xref: /freebsd/sys/vm/vm_page.c (revision f90940ce6eb71df40538c35a65d77ad3093c679a)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Resident memory management module.
65  */
66 
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91 
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110 
111 #include <machine/md_var.h>
112 
113 struct vm_domain vm_dom[MAXMEMDOM];
114 
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116 
117 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
118 /* The following fields are protected by the domainset lock. */
119 domainset_t __exclusive_cache_line vm_min_domains;
120 domainset_t __exclusive_cache_line vm_severe_domains;
121 static int vm_min_waiters;
122 static int vm_severe_waiters;
123 static int vm_pageproc_waiters;
124 
125 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
126     "VM page statistics");
127 
128 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
129 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
130     CTLFLAG_RD, &pqstate_commit_retries,
131     "Number of failed per-page atomic queue state updates");
132 
133 static COUNTER_U64_DEFINE_EARLY(queue_ops);
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
135     CTLFLAG_RD, &queue_ops,
136     "Number of batched queue operations");
137 
138 static COUNTER_U64_DEFINE_EARLY(queue_nops);
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
140     CTLFLAG_RD, &queue_nops,
141     "Number of batched queue operations with no effects");
142 
143 static unsigned long nofreeq_size;
144 SYSCTL_ULONG(_vm_stats_page, OID_AUTO, nofreeq_size, CTLFLAG_RD,
145     &nofreeq_size, 0,
146     "Size of the nofree queue");
147 
148 /*
149  * bogus page -- for I/O to/from partially complete buffers,
150  * or for paging into sparsely invalid regions.
151  */
152 vm_page_t bogus_page;
153 
154 vm_page_t vm_page_array;
155 long vm_page_array_size;
156 long first_page;
157 
158 struct bitset *vm_page_dump;
159 long vm_page_dump_pages;
160 
161 static TAILQ_HEAD(, vm_page) blacklist_head;
162 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
163 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
164     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
165 
166 static uma_zone_t fakepg_zone;
167 
168 static void vm_page_alloc_check(vm_page_t m);
169 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object);
178 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
179     const uint16_t nflag);
180 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
181     vm_page_t m_run, vm_paddr_t high);
182 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
183 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
184     int req);
185 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
186     int flags);
187 static void vm_page_zone_release(void *arg, void **store, int cnt);
188 
189 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
190 
191 static void
vm_page_init(void * dummy)192 vm_page_init(void *dummy)
193 {
194 
195 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
196 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197 	bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
198 }
199 
200 static int pgcache_zone_max_pcpu;
201 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
202     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
203     "Per-CPU page cache size");
204 
205 /*
206  * The cache page zone is initialized later since we need to be able to allocate
207  * pages before UMA is fully initialized.
208  */
209 static void
vm_page_init_cache_zones(void * dummy __unused)210 vm_page_init_cache_zones(void *dummy __unused)
211 {
212 	struct vm_domain *vmd;
213 	struct vm_pgcache *pgcache;
214 	int cache, domain, maxcache, pool;
215 
216 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
217 	maxcache = pgcache_zone_max_pcpu * mp_ncpus;
218 	for (domain = 0; domain < vm_ndomains; domain++) {
219 		vmd = VM_DOMAIN(domain);
220 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
221 #ifdef VM_FREEPOOL_LAZYINIT
222 			if (pool == VM_FREEPOOL_LAZYINIT)
223 				continue;
224 #endif
225 			pgcache = &vmd->vmd_pgcache[pool];
226 			pgcache->domain = domain;
227 			pgcache->pool = pool;
228 			pgcache->zone = uma_zcache_create("vm pgcache",
229 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
230 			    vm_page_zone_import, vm_page_zone_release, pgcache,
231 			    UMA_ZONE_VM);
232 
233 			/*
234 			 * Limit each pool's zone to 0.1% of the pages in the
235 			 * domain.
236 			 */
237 			cache = maxcache != 0 ? maxcache :
238 			    vmd->vmd_page_count / 1000;
239 			uma_zone_set_maxcache(pgcache->zone, cache);
240 		}
241 	}
242 }
243 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
244 
245 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
246 #if PAGE_SIZE == 32768
247 #ifdef CTASSERT
248 CTASSERT(sizeof(u_long) >= 8);
249 #endif
250 #endif
251 
252 /*
253  *	vm_set_page_size:
254  *
255  *	Sets the page size, perhaps based upon the memory
256  *	size.  Must be called before any use of page-size
257  *	dependent functions.
258  */
259 void
vm_set_page_size(void)260 vm_set_page_size(void)
261 {
262 	if (vm_cnt.v_page_size == 0)
263 		vm_cnt.v_page_size = PAGE_SIZE;
264 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
265 		panic("vm_set_page_size: page size not a power of two");
266 }
267 
268 /*
269  *	vm_page_blacklist_next:
270  *
271  *	Find the next entry in the provided string of blacklist
272  *	addresses.  Entries are separated by space, comma, or newline.
273  *	If an invalid integer is encountered then the rest of the
274  *	string is skipped.  Updates the list pointer to the next
275  *	character, or NULL if the string is exhausted or invalid.
276  */
277 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)278 vm_page_blacklist_next(char **list, char *end)
279 {
280 	vm_paddr_t bad;
281 	char *cp, *pos;
282 
283 	if (list == NULL || *list == NULL)
284 		return (0);
285 	if (**list =='\0') {
286 		*list = NULL;
287 		return (0);
288 	}
289 
290 	/*
291 	 * If there's no end pointer then the buffer is coming from
292 	 * the kenv and we know it's null-terminated.
293 	 */
294 	if (end == NULL)
295 		end = *list + strlen(*list);
296 
297 	/* Ensure that strtoq() won't walk off the end */
298 	if (*end != '\0') {
299 		if (*end == '\n' || *end == ' ' || *end  == ',')
300 			*end = '\0';
301 		else {
302 			printf("Blacklist not terminated, skipping\n");
303 			*list = NULL;
304 			return (0);
305 		}
306 	}
307 
308 	for (pos = *list; *pos != '\0'; pos = cp) {
309 		bad = strtoq(pos, &cp, 0);
310 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
311 			if (bad == 0) {
312 				if (++cp < end)
313 					continue;
314 				else
315 					break;
316 			}
317 		} else
318 			break;
319 		if (*cp == '\0' || ++cp >= end)
320 			*list = NULL;
321 		else
322 			*list = cp;
323 		return (trunc_page(bad));
324 	}
325 	printf("Garbage in RAM blacklist, skipping\n");
326 	*list = NULL;
327 	return (0);
328 }
329 
330 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)331 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
332 {
333 	struct vm_domain *vmd;
334 	vm_page_t m;
335 	bool found;
336 
337 	m = vm_phys_paddr_to_vm_page(pa);
338 	if (m == NULL)
339 		return (true); /* page does not exist, no failure */
340 
341 	vmd = VM_DOMAIN(vm_phys_domain(pa));
342 	vm_domain_free_lock(vmd);
343 	found = vm_phys_unfree_page(pa);
344 	vm_domain_free_unlock(vmd);
345 	if (found) {
346 		vm_domain_freecnt_inc(vmd, -1);
347 		TAILQ_INSERT_TAIL(&blacklist_head, m, plinks.q);
348 		if (verbose)
349 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
350 	}
351 	return (found);
352 }
353 
354 /*
355  *	vm_page_blacklist_check:
356  *
357  *	Iterate through the provided string of blacklist addresses, pulling
358  *	each entry out of the physical allocator free list and putting it
359  *	onto a list for reporting via the vm.page_blacklist sysctl.
360  */
361 static void
vm_page_blacklist_check(char * list,char * end)362 vm_page_blacklist_check(char *list, char *end)
363 {
364 	vm_paddr_t pa;
365 	char *next;
366 
367 	next = list;
368 	while (next != NULL) {
369 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
370 			continue;
371 		vm_page_blacklist_add(pa, bootverbose);
372 	}
373 }
374 
375 /*
376  *	vm_page_blacklist_load:
377  *
378  *	Search for a special module named "ram_blacklist".  It'll be a
379  *	plain text file provided by the user via the loader directive
380  *	of the same name.
381  */
382 static void
vm_page_blacklist_load(char ** list,char ** end)383 vm_page_blacklist_load(char **list, char **end)
384 {
385 	void *mod;
386 	u_char *ptr;
387 	u_int len;
388 
389 	mod = NULL;
390 	ptr = NULL;
391 
392 	mod = preload_search_by_type("ram_blacklist");
393 	if (mod != NULL) {
394 		ptr = preload_fetch_addr(mod);
395 		len = preload_fetch_size(mod);
396         }
397 
398 	if (ptr != NULL && len > 0) {
399 		*list = ptr;
400 		*end = ptr + len - 1;
401 	} else {
402 		*list = NULL;
403 		*end = NULL;
404 	}
405 
406 	return;
407 }
408 
409 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)410 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
411 {
412 	vm_page_t m;
413 	struct sbuf sbuf;
414 	int error, first;
415 
416 	first = 1;
417 	error = sysctl_wire_old_buffer(req, 0);
418 	if (error != 0)
419 		return (error);
420 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
421 	TAILQ_FOREACH(m, &blacklist_head, plinks.q) {
422 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
423 		    (uintmax_t)m->phys_addr);
424 		first = 0;
425 	}
426 	error = sbuf_finish(&sbuf);
427 	sbuf_delete(&sbuf);
428 	return (error);
429 }
430 
431 /*
432  * Initialize a dummy page for use in scans of the specified paging queue.
433  * In principle, this function only needs to set the flag PG_MARKER.
434  * Nonetheless, it write busies the page as a safety precaution.
435  */
436 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)437 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
438 {
439 
440 	bzero(marker, sizeof(*marker));
441 	marker->flags = PG_MARKER;
442 	marker->a.flags = aflags;
443 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
444 	marker->a.queue = queue;
445 }
446 
447 static void
vm_page_domain_init(int domain)448 vm_page_domain_init(int domain)
449 {
450 	struct vm_domain *vmd;
451 	struct vm_pagequeue *pq;
452 	int i;
453 
454 	vmd = VM_DOMAIN(domain);
455 	bzero(vmd, sizeof(*vmd));
456 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
457 	    "vm inactive pagequeue";
458 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
459 	    "vm active pagequeue";
460 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
461 	    "vm laundry pagequeue";
462 	*__DECONST(const char **,
463 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
464 	    "vm unswappable pagequeue";
465 	vmd->vmd_domain = domain;
466 	vmd->vmd_page_count = 0;
467 	vmd->vmd_free_count = 0;
468 	vmd->vmd_segs = 0;
469 	vmd->vmd_oom = false;
470 	vmd->vmd_helper_threads_enabled = true;
471 	for (i = 0; i < PQ_COUNT; i++) {
472 		pq = &vmd->vmd_pagequeues[i];
473 		TAILQ_INIT(&pq->pq_pl);
474 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
475 		    MTX_DEF | MTX_DUPOK);
476 		pq->pq_pdpages = 0;
477 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
478 	}
479 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
480 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
481 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
482 
483 	/*
484 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
485 	 * insertions.
486 	 */
487 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
488 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
489 	    &vmd->vmd_inacthead, plinks.q);
490 
491 	/*
492 	 * The clock pages are used to implement active queue scanning without
493 	 * requeues.  Scans start at clock[0], which is advanced after the scan
494 	 * ends.  When the two clock hands meet, they are reset and scanning
495 	 * resumes from the head of the queue.
496 	 */
497 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
498 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
499 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
500 	    &vmd->vmd_clock[0], plinks.q);
501 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
502 	    &vmd->vmd_clock[1], plinks.q);
503 }
504 
505 /*
506  * Initialize a physical page in preparation for adding it to the free
507  * lists.
508  */
509 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)510 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
511 {
512 	m->object = NULL;
513 	m->ref_count = 0;
514 	m->busy_lock = VPB_FREED;
515 	m->flags = m->a.flags = 0;
516 	m->phys_addr = pa;
517 	m->a.queue = PQ_NONE;
518 	m->psind = 0;
519 	m->segind = segind;
520 	m->order = VM_NFREEORDER;
521 	m->pool = pool;
522 	m->valid = m->dirty = 0;
523 	pmap_page_init(m);
524 }
525 
526 #ifndef PMAP_HAS_PAGE_ARRAY
527 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)528 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
529 {
530 	vm_paddr_t new_end;
531 
532 	/*
533 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
534 	 * However, because this page is allocated from KVM, out-of-bounds
535 	 * accesses using the direct map will not be trapped.
536 	 */
537 	*vaddr += PAGE_SIZE;
538 
539 	/*
540 	 * Allocate physical memory for the page structures, and map it.
541 	 */
542 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
543 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
544 	    VM_PROT_READ | VM_PROT_WRITE);
545 	vm_page_array_size = page_range;
546 
547 	return (new_end);
548 }
549 #endif
550 
551 /*
552  *	vm_page_startup:
553  *
554  *	Initializes the resident memory module.  Allocates physical memory for
555  *	bootstrapping UMA and some data structures that are used to manage
556  *	physical pages.  Initializes these structures, and populates the free
557  *	page queues.
558  */
559 vm_offset_t
vm_page_startup(vm_offset_t vaddr)560 vm_page_startup(vm_offset_t vaddr)
561 {
562 	struct vm_phys_seg *seg;
563 	struct vm_domain *vmd;
564 	vm_page_t m;
565 	char *list, *listend;
566 	vm_paddr_t end, high_avail, low_avail, new_end, size;
567 	vm_paddr_t page_range __unused;
568 	vm_paddr_t last_pa, pa, startp, endp;
569 	u_long pagecount;
570 #if MINIDUMP_PAGE_TRACKING
571 	u_long vm_page_dump_size;
572 #endif
573 	int biggestone, i, segind;
574 #ifdef WITNESS
575 	vm_offset_t mapped;
576 	int witness_size;
577 #endif
578 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
579 	long ii;
580 #endif
581 	int pool;
582 #ifdef VM_FREEPOOL_LAZYINIT
583 	int lazyinit;
584 #endif
585 
586 	vaddr = round_page(vaddr);
587 
588 	vm_phys_early_startup();
589 	biggestone = vm_phys_avail_largest();
590 	end = phys_avail[biggestone+1];
591 
592 	/*
593 	 * Initialize the page and queue locks.
594 	 */
595 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
596 	for (i = 0; i < vm_ndomains; i++)
597 		vm_page_domain_init(i);
598 
599 	new_end = end;
600 #ifdef WITNESS
601 	witness_size = round_page(witness_startup_count());
602 	new_end -= witness_size;
603 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
604 	    VM_PROT_READ | VM_PROT_WRITE);
605 	bzero((void *)mapped, witness_size);
606 	witness_startup((void *)mapped);
607 #endif
608 
609 #if MINIDUMP_PAGE_TRACKING
610 	/*
611 	 * Allocate a bitmap to indicate that a random physical page
612 	 * needs to be included in a minidump.
613 	 *
614 	 * The amd64 port needs this to indicate which direct map pages
615 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
616 	 *
617 	 * However, i386 still needs this workspace internally within the
618 	 * minidump code.  In theory, they are not needed on i386, but are
619 	 * included should the sf_buf code decide to use them.
620 	 */
621 	last_pa = 0;
622 	vm_page_dump_pages = 0;
623 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
624 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
625 		    dump_avail[i] / PAGE_SIZE;
626 		if (dump_avail[i + 1] > last_pa)
627 			last_pa = dump_avail[i + 1];
628 	}
629 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
630 	new_end -= vm_page_dump_size;
631 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
632 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
633 	bzero((void *)vm_page_dump, vm_page_dump_size);
634 #if MINIDUMP_STARTUP_PAGE_TRACKING
635 	/*
636 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
637 	 * in a crash dump.  When pmap_map() uses the direct map, they are
638 	 * not automatically included.
639 	 */
640 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
641 		dump_add_page(pa);
642 #endif
643 #else
644 	(void)last_pa;
645 #endif
646 	phys_avail[biggestone + 1] = new_end;
647 #ifdef __amd64__
648 	/*
649 	 * Request that the physical pages underlying the message buffer be
650 	 * included in a crash dump.  Since the message buffer is accessed
651 	 * through the direct map, they are not automatically included.
652 	 */
653 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
654 	last_pa = pa + round_page(msgbufsize);
655 	while (pa < last_pa) {
656 		dump_add_page(pa);
657 		pa += PAGE_SIZE;
658 	}
659 #else
660 	(void)pa;
661 #endif
662 
663 	/*
664 	 * Determine the lowest and highest physical addresses and, in the case
665 	 * of VM_PHYSSEG_SPARSE, the exact size of the available physical
666 	 * memory.  vm_phys_early_startup() already checked that phys_avail[]
667 	 * has at least one element.
668 	 */
669 #ifdef VM_PHYSSEG_SPARSE
670 	size = phys_avail[1] - phys_avail[0];
671 #endif
672 	low_avail = phys_avail[0];
673 	high_avail = phys_avail[1];
674 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
675 #ifdef VM_PHYSSEG_SPARSE
676 		size += phys_avail[i + 1] - phys_avail[i];
677 #endif
678 		if (phys_avail[i] < low_avail)
679 			low_avail = phys_avail[i];
680 		if (phys_avail[i + 1] > high_avail)
681 			high_avail = phys_avail[i + 1];
682 	}
683 	for (i = 0; i < vm_phys_nsegs; i++) {
684 #ifdef VM_PHYSSEG_SPARSE
685 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
686 #endif
687 		if (vm_phys_segs[i].start < low_avail)
688 			low_avail = vm_phys_segs[i].start;
689 		if (vm_phys_segs[i].end > high_avail)
690 			high_avail = vm_phys_segs[i].end;
691 	}
692 	first_page = low_avail / PAGE_SIZE;
693 #ifdef VM_PHYSSEG_DENSE
694 	size = high_avail - low_avail;
695 #endif
696 
697 #ifdef PMAP_HAS_PAGE_ARRAY
698 	pmap_page_array_startup(size / PAGE_SIZE);
699 	biggestone = vm_phys_avail_largest();
700 	end = new_end = phys_avail[biggestone + 1];
701 #else
702 #ifdef VM_PHYSSEG_DENSE
703 	/*
704 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
705 	 * the overhead of a page structure per page only if vm_page_array is
706 	 * allocated from the last physical memory chunk.  Otherwise, we must
707 	 * allocate page structures representing the physical memory
708 	 * underlying vm_page_array, even though they will not be used.
709 	 */
710 	if (new_end != high_avail)
711 		page_range = size / PAGE_SIZE;
712 	else
713 #endif
714 	{
715 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
716 
717 		/*
718 		 * If the partial bytes remaining are large enough for
719 		 * a page (PAGE_SIZE) without a corresponding
720 		 * 'struct vm_page', then new_end will contain an
721 		 * extra page after subtracting the length of the VM
722 		 * page array.  Compensate by subtracting an extra
723 		 * page from new_end.
724 		 */
725 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
726 			if (new_end == high_avail)
727 				high_avail -= PAGE_SIZE;
728 			new_end -= PAGE_SIZE;
729 		}
730 	}
731 	end = new_end;
732 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
733 #endif
734 
735 #if VM_NRESERVLEVEL > 0
736 	/*
737 	 * Allocate physical memory for the reservation management system's
738 	 * data structures, and map it.
739 	 */
740 	new_end = vm_reserv_startup(&vaddr, new_end);
741 #endif
742 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
743 	/*
744 	 * Include vm_page_array and vm_reserv_array in a crash dump.
745 	 */
746 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
747 		dump_add_page(pa);
748 #endif
749 	phys_avail[biggestone + 1] = new_end;
750 
751 	/*
752 	 * Add physical memory segments corresponding to the available
753 	 * physical pages.
754 	 */
755 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
756 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
757 
758 	/*
759 	 * Initialize the physical memory allocator.
760 	 */
761 	vm_phys_init();
762 
763 	pool = VM_FREEPOOL_DEFAULT;
764 #ifdef VM_FREEPOOL_LAZYINIT
765 	lazyinit = 1;
766 	TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
767 	if (lazyinit)
768 		pool = VM_FREEPOOL_LAZYINIT;
769 #endif
770 
771 	/*
772 	 * Initialize the page structures and add every available page to the
773 	 * physical memory allocator's free lists.
774 	 */
775 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
776 	for (ii = 0; ii < vm_page_array_size; ii++) {
777 		m = &vm_page_array[ii];
778 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
779 		    VM_FREEPOOL_DEFAULT);
780 		m->flags = PG_FICTITIOUS;
781 	}
782 #endif
783 	vm_cnt.v_page_count = 0;
784 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
785 		seg = &vm_phys_segs[segind];
786 
787 		/*
788 		 * Initialize pages not covered by phys_avail[], since they
789 		 * might be freed to the allocator at some future point, e.g.,
790 		 * by kmem_bootstrap_free().
791 		 */
792 		startp = seg->start;
793 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
794 			if (startp >= seg->end)
795 				break;
796 			if (phys_avail[i + 1] < startp)
797 				continue;
798 			if (phys_avail[i] <= startp) {
799 				startp = phys_avail[i + 1];
800 				continue;
801 			}
802 			m = vm_phys_seg_paddr_to_vm_page(seg, startp);
803 			for (endp = MIN(phys_avail[i], seg->end);
804 			    startp < endp; startp += PAGE_SIZE, m++) {
805 				vm_page_init_page(m, startp, segind,
806 				    VM_FREEPOOL_DEFAULT);
807 			}
808 		}
809 
810 		/*
811 		 * Add the segment's pages that are covered by one of
812 		 * phys_avail's ranges to the free lists.
813 		 */
814 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
815 			if (seg->end <= phys_avail[i] ||
816 			    seg->start >= phys_avail[i + 1])
817 				continue;
818 
819 			startp = MAX(seg->start, phys_avail[i]);
820 			endp = MIN(seg->end, phys_avail[i + 1]);
821 			pagecount = (u_long)atop(endp - startp);
822 			if (pagecount == 0)
823 				continue;
824 
825 			/*
826 			 * If lazy vm_page initialization is not enabled, simply
827 			 * initialize all of the pages in the segment covered by
828 			 * phys_avail.  Otherwise, initialize only the first
829 			 * page of each run of free pages handed to the vm_phys
830 			 * allocator, which in turn defers initialization of
831 			 * pages until they are needed.
832 			 *
833 			 * This avoids blocking the boot process for long
834 			 * periods, which may be relevant for VMs (which ought
835 			 * to boot as quickly as possible) and/or systems with
836 			 * large amounts of physical memory.
837 			 */
838 			m = vm_phys_seg_paddr_to_vm_page(seg, startp);
839 			vm_page_init_page(m, startp, segind, pool);
840 			if (pool == VM_FREEPOOL_DEFAULT) {
841 				for (u_long j = 1; j < pagecount; j++) {
842 					vm_page_init_page(&m[j],
843 					    startp + ptoa((vm_paddr_t)j),
844 					    segind, pool);
845 				}
846 			}
847 			vmd = VM_DOMAIN(seg->domain);
848 			vm_domain_free_lock(vmd);
849 			vm_phys_enqueue_contig(m, pool, pagecount);
850 			vm_domain_free_unlock(vmd);
851 			vm_domain_freecnt_inc(vmd, pagecount);
852 			vm_cnt.v_page_count += (u_int)pagecount;
853 			vmd->vmd_page_count += (u_int)pagecount;
854 			vmd->vmd_segs |= 1UL << segind;
855 		}
856 	}
857 
858 	/*
859 	 * Remove blacklisted pages from the physical memory allocator.
