1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Resident memory management module.
65 */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110
111 #include <machine/md_var.h>
112
113 struct vm_domain vm_dom[MAXMEMDOM];
114
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116
117 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
118 /* The following fields are protected by the domainset lock. */
119 domainset_t __exclusive_cache_line vm_min_domains;
120 domainset_t __exclusive_cache_line vm_severe_domains;
121 static int vm_min_waiters;
122 static int vm_severe_waiters;
123 static int vm_pageproc_waiters;
124
125 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
126 "VM page statistics");
127
128 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
129 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
130 CTLFLAG_RD, &pqstate_commit_retries,
131 "Number of failed per-page atomic queue state updates");
132
133 static COUNTER_U64_DEFINE_EARLY(queue_ops);
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
135 CTLFLAG_RD, &queue_ops,
136 "Number of batched queue operations");
137
138 static COUNTER_U64_DEFINE_EARLY(queue_nops);
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
140 CTLFLAG_RD, &queue_nops,
141 "Number of batched queue operations with no effects");
142
143 static unsigned long nofreeq_size;
144 SYSCTL_ULONG(_vm_stats_page, OID_AUTO, nofreeq_size, CTLFLAG_RD,
145 &nofreeq_size, 0,
146 "Size of the nofree queue");
147
148 /*
149 * bogus page -- for I/O to/from partially complete buffers,
150 * or for paging into sparsely invalid regions.
151 */
152 vm_page_t bogus_page;
153
154 vm_page_t vm_page_array;
155 long vm_page_array_size;
156 long first_page;
157
158 struct bitset *vm_page_dump;
159 long vm_page_dump_pages;
160
161 static TAILQ_HEAD(, vm_page) blacklist_head;
162 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
163 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
164 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
165
166 static uma_zone_t fakepg_zone;
167
168 static void vm_page_alloc_check(vm_page_t m);
169 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object);
178 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
179 const uint16_t nflag);
180 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
181 vm_page_t m_run, vm_paddr_t high);
182 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
183 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
184 int req);
185 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
186 int flags);
187 static void vm_page_zone_release(void *arg, void **store, int cnt);
188
189 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
190
191 static void
vm_page_init(void * dummy)192 vm_page_init(void *dummy)
193 {
194
195 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
196 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
198 }
199
200 static int pgcache_zone_max_pcpu;
201 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
202 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
203 "Per-CPU page cache size");
204
205 /*
206 * The cache page zone is initialized later since we need to be able to allocate
207 * pages before UMA is fully initialized.
208 */
209 static void
vm_page_init_cache_zones(void * dummy __unused)210 vm_page_init_cache_zones(void *dummy __unused)
211 {
212 struct vm_domain *vmd;
213 struct vm_pgcache *pgcache;
214 int cache, domain, maxcache, pool;
215
216 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
217 maxcache = pgcache_zone_max_pcpu * mp_ncpus;
218 for (domain = 0; domain < vm_ndomains; domain++) {
219 vmd = VM_DOMAIN(domain);
220 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
221 #ifdef VM_FREEPOOL_LAZYINIT
222 if (pool == VM_FREEPOOL_LAZYINIT)
223 continue;
224 #endif
225 pgcache = &vmd->vmd_pgcache[pool];
226 pgcache->domain = domain;
227 pgcache->pool = pool;
228 pgcache->zone = uma_zcache_create("vm pgcache",
229 PAGE_SIZE, NULL, NULL, NULL, NULL,
230 vm_page_zone_import, vm_page_zone_release, pgcache,
231 UMA_ZONE_VM);
232
233 /*
234 * Limit each pool's zone to 0.1% of the pages in the
235 * domain.
236 */
237 cache = maxcache != 0 ? maxcache :
238 vmd->vmd_page_count / 1000;
239 uma_zone_set_maxcache(pgcache->zone, cache);
240 }
241 }
242 }
243 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
244
245 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
246 #if PAGE_SIZE == 32768
247 #ifdef CTASSERT
248 CTASSERT(sizeof(u_long) >= 8);
249 #endif
250 #endif
251
252 /*
253 * vm_set_page_size:
254 *
255 * Sets the page size, perhaps based upon the memory
256 * size. Must be called before any use of page-size
257 * dependent functions.
258 */
259 void
vm_set_page_size(void)260 vm_set_page_size(void)
261 {
262 if (vm_cnt.v_page_size == 0)
263 vm_cnt.v_page_size = PAGE_SIZE;
264 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
265 panic("vm_set_page_size: page size not a power of two");
266 }
267
268 /*
269 * vm_page_blacklist_next:
270 *
271 * Find the next entry in the provided string of blacklist
272 * addresses. Entries are separated by space, comma, or newline.
273 * If an invalid integer is encountered then the rest of the
274 * string is skipped. Updates the list pointer to the next
275 * character, or NULL if the string is exhausted or invalid.
276 */
277 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)278 vm_page_blacklist_next(char **list, char *end)
279 {
280 vm_paddr_t bad;
281 char *cp, *pos;
282
283 if (list == NULL || *list == NULL)
284 return (0);
285 if (**list =='\0') {
286 *list = NULL;
287 return (0);
288 }
289
290 /*
291 * If there's no end pointer then the buffer is coming from
292 * the kenv and we know it's null-terminated.
