xref: /freebsd/sys/vm/vm_fault.c (revision 2d6185cf87e815d4951a9ddcf5c535ebd07a8815)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 #include "opt_ktrace.h"
76 #include "opt_vm.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/lock.h>
82 #include <sys/mman.h>
83 #include <sys/mutex.h>
84 #include <sys/pctrie.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/refcount.h>
88 #include <sys/resourcevar.h>
89 #include <sys/rwlock.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_reserv.h>
111 
112 #define PFBAK 4
113 #define PFFOR 4
114 
115 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
116 
117 #define	VM_FAULT_DONTNEED_MIN	1048576
118 
119 struct faultstate {
120 	/* Fault parameters. */
121 	vm_offset_t	vaddr;
122 	vm_page_t	*m_hold;
123 	vm_prot_t	fault_type;
124 	vm_prot_t	prot;
125 	int		fault_flags;
126 	boolean_t	wired;
127 
128 	/* Control state. */
129 	struct timeval	oom_start_time;
130 	bool		oom_started;
131 	int		nera;
132 	bool		can_read_lock;
133 
134 	/* Page reference for cow. */
135 	vm_page_t m_cow;
136 
137 	/* Current object. */
138 	vm_object_t	object;
139 	vm_pindex_t	pindex;
140 	vm_page_t	m;
141 
142 	/* Top-level map object. */
143 	vm_object_t	first_object;
144 	vm_pindex_t	first_pindex;
145 	vm_page_t	first_m;
146 
147 	/* Map state. */
148 	vm_map_t	map;
149 	vm_map_entry_t	entry;
150 	int		map_generation;
151 	bool		lookup_still_valid;
152 
153 	/* Vnode if locked. */
154 	struct vnode	*vp;
155 };
156 
157 /*
158  * Return codes for internal fault routines.
159  */
160 enum fault_status {
161 	FAULT_SUCCESS = 10000,	/* Return success to user. */
162 	FAULT_FAILURE,		/* Return failure to user. */
163 	FAULT_CONTINUE,		/* Continue faulting. */
164 	FAULT_RESTART,		/* Restart fault. */
165 	FAULT_OUT_OF_BOUNDS,	/* Invalid address for pager. */
166 	FAULT_HARD,		/* Performed I/O. */
167 	FAULT_SOFT,		/* Found valid page. */
168 	FAULT_PROTECTION_FAILURE, /* Invalid access. */
169 };
170 
171 enum fault_next_status {
172 	FAULT_NEXT_GOTOBJ = 1,
173 	FAULT_NEXT_NOOBJ,
174 	FAULT_NEXT_RESTART,
175 };
176 
177 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
178 	    int ahead);
179 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
180 	    int backward, int forward, bool obj_locked);
181 
182 static int vm_pfault_oom_attempts = 3;
183 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
184     &vm_pfault_oom_attempts, 0,
185     "Number of page allocation attempts in page fault handler before it "
186     "triggers OOM handling");
187 
188 static int vm_pfault_oom_wait = 10;
189 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
190     &vm_pfault_oom_wait, 0,
191     "Number of seconds to wait for free pages before retrying "
192     "the page fault handler");
193 
194 static inline void
vm_fault_page_release(vm_page_t * mp)195 vm_fault_page_release(vm_page_t *mp)
196 {
197 	vm_page_t m;
198 
199 	m = *mp;
200 	if (m != NULL) {
201 		/*
202 		 * We are likely to loop around again and attempt to busy
203 		 * this page.  Deactivating it leaves it available for
204 		 * pageout while optimizing fault restarts.
205 		 */
206 		vm_page_deactivate(m);
207 		vm_page_xunbusy(m);
208 		*mp = NULL;
209 	}
210 }
211 
212 static inline void
vm_fault_page_free(vm_page_t * mp)213 vm_fault_page_free(vm_page_t *mp)
214 {
215 	vm_page_t m;
216 
217 	m = *mp;
218 	if (m != NULL) {
219 		VM_OBJECT_ASSERT_WLOCKED(m->object);
220 		if (!vm_page_wired(m))
221 			vm_page_free(m);
222 		else
223 			vm_page_xunbusy(m);
224 		*mp = NULL;
225 	}
226 }
227 
228 /*
229  * Return true if a vm_pager_get_pages() call is needed in order to check
230  * whether the pager might have a particular page, false if it can be determined
231  * immediately that the pager can not have a copy.  For swap objects, this can
232  * be checked quickly.
233  */
234 static inline bool
vm_fault_object_needs_getpages(vm_object_t object)235 vm_fault_object_needs_getpages(vm_object_t object)
236 {
237 	VM_OBJECT_ASSERT_LOCKED(object);
238 
239 	return ((object->flags & OBJ_SWAP) == 0 ||
240 	    !pctrie_is_empty(&object->un_pager.swp.swp_blks));
241 }
242 
243 static inline void
vm_fault_unlock_map(struct faultstate * fs)244 vm_fault_unlock_map(struct faultstate *fs)
245 {
246 
247 	if (fs->lookup_still_valid) {
248 		vm_map_lookup_done(fs->map, fs->entry);
249 		fs->lookup_still_valid = false;
250 	}
251 }
252 
253 static void
vm_fault_unlock_vp(struct faultstate * fs)254 vm_fault_unlock_vp(struct faultstate *fs)
255 {
256 
257 	if (fs->vp != NULL) {
258 		vput(fs->vp);
259 		fs->vp = NULL;
260 	}
261 }
262 
263 static void
vm_fault_deallocate(struct faultstate * fs)264 vm_fault_deallocate(struct faultstate *fs)
265 {
266 
267 	vm_fault_page_release(&fs->m_cow);
268 	vm_fault_page_release(&fs->m);
269 	vm_object_pip_wakeup(fs->object);
270 	if (fs->object != fs->first_object) {
271 		VM_OBJECT_WLOCK(fs->first_object);
272 		vm_fault_page_free(&fs->first_m);
273 		VM_OBJECT_WUNLOCK(fs->first_object);
274 		vm_object_pip_wakeup(fs->first_object);
275 	}
276 	vm_object_deallocate(fs->first_object);
277 	vm_fault_unlock_map(fs);
278 	vm_fault_unlock_vp(fs);
279 }
280 
281 static void
vm_fault_unlock_and_deallocate(struct faultstate * fs)282 vm_fault_unlock_and_deallocate(struct faultstate *fs)
283 {
284 
285 	VM_OBJECT_UNLOCK(fs->object);
286 	vm_fault_deallocate(fs);
287 }
288 
289 static void
vm_fault_dirty(struct faultstate * fs,vm_page_t m)290 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
291 {
292 	bool need_dirty;
293 
294 	if (((fs->prot & VM_PROT_WRITE) == 0 &&
295 	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
296 	    (m->oflags & VPO_UNMANAGED) != 0)
297 		return;
298 
299 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
300 
301 	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
302 	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
303 	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
304 
305 	vm_object_set_writeable_dirty(m->object);
306 
307 	/*
308 	 * If the fault is a write, we know that this page is being
309 	 * written NOW so dirty it explicitly to save on
310 	 * pmap_is_modified() calls later.
311 	 *
312 	 * Also, since the page is now dirty, we can possibly tell
313 	 * the pager to release any swap backing the page.
314 	 */
315 	if (need_dirty && vm_page_set_dirty(m) == 0) {
316 		/*
317 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
318 		 * if the page is already dirty to prevent data written with
319 		 * the expectation of being synced from not being synced.
320 		 * Likewise if this entry does not request NOSYNC then make
321 		 * sure the page isn't marked NOSYNC.  Applications sharing
322 		 * data should use the same flags to avoid ping ponging.
323 		 */
324 		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
325 			vm_page_aflag_set(m, PGA_NOSYNC);
326 		else
327 			vm_page_aflag_clear(m, PGA_NOSYNC);
328 	}
329 
330 }
331 
332 /*
333  * Unlocks fs.first_object and fs.map on success.
334  */
335 static enum fault_status
vm_fault_soft_fast(struct faultstate * fs)336 vm_fault_soft_fast(struct faultstate *fs)
337 {
338 	vm_page_t m, m_map;
339 #if VM_NRESERVLEVEL > 0
340 	vm_page_t m_super;
341 	int flags;
342 #endif
343 	int psind;
344 	vm_offset_t vaddr;
345 
346 	MPASS(fs->vp == NULL);
347 
348 	/*
349 	 * If we fail, vast majority of the time it is because the page is not
350 	 * there to begin with. Opportunistically perform the lookup and
351 	 * subsequent checks without the object lock, revalidate later.
352 	 *
353 	 * Note: a busy page can be mapped for read|execute access.
354 	 */
355 	m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
356 	if (m == NULL || !vm_page_all_valid(m) ||
357 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
358 		VM_OBJECT_WLOCK(fs->first_object);
359 		return (FAULT_FAILURE);
360 	}
361 
362 	vaddr = fs->vaddr;
363 
364 	VM_OBJECT_RLOCK(fs->first_object);
365 
366 	/*
367 	 * Now that we stabilized the state, revalidate the page is in the shape
368 	 * we encountered above.
369 	 */
370 
371 	if (m->object != fs->first_object || m->pindex != fs->first_pindex)
372 		goto fail;
373 
374 	vm_object_busy(fs->first_object);
375 
376 	if (!vm_page_all_valid(m) ||
377 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
378 		goto fail_busy;
379 
380 	m_map = m;
381 	psind = 0;
382 #if VM_NRESERVLEVEL > 0
383 	if ((m->flags & PG_FICTITIOUS) == 0 &&
384 	    (m_super = vm_reserv_to_superpage(m)) != NULL) {
385 		psind = m_super->psind;
386 		KASSERT(psind > 0,
387 		    ("psind %d of m_super %p < 1", psind, m_super));
388 		flags = PS_ALL_VALID;
389 		if ((fs->prot & VM_PROT_WRITE) != 0) {
390 			/*
391 			 * Create a superpage mapping allowing write access
392 			 * only if none of the constituent pages are busy and
393 			 * all of them are already dirty (except possibly for
394 			 * the page that was faulted on).