860 	 */
861 	TAILQ_INIT(&blacklist_head);
862 	vm_page_blacklist_load(&list, &listend);
863 	vm_page_blacklist_check(list, listend);
864 
865 	list = kern_getenv("vm.blacklist");
866 	vm_page_blacklist_check(list, NULL);
867 
868 	freeenv(list);
869 #if VM_NRESERVLEVEL > 0
870 	/*
871 	 * Initialize the reservation management system.
872 	 */
873 	vm_reserv_init();
874 #endif
875 
876 	return (vaddr);
877 }
878 
879 void
vm_page_reference(vm_page_t m)880 vm_page_reference(vm_page_t m)
881 {
882 
883 	vm_page_aflag_set(m, PGA_REFERENCED);
884 }
885 
886 /*
887  *	vm_page_trybusy
888  *
889  *	Helper routine for grab functions to trylock busy.
890  *
891  *	Returns true on success and false on failure.
892  */
893 static bool
vm_page_trybusy(vm_page_t m,int allocflags)894 vm_page_trybusy(vm_page_t m, int allocflags)
895 {
896 
897 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
898 		return (vm_page_trysbusy(m));
899 	else
900 		return (vm_page_tryxbusy(m));
901 }
902 
903 /*
904  *	vm_page_tryacquire
905  *
906  *	Helper routine for grab functions to trylock busy and wire.
907  *
908  *	Returns true on success and false on failure.
909  */
910 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)911 vm_page_tryacquire(vm_page_t m, int allocflags)
912 {
913 	bool locked;
914 
915 	locked = vm_page_trybusy(m, allocflags);
916 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
917 		vm_page_wire(m);
918 	return (locked);
919 }
920 
921 /*
922  *	vm_page_busy_acquire:
923  *
924  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
925  *	and drop the object lock if necessary.
926  */
927 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)928 vm_page_busy_acquire(vm_page_t m, int allocflags)
929 {
930 	vm_object_t obj;
931 	bool locked;
932 
933 	/*
934 	 * The page-specific object must be cached because page
935 	 * identity can change during the sleep, causing the
936 	 * re-lock of a different object.
937 	 * It is assumed that a reference to the object is already
938 	 * held by the callers.
939 	 */
940 	obj = atomic_load_ptr(&m->object);
941 	for (;;) {
942 		if (vm_page_tryacquire(m, allocflags))
943 			return (true);
944 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
945 			return (false);
946 		if (obj != NULL)
947 			locked = VM_OBJECT_WOWNED(obj);
948 		else
949 			locked = false;
950 		MPASS(locked || vm_page_wired(m));
951 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
952 		    locked) && locked)
953 			VM_OBJECT_WLOCK(obj);
954 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
955 			return (false);
956 		KASSERT(m->object == obj || m->object == NULL,
957 		    ("vm_page_busy_acquire: page %p does not belong to %p",
958 		    m, obj));
959 	}
960 }
961 
962 /*
963  *	vm_page_busy_downgrade:
964  *
965  *	Downgrade an exclusive busy page into a single shared busy page.
966  */
967 void
vm_page_busy_downgrade(vm_page_t m)968 vm_page_busy_downgrade(vm_page_t m)
969 {
970 	u_int x;
971 
972 	vm_page_assert_xbusied(m);
973 
974 	x = vm_page_busy_fetch(m);
975 	for (;;) {
976 		if (atomic_fcmpset_rel_int(&m->busy_lock,
977 		    &x, VPB_SHARERS_WORD(1)))
978 			break;
979 	}
980 	if ((x & VPB_BIT_WAITERS) != 0)
981 		wakeup(m);
982 }
983 
984 /*
985  *
986  *	vm_page_busy_tryupgrade:
987  *
988  *	Attempt to upgrade a single shared busy into an exclusive busy.
989  */
990 int
vm_page_busy_tryupgrade(vm_page_t m)991 vm_page_busy_tryupgrade(vm_page_t m)
992 {
993 	u_int ce, x;
994 
995 	vm_page_assert_sbusied(m);
996 
997 	x = vm_page_busy_fetch(m);
998 	ce = VPB_CURTHREAD_EXCLUSIVE;
999 	for (;;) {
1000 		if (VPB_SHARERS(x) > 1)
1001 			return (0);
1002 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1003 		    ("vm_page_busy_tryupgrade: invalid lock state"));
1004 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1005 		    ce | (x & VPB_BIT_WAITERS)))
1006 			continue;
1007 		return (1);
1008 	}
1009 }
1010 
1011 /*
1012  *	vm_page_sbusied:
1013  *
1014  *	Return a positive value if the page is shared busied, 0 otherwise.
1015  */
1016 int
vm_page_sbusied(vm_page_t m)1017 vm_page_sbusied(vm_page_t m)
1018 {
1019 	u_int x;
1020 
1021 	x = vm_page_busy_fetch(m);
1022 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1023 }
1024 
1025 /*
1026  *	vm_page_sunbusy:
1027  *
1028  *	Shared unbusy a page.
1029  */
1030 void
vm_page_sunbusy(vm_page_t m)1031 vm_page_sunbusy(vm_page_t m)
1032 {
1033 	u_int x;
1034 
1035 	vm_page_assert_sbusied(m);
1036 
1037 	x = vm_page_busy_fetch(m);
1038 	for (;;) {
1039 		KASSERT(x != VPB_FREED,
1040 		    ("vm_page_sunbusy: Unlocking freed page."));
1041 		if (VPB_SHARERS(x) > 1) {
1042 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1043 			    x - VPB_ONE_SHARER))
1044 				break;
1045 			continue;
1046 		}
1047 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1048 		    ("vm_page_sunbusy: invalid lock state"));
1049 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1050 			continue;
1051 		if ((x & VPB_BIT_WAITERS) == 0)
1052 			break;
1053 		wakeup(m);
1054 		break;
1055 	}
1056 }
1057 
1058 /*
1059  *	vm_page_busy_sleep:
1060  *
1061  *	Sleep if the page is busy, using the page pointer as wchan.
1062  *	This is used to implement the hard-path of the busying mechanism.
1063  *
1064  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1065  *	will not sleep if the page is shared-busy.
1066  *
1067  *	The object lock must be held on entry.
1068  *
1069  *	Returns true if it slept and dropped the object lock, or false
1070  *	if there was no sleep and the lock is still held.
1071  */
1072 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1073 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1074 {
1075 	vm_object_t obj;
1076 
1077 	obj = m->object;
1078 	VM_OBJECT_ASSERT_LOCKED(obj);
1079 
1080 	return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1081 	    true));
1082 }
1083 
1084 /*
1085  *	vm_page_busy_sleep_unlocked:
1086  *
1087  *	Sleep if the page is busy, using the page pointer as wchan.
1088  *	This is used to implement the hard-path of busying mechanism.
1089  *
1090  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1091  *	will not sleep if the page is shared-busy.
1092  *
1093  *	The object lock must not be held on entry.  The operation will
1094  *	return if the page changes identity.
1095  */
1096 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1097 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1098     const char *wmesg, int allocflags)
1099 {
1100 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1101 
1102 	(void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1103 }
1104 
1105 /*
1106  *	_vm_page_busy_sleep:
1107  *
1108  *	Internal busy sleep function.  Verifies the page identity and
1109  *	lockstate against parameters.  Returns true if it sleeps and
1110  *	false otherwise.
1111  *
1112  *	allocflags uses VM_ALLOC_* flags to specify the lock required.
1113  *
1114  *	If locked is true the lock will be dropped for any true returns
1115  *	and held for any false returns.
1116  */
1117 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1118 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1119     const char *wmesg, int allocflags, bool locked)
1120 {
1121 	bool xsleep;
1122 	u_int x;
1123 
1124 	/*
1125 	 * If the object is busy we must wait for that to drain to zero
1126 	 * before trying the page again.
1127 	 */
1128 	if (obj != NULL && vm_object_busied(obj)) {
1129 		if (locked)
1130 			VM_OBJECT_DROP(obj);
1131 		vm_object_busy_wait(obj, wmesg);
1132 		return (true);
1133 	}
1134 
1135 	if (!vm_page_busied(m))
1136 		return (false);
1137 
1138 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1139 	sleepq_lock(m);
1140 	x = vm_page_busy_fetch(m);
1141 	do {
1142 		/*
1143 		 * If the page changes objects or becomes unlocked we can
1144 		 * simply return.
1145 		 */
1146 		if (x == VPB_UNBUSIED ||
1147 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1148 		    m->object != obj || m->pindex != pindex) {
1149 			sleepq_release(m);
1150 			return (false);
1151 		}
1152 		if ((x & VPB_BIT_WAITERS) != 0)
1153 			break;
1154 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1155 	if (locked)
1156 		VM_OBJECT_DROP(obj);
1157 	DROP_GIANT();
1158 	sleepq_add(m, NULL, wmesg, 0, 0);
1159 	sleepq_wait(m, PVM);
1160 	PICKUP_GIANT();
1161 	return (true);
1162 }
1163 
1164 /*
1165  *	vm_page_trysbusy:
1166  *
1167  *	Try to shared busy a page.
1168  *	If the operation succeeds 1 is returned otherwise 0.
1169  *	The operation never sleeps.
1170  */
1171 int
vm_page_trysbusy(vm_page_t m)1172 vm_page_trysbusy(vm_page_t m)
1173 {
1174 	vm_object_t obj;
1175 	u_int x;
1176 
1177 	obj = m->object;
1178 	x = vm_page_busy_fetch(m);
1179 	for (;;) {
1180 		if ((x & VPB_BIT_SHARED) == 0)
1181 			return (0);
1182 		/*
1183 		 * Reduce the window for transient busies that will trigger
1184 		 * false negatives in vm_page_ps_test().
1185 		 */
1186 		if (obj != NULL && vm_object_busied(obj))
1187 			return (0);
1188 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1189 		    x + VPB_ONE_SHARER))
1190 			break;
1191 	}
1192 
1193 	/* Refetch the object now that we're guaranteed that it is stable. */
1194 	obj = m->object;
1195 	if (obj != NULL && vm_object_busied(obj)) {
1196 		vm_page_sunbusy(m);
1197 		return (0);
1198 	}
1199 	return (1);
1200 }
1201 
1202 /*
1203  *	vm_page_tryxbusy:
1204  *
1205  *	Try to exclusive busy a page.
1206  *	If the operation succeeds 1 is returned otherwise 0.
1207  *	The operation never sleeps.
1208  */
1209 int
vm_page_tryxbusy(vm_page_t m)1210 vm_page_tryxbusy(vm_page_t m)
1211 {
1212 	vm_object_t obj;
1213 
1214         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1215             VPB_CURTHREAD_EXCLUSIVE) == 0)
1216 		return (0);
1217 
1218 	obj = m->object;
1219 	if (obj != NULL && vm_object_busied(obj)) {
1220 		vm_page_xunbusy(m);
1221 		return (0);
1222 	}
1223 	return (1);
1224 }
1225 
1226 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1227 vm_page_xunbusy_hard_tail(vm_page_t m)
1228 {
1229 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1230 	/* Wake the waiter. */
1231 	wakeup(m);
1232 }
1233 
1234 /*
1235  *	vm_page_xunbusy_hard:
1236  *
1237  *	Called when unbusy has failed because there is a waiter.
1238  */
1239 void
vm_page_xunbusy_hard(vm_page_t m)1240 vm_page_xunbusy_hard(vm_page_t m)
1241 {
1242 	vm_page_assert_xbusied(m);
1243 	vm_page_xunbusy_hard_tail(m);
1244 }
1245 
1246 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1247 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1248 {
1249 	vm_page_assert_xbusied_unchecked(m);
1250 	vm_page_xunbusy_hard_tail(m);
1251 }
1252 
1253 static void
vm_page_busy_free(vm_page_t m)1254 vm_page_busy_free(vm_page_t m)
1255 {
1256 	u_int x;
1257 
1258 	atomic_thread_fence_rel();
1259 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1260 	if ((x & VPB_BIT_WAITERS) != 0)
1261 		wakeup(m);
1262 }
1263 
1264 /*
1265  *	vm_page_unhold_pages:
1266  *
1267  *	Unhold each of the pages that is referenced by the given array.
1268  */
1269 void
vm_page_unhold_pages(vm_page_t * ma,int count)1270 vm_page_unhold_pages(vm_page_t *ma, int count)
1271 {
1272 
1273 	for (; count != 0; count--) {
1274 		vm_page_unwire(*ma, PQ_ACTIVE);
1275 		ma++;
1276 	}
1277 }
1278 
1279 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1280 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1281 {
1282 	vm_page_t m;
1283 
1284 #ifdef VM_PHYSSEG_SPARSE
1285 	m = vm_phys_paddr_to_vm_page(pa);
1286 	if (m == NULL)
1287 		m = vm_phys_fictitious_to_vm_page(pa);
1288 	return (m);
1289 #elif defined(VM_PHYSSEG_DENSE)
1290 	long pi;
1291 
1292 	pi = atop(pa);
1293 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1294 		m = &vm_page_array[pi - first_page];
1295 		return (m);
1296 	}
1297 	return (vm_phys_fictitious_to_vm_page(pa));
1298 #else
1299 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1300 #endif
1301 }
1302 
1303 /*
1304  *	vm_page_getfake:
1305  *
1306  *	Create a fictitious page with the specified physical address and
1307  *	memory attribute.  The memory attribute is the only the machine-
1308  *	dependent aspect of a fictitious page that must be initialized.
1309  */
1310 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1311 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1312 {
1313 	vm_page_t m;
1314 
1315 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1316 	vm_page_initfake(m, paddr, memattr);
1317 	return (m);
1318 }
1319 
1320 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1321 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1322 {
1323 
1324 	if ((m->flags & PG_FICTITIOUS) != 0) {
1325 		/*
1326 		 * The page's memattr might have changed since the
1327 		 * previous initialization.  Update the pmap to the
1328 		 * new memattr.
1329 		 */
1330 		goto memattr;
1331 	}
1332 	m->phys_addr = paddr;
1333 	m->a.queue = PQ_NONE;
1334 	/* Fictitious pages don't use "segind". */
1335 	m->flags = PG_FICTITIOUS;
1336 	/* Fictitious pages don't use "order" or "pool". */
1337 	m->oflags = VPO_UNMANAGED;
1338 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1339 	/* Fictitious pages are unevictable. */
1340 	m->ref_count = 1;
1341 	pmap_page_init(m);
1342 memattr:
1343 	pmap_page_set_memattr(m, memattr);
1344 }
1345 
1346 /*
1347  *	vm_page_putfake:
1348  *
1349  *	Release a fictitious page.
1350  */
1351 void
vm_page_putfake(vm_page_t m)1352 vm_page_putfake(vm_page_t m)
1353 {
1354 
1355 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1356 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1357 	    ("vm_page_putfake: bad page %p", m));
1358 	vm_page_assert_xbusied(m);
1359 	vm_page_busy_free(m);
1360 	uma_zfree(fakepg_zone, m);
1361 }
1362 
1363 /*
1364  *	vm_page_updatefake:
1365  *
1366  *	Update the given fictitious page to the specified physical address and
1367  *	memory attribute.
1368  */
1369 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1370 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1371 {
1372 
1373 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1374 	    ("vm_page_updatefake: bad page %p", m));
1375 	m->phys_addr = paddr;
1376 	pmap_page_set_memattr(m, memattr);
1377 }
1378 
1379 /*
1380  *	vm_page_free:
1381  *
1382  *	Free a page.
1383  */
1384 void
vm_page_free(vm_page_t m)1385 vm_page_free(vm_page_t m)
1386 {
1387 
1388 	m->flags &= ~PG_ZERO;
1389 	vm_page_free_toq(m);
1390 }
1391 
1392 /*
1393  *	vm_page_free_zero:
1394  *
1395  *	Free a page to the zerod-pages queue
1396  */
1397 void
vm_page_free_zero(vm_page_t m)1398 vm_page_free_zero(vm_page_t m)
1399 {
1400 
1401 	m->flags |= PG_ZERO;
1402 	vm_page_free_toq(m);
1403 }
1404 
1405 /*
1406  * Unbusy and handle the page queueing for a page from a getpages request that
1407  * was optionally read ahead or behind.
1408  */
1409 void
vm_page_readahead_finish(vm_page_t m)1410 vm_page_readahead_finish(vm_page_t m)
1411 {
1412 
1413 	/* We shouldn't put invalid pages on queues. */
1414 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1415 
1416 	/*
1417 	 * Since the page is not the actually needed one, whether it should
1418 	 * be activated or deactivated is not obvious.  Empirical results
1419 	 * have shown that deactivating the page is usually the best choice,
1420 	 * unless the page is wanted by another thread.
1421 	 */
1422 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1423 		vm_page_activate(m);
1424 	else
1425 		vm_page_deactivate(m);
1426 	vm_page_xunbusy_unchecked(m);
1427 }
1428 
1429 /*
1430  * Destroy the identity of an invalid page and free it if possible.
1431  * This is intended to be used when reading a page from backing store fails.
1432  */
1433 void
vm_page_free_invalid(vm_page_t m)1434 vm_page_free_invalid(vm_page_t m)
1435 {
1436 
1437 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1438 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1439 	KASSERT(m->object != NULL, ("page %p has no object", m));
1440 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1441 
1442 	/*
1443 	 * We may be attempting to free the page as part of the handling for an
1444 	 * I/O error, in which case the page was xbusied by a different thread.
1445 	 */
1446 	vm_page_xbusy_claim(m);
1447 
1448 	/*
1449 	 * If someone has wired this page while the object lock
1450 	 * was not held, then the thread that unwires is responsible
1451 	 * for freeing the page.  Otherwise just free the page now.
1452 	 * The wire count of this unmapped page cannot change while
1453 	 * we have the page xbusy and the page's object wlocked.
1454 	 */
1455 	if (vm_page_remove(m))
1456 		vm_page_free(m);
1457 }
1458 
1459 /*
1460  *	vm_page_dirty_KBI:		[ internal use only ]
1461  *
1462  *	Set all bits in the page's dirty field.
1463  *
1464  *	The object containing the specified page must be locked if the
1465  *	call is made from the machine-independent layer.
1466  *
1467  *	See vm_page_clear_dirty_mask().
1468  *
1469  *	This function should only be called by vm_page_dirty().
1470  */
1471 void
vm_page_dirty_KBI(vm_page_t m)1472 vm_page_dirty_KBI(vm_page_t m)
1473 {
1474 
1475 	/* Refer to this operation by its public name. */
1476 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1477 	m->dirty = VM_PAGE_BITS_ALL;
1478 }
1479 
1480 /*
1481  * Insert the given page into the given object at the given pindex.
1482  *
1483  * The procedure is marked __always_inline to suggest to the compiler to
1484  * eliminate the iter parameter and the associated alternate branch.
1485  */
1486 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,bool iter,struct pctrie_iter * pages)1487 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1488     bool iter, struct pctrie_iter *pages)
1489 {
1490 	int error;
1491 
1492 	VM_OBJECT_ASSERT_WLOCKED(object);
1493 	KASSERT(m->object == NULL,
1494 	    ("vm_page_insert: page %p already inserted", m));
1495 
1496 	/*
1497 	 * Record the object/offset pair in this page.
1498 	 */
1499 	m->object = object;
1500 	m->pindex = pindex;
1501 	m->ref_count |= VPRC_OBJREF;
1502 
1503 	/*
1504 	 * Add this page to the object's radix tree.
1505 	 */
1506 	if (iter)
1507 		error = vm_radix_iter_insert(pages, m);
1508 	else
1509 		error = vm_radix_insert(&object->rtree, m);
1510 	if (__predict_false(error != 0)) {
1511 		m->object = NULL;
1512 		m->pindex = 0;
1513 		m->ref_count &= ~VPRC_OBJREF;
1514 		return (1);
1515 	}
1516 
1517 	vm_page_insert_radixdone(m, object);
1518 	vm_pager_page_inserted(object, m);
1519 	return (0);
1520 }
1521 
1522 /*
1523  *	vm_page_insert:		[ internal use only ]
1524  *
1525  *	Inserts the given mem entry into the object and object list.
1526  *
1527  *	The object must be locked.
1528  */
1529 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1530 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1531 {
1532 	return (vm_page_insert_lookup(m, object, pindex, false, NULL));
1533 }
1534 
1535 /*
1536  *	vm_page_iter_insert:
1537  *
1538  *	Tries to insert the page "m" into the specified object at offset
1539  *	"pindex" using the iterator "pages".  Returns 0 if the insertion was
1540  *	successful.
1541  *
1542  *	The object must be locked.
1543  */
1544 int
vm_page_iter_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages)1545 vm_page_iter_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1546     struct pctrie_iter *pages)
1547 {
1548 	return (vm_page_insert_lookup(m, object, pindex, true, pages));
1549 }
1550 
1551 /*
1552  *	vm_page_insert_radixdone:
1553  *
1554  *	Complete page "m" insertion into the specified object after the
1555  *	radix trie hooking.
1556  *
1557  *	The object must be locked.
1558  */
1559 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object)1560 vm_page_insert_radixdone(vm_page_t m, vm_object_t object)
1561 {
1562 
1563 	VM_OBJECT_ASSERT_WLOCKED(object);
1564 	KASSERT(object != NULL && m->object == object,
1565 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1566 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1567 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1568 
1569 	/*
1570 	 * Show that the object has one more resident page.
1571 	 */
1572 	object->resident_page_count++;
1573 
1574 	/*
1575 	 * Hold the vnode until the last page is released.
1576 	 */
1577 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1578 		vhold(object->handle);
1579 
1580 	/*
1581 	 * Since we are inserting a new and possibly dirty page,
1582 	 * update the object's generation count.
1583 	 */
1584 	if (pmap_page_is_write_mapped(m))
1585 		vm_object_set_writeable_dirty(object);
1586 }
1587 
1588 /*
1589  *	vm_page_remove_radixdone
1590  *
1591  *	Complete page "m" removal from the specified object after the radix trie
1592  *	unhooking.
1593  *
1594  *	The caller is responsible for updating the page's fields to reflect this
1595  *	removal.
1596  */
1597 static void
vm_page_remove_radixdone(vm_page_t m)1598 vm_page_remove_radixdone(vm_page_t m)
1599 {
1600 	vm_object_t object;
1601 
1602 	vm_page_assert_xbusied(m);
1603 	object = m->object;
1604 	VM_OBJECT_ASSERT_WLOCKED(object);
1605 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1606 	    ("page %p is missing its object ref", m));
1607 
1608 	/* Deferred free of swap space. */
1609 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1610 		vm_pager_page_unswapped(m);
1611 
1612 	vm_pager_page_removed(object, m);
1613 	m->object = NULL;
1614 
1615 	/*
1616 	 * And show that the object has one fewer resident page.
1617 	 */
1618 	object->resident_page_count--;
1619 
1620 	/*
1621 	 * The vnode may now be recycled.
1622 	 */
1623 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1624 		vdrop(object->handle);
1625 }
1626 
1627 /*
1628  *	vm_page_free_object_prep:
1629  *
1630  *	Disassociates the given page from its VM object.
1631  *
1632  *	The object must be locked, and the page must be xbusy.
1633  */
1634 static void
vm_page_free_object_prep(vm_page_t m)1635 vm_page_free_object_prep(vm_page_t m)
1636 {
1637 	KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1638 	    ((m->object->flags & OBJ_UNMANAGED) != 0),
1639 	    ("%s: managed flag mismatch for page %p",
1640 	     __func__, m));
1641 	vm_page_assert_xbusied(m);
1642 
1643 	/*
1644 	 * The object reference can be released without an atomic
1645 	 * operation.