293 */
294 if (end == NULL)
295 end = *list + strlen(*list);
296
297 /* Ensure that strtoq() won't walk off the end */
298 if (*end != '\0') {
299 if (*end == '\n' || *end == ' ' || *end == ',')
300 *end = '\0';
301 else {
302 printf("Blacklist not terminated, skipping\n");
303 *list = NULL;
304 return (0);
305 }
306 }
307
308 for (pos = *list; *pos != '\0'; pos = cp) {
309 bad = strtoq(pos, &cp, 0);
310 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
311 if (bad == 0) {
312 if (++cp < end)
313 continue;
314 else
315 break;
316 }
317 } else
318 break;
319 if (*cp == '\0' || ++cp >= end)
320 *list = NULL;
321 else
322 *list = cp;
323 return (trunc_page(bad));
324 }
325 printf("Garbage in RAM blacklist, skipping\n");
326 *list = NULL;
327 return (0);
328 }
329
330 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)331 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
332 {
333 struct vm_domain *vmd;
334 vm_page_t m;
335 bool found;
336
337 m = vm_phys_paddr_to_vm_page(pa);
338 if (m == NULL)
339 return (true); /* page does not exist, no failure */
340
341 vmd = VM_DOMAIN(vm_phys_domain(pa));
342 vm_domain_free_lock(vmd);
343 found = vm_phys_unfree_page(pa);
344 vm_domain_free_unlock(vmd);
345 if (found) {
346 vm_domain_freecnt_inc(vmd, -1);
347 TAILQ_INSERT_TAIL(&blacklist_head, m, plinks.q);
348 if (verbose)
349 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
350 }
351 return (found);
352 }
353
354 /*
355 * vm_page_blacklist_check:
356 *
357 * Iterate through the provided string of blacklist addresses, pulling
358 * each entry out of the physical allocator free list and putting it
359 * onto a list for reporting via the vm.page_blacklist sysctl.
360 */
361 static void
vm_page_blacklist_check(char * list,char * end)362 vm_page_blacklist_check(char *list, char *end)
363 {
364 vm_paddr_t pa;
365 char *next;
366
367 next = list;
368 while (next != NULL) {
369 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
370 continue;
371 vm_page_blacklist_add(pa, bootverbose);
372 }
373 }
374
375 /*
376 * vm_page_blacklist_load:
377 *
378 * Search for a special module named "ram_blacklist". It'll be a
379 * plain text file provided by the user via the loader directive
380 * of the same name.
381 */
382 static void
vm_page_blacklist_load(char ** list,char ** end)383 vm_page_blacklist_load(char **list, char **end)
384 {
385 void *mod;
386 u_char *ptr;
387 u_int len;
388
389 mod = NULL;
390 ptr = NULL;
391
392 mod = preload_search_by_type("ram_blacklist");
393 if (mod != NULL) {
394 ptr = preload_fetch_addr(mod);
395 len = preload_fetch_size(mod);
396 }
397
398 if (ptr != NULL && len > 0) {
399 *list = ptr;
400 *end = ptr + len - 1;
401 } else {
402 *list = NULL;
403 *end = NULL;
404 }
405
406 return;
407 }
408
409 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)410 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
411 {
412 vm_page_t m;
413 struct sbuf sbuf;
414 int error, first;
415
416 first = 1;
417 error = sysctl_wire_old_buffer(req, 0);
418 if (error != 0)
419 return (error);
420 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
421 TAILQ_FOREACH(m, &blacklist_head, plinks.q) {
422 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
423 (uintmax_t)m->phys_addr);
424 first = 0;
425 }
426 error = sbuf_finish(&sbuf);
427 sbuf_delete(&sbuf);
428 return (error);
429 }
430
431 /*
432 * Initialize a dummy page for use in scans of the specified paging queue.
433 * In principle, this function only needs to set the flag PG_MARKER.
434 * Nonetheless, it write busies the page as a safety precaution.
435 */
436 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)437 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
438 {
439
440 bzero(marker, sizeof(*marker));
441 marker->flags = PG_MARKER;
442 marker->a.flags = aflags;
443 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
444 marker->a.queue = queue;
445 }
446
447 static void
vm_page_domain_init(int domain)448 vm_page_domain_init(int domain)
449 {
450 struct vm_domain *vmd;
451 struct vm_pagequeue *pq;
452 int i;
453
454 vmd = VM_DOMAIN(domain);
455 bzero(vmd, sizeof(*vmd));
456 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
457 "vm inactive pagequeue";
458 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
459 "vm active pagequeue";
460 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
461 "vm laundry pagequeue";
462 *__DECONST(const char **,
463 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
464 "vm unswappable pagequeue";
465 vmd->vmd_domain = domain;
466 vmd->vmd_page_count = 0;
467 vmd->vmd_free_count = 0;
468 vmd->vmd_segs = 0;
469 vmd->vmd_oom = false;
470 vmd->vmd_helper_threads_enabled = true;
471 for (i = 0; i < PQ_COUNT; i++) {
472 pq = &vmd->vmd_pagequeues[i];
473 TAILQ_INIT(&pq->pq_pl);
474 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
475 MTX_DEF | MTX_DUPOK);
476 pq->pq_pdpages = 0;
477 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
478 }
479 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
480 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
481 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
482
483 /*
484 * inacthead is used to provide FIFO ordering for LRU-bypassing
485 * insertions.
486 */
487 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
488 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
489 &vmd->vmd_inacthead, plinks.q);
490
491 /*
492 * The clock pages are used to implement active queue scanning without
493 * requeues. Scans start at clock[0], which is advanced after the scan
494 * ends. When the two clock hands meet, they are reset and scanning
495 * resumes from the head of the queue.
496 */
497 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
498 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
499 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
500 &vmd->vmd_clock[0], plinks.q);
501 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
502 &vmd->vmd_clock[1], plinks.q);
503 }
504
505 /*
506 * Initialize a physical page in preparation for adding it to the free
507 * lists.
