map.
2258  *
2259  *	In/out conditions:
2260  *		The source and destination maps must be locked for write.
2261  *		The source map entry must be wired down (or be a sharing map
2262  *		entry corresponding to a main map entry that is wired down).
2263  */
2264 void
vm_fault_copy_entry(vm_map_t dst_map,vm_map_t src_map __unused,vm_map_entry_t dst_entry,vm_map_entry_t src_entry,vm_ooffset_t * fork_charge)2265 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2266     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2267     vm_ooffset_t *fork_charge)
2268 {
2269 	struct pctrie_iter pages;
2270 	vm_object_t backing_object, dst_object, object, src_object;
2271 	vm_pindex_t dst_pindex, pindex, src_pindex;
2272 	vm_prot_t access, prot;
2273 	vm_offset_t vaddr;
2274 	vm_page_t dst_m;
2275 	vm_page_t src_m;
2276 	bool upgrade;
2277 
2278 	upgrade = src_entry == dst_entry;
2279 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2280 	    ("vm_fault_copy_entry: vm_object not NULL"));
2281 
2282 	/*
2283 	 * If not an upgrade, then enter the mappings in the pmap as
2284 	 * read and/or execute accesses.  Otherwise, enter them as
2285 	 * write accesses.
2286 	 *
2287 	 * A writeable large page mapping is only created if all of
2288 	 * the constituent small page mappings are modified. Marking
2289 	 * PTEs as modified on inception allows promotion to happen
2290 	 * without taking potentially large number of soft faults.
2291 	 */
2292 	access = prot = dst_entry->protection;
2293 	if (!upgrade)
2294 		access &= ~VM_PROT_WRITE;
2295 
2296 	src_object = src_entry->object.vm_object;
2297 	src_pindex = OFF_TO_IDX(src_entry->offset);
2298 
2299 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2300 		dst_object = src_object;
2301 		vm_object_reference(dst_object);
2302 	} else {
2303 		/*
2304 		 * Create the top-level object for the destination entry.
2305 		 * Doesn't actually shadow anything - we copy the pages
2306 		 * directly.
2307 		 */
2308 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2309 		    dst_entry->start), NULL, NULL, 0);
2310 #if VM_NRESERVLEVEL > 0
2311 		dst_object->flags |= OBJ_COLORED;
2312 		dst_object->pg_color = atop(dst_entry->start);
2313 #endif
2314 		dst_object->domain = src_object->domain;
2315 		dst_object->charge = dst_entry->end - dst_entry->start;
2316 
2317 		dst_entry->object.vm_object = dst_object;
2318 		dst_entry->offset = 0;
2319 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2320 	}
2321 
2322 	VM_OBJECT_WLOCK(dst_object);
2323 	if (fork_charge != NULL) {
2324 		KASSERT(dst_entry->cred == NULL,
2325 		    ("vm_fault_copy_entry: leaked swp charge"));
2326 		dst_object->cred = curthread->td_ucred;
2327 		crhold(dst_object->cred);
2328 		*fork_charge += dst_object->charge;
2329 	} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2330 	    dst_object->cred == NULL) {
2331 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2332 		    dst_entry));
2333 		dst_object->cred = dst_entry->cred;
2334 		dst_entry->cred = NULL;
2335 	}
2336 
2337 	/*
2338 	 * Loop through all of the virtual pages within the entry's
2339 	 * range, copying each page from the source object to the
2340 	 * destination object.  Since the source is wired, those pages
2341 	 * must exist.  In contrast, the destination is pageable.
2342 	 * Since the destination object doesn't share any backing storage
2343 	 * with the source object, all of its pages must be dirtied,
2344 	 * regardless of whether they can be written.
2345 	 */
2346 	vm_page_iter_init(&pages, dst_object);
2347 	for (vaddr = dst_entry->start, dst_pindex = 0;
2348 	    vaddr < dst_entry->end;
2349 	    vaddr += PAGE_SIZE, dst_pindex++) {
2350 again:
2351 		/*
2352 		 * Find the page in the source object, and copy it in.
2353 		 * Because the source is wired down, the page will be
2354 		 * in memory.
2355 		 */
2356 		if (src_object != dst_object)
2357 			VM_OBJECT_RLOCK(src_object);
2358 		object = src_object;
2359 		pindex = src_pindex + dst_pindex;
2360 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2361 		    (backing_object = object->backing_object) != NULL) {
2362 			/*
2363 			 * Unless the source mapping is read-only or
2364 			 * it is presently being upgraded from
2365 			 * read-only, the first object in the shadow
2366 			 * chain should provide all of the pages.  In
2367 			 * other words, this loop body should never be
2368 			 * executed when the source mapping is already
2369 			 * read/write.