395 			 */
396 			flags |= PS_NONE_BUSY;
397 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
398 				flags |= PS_ALL_DIRTY;
399 		}
400 		while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
401 		    roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
402 		    (vaddr & (pagesizes[psind] - 1)) !=
403 		    (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
404 		    !vm_page_ps_test(m_super, psind, flags, m) ||
405 		    !pmap_ps_enabled(fs->map->pmap)) {
406 			psind--;
407 			if (psind == 0)
408 				break;
409 			m_super += rounddown2(m - m_super,
410 			    atop(pagesizes[psind]));
411 			KASSERT(m_super->psind >= psind,
412 			    ("psind %d of m_super %p < %d", m_super->psind,
413 			    m_super, psind));
414 		}
415 		if (psind > 0) {
416 			m_map = m_super;
417 			vaddr = rounddown2(vaddr, pagesizes[psind]);
418 			/* Preset the modified bit for dirty superpages. */
419 			if ((flags & PS_ALL_DIRTY) != 0)
420 				fs->fault_type |= VM_PROT_WRITE;
421 		}
422 	}
423 #endif
424 	if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
425 	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
426 	    KERN_SUCCESS)
427 		goto fail_busy;
428 	if (fs->m_hold != NULL) {
429 		(*fs->m_hold) = m;
430 		vm_page_wire(m);
431 	}
432 	if (psind == 0 && !fs->wired)
433 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
434 	VM_OBJECT_RUNLOCK(fs->first_object);
435 	vm_fault_dirty(fs, m);
436 	vm_object_unbusy(fs->first_object);
437 	vm_map_lookup_done(fs->map, fs->entry);
438 	curthread->td_ru.ru_minflt++;
439 	return (FAULT_SUCCESS);
440 fail_busy:
441 	vm_object_unbusy(fs->first_object);
442 fail:
443 	if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
444 		VM_OBJECT_RUNLOCK(fs->first_object);
445 		VM_OBJECT_WLOCK(fs->first_object);
446 	}
447 	return (FAULT_FAILURE);
448 }
449 
450 static void
vm_fault_restore_map_lock(struct faultstate * fs)451 vm_fault_restore_map_lock(struct faultstate *fs)
452 {
453 
454 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
455 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
456 
457 	if (!vm_map_trylock_read(fs->map)) {
458 		VM_OBJECT_WUNLOCK(fs->first_object);
459 		vm_map_lock_read(fs->map);
460 		VM_OBJECT_WLOCK(fs->first_object);
461 	}
462 	fs->lookup_still_valid = true;
463 }
464 
465 static void
vm_fault_populate_check_page(vm_page_t m)466 vm_fault_populate_check_page(vm_page_t m)
467 {
468 
469 	/*
470 	 * Check each page to ensure that the pager is obeying the
471 	 * interface: the page must be installed in the object, fully
472 	 * valid, and exclusively busied.
473 	 */
474 	MPASS(m != NULL);
475 	MPASS(vm_page_all_valid(m));
476 	MPASS(vm_page_xbusied(m));
477 }
478 
479 static void
vm_fault_populate_cleanup(vm_object_t object,vm_pindex_t first,vm_pindex_t last)480 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
481     vm_pindex_t last)
482 {
483 	struct pctrie_iter pages;
484 	vm_page_t m;
485 
486 	VM_OBJECT_ASSERT_WLOCKED(object);
487 	MPASS(first <= last);
488 	vm_page_iter_limit_init(&pages, object, last + 1);
489 	VM_RADIX_FORALL_FROM(m, &pages, first) {
490 		vm_fault_populate_check_page(m);
491 		vm_page_deactivate(m);
492 		vm_page_xunbusy(m);
493 	}
494 	KASSERT(pages.index == last, ("%s: pindex mismatch", __func__));
495 }
496 
497 static enum fault_status
vm_fault_populate(struct faultstate * fs)498 vm_fault_populate(struct faultstate *fs)
499 {
500 	vm_offset_t vaddr;
501 	vm_page_t m;
502 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
503 	int bdry_idx, i, npages, psind, rv;
504 	enum fault_status res;
505 
506 	MPASS(fs->object == fs->first_object);
507 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
508 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
509 	MPASS(fs->first_object->backing_object == NULL);
510 	MPASS(fs->lookup_still_valid);
511 
512 	pager_first = OFF_TO_IDX(fs->entry->offset);
513 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
514 	vm_fault_unlock_map(fs);
515 	vm_fault_unlock_vp(fs);
516 
517 	res = FAULT_SUCCESS;
518 
519 	/*
520 	 * Call the pager (driver) populate() method.
521 	 *
522 	 * There is no guarantee that the method will be called again
523 	 * if the current fault is for read, and a future fault is
524 	 * for write.  Report the entry's maximum allowed protection
525 	 * to the driver.
526 	 */
527 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
528 	    fs->fault_type, fs->entry->max_protection, &pager_first,
529 	    &pager_last);
530 
531 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
532 	if (rv == VM_PAGER_BAD) {
533 		/*
534 		 * VM_PAGER_BAD is the backdoor for a pager to request
535 		 * normal fault handling.
536 		 */
537 		vm_fault_restore_map_lock(fs);
538 		if (fs->map->timestamp != fs->map_generation)
539 			return (FAULT_RESTART);
540 		return (FAULT_CONTINUE);
541 	}
542 	if (rv != VM_PAGER_OK)
543 		return (FAULT_FAILURE); /* AKA SIGSEGV */
544 
545 	/* Ensure that the driver is obeying the interface. */
546 	MPASS(pager_first <= pager_last);
547 	MPASS(fs->first_pindex <= pager_last);
548 	MPASS(fs->first_pindex >= pager_first);
549 	MPASS(pager_last < fs->first_object->size);
550 
551 	vm_fault_restore_map_lock(fs);
552 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
553 	if (fs->map->timestamp != fs->map_generation) {
554 		if (bdry_idx == 0) {
555 			vm_fault_populate_cleanup(fs->first_object, pager_first,
556 			    pager_last);
557 		} else {
558 			m = vm_page_lookup(fs->first_object, pager_first);
559 			if (m != fs->m)
560 				vm_page_xunbusy(m);
561 		}
562 		return (FAULT_RESTART);
563 	}
564 
565 	/*
566 	 * The map is unchanged after our last unlock.  Process the fault.
567 	 *
568 	 * First, the special case of largepage mappings, where
569 	 * populate only busies the first page in superpage run.
570 	 */
571 	if (bdry_idx != 0) {
572 		KASSERT(PMAP_HAS_LARGEPAGES,
573 		    ("missing pmap support for large pages"));
574 		m = vm_page_lookup(fs->first_object, pager_first);
575 		vm_fault_populate_check_page(m);
576 		VM_OBJECT_WUNLOCK(fs->first_object);
577 		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
578 		    fs->entry->offset;
579 		/* assert alignment for entry */
580 		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
581     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
582 		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
583 		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
584 		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
585 		    ("unaligned superpage m %p %#jx", m,
586 		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
587 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
588 		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
589 		    PMAP_ENTER_LARGEPAGE, bdry_idx);
590 		VM_OBJECT_WLOCK(fs->first_object);
591 		vm_page_xunbusy(m);
592 		if (rv != KERN_SUCCESS) {
593 			res = FAULT_FAILURE;
594 			goto out;
595 		}
596 		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
597 			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
598 				vm_page_wire(m + i);
599 		}
600 		if (fs->m_hold != NULL) {
601 			*fs->m_hold = m + (fs->first_pindex - pager_first);
602 			vm_page_wire(*fs->m_hold);
603 		}
604 		goto out;
605 	}
606 
607 	/*
608 	 * The range [pager_first, pager_last] that is given to the
609 	 * pager is only a hint.  The pager may populate any range
610 	 * within the object that includes the requested page index.
611 	 * In case the pager expanded the range, clip it to fit into
612 	 * the map entry.
613 	 */
614 	map_first = OFF_TO_IDX(fs->entry->offset);
615 	if (map_first > pager_first) {
616 		vm_fault_populate_cleanup(fs->first_object, pager_first,
617 		    map_first - 1);
618 		pager_first = map_first;
619 	}
620 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
621 	if (map_last < pager_last) {
622 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
623 		    pager_last);
624 		pager_last = map_last;
625 	}
626 	for (pidx = pager_first; pidx <= pager_last; pidx += npages) {
627 		m = vm_page_lookup(fs->first_object, pidx);
628 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
629 		KASSERT(m != NULL && m->pindex == pidx,
630 		    ("%s: pindex mismatch", __func__));
631 		psind = m->psind;
632 		while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
633 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
634 		    !pmap_ps_enabled(fs->map->pmap)))
635 			psind--;
636 
637 		npages = atop(pagesizes[psind]);
638 		for (i = 0; i < npages; i++) {
639 			vm_fault_populate_check_page(&m[i]);
640 			vm_fault_dirty(fs, &m[i]);
641 		}
642 		VM_OBJECT_WUNLOCK(fs->first_object);
643 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
644 		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
645 
646 		/*
647 		 * pmap_enter() may fail for a superpage mapping if additional
648 		 * protection policies prevent the full mapping.
649 		 * For example, this will happen on amd64 if the entire
650 		 * address range does not share the same userspace protection
651 		 * key.  Revert to single-page mappings if this happens.