508 */
509 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)510 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
511 {
512 m->object = NULL;
513 m->ref_count = 0;
514 m->busy_lock = VPB_FREED;
515 m->flags = m->a.flags = 0;
516 m->phys_addr = pa;
517 m->a.queue = PQ_NONE;
518 m->psind = 0;
519 m->segind = segind;
520 m->order = VM_NFREEORDER;
521 m->pool = pool;
522 m->valid = m->dirty = 0;
523 pmap_page_init(m);
524 }
525
526 #ifndef PMAP_HAS_PAGE_ARRAY
527 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)528 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
529 {
530 vm_paddr_t new_end;
531
532 /*
533 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
534 * However, because this page is allocated from KVM, out-of-bounds
535 * accesses using the direct map will not be trapped.
536 */
537 *vaddr += PAGE_SIZE;
538
539 /*
540 * Allocate physical memory for the page structures, and map it.
541 */
542 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
543 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
544 VM_PROT_READ | VM_PROT_WRITE);
545 vm_page_array_size = page_range;
546
547 return (new_end);
548 }
549 #endif
550
551 /*
552 * vm_page_startup:
553 *
554 * Initializes the resident memory module. Allocates physical memory for
555 * bootstrapping UMA and some data structures that are used to manage
556 * physical pages. Initializes these structures, and populates the free
557 * page queues.
558 */
559 vm_offset_t
vm_page_startup(vm_offset_t vaddr)560 vm_page_startup(vm_offset_t vaddr)
561 {
562 struct vm_phys_seg *seg;
563 struct vm_domain *vmd;
564 vm_page_t m;
565 char *list, *listend;
566 vm_paddr_t end, high_avail, low_avail, new_end, size;
567 vm_paddr_t page_range __unused;
568 vm_paddr_t last_pa, pa, startp, endp;
569 u_long pagecount;
570 #if MINIDUMP_PAGE_TRACKING
571 u_long vm_page_dump_size;
572 #endif
573 int biggestone, i, segind;
574 #ifdef WITNESS
575 vm_offset_t mapped;
576 int witness_size;
577 #endif
578 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
579 long ii;
580 #endif
581 int pool;
582 #ifdef VM_FREEPOOL_LAZYINIT
583 int lazyinit;
584 #endif
585
586 vaddr = round_page(vaddr);
587
588 vm_phys_early_startup();
589 biggestone = vm_phys_avail_largest();
590 end = phys_avail[biggestone+1];
591
592 /*
593 * Initialize the page and queue locks.
594 */
595 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
596 for (i = 0; i < vm_ndomains; i++)
597 vm_page_domain_init(i);
598
599 new_end = end;
600 #ifdef WITNESS
601 witness_size = round_page(witness_startup_count());
602 new_end -= witness_size;
603 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
604 VM_PROT_READ | VM_PROT_WRITE);
605 bzero((void *)mapped, witness_size);
606 witness_startup((void *)mapped);
607 #endif
608
609 #if MINIDUMP_PAGE_TRACKING
610 /*
611 * Allocate a bitmap to indicate that a random physical page
612 * needs to be included in a minidump.
613 *
614 * The amd64 port needs this to indicate which direct map pages
615 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
616 *
617 * However, i386 still needs this workspace internally within the
618 * minidump code. In theory, they are not needed on i386, but are
619 * included should the sf_buf code decide to use them.
620 */
621 last_pa = 0;
622 vm_page_dump_pages = 0;
623 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
624 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
625 dump_avail[i] / PAGE_SIZE;
626 if (dump_avail[i + 1] > last_pa)
627 last_pa = dump_avail[i + 1];
628 }
629 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
630 new_end -= vm_page_dump_size;
631 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
632 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
633 bzero((void *)vm_page_dump, vm_page_dump_size);
634 #if MINIDUMP_STARTUP_PAGE_TRACKING
635 /*
636 * Include the UMA bootstrap pages, witness pages and vm_page_dump
637 * in a crash dump. When pmap_map() uses the direct map, they are
638 * not automatically included.
639 */
640 for (pa = new_end; pa < end; pa += PAGE_SIZE)
641 dump_add_page(pa);
642 #endif
643 #else
644 (void)last_pa;
645 #endif
646 phys_avail[biggestone + 1] = new_end;
647 #ifdef __amd64__
648 /*
649 * Request that the physical pages underlying the message buffer be
650 * included in a crash dump. Since the message buffer is accessed
651 * through the direct map, they are not automatically included.
652 */
653 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
654 last_pa = pa + round_page(msgbufsize);
655 while (pa < last_pa) {
656 dump_add_page(pa);
657 pa += PAGE_SIZE;
658 }
659 #else
660 (void)pa;
661 #endif
662
663 /*
664 * Determine the lowest and highest physical addresses and, in the case
665 * of VM_PHYSSEG_SPARSE, the exact size of the available physical
666 * memory. vm_phys_early_startup() already checked that phys_avail[]
667 * has at least one element.
668 */
669 #ifdef VM_PHYSSEG_SPARSE
670 size = phys_avail[1] - phys_avail[0];
671 #endif
672 low_avail = phys_avail[0];
673 high_avail = phys_avail[1];
674 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
675 #ifdef VM_PHYSSEG_SPARSE
676 size += phys_avail[i + 1] - phys_avail[i];
677 #endif
678 if (phys_avail[i] < low_avail)
679 low_avail = phys_avail[i];
680 if (phys_avail[i + 1] > high_avail)
681 high_avail = phys_avail[i + 1];
682 }
683 for (i = 0; i < vm_phys_nsegs; i++) {
684 #ifdef VM_PHYSSEG_SPARSE
685 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
686 #endif
687 if (vm_phys_segs[i].start < low_avail)
688 low_avail = vm_phys_segs[i].start;
689 if (vm_phys_segs[i].end > high_avail)
690 high_avail = vm_phys_segs[i].end;
691 }
692 first_page = low_avail / PAGE_SIZE;
693 #ifdef VM_PHYSSEG_DENSE
694 size = high_avail - low_avail;
695 #endif
696
697 #ifdef PMAP_HAS_PAGE_ARRAY
698 pmap_page_array_startup(size / PAGE_SIZE);
699 biggestone = vm_phys_avail_largest();
700 end = new_end = phys_avail[biggestone + 1];
701 #else
702 #ifdef VM_PHYSSEG_DENSE
703 /*
704 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
705 * the overhead of a page structure per page only if vm_page_array is
706 * allocated from the last physical memory chunk. Otherwise, we must
707 * allocate page structures representing the physical memory
708 * underlying vm_page_array, even though they will not be used.