2370 			 */
2371 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2372 			    upgrade,
2373 			    ("vm_fault_copy_entry: main object missing page"));
2374 
2375 			VM_OBJECT_RLOCK(backing_object);
2376 			pindex += OFF_TO_IDX(object->backing_object_offset);
2377 			if (object != dst_object)
2378 				VM_OBJECT_RUNLOCK(object);
2379 			object = backing_object;
2380 		}
2381 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2382 
2383 		if (object != dst_object) {
2384 			/*
2385 			 * Allocate a page in the destination object.
2386 			 */
2387 			pindex = (src_object == dst_object ? src_pindex : 0) +
2388 			    dst_pindex;
2389 			dst_m = vm_page_alloc_iter(dst_object, pindex,
2390 			    VM_ALLOC_NORMAL, &pages);
2391 			if (dst_m == NULL) {
2392 				VM_OBJECT_WUNLOCK(dst_object);
2393 				VM_OBJECT_RUNLOCK(object);
2394 				vm_wait(dst_object);
2395 				VM_OBJECT_WLOCK(dst_object);
2396 				pctrie_iter_reset(&pages);
2397 				goto again;
2398 			}
2399 
2400 			/*
2401 			 * See the comment in vm_fault_cow().
2402 			 */
2403 			if (src_object == dst_object &&
2404 			    (object->flags & OBJ_ONEMAPPING) == 0)
2405 				pmap_remove_all(src_m);
2406 			pmap_copy_page(src_m, dst_m);
2407 
2408 			/*
2409 			 * The object lock does not guarantee that "src_m" will
2410 			 * transition from invalid to valid, but it does ensure
2411 			 * that "src_m" will not transition from valid to
2412 			 * invalid.
2413 			 */
2414 			dst_m->dirty = dst_m->valid = src_m->valid;
2415 			VM_OBJECT_RUNLOCK(object);
2416 		} else {
2417 			dst_m = src_m;
2418 			if (vm_page_busy_acquire(
2419 			    dst_m, VM_ALLOC_WAITFAIL) == 0) {
2420 				pctrie_iter_reset(&pages);
2421 				goto again;
2422 			}
2423 			if (dst_m->pindex >= dst_object->size) {
2424 				/*
2425 				 * We are upgrading.  Index can occur
2426 				 * out of bounds if the object type is
2427 				 * vnode and the file was truncated.
2428 				 */
2429 				vm_page_xunbusy(dst_m);
2430 				break;
2431 			}
2432 		}
2433 
2434 		/*
2435 		 * Enter it in the pmap. If a wired, copy-on-write
2436 		 * mapping is being replaced by a write-enabled
2437 		 * mapping, then wire that new mapping.
2438 		 *
2439 		 * The page can be invalid if the user called
2440 		 * msync(MS_INVALIDATE) or truncated the backing vnode
2441 		 * or shared memory object.  In this case, do not
2442 		 * insert it into pmap, but still do the copy so that
2443 		 * all copies of the wired map entry have similar
2444 		 * backing pages.
2445 		 */
2446 		if (vm_page_all_valid(dst_m)) {
2447 			VM_OBJECT_WUNLOCK(dst_object);
2448 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2449 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2450 			VM_OBJECT_WLOCK(dst_object);
2451 		}
2452 
2453 		/*
2454 		 * Mark it no longer busy, and put it on the active list.
2455 		 */
2456 		if (upgrade) {
2457 			if (src_m != dst_m) {
2458 				vm_page_unwire(src_m, PQ_INACTIVE);
2459 				vm_page_wire(dst_m);
2460 			} else {
2461 				KASSERT(vm_page_wired(dst_m),
2462 				    ("dst_m %p is not wired", dst_m));
2463 			}
2464 		} else {
2465 			vm_page_activate(dst_m);
2466 		}
2467 		vm_page_xunbusy(dst_m);
2468 	}
2469 	VM_OBJECT_WUNLOCK(dst_object);
2470 	if (upgrade) {
2471 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2472 		vm_object_deallocate(src_object);
2473 	}
2474 }
2475 
2476 /*
2477  * Block entry into the machine-independent layer's page fault handler by
2478  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2479  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2480  * spurious page faults.
2481  */
2482 int
vm_fault_disable_pagefaults(void)2483 vm_fault_disable_pagefaults(void)
2484 {
2485 
2486 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2487 }
2488 
2489 void
vm_fault_enable_pagefaults(int save)2490 vm_fault_enable_pagefaults(int save)
2491 {
2492 
2493 	curthread_pflags_restore(save);
2494 }
2495