652 		 */
653 		MPASS(rv == KERN_SUCCESS ||
654 		    (psind > 0 && rv == KERN_PROTECTION_FAILURE));
655 		if (__predict_false(psind > 0 &&
656 		    rv == KERN_PROTECTION_FAILURE)) {
657 			MPASS(!fs->wired);
658 			for (i = 0; i < npages; i++) {
659 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
660 				    &m[i], fs->prot, fs->fault_type, 0);
661 				MPASS(rv == KERN_SUCCESS);
662 			}
663 		}
664 
665 		VM_OBJECT_WLOCK(fs->first_object);
666 		for (i = 0; i < npages; i++) {
667 			if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
668 			    m[i].pindex == fs->first_pindex)
669 				vm_page_wire(&m[i]);
670 			else
671 				vm_page_activate(&m[i]);
672 			if (fs->m_hold != NULL &&
673 			    m[i].pindex == fs->first_pindex) {
674 				(*fs->m_hold) = &m[i];
675 				vm_page_wire(&m[i]);
676 			}
677 			vm_page_xunbusy(&m[i]);
678 		}
679 	}
680 out:
681 	curthread->td_ru.ru_majflt++;
682 	return (res);
683 }
684 
685 static int prot_fault_translation;
686 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
687     &prot_fault_translation, 0,
688     "Control signal to deliver on protection fault");
689 
690 /* compat definition to keep common code for signal translation */
691 #define	UCODE_PAGEFLT	12
692 #ifdef T_PAGEFLT
693 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
694 #endif
695 
696 /*
697  *	vm_fault_trap:
698  *
699  *	Handle a page fault occurring at the given address,
700  *	requiring the given permissions, in the map specified.
701  *	If successful, the page is inserted into the
702  *	associated physical map.
703  *
704  *	NOTE: the given address should be truncated to the
705  *	proper page address.
706  *
707  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
708  *	a standard error specifying why the fault is fatal is returned.
709  *
710  *	The map in question must be referenced, and remains so.
711  *	Caller may hold no locks.
712  */
713 int
vm_fault_trap(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,int * signo,int * ucode)714 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
715     int fault_flags, int *signo, int *ucode)
716 {
717 	int result;
718 
719 	MPASS(signo == NULL || ucode != NULL);
720 #ifdef KTRACE
721 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
722 		ktrfault(vaddr, fault_type);
723 #endif
724 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
725 	    NULL);
726 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
727 	    result == KERN_INVALID_ADDRESS ||
728 	    result == KERN_RESOURCE_SHORTAGE ||
729 	    result == KERN_PROTECTION_FAILURE ||
730 	    result == KERN_OUT_OF_BOUNDS,
731 	    ("Unexpected Mach error %d from vm_fault()", result));
732 #ifdef KTRACE
733 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
734 		ktrfaultend(result);
735 #endif
736 	if (result != KERN_SUCCESS && signo != NULL) {
737 		switch (result) {
738 		case KERN_FAILURE:
739 		case KERN_INVALID_ADDRESS:
740 			*signo = SIGSEGV;
741 			*ucode = SEGV_MAPERR;
742 			break;
743 		case KERN_RESOURCE_SHORTAGE:
744 			*signo = SIGBUS;
745 			*ucode = BUS_OOMERR;
746 			break;
747 		case KERN_OUT_OF_BOUNDS:
748 			*signo = SIGBUS;
749 			*ucode = BUS_OBJERR;
750 			break;
751 		case KERN_PROTECTION_FAILURE:
752 			if (prot_fault_translation == 0) {
753 				/*
754 				 * Autodetect.  This check also covers
755 				 * the images without the ABI-tag ELF
756 				 * note.
757 				 */
758 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
759 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
760 					*signo = SIGSEGV;
761 					*ucode = SEGV_ACCERR;
762 				} else {
763 					*signo = SIGBUS;
764 					*ucode = UCODE_PAGEFLT;
765 				}
766 			} else if (prot_fault_translation == 1) {
767 				/* Always compat mode. */
768 				*signo = SIGBUS;
769 				*ucode = UCODE_PAGEFLT;
770 			} else {
771 				/* Always SIGSEGV mode. */
772 				*signo = SIGSEGV;
773 				*ucode = SEGV_ACCERR;
774 			}
775 			break;
776 		default:
777 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
778 			    result));
779 			break;
780 		}
781 	}
782 	return (result);
783 }
784 
785 static bool
vm_fault_object_ensure_wlocked(struct faultstate * fs)786 vm_fault_object_ensure_wlocked(struct faultstate *fs)
787 {
788 	if (fs->object == fs->first_object)
789 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
790 
791 	if (!fs->can_read_lock)  {
792 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
793 		return (true);
794 	}
795 
796 	if (VM_OBJECT_WOWNED(fs->object))
797 		return (true);
798 
799 	if (VM_OBJECT_TRYUPGRADE(fs->object))
800 		return (true);
801 
802 	return (false);
803 }
804 
805 static enum fault_status
vm_fault_lock_vnode(struct faultstate * fs,bool objlocked)806 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
807 {
808 	struct vnode *vp;
809 	int error, locked;
810 
811 	if (fs->object->type != OBJT_VNODE)
812 		return (FAULT_CONTINUE);
813 	vp = fs->object->handle;
814 	if (vp == fs->vp) {
815 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
816 		return (FAULT_CONTINUE);
817 	}
818 
819 	/*
820 	 * Perform an unlock in case the desired vnode changed while
821 	 * the map was unlocked during a retry.
822 	 */
823 	vm_fault_unlock_vp(fs);
824 
825 	locked = VOP_ISLOCKED(vp);
826 	if (locked != LK_EXCLUSIVE)
827 		locked = LK_SHARED;
828 
829 	/*
830 	 * We must not sleep acquiring the vnode lock while we have
831 	 * the page exclusive busied or the object's
832 	 * paging-in-progress count incremented.  Otherwise, we could
833 	 * deadlock.
834 	 */
835 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
836 	if (error == 0) {
837 		fs->vp = vp;
838 		return (FAULT_CONTINUE);
839 	}
840 
841 	vhold(vp);
842 	if (objlocked)
843 		vm_fault_unlock_and_deallocate(fs);
844 	else
845 		vm_fault_deallocate(fs);
846 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
847 	vdrop(vp);
848 	fs->vp = vp;
849 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
850 	return (FAULT_RESTART);
851 }
852 
853 /*
854  * Calculate the desired readahead.  Handle drop-behind.
855  *
856  * Returns the number of readahead blocks to pass to the pager.
857  */
858 static int
vm_fault_readahead(struct faultstate * fs)859 vm_fault_readahead(struct faultstate *fs)
860 {
861 	int era, nera;
862 	u_char behavior;
863 
864 	KASSERT(fs->lookup_still_valid, ("map unlocked"));
865 	era = fs->entry->read_ahead;
866 	behavior = vm_map_entry_behavior(fs->entry);
867 	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
868 		nera = 0;
869 	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
870 		nera = VM_FAULT_READ_AHEAD_MAX;
871 		if (fs->vaddr == fs->entry->next_read)
872 			vm_fault_dontneed(fs, fs->vaddr, nera);
873 	} else if (fs->vaddr == fs->entry->next_read) {
874 		/*
875 		 * This is a sequential fault.  Arithmetically
876 		 * increase the requested number of pages in
877 		 * the read-ahead window.  The requested
878 		 * number of pages is "# of sequential faults
879 		 * x (read ahead min + 1) + read ahead min"
880 		 */
881 		nera = VM_FAULT_READ_AHEAD_MIN;
882 		if (era > 0) {
883 			nera += era + 1;
884 			if (nera > VM_FAULT_READ_AHEAD_MAX)
885 				nera = VM_FAULT_READ_AHEAD_MAX;
886 		}
887 		if (era == VM_FAULT_READ_AHEAD_MAX)
888 			vm_fault_dontneed(fs, fs->vaddr, nera);
889 	} else {
890 		/*
891 		 * This is a non-sequential fault.
892 		 */
893 		nera = 0;
894 	}
895 	if (era != nera) {
896 		/*
897 		 * A read lock on the map suffices to update
898 		 * the read ahead count safely.
899 		 */
900 		fs->entry->read_ahead = nera;
901 	}
902 
903 	return (nera);
904 }
905 
906 static int
vm_fault_lookup(struct faultstate * fs)907 vm_fault_lookup(struct faultstate *fs)
908 {
909 	int result;
910 
911 	KASSERT(!fs->lookup_still_valid,
912 	   ("vm_fault_lookup: Map already locked."));
913 	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
914 	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
915 	    &fs->first_pindex, &fs->prot, &fs->wired);
916 	if (result != KERN_SUCCESS) {
917 		vm_fault_unlock_vp(fs);
918 		return (result);
919 	}
920 
921 	fs->map_generation = fs->map->timestamp;
922 
923 	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
924 		panic("%s: fault on nofault entry, addr: %#lx",
925 		    __func__, (u_long)fs->vaddr);
926 	}
927 
928 	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
929 	    fs->entry->wiring_thread != curthread) {
930 		vm_map_unlock_read(fs->map);
931 		vm_map_lock(fs->map);
932 		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
933 		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
934 			vm_fault_unlock_vp(fs);
935 			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
936 			vm_map_unlock_and_wait(fs->map, 0);
937 		} else
938 			vm_map_unlock(fs->map);
939 		return (KERN_RESOURCE_SHORTAGE);
940 	}
941 
942 	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
943 
944 	if (fs->wired)
945 		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
946 	else
947 		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
948 		    ("!fs->wired && VM_FAULT_WIRE"));
949 	fs->lookup_still_valid = true;
950 
951 	return (KERN_SUCCESS);
952 }
953 
954 static int
vm_fault_relookup(struct faultstate * fs)955 vm_fault_relookup(struct faultstate *fs)
956 {
957 	vm_object_t retry_object;
958 	vm_pindex_t retry_pindex;
959 	vm_prot_t retry_prot;
960 	int result;
961 
962 	if (!vm_map_trylock_read(fs->map))
963 		return (KERN_RESTART);
964 
965 	fs->lookup_still_valid = true;
966 	if (fs->map->timestamp == fs->map_generation)
967 		return (KERN_SUCCESS);
968 
969 	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
970 	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
971 	    &fs->wired);
972 	if (result != KERN_SUCCESS) {
973 		/*
974 		 * If retry of map lookup would have blocked then
975 		 * retry fault from start.