709 */
710 if (new_end != high_avail)
711 page_range = size / PAGE_SIZE;
712 else
713 #endif
714 {
715 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
716
717 /*
718 * If the partial bytes remaining are large enough for
719 * a page (PAGE_SIZE) without a corresponding
720 * 'struct vm_page', then new_end will contain an
721 * extra page after subtracting the length of the VM
722 * page array. Compensate by subtracting an extra
723 * page from new_end.
724 */
725 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
726 if (new_end == high_avail)
727 high_avail -= PAGE_SIZE;
728 new_end -= PAGE_SIZE;
729 }
730 }
731 end = new_end;
732 new_end = vm_page_array_alloc(&vaddr, end, page_range);
733 #endif
734
735 #if VM_NRESERVLEVEL > 0
736 /*
737 * Allocate physical memory for the reservation management system's
738 * data structures, and map it.
739 */
740 new_end = vm_reserv_startup(&vaddr, new_end);
741 #endif
742 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
743 /*
744 * Include vm_page_array and vm_reserv_array in a crash dump.
745 */
746 for (pa = new_end; pa < end; pa += PAGE_SIZE)
747 dump_add_page(pa);
748 #endif
749 phys_avail[biggestone + 1] = new_end;
750
751 /*
752 * Add physical memory segments corresponding to the available
753 * physical pages.
754 */
755 for (i = 0; phys_avail[i + 1] != 0; i += 2)
756 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
757
758 /*
759 * Initialize the physical memory allocator.
760 */
761 vm_phys_init();
762
763 pool = VM_FREEPOOL_DEFAULT;
764 #ifdef VM_FREEPOOL_LAZYINIT
765 lazyinit = 1;
766 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
767 if (lazyinit)
768 pool = VM_FREEPOOL_LAZYINIT;
769 #endif
770
771 /*
772 * Initialize the page structures and add every available page to the
773 * physical memory allocator's free lists.
774 */
775 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
776 for (ii = 0; ii < vm_page_array_size; ii++) {
777 m = &vm_page_array[ii];
778 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
779 VM_FREEPOOL_DEFAULT);
780 m->flags = PG_FICTITIOUS;
781 }
782 #endif
783 vm_cnt.v_page_count = 0;
784 for (segind = 0; segind < vm_phys_nsegs; segind++) {
785 seg = &vm_phys_segs[segind];
786
787 /*
788 * Initialize pages not covered by phys_avail[], since they
789 * might be freed to the allocator at some future point, e.g.,
790 * by kmem_bootstrap_free().
791 */
792 startp = seg->start;
793 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
794 if (startp >= seg->end)
795 break;
796 if (phys_avail[i + 1] < startp)
797 continue;
798 if (phys_avail[i] <= startp) {
799 startp = phys_avail[i + 1];
800 continue;
801 }
802 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
803 for (endp = MIN(phys_avail[i], seg->end);
804 startp < endp; startp += PAGE_SIZE, m++) {
805 vm_page_init_page(m, startp, segind,
806 VM_FREEPOOL_DEFAULT);
807 }
808 }
809
810 /*
811 * Add the segment's pages that are covered by one of
812 * phys_avail's ranges to the free lists.
813 */
814 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
815 if (seg->end <= phys_avail[i] ||
816 seg->start >= phys_avail[i + 1])
817 continue;
818
819 startp = MAX(seg->start, phys_avail[i]);
820 endp = MIN(seg->end, phys_avail[i + 1]);
821 pagecount = (u_long)atop(endp - startp);
822 if (pagecount == 0)
823 continue;
824
825 /*
826 * If lazy vm_page initialization is not enabled, simply
827 * initialize all of the pages in the segment covered by
828 * phys_avail. Otherwise, initialize only the first
829 * page of each run of free pages handed to the vm_phys
830 * allocator, which in turn defers initialization of
831 * pages until they are needed.
832 *
833 * This avoids blocking the boot process for long
834 * periods, which may be relevant for VMs (which ought
835 * to boot as quickly as possible) and/or systems with
836 * large amounts of physical memory.
837 */
838 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
839 vm_page_init_page(m, startp, segind, pool);
840 if (pool == VM_FREEPOOL_DEFAULT) {
841 for (u_long j = 1; j < pagecount; j++) {
842 vm_page_init_page(&m[j],
843 startp + ptoa((vm_paddr_t)j),
844 segind, pool);
845 }
846 }
847 vmd = VM_DOMAIN(seg->domain);
848 vm_domain_free_lock(vmd);
849 vm_phys_enqueue_contig(m, pool, pagecount);
850 vm_domain_free_unlock(vmd);
851 vm_domain_freecnt_inc(vmd, pagecount);
852 vm_cnt.v_page_count += (u_int)pagecount;
853 vmd->vmd_page_count += (u_int)pagecount;
854 vmd->vmd_segs |= 1UL << segind;
855 }
856 }
857
858 /*
859 * Remove blacklisted pages from the physical memory allocator.