1646 	 */
1647 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1648 	    m->ref_count == VPRC_OBJREF,
1649 	    ("%s: page %p has unexpected ref_count %u",
1650 	    __func__, m, m->ref_count));
1651 	vm_page_remove_radixdone(m);
1652 	m->ref_count -= VPRC_OBJREF;
1653 }
1654 
1655 /*
1656  *	vm_page_iter_free:
1657  *
1658  *	Free the given page, and use the iterator to remove it from the radix
1659  *	tree.
1660  */
1661 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1662 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1663 {
1664 	vm_radix_iter_remove(pages);
1665 	vm_page_free_object_prep(m);
1666 	vm_page_xunbusy(m);
1667 	m->flags &= ~PG_ZERO;
1668 	vm_page_free_toq(m);
1669 }
1670 
1671 /*
1672  *	vm_page_remove:
1673  *
1674  *	Removes the specified page from its containing object, but does not
1675  *	invalidate any backing storage.  Returns true if the object's reference
1676  *	was the last reference to the page, and false otherwise.
1677  *
1678  *	The object must be locked and the page must be exclusively busied.
1679  *	The exclusive busy will be released on return.  If this is not the
1680  *	final ref and the caller does not hold a wire reference it may not
1681  *	continue to access the page.
1682  */
1683 bool
vm_page_remove(vm_page_t m)1684 vm_page_remove(vm_page_t m)
1685 {
1686 	bool dropped;
1687 
1688 	dropped = vm_page_remove_xbusy(m);
1689 	vm_page_xunbusy(m);
1690 
1691 	return (dropped);
1692 }
1693 
1694 /*
1695  *	vm_page_iter_remove:
1696  *
1697  *	Remove the current page, and use the iterator to remove it from the
1698  *	radix tree.
1699  */
1700 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1701 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1702 {
1703 	bool dropped;
1704 
1705 	vm_radix_iter_remove(pages);
1706 	vm_page_remove_radixdone(m);
1707 	dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1708 	vm_page_xunbusy(m);
1709 
1710 	return (dropped);
1711 }
1712 
1713 /*
1714  *	vm_page_radix_remove
1715  *
1716  *	Removes the specified page from the radix tree.
1717  */
1718 static void
vm_page_radix_remove(vm_page_t m)1719 vm_page_radix_remove(vm_page_t m)
1720 {
1721 	vm_page_t mrem __diagused;
1722 
1723 	mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1724 	KASSERT(mrem == m,
1725 	    ("removed page %p, expected page %p", mrem, m));
1726 }
1727 
1728 /*
1729  *	vm_page_remove_xbusy
1730  *
1731  *	Removes the page but leaves the xbusy held.  Returns true if this
1732  *	removed the final ref and false otherwise.
1733  */
1734 bool
vm_page_remove_xbusy(vm_page_t m)1735 vm_page_remove_xbusy(vm_page_t m)
1736 {
1737 
1738 	vm_page_radix_remove(m);
1739 	vm_page_remove_radixdone(m);
1740 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1741 }
1742 
1743 /*
1744  *	vm_page_lookup:
1745  *
1746  *	Returns the page associated with the object/offset
1747  *	pair specified; if none is found, NULL is returned.
1748  *
1749  *	The object must be locked.
1750  */
1751 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1752 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1753 {
1754 
1755 	VM_OBJECT_ASSERT_LOCKED(object);
1756 	return (vm_radix_lookup(&object->rtree, pindex));
1757 }
1758 
1759 /*
1760  *	vm_page_iter_init:
1761  *
1762  *	Initialize iterator for vm pages.
1763  */
1764 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1765 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1766 {
1767 
1768 	vm_radix_iter_init(pages, &object->rtree);
1769 }
1770 
1771 /*
1772  *	vm_page_iter_init:
1773  *
1774  *	Initialize iterator for vm pages.
1775  */
1776 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1777 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1778     vm_pindex_t limit)
1779 {
1780 
1781 	vm_radix_iter_limit_init(pages, &object->rtree, limit);
1782 }
1783 
1784 /*
1785  *	vm_page_lookup_unlocked:
1786  *
1787  *	Returns the page associated with the object/offset pair specified;
1788  *	if none is found, NULL is returned.  The page may be no longer be
1789  *	present in the object at the time that this function returns.  Only
1790  *	useful for opportunistic checks such as inmem().
1791  */
1792 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1793 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1794 {
1795 
1796 	return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1797 }
1798 
1799 /*
1800  *	vm_page_relookup:
1801  *
1802  *	Returns a page that must already have been busied by
1803  *	the caller.  Used for bogus page replacement.
1804  */
1805 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1806 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1807 {
1808 	vm_page_t m;
1809 
1810 	m = vm_page_lookup_unlocked(object, pindex);
1811 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1812 	    m->object == object && m->pindex == pindex,
1813 	    ("vm_page_relookup: Invalid page %p", m));
1814 	return (m);
1815 }
1816 
1817 /*
1818  * This should only be used by lockless functions for releasing transient
1819  * incorrect acquires.  The page may have been freed after we acquired a
1820  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1821  * further to do.
1822  */
1823 static void
vm_page_busy_release(vm_page_t m)1824 vm_page_busy_release(vm_page_t m)
1825 {
1826 	u_int x;
1827 
1828 	x = vm_page_busy_fetch(m);
1829 	for (;;) {
1830 		if (x == VPB_FREED)
1831 			break;
1832 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1833 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1834 			    x - VPB_ONE_SHARER))
1835 				break;
1836 			continue;
1837 		}
1838 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1839 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1840 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1841 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1842 			continue;
1843 		if ((x & VPB_BIT_WAITERS) != 0)
1844 			wakeup(m);
1845 		break;
1846 	}
1847 }
1848 
1849 /*
1850  * Uses the page mnew as a replacement for an existing page at index
1851  * pindex which must be already present in the object.
1852  *
1853  * Both pages must be exclusively busied on enter.  The old page is
1854  * unbusied on exit.
1855  *
1856  * A return value of true means mold is now free.  If this is not the
1857  * final ref and the caller does not hold a wire reference it may not
1858  * continue to access the page.
1859  */
1860 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1861 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1862     vm_page_t mold)
1863 {
1864 	vm_page_t mret __diagused;
1865 	bool dropped;
1866 
1867 	VM_OBJECT_ASSERT_WLOCKED(object);
1868 	vm_page_assert_xbusied(mold);
1869 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1870 	    ("vm_page_replace: page %p already in object", mnew));
1871 
1872 	/*
1873 	 * This function mostly follows vm_page_insert() and
1874 	 * vm_page_remove() without the radix, object count and vnode
1875 	 * dance.  Double check such functions for more comments.
1876 	 */
1877 
1878 	mnew->object = object;
1879 	mnew->pindex = pindex;
1880 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1881 	mret = vm_radix_replace(&object->rtree, mnew);
1882 	KASSERT(mret == mold,
1883 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1884 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1885 	    (mnew->oflags & VPO_UNMANAGED),
1886 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1887 
1888 	mold->object = NULL;
1889 
1890 	/*
1891 	 * The object's resident_page_count does not change because we have
1892 	 * swapped one page for another, but the generation count should
1893 	 * change if the page is dirty.
1894 	 */
1895 	if (pmap_page_is_write_mapped(mnew))
1896 		vm_object_set_writeable_dirty(object);
1897 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1898 	vm_page_xunbusy(mold);
1899 
1900 	return (dropped);
1901 }
1902 
1903 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1904 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1905     vm_page_t mold)
1906 {
1907 
1908 	vm_page_assert_xbusied(mnew);
1909 
1910 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1911 		vm_page_free(mold);
1912 }
1913 
1914 /*
1915  *	vm_page_iter_rename:
1916  *
1917  *	Tries to move the specified page from its current object to a new object
1918  *	and pindex, using the given iterator to remove the page from its current
1919  *	object.  Returns true if the move was successful, and false if the move
1920  *	was aborted due to a failed memory allocation.
1921  *
1922  *	Panics if a page already resides in the new object at the new pindex.
1923  *
1924  *	This routine dirties the page if it is valid, as callers are expected to
1925  *	transfer backing storage only after moving the page.  Dirtying the page
1926  *	ensures that the destination object retains the most recent copy of the
1927  *	page.
1928  *
1929  *	The objects must be locked.
1930  */
1931 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)1932 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
1933     vm_object_t new_object, vm_pindex_t new_pindex)
1934 {
1935 	vm_pindex_t opidx;
1936 
1937 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1938 	    ("%s: page %p is missing object ref", __func__, m));
1939 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1940 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1941 
1942 	/*
1943 	 * Create a custom version of vm_page_insert() which does not depend
1944 	 * by m_prev and can cheat on the implementation aspects of the
1945 	 * function.
1946 	 */
1947 	opidx = m->pindex;
1948 	m->pindex = new_pindex;
1949 	if (vm_radix_insert(&new_object->rtree, m) != 0) {
1950 		m->pindex = opidx;
1951 		return (false);
1952 	}
1953 
1954 	/*
1955 	 * The operation cannot fail anymore.
1956 	 */
1957 	m->pindex = opidx;
1958 	vm_radix_iter_remove(old_pages);
1959 	vm_page_remove_radixdone(m);
1960 
1961 	/* Return back to the new pindex to complete vm_page_insert(). */
1962 	m->pindex = new_pindex;
1963 	m->object = new_object;
1964 
1965 	vm_page_insert_radixdone(m, new_object);
1966 	if (vm_page_any_valid(m))
1967 		vm_page_dirty(m);
1968 	vm_pager_page_inserted(new_object, m);
1969 	return (true);
1970 }
1971 
1972 /*
1973  *	vm_page_alloc:
1974  *
1975  *	Allocate and return a page that is associated with the specified
1976  *	object and offset pair.  By default, this page is exclusive busied.
1977  *
1978  *	The caller must always specify an allocation class.
1979  *
1980  *	allocation classes:
1981  *	VM_ALLOC_NORMAL		normal process request
1982  *	VM_ALLOC_SYSTEM		system *really* needs a page
1983  *	VM_ALLOC_INTERRUPT	interrupt time request
1984  *
1985  *	optional allocation flags:
1986  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1987  *				intends to allocate
1988  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1989  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1990  *	VM_ALLOC_NOFREE		page will never be freed
1991  *	VM_ALLOC_NOWAIT		ignored (default behavior)
1992  *	VM_ALLOC_SBUSY		shared busy the allocated page
1993  *	VM_ALLOC_WAITFAIL	in case of failure, sleep before returning
1994  *	VM_ALLOC_WIRED		wire the allocated page
1995  *	VM_ALLOC_ZERO		prefer a zeroed page
1996  */
1997 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)1998 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1999 {
2000 	struct pctrie_iter pages;
2001 
2002 	vm_page_iter_init(&pages, object);
2003 	return (vm_page_alloc_iter(object, pindex, req, &pages));
2004 }
2005 
2006 /*
2007  * Allocate a page in the specified object with the given page index.  If the
2008  * object lock is dropped and regained, the pages iter is reset.
2009  */
2010 vm_page_t
vm_page_alloc_iter(vm_object_t object,vm_pindex_t pindex,int req,struct pctrie_iter * pages)2011 vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req,
2012     struct pctrie_iter *pages)
2013 {
2014 	struct vm_domainset_iter di;
2015 	vm_page_t m;
2016 	int domain;
2017 
2018 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req,
2019 	    pages);
2020 	do {
2021 		m = vm_page_alloc_domain_iter(object, pindex, domain, req,
2022 		    pages);
2023 		if (m != NULL)
2024 			break;
2025 	} while (vm_domainset_iter_page(&di, object, &domain, pages) == 0);
2026 
2027 	return (m);
2028 }
2029 
2030 /*
2031  * Returns true if the number of free pages exceeds the minimum
2032  * for the request class and false otherwise.
2033  */
2034 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2035 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2036 {
2037 	u_int limit, old, new;
2038 
2039 	if (req_class == VM_ALLOC_INTERRUPT)
2040 		limit = 0;
2041 	else if (req_class == VM_ALLOC_SYSTEM)
2042 		limit = vmd->vmd_interrupt_free_min;
2043 	else
2044 		limit = vmd->vmd_free_reserved;
2045 
2046 	/*
2047 	 * Attempt to reserve the pages.  Fail if we're below the limit.
2048 	 */
2049 	limit += npages;
2050 	old = atomic_load_int(&vmd->vmd_free_count);
2051 	do {
2052 		if (old < limit)
2053 			return (0);
2054 		new = old - npages;
2055 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2056 
2057 	/* Wake the page daemon if we've crossed the threshold. */
2058 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2059 		pagedaemon_wakeup(vmd->vmd_domain);
2060 
2061 	/* Only update bitsets on transitions. */
2062 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2063 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2064 		vm_domain_set(vmd);
2065 
2066 	return (1);
2067 }
2068 
2069 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2070 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2071 {
2072 	int req_class;
2073 
2074 	/*
2075 	 * The page daemon is allowed to dig deeper into the free page list.
2076 	 */
2077 	req_class = req & VM_ALLOC_CLASS_MASK;
2078 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2079 		req_class = VM_ALLOC_SYSTEM;
2080 	return (_vm_domain_allocate(vmd, req_class, npages));
2081 }
2082 
2083 vm_page_t
vm_page_alloc_domain_iter(vm_object_t object,vm_pindex_t pindex,int domain,int req,struct pctrie_iter * pages)2084 vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex, int domain,
2085     int req, struct pctrie_iter *pages)
2086 {
2087 	struct vm_domain *vmd;
2088 	vm_page_t m;
2089 	int flags;
2090 
2091 #define	VM_ALLOC_COMMON	(VM_ALLOC_CLASS_MASK | VM_ALLOC_NODUMP |	\
2092 			 VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL |		\
2093 			 VM_ALLOC_WIRED | VM_ALLOC_ZERO)
2094 #define	VPA_FLAGS	(VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK |	\
2095 			 VM_ALLOC_NOBUSY | VM_ALLOC_NOFREE |		\
2096 			 VM_ALLOC_SBUSY)
2097 	KASSERT((req & ~VPA_FLAGS) == 0,
2098 	    ("invalid request %#x", req));
2099 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2100 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2101 	    ("invalid request %#x", req));
2102 	VM_OBJECT_ASSERT_WLOCKED(object);
2103 
2104 	flags = 0;
2105 	m = NULL;
2106 	if (!vm_pager_can_alloc_page(object, pindex))
2107 		return (NULL);
2108 #if VM_NRESERVLEVEL > 0
2109 again:
2110 #endif
2111 	if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2112 		m = vm_page_alloc_nofree_domain(domain, req);
2113 		if (m != NULL)
2114 			goto found;
2115 	}
2116 #if VM_NRESERVLEVEL > 0
2117 	/*
2118 	 * Can we allocate the page from a reservation?
2119 	 */
2120 	if (vm_object_reserv(object) &&
2121 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, pages)) !=
2122 	    NULL) {
2123 		goto found;
2124 	}
2125 #endif
2126 	vmd = VM_DOMAIN(domain);
2127 	if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2128 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2129 		    M_NOWAIT | M_NOVM);
2130 		if (m != NULL) {
2131 			flags |= PG_PCPU_CACHE;
2132 			goto found;
2133 		}
2134 	}
2135 	if (vm_domain_allocate(vmd, req, 1)) {
2136 		/*
2137 		 * If not, allocate it from the free page queues.
2138 		 */
2139 		vm_domain_free_lock(vmd);
2140 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2141 		vm_domain_free_unlock(vmd);
2142 		if (m == NULL) {
2143 			vm_domain_freecnt_inc(vmd, 1);
2144 #if VM_NRESERVLEVEL > 0
2145 			if (vm_reserv_reclaim_inactive(domain))
2146 				goto again;
2147 #endif
2148 		}
2149 	}
2150 	if (m == NULL) {
2151 		/*
2152 		 * Not allocatable, give up.
2153 		 */
2154 		(void)vm_domain_alloc_fail(vmd, object, req);
2155 		if ((req & VM_ALLOC_WAITFAIL) != 0)
2156 			pctrie_iter_reset(pages);
2157 		return (NULL);
2158 	}
2159 
2160 	/*
2161 	 * At this point we had better have found a good page.
2162 	 */
2163 found:
2164 	vm_page_dequeue(m);
2165 	vm_page_alloc_check(m);
2166 
2167 	/*
2168 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2169 	 */
2170 	flags |= m->flags & PG_ZERO;
2171 	if ((req & VM_ALLOC_NODUMP) != 0)
2172 		flags |= PG_NODUMP;
2173 	if ((req & VM_ALLOC_NOFREE) != 0)
2174 		flags |= PG_NOFREE;
2175 	m->flags = flags;
2176 	m->a.flags = 0;
2177 	m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2178 	m->pool = VM_FREEPOOL_DEFAULT;
2179 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2180 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2181 	else if ((req & VM_ALLOC_SBUSY) != 0)
2182 		m->busy_lock = VPB_SHARERS_WORD(1);
2183 	else
2184 		m->busy_lock = VPB_UNBUSIED;
2185 	if (req & VM_ALLOC_WIRED) {
2186 		vm_wire_add(1);
2187 		m->ref_count = 1;
2188 	}
2189 	m->a.act_count = 0;
2190 
2191 	if (vm_page_iter_insert(m, object, pindex, pages)) {
2192 		if (req & VM_ALLOC_WIRED) {
2193 			vm_wire_sub(1);
2194 			m->ref_count = 0;
2195 		}
2196 		KASSERT(m->object == NULL, ("page %p has object", m));
2197 		m->oflags = VPO_UNMANAGED;
2198 		m->busy_lock = VPB_UNBUSIED;
2199 		/* Don't change PG_ZERO. */
2200 		vm_page_free_toq(m);
2201 		if (req & VM_ALLOC_WAITFAIL) {
2202 			VM_OBJECT_WUNLOCK(object);
2203 			vm_radix_wait();
2204 			pctrie_iter_reset(pages);
2205 			VM_OBJECT_WLOCK(object);
2206 		}
2207 		return (NULL);
2208 	}
2209 
2210 	/* Ignore device objects; the pager sets "memattr" for them. */
2211 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2212 	    (object->flags & OBJ_FICTITIOUS) == 0)
2213 		pmap_page_set_memattr(m, object->memattr);
2214 
2215 	return (m);
2216 }
2217 
2218 /*
2219  *	vm_page_alloc_contig:
2220  *
2221  *	Allocate a contiguous set of physical pages of the given size "npages"
2222  *	from the free lists.  All of the physical pages must be at or above
2223  *	the given physical address "low" and below the given physical address
2224  *	"high".  The given value "alignment" determines the alignment of the
2225  *	first physical page in the set.  If the given value "boundary" is
2226  *	non-zero, then the set of physical pages cannot cross any physical
2227  *	address boundary that is a multiple of that value.  Both "alignment"
2228  *	and "boundary" must be a power of two.
2229  *
2230  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2231  *	then the memory attribute setting for the physical pages is configured
2232  *	to the object's memory attribute setting.  Otherwise, the memory
2233  *	attribute setting for the physical pages is configured to "memattr",
2234  *	overriding the object's memory attribute setting.  However, if the
2235  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2236  *	memory attribute setting for the physical pages cannot be configured
2237  *	to VM_MEMATTR_DEFAULT.
2238  *
2239  *	The specified object may not contain fictitious pages.
2240  *
2241  *	The caller must always specify an allocation class.
2242  *
2243  *	allocation classes:
2244  *	VM_ALLOC_NORMAL		normal process request
2245  *	VM_ALLOC_SYSTEM		system *really* needs the pages
2246  *	VM_ALLOC_INTERRUPT	interrupt time request
2247  *
2248  *	optional allocation flags:
2249  *	VM_ALLOC_NOBUSY		do not exclusive busy the pages
2250  *	VM_ALLOC_NODUMP		do not include the pages in a kernel core dump
2251  *	VM_ALLOC_NORECLAIM	do not reclaim after initial failure
2252  *	VM_ALLOC_NOWAIT		ignored (default behavior)
2253  *	VM_ALLOC_SBUSY		shared busy the allocated pages
2254  *	VM_ALLOC_WAITFAIL	in case of failure, sleep before returning
2255  *	VM_ALLOC_WIRED		wire the allocated pages
2256  *	VM_ALLOC_ZERO		prefer zeroed pages
2257  */
2258 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2259 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2260     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2261     vm_paddr_t boundary, vm_memattr_t memattr)
2262 {
2263 	struct vm_domainset_iter di;
2264 	vm_page_t bounds[2];
2265 	vm_page_t m;
2266 	int domain;
2267 	int start_segind;
2268 
2269 	start_segind = -1;
2270 
2271 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req, NULL);
2272 	do {
2273 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2274 		    npages, low, high, alignment, boundary, memattr);
2275 		if (m != NULL)
2276 			break;
2277 		if (start_segind == -1)
2278 			start_segind = vm_phys_lookup_segind(low);
2279 		if (vm_phys_find_range(bounds, start_segind, domain,
2280 		    npages, low, high) == -1) {
2281 			vm_domainset_iter_ignore(&di, domain);
2282 		}
2283 	} while (vm_domainset_iter_page(&di, object, &domain, NULL) == 0);
2284 
2285 	return (m);
2286 }
2287 
2288 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2289 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2290     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2291 {
2292 	struct vm_domain *vmd;
2293 	vm_page_t m_ret;
2294 
2295 	/*
2296 	 * Can we allocate the pages without the number of free pages falling
2297 	 * below the lower bound for the allocation class?
2298 	 */
2299 	vmd = VM_DOMAIN(domain);
2300 	if (!vm_domain_allocate(vmd, req, npages))
2301 		return (NULL);
2302 	/*
2303 	 * Try to allocate the pages from the free page queues.
2304 	 */
2305 	vm_domain_free_lock(vmd);
2306 	m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2307 	    alignment, boundary);
2308 	vm_domain_free_unlock(vmd);
2309 	if (m_ret != NULL)
2310 		return (m_ret);
2311 #if VM_NRESERVLEVEL > 0
2312 	/*
2313 	 * Try to break a reservation to allocate the pages.
2314 	 */
2315 	if ((req & VM_ALLOC_NORECLAIM) == 0) {
2316 		m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2317 	            high, alignment, boundary);
2318 		if (m_ret != NULL)
2319 			return (m_ret);
2320 	}
2321 #endif
2322 	vm_domain_freecnt_inc(vmd, npages);
2323 	return (NULL);
2324 }
2325 
2326 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2327 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2328     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2329     vm_paddr_t boundary, vm_memattr_t memattr)
2330 {
2331 	struct pctrie_iter pages;
2332 	vm_page_t m, m_ret, mpred;
2333 	u_int busy_lock, flags, oflags;
2334 
2335 #define	VPAC_FLAGS	(VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK |	\
2336 			 VM_ALLOC_NOBUSY | VM_ALLOC_NORECLAIM |		\
2337 			 VM_ALLOC_SBUSY)
2338 	KASSERT((req & ~VPAC_FLAGS) == 0,
2339 	    ("invalid request %#x", req));
2340 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2341 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2342 	    ("invalid request %#x", req));
2343 	VM_OBJECT_ASSERT_WLOCKED(object);
2344 	KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2345 	    ("vm_page_alloc_contig: object %p has fictitious pages",
2346 	    object));
2347 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2348 
2349 	vm_page_iter_init(&pages, object);
2350 	m_ret = NULL;
2351 #if VM_NRESERVLEVEL > 0
2352 	/*
2353 	 * Can we allocate the pages from a reservation?