976 		 */
977 		if (result == KERN_FAILURE)
978 			return (KERN_RESTART);
979 		return (result);
980 	}
981 	if (retry_object != fs->first_object ||
982 	    retry_pindex != fs->first_pindex)
983 		return (KERN_RESTART);
984 
985 	/*
986 	 * Check whether the protection has changed or the object has
987 	 * been copied while we left the map unlocked. Changing from
988 	 * read to write permission is OK - we leave the page
989 	 * write-protected, and catch the write fault. Changing from
990 	 * write to read permission means that we can't mark the page
991 	 * write-enabled after all.
992 	 */
993 	fs->prot &= retry_prot;
994 	fs->fault_type &= retry_prot;
995 	if (fs->prot == 0)
996 		return (KERN_RESTART);
997 
998 	/* Reassert because wired may have changed. */
999 	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1000 	    ("!wired && VM_FAULT_WIRE"));
1001 
1002 	return (KERN_SUCCESS);
1003 }
1004 
1005 static void
vm_fault_cow(struct faultstate * fs)1006 vm_fault_cow(struct faultstate *fs)
1007 {
1008 	bool is_first_object_locked;
1009 
1010 	KASSERT(fs->object != fs->first_object,
1011 	    ("source and target COW objects are identical"));
1012 
1013 	/*
1014 	 * This allows pages to be virtually copied from a backing_object
1015 	 * into the first_object, where the backing object has no other
1016 	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
1017 	 * we just move the page from the backing object to the first
1018 	 * object.  Note that we must mark the page dirty in the first
1019 	 * object so that it will go out to swap when needed.
1020 	 */
1021 	is_first_object_locked = false;
1022 	if (
1023 	    /*
1024 	     * Only one shadow object and no other refs.
1025 	     */
1026 	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1027 	    /*
1028 	     * No other ways to look the object up
1029 	     */
1030 	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
1031 	    /*
1032 	     * We don't chase down the shadow chain and we can acquire locks.
1033 	     */
1034 	    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
1035 	    fs->object == fs->first_object->backing_object &&
1036 	    VM_OBJECT_TRYWLOCK(fs->object)) {
1037 		/*
1038 		 * Remove but keep xbusy for replace.  fs->m is moved into
1039 		 * fs->first_object and left busy while fs->first_m is
1040 		 * conditionally freed.
1041 		 */
1042 		vm_page_remove_xbusy(fs->m);
1043 		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1044 		    fs->first_m);
1045 		vm_page_dirty(fs->m);
1046 #if VM_NRESERVLEVEL > 0
1047 		/*
1048 		 * Rename the reservation.
1049 		 */
1050 		vm_reserv_rename(fs->m, fs->first_object, fs->object,
1051 		    OFF_TO_IDX(fs->first_object->backing_object_offset));
1052 #endif
1053 		VM_OBJECT_WUNLOCK(fs->object);
1054 		VM_OBJECT_WUNLOCK(fs->first_object);
1055 		fs->first_m = fs->m;
1056 		fs->m = NULL;
1057 		VM_CNT_INC(v_cow_optim);
1058 	} else {
1059 		if (is_first_object_locked)
1060 			VM_OBJECT_WUNLOCK(fs->first_object);
1061 		/*
1062 		 * Oh, well, lets copy it.
1063 		 */
1064 		pmap_copy_page(fs->m, fs->first_m);
1065 		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1066 			vm_page_wire(fs->first_m);
1067 			vm_page_unwire(fs->m, PQ_INACTIVE);
1068 		}
1069 		/*
1070 		 * Save the COW page to be released after pmap_enter is
1071 		 * complete.  The new copy will be marked valid when we're ready
1072 		 * to map it.
1073 		 */
1074 		fs->m_cow = fs->m;
1075 		fs->m = NULL;
1076 
1077 		/*
1078 		 * Typically, the shadow object is either private to this
1079 		 * address space (OBJ_ONEMAPPING) or its pages are read only.
1080 		 * In the highly unusual case where the pages of a shadow object
1081 		 * are read/write shared between this and other address spaces,
1082 		 * we need to ensure that any pmap-level mappings to the
1083 		 * original, copy-on-write page from the backing object are
1084 		 * removed from those other address spaces.
1085 		 *
1086 		 * The flag check is racy, but this is tolerable: if
1087 		 * OBJ_ONEMAPPING is cleared after the check, the busy state
1088 		 * ensures that new mappings of m_cow can't be created.
1089 		 * pmap_enter() will replace an existing mapping in the current
1090 		 * address space.  If OBJ_ONEMAPPING is set after the check,
1091 		 * removing mappings will at worse trigger some unnecessary page
1092 		 * faults.
1093 		 */
1094 		vm_page_assert_xbusied(fs->m_cow);
1095 		if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1096 			pmap_remove_all(fs->m_cow);
1097 	}
1098 
1099 	vm_object_pip_wakeup(fs->object);
1100 
1101 	/*
1102 	 * Only use the new page below...
1103 	 */
1104 	fs->object = fs->first_object;
1105 	fs->pindex = fs->first_pindex;
1106 	fs->m = fs->first_m;
1107 	VM_CNT_INC(v_cow_faults);
1108 	curthread->td_cow++;
1109 }
1110 
1111 static enum fault_next_status
vm_fault_next(struct faultstate * fs)1112 vm_fault_next(struct faultstate *fs)
1113 {
1114 	vm_object_t next_object;
1115 
1116 	if (fs->object == fs->first_object || !fs->can_read_lock)
1117 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1118 	else
1119 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1120 
1121 	/*
1122 	 * The requested page does not exist at this object/
1123 	 * offset.  Remove the invalid page from the object,
1124 	 * waking up anyone waiting for it, and continue on to
1125 	 * the next object.  However, if this is the top-level
1126 	 * object, we must leave the busy page in place to
1127 	 * prevent another process from rushing past us, and
1128 	 * inserting the page in that object at the same time
1129 	 * that we are.
1130 	 */
1131 	if (fs->object == fs->first_object) {
1132 		fs->first_m = fs->m;
1133 		fs->m = NULL;
1134 	} else if (fs->m != NULL) {
1135 		if (!vm_fault_object_ensure_wlocked(fs)) {
1136 			fs->can_read_lock = false;
1137 			vm_fault_unlock_and_deallocate(fs);
1138 			return (FAULT_NEXT_RESTART);
1139 		}
1140 		vm_fault_page_free(&fs->m);
1141 	}
1142 
1143 	/*
1144 	 * Move on to the next object.  Lock the next object before
1145 	 * unlocking the current one.
1146 	 */
1147 	next_object = fs->object->backing_object;
1148 	if (next_object == NULL)
1149 		return (FAULT_NEXT_NOOBJ);
1150 	MPASS(fs->first_m != NULL);
1151 	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1152 	if (fs->can_read_lock)
1153 		VM_OBJECT_RLOCK(next_object);
1154 	else
1155 		VM_OBJECT_WLOCK(next_object);
1156 	vm_object_pip_add(next_object, 1);
1157 	if (fs->object != fs->first_object)
1158 		vm_object_pip_wakeup(fs->object);
1159 	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1160 	VM_OBJECT_UNLOCK(fs->object);
1161 	fs->object = next_object;
1162 
1163 	return (FAULT_NEXT_GOTOBJ);
1164 }
1165 
1166 static void
vm_fault_zerofill(struct faultstate * fs)1167 vm_fault_zerofill(struct faultstate *fs)
1168 {
1169 
1170 	/*
1171 	 * If there's no object left, fill the page in the top
1172 	 * object with zeros.
1173 	 */
1174 	if (fs->object != fs->first_object) {
1175 		vm_object_pip_wakeup(fs->object);
1176 		fs->object = fs->first_object;
1177 		fs->pindex = fs->first_pindex;
1178 	}
1179 	MPASS(fs->first_m != NULL);
1180 	MPASS(fs->m == NULL);
1181 	fs->m = fs->first_m;
1182 	fs->first_m = NULL;
1183 
1184 	/*
1185 	 * Zero the page if necessary and mark it valid.
1186 	 */
1187 	if ((fs->m->flags & PG_ZERO) == 0) {
1188 		pmap_zero_page(fs->m);
1189 	} else {
1190 		VM_CNT_INC(v_ozfod);
1191 	}
1192 	VM_CNT_INC(v_zfod);
1193 	vm_page_valid(fs->m);
1194 }
1195 
1196 /*
1197  * Initiate page fault after timeout.  Returns true if caller should
1198  * do vm_waitpfault() after the call.
1199  */
1200 static bool
vm_fault_allocate_oom(struct faultstate * fs)1201 vm_fault_allocate_oom(struct faultstate *fs)
1202 {
1203 	struct timeval now;
1204 
1205 	vm_fault_unlock_and_deallocate(fs);
1206 	if (vm_pfault_oom_attempts < 0)
1207 		return (true);
1208 	if (!fs->oom_started) {
1209 		fs->oom_started = true;
1210 		getmicrotime(&fs->oom_start_time);
1211 		return (true);
1212 	}
1213 
1214 	getmicrotime(&now);
1215 	timevalsub(&now, &fs->oom_start_time);
1216 	if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1217 		return (true);
1218 
1219 	if (bootverbose)
1220 		printf(
1221 	    "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1222 		    curproc->p_pid, curproc->p_comm);
1223 	vm_pageout_oom(VM_OOM_MEM_PF);
1224 	fs->oom_started = false;
1225 	return (false);
1226 }
1227 
1228 /*
1229  * Allocate a page directly or via the object populate method.
1230  */
1231 static enum fault_status
vm_fault_allocate(struct faultstate * fs,struct pctrie_iter * pages)1232 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
1233 {
1234 	struct domainset *dset;
1235 	enum fault_status res;
1236 
1237 	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1238 		res = vm_fault_lock_vnode(fs, true);
1239 		MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1240 		if (res == FAULT_RESTART)
1241 			return (res);
1242 	}
1243 
1244 	if (fs->pindex >= fs->object->size) {
1245 		vm_fault_unlock_and_deallocate(fs);
1246 		return (FAULT_OUT_OF_BOUNDS);
1247 	}
1248 
1249 	if (fs->object == fs->first_object &&
1250 	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1251 	    fs->first_object->shadow_count == 0) {
1252 		res = vm_fault_populate(fs);
1253 		switch (res) {
1254 		case FAULT_SUCCESS:
1255 		case FAULT_FAILURE:
1256 		case FAULT_RESTART:
1257 			vm_fault_unlock_and_deallocate(fs);
1258 			return (res);
1259 		case FAULT_CONTINUE:
1260 			pctrie_iter_reset(pages);
1261 			/*
1262 			 * Pager's populate() method
1263 			 * returned VM_PAGER_BAD.