860 */
861 TAILQ_INIT(&blacklist_head);
862 vm_page_blacklist_load(&list, &listend);
863 vm_page_blacklist_check(list, listend);
864
865 list = kern_getenv("vm.blacklist");
866 vm_page_blacklist_check(list, NULL);
867
868 freeenv(list);
869 #if VM_NRESERVLEVEL > 0
870 /*
871 * Initialize the reservation management system.
872 */
873 vm_reserv_init();
874 #endif
875
876 return (vaddr);
877 }
878
879 void
vm_page_reference(vm_page_t m)880 vm_page_reference(vm_page_t m)
881 {
882
883 vm_page_aflag_set(m, PGA_REFERENCED);
884 }
885
886 /*
887 * vm_page_trybusy
888 *
889 * Helper routine for grab functions to trylock busy.
890 *
891 * Returns true on success and false on failure.
892 */
893 static bool
vm_page_trybusy(vm_page_t m,int allocflags)894 vm_page_trybusy(vm_page_t m, int allocflags)
895 {
896
897 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
898 return (vm_page_trysbusy(m));
899 else
900 return (vm_page_tryxbusy(m));
901 }
902
903 /*
904 * vm_page_tryacquire
905 *
906 * Helper routine for grab functions to trylock busy and wire.
907 *
908 * Returns true on success and false on failure.
909 */
910 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)911 vm_page_tryacquire(vm_page_t m, int allocflags)
912 {
913 bool locked;
914
915 locked = vm_page_trybusy(m, allocflags);
916 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
917 vm_page_wire(m);
918 return (locked);
919 }
920
921 /*
922 * vm_page_busy_acquire:
923 *
924 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
925 * and drop the object lock if necessary.
926 */
927 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)928 vm_page_busy_acquire(vm_page_t m, int allocflags)
929 {
930 vm_object_t obj;
931 bool locked;
932
933 /*
934 * The page-specific object must be cached because page
935 * identity can change during the sleep, causing the
936 * re-lock of a different object.
937 * It is assumed that a reference to the object is already
938 * held by the callers.
939 */
940 obj = atomic_load_ptr(&m->object);
941 for (;;) {
942 if (vm_page_tryacquire(m, allocflags))
943 return (true);
944 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
945 return (false);
946 if (obj != NULL)
947 locked = VM_OBJECT_WOWNED(obj);
948 else
949 locked = false;
950 MPASS(locked || vm_page_wired(m));
951 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
952 locked) && locked)
953 VM_OBJECT_WLOCK(obj);
954 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
955 return (false);
956 KASSERT(m->object == obj || m->object == NULL,
957 ("vm_page_busy_acquire: page %p does not belong to %p",
958 m, obj));
959 }
960 }
961
962 /*
963 * vm_page_busy_downgrade:
964 *
965 * Downgrade an exclusive busy page into a single shared busy page.
966 */
967 void
vm_page_busy_downgrade(vm_page_t m)968 vm_page_busy_downgrade(vm_page_t m)
969 {
970 u_int x;
971
972 vm_page_assert_xbusied(m);
973
974 x = vm_page_busy_fetch(m);
975 for (;;) {
976 if (atomic_fcmpset_rel_int(&m->busy_lock,
977 &x, VPB_SHARERS_WORD(1)))
978 break;
979 }
980 if ((x & VPB_BIT_WAITERS) != 0)
981 wakeup(m);
982 }
983
984 /*
985 *
986 * vm_page_busy_tryupgrade:
987 *
988 * Attempt to upgrade a single shared busy into an exclusive busy.
989 */
990 int
vm_page_busy_tryupgrade(vm_page_t m)991 vm_page_busy_tryupgrade(vm_page_t m)
992 {
993 u_int ce, x;
994
995 vm_page_assert_sbusied(m);
996
997 x = vm_page_busy_fetch(m);
998 ce = VPB_CURTHREAD_EXCLUSIVE;
999 for (;;) {
1000 if (VPB_SHARERS(x) > 1)
1001 return (0);
1002 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1003 ("vm_page_busy_tryupgrade: invalid lock state"));
1004 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1005 ce | (x & VPB_BIT_WAITERS)))
1006 continue;
1007 return (1);
1008 }
1009 }
1010
1011 /*
1012 * vm_page_sbusied:
1013 *
1014 * Return a positive value if the page is shared busied, 0 otherwise.
1015 */
1016 int
vm_page_sbusied(vm_page_t m)1017 vm_page_sbusied(vm_page_t m)
1018 {
1019 u_int x;
1020
1021 x = vm_page_busy_fetch(m);
1022 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1023 }
1024
1025 /*
1026 * vm_page_sunbusy:
1027 *
1028 * Shared unbusy a page.
1029 */
1030 void
vm_page_sunbusy(vm_page_t m)1031 vm_page_sunbusy(vm_page_t m)
1032 {
1033 u_int x;
1034
1035 vm_page_assert_sbusied(m);
1036
1037 x = vm_page_busy_fetch(m);
1038 for (;;) {
1039 KASSERT(x != VPB_FREED,
1040 ("vm_page_sunbusy: Unlocking freed page."));
1041 if (VPB_SHARERS(x) > 1) {
1042 if (atomic_fcmpset_int(&m->busy_lock, &x,
1043 x - VPB_ONE_SHARER))
1044 break;
1045 continue;
1046 }
1047 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1048 ("vm_page_sunbusy: invalid lock state"));
1049 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1050 continue;
1051 if ((x & VPB_BIT_WAITERS) == 0)
1052 break;
1053 wakeup(m);
1054 break;
1055 }
1056 }
1057
1058 /*
1059 * vm_page_busy_sleep:
1060 *
1061 * Sleep if the page is busy, using the page pointer as wchan.