2354 	 */
2355 	if (vm_object_reserv(object)) {
2356 		m_ret = vm_reserv_alloc_contig(object, pindex, domain,
2357 		    req, npages, low, high, alignment, boundary, &pages);
2358 	}
2359 #endif
2360 	if (m_ret == NULL) {
2361 		m_ret = vm_page_find_contig_domain(domain, req, npages,
2362 		    low, high, alignment, boundary);
2363 	}
2364 	if (m_ret == NULL) {
2365 		(void)vm_domain_alloc_fail(VM_DOMAIN(domain), object, req);
2366 		return (NULL);
2367 	}
2368 
2369 	/*
2370 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2371 	 */
2372 	flags = PG_ZERO;
2373 	if ((req & VM_ALLOC_NODUMP) != 0)
2374 		flags |= PG_NODUMP;
2375 	oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2376 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2377 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2378 	else if ((req & VM_ALLOC_SBUSY) != 0)
2379 		busy_lock = VPB_SHARERS_WORD(1);
2380 	else
2381 		busy_lock = VPB_UNBUSIED;
2382 	if ((req & VM_ALLOC_WIRED) != 0)
2383 		vm_wire_add(npages);
2384 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2385 	    memattr == VM_MEMATTR_DEFAULT)
2386 		memattr = object->memattr;
2387 	for (m = m_ret; m < &m_ret[npages]; m++) {
2388 		vm_page_dequeue(m);
2389 		vm_page_alloc_check(m);
2390 		m->a.flags = 0;
2391 		m->flags = (m->flags | PG_NODUMP) & flags;
2392 		m->busy_lock = busy_lock;
2393 		if ((req & VM_ALLOC_WIRED) != 0)
2394 			m->ref_count = 1;
2395 		m->a.act_count = 0;
2396 		m->oflags = oflags;
2397 		m->pool = VM_FREEPOOL_DEFAULT;
2398 		if (vm_page_iter_insert(m, object, pindex, &pages)) {
2399 			if ((req & VM_ALLOC_WIRED) != 0)
2400 				vm_wire_sub(npages);
2401 			KASSERT(m->object == NULL,
2402 			    ("page %p has object", m));
2403 			mpred = m;
2404 			for (m = m_ret; m < &m_ret[npages]; m++) {
2405 				if (m <= mpred &&
2406 				    (req & VM_ALLOC_WIRED) != 0)
2407 					m->ref_count = 0;
2408 				m->oflags = VPO_UNMANAGED;
2409 				m->busy_lock = VPB_UNBUSIED;
2410 				/* Don't change PG_ZERO. */
2411 				vm_page_free_toq(m);
2412 			}
2413 			if (req & VM_ALLOC_WAITFAIL) {
2414 				VM_OBJECT_WUNLOCK(object);
2415 				vm_radix_wait();
2416 				VM_OBJECT_WLOCK(object);
2417 			}
2418 			return (NULL);
2419 		}
2420 		if (memattr != VM_MEMATTR_DEFAULT)
2421 			pmap_page_set_memattr(m, memattr);
2422 		pindex++;
2423 	}
2424 	return (m_ret);
2425 }
2426 
2427 /*
2428  * Allocate a physical page that is not intended to be inserted into a VM
2429  * object.
2430  */
2431 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2432 vm_page_alloc_noobj_domain(int domain, int req)
2433 {
2434 	struct vm_domain *vmd;
2435 	vm_page_t m;
2436 	int flags;
2437 
2438 #define	VPAN_FLAGS	(VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK |	\
2439 			 VM_ALLOC_NOFREE | VM_ALLOC_WAITOK)
2440 	KASSERT((req & ~VPAN_FLAGS) == 0,
2441 	    ("invalid request %#x", req));
2442 
2443 	flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2444 	    ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2445 	vmd = VM_DOMAIN(domain);
2446 again:
2447 	if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2448 		m = vm_page_alloc_nofree_domain(domain, req);
2449 		if (m != NULL)
2450 			goto found;
2451 	}
2452 
2453 	if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2454 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2455 		    M_NOWAIT | M_NOVM);
2456 		if (m != NULL) {
2457 			flags |= PG_PCPU_CACHE;
2458 			goto found;
2459 		}
2460 	}
2461 
2462 	if (vm_domain_allocate(vmd, req, 1)) {
2463 		vm_domain_free_lock(vmd);
2464 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2465 		vm_domain_free_unlock(vmd);
2466 		if (m == NULL) {
2467 			vm_domain_freecnt_inc(vmd, 1);
2468 #if VM_NRESERVLEVEL > 0
2469 			if (vm_reserv_reclaim_inactive(domain))
2470 				goto again;
2471 #endif
2472 		}
2473 	}
2474 	if (m == NULL) {
2475 		if (!vm_domain_alloc_fail(vmd, NULL, req))
2476 			return (NULL);
2477 		goto again;
2478 	}
2479 
2480 found:
2481 	/*
2482 	 * If the page comes from the free page cache, then it might still
2483 	 * have a pending deferred dequeue.  Specifically, when the page is
2484 	 * imported from a different pool by vm_phys_alloc_npages(), the
2485 	 * second, third, etc. pages in a non-zero order set could have
2486 	 * pending deferred dequeues.
2487 	 */
2488 	vm_page_dequeue(m);
2489 	vm_page_alloc_check(m);
2490 
2491 	/*
2492 	 * Consumers should not rely on a useful default pindex value.
2493 	 */
2494 	m->pindex = 0xdeadc0dedeadc0de;
2495 	m->flags = (m->flags & PG_ZERO) | flags;
2496 	m->a.flags = 0;
2497 	m->oflags = VPO_UNMANAGED;
2498 	m->pool = VM_FREEPOOL_DIRECT;
2499 	m->busy_lock = VPB_UNBUSIED;
2500 	if ((req & VM_ALLOC_WIRED) != 0) {
2501 		vm_wire_add(1);
2502 		m->ref_count = 1;
2503 	}
2504 
2505 	if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2506 		pmap_zero_page(m);
2507 
2508 	return (m);
2509 }
2510 
2511 #if VM_NRESERVLEVEL > 1
2512 #define	VM_NOFREE_IMPORT_ORDER	(VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2513 #elif VM_NRESERVLEVEL > 0
2514 #define	VM_NOFREE_IMPORT_ORDER	VM_LEVEL_0_ORDER
2515 #else
2516 #define	VM_NOFREE_IMPORT_ORDER	8
2517 #endif
2518 
2519 /*
2520  * Allocate a single NOFREE page.
2521  *
2522  * This routine hands out NOFREE pages from higher-order
2523  * physical memory blocks in order to reduce memory fragmentation.
2524  * When a NOFREE for a given domain chunk is used up,
2525  * the routine will try to fetch a new one from the freelists
2526  * and discard the old one.
2527  */
2528 static vm_page_t __noinline
vm_page_alloc_nofree_domain(int domain,int req)2529 vm_page_alloc_nofree_domain(int domain, int req)
2530 {
2531 	vm_page_t m;
2532 	struct vm_domain *vmd;
2533 
2534 	KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2535 
2536 	vmd = VM_DOMAIN(domain);
2537 	vm_domain_free_lock(vmd);
2538 	if (TAILQ_EMPTY(&vmd->vmd_nofreeq)) {
2539 		int count;
2540 
2541 		count = 1 << VM_NOFREE_IMPORT_ORDER;
2542 		if (!vm_domain_allocate(vmd, req, count)) {
2543 			vm_domain_free_unlock(vmd);
2544 			return (NULL);
2545 		}
2546 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2547 		    VM_NOFREE_IMPORT_ORDER);
2548 		if (m == NULL) {
2549 			vm_domain_freecnt_inc(vmd, count);
2550 			vm_domain_free_unlock(vmd);
2551 			return (NULL);
2552 		}
2553 		m->ref_count = count - 1;
2554 		TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2555 		atomic_add_long(&nofreeq_size, count);
2556 	}
2557 	m = TAILQ_FIRST(&vmd->vmd_nofreeq);
2558 	TAILQ_REMOVE(&vmd->vmd_nofreeq, m, plinks.q);
2559 	if (m->ref_count > 0) {
2560 		vm_page_t m_next;
2561 
2562 		m_next = &m[1];
2563 		vm_page_dequeue(m_next);
2564 		m_next->ref_count = m->ref_count - 1;
2565 		TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m_next, plinks.q);
2566 		m->ref_count = 0;
2567 	}
2568 	vm_domain_free_unlock(vmd);
2569 	atomic_add_long(&nofreeq_size, -1);
2570 	VM_CNT_INC(v_nofree_count);
2571 
2572 	return (m);
2573 }
2574 
2575 /*
2576  * Though a NOFREE page by definition should not be freed, we support putting
2577  * them aside for future NOFREE allocations.  This enables code which allocates
2578  * NOFREE pages for some purpose but then encounters an error and releases
2579  * resources.
2580  */
2581 static void __noinline
vm_page_free_nofree(struct vm_domain * vmd,vm_page_t m)2582 vm_page_free_nofree(struct vm_domain *vmd, vm_page_t m)
2583 {
2584 	VM_CNT_ADD(v_nofree_count, -1);
2585 	atomic_add_long(&nofreeq_size, 1);
2586 	vm_domain_free_lock(vmd);
2587 	MPASS(m->ref_count == 0);
2588 	TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2589 	vm_domain_free_unlock(vmd);
2590 }
2591 
2592 vm_page_t
vm_page_alloc_noobj(int req)2593 vm_page_alloc_noobj(int req)
2594 {
2595 	struct vm_domainset_iter di;
2596 	vm_page_t m;
2597 	int domain;
2598 
2599 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL);
2600 	do {
2601 		m = vm_page_alloc_noobj_domain(domain, req);
2602 		if (m != NULL)
2603 			break;
2604 	} while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2605 
2606 	return (m);
2607 }
2608 
2609 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2610 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2611     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2612     vm_memattr_t memattr)
2613 {
2614 	struct vm_domainset_iter di;
2615 	vm_page_t m;
2616 	int domain;
2617 
2618 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL);
2619 	do {
2620 		m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2621 		    high, alignment, boundary, memattr);
2622 		if (m != NULL)
2623 			break;
2624 	} while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2625 
2626 	return (m);
2627 }
2628 
2629 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2630 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2631     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2632     vm_memattr_t memattr)
2633 {
2634 	vm_page_t m, m_ret;
2635 	u_int flags;
2636 
2637 #define	VPANC_FLAGS	(VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK |	\
2638 			 VM_ALLOC_NORECLAIM | VM_ALLOC_WAITOK)
2639 	KASSERT((req & ~VPANC_FLAGS) == 0,
2640 	    ("invalid request %#x", req));
2641 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2642 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2643 	    ("invalid request %#x", req));
2644 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2645 
2646 	while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2647 	    low, high, alignment, boundary)) == NULL) {
2648 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2649 			return (NULL);
2650 	}
2651 
2652 	/*
2653 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2654 	 */
2655 	flags = PG_ZERO;
2656 	if ((req & VM_ALLOC_NODUMP) != 0)
2657 		flags |= PG_NODUMP;
2658 	if ((req & VM_ALLOC_WIRED) != 0)
2659 		vm_wire_add(npages);
2660 	for (m = m_ret; m < &m_ret[npages]; m++) {
2661 		vm_page_dequeue(m);
2662 		vm_page_alloc_check(m);
2663 
2664 		/*
2665 		 * Consumers should not rely on a useful default pindex value.
2666 		 */
2667 		m->pindex = 0xdeadc0dedeadc0de;
2668 		m->a.flags = 0;
2669 		m->flags = (m->flags | PG_NODUMP) & flags;
2670 		m->busy_lock = VPB_UNBUSIED;
2671 		if ((req & VM_ALLOC_WIRED) != 0)
2672 			m->ref_count = 1;
2673 		m->a.act_count = 0;
2674 		m->oflags = VPO_UNMANAGED;
2675 		m->pool = VM_FREEPOOL_DIRECT;
2676 
2677 		/*
2678 		 * Zero the page before updating any mappings since the page is
2679 		 * not yet shared with any devices which might require the
2680 		 * non-default memory attribute.  pmap_page_set_memattr()
2681 		 * flushes data caches before returning.
2682 		 */
2683 		if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2684 			pmap_zero_page(m);
2685 		if (memattr != VM_MEMATTR_DEFAULT)
2686 			pmap_page_set_memattr(m, memattr);
2687 	}
2688 	return (m_ret);
2689 }
2690 
2691 /*
2692  * Check a page that has been freshly dequeued from a freelist.
2693  */
2694 static void
vm_page_alloc_check(vm_page_t m)2695 vm_page_alloc_check(vm_page_t m)
2696 {
2697 
2698 	KASSERT(m->object == NULL, ("page %p has object", m));
2699 	KASSERT(m->a.queue == PQ_NONE &&
2700 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2701 	    ("page %p has unexpected queue %d, flags %#x",
2702 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2703 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2704 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2705 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2706 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2707 	    ("page %p has unexpected memattr %d",
2708 	    m, pmap_page_get_memattr(m)));
2709 	KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2710 	pmap_vm_page_alloc_check(m);
2711 }
2712 
2713 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2714 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2715 {
2716 	struct vm_domain *vmd;
2717 	struct vm_pgcache *pgcache;
2718 	int i;
2719 
2720 	pgcache = arg;
2721 	vmd = VM_DOMAIN(pgcache->domain);
2722 
2723 	/*
2724 	 * The page daemon should avoid creating extra memory pressure since its
2725 	 * main purpose is to replenish the store of free pages.
2726 	 */
2727 	if (vmd->vmd_severeset || curproc == pageproc ||
2728 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2729 		return (0);
2730 	domain = vmd->vmd_domain;
2731 	vm_domain_free_lock(vmd);
2732 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2733 	    (vm_page_t *)store);
2734 	vm_domain_free_unlock(vmd);
2735 	if (cnt != i)
2736 		vm_domain_freecnt_inc(vmd, cnt - i);
2737 
2738 	return (i);
2739 }
2740 
2741 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2742 vm_page_zone_release(void *arg, void **store, int cnt)
2743 {
2744 	struct vm_domain *vmd;
2745 	struct vm_pgcache *pgcache;
2746 	vm_page_t m;
2747 	int i;
2748 
2749 	pgcache = arg;
2750 	vmd = VM_DOMAIN(pgcache->domain);
2751 	vm_domain_free_lock(vmd);
2752 	for (i = 0; i < cnt; i++) {
2753 		m = (vm_page_t)store[i];
2754 		vm_phys_free_pages(m, pgcache->pool, 0);
2755 	}
2756 	vm_domain_free_unlock(vmd);
2757 	vm_domain_freecnt_inc(vmd, cnt);
2758 }
2759 
2760 #define	VPSC_ANY	0	/* No restrictions. */
2761 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2762 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2763 
2764 /*
2765  *	vm_page_scan_contig:
2766  *
2767  *	Scan vm_page_array[] between the specified entries "m_start" and
2768  *	"m_end" for a run of contiguous physical pages that satisfy the
2769  *	specified conditions, and return the lowest page in the run.  The
2770  *	specified "alignment" determines the alignment of the lowest physical
2771  *	page in the run.  If the specified "boundary" is non-zero, then the
2772  *	run of physical pages cannot span a physical address that is a
2773  *	multiple of "boundary".
2774  *
2775  *	"m_end" is never dereferenced, so it need not point to a vm_page
2776  *	structure within vm_page_array[].
2777  *
2778  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2779  *	span a hole (or discontiguity) in the physical address space.  Both
2780  *	"alignment" and "boundary" must be a power of two.
2781  */
2782 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2783 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2784     u_long alignment, vm_paddr_t boundary, int options)
2785 {
2786 	vm_object_t object;
2787 	vm_paddr_t pa;
2788 	vm_page_t m, m_run;
2789 #if VM_NRESERVLEVEL > 0
2790 	int level;
2791 #endif
2792 	int m_inc, order, run_ext, run_len;
2793 
2794 	KASSERT(npages > 0, ("npages is 0"));
2795 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2796 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2797 	m_run = NULL;
2798 	run_len = 0;
2799 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2800 		KASSERT((m->flags & PG_MARKER) == 0,
2801 		    ("page %p is PG_MARKER", m));
2802 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2803 		    ("fictitious page %p has invalid ref count", m));
2804 
2805 		/*
2806 		 * If the current page would be the start of a run, check its
2807 		 * physical address against the end, alignment, and boundary
2808 		 * conditions.  If it doesn't satisfy these conditions, either
2809 		 * terminate the scan or advance to the next page that
2810 		 * satisfies the failed condition.
2811 		 */
2812 		if (run_len == 0) {
2813 			KASSERT(m_run == NULL, ("m_run != NULL"));
2814 			if (m + npages > m_end)
2815 				break;
2816 			pa = VM_PAGE_TO_PHYS(m);
2817 			if (!vm_addr_align_ok(pa, alignment)) {
2818 				m_inc = atop(roundup2(pa, alignment) - pa);
2819 				continue;
2820 			}
2821 			if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2822 				m_inc = atop(roundup2(pa, boundary) - pa);
2823 				continue;
2824 			}
2825 		} else
2826 			KASSERT(m_run != NULL, ("m_run == NULL"));
2827 
2828 retry:
2829 		m_inc = 1;
2830 		if (vm_page_wired(m))
2831 			run_ext = 0;
2832 #if VM_NRESERVLEVEL > 0
2833 		else if ((level = vm_reserv_level(m)) >= 0 &&
2834 		    (options & VPSC_NORESERV) != 0) {
2835 			run_ext = 0;
2836 			/* Advance to the end of the reservation. */
2837 			pa = VM_PAGE_TO_PHYS(m);
2838 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2839 			    pa);
2840 		}
2841 #endif
2842 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2843 			/*
2844 			 * The page is considered eligible for relocation if
2845 			 * and only if it could be laundered or reclaimed by
2846 			 * the page daemon.
2847 			 */
2848 			VM_OBJECT_RLOCK(object);
2849 			if (object != m->object) {
2850 				VM_OBJECT_RUNLOCK(object);
2851 				goto retry;
2852 			}
2853 			/* Don't care: PG_NODUMP, PG_ZERO. */
2854 			if ((object->flags & OBJ_SWAP) == 0 &&
2855 			    object->type != OBJT_VNODE) {
2856 				run_ext = 0;
2857 #if VM_NRESERVLEVEL > 0
2858 			} else if ((options & VPSC_NOSUPER) != 0 &&
2859 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2860 				run_ext = 0;
2861 				/* Advance to the end of the superpage. */
2862 				pa = VM_PAGE_TO_PHYS(m);
2863 				m_inc = atop(roundup2(pa + 1,
2864 				    vm_reserv_size(level)) - pa);
2865 #endif
2866 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2867 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2868 				/*
2869 				 * The page is allocated but eligible for
2870 				 * relocation.  Extend the current run by one
2871 				 * page.
2872 				 */
2873 				KASSERT(pmap_page_get_memattr(m) ==
2874 				    VM_MEMATTR_DEFAULT,
2875 				    ("page %p has an unexpected memattr", m));
2876 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2877 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2878 				    ("page %p has unexpected oflags", m));
2879 				/* Don't care: PGA_NOSYNC. */
2880 				run_ext = 1;
2881 			} else
2882 				run_ext = 0;
2883 			VM_OBJECT_RUNLOCK(object);
2884 #if VM_NRESERVLEVEL > 0
2885 		} else if (level >= 0) {
2886 			/*
2887 			 * The page is reserved but not yet allocated.  In
2888 			 * other words, it is still free.  Extend the current
2889 			 * run by one page.
2890 			 */
2891 			run_ext = 1;
2892 #endif
2893 		} else if ((order = m->order) < VM_NFREEORDER) {
2894 			/*
2895 			 * The page is enqueued in the physical memory
2896 			 * allocator's free page queues.  Moreover, it is the
2897 			 * first page in a power-of-two-sized run of
2898 			 * contiguous free pages.  Add these pages to the end
2899 			 * of the current run, and jump ahead.
2900 			 */
2901 			run_ext = 1 << order;
2902 			m_inc = 1 << order;
2903 		} else {
2904 			/*
2905 			 * Skip the page for one of the following reasons: (1)
2906 			 * It is enqueued in the physical memory allocator's
2907 			 * free page queues.  However, it is not the first
2908 			 * page in a run of contiguous free pages.  (This case
2909 			 * rarely occurs because the scan is performed in
2910 			 * ascending order.) (2) It is not reserved, and it is
2911 			 * transitioning from free to allocated.  (Conversely,
2912 			 * the transition from allocated to free for managed
2913 			 * pages is blocked by the page busy lock.) (3) It is
2914 			 * allocated but not contained by an object and not
2915 			 * wired, e.g., allocated by Xen's balloon driver.
2916 			 */
2917 			run_ext = 0;
2918 		}
2919 
2920 		/*
2921 		 * Extend or reset the current run of pages.
2922 		 */
2923 		if (run_ext > 0) {
2924 			if (run_len == 0)
2925 				m_run = m;
2926 			run_len += run_ext;
2927 		} else {
2928 			if (run_len > 0) {
2929 				m_run = NULL;
2930 				run_len = 0;
2931 			}
2932 		}
2933 	}
2934 	if (run_len >= npages)
2935 		return (m_run);
2936 	return (NULL);
2937 }
2938 
2939 /*
2940  *	vm_page_reclaim_run:
2941  *
2942  *	Try to relocate each of the allocated virtual pages within the
2943  *	specified run of physical pages to a new physical address.  Free the
2944  *	physical pages underlying the relocated virtual pages.  A virtual page
2945  *	is relocatable if and only if it could be laundered or reclaimed by
2946  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2947  *	physical address above "high".
2948  *
2949  *	Returns 0 if every physical page within the run was already free or
2950  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2951  *	value indicating why the last attempt to relocate a virtual page was
2952  *	unsuccessful.
2953  *
2954  *	"req_class" must be an allocation class.
2955  */
2956 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)2957 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2958     vm_paddr_t high)
2959 {
2960 	struct vm_domain *vmd;
2961 	struct spglist free;
2962 	vm_object_t object;
2963 	vm_paddr_t pa;
2964 	vm_page_t m, m_end, m_new;
2965 	int error, order, req;
2966 
2967 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2968 	    ("req_class is not an allocation class"));
2969 	SLIST_INIT(&free);
2970 	error = 0;
2971 	m = m_run;
2972 	m_end = m_run + npages;
2973 	for (; error == 0 && m < m_end; m++) {
2974 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2975 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2976 
2977 		/*
2978 		 * Racily check for wirings.  Races are handled once the object
2979 		 * lock is held and the page is unmapped.
2980 		 */
2981 		if (vm_page_wired(m))
2982 			error = EBUSY;
2983 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2984 			/*
2985 			 * The page is relocated if and only if it could be
2986 			 * laundered or reclaimed by the page daemon.
2987 			 */
2988 			VM_OBJECT_WLOCK(object);
2989 			/* Don't care: PG_NODUMP, PG_ZERO. */
2990 			if (m->object != object ||
2991 			    ((object->flags & OBJ_SWAP) == 0 &&
2992 			    object->type != OBJT_VNODE))
2993 				error = EINVAL;
2994 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2995 				error = EINVAL;
2996 			else if (vm_page_queue(m) != PQ_NONE &&
2997 			    vm_page_tryxbusy(m) != 0) {
2998 				if (vm_page_wired(m)) {
2999 					vm_page_xunbusy(m);
3000 					error = EBUSY;
3001 					goto unlock;
3002 				}
3003 				KASSERT(pmap_page_get_memattr(m) ==
3004 				    VM_MEMATTR_DEFAULT,
3005 				    ("page %p has an unexpected memattr", m));
3006 				KASSERT(m->oflags == 0,
3007 				    ("page %p has unexpected oflags", m));
3008 				/* Don't care: PGA_NOSYNC. */
3009 				if (!vm_page_none_valid(m)) {
3010 					/*
3011 					 * First, try to allocate a new page
3012 					 * that is above "high".  Failing
3013 					 * that, try to allocate a new page
3014 					 * that is below "m_run".  Allocate
3015 					 * the new page between the end of
3016 					 * "m_run" and "high" only as a last
3017 					 * resort.