1264 			 */
1265 			break;
1266 		default:
1267 			panic("inconsistent return codes");
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * Allocate a new page for this object/offset pair.
1273 	 *
1274 	 * If the process has a fatal signal pending, prioritize the allocation
1275 	 * with the expectation that the process will exit shortly and free some
1276 	 * pages.  In particular, the signal may have been posted by the page
1277 	 * daemon in an attempt to resolve an out-of-memory condition.
1278 	 *
1279 	 * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1280 	 * might be not observed here, and allocation fails, causing a restart
1281 	 * and new reading of the p_flag.
1282 	 */
1283 	dset = fs->object->domain.dr_policy;
1284 	if (dset == NULL)
1285 		dset = curthread->td_domain.dr_policy;
1286 	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1287 #if VM_NRESERVLEVEL > 0
1288 		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1289 #endif
1290 		if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1291 			vm_fault_unlock_and_deallocate(fs);
1292 			return (FAULT_FAILURE);
1293 		}
1294 		fs->m = vm_page_alloc_iter(fs->object, fs->pindex,
1295 		    P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages);
1296 	}
1297 	if (fs->m == NULL) {
1298 		if (vm_fault_allocate_oom(fs))
1299 			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1300 		return (FAULT_RESTART);
1301 	}
1302 	fs->oom_started = false;
1303 
1304 	return (FAULT_CONTINUE);
1305 }
1306 
1307 /*
1308  * Call the pager to retrieve the page if there is a chance
1309  * that the pager has it, and potentially retrieve additional
1310  * pages at the same time.
1311  */
1312 static enum fault_status
vm_fault_getpages(struct faultstate * fs,int * behindp,int * aheadp)1313 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1314 {
1315 	vm_offset_t e_end, e_start;
1316 	int ahead, behind, cluster_offset, rv;
1317 	enum fault_status status;
1318 	u_char behavior;
1319 
1320 	/*
1321 	 * Prepare for unlocking the map.  Save the map
1322 	 * entry's start and end addresses, which are used to
1323 	 * optimize the size of the pager operation below.
1324 	 * Even if the map entry's addresses change after
1325 	 * unlocking the map, using the saved addresses is
1326 	 * safe.
1327 	 */
1328 	e_start = fs->entry->start;
1329 	e_end = fs->entry->end;
1330 	behavior = vm_map_entry_behavior(fs->entry);
1331 
1332 	/*
1333 	 * If the pager for the current object might have
1334 	 * the page, then determine the number of additional
1335 	 * pages to read and potentially reprioritize
1336 	 * previously read pages for earlier reclamation.
1337 	 * These operations should only be performed once per
1338 	 * page fault.  Even if the current pager doesn't
1339 	 * have the page, the number of additional pages to
1340 	 * read will apply to subsequent objects in the
1341 	 * shadow chain.
1342 	 */
1343 	if (fs->nera == -1 && !P_KILLED(curproc))
1344 		fs->nera = vm_fault_readahead(fs);
1345 
1346 	/*
1347 	 * Release the map lock before locking the vnode or
1348 	 * sleeping in the pager.  (If the current object has
1349 	 * a shadow, then an earlier iteration of this loop
1350 	 * may have already unlocked the map.)
1351 	 */
1352 	vm_fault_unlock_map(fs);
1353 
1354 	status = vm_fault_lock_vnode(fs, false);
1355 	MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1356 	if (status == FAULT_RESTART)
1357 		return (status);
1358 	KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1359 	    ("vm_fault: vnode-backed object mapped by system map"));
1360 
1361 	/*
1362 	 * Page in the requested page and hint the pager,
1363 	 * that it may bring up surrounding pages.
1364 	 */
1365 	if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1366 	    P_KILLED(curproc)) {
1367 		behind = 0;
1368 		ahead = 0;
1369 	} else {
1370 		/* Is this a sequential fault? */
1371 		if (fs->nera > 0) {
1372 			behind = 0;
1373 			ahead = fs->nera;
1374 		} else {
1375 			/*
1376 			 * Request a cluster of pages that is
1377 			 * aligned to a VM_FAULT_READ_DEFAULT
1378 			 * page offset boundary within the
1379 			 * object.  Alignment to a page offset
1380 			 * boundary is more likely to coincide
1381 			 * with the underlying file system
1382 			 * block than alignment to a virtual
1383 			 * address boundary.
1384 			 */
1385 			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1386 			behind = ulmin(cluster_offset,
1387 			    atop(fs->vaddr - e_start));
1388 			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1389 		}
1390 		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1391 	}
1392 	*behindp = behind;
1393 	*aheadp = ahead;
1394 	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1395 	if (rv == VM_PAGER_OK)
1396 		return (FAULT_HARD);
1397 	if (rv == VM_PAGER_ERROR)
1398 		printf("vm_fault: pager read error, pid %d (%s)\n",
1399 		    curproc->p_pid, curproc->p_comm);
1400 	/*
1401 	 * If an I/O error occurred or the requested page was
1402 	 * outside the range of the pager, clean up and return
1403 	 * an error.
1404 	 */
1405 	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1406 		VM_OBJECT_WLOCK(fs->object);
1407 		vm_fault_page_free(&fs->m);
1408 		vm_fault_unlock_and_deallocate(fs);
1409 		return (FAULT_OUT_OF_BOUNDS);
1410 	}
1411 	KASSERT(rv == VM_PAGER_FAIL,
1412 	    ("%s: unexpected pager error %d", __func__, rv));
1413 	return (FAULT_CONTINUE);
1414 }
1415 
1416 /*
1417  * Wait/Retry if the page is busy.  We have to do this if the page is
1418  * either exclusive or shared busy because the vm_pager may be using
1419  * read busy for pageouts (and even pageins if it is the vnode pager),
1420  * and we could end up trying to pagein and pageout the same page
1421  * simultaneously.
1422  *
1423  * We can theoretically allow the busy case on a read fault if the page
1424  * is marked valid, but since such pages are typically already pmap'd,
1425  * putting that special case in might be more effort then it is worth.
1426  * We cannot under any circumstances mess around with a shared busied
1427  * page except, perhaps, to pmap it.
1428  */
1429 static void
vm_fault_busy_sleep(struct faultstate * fs)1430 vm_fault_busy_sleep(struct faultstate *fs)
1431 {
1432 	/*
1433 	 * Reference the page before unlocking and
1434 	 * sleeping so that the page daemon is less
1435 	 * likely to reclaim it.
1436 	 */
1437 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1438 	if (fs->object != fs->first_object) {
1439 		vm_fault_page_release(&fs->first_m);
1440 		vm_object_pip_wakeup(fs->first_object);
1441 	}
1442 	vm_object_pip_wakeup(fs->object);
1443 	vm_fault_unlock_map(fs);
1444 	if (!vm_page_busy_sleep(fs->m, "vmpfw", 0))
1445 		VM_OBJECT_UNLOCK(fs->object);
1446 	VM_CNT_INC(v_intrans);
1447 	vm_object_deallocate(fs->first_object);
1448 }
1449 
1450 /*
1451  * Handle page lookup, populate, allocate, page-in for the current
1452  * object.
1453  *
1454  * The object is locked on entry and will remain locked with a return
1455  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1456  * Otherwise, the object will be unlocked upon return.
1457  */
1458 static enum fault_status
vm_fault_object(struct faultstate * fs,int * behindp,int * aheadp)1459 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1460 {
1461 	struct pctrie_iter pages;
1462 	enum fault_status res;
1463 	bool dead;
1464 
1465 	if (fs->object == fs->first_object || !fs->can_read_lock)
1466 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1467 	else
1468 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1469 
1470 	/*
1471 	 * If the object is marked for imminent termination, we retry
1472 	 * here, since the collapse pass has raced with us.  Otherwise,
1473 	 * if we see terminally dead object, return fail.
1474 	 */
1475 	if ((fs->object->flags & OBJ_DEAD) != 0) {
1476 		dead = fs->object->type == OBJT_DEAD;
1477 		vm_fault_unlock_and_deallocate(fs);
1478 		if (dead)
1479 			return (FAULT_PROTECTION_FAILURE);
1480 		pause("vmf_de", 1);
1481 		return (FAULT_RESTART);
1482 	}
1483 
1484 	/*
1485 	 * See if the page is resident.
1486 	 */
1487 	vm_page_iter_init(&pages, fs->object);
1488 	fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
1489 	if (fs->m != NULL) {
1490 		if (!vm_page_tryxbusy(fs->m)) {
1491 			vm_fault_busy_sleep(fs);
1492 			return (FAULT_RESTART);
1493 		}
1494 
1495 		/*
1496 		 * The page is marked busy for other processes and the
1497 		 * pagedaemon.  If it is still completely valid we are
1498 		 * done.
1499 		 */
1500 		if (vm_page_all_valid(fs->m)) {
1501 			VM_OBJECT_UNLOCK(fs->object);
1502 			return (FAULT_SOFT);
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * Page is not resident.  If the pager might contain the page
1508 	 * or this is the beginning of the search, allocate a new
1509 	 * page.
1510 	 */
1511 	if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1512 	    fs->object == fs->first_object)) {
1513 		if (!vm_fault_object_ensure_wlocked(fs)) {
1514 			fs->can_read_lock = false;
1515 			vm_fault_unlock_and_deallocate(fs);
1516 			return (FAULT_RESTART);
1517 		}
1518 		res = vm_fault_allocate(fs, &pages);
1519 		if (res != FAULT_CONTINUE)
1520 			return (res);
1521 	}
1522 
1523 	/*
1524 	 * Check to see if the pager can possibly satisfy this fault.