1062 * This is used to implement the hard-path of the busying mechanism.
1063 *
1064 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1065 * will not sleep if the page is shared-busy.
1066 *
1067 * The object lock must be held on entry.
1068 *
1069 * Returns true if it slept and dropped the object lock, or false
1070 * if there was no sleep and the lock is still held.
1071 */
1072 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1073 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1074 {
1075 vm_object_t obj;
1076
1077 obj = m->object;
1078 VM_OBJECT_ASSERT_LOCKED(obj);
1079
1080 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1081 true));
1082 }
1083
1084 /*
1085 * vm_page_busy_sleep_unlocked:
1086 *
1087 * Sleep if the page is busy, using the page pointer as wchan.
1088 * This is used to implement the hard-path of busying mechanism.
1089 *
1090 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1091 * will not sleep if the page is shared-busy.
1092 *
1093 * The object lock must not be held on entry. The operation will
1094 * return if the page changes identity.
1095 */
1096 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1097 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1098 const char *wmesg, int allocflags)
1099 {
1100 VM_OBJECT_ASSERT_UNLOCKED(obj);
1101
1102 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1103 }
1104
1105 /*
1106 * _vm_page_busy_sleep:
1107 *
1108 * Internal busy sleep function. Verifies the page identity and
1109 * lockstate against parameters. Returns true if it sleeps and
1110 * false otherwise.
1111 *
1112 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1113 *
1114 * If locked is true the lock will be dropped for any true returns
1115 * and held for any false returns.
1116 */
1117 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1118 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1119 const char *wmesg, int allocflags, bool locked)
1120 {
1121 bool xsleep;
1122 u_int x;
1123
1124 /*
1125 * If the object is busy we must wait for that to drain to zero
1126 * before trying the page again.
1127 */
1128 if (obj != NULL && vm_object_busied(obj)) {
1129 if (locked)
1130 VM_OBJECT_DROP(obj);
1131 vm_object_busy_wait(obj, wmesg);
1132 return (true);
1133 }
1134
1135 if (!vm_page_busied(m))
1136 return (false);
1137
1138 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1139 sleepq_lock(m);
1140 x = vm_page_busy_fetch(m);
1141 do {
1142 /*
1143 * If the page changes objects or becomes unlocked we can
1144 * simply return.
1145 */
1146 if (x == VPB_UNBUSIED ||
1147 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1148 m->object != obj || m->pindex != pindex) {
1149 sleepq_release(m);
1150 return (false);
1151 }
1152 if ((x & VPB_BIT_WAITERS) != 0)
1153 break;
1154 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1155 if (locked)
1156 VM_OBJECT_DROP(obj);
1157 DROP_GIANT();
1158 sleepq_add(m, NULL, wmesg, 0, 0);
1159 sleepq_wait(m, PVM);
1160 PICKUP_GIANT();
1161 return (true);
1162 }
1163
1164 /*
1165 * vm_page_trysbusy:
1166 *
1167 * Try to shared busy a page.
1168 * If the operation succeeds 1 is returned otherwise 0.
1169 * The operation never sleeps.
1170 */
1171 int
vm_page_trysbusy(vm_page_t m)1172 vm_page_trysbusy(vm_page_t m)
1173 {
1174 vm_object_t obj;
1175 u_int x;
1176
1177 obj = m->object;
1178 x = vm_page_busy_fetch(m);
1179 for (;;) {
1180 if ((x & VPB_BIT_SHARED) == 0)
1181 return (0);
1182 /*
1183 * Reduce the window for transient busies that will trigger
1184 * false negatives in vm_page_ps_test().
1185 */
1186 if (obj != NULL && vm_object_busied(obj))
1187 return (0);
1188 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1189 x + VPB_ONE_SHARER))
1190 break;
1191 }
1192
1193 /* Refetch the object now that we're guaranteed that it is stable. */
1194 obj = m->object;
1195 if (obj != NULL && vm_object_busied(obj)) {
1196 vm_page_sunbusy(m);
1197 return (0);
1198 }
1199 return (1);
1200 }
1201
1202 /*
1203 * vm_page_tryxbusy:
1204 *
1205 * Try to exclusive busy a page.
1206 * If the operation succeeds 1 is returned otherwise 0.
1207 * The operation never sleeps.
1208 */
1209 int
vm_page_tryxbusy(vm_page_t m)1210 vm_page_tryxbusy(vm_page_t m)
1211 {
1212 vm_object_t obj;
1213
1214 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1215 VPB_CURTHREAD_EXCLUSIVE) == 0)
1216 return (0);
1217
1218 obj = m->object;
1219 if (obj != NULL && vm_object_busied(obj)) {
1220 vm_page_xunbusy(m);
1221 return (0);
1222 }
1223 return (1);
1224 }
1225
1226 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1227 vm_page_xunbusy_hard_tail(vm_page_t m)
1228 {
1229 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1230 /* Wake the waiter. */
1231 wakeup(m);
1232 }
1233
1234 /*
1235 * vm_page_xunbusy_hard:
1236 *
1237 * Called when unbusy has failed because there is a waiter.
1238 */
1239 void
vm_page_xunbusy_hard(vm_page_t m)1240 vm_page_xunbusy_hard(vm_page_t m)
1241 {
1242 vm_page_assert_xbusied(m);
1243 vm_page_xunbusy_hard_tail(m);
1244 }
1245
1246 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1247 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1248 {
1249 vm_page_assert_xbusied_unchecked(m);
1250 vm_page_xunbusy_hard_tail(m);
1251 }
1252
1253 static void
vm_page_busy_free(vm_page_t m)1254 vm_page_busy_free(vm_page_t m)
1255 {
1256 u_int x;
1257
1258 atomic_thread_fence_rel();
1259 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1260 if ((x & VPB_BIT_WAITERS) != 0)
1261 wakeup(m);
1262 }
1263
1264 /*
1265 * vm_page_unhold_pages:
1266 *
1267 * Unhold each of the pages that is referenced by the given array.