3018 					 */
3019 					req = req_class;
3020 					if ((m->flags & PG_NODUMP) != 0)
3021 						req |= VM_ALLOC_NODUMP;
3022 					if (trunc_page(high) !=
3023 					    ~(vm_paddr_t)PAGE_MASK) {
3024 						m_new =
3025 						    vm_page_alloc_noobj_contig(
3026 						    req, 1, round_page(high),
3027 						    ~(vm_paddr_t)0, PAGE_SIZE,
3028 						    0, VM_MEMATTR_DEFAULT);
3029 					} else
3030 						m_new = NULL;
3031 					if (m_new == NULL) {
3032 						pa = VM_PAGE_TO_PHYS(m_run);
3033 						m_new =
3034 						    vm_page_alloc_noobj_contig(
3035 						    req, 1, 0, pa - 1,
3036 						    PAGE_SIZE, 0,
3037 						    VM_MEMATTR_DEFAULT);
3038 					}
3039 					if (m_new == NULL) {
3040 						pa += ptoa(npages);
3041 						m_new =
3042 						    vm_page_alloc_noobj_contig(
3043 						    req, 1, pa, high, PAGE_SIZE,
3044 						    0, VM_MEMATTR_DEFAULT);
3045 					}
3046 					if (m_new == NULL) {
3047 						vm_page_xunbusy(m);
3048 						error = ENOMEM;
3049 						goto unlock;
3050 					}
3051 
3052 					/*
3053 					 * Unmap the page and check for new
3054 					 * wirings that may have been acquired
3055 					 * through a pmap lookup.
3056 					 */
3057 					if (object->ref_count != 0 &&
3058 					    !vm_page_try_remove_all(m)) {
3059 						vm_page_xunbusy(m);
3060 						vm_page_free(m_new);
3061 						error = EBUSY;
3062 						goto unlock;
3063 					}
3064 
3065 					/*
3066 					 * Replace "m" with the new page.  For
3067 					 * vm_page_replace(), "m" must be busy
3068 					 * and dequeued.  Finally, change "m"
3069 					 * as if vm_page_free() was called.
3070 					 */
3071 					m_new->a.flags = m->a.flags &
3072 					    ~PGA_QUEUE_STATE_MASK;
3073 					KASSERT(m_new->oflags == VPO_UNMANAGED,
3074 					    ("page %p is managed", m_new));
3075 					m_new->oflags = 0;
3076 					pmap_copy_page(m, m_new);
3077 					m_new->valid = m->valid;
3078 					m_new->dirty = m->dirty;
3079 					m->flags &= ~PG_ZERO;
3080 					vm_page_dequeue(m);
3081 					if (vm_page_replace_hold(m_new, object,
3082 					    m->pindex, m) &&
3083 					    vm_page_free_prep(m))
3084 						SLIST_INSERT_HEAD(&free, m,
3085 						    plinks.s.ss);
3086 
3087 					/*
3088 					 * The new page must be deactivated
3089 					 * before the object is unlocked.
3090 					 */
3091 					vm_page_deactivate(m_new);
3092 				} else {
3093 					m->flags &= ~PG_ZERO;
3094 					vm_page_dequeue(m);
3095 					if (vm_page_free_prep(m))
3096 						SLIST_INSERT_HEAD(&free, m,
3097 						    plinks.s.ss);
3098 					KASSERT(m->dirty == 0,
3099 					    ("page %p is dirty", m));
3100 				}
3101 			} else
3102 				error = EBUSY;
3103 unlock:
3104 			VM_OBJECT_WUNLOCK(object);
3105 		} else {
3106 			MPASS(vm_page_domain(m) == domain);
3107 			vmd = VM_DOMAIN(domain);
3108 			vm_domain_free_lock(vmd);
3109 			order = m->order;
3110 			if (order < VM_NFREEORDER) {
3111 				/*
3112 				 * The page is enqueued in the physical memory
3113 				 * allocator's free page queues.  Moreover, it
3114 				 * is the first page in a power-of-two-sized
3115 				 * run of contiguous free pages.  Jump ahead
3116 				 * to the last page within that run, and
3117 				 * continue from there.
3118 				 */
3119 				m += (1 << order) - 1;
3120 			}
3121 #if VM_NRESERVLEVEL > 0
3122 			else if (vm_reserv_is_page_free(m))
3123 				order = 0;
3124 #endif
3125 			vm_domain_free_unlock(vmd);
3126 			if (order == VM_NFREEORDER)
3127 				error = EINVAL;
3128 		}
3129 	}
3130 	if ((m = SLIST_FIRST(&free)) != NULL) {
3131 		int cnt;
3132 
3133 		vmd = VM_DOMAIN(domain);
3134 		cnt = 0;
3135 		vm_domain_free_lock(vmd);
3136 		do {
3137 			MPASS(vm_page_domain(m) == domain);
3138 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3139 			vm_phys_free_pages(m, m->pool, 0);
3140 			cnt++;
3141 		} while ((m = SLIST_FIRST(&free)) != NULL);
3142 		vm_domain_free_unlock(vmd);
3143 		vm_domain_freecnt_inc(vmd, cnt);
3144 	}
3145 	return (error);
3146 }
3147 
3148 #define	NRUNS	16
3149 
3150 #define	RUN_INDEX(count, nruns)	((count) % (nruns))
3151 
3152 #define	MIN_RECLAIM	8
3153 
3154 /*
3155  *	vm_page_reclaim_contig:
3156  *
3157  *	Reclaim allocated, contiguous physical memory satisfying the specified
3158  *	conditions by relocating the virtual pages using that physical memory.
3159  *	Returns 0 if reclamation is successful, ERANGE if the specified domain
3160  *	can't possibly satisfy the reclamation request, or ENOMEM if not
3161  *	currently able to reclaim the requested number of pages.  Since
3162  *	relocation requires the allocation of physical pages, reclamation may
3163  *	fail with ENOMEM due to a shortage of free pages.  When reclamation
3164  *	fails in this manner, callers are expected to perform vm_wait() before
3165  *	retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3166  *
3167  *	The caller must always specify an allocation class through "req".
3168  *
3169  *	allocation classes:
3170  *	VM_ALLOC_NORMAL		normal process request
3171  *	VM_ALLOC_SYSTEM		system *really* needs a page
3172  *	VM_ALLOC_INTERRUPT	interrupt time request
3173  *
3174  *	The optional allocation flags are ignored.
3175  *
3176  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
3177  *	must be a power of two.
3178  */
3179 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3180 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3181     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3182     int desired_runs)
3183 {
3184 	struct vm_domain *vmd;
3185 	vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3186 	u_long count, minalign, reclaimed;
3187 	int error, i, min_reclaim, nruns, options, req_class;
3188 	int segind, start_segind;
3189 	int ret;
3190 
3191 	KASSERT(npages > 0, ("npages is 0"));
3192 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3193 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3194 
3195 	ret = ENOMEM;
3196 
3197 	/*
3198 	 * If the caller wants to reclaim multiple runs, try to allocate
3199 	 * space to store the runs.  If that fails, fall back to the old
3200 	 * behavior of just reclaiming MIN_RECLAIM pages.
3201 	 */
3202 	if (desired_runs > 1)
3203 		m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3204 		    M_TEMP, M_NOWAIT);
3205 	else
3206 		m_runs = NULL;
3207 
3208 	if (m_runs == NULL) {
3209 		m_runs = _m_runs;
3210 		nruns = NRUNS;
3211 	} else {
3212 		nruns = NRUNS + desired_runs - 1;
3213 	}
3214 	min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3215 
3216 	/*
3217 	 * The caller will attempt an allocation after some runs have been
3218 	 * reclaimed and added to the vm_phys buddy lists.  Due to limitations
3219 	 * of vm_phys_alloc_contig(), round up the requested length to the next
3220 	 * power of two or maximum chunk size, and ensure that each run is
3221 	 * suitably aligned.
3222 	 */
3223 	minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3224 	npages = roundup2(npages, minalign);
3225 	if (alignment < ptoa(minalign))
3226 		alignment = ptoa(minalign);
3227 
3228 	/*
3229 	 * The page daemon is allowed to dig deeper into the free page list.
3230 	 */
3231 	req_class = req & VM_ALLOC_CLASS_MASK;
3232 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3233 		req_class = VM_ALLOC_SYSTEM;
3234 
3235 	start_segind = vm_phys_lookup_segind(low);
3236 
3237 	/*
3238 	 * Return if the number of free pages cannot satisfy the requested
3239 	 * allocation.
3240 	 */
3241 	vmd = VM_DOMAIN(domain);
3242 	count = vmd->vmd_free_count;
3243 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
3244 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3245 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
3246 		goto done;
3247 
3248 	/*
3249 	 * Scan up to three times, relaxing the restrictions ("options") on
3250 	 * the reclamation of reservations and superpages each time.
3251 	 */
3252 	for (options = VPSC_NORESERV;;) {
3253 		bool phys_range_exists = false;
3254 
3255 		/*
3256 		 * Find the highest runs that satisfy the given constraints
3257 		 * and restrictions, and record them in "m_runs".
3258 		 */
3259 		count = 0;
3260 		segind = start_segind;
3261 		while ((segind = vm_phys_find_range(bounds, segind, domain,
3262 		    npages, low, high)) != -1) {
3263 			phys_range_exists = true;
3264 			while ((m_run = vm_page_scan_contig(npages, bounds[0],
3265 			    bounds[1], alignment, boundary, options))) {
3266 				bounds[0] = m_run + npages;
3267 				m_runs[RUN_INDEX(count, nruns)] = m_run;
3268 				count++;
3269 			}
3270 			segind++;
3271 		}
3272 
3273 		if (!phys_range_exists) {
3274 			ret = ERANGE;
3275 			goto done;
3276 		}
3277 
3278 		/*
3279 		 * Reclaim the highest runs in LIFO (descending) order until
3280 		 * the number of reclaimed pages, "reclaimed", is at least
3281 		 * "min_reclaim".  Reset "reclaimed" each time because each
3282 		 * reclamation is idempotent, and runs will (likely) recur
3283 		 * from one scan to the next as restrictions are relaxed.
3284 		 */
3285 		reclaimed = 0;
3286 		for (i = 0; count > 0 && i < nruns; i++) {
3287 			count--;
3288 			m_run = m_runs[RUN_INDEX(count, nruns)];
3289 			error = vm_page_reclaim_run(req_class, domain, npages,
3290 			    m_run, high);
3291 			if (error == 0) {
3292 				reclaimed += npages;
3293 				if (reclaimed >= min_reclaim) {
3294 					ret = 0;
3295 					goto done;
3296 				}
3297 			}
3298 		}
3299 
3300 		/*
3301 		 * Either relax the restrictions on the next scan or return if
3302 		 * the last scan had no restrictions.
3303 		 */
3304 		if (options == VPSC_NORESERV)
3305 			options = VPSC_NOSUPER;
3306 		else if (options == VPSC_NOSUPER)
3307 			options = VPSC_ANY;
3308 		else if (options == VPSC_ANY) {
3309 			if (reclaimed != 0)
3310 				ret = 0;
3311 			goto done;
3312 		}
3313 	}
3314 done:
3315 	if (m_runs != _m_runs)
3316 		free(m_runs, M_TEMP);
3317 	return (ret);
3318 }
3319 
3320 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3321 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3322     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3323 {
3324 	return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low,
3325 	    high, alignment, boundary, 1));
3326 }
3327 
3328 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3329 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3330     u_long alignment, vm_paddr_t boundary)
3331 {
3332 	struct vm_domainset_iter di;
3333 	int domain, ret, status;
3334 
3335 	ret = ERANGE;
3336 
3337 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL);
3338 	do {
3339 		status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3340 		    high, alignment, boundary);
3341 		if (status == 0)
3342 			return (0);
3343 		else if (status == ERANGE)
3344 			vm_domainset_iter_ignore(&di, domain);
3345 		else {
3346 			KASSERT(status == ENOMEM, ("Unrecognized error %d "
3347 			    "from vm_page_reclaim_contig_domain()", status));
3348 			ret = ENOMEM;
3349 		}
3350 	} while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
3351 
3352 	return (ret);
3353 }
3354 
3355 /*
3356  * Set the domain in the appropriate page level domainset.
3357  */
3358 void
vm_domain_set(struct vm_domain * vmd)3359 vm_domain_set(struct vm_domain *vmd)
3360 {
3361 
3362 	mtx_lock(&vm_domainset_lock);
3363 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3364 		vmd->vmd_minset = 1;
3365 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3366 	}
3367 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3368 		vmd->vmd_severeset = 1;
3369 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3370 	}
3371 	mtx_unlock(&vm_domainset_lock);
3372 }
3373 
3374 /*
3375  * Clear the domain from the appropriate page level domainset.
3376  */
3377 void
vm_domain_clear(struct vm_domain * vmd)3378 vm_domain_clear(struct vm_domain *vmd)
3379 {
3380 
3381 	mtx_lock(&vm_domainset_lock);
3382 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3383 		vmd->vmd_minset = 0;
3384 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3385 		if (vm_min_waiters != 0) {
3386 			vm_min_waiters = 0;
3387 			wakeup(&vm_min_domains);
3388 		}
3389 	}
3390 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3391 		vmd->vmd_severeset = 0;
3392 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3393 		if (vm_severe_waiters != 0) {
3394 			vm_severe_waiters = 0;
3395 			wakeup(&vm_severe_domains);
3396 		}
3397 	}
3398 
3399 	/*
3400 	 * If pageout daemon needs pages, then tell it that there are
3401 	 * some free.
3402 	 */
3403 	if (vmd->vmd_pageout_pages_needed &&
3404 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3405 		wakeup(&vmd->vmd_pageout_pages_needed);
3406 		vmd->vmd_pageout_pages_needed = 0;
3407 	}
3408 
3409 	/* See comments in vm_wait_doms(). */
3410 	if (vm_pageproc_waiters) {
3411 		vm_pageproc_waiters = 0;
3412 		wakeup(&vm_pageproc_waiters);
3413 	}
3414 	mtx_unlock(&vm_domainset_lock);
3415 }
3416 
3417 /*
3418  * Wait for free pages to exceed the min threshold globally.
3419  */
3420 void
vm_wait_min(void)3421 vm_wait_min(void)
3422 {
3423 
3424 	mtx_lock(&vm_domainset_lock);
3425 	while (vm_page_count_min()) {
3426 		vm_min_waiters++;
3427 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3428 	}
3429 	mtx_unlock(&vm_domainset_lock);
3430 }
3431 
3432 /*
3433  * Wait for free pages to exceed the severe threshold globally.
3434  */
3435 void
vm_wait_severe(void)3436 vm_wait_severe(void)
3437 {
3438 
3439 	mtx_lock(&vm_domainset_lock);
3440 	while (vm_page_count_severe()) {
3441 		vm_severe_waiters++;
3442 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3443 		    "vmwait", 0);
3444 	}
3445 	mtx_unlock(&vm_domainset_lock);
3446 }
3447 
3448 u_int
vm_wait_count(void)3449 vm_wait_count(void)
3450 {
3451 
3452 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3453 }
3454 
3455 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3456 vm_wait_doms(const domainset_t *wdoms, int mflags)
3457 {
3458 	int error;
3459 
3460 	error = 0;
3461 
3462 	/*
3463 	 * We use racey wakeup synchronization to avoid expensive global
3464 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3465 	 * To handle this, we only sleep for one tick in this instance.  It
3466 	 * is expected that most allocations for the pageproc will come from
3467 	 * kmem or vm_page_grab* which will use the more specific and
3468 	 * race-free vm_wait_domain().
3469 	 */
3470 	if (curproc == pageproc) {
3471 		mtx_lock(&vm_domainset_lock);
3472 		vm_pageproc_waiters++;
3473 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3474 		    PVM | PDROP | mflags, "pageprocwait", 1);
3475 	} else {
3476 		/*
3477 		 * XXX Ideally we would wait only until the allocation could
3478 		 * be satisfied.  This condition can cause new allocators to
3479 		 * consume all freed pages while old allocators wait.
3480 		 */
3481 		mtx_lock(&vm_domainset_lock);
3482 		if (vm_page_count_min_set(wdoms)) {
3483 			if (pageproc == NULL)
3484 				panic("vm_wait in early boot");
3485 			vm_min_waiters++;
3486 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3487 			    PVM | PDROP | mflags, "vmwait", 0);
3488 		} else
3489 			mtx_unlock(&vm_domainset_lock);
3490 	}
3491 	return (error);
3492 }
3493 
3494 /*
3495  *	vm_wait_domain:
3496  *
3497  *	Sleep until free pages are available for allocation.
3498  *	- Called in various places after failed memory allocations.
3499  */
3500 void
vm_wait_domain(int domain)3501 vm_wait_domain(int domain)
3502 {
3503 	struct vm_domain *vmd;
3504 	domainset_t wdom;
3505 
3506 	vmd = VM_DOMAIN(domain);
3507 	vm_domain_free_assert_unlocked(vmd);
3508 
3509 	if (curproc == pageproc) {
3510 		mtx_lock(&vm_domainset_lock);
3511 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3512 			vmd->vmd_pageout_pages_needed = 1;
3513 			msleep(&vmd->vmd_pageout_pages_needed,
3514 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3515 		} else
3516 			mtx_unlock(&vm_domainset_lock);
3517 	} else {
3518 		DOMAINSET_ZERO(&wdom);
3519 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3520 		vm_wait_doms(&wdom, 0);
3521 	}
3522 }
3523 
3524 static int
vm_wait_flags(vm_object_t obj,int mflags)3525 vm_wait_flags(vm_object_t obj, int mflags)
3526 {
3527 	struct domainset *d;
3528 
3529 	d = NULL;
3530 
3531 	/*
3532 	 * Carefully fetch pointers only once: the struct domainset
3533 	 * itself is ummutable but the pointer might change.
3534 	 */
3535 	if (obj != NULL)
3536 		d = obj->domain.dr_policy;
3537 	if (d == NULL)
3538 		d = curthread->td_domain.dr_policy;
3539 
3540 	return (vm_wait_doms(&d->ds_mask, mflags));
3541 }
3542 
3543 /*
3544  *	vm_wait:
3545  *
3546  *	Sleep until free pages are available for allocation in the
3547  *	affinity domains of the obj.  If obj is NULL, the domain set
3548  *	for the calling thread is used.
3549  *	Called in various places after failed memory allocations.
3550  */
3551 void
vm_wait(vm_object_t obj)3552 vm_wait(vm_object_t obj)
3553 {
3554 	(void)vm_wait_flags(obj, 0);
3555 }
3556 
3557 int
vm_wait_intr(vm_object_t obj)3558 vm_wait_intr(vm_object_t obj)
3559 {
3560 	return (vm_wait_flags(obj, PCATCH));
3561 }
3562 
3563 /*
3564  *	vm_domain_alloc_fail:
3565  *
3566  *	Called when a page allocation function fails.  Informs the
3567  *	pagedaemon and performs the requested wait.  Requires the
3568  *	domain_free and object lock on entry.  Returns with the
3569  *	object lock held and free lock released.  Returns an error when
3570  *	retry is necessary.
3571  *
3572  */
3573 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3574 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3575 {
3576 
3577 	vm_domain_free_assert_unlocked(vmd);
3578 
3579 	atomic_add_int(&vmd->vmd_pageout_deficit,
3580 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3581 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3582 		if (object != NULL)
3583 			VM_OBJECT_WUNLOCK(object);
3584 		vm_wait_domain(vmd->vmd_domain);
3585 		if (object != NULL)
3586 			VM_OBJECT_WLOCK(object);
3587 		if (req & VM_ALLOC_WAITOK)
3588 			return (EAGAIN);
3589 	}
3590 
3591 	return (0);
3592 }
3593 
3594 /*
3595  *	vm_waitpfault:
3596  *
3597  *	Sleep until free pages are available for allocation.
3598  *	- Called only in vm_fault so that processes page faulting
3599  *	  can be easily tracked.
3600  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3601  *	  processes will be able to grab memory first.  Do not change
3602  *	  this balance without careful testing first.
3603  */
3604 void
vm_waitpfault(struct domainset * dset,int timo)3605 vm_waitpfault(struct domainset *dset, int timo)
3606 {
3607 
3608 	/*
3609 	 * XXX Ideally we would wait only until the allocation could
3610 	 * be satisfied.  This condition can cause new allocators to
3611 	 * consume all freed pages while old allocators wait.
3612 	 */
3613 	mtx_lock(&vm_domainset_lock);
3614 	if (vm_page_count_min_set(&dset->ds_mask)) {
3615 		vm_min_waiters++;
3616 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3617 		    "pfault", timo);
3618 	} else
3619 		mtx_unlock(&vm_domainset_lock);
3620 }
3621 
3622 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3623 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3624 {
3625 
3626 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3627 }
3628 
3629 #ifdef INVARIANTS
3630 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3631 vm_page_pagequeue(vm_page_t m)
3632 {
3633 
3634 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3635 }
3636 #endif
3637 
3638 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3639 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old,
3640     vm_page_astate_t new)
3641 {
3642 	vm_page_astate_t tmp;
3643 
3644 	tmp = *old;
3645 	do {
3646 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3647 			return (true);
3648 		counter_u64_add(pqstate_commit_retries, 1);
3649 	} while (old->_bits == tmp._bits);
3650 
3651 	return (false);
3652 }
3653 
3654 /*
3655  * Do the work of committing a queue state update that moves the page out of
3656  * its current queue.
3657  */
3658 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3659 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3660     vm_page_astate_t *old, vm_page_astate_t new)
3661 {
3662 	vm_page_t next;
3663 
3664 	vm_pagequeue_assert_locked(pq);
3665 	KASSERT(vm_page_pagequeue(m) == pq,
3666 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3667 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3668 	    ("%s: invalid queue indices %d %d",
3669 	    __func__, old->queue, new.queue));
3670 
3671 	/*
3672 	 * Once the queue index of the page changes there is nothing
3673 	 * synchronizing with further updates to the page's physical
3674 	 * queue state.  Therefore we must speculatively remove the page
3675 	 * from the queue now and be prepared to roll back if the queue
3676 	 * state update fails.  If the page is not physically enqueued then
3677 	 * we just update its queue index.
3678 	 */
3679 	if ((old->flags & PGA_ENQUEUED) != 0) {
3680 		new.flags &= ~PGA_ENQUEUED;
3681 		next = TAILQ_NEXT(m, plinks.q);
3682 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3683 		vm_pagequeue_cnt_dec(pq);
3684 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3685 			if (next == NULL)
3686 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3687 			else
3688 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3689 			vm_pagequeue_cnt_inc(pq);
3690 			return (false);
3691 		} else {
3692 			return (true);
3693 		}
3694 	} else {
3695 		return (vm_page_pqstate_fcmpset(m, old, new));
3696 	}
3697 }
3698 
3699 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3700 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3701     vm_page_astate_t new)
3702 {
3703 	struct vm_pagequeue *pq;
3704 	vm_page_astate_t as;
3705 	bool ret;
3706 
3707 	pq = _vm_page_pagequeue(m, old->queue);
3708 
3709 	/*
3710 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3711 	 * corresponding page queue lock is held.
3712 	 */
3713 	vm_pagequeue_lock(pq);
3714 	as = vm_page_astate_load(m);
3715 	if (__predict_false(as._bits != old->_bits)) {
3716 		*old = as;
3717 		ret = false;
3718 	} else {
3719 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3720 	}
3721 	vm_pagequeue_unlock(pq);
3722 	return (ret);
3723 }
3724 
3725 /*
3726  * Commit a queue state update that enqueues or requeues a page.