1525 	 * If not, skip to the next object without dropping the lock to
1526 	 * preserve atomicity of shadow faults.
1527 	 */
1528 	if (vm_fault_object_needs_getpages(fs->object)) {
1529 		/*
1530 		 * At this point, we have either allocated a new page
1531 		 * or found an existing page that is only partially
1532 		 * valid.
1533 		 *
1534 		 * We hold a reference on the current object and the
1535 		 * page is exclusive busied.  The exclusive busy
1536 		 * prevents simultaneous faults and collapses while
1537 		 * the object lock is dropped.
1538 		 */
1539 		VM_OBJECT_UNLOCK(fs->object);
1540 		res = vm_fault_getpages(fs, behindp, aheadp);
1541 		if (res == FAULT_CONTINUE)
1542 			VM_OBJECT_WLOCK(fs->object);
1543 	} else {
1544 		res = FAULT_CONTINUE;
1545 	}
1546 	return (res);
1547 }
1548 
1549 int
vm_fault(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,vm_page_t * m_hold)1550 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1551     int fault_flags, vm_page_t *m_hold)
1552 {
1553 	struct pctrie_iter pages;
1554 	struct faultstate fs;
1555 	int ahead, behind, faultcount, rv;
1556 	enum fault_status res;
1557 	enum fault_next_status res_next;
1558 	bool hardfault;
1559 
1560 	VM_CNT_INC(v_vm_faults);
1561 
1562 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1563 		return (KERN_PROTECTION_FAILURE);
1564 
1565 	fs.vp = NULL;
1566 	fs.vaddr = vaddr;
1567 	fs.m_hold = m_hold;
1568 	fs.fault_flags = fault_flags;
1569 	fs.map = map;
1570 	fs.lookup_still_valid = false;
1571 	fs.oom_started = false;
1572 	fs.nera = -1;
1573 	fs.can_read_lock = true;
1574 	faultcount = 0;
1575 	hardfault = false;
1576 
1577 RetryFault:
1578 	fs.fault_type = fault_type;
1579 
1580 	/*
1581 	 * Find the backing store object and offset into it to begin the
1582 	 * search.
1583 	 */
1584 	rv = vm_fault_lookup(&fs);
1585 	if (rv != KERN_SUCCESS) {
1586 		if (rv == KERN_RESOURCE_SHORTAGE)
1587 			goto RetryFault;
1588 		return (rv);
1589 	}
1590 
1591 	/*
1592 	 * Try to avoid lock contention on the top-level object through
1593 	 * special-case handling of some types of page faults, specifically,
1594 	 * those that are mapping an existing page from the top-level object.
1595 	 * Under this condition, a read lock on the object suffices, allowing
1596 	 * multiple page faults of a similar type to run in parallel.
1597 	 */
1598 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1599 	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1600 	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1601 		res = vm_fault_soft_fast(&fs);
1602 		if (res == FAULT_SUCCESS) {
1603 			VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1604 			return (KERN_SUCCESS);
1605 		}
1606 		VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1607 	} else {
1608 		vm_page_iter_init(&pages, fs.first_object);
1609 		VM_OBJECT_WLOCK(fs.first_object);
1610 	}
1611 
1612 	/*
1613 	 * Make a reference to this object to prevent its disposal while we
1614 	 * are messing with it.  Once we have the reference, the map is free
1615 	 * to be diddled.  Since objects reference their shadows (and copies),
1616 	 * they will stay around as well.
1617 	 *
1618 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1619 	 * truncation operations) during I/O.
1620 	 */
1621 	vm_object_reference_locked(fs.first_object);
1622 	vm_object_pip_add(fs.first_object, 1);
1623 
1624 	fs.m_cow = fs.m = fs.first_m = NULL;
1625 
1626 	/*
1627 	 * Search for the page at object/offset.
1628 	 */
1629 	fs.object = fs.first_object;
1630 	fs.pindex = fs.first_pindex;
1631 
1632 	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1633 		res = vm_fault_allocate(&fs, &pages);
1634 		switch (res) {
1635 		case FAULT_RESTART:
1636 			goto RetryFault;
1637 		case FAULT_SUCCESS:
1638 			return (KERN_SUCCESS);
1639 		case FAULT_FAILURE:
1640 			return (KERN_FAILURE);
1641 		case FAULT_OUT_OF_BOUNDS:
1642 			return (KERN_OUT_OF_BOUNDS);
1643 		case FAULT_CONTINUE:
1644 			break;
1645 		default:
1646 			panic("vm_fault: Unhandled status %d", res);
1647 		}
1648 	}
1649 
1650 	while (TRUE) {
1651 		KASSERT(fs.m == NULL,
1652 		    ("page still set %p at loop start", fs.m));
1653 
1654 		res = vm_fault_object(&fs, &behind, &ahead);
1655 		switch (res) {
1656 		case FAULT_SOFT:
1657 			goto found;
1658 		case FAULT_HARD:
1659 			faultcount = behind + 1 + ahead;
1660 			hardfault = true;
1661 			goto found;
1662 		case FAULT_RESTART:
1663 			goto RetryFault;
1664 		case FAULT_SUCCESS:
1665 			return (KERN_SUCCESS);
1666 		case FAULT_FAILURE:
1667 			return (KERN_FAILURE);
1668 		case FAULT_OUT_OF_BOUNDS:
1669 			return (KERN_OUT_OF_BOUNDS);
1670 		case FAULT_PROTECTION_FAILURE:
1671 			return (KERN_PROTECTION_FAILURE);
1672 		case FAULT_CONTINUE:
1673 			break;
1674 		default:
1675 			panic("vm_fault: Unhandled status %d", res);
1676 		}
1677 
1678 		/*
1679 		 * The page was not found in the current object.  Try to
1680 		 * traverse into a backing object or zero fill if none is
1681 		 * found.
1682 		 */
1683 		res_next = vm_fault_next(&fs);
1684 		if (res_next == FAULT_NEXT_RESTART)
1685 			goto RetryFault;
1686 		else if (res_next == FAULT_NEXT_GOTOBJ)
1687 			continue;
1688 		MPASS(res_next == FAULT_NEXT_NOOBJ);
1689 		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1690 			if (fs.first_object == fs.object)
1691 				vm_fault_page_free(&fs.first_m);
1692 			vm_fault_unlock_and_deallocate(&fs);
1693 			return (KERN_OUT_OF_BOUNDS);
1694 		}
1695 		VM_OBJECT_UNLOCK(fs.object);
1696 		vm_fault_zerofill(&fs);
1697 		/* Don't try to prefault neighboring pages. */
1698 		faultcount = 1;
1699 		break;
1700 	}
1701 
1702 found:
1703 	/*
1704 	 * A valid page has been found and exclusively busied.  The
1705 	 * object lock must no longer be held.
1706 	 */
1707 	vm_page_assert_xbusied(fs.m);
1708 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1709 
1710 	/*
1711 	 * If the page is being written, but isn't already owned by the
1712 	 * top-level object, we have to copy it into a new page owned by the
1713 	 * top-level object.
1714 	 */
1715 	if (fs.object != fs.first_object) {
1716 		/*
1717 		 * We only really need to copy if we want to write it.
1718 		 */
1719 		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1720 			vm_fault_cow(&fs);
1721 			/*
1722 			 * We only try to prefault read-only mappings to the
1723 			 * neighboring pages when this copy-on-write fault is
1724 			 * a hard fault.  In other cases, trying to prefault
1725 			 * is typically wasted effort.
1726 			 */
1727 			if (faultcount == 0)
1728 				faultcount = 1;
1729 
1730 		} else {
1731 			fs.prot &= ~VM_PROT_WRITE;
1732 		}
1733 	}
1734 
1735 	/*
1736 	 * We must verify that the maps have not changed since our last
1737 	 * lookup.
1738 	 */
1739 	if (!fs.lookup_still_valid) {
1740 		rv = vm_fault_relookup(&fs);
1741 		if (rv != KERN_SUCCESS) {
1742 			vm_fault_deallocate(&fs);
1743 			if (rv == KERN_RESTART)
1744 				goto RetryFault;
1745 			return (rv);
1746 		}
1747 	}
1748 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1749 
1750 	/*
1751 	 * If the page was filled by a pager, save the virtual address that
1752 	 * should be faulted on next under a sequential access pattern to the
1753 	 * map entry.  A read lock on the map suffices to update this address
1754 	 * safely.
1755 	 */
1756 	if (hardfault)
1757 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1758 
1759 	/*
1760 	 * If the page to be mapped was copied from a backing object, we defer
1761 	 * marking it valid until here, where the fault handler is guaranteed to
1762 	 * succeed.  Otherwise we can end up with a shadowed, mapped page in the
1763 	 * backing object, which violates an invariant of vm_object_collapse()
1764 	 * that shadowed pages are not mapped.
1765 	 */
1766 	if (fs.m_cow != NULL) {
1767 		KASSERT(vm_page_none_valid(fs.m),
1768 		    ("vm_fault: page %p is already valid", fs.m_cow));
1769 		vm_page_valid(fs.m);
1770 	}
1771 
1772 	/*
1773 	 * Page must be completely valid or it is not fit to
1774 	 * map into user space.  vm_pager_get_pages() ensures this.
1775 	 */
1776 	vm_page_assert_xbusied(fs.m);
1777 	KASSERT(vm_page_all_valid(fs.m),
1778 	    ("vm_fault: page %p partially invalid", fs.m));
1779 
1780 	vm_fault_dirty(&fs, fs.m);
1781 
1782 	/*
1783 	 * Put this page into the physical map.  We had to do the unlock above
1784 	 * because pmap_enter() may sleep.  We don't put the page
1785 	 * back on the active queue until later so that the pageout daemon
1786 	 * won't find it (yet).