1268 */
1269 void
vm_page_unhold_pages(vm_page_t * ma,int count)1270 vm_page_unhold_pages(vm_page_t *ma, int count)
1271 {
1272
1273 for (; count != 0; count--) {
1274 vm_page_unwire(*ma, PQ_ACTIVE);
1275 ma++;
1276 }
1277 }
1278
1279 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1280 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1281 {
1282 vm_page_t m;
1283
1284 #ifdef VM_PHYSSEG_SPARSE
1285 m = vm_phys_paddr_to_vm_page(pa);
1286 if (m == NULL)
1287 m = vm_phys_fictitious_to_vm_page(pa);
1288 return (m);
1289 #elif defined(VM_PHYSSEG_DENSE)
1290 long pi;
1291
1292 pi = atop(pa);
1293 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1294 m = &vm_page_array[pi - first_page];
1295 return (m);
1296 }
1297 return (vm_phys_fictitious_to_vm_page(pa));
1298 #else
1299 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1300 #endif
1301 }
1302
1303 /*
1304 * vm_page_getfake:
1305 *
1306 * Create a fictitious page with the specified physical address and
1307 * memory attribute. The memory attribute is the only the machine-
1308 * dependent aspect of a fictitious page that must be initialized.
1309 */
1310 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1311 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1312 {
1313 vm_page_t m;
1314
1315 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1316 vm_page_initfake(m, paddr, memattr);
1317 return (m);
1318 }
1319
1320 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1321 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1322 {
1323
1324 if ((m->flags & PG_FICTITIOUS) != 0) {
1325 /*
1326 * The page's memattr might have changed since the
1327 * previous initialization. Update the pmap to the
1328 * new memattr.
1329 */
1330 goto memattr;
1331 }
1332 m->phys_addr = paddr;
1333 m->a.queue = PQ_NONE;
1334 /* Fictitious pages don't use "segind". */
1335 m->flags = PG_FICTITIOUS;
1336 /* Fictitious pages don't use "order" or "pool". */
1337 m->oflags = VPO_UNMANAGED;
1338 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1339 /* Fictitious pages are unevictable. */
1340 m->ref_count = 1;
1341 pmap_page_init(m);
1342 memattr:
1343 pmap_page_set_memattr(m, memattr);
1344 }
1345
1346 /*
1347 * vm_page_putfake:
1348 *
1349 * Release a fictitious page.
1350 */
1351 void
vm_page_putfake(vm_page_t m)1352 vm_page_putfake(vm_page_t m)
1353 {
1354
1355 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1356 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1357 ("vm_page_putfake: bad page %p", m));
1358 vm_page_assert_xbusied(m);
1359 vm_page_busy_free(m);
1360 uma_zfree(fakepg_zone, m);
1361 }
1362
1363 /*
1364 * vm_page_updatefake:
1365 *
1366 * Update the given fictitious page to the specified physical address and
1367 * memory attribute.
1368 */
1369 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1370 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1371 {
1372
1373 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1374 ("vm_page_updatefake: bad page %p", m));
1375 m->phys_addr = paddr;
1376 pmap_page_set_memattr(m, memattr);
1377 }
1378
1379 /*
1380 * vm_page_free:
1381 *
1382 * Free a page.
1383 */
1384 void
vm_page_free(vm_page_t m)1385 vm_page_free(vm_page_t m)
1386 {
1387
1388 m->flags &= ~PG_ZERO;
1389 vm_page_free_toq(m);
1390 }
1391
1392 /*
1393 * vm_page_free_zero:
1394 *
1395 * Free a page to the zerod-pages queue
1396 */
1397 void
vm_page_free_zero(vm_page_t m)1398 vm_page_free_zero(vm_page_t m)
1399 {
1400
1401 m->flags |= PG_ZERO;
1402 vm_page_free_toq(m);
1403 }
1404
1405 /*
1406 * Unbusy and handle the page queueing for a page from a getpages request that
1407 * was optionally read ahead or behind.
1408 */
1409 void
vm_page_readahead_finish(vm_page_t m)1410 vm_page_readahead_finish(vm_page_t m)
1411 {
1412
1413 /* We shouldn't put invalid pages on queues. */
1414 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1415
1416 /*
1417 * Since the page is not the actually needed one, whether it should
1418 * be activated or deactivated is not obvious. Empirical results
1419 * have shown that deactivating the page is usually the best choice,
1420 * unless the page is wanted by another thread.
1421 */
1422 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1423 vm_page_activate(m);
1424 else
1425 vm_page_deactivate(m);
1426 vm_page_xunbusy_unchecked(m);
1427 }
1428
1429 /*
1430 * Destroy the identity of an invalid page and free it if possible.
1431 * This is intended to be used when reading a page from backing store fails.
1432 */
1433 void
vm_page_free_invalid(vm_page_t m)1434 vm_page_free_invalid(vm_page_t m)
1435 {
1436
1437 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1438 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1439 KASSERT(m->object != NULL, ("page %p has no object", m));
1440 VM_OBJECT_ASSERT_WLOCKED(m->object);
1441
1442 /*
1443 * We may be attempting to free the page as part of the handling for an
1444 * I/O error, in which case the page was xbusied by a different thread.
1445 */
1446 vm_page_xbusy_claim(m);
1447
1448 /*
1449 * If someone has wired this page while the object lock
1450 * was not held, then the thread that unwires is responsible
1451 * for freeing the page. Otherwise just free the page now.