3727  */
3728 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3729 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3730     vm_page_astate_t *old, vm_page_astate_t new)
3731 {
3732 	struct vm_domain *vmd;
3733 
3734 	vm_pagequeue_assert_locked(pq);
3735 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3736 	    ("%s: invalid queue indices %d %d",
3737 	    __func__, old->queue, new.queue));
3738 
3739 	new.flags |= PGA_ENQUEUED;
3740 	if (!vm_page_pqstate_fcmpset(m, old, new))
3741 		return (false);
3742 
3743 	if ((old->flags & PGA_ENQUEUED) != 0)
3744 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3745 	else
3746 		vm_pagequeue_cnt_inc(pq);
3747 
3748 	/*
3749 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3750 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3751 	 * applied, even if it was set first.
3752 	 */
3753 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3754 		vmd = vm_pagequeue_domain(m);
3755 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3756 		    ("%s: invalid page queue for page %p", __func__, m));
3757 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3758 	} else {
3759 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3760 	}
3761 	return (true);
3762 }
3763 
3764 /*
3765  * Commit a queue state update that encodes a request for a deferred queue
3766  * operation.
3767  */
3768 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3769 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3770     vm_page_astate_t new)
3771 {
3772 
3773 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3774 	    ("%s: invalid state, queue %d flags %x",
3775 	    __func__, new.queue, new.flags));
3776 
3777 	if (old->_bits != new._bits &&
3778 	    !vm_page_pqstate_fcmpset(m, old, new))
3779 		return (false);
3780 	vm_page_pqbatch_submit(m, new.queue);
3781 	return (true);
3782 }
3783 
3784 /*
3785  * A generic queue state update function.  This handles more cases than the
3786  * specialized functions above.
3787  */
3788 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3789 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3790 {
3791 
3792 	if (old->_bits == new._bits)
3793 		return (true);
3794 
3795 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3796 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3797 			return (false);
3798 		if (new.queue != PQ_NONE)
3799 			vm_page_pqbatch_submit(m, new.queue);
3800 	} else {
3801 		if (!vm_page_pqstate_fcmpset(m, old, new))
3802 			return (false);
3803 		if (new.queue != PQ_NONE &&
3804 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3805 			vm_page_pqbatch_submit(m, new.queue);
3806 	}
3807 	return (true);
3808 }
3809 
3810 /*
3811  * Apply deferred queue state updates to a page.
3812  */
3813 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3814 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3815 {
3816 	vm_page_astate_t new, old;
3817 
3818 	CRITICAL_ASSERT(curthread);
3819 	vm_pagequeue_assert_locked(pq);
3820 	KASSERT(queue < PQ_COUNT,
3821 	    ("%s: invalid queue index %d", __func__, queue));
3822 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3823 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3824 
3825 	for (old = vm_page_astate_load(m);;) {
3826 		if (__predict_false(old.queue != queue ||
3827 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3828 			counter_u64_add(queue_nops, 1);
3829 			break;
3830 		}
3831 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3832 		    ("%s: page %p is unmanaged", __func__, m));
3833 
3834 		new = old;
3835 		if ((old.flags & PGA_DEQUEUE) != 0) {
3836 			new.flags &= ~PGA_QUEUE_OP_MASK;
3837 			new.queue = PQ_NONE;
3838 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3839 			    m, &old, new))) {
3840 				counter_u64_add(queue_ops, 1);
3841 				break;
3842 			}
3843 		} else {
3844 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3845 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3846 			    m, &old, new))) {
3847 				counter_u64_add(queue_ops, 1);
3848 				break;
3849 			}
3850 		}
3851 	}
3852 }
3853 
3854 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3855 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3856     uint8_t queue)
3857 {
3858 	int i;
3859 
3860 	for (i = 0; i < bq->bq_cnt; i++)
3861 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3862 	vm_batchqueue_init(bq);
3863 }
3864 
3865 /*
3866  *	vm_page_pqbatch_submit:		[ internal use only ]
3867  *
3868  *	Enqueue a page in the specified page queue's batched work queue.
3869  *	The caller must have encoded the requested operation in the page
3870  *	structure's a.flags field.
3871  */
3872 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3873 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3874 {
3875 	struct vm_batchqueue *bq;
3876 	struct vm_pagequeue *pq;
3877 	int domain, slots_remaining;
3878 
3879 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3880 
3881 	domain = vm_page_domain(m);
3882 	critical_enter();
3883 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3884 	slots_remaining = vm_batchqueue_insert(bq, m);
3885 	if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3886 		/* keep building the bq */
3887 		critical_exit();
3888 		return;
3889 	} else if (slots_remaining > 0 ) {
3890 		/* Try to process the bq if we can get the lock */
3891 		pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3892 		if (vm_pagequeue_trylock(pq)) {
3893 			vm_pqbatch_process(pq, bq, queue);
3894 			vm_pagequeue_unlock(pq);
3895 		}
3896 		critical_exit();
3897 		return;
3898 	}
3899 	critical_exit();
3900 
3901 	/* if we make it here, the bq is full so wait for the lock */
3902 
3903 	pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3904 	vm_pagequeue_lock(pq);
3905 	critical_enter();
3906 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3907 	vm_pqbatch_process(pq, bq, queue);
3908 	vm_pqbatch_process_page(pq, m, queue);
3909 	vm_pagequeue_unlock(pq);
3910 	critical_exit();
3911 }
3912 
3913 /*
3914  *	vm_page_pqbatch_drain:		[ internal use only ]
3915  *
3916  *	Force all per-CPU page queue batch queues to be drained.  This is
3917  *	intended for use in severe memory shortages, to ensure that pages
3918  *	do not remain stuck in the batch queues.
3919  */
3920 void
vm_page_pqbatch_drain(void)3921 vm_page_pqbatch_drain(void)
3922 {
3923 	struct thread *td;
3924 	struct vm_domain *vmd;
3925 	struct vm_pagequeue *pq;
3926 	int cpu, domain, queue;
3927 
3928 	td = curthread;
3929 	CPU_FOREACH(cpu) {
3930 		thread_lock(td);
3931 		sched_bind(td, cpu);
3932 		thread_unlock(td);
3933 
3934 		for (domain = 0; domain < vm_ndomains; domain++) {
3935 			vmd = VM_DOMAIN(domain);
3936 			for (queue = 0; queue < PQ_COUNT; queue++) {
3937 				pq = &vmd->vmd_pagequeues[queue];
3938 				vm_pagequeue_lock(pq);
3939 				critical_enter();
3940 				vm_pqbatch_process(pq,
3941 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3942 				critical_exit();
3943 				vm_pagequeue_unlock(pq);
3944 			}
3945 		}
3946 	}
3947 	thread_lock(td);
3948 	sched_unbind(td);
3949 	thread_unlock(td);
3950 }
3951 
3952 /*
3953  *	vm_page_dequeue_deferred:	[ internal use only ]
3954  *
3955  *	Request removal of the given page from its current page
3956  *	queue.  Physical removal from the queue may be deferred
3957  *	indefinitely.
3958  */
3959 void
vm_page_dequeue_deferred(vm_page_t m)3960 vm_page_dequeue_deferred(vm_page_t m)
3961 {
3962 	vm_page_astate_t new, old;
3963 
3964 	old = vm_page_astate_load(m);
3965 	do {
3966 		if (old.queue == PQ_NONE) {
3967 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3968 			    ("%s: page %p has unexpected queue state",
3969 			    __func__, m));
3970 			break;
3971 		}
3972 		new = old;
3973 		new.flags |= PGA_DEQUEUE;
3974 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3975 }
3976 
3977 /*
3978  *	vm_page_dequeue:
3979  *
3980  *	Remove the page from whichever page queue it's in, if any, before
3981  *	returning.
3982  */
3983 void
vm_page_dequeue(vm_page_t m)3984 vm_page_dequeue(vm_page_t m)
3985 {
3986 	vm_page_astate_t new, old;
3987 
3988 	old = vm_page_astate_load(m);
3989 	do {
3990 		if (__predict_true(old.queue == PQ_NONE)) {
3991 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3992 			    ("%s: page %p has unexpected queue state",
3993 			    __func__, m));
3994 			break;
3995 		}
3996 		new = old;
3997 		new.flags &= ~PGA_QUEUE_OP_MASK;
3998 		new.queue = PQ_NONE;
3999 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4000 
4001 }
4002 
4003 /*
4004  * Schedule the given page for insertion into the specified page queue.
4005  * Physical insertion of the page may be deferred indefinitely.
4006  */
4007 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4008 vm_page_enqueue(vm_page_t m, uint8_t queue)
4009 {
4010 
4011 	KASSERT(m->a.queue == PQ_NONE &&
4012 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4013 	    ("%s: page %p is already enqueued", __func__, m));
4014 	KASSERT(m->ref_count > 0,
4015 	    ("%s: page %p does not carry any references", __func__, m));
4016 
4017 	m->a.queue = queue;
4018 	if ((m->a.flags & PGA_REQUEUE) == 0)
4019 		vm_page_aflag_set(m, PGA_REQUEUE);
4020 	vm_page_pqbatch_submit(m, queue);
4021 }
4022 
4023 /*
4024  *	vm_page_free_prep:
4025  *
4026  *	Prepares the given page to be put on the free list,
4027  *	disassociating it from any VM object. The caller may return
4028  *	the page to the free list only if this function returns true.
4029  *
4030  *	The object, if it exists, must be locked, and then the page must
4031  *	be xbusy.  Otherwise the page must be not busied.  A managed
4032  *	page must be unmapped.
4033  */
4034 static bool
vm_page_free_prep(vm_page_t m)4035 vm_page_free_prep(vm_page_t m)
4036 {
4037 
4038 	/*
4039 	 * Synchronize with threads that have dropped a reference to this
4040 	 * page.
4041 	 */
4042 	atomic_thread_fence_acq();
4043 
4044 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4045 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4046 		uint64_t *p;
4047 		int i;
4048 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4049 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4050 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4051 			    m, i, (uintmax_t)*p));
4052 	}
4053 #endif
4054 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4055 		KASSERT(!pmap_page_is_mapped(m),
4056 		    ("vm_page_free_prep: freeing mapped page %p", m));
4057 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4058 		    ("vm_page_free_prep: mapping flags set in page %p", m));
4059 	} else {
4060 		KASSERT(m->a.queue == PQ_NONE,
4061 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
4062 	}
4063 	VM_CNT_INC(v_tfree);
4064 
4065 	if (m->object != NULL) {
4066 		vm_page_radix_remove(m);
4067 		vm_page_free_object_prep(m);
4068 	} else
4069 		vm_page_assert_unbusied(m);
4070 
4071 	vm_page_busy_free(m);
4072 
4073 	/*
4074 	 * If fictitious remove object association and
4075 	 * return.
4076 	 */
4077 	if ((m->flags & PG_FICTITIOUS) != 0) {
4078 		KASSERT(m->ref_count == 1,
4079 		    ("fictitious page %p is referenced", m));
4080 		KASSERT(m->a.queue == PQ_NONE,
4081 		    ("fictitious page %p is queued", m));
4082 		return (false);
4083 	}
4084 
4085 	/*
4086 	 * Pages need not be dequeued before they are returned to the physical
4087 	 * memory allocator, but they must at least be marked for a deferred
4088 	 * dequeue.
4089 	 */
4090 	if ((m->oflags & VPO_UNMANAGED) == 0)
4091 		vm_page_dequeue_deferred(m);
4092 
4093 	m->valid = 0;
4094 	vm_page_undirty(m);
4095 
4096 	if (m->ref_count != 0)
4097 		panic("vm_page_free_prep: page %p has references", m);
4098 
4099 	/*
4100 	 * Restore the default memory attribute to the page.
4101 	 */
4102 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4103 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4104 
4105 #if VM_NRESERVLEVEL > 0
4106 	/*
4107 	 * Determine whether the page belongs to a reservation.  If the page was
4108 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4109 	 * as an optimization, we avoid the check in that case.
4110 	 */
4111 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4112 		return (false);
4113 #endif
4114 
4115 	return (true);
4116 }
4117 
4118 /*
4119  *	vm_page_free_toq:
4120  *
4121  *	Returns the given page to the free list, disassociating it
4122  *	from any VM object.
4123  *
4124  *	The object must be locked.  The page must be exclusively busied if it
4125  *	belongs to an object.
4126  */
4127 static void
vm_page_free_toq(vm_page_t m)4128 vm_page_free_toq(vm_page_t m)
4129 {
4130 	struct vm_domain *vmd;
4131 	uma_zone_t zone;
4132 
4133 	if (!vm_page_free_prep(m))
4134 		return;
4135 
4136 	vmd = vm_pagequeue_domain(m);
4137 	if (__predict_false((m->flags & PG_NOFREE) != 0)) {
4138 		vm_page_free_nofree(vmd, m);
4139 		return;
4140 	}
4141 	zone = vmd->vmd_pgcache[m->pool].zone;
4142 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4143 		uma_zfree(zone, m);
4144 		return;
4145 	}
4146 	vm_domain_free_lock(vmd);
4147 	vm_phys_free_pages(m, m->pool, 0);
4148 	vm_domain_free_unlock(vmd);
4149 	vm_domain_freecnt_inc(vmd, 1);
4150 }
4151 
4152 /*
4153  *	vm_page_free_pages_toq:
4154  *
4155  *	Returns a list of pages to the free list, disassociating it
4156  *	from any VM object.  In other words, this is equivalent to
4157  *	calling vm_page_free_toq() for each page of a list of VM objects.
4158  */
4159 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4160 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4161 {
4162 	vm_page_t m;
4163 	int count;
4164 
4165 	if (SLIST_EMPTY(free))
4166 		return (0);
4167 
4168 	count = 0;
4169 	while ((m = SLIST_FIRST(free)) != NULL) {
4170 		count++;
4171 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
4172 		vm_page_free_toq(m);
4173 	}
4174 
4175 	if (update_wire_count)
4176 		vm_wire_sub(count);
4177 	return (count);
4178 }
4179 
4180 /*
4181  * Mark this page as wired down.  For managed pages, this prevents reclamation
4182  * by the page daemon, or when the containing object, if any, is destroyed.
4183  */
4184 void
vm_page_wire(vm_page_t m)4185 vm_page_wire(vm_page_t m)
4186 {
4187 	u_int old;
4188 
4189 #ifdef INVARIANTS
4190 	if (m->object != NULL && !vm_page_busied(m) &&
4191 	    !vm_object_busied(m->object))
4192 		VM_OBJECT_ASSERT_LOCKED(m->object);
4193 #endif
4194 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4195 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
4196 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
4197 
4198 	old = atomic_fetchadd_int(&m->ref_count, 1);
4199 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4200 	    ("vm_page_wire: counter overflow for page %p", m));
4201 	if (VPRC_WIRE_COUNT(old) == 0) {
4202 		if ((m->oflags & VPO_UNMANAGED) == 0)
4203 			vm_page_aflag_set(m, PGA_DEQUEUE);
4204 		vm_wire_add(1);
4205 	}
4206 }
4207 
4208 /*
4209  * Attempt to wire a mapped page following a pmap lookup of that page.
4210  * This may fail if a thread is concurrently tearing down mappings of the page.
4211  * The transient failure is acceptable because it translates to the
4212  * failure of the caller pmap_extract_and_hold(), which should be then
4213  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4214  */
4215 bool
vm_page_wire_mapped(vm_page_t m)4216 vm_page_wire_mapped(vm_page_t m)
4217 {
4218 	u_int old;
4219 
4220 	old = atomic_load_int(&m->ref_count);
4221 	do {
4222 		KASSERT(old > 0,
4223 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4224 		if ((old & VPRC_BLOCKED) != 0)
4225 			return (false);
4226 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4227 
4228 	if (VPRC_WIRE_COUNT(old) == 0) {
4229 		if ((m->oflags & VPO_UNMANAGED) == 0)
4230 			vm_page_aflag_set(m, PGA_DEQUEUE);
4231 		vm_wire_add(1);
4232 	}
4233 	return (true);
4234 }
4235 
4236 /*
4237  * Release a wiring reference to a managed page.  If the page still belongs to
4238  * an object, update its position in the page queues to reflect the reference.
4239  * If the wiring was the last reference to the page, free the page.
4240  */
4241 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4242 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4243 {
4244 	u_int old;
4245 
4246 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4247 	    ("%s: page %p is unmanaged", __func__, m));
4248 
4249 	/*
4250 	 * Update LRU state before releasing the wiring reference.
4251 	 * Use a release store when updating the reference count to
4252 	 * synchronize with vm_page_free_prep().
4253 	 */
4254 	old = atomic_load_int(&m->ref_count);
4255 	do {
4256 		u_int count;
4257 
4258 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4259 		    ("vm_page_unwire: wire count underflow for page %p", m));
4260 
4261 		count = old & ~VPRC_BLOCKED;
4262 		if (count > VPRC_OBJREF + 1) {
4263 			/*
4264 			 * The page has at least one other wiring reference.  An
4265 			 * earlier iteration of this loop may have called
4266 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4267 			 * re-set it if necessary.
4268 			 */
4269 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4270 				vm_page_aflag_set(m, PGA_DEQUEUE);
4271 		} else if (count == VPRC_OBJREF + 1) {
4272 			/*
4273 			 * This is the last wiring.  Clear PGA_DEQUEUE and
4274 			 * update the page's queue state to reflect the
4275 			 * reference.  If the page does not belong to an object
4276 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4277 			 * clear leftover queue state.
4278 			 */
4279 			vm_page_release_toq(m, nqueue, noreuse);
4280 		} else if (count == 1) {
4281 			vm_page_aflag_clear(m, PGA_DEQUEUE);
4282 		}
4283 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4284 
4285 	if (VPRC_WIRE_COUNT(old) == 1) {
4286 		vm_wire_sub(1);
4287 		if (old == 1)
4288 			vm_page_free(m);
4289 	}
4290 }
4291 
4292 /*
4293  * Release one wiring of the specified page, potentially allowing it to be
4294  * paged out.
4295  *
4296  * Only managed pages belonging to an object can be paged out.  If the number
4297  * of wirings transitions to zero and the page is eligible for page out, then
4298  * the page is added to the specified paging queue.  If the released wiring
4299  * represented the last reference to the page, the page is freed.
4300  */
4301 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4302 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4303 {
4304 
4305 	KASSERT(nqueue < PQ_COUNT,
4306 	    ("vm_page_unwire: invalid queue %u request for page %p",
4307 	    nqueue, m));
4308 
4309 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4310 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4311 			vm_page_free(m);
4312 		return;
4313 	}
4314 	vm_page_unwire_managed(m, nqueue, false);
4315 }
4316 
4317 /*
4318  * Unwire a page without (re-)inserting it into a page queue.  It is up
4319  * to the caller to enqueue, requeue, or free the page as appropriate.
4320  * In most cases involving managed pages, vm_page_unwire() should be used
4321  * instead.
4322  */
4323 bool
vm_page_unwire_noq(vm_page_t m)4324 vm_page_unwire_noq(vm_page_t m)
4325 {
4326 	u_int old;
4327 
4328 	old = vm_page_drop(m, 1);
4329 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4330 	    ("%s: counter underflow for page %p", __func__,  m));
4331 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4332 	    ("%s: missing ref on fictitious page %p", __func__, m));
4333 
4334 	if (VPRC_WIRE_COUNT(old) > 1)
4335 		return (false);
4336 	if ((m->oflags & VPO_UNMANAGED) == 0)
4337 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4338 	vm_wire_sub(1);
4339 	return (true);
4340 }
4341 
4342 /*
4343  * Ensure that the page ends up in the specified page queue.  If the page is
4344  * active or being moved to the active queue, ensure that its act_count is
4345  * at least ACT_INIT but do not otherwise mess with it.
4346  */
4347 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4348 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4349 {
4350 	vm_page_astate_t old, new;
4351 
4352 	KASSERT(m->ref_count > 0,
4353 	    ("%s: page %p does not carry any references", __func__, m));
4354 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4355 	    ("%s: invalid flags %x", __func__, nflag));
4356 
4357 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4358 		return;
4359 
4360 	old = vm_page_astate_load(m);
4361 	do {
4362 		if ((old.flags & PGA_DEQUEUE) != 0)
4363 			break;
4364 		new = old;
4365 		new.flags &= ~PGA_QUEUE_OP_MASK;
4366 		if (nqueue == PQ_ACTIVE)
4367 			new.act_count = max(old.act_count, ACT_INIT);
4368 		if (old.queue == nqueue) {
4369 			/*
4370 			 * There is no need to requeue pages already in the
4371 			 * active queue.
4372 			 */
4373 			if (nqueue != PQ_ACTIVE ||
4374 			    (old.flags & PGA_ENQUEUED) == 0)
4375 				new.flags |= nflag;
4376 		} else {
4377 			new.flags |= nflag;
4378 			new.queue = nqueue;
4379 		}
4380 	} while (!vm_page_pqstate_commit(m, &old, new));
4381 }
4382 
4383 /*
4384  * Put the specified page on the active list (if appropriate).
4385  */
4386 void
vm_page_activate(vm_page_t m)4387 vm_page_activate(vm_page_t m)
4388 {
4389 
4390 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4391 }
4392 
4393 /*
4394  * Move the specified page to the tail of the inactive queue, or requeue
4395  * the page if it is already in the inactive queue.
4396  */
4397 void
vm_page_deactivate(vm_page_t m)4398 vm_page_deactivate(vm_page_t m)
4399 {
4400 
4401 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4402 }
4403 
4404 void
vm_page_deactivate_noreuse(vm_page_t m)4405 vm_page_deactivate_noreuse(vm_page_t m)
4406 {
4407 
4408 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4409 }
4410 
4411 /*
4412  * Put a page in the laundry, or requeue it if it is already there.
4413  */
4414 void
vm_page_launder(vm_page_t m)4415 vm_page_launder(vm_page_t m)
4416 {
4417 
4418 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4419 }
4420 
4421 /*
4422  * Put a page in the PQ_UNSWAPPABLE holding queue.
4423  */
4424 void
vm_page_unswappable(vm_page_t m)4425 vm_page_unswappable(vm_page_t m)
4426 {
4427 
4428 	VM_OBJECT_ASSERT_LOCKED(m->object);
4429 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4430 	    ("page %p already unswappable", m));
4431 
4432 	vm_page_dequeue(m);
4433 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4434 }
4435 
4436 /*
4437  * Release a page back to the page queues in preparation for unwiring.
4438  */
4439 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4440 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4441 {
4442 	vm_page_astate_t old, new;
4443 	uint16_t nflag;
4444 
4445 	/*
4446 	 * Use a check of the valid bits to determine whether we should
4447 	 * accelerate reclamation of the page.  The object lock might not be
4448 	 * held here, in which case the check is racy.  At worst we will either
4449 	 * accelerate reclamation of a valid page and violate LRU, or
4450 	 * unnecessarily defer reclamation of an invalid page.
4451 	 *
4452 	 * If we were asked to not cache the page, place it near the head of the
4453 	 * inactive queue so that is reclaimed sooner.
4454 	 */
4455 	if (noreuse || vm_page_none_valid(m)) {
4456 		nqueue = PQ_INACTIVE;
4457 		nflag = PGA_REQUEUE_HEAD;
4458 	} else {
4459 		nflag = PGA_REQUEUE;
4460 	}
4461 
4462 	old = vm_page_astate_load(m);
4463 	do {
4464 		new = old;
4465 
4466 		/*
4467 		 * If the page is already in the active queue and we are not
4468 		 * trying to accelerate reclamation, simply mark it as
4469 		 * referenced and avoid any queue operations.