1787 	 */
1788 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1789 	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1790 	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1791 	    fs.wired == 0)
1792 		vm_fault_prefault(&fs, vaddr,
1793 		    faultcount > 0 ? behind : PFBAK,
1794 		    faultcount > 0 ? ahead : PFFOR, false);
1795 
1796 	/*
1797 	 * If the page is not wired down, then put it where the pageout daemon
1798 	 * can find it.
1799 	 */
1800 	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1801 		vm_page_wire(fs.m);
1802 	else
1803 		vm_page_activate(fs.m);
1804 	if (fs.m_hold != NULL) {
1805 		(*fs.m_hold) = fs.m;
1806 		vm_page_wire(fs.m);
1807 	}
1808 	vm_page_xunbusy(fs.m);
1809 	fs.m = NULL;
1810 
1811 	/*
1812 	 * Unlock everything, and return
1813 	 */
1814 	vm_fault_deallocate(&fs);
1815 	if (hardfault) {
1816 		VM_CNT_INC(v_io_faults);
1817 		curthread->td_ru.ru_majflt++;
1818 #ifdef RACCT
1819 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1820 			PROC_LOCK(curproc);
1821 			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1822 				racct_add_force(curproc, RACCT_WRITEBPS,
1823 				    PAGE_SIZE + behind * PAGE_SIZE);
1824 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1825 			} else {
1826 				racct_add_force(curproc, RACCT_READBPS,
1827 				    PAGE_SIZE + ahead * PAGE_SIZE);
1828 				racct_add_force(curproc, RACCT_READIOPS, 1);
1829 			}
1830 			PROC_UNLOCK(curproc);
1831 		}
1832 #endif
1833 	} else
1834 		curthread->td_ru.ru_minflt++;
1835 
1836 	return (KERN_SUCCESS);
1837 }
1838 
1839 /*
1840  * Speed up the reclamation of pages that precede the faulting pindex within
1841  * the first object of the shadow chain.  Essentially, perform the equivalent
1842  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1843  * the faulting pindex by the cluster size when the pages read by vm_fault()
1844  * cross a cluster-size boundary.  The cluster size is the greater of the
1845  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1846  *
1847  * When "fs->first_object" is a shadow object, the pages in the backing object
1848  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1849  * function must only be concerned with pages in the first object.
1850  */
1851 static void
vm_fault_dontneed(const struct faultstate * fs,vm_offset_t vaddr,int ahead)1852 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1853 {
1854 	struct pctrie_iter pages;
1855 	vm_map_entry_t entry;
1856 	vm_object_t first_object;
1857 	vm_offset_t end, start;
1858 	vm_page_t m;
1859 	vm_size_t size;
1860 
1861 	VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1862 	first_object = fs->first_object;
1863 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1864 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1865 		VM_OBJECT_RLOCK(first_object);
1866 		size = VM_FAULT_DONTNEED_MIN;
1867 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1868 			size = pagesizes[1];
1869 		end = rounddown2(vaddr, size);
1870 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1871 		    (entry = fs->entry)->start < end) {
1872 			if (end - entry->start < size)
1873 				start = entry->start;
1874 			else
1875 				start = end - size;
1876 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1877 			vm_page_iter_limit_init(&pages, first_object,
1878 			    OFF_TO_IDX(entry->offset) +
1879 			    atop(end - entry->start));
1880 			VM_RADIX_FOREACH_FROM(m, &pages,
1881 			    OFF_TO_IDX(entry->offset) +
1882 			    atop(start - entry->start)) {
1883 				if (!vm_page_all_valid(m) ||
1884 				    vm_page_busied(m))
1885 					continue;
1886 
1887 				/*
1888 				 * Don't clear PGA_REFERENCED, since it would
1889 				 * likely represent a reference by a different
1890 				 * process.
1891 				 *
1892 				 * Typically, at this point, prefetched pages
1893 				 * are still in the inactive queue.  Only
1894 				 * pages that triggered page faults are in the
1895 				 * active queue.  The test for whether the page
1896 				 * is in the inactive queue is racy; in the
1897 				 * worst case we will requeue the page
1898 				 * unnecessarily.
1899 				 */
1900 				if (!vm_page_inactive(m))
1901 					vm_page_deactivate(m);
1902 			}
1903 		}
1904 		VM_OBJECT_RUNLOCK(first_object);
1905 	}
1906 }
1907 
1908 /*
1909  * vm_fault_prefault provides a quick way of clustering
1910  * pagefaults into a processes address space.  It is a "cousin"
1911  * of vm_map_pmap_enter, except it runs at page fault time instead
1912  * of mmap time.
1913  */
1914 static void
vm_fault_prefault(const struct faultstate * fs,vm_offset_t addra,int backward,int forward,bool obj_locked)1915 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1916     int backward, int forward, bool obj_locked)
1917 {
1918 	pmap_t pmap;
1919 	vm_map_entry_t entry;
1920 	vm_object_t backing_object, lobject;
1921 	vm_offset_t addr, starta;
1922 	vm_pindex_t pindex;
1923 	vm_page_t m;
1924 	vm_prot_t prot;
1925 	int i;
1926 
1927 	pmap = fs->map->pmap;
1928 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1929 		return;
1930 
1931 	entry = fs->entry;
1932 
1933 	if (addra < backward * PAGE_SIZE) {
1934 		starta = entry->start;
1935 	} else {
1936 		starta = addra - backward * PAGE_SIZE;
1937 		if (starta < entry->start)
1938 			starta = entry->start;
1939 	}
1940 	prot = entry->protection;
1941 
1942 	/*
1943 	 * If pmap_enter() has enabled write access on a nearby mapping, then
1944 	 * don't attempt promotion, because it will fail.
1945 	 */
1946 	if ((fs->prot & VM_PROT_WRITE) != 0)
1947 		prot |= VM_PROT_NO_PROMOTE;
1948 
1949 	/*
1950 	 * Generate the sequence of virtual addresses that are candidates for
1951 	 * prefaulting in an outward spiral from the faulting virtual address,
1952 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1953 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1954 	 * If the candidate address doesn't have a backing physical page, then
1955 	 * the loop immediately terminates.
1956 	 */
1957 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1958 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1959 		    PAGE_SIZE);
1960 		if (addr > addra + forward * PAGE_SIZE)
1961 			addr = 0;
1962 
1963 		if (addr < starta || addr >= entry->end)
1964 			continue;
1965 
1966 		if (!pmap_is_prefaultable(pmap, addr))
1967 			continue;
1968 
1969 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1970 		lobject = entry->object.vm_object;
1971 		if (!obj_locked)
1972 			VM_OBJECT_RLOCK(lobject);
1973 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1974 		    !vm_fault_object_needs_getpages(lobject) &&
1975 		    (backing_object = lobject->backing_object) != NULL) {
1976 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1977 			    0, ("vm_fault_prefault: unaligned object offset"));
1978 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1979 			VM_OBJECT_RLOCK(backing_object);
1980 			if (!obj_locked || lobject != entry->object.vm_object)
1981 				VM_OBJECT_RUNLOCK(lobject);
1982 			lobject = backing_object;
1983 		}
1984 		if (m == NULL) {
1985 			if (!obj_locked || lobject != entry->object.vm_object)
1986 				VM_OBJECT_RUNLOCK(lobject);
1987 			break;
1988 		}
1989 		if (vm_page_all_valid(m) &&
1990 		    (m->flags & PG_FICTITIOUS) == 0)
1991 			pmap_enter_quick(pmap, addr, m, prot);
1992 		if (!obj_locked || lobject != entry->object.vm_object)
1993 			VM_OBJECT_RUNLOCK(lobject);
1994 	}
1995 }
1996 
1997 /*
1998  * Hold each of the physical pages that are mapped by the specified range of
1999  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2000  * and allow the specified types of access, "prot".  If all of the implied
2001  * pages are successfully held, then the number of held pages is returned
2002  * together with pointers to those pages in the array "ma".  However, if any
2003  * of the pages cannot be held, -1 is returned.
2004  */
2005 int
vm_fault_quick_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count)2006 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2007     vm_prot_t prot, vm_page_t *ma, int max_count)
2008 {
2009 	vm_offset_t end, va;
2010 	vm_page_t *mp;
2011 	int count;
2012 	boolean_t pmap_failed;
2013 
2014 	if (len == 0)
2015 		return (0);
2016 	end = round_page(addr + len);
2017 	addr = trunc_page(addr);
2018 
2019 	if (!vm_map_range_valid(map, addr, end))
2020 		return (-1);
2021 
2022 	if (atop(end - addr) > max_count)
2023 		panic("vm_fault_quick_hold_pages: count > max_count");
2024 	count = atop(end - addr);
2025 
2026 	/*
2027 	 * Most likely, the physical pages are resident in the pmap, so it is
2028 	 * faster to try pmap_extract_and_hold() first.
2029 	 */
2030 	pmap_failed = FALSE;
2031 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2032 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
2033 		if (*mp == NULL)
2034 			pmap_failed = TRUE;
2035 		else if ((prot & VM_PROT_WRITE) != 0 &&
2036 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
2037 			/*
2038 			 * Explicitly dirty the physical page.  Otherwise, the
2039 			 * caller's changes may go unnoticed because they are
2040 			 * performed through an unmanaged mapping or by a DMA
2041 			 * operation.
2042 			 *
2043 			 * The object lock is not held here.
2044 			 * See vm_page_clear_dirty_mask().
2045 			 */
2046 			vm_page_dirty(*mp);
2047 		}
2048 	}
2049 	if (pmap_failed) {
2050 		/*
2051 		 * One or more pages could not be held by the pmap.  Either no
2052 		 * page was mapped at the specified virtual address or that
2053 		 * mapping had insufficient permissions.  Attempt to fault in
2054 		 * and hold these pages.
2055 		 *
2056 		 * If vm_fault_disable_pagefaults() was called,
2057 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2058 		 * acquire MD VM locks, which means we must not call
2059 		 * vm_fault().  Some (out of tree) callers mark
2060 		 * too wide a code area with vm_fault_disable_pagefaults()
2061 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2062 		 * the proper behaviour explicitly.