4470 		 */
4471 		new.flags &= ~PGA_QUEUE_OP_MASK;
4472 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4473 		    (old.flags & PGA_ENQUEUED) != 0)
4474 			new.flags |= PGA_REFERENCED;
4475 		else {
4476 			new.flags |= nflag;
4477 			new.queue = nqueue;
4478 		}
4479 	} while (!vm_page_pqstate_commit(m, &old, new));
4480 }
4481 
4482 /*
4483  * Unwire a page and either attempt to free it or re-add it to the page queues.
4484  */
4485 void
vm_page_release(vm_page_t m,int flags)4486 vm_page_release(vm_page_t m, int flags)
4487 {
4488 	vm_object_t object;
4489 
4490 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4491 	    ("vm_page_release: page %p is unmanaged", m));
4492 
4493 	if ((flags & VPR_TRYFREE) != 0) {
4494 		for (;;) {
4495 			object = atomic_load_ptr(&m->object);
4496 			if (object == NULL)
4497 				break;
4498 			/* Depends on type-stability. */
4499 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4500 				break;
4501 			if (object == m->object) {
4502 				vm_page_release_locked(m, flags);
4503 				VM_OBJECT_WUNLOCK(object);
4504 				return;
4505 			}
4506 			VM_OBJECT_WUNLOCK(object);
4507 		}
4508 	}
4509 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4510 }
4511 
4512 /* See vm_page_release(). */
4513 void
vm_page_release_locked(vm_page_t m,int flags)4514 vm_page_release_locked(vm_page_t m, int flags)
4515 {
4516 
4517 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4518 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4519 	    ("vm_page_release_locked: page %p is unmanaged", m));
4520 
4521 	if (vm_page_unwire_noq(m)) {
4522 		if ((flags & VPR_TRYFREE) != 0 &&
4523 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4524 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4525 			/*
4526 			 * An unlocked lookup may have wired the page before the
4527 			 * busy lock was acquired, in which case the page must
4528 			 * not be freed.
4529 			 */
4530 			if (__predict_true(!vm_page_wired(m))) {
4531 				vm_page_free(m);
4532 				return;
4533 			}
4534 			vm_page_xunbusy(m);
4535 		} else {
4536 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4537 		}
4538 	}
4539 }
4540 
4541 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4542 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4543 {
4544 	u_int old;
4545 
4546 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4547 	    ("vm_page_try_blocked_op: page %p has no object", m));
4548 	KASSERT(vm_page_busied(m),
4549 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4550 	VM_OBJECT_ASSERT_LOCKED(m->object);
4551 
4552 	old = atomic_load_int(&m->ref_count);
4553 	do {
4554 		KASSERT(old != 0,
4555 		    ("vm_page_try_blocked_op: page %p has no references", m));
4556 		KASSERT((old & VPRC_BLOCKED) == 0,
4557 		    ("vm_page_try_blocked_op: page %p blocks wirings", m));
4558 		if (VPRC_WIRE_COUNT(old) != 0)
4559 			return (false);
4560 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4561 
4562 	(op)(m);
4563 
4564 	/*
4565 	 * If the object is read-locked, new wirings may be created via an
4566 	 * object lookup.
4567 	 */
4568 	old = vm_page_drop(m, VPRC_BLOCKED);
4569 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4570 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4571 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4572 	    old, m));
4573 	return (true);
4574 }
4575 
4576 /*
4577  * Atomically check for wirings and remove all mappings of the page.
4578  */
4579 bool
vm_page_try_remove_all(vm_page_t m)4580 vm_page_try_remove_all(vm_page_t m)
4581 {
4582 
4583 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4584 }
4585 
4586 /*
4587  * Atomically check for wirings and remove all writeable mappings of the page.
4588  */
4589 bool
vm_page_try_remove_write(vm_page_t m)4590 vm_page_try_remove_write(vm_page_t m)
4591 {
4592 
4593 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4594 }
4595 
4596 /*
4597  * vm_page_advise
4598  *
4599  * 	Apply the specified advice to the given page.
4600  */
4601 void
vm_page_advise(vm_page_t m,int advice)4602 vm_page_advise(vm_page_t m, int advice)
4603 {
4604 
4605 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4606 	vm_page_assert_xbusied(m);
4607 
4608 	if (advice == MADV_FREE)
4609 		/*
4610 		 * Mark the page clean.  This will allow the page to be freed
4611 		 * without first paging it out.  MADV_FREE pages are often
4612 		 * quickly reused by malloc(3), so we do not do anything that
4613 		 * would result in a page fault on a later access.
4614 		 */
4615 		vm_page_undirty(m);
4616 	else if (advice != MADV_DONTNEED) {
4617 		if (advice == MADV_WILLNEED)
4618 			vm_page_activate(m);
4619 		return;
4620 	}
4621 
4622 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4623 		vm_page_dirty(m);
4624 
4625 	/*
4626 	 * Clear any references to the page.  Otherwise, the page daemon will
4627 	 * immediately reactivate the page.
4628 	 */
4629 	vm_page_aflag_clear(m, PGA_REFERENCED);
4630 
4631 	/*
4632 	 * Place clean pages near the head of the inactive queue rather than
4633 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4634 	 * the page will be reused quickly.  Dirty pages not already in the
4635 	 * laundry are moved there.
4636 	 */
4637 	if (m->dirty == 0)
4638 		vm_page_deactivate_noreuse(m);
4639 	else if (!vm_page_in_laundry(m))
4640 		vm_page_launder(m);
4641 }
4642 
4643 /*
4644  *	vm_page_grab_release
4645  *
4646  *	Helper routine for grab functions to release busy on return.
4647  */
4648 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4649 vm_page_grab_release(vm_page_t m, int allocflags)
4650 {
4651 
4652 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4653 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4654 			vm_page_sunbusy(m);
4655 		else
4656 			vm_page_xunbusy(m);
4657 	}
4658 }
4659 
4660 /*
4661  *	vm_page_grab_sleep
4662  *
4663  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4664  *	if the caller should retry and false otherwise.
4665  *
4666  *	If the object is locked on entry the object will be unlocked with
4667  *	false returns and still locked but possibly having been dropped
4668  *	with true returns.
4669  */
4670 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4671 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4672     const char *wmesg, int allocflags, bool locked)
4673 {
4674 
4675 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4676 		return (false);
4677 
4678 	/*
4679 	 * Reference the page before unlocking and sleeping so that
4680 	 * the page daemon is less likely to reclaim it.
4681 	 */
4682 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4683 		vm_page_reference(m);
4684 
4685 	if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4686 	    locked)
4687 		VM_OBJECT_WLOCK(object);
4688 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4689 		return (false);
4690 
4691 	return (true);
4692 }
4693 
4694 /*
4695  * Assert that the grab flags are valid.
4696  */
4697 static inline void
vm_page_grab_check(int allocflags)4698 vm_page_grab_check(int allocflags)
4699 {
4700 
4701 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4702 	    (allocflags & VM_ALLOC_WIRED) != 0,
4703 	    ("vm_page_grab*: the pages must be busied or wired"));
4704 
4705 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4706 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4707 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4708 }
4709 
4710 /*
4711  * Calculate the page allocation flags for grab.
4712  */
4713 static inline int
vm_page_grab_pflags(int allocflags)4714 vm_page_grab_pflags(int allocflags)
4715 {
4716 	int pflags;
4717 
4718 	pflags = allocflags &
4719 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4720 	    VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4721 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4722 		pflags |= VM_ALLOC_WAITFAIL;
4723 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4724 		pflags |= VM_ALLOC_SBUSY;
4725 
4726 	return (pflags);
4727 }
4728 
4729 /*
4730  * Grab a page, waiting until we are woken up due to the page changing state.
4731  * We keep on waiting, if the page continues to be in the object, unless
4732  * allocflags forbid waiting.
4733  *
4734  * The object must be locked on entry.  This routine may sleep.  The lock will,
4735  * however, be released and reacquired if the routine sleeps.
4736  *
4737  *  Return a grabbed page, or NULL.  Set *found if a page was found, whether or
4738  *  not it was grabbed.
4739  */
4740 static inline vm_page_t
vm_page_grab_lookup(vm_object_t object,vm_pindex_t pindex,int allocflags,bool * found,struct pctrie_iter * pages)4741 vm_page_grab_lookup(vm_object_t object, vm_pindex_t pindex, int allocflags,
4742     bool *found, struct pctrie_iter *pages)
4743 {
4744 	vm_page_t m;
4745 
4746 	while ((*found = (m = vm_radix_iter_lookup(pages, pindex)) != NULL) &&
4747 	    !vm_page_tryacquire(m, allocflags)) {
4748 		if (!vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4749 		    allocflags, true))
4750 			return (NULL);
4751 		pctrie_iter_reset(pages);
4752 	}
4753 	return (m);
4754 }
4755 
4756 /*
4757  * Grab a page.  Use an iterator parameter. Keep on waiting, as long as the page
4758  * exists in the object.  If the page doesn't exist, first allocate it and then
4759  * conditionally zero it.
4760  *
4761  * The object must be locked on entry.  This routine may sleep.  The lock will,
4762  * however, be released and reacquired if the routine sleeps.
4763  */
4764 vm_page_t
vm_page_grab_iter(vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4765 vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex, int allocflags,
4766     struct pctrie_iter *pages)
4767 {
4768 	vm_page_t m;
4769 	bool found;
4770 
4771 	VM_OBJECT_ASSERT_WLOCKED(object);
4772 	vm_page_grab_check(allocflags);
4773 
4774 	while ((m = vm_page_grab_lookup(
4775 	    object, pindex, allocflags, &found, pages)) == NULL) {
4776 		if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4777 			return (NULL);
4778 		if (found &&
4779 		    (allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4780 			return (NULL);
4781 		m = vm_page_alloc_iter(object, pindex,
4782 		    vm_page_grab_pflags(allocflags), pages);
4783 		if (m != NULL) {
4784 			if ((allocflags & VM_ALLOC_ZERO) != 0 &&
4785 			    (m->flags & PG_ZERO) == 0)
4786 				pmap_zero_page(m);
4787 			break;
4788 		}
4789 		if ((allocflags &
4790 		    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4791 			return (NULL);
4792 	}
4793 	vm_page_grab_release(m, allocflags);
4794 
4795 	return (m);
4796 }
4797 
4798 /*
4799  * Grab a page.  Keep on waiting, as long as the page exists in the object.  If
4800  * the page doesn't exist, first allocate it and then conditionally zero it.
4801  *
4802  * The object must be locked on entry.  This routine may sleep.  The lock will,
4803  * however, be released and reacquired if the routine sleeps.
4804  */
4805 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4806 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4807 {
4808 	struct pctrie_iter pages;
4809 
4810 	VM_OBJECT_ASSERT_WLOCKED(object);
4811 	vm_page_iter_init(&pages, object);
4812 	return (vm_page_grab_iter(object, pindex, allocflags, &pages));
4813 }
4814 
4815 /*
4816  * Attempt to validate a page, locklessly acquiring it if necessary, given a
4817  * (object, pindex) tuple and either an invalided page or NULL.  The resulting
4818  * page will be validated against the identity tuple, and busied or wired as
4819  * requested.  A NULL page returned guarantees that the page was not in radix at
4820  * the time of the call but callers must perform higher level synchronization or
4821  * retry the operation under a lock if they require an atomic answer.  This is
4822  * the only lock free validation routine, other routines can depend on the
4823  * resulting page state.
4824  *
4825  * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4826  * caller flags.
4827  */
4828 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4829 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4830 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4831     int allocflags)
4832 {
4833 	if (m == NULL)
4834 		m = vm_page_lookup_unlocked(object, pindex);
4835 	for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4836 		if (vm_page_trybusy(m, allocflags)) {
4837 			if (m->object == object && m->pindex == pindex) {
4838 				if ((allocflags & VM_ALLOC_WIRED) != 0)
4839 					vm_page_wire(m);
4840 				vm_page_grab_release(m, allocflags);
4841 				break;
4842 			}
4843 			/* relookup. */
4844 			vm_page_busy_release(m);
4845 			cpu_spinwait();
4846 			continue;
4847 		}
4848 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4849 		    allocflags, false))
4850 			return (PAGE_NOT_ACQUIRED);
4851 	}
4852 	return (m);
4853 }
4854 
4855 /*
4856  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4857  * is not set.
4858  */
4859 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4860 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4861 {
4862 	vm_page_t m;
4863 
4864 	vm_page_grab_check(allocflags);
4865 	m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4866 	if (m == PAGE_NOT_ACQUIRED)
4867 		return (NULL);
4868 	if (m != NULL)
4869 		return (m);
4870 
4871 	/*
4872 	 * The radix lockless lookup should never return a false negative
4873 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4874 	 * was no page present at the instant of the call.  A NOCREAT caller
4875 	 * must handle create races gracefully.
4876 	 */
4877 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4878 		return (NULL);
4879 
4880 	VM_OBJECT_WLOCK(object);
4881 	m = vm_page_grab(object, pindex, allocflags);
4882 	VM_OBJECT_WUNLOCK(object);
4883 
4884 	return (m);
4885 }
4886 
4887 /*
4888  * Grab a page and make it valid, paging in if necessary.  Use an iterator
4889  * parameter. Pages missing from their pager are zero filled and validated.  If
4890  * a VM_ALLOC_COUNT is supplied and the page is not valid as many as
4891  * VM_INITIAL_PAGEIN pages can be brought in simultaneously.  Additional pages
4892  * will be left on a paging queue but will neither be wired nor busy regardless
4893  * of allocflags.
4894  */
4895 int
vm_page_grab_valid_iter(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4896 vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
4897     int allocflags, struct pctrie_iter *pages)
4898 {
4899 	vm_page_t m;
4900 	vm_page_t ma[VM_INITIAL_PAGEIN];
4901 	int after, ahead, i, pflags, rv;
4902 
4903 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4904 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4905 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4906 	KASSERT((allocflags &
4907 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4908 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4909 	VM_OBJECT_ASSERT_WLOCKED(object);
4910 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4911 	    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4912 	pflags |= VM_ALLOC_WAITFAIL;
4913 
4914 retrylookup:
4915 	if ((m = vm_radix_iter_lookup(pages, pindex)) != NULL) {
4916 		/*
4917 		 * If the page is fully valid it can only become invalid
4918 		 * with the object lock held.  If it is not valid it can
4919 		 * become valid with the busy lock held.  Therefore, we
4920 		 * may unnecessarily lock the exclusive busy here if we
4921 		 * race with I/O completion not using the object lock.
4922 		 * However, we will not end up with an invalid page and a
4923 		 * shared lock.
4924 		 */
4925 		if (!vm_page_trybusy(m,
4926 		    vm_page_all_valid(m) ? allocflags : 0)) {
4927 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4928 			    allocflags, true);
4929 			pctrie_iter_reset(pages);
4930 			goto retrylookup;
4931 		}
4932 		if (vm_page_all_valid(m))
4933 			goto out;
4934 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4935 			vm_page_busy_release(m);
4936 			*mp = NULL;
4937 			return (VM_PAGER_FAIL);
4938 		}
4939 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4940 		*mp = NULL;
4941 		return (VM_PAGER_FAIL);
4942 	} else {
4943 		m = vm_page_alloc_iter(object, pindex, pflags, pages);
4944 		if (m == NULL) {
4945 			if (!vm_pager_can_alloc_page(object, pindex)) {
4946 				*mp = NULL;
4947 				return (VM_PAGER_AGAIN);
4948 			}
4949 			goto retrylookup;
4950 		}
4951 	}
4952 
4953 	vm_page_assert_xbusied(m);
4954 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4955 		after = MIN(after, VM_INITIAL_PAGEIN);
4956 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4957 		after = MAX(after, 1);
4958 		ma[0] = m;
4959 		pctrie_iter_reset(pages);
4960 		for (i = 1; i < after; i++) {
4961 			m = vm_radix_iter_lookup_ge(pages, pindex + i);
4962 			ahead = after;
4963 			if (m != NULL)
4964 				ahead = MIN(ahead, m->pindex - pindex);
4965 			for (; i < ahead; i++) {
4966 				ma[i] = vm_page_alloc_iter(object, pindex + i,
4967 				    VM_ALLOC_NORMAL, pages);
4968 				if (ma[i] == NULL)
4969 					break;
4970 			}
4971 			if (m == NULL || m->pindex != pindex + i ||
4972 			    vm_page_any_valid(m) || !vm_page_tryxbusy(m))
4973 				break;
4974 			ma[i] = m;
4975 		}
4976 		after = i;
4977 		vm_object_pip_add(object, after);
4978 		VM_OBJECT_WUNLOCK(object);
4979 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4980 		pctrie_iter_reset(pages);
4981 		VM_OBJECT_WLOCK(object);
4982 		vm_object_pip_wakeupn(object, after);
4983 		/* Pager may have replaced a page. */
4984 		m = ma[0];
4985 		if (rv != VM_PAGER_OK) {
4986 			for (i = 0; i < after; i++) {
4987 				if (!vm_page_wired(ma[i]))
4988 					vm_page_free(ma[i]);
4989 				else
4990 					vm_page_xunbusy(ma[i]);
4991 			}
4992 			*mp = NULL;
4993 			return (rv);
4994 		}
4995 		for (i = 1; i < after; i++)
4996 			vm_page_readahead_finish(ma[i]);
4997 		MPASS(vm_page_all_valid(m));
4998 	} else {
4999 		vm_page_zero_invalid(m, TRUE);
5000 		pctrie_iter_reset(pages);
5001 	}
5002 out:
5003 	if ((allocflags & VM_ALLOC_WIRED) != 0)
5004 		vm_page_wire(m);
5005 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5006 		vm_page_busy_downgrade(m);
5007 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5008 		vm_page_busy_release(m);
5009 	*mp = m;
5010 	return (VM_PAGER_OK);
5011 }
5012 
5013 /*
5014  * Grab a page and make it valid, paging in if necessary.  Pages missing from
5015  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
5016  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
5017  * in simultaneously.  Additional pages will be left on a paging queue but
5018  * will neither be wired nor busy regardless of allocflags.
5019  */
5020 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5021 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
5022     int allocflags)
5023 {
5024 	struct pctrie_iter pages;
5025 
5026 	VM_OBJECT_ASSERT_WLOCKED(object);
5027 	vm_page_iter_init(&pages, object);
5028 	return (vm_page_grab_valid_iter(mp, object, pindex, allocflags,
5029 	    &pages));
5030 }
5031 
5032 /*
5033  * Grab a page.  Keep on waiting, as long as the page exists in the object.  If
5034  * the page doesn't exist, and the pager has it, allocate it and zero part of
5035  * it.
5036  *
5037  * The object must be locked on entry.  This routine may sleep.  The lock will,
5038  * however, be released and reacquired if the routine sleeps.
5039  */
5040 int
vm_page_grab_zero_partial(vm_object_t object,vm_pindex_t pindex,int base,int end)5041 vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
5042     int end)
5043 {
5044 	struct pctrie_iter pages;
5045 	vm_page_t m;
5046 	int allocflags, rv;
5047 	bool found;
5048 
5049 	VM_OBJECT_ASSERT_WLOCKED(object);
5050 	KASSERT(base >= 0, ("%s: base %d", __func__, base));
5051 	KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
5052 	    end));
5053 
5054 	allocflags = VM_ALLOC_NOCREAT | VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL;
5055 	vm_page_iter_init(&pages, object);
5056 	while ((m = vm_page_grab_lookup(
5057 	    object, pindex, allocflags, &found, &pages)) == NULL) {
5058 		if (!vm_pager_has_page(object, pindex, NULL, NULL))
5059 			return (0);
5060 		m = vm_page_alloc_iter(object, pindex,
5061 		    vm_page_grab_pflags(allocflags), &pages);
5062 		if (m != NULL) {
5063 			vm_object_pip_add(object, 1);
5064 			VM_OBJECT_WUNLOCK(object);
5065 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
5066 			VM_OBJECT_WLOCK(object);
5067 			vm_object_pip_wakeup(object);
5068 			if (rv != VM_PAGER_OK) {
5069 				vm_page_free(m);
5070 				return (EIO);
5071 			}
5072 
5073 			/*
5074 			 * Since the page was not resident, and therefore not
5075 			 * recently accessed, immediately enqueue it for
5076 			 * asynchronous laundering.  The current operation is
5077 			 * not regarded as an access.
5078 			 */
5079 			vm_page_launder(m);
5080 			break;
5081 		}
5082 	}
5083 
5084 	pmap_zero_page_area(m, base, end - base);
5085 	KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid", __func__, m));
5086 	vm_page_set_dirty(m);
5087 	vm_page_xunbusy(m);
5088 	return (0);
5089 }
5090 
5091 /*
5092  * Locklessly grab a valid page.  If the page is not valid or not yet
5093  * allocated this will fall back to the object lock method.
5094  */
5095 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5096 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5097     vm_pindex_t pindex, int allocflags)
5098 {
5099 	vm_page_t m;
5100 	int flags;
5101 	int error;
5102 
5103 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5104 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5105 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5106 	    "mismatch"));
5107 	KASSERT((allocflags &
5108 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5109 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5110 
5111 	/*
5112 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
5113 	 * before we can inspect the valid field and return a wired page.
5114 	 */
5115 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5116 	vm_page_grab_check(flags);
5117 	m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5118 	if (m == PAGE_NOT_ACQUIRED)
5119 		return (VM_PAGER_FAIL);
5120 	if (m != NULL) {
5121 		if (vm_page_all_valid(m)) {
5122 			if ((allocflags & VM_ALLOC_WIRED) != 0)
5123 				vm_page_wire(m);
5124 			vm_page_grab_release(m, allocflags);
5125 			*mp = m;
5126 			return (VM_PAGER_OK);
5127 		}
5128 		vm_page_busy_release(m);
5129 	}
5130 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5131 		*mp = NULL;
5132 		return (VM_PAGER_FAIL);
5133 	}
5134 	VM_OBJECT_WLOCK(object);
5135 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
5136 	VM_OBJECT_WUNLOCK(object);
5137 
5138 	return (error);
5139 }
5140 
5141 /*
5142  * Return the specified range of pages from the given object.  For each
5143  * page offset within the range, if a page already exists within the object
5144  * at that offset and it is busy, then wait for it to change state.  If,
5145  * instead, the page doesn't exist, then allocate it.
5146  *
5147  * The caller must always specify an allocation class.
5148  *
5149  * allocation classes:
5150  *	VM_ALLOC_NORMAL		normal process request
5151  *	VM_ALLOC_SYSTEM		system *really* needs the pages
5152  *	VM_ALLOC_INTERRUPT	interrupt time request
5153  *
5154  * The caller must always specify that the pages are to be busied and/or
5155  * wired.
5156  *
5157  * optional allocation flags:
5158  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
5159  *	VM_ALLOC_NOBUSY		do not exclusive busy the pages
5160  *	VM_ALLOC_NODUMP		do not include the pages in a kernel core dump
5161  *	VM_ALLOC_NOFREE		pages will never be freed
5162  *	VM_ALLOC_NOWAIT		do not sleep
5163  *	VM_ALLOC_SBUSY		set pages to sbusy state
5164  *	VM_ALLOC_WAITFAIL	in case of failure, sleep before returning
5165  *	VM_ALLOC_WAITOK		ignored (default behavior)
5166  *	VM_ALLOC_WIRED		wire the pages
5167  *	VM_ALLOC_ZERO		zero and validate any invalid pages
5168  *
5169  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
5170  * may return a partial prefix of the requested range.