2063 		 */
2064 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2065 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
2066 			goto error;
2067 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2068 			if (*mp == NULL && vm_fault(map, va, prot,
2069 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2070 				goto error;
2071 	}
2072 	return (count);
2073 error:
2074 	for (mp = ma; mp < ma + count; mp++)
2075 		if (*mp != NULL)
2076 			vm_page_unwire(*mp, PQ_INACTIVE);
2077 	return (-1);
2078 }
2079 
2080 /*
2081  *	Routine:
2082  *		vm_fault_copy_entry
2083  *	Function:
2084  *		Create new object backing dst_entry with private copy of all
2085  *		underlying pages. When src_entry is equal to dst_entry, function
2086  *		implements COW for wired-down map entry. Otherwise, it forks
2087  *		wired entry into dst_map.
2088  *
2089  *	In/out conditions:
2090  *		The source and destination maps must be locked for write.
2091  *		The source map entry must be wired down (or be a sharing map
2092  *		entry corresponding to a main map entry that is wired down).
2093  */
2094 void
vm_fault_copy_entry(vm_map_t dst_map,vm_map_t src_map __unused,vm_map_entry_t dst_entry,vm_map_entry_t src_entry,vm_ooffset_t * fork_charge)2095 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2096     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2097     vm_ooffset_t *fork_charge)
2098 {
2099 	struct pctrie_iter pages;
2100 	vm_object_t backing_object, dst_object, object, src_object;
2101 	vm_pindex_t dst_pindex, pindex, src_pindex;
2102 	vm_prot_t access, prot;
2103 	vm_offset_t vaddr;
2104 	vm_page_t dst_m;
2105 	vm_page_t src_m;
2106 	bool upgrade;
2107 
2108 	upgrade = src_entry == dst_entry;
2109 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2110 	    ("vm_fault_copy_entry: vm_object not NULL"));
2111 
2112 	/*
2113 	 * If not an upgrade, then enter the mappings in the pmap as
2114 	 * read and/or execute accesses.  Otherwise, enter them as
2115 	 * write accesses.
2116 	 *
2117 	 * A writeable large page mapping is only created if all of
2118 	 * the constituent small page mappings are modified. Marking
2119 	 * PTEs as modified on inception allows promotion to happen
2120 	 * without taking potentially large number of soft faults.
2121 	 */
2122 	access = prot = dst_entry->protection;
2123 	if (!upgrade)
2124 		access &= ~VM_PROT_WRITE;
2125 
2126 	src_object = src_entry->object.vm_object;
2127 	src_pindex = OFF_TO_IDX(src_entry->offset);
2128 
2129 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2130 		dst_object = src_object;
2131 		vm_object_reference(dst_object);
2132 	} else {
2133 		/*
2134 		 * Create the top-level object for the destination entry.
2135 		 * Doesn't actually shadow anything - we copy the pages
2136 		 * directly.
2137 		 */
2138 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2139 		    dst_entry->start), NULL, NULL, 0);
2140 #if VM_NRESERVLEVEL > 0
2141 		dst_object->flags |= OBJ_COLORED;
2142 		dst_object->pg_color = atop(dst_entry->start);
2143 #endif
2144 		dst_object->domain = src_object->domain;
2145 		dst_object->charge = dst_entry->end - dst_entry->start;
2146 
2147 		dst_entry->object.vm_object = dst_object;
2148 		dst_entry->offset = 0;
2149 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2150 	}
2151 
2152 	VM_OBJECT_WLOCK(dst_object);
2153 	if (fork_charge != NULL) {
2154 		KASSERT(dst_entry->cred == NULL,
2155 		    ("vm_fault_copy_entry: leaked swp charge"));
2156 		dst_object->cred = curthread->td_ucred;
2157 		crhold(dst_object->cred);
2158 		*fork_charge += dst_object->charge;
2159 	} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2160 	    dst_object->cred == NULL) {
2161 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2162 		    dst_entry));
2163 		dst_object->cred = dst_entry->cred;
2164 		dst_entry->cred = NULL;
2165 	}
2166 
2167 	/*
2168 	 * Loop through all of the virtual pages within the entry's
2169 	 * range, copying each page from the source object to the
2170 	 * destination object.  Since the source is wired, those pages
2171 	 * must exist.  In contrast, the destination is pageable.
2172 	 * Since the destination object doesn't share any backing storage
2173 	 * with the source object, all of its pages must be dirtied,
2174 	 * regardless of whether they can be written.
2175 	 */
2176 	vm_page_iter_init(&pages, dst_object);
2177 	for (vaddr = dst_entry->start, dst_pindex = 0;
2178 	    vaddr < dst_entry->end;
2179 	    vaddr += PAGE_SIZE, dst_pindex++) {
2180 again:
2181 		/*
2182 		 * Find the page in the source object, and copy it in.
2183 		 * Because the source is wired down, the page will be
2184 		 * in memory.
2185 		 */
2186 		if (src_object != dst_object)
2187 			VM_OBJECT_RLOCK(src_object);
2188 		object = src_object;
2189 		pindex = src_pindex + dst_pindex;
2190 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2191 		    (backing_object = object->backing_object) != NULL) {
2192 			/*
2193 			 * Unless the source mapping is read-only or
2194 			 * it is presently being upgraded from
2195 			 * read-only, the first object in the shadow
2196 			 * chain should provide all of the pages.  In
2197 			 * other words, this loop body should never be
2198 			 * executed when the source mapping is already
2199 			 * read/write.
2200 			 */
2201 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2202 			    upgrade,
2203 			    ("vm_fault_copy_entry: main object missing page"));
2204 
2205 			VM_OBJECT_RLOCK(backing_object);
2206 			pindex += OFF_TO_IDX(object->backing_object_offset);
2207 			if (object != dst_object)
2208 				VM_OBJECT_RUNLOCK(object);
2209 			object = backing_object;
2210 		}
2211 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2212 
2213 		if (object != dst_object) {
2214 			/*
2215 			 * Allocate a page in the destination object.
2216 			 */
2217 			pindex = (src_object == dst_object ? src_pindex : 0) +
2218 			    dst_pindex;
2219 			dst_m = vm_page_alloc_iter(dst_object, pindex,
2220 			    VM_ALLOC_NORMAL, &pages);
2221 			if (dst_m == NULL) {
2222 				VM_OBJECT_WUNLOCK(dst_object);
2223 				VM_OBJECT_RUNLOCK(object);
2224 				vm_wait(dst_object);
2225 				VM_OBJECT_WLOCK(dst_object);
2226 				pctrie_iter_reset(&pages);
2227 				goto again;
2228 			}
2229 
2230 			/*
2231 			 * See the comment in vm_fault_cow().
2232 			 */
2233 			if (src_object == dst_object &&
2234 			    (object->flags & OBJ_ONEMAPPING) == 0)
2235 				pmap_remove_all(src_m);
2236 			pmap_copy_page(src_m, dst_m);
2237 
2238 			/*
2239 			 * The object lock does not guarantee that "src_m" will
2240 			 * transition from invalid to valid, but it does ensure
2241 			 * that "src_m" will not transition from valid to
2242 			 * invalid.
2243 			 */
2244 			dst_m->dirty = dst_m->valid = src_m->valid;
2245 			VM_OBJECT_RUNLOCK(object);
2246 		} else {
2247 			dst_m = src_m;
2248 			if (vm_page_busy_acquire(
2249 			    dst_m, VM_ALLOC_WAITFAIL) == 0) {
2250 				pctrie_iter_reset(&pages);
2251 				goto again;
2252 			}
2253 			if (dst_m->pindex >= dst_object->size) {
2254 				/*
2255 				 * We are upgrading.  Index can occur
2256 				 * out of bounds if the object type is
2257 				 * vnode and the file was truncated.
2258 				 */
2259 				vm_page_xunbusy(dst_m);
2260 				break;
2261 			}
2262 		}
2263 
2264 		/*
2265 		 * Enter it in the pmap. If a wired, copy-on-write
2266 		 * mapping is being replaced by a write-enabled
2267 		 * mapping, then wire that new mapping.
2268 		 *
2269 		 * The page can be invalid if the user called
2270 		 * msync(MS_INVALIDATE) or truncated the backing vnode
2271 		 * or shared memory object.  In this case, do not
2272 		 * insert it into pmap, but still do the copy so that
2273 		 * all copies of the wired map entry have similar
2274 		 * backing pages.
2275 		 */
2276 		if (vm_page_all_valid(dst_m)) {
2277 			VM_OBJECT_WUNLOCK(dst_object);
2278 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2279 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2280 			VM_OBJECT_WLOCK(dst_object);
2281 		}
2282 
2283 		/*
2284 		 * Mark it no longer busy, and put it on the active list.
2285 		 */
2286 		if (upgrade) {
2287 			if (src_m != dst_m) {
2288 				vm_page_unwire(src_m, PQ_INACTIVE);
2289 				vm_page_wire(dst_m);
2290 			} else {
2291 				KASSERT(vm_page_wired(dst_m),
2292 				    ("dst_m %p is not wired", dst_m));
2293 			}
2294 		} else {
2295 			vm_page_activate(dst_m);
2296 		}
2297 		vm_page_xunbusy(dst_m);
2298 	}
2299 	VM_OBJECT_WUNLOCK(dst_object);
2300 	if (upgrade) {
2301 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2302 		vm_object_deallocate(src_object);
2303 	}
2304 }
2305 
2306 /*
2307  * Block entry into the machine-independent layer's page fault handler by
2308  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2309  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2310  * spurious page faults.
2311  */
2312 int
vm_fault_disable_pagefaults(void)2313 vm_fault_disable_pagefaults(void)
2314 {
2315 
2316 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2317 }
2318 
2319 void
vm_fault_enable_pagefaults(int save)2320 vm_fault_enable_pagefaults(int save)
2321 {
2322 
2323 	curthread_pflags_restore(save);
2324 }
2325