5171  */
5172 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5173 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5174     vm_page_t *ma, int count)
5175 {
5176 	struct pctrie_iter pages;
5177 	vm_page_t m;
5178 	int pflags;
5179 	int ahead, i;
5180 
5181 	VM_OBJECT_ASSERT_WLOCKED(object);
5182 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5183 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5184 	KASSERT(count > 0,
5185 	    ("vm_page_grab_pages: invalid page count %d", count));
5186 	vm_page_grab_check(allocflags);
5187 
5188 	pflags = vm_page_grab_pflags(allocflags);
5189 	i = 0;
5190 	vm_page_iter_init(&pages, object);
5191 retrylookup:
5192 	ahead = -1;
5193 	for (; i < count; i++) {
5194 		if (ahead < 0) {
5195 			ahead = vm_radix_iter_lookup_range(
5196 			    &pages, pindex + i, &ma[i], count - i);
5197 		}
5198 		if (ahead-- > 0) {
5199 			m = ma[i];
5200 			if (!vm_page_tryacquire(m, allocflags)) {
5201 				if (vm_page_grab_sleep(object, m, pindex + i,
5202 				    "grbmaw", allocflags, true)) {
5203 					pctrie_iter_reset(&pages);
5204 					goto retrylookup;
5205 				}
5206 				break;
5207 			}
5208 		} else {
5209 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5210 				break;
5211 			m = vm_page_alloc_iter(object, pindex + i,
5212 			    pflags | VM_ALLOC_COUNT(count - i), &pages);
5213 			/* pages was reset if alloc_iter lost the lock. */
5214 			if (m == NULL) {
5215 				if ((allocflags & (VM_ALLOC_NOWAIT |
5216 				    VM_ALLOC_WAITFAIL)) != 0)
5217 					break;
5218 				goto retrylookup;
5219 			}
5220 			ma[i] = m;
5221 		}
5222 		if (vm_page_none_valid(m) &&
5223 		    (allocflags & VM_ALLOC_ZERO) != 0) {
5224 			if ((m->flags & PG_ZERO) == 0)
5225 				pmap_zero_page(m);
5226 			vm_page_valid(m);
5227 		}
5228 		vm_page_grab_release(m, allocflags);
5229 	}
5230 	return (i);
5231 }
5232 
5233 /*
5234  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
5235  * and will fall back to the locked variant to handle allocation.
5236  */
5237 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5238 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5239     int allocflags, vm_page_t *ma, int count)
5240 {
5241 	vm_page_t m;
5242 	int flags;
5243 	int i, num_fetched;
5244 
5245 	KASSERT(count > 0,
5246 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5247 	vm_page_grab_check(allocflags);
5248 
5249 	/*
5250 	 * Modify flags for lockless acquire to hold the page until we
5251 	 * set it valid if necessary.
5252 	 */
5253 	flags = allocflags & ~VM_ALLOC_NOBUSY;
5254 	vm_page_grab_check(flags);
5255 	num_fetched = vm_radix_lookup_range_unlocked(&object->rtree, pindex,
5256 	    ma, count);
5257 	for (i = 0; i < num_fetched; i++, pindex++) {
5258 		m = vm_page_acquire_unlocked(object, pindex, ma[i], flags);
5259 		if (m == PAGE_NOT_ACQUIRED)
5260 			return (i);
5261 		if (m == NULL)
5262 			break;
5263 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5264 			if ((m->flags & PG_ZERO) == 0)
5265 				pmap_zero_page(m);
5266 			vm_page_valid(m);
5267 		}
5268 		/* m will still be wired or busy according to flags. */
5269 		vm_page_grab_release(m, allocflags);
5270 		/* vm_page_acquire_unlocked() may not return ma[i]. */
5271 		ma[i] = m;
5272 	}
5273 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5274 		return (i);
5275 	count -= i;
5276 	VM_OBJECT_WLOCK(object);
5277 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5278 	VM_OBJECT_WUNLOCK(object);
5279 
5280 	return (i);
5281 }
5282 
5283 /*
5284  * Mapping function for valid or dirty bits in a page.
5285  *
5286  * Inputs are required to range within a page.
5287  */
5288 vm_page_bits_t
vm_page_bits(int base,int size)5289 vm_page_bits(int base, int size)
5290 {
5291 	int first_bit;
5292 	int last_bit;
5293 
5294 	KASSERT(
5295 	    base + size <= PAGE_SIZE,
5296 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
5297 	);
5298 
5299 	if (size == 0)		/* handle degenerate case */
5300 		return (0);
5301 
5302 	first_bit = base >> DEV_BSHIFT;
5303 	last_bit = (base + size - 1) >> DEV_BSHIFT;
5304 
5305 	return (((vm_page_bits_t)2 << last_bit) -
5306 	    ((vm_page_bits_t)1 << first_bit));
5307 }
5308 
5309 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5310 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5311 {
5312 
5313 #if PAGE_SIZE == 32768
5314 	atomic_set_64((uint64_t *)bits, set);
5315 #elif PAGE_SIZE == 16384
5316 	atomic_set_32((uint32_t *)bits, set);
5317 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5318 	atomic_set_16((uint16_t *)bits, set);
5319 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5320 	atomic_set_8((uint8_t *)bits, set);
5321 #else		/* PAGE_SIZE <= 8192 */
5322 	uintptr_t addr;
5323 	int shift;
5324 
5325 	addr = (uintptr_t)bits;
5326 	/*
5327 	 * Use a trick to perform a 32-bit atomic on the
5328 	 * containing aligned word, to not depend on the existence
5329 	 * of atomic_{set, clear}_{8, 16}.
5330 	 */
5331 	shift = addr & (sizeof(uint32_t) - 1);
5332 #if BYTE_ORDER == BIG_ENDIAN
5333 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5334 #else
5335 	shift *= NBBY;
5336 #endif
5337 	addr &= ~(sizeof(uint32_t) - 1);
5338 	atomic_set_32((uint32_t *)addr, set << shift);
5339 #endif		/* PAGE_SIZE */
5340 }
5341 
5342 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5343 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5344 {
5345 
5346 #if PAGE_SIZE == 32768
5347 	atomic_clear_64((uint64_t *)bits, clear);
5348 #elif PAGE_SIZE == 16384
5349 	atomic_clear_32((uint32_t *)bits, clear);
5350 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5351 	atomic_clear_16((uint16_t *)bits, clear);
5352 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5353 	atomic_clear_8((uint8_t *)bits, clear);
5354 #else		/* PAGE_SIZE <= 8192 */
5355 	uintptr_t addr;
5356 	int shift;
5357 
5358 	addr = (uintptr_t)bits;
5359 	/*
5360 	 * Use a trick to perform a 32-bit atomic on the
5361 	 * containing aligned word, to not depend on the existence
5362 	 * of atomic_{set, clear}_{8, 16}.
5363 	 */
5364 	shift = addr & (sizeof(uint32_t) - 1);
5365 #if BYTE_ORDER == BIG_ENDIAN
5366 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5367 #else
5368 	shift *= NBBY;
5369 #endif
5370 	addr &= ~(sizeof(uint32_t) - 1);
5371 	atomic_clear_32((uint32_t *)addr, clear << shift);
5372 #endif		/* PAGE_SIZE */
5373 }
5374 
5375 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5376 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5377 {
5378 #if PAGE_SIZE == 32768
5379 	uint64_t old;
5380 
5381 	old = *bits;
5382 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5383 	return (old);
5384 #elif PAGE_SIZE == 16384
5385 	uint32_t old;
5386 
5387 	old = *bits;
5388 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5389 	return (old);
5390 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5391 	uint16_t old;
5392 
5393 	old = *bits;
5394 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5395 	return (old);
5396 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5397 	uint8_t old;
5398 
5399 	old = *bits;
5400 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5401 	return (old);
5402 #else		/* PAGE_SIZE <= 4096*/
5403 	uintptr_t addr;
5404 	uint32_t old, new, mask;
5405 	int shift;
5406 
5407 	addr = (uintptr_t)bits;
5408 	/*
5409 	 * Use a trick to perform a 32-bit atomic on the
5410 	 * containing aligned word, to not depend on the existence
5411 	 * of atomic_{set, swap, clear}_{8, 16}.
5412 	 */
5413 	shift = addr & (sizeof(uint32_t) - 1);
5414 #if BYTE_ORDER == BIG_ENDIAN
5415 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5416 #else
5417 	shift *= NBBY;
5418 #endif
5419 	addr &= ~(sizeof(uint32_t) - 1);
5420 	mask = VM_PAGE_BITS_ALL << shift;
5421 
5422 	old = *bits;
5423 	do {
5424 		new = old & ~mask;
5425 		new |= newbits << shift;
5426 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5427 	return (old >> shift);
5428 #endif		/* PAGE_SIZE */
5429 }
5430 
5431 /*
5432  *	vm_page_set_valid_range:
5433  *
5434  *	Sets portions of a page valid.  The arguments are expected
5435  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5436  *	of any partial chunks touched by the range.  The invalid portion of
5437  *	such chunks will be zeroed.
5438  *
5439  *	(base + size) must be less then or equal to PAGE_SIZE.
5440  */
5441 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5442 vm_page_set_valid_range(vm_page_t m, int base, int size)
5443 {
5444 	int endoff, frag;
5445 	vm_page_bits_t pagebits;
5446 
5447 	vm_page_assert_busied(m);
5448 	if (size == 0)	/* handle degenerate case */
5449 		return;
5450 
5451 	/*
5452 	 * If the base is not DEV_BSIZE aligned and the valid
5453 	 * bit is clear, we have to zero out a portion of the
5454 	 * first block.
5455 	 */
5456 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5457 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5458 		pmap_zero_page_area(m, frag, base - frag);
5459 
5460 	/*
5461 	 * If the ending offset is not DEV_BSIZE aligned and the
5462 	 * valid bit is clear, we have to zero out a portion of
5463 	 * the last block.
5464 	 */
5465 	endoff = base + size;
5466 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5467 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5468 		pmap_zero_page_area(m, endoff,
5469 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5470 
5471 	/*
5472 	 * Assert that no previously invalid block that is now being validated
5473 	 * is already dirty.
5474 	 */
5475 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5476 	    ("vm_page_set_valid_range: page %p is dirty", m));
5477 
5478 	/*
5479 	 * Set valid bits inclusive of any overlap.
5480 	 */
5481 	pagebits = vm_page_bits(base, size);
5482 	if (vm_page_xbusied(m))
5483 		m->valid |= pagebits;
5484 	else
5485 		vm_page_bits_set(m, &m->valid, pagebits);
5486 }
5487 
5488 /*
5489  * Set the page dirty bits and free the invalid swap space if
5490  * present.  Returns the previous dirty bits.
5491  */
5492 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5493 vm_page_set_dirty(vm_page_t m)
5494 {
5495 	vm_page_bits_t old;
5496 
5497 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5498 
5499 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5500 		old = m->dirty;
5501 		m->dirty = VM_PAGE_BITS_ALL;
5502 	} else
5503 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5504 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5505 		vm_pager_page_unswapped(m);
5506 
5507 	return (old);
5508 }
5509 
5510 /*
5511  * Clear the given bits from the specified page's dirty field.
5512  */
5513 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5514 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5515 {
5516 
5517 	vm_page_assert_busied(m);
5518 
5519 	/*
5520 	 * If the page is xbusied and not write mapped we are the
5521 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5522 	 * layer can call vm_page_dirty() without holding a distinguished
5523 	 * lock.  The combination of page busy and atomic operations
5524 	 * suffice to guarantee consistency of the page dirty field.
5525 	 */
5526 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5527 		m->dirty &= ~pagebits;
5528 	else
5529 		vm_page_bits_clear(m, &m->dirty, pagebits);
5530 }
5531 
5532 /*
5533  *	vm_page_set_validclean:
5534  *
5535  *	Sets portions of a page valid and clean.  The arguments are expected
5536  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5537  *	of any partial chunks touched by the range.  The invalid portion of
5538  *	such chunks will be zero'd.
5539  *
5540  *	(base + size) must be less then or equal to PAGE_SIZE.
5541  */
5542 void
vm_page_set_validclean(vm_page_t m,int base,int size)5543 vm_page_set_validclean(vm_page_t m, int base, int size)
5544 {
5545 	vm_page_bits_t oldvalid, pagebits;
5546 	int endoff, frag;
5547 
5548 	vm_page_assert_busied(m);
5549 	if (size == 0)	/* handle degenerate case */
5550 		return;
5551 
5552 	/*
5553 	 * If the base is not DEV_BSIZE aligned and the valid
5554 	 * bit is clear, we have to zero out a portion of the
5555 	 * first block.
5556 	 */
5557 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5558 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5559 		pmap_zero_page_area(m, frag, base - frag);
5560 
5561 	/*
5562 	 * If the ending offset is not DEV_BSIZE aligned and the
5563 	 * valid bit is clear, we have to zero out a portion of
5564 	 * the last block.
5565 	 */
5566 	endoff = base + size;
5567 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5568 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5569 		pmap_zero_page_area(m, endoff,
5570 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5571 
5572 	/*
5573 	 * Set valid, clear dirty bits.  If validating the entire
5574 	 * page we can safely clear the pmap modify bit.  We also
5575 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5576 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5577 	 * be set again.
5578 	 *
5579 	 * We set valid bits inclusive of any overlap, but we can only
5580 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5581 	 * the range.
5582 	 */
5583 	oldvalid = m->valid;
5584 	pagebits = vm_page_bits(base, size);
5585 	if (vm_page_xbusied(m))
5586 		m->valid |= pagebits;
5587 	else
5588 		vm_page_bits_set(m, &m->valid, pagebits);
5589 #if 0	/* NOT YET */
5590 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5591 		frag = DEV_BSIZE - frag;
5592 		base += frag;
5593 		size -= frag;
5594 		if (size < 0)
5595 			size = 0;
5596 	}
5597 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5598 #endif
5599 	if (base == 0 && size == PAGE_SIZE) {
5600 		/*
5601 		 * The page can only be modified within the pmap if it is
5602 		 * mapped, and it can only be mapped if it was previously
5603 		 * fully valid.
5604 		 */
5605 		if (oldvalid == VM_PAGE_BITS_ALL)
5606 			/*
5607 			 * Perform the pmap_clear_modify() first.  Otherwise,
5608 			 * a concurrent pmap operation, such as
5609 			 * pmap_protect(), could clear a modification in the
5610 			 * pmap and set the dirty field on the page before
5611 			 * pmap_clear_modify() had begun and after the dirty
5612 			 * field was cleared here.
5613 			 */
5614 			pmap_clear_modify(m);
5615 		m->dirty = 0;
5616 		vm_page_aflag_clear(m, PGA_NOSYNC);
5617 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5618 		m->dirty &= ~pagebits;
5619 	else
5620 		vm_page_clear_dirty_mask(m, pagebits);
5621 }
5622 
5623 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5624 vm_page_clear_dirty(vm_page_t m, int base, int size)
5625 {
5626 
5627 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5628 }
5629 
5630 /*
5631  *	vm_page_set_invalid:
5632  *
5633  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5634  *	valid and dirty bits for the effected areas are cleared.
5635  */
5636 void
vm_page_set_invalid(vm_page_t m,int base,int size)5637 vm_page_set_invalid(vm_page_t m, int base, int size)
5638 {
5639 	vm_page_bits_t bits;
5640 	vm_object_t object;
5641 
5642 	/*
5643 	 * The object lock is required so that pages can't be mapped
5644 	 * read-only while we're in the process of invalidating them.
5645 	 */
5646 	object = m->object;
5647 	VM_OBJECT_ASSERT_WLOCKED(object);
5648 	vm_page_assert_busied(m);
5649 
5650 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5651 	    size >= object->un_pager.vnp.vnp_size)
5652 		bits = VM_PAGE_BITS_ALL;
5653 	else
5654 		bits = vm_page_bits(base, size);
5655 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5656 		pmap_remove_all(m);
5657 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5658 	    !pmap_page_is_mapped(m),
5659 	    ("vm_page_set_invalid: page %p is mapped", m));
5660 	if (vm_page_xbusied(m)) {
5661 		m->valid &= ~bits;
5662 		m->dirty &= ~bits;
5663 	} else {
5664 		vm_page_bits_clear(m, &m->valid, bits);
5665 		vm_page_bits_clear(m, &m->dirty, bits);
5666 	}
5667 }
5668 
5669 /*
5670  *	vm_page_invalid:
5671  *
5672  *	Invalidates the entire page.  The page must be busy, unmapped, and
5673  *	the enclosing object must be locked.  The object locks protects
5674  *	against concurrent read-only pmap enter which is done without
5675  *	busy.
5676  */
5677 void
vm_page_invalid(vm_page_t m)5678 vm_page_invalid(vm_page_t m)
5679 {
5680 
5681 	vm_page_assert_busied(m);
5682 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5683 	MPASS(!pmap_page_is_mapped(m));
5684 
5685 	if (vm_page_xbusied(m))
5686 		m->valid = 0;
5687 	else
5688 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5689 }
5690 
5691 /*
5692  * vm_page_zero_invalid()
5693  *
5694  *	The kernel assumes that the invalid portions of a page contain
5695  *	garbage, but such pages can be mapped into memory by user code.
5696  *	When this occurs, we must zero out the non-valid portions of the
5697  *	page so user code sees what it expects.
5698  *
5699  *	Pages are most often semi-valid when the end of a file is mapped
5700  *	into memory and the file's size is not page aligned.
5701  */
5702 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5703 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5704 {
5705 	int b;
5706 	int i;
5707 
5708 	/*
5709 	 * Scan the valid bits looking for invalid sections that
5710 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5711 	 * valid bit may be set ) have already been zeroed by
5712 	 * vm_page_set_validclean().
5713 	 */
5714 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5715 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5716 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5717 			if (i > b) {
5718 				pmap_zero_page_area(m,
5719 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5720 			}
5721 			b = i + 1;
5722 		}
5723 	}
5724 
5725 	/*
5726 	 * setvalid is TRUE when we can safely set the zero'd areas
5727 	 * as being valid.  We can do this if there are no cache consistency
5728 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5729 	 */
5730 	if (setvalid)
5731 		vm_page_valid(m);
5732 }
5733 
5734 /*
5735  *	vm_page_is_valid:
5736  *
5737  *	Is (partial) page valid?  Note that the case where size == 0
5738  *	will return FALSE in the degenerate case where the page is
5739  *	entirely invalid, and TRUE otherwise.
5740  *
5741  *	Some callers envoke this routine without the busy lock held and
5742  *	handle races via higher level locks.  Typical callers should
5743  *	hold a busy lock to prevent invalidation.
5744  */
5745 int
vm_page_is_valid(vm_page_t m,int base,int size)5746 vm_page_is_valid(vm_page_t m, int base, int size)
5747 {
5748 	vm_page_bits_t bits;
5749 
5750 	bits = vm_page_bits(base, size);
5751 	return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5752 }
5753 
5754 /*
5755  * Returns true if all of the specified predicates are true for the entire
5756  * (super)page and false otherwise.
5757  */
5758 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5759 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5760 {
5761 	vm_object_t object;
5762 	int i, npages;
5763 
5764 	object = m->object;
5765 	if (skip_m != NULL && skip_m->object != object)
5766 		return (false);
5767 	VM_OBJECT_ASSERT_LOCKED(object);
5768 	KASSERT(psind <= m->psind,
5769 	    ("psind %d > psind %d of m %p", psind, m->psind, m));
5770 	npages = atop(pagesizes[psind]);
5771 
5772 	/*
5773 	 * The physically contiguous pages that make up a superpage, i.e., a
5774 	 * page with a page size index ("psind") greater than zero, will
5775 	 * occupy adjacent entries in vm_page_array[].
5776 	 */
5777 	for (i = 0; i < npages; i++) {
5778 		/* Always test object consistency, including "skip_m". */
5779 		if (m[i].object != object)
5780 			return (false);
5781 		if (&m[i] == skip_m)
5782 			continue;
5783 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5784 			return (false);
5785 		if ((flags & PS_ALL_DIRTY) != 0) {
5786 			/*
5787 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5788 			 * might stop this case from spuriously returning
5789 			 * "false".  However, that would require a write lock
5790 			 * on the object containing "m[i]".
5791 			 */
5792 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5793 				return (false);
5794 		}
5795 		if ((flags & PS_ALL_VALID) != 0 &&
5796 		    m[i].valid != VM_PAGE_BITS_ALL)
5797 			return (false);
5798 	}
5799 	return (true);
5800 }
5801 
5802 /*
5803  * Set the page's dirty bits if the page is modified.
5804  */
5805 void
vm_page_test_dirty(vm_page_t m)5806 vm_page_test_dirty(vm_page_t m)
5807 {
5808 
5809 	vm_page_assert_busied(m);
5810 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5811 		vm_page_dirty(m);
5812 }
5813 
5814 void
vm_page_valid(vm_page_t m)5815 vm_page_valid(vm_page_t m)
5816 {
5817 
5818 	vm_page_assert_busied(m);
5819 	if (vm_page_xbusied(m))
5820 		m->valid = VM_PAGE_BITS_ALL;
5821 	else
5822 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5823 }
5824 
5825 #ifdef INVARIANTS
5826 void
vm_page_object_busy_assert(vm_page_t m)5827 vm_page_object_busy_assert(vm_page_t m)
5828 {
5829 
5830 	/*
5831 	 * Certain of the page's fields may only be modified by the
5832 	 * holder of a page or object busy.
5833 	 */
5834 	if (m->object != NULL && !vm_page_busied(m))
5835 		VM_OBJECT_ASSERT_BUSY(m->object);
5836 }
5837 
5838 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5839 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5840 {
5841 
5842 	if ((bits & PGA_WRITEABLE) == 0)
5843 		return;
5844 
5845 	/*
5846 	 * The PGA_WRITEABLE flag can only be set if the page is
5847 	 * managed, is exclusively busied or the object is locked.
5848 	 * Currently, this flag is only set by pmap_enter().
5849 	 */
5850 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5851 	    ("PGA_WRITEABLE on unmanaged page"));
5852 	if (!vm_page_xbusied(m))
5853 		VM_OBJECT_ASSERT_BUSY(m->object);
5854 }
5855 #endif
5856 
5857 #include "opt_ddb.h"
5858 #ifdef DDB
5859 #include <sys/kernel.h>
5860 
5861 #include <ddb/ddb.h>
5862 
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5863 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5864 {
5865 
5866 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5867 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5868 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5869 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5870 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5871 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5872 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5873 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5874 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5875 }
5876 
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5877 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5878 {
5879 	int dom;
5880 
5881 	db_printf("pq_free %d\n", vm_free_count());
5882 	for (dom = 0; dom < vm_ndomains; dom++) {
5883 		db_printf(
5884     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5885 		    dom,
5886 		    vm_dom[dom].vmd_page_count,
5887 		    vm_dom[dom].vmd_free_count,
5888 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5889 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5890 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5891 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5892 	}
5893 }
5894 
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5895 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5896 {
5897 	vm_page_t m;
5898 	boolean_t phys, virt;
5899 
5900 	if (!have_addr) {
5901 		db_printf("show pginfo addr\n");
5902 		return;
5903 	}
5904 
5905 	phys = strchr(modif, 'p') != NULL;
5906 	virt = strchr(modif, 'v') != NULL;
5907 	if (virt)
5908 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5909 	else if (phys)
5910 		m = PHYS_TO_VM_PAGE(addr);
5911 	else
5912 		m = (vm_page_t)addr;
5913 	db_printf(
5914     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5915     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5916 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5917 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5918 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5919 }
5920 #endif /* DDB */
5921