1452 * The wire count of this unmapped page cannot change while
1453 * we have the page xbusy and the page's object wlocked.
1454 */
1455 if (vm_page_remove(m))
1456 vm_page_free(m);
1457 }
1458
1459 /*
1460 * vm_page_dirty_KBI: [ internal use only ]
1461 *
1462 * Set all bits in the page's dirty field.
1463 *
1464 * The object containing the specified page must be locked if the
1465 * call is made from the machine-independent layer.
1466 *
1467 * See vm_page_clear_dirty_mask().
1468 *
1469 * This function should only be called by vm_page_dirty().
1470 */
1471 void
vm_page_dirty_KBI(vm_page_t m)1472 vm_page_dirty_KBI(vm_page_t m)
1473 {
1474
1475 /* Refer to this operation by its public name. */
1476 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1477 m->dirty = VM_PAGE_BITS_ALL;
1478 }
1479
1480 /*
1481 * Insert the given page into the given object at the given pindex.
1482 *
1483 * The procedure is marked __always_inline to suggest to the compiler to
1484 * eliminate the iter parameter and the associated alternate branch.
1485 */
1486 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,bool iter,struct pctrie_iter * pages)1487 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1488 bool iter, struct pctrie_iter *pages)
1489 {
1490 int error;
1491
1492 VM_OBJECT_ASSERT_WLOCKED(object);
1493 KASSERT(m->object == NULL,
1494 ("vm_page_insert: page %p already inserted", m));
1495
1496 /*
1497 * Record the object/offset pair in this page.
1498 */
1499 m->object = object;
1500 m->pindex = pindex;
1501 m->ref_count |= VPRC_OBJREF;
1502
1503 /*
1504 * Add this page to the object's radix tree.
1505 */
1506 if (iter)
1507 error = vm_radix_iter_insert(pages, m);
1508 else
1509 error = vm_radix_insert(&object->rtree, m);
1510 if (__predict_false(error != 0)) {
1511 m->object = NULL;
1512 m->pindex = 0;
1513 m->ref_count &= ~VPRC_OBJREF;
1514 return (1);
1515 }
1516
1517 vm_page_insert_radixdone(m, object);
1518 vm_pager_page_inserted(object, m);
1519 return (0);
1520 }
1521
1522 /*
1523 * vm_page_insert: [ internal use only ]
1524 *
1525 * Inserts the given mem entry into the object and object list.
1526 *
1527 * The object must be locked.
1528 */
1529 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1530 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1531 {
1532 return (vm_page_insert_lookup(m, object, pindex, false, NULL));
1533 }
1534
1535 /*
1536 * vm_page_iter_insert:
1537 *
1538 * Tries to insert the page "m" into the specified object at offset
1539 * "pindex" using the iterator "pages". Returns 0 if the insertion was
1540 * successful.
1541 *
1542 * The object must be locked.
1543 */
1544 int
vm_page_iter_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages)1545 vm_page_iter_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1546 struct pctrie_iter *pages)
1547 {
1548 return (vm_page_insert_lookup(m, object, pindex, true, pages));
1549 }
1550
1551 /*
1552 * vm_page_insert_radixdone:
1553 *
1554 * Complete page "m" insertion into the specified object after the
1555 * radix trie hooking.
1556 *
1557 * The object must be locked.
1558 */
1559 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object)1560 vm_page_insert_radixdone(vm_page_t m, vm_object_t object)
1561 {
1562
1563 VM_OBJECT_ASSERT_WLOCKED(object);
1564 KASSERT(object != NULL && m->object == object,
1565 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1566 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1567 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1568
1569 /*
1570 * Show that the object has one more resident page.
1571 */
1572 object->resident_page_count++;
1573
1574 /*
1575 * Hold the vnode until the last page is released.
1576 */
1577 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1578 vhold(object->handle);
1579
1580 /*
1581 * Since we are inserting a new and possibly dirty page,
1582 * update the object's generation count.
1583 */
1584 if (pmap_page_is_write_mapped(m))
1585 vm_object_set_writeable_dirty(object);
1586 }
1587
1588 /*
1589 * vm_page_remove_radixdone
1590 *
1591 * Complete page "m" removal from the specified object after the radix trie
1592 * unhooking.
1593 *
1594 * The caller is responsible for updating the page's fields to reflect this
1595 * removal.
1596 */
1597 static void
vm_page_remove_radixdone(vm_page_t m)1598 vm_page_remove_radixdone(vm_page_t m)
1599 {
1600 vm_object_t object;
1601
1602 vm_page_assert_xbusied(m);
1603 object = m->object;
1604 VM_OBJECT_ASSERT_WLOCKED(object);
1605 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1606 ("page %p is missing its object ref", m));
1607
1608 /* Deferred free of swap space. */
1609 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1610 vm_pager_page_unswapped(m);
1611
1612 vm_pager_page_removed(object, m);
1613 m->object = NULL;
1614
1615 /*
1616 * And show that the object has one fewer resident page.
1617 */
1618 object->resident_page_count--;
1619
1620 /*
1621 * The vnode may now be recycled.
1622 */
1623 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1624 vdrop(object->handle);
1625 }
1626
1627 /*
1628 * vm_page_free_object_prep:
1629 *
1630 * Disassociates the given page from its VM object.
1631 *
1632 * The object must be locked, and the page must be xbusy.
1633 */
1634 static void
vm_page_free_object_prep(vm_page_t m)1635 vm_page_free_object_prep(vm_page_t m)
1636 {
1637 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1638 ((m->object->flags & OBJ_UNMANAGED) != 0),
1639 ("%s: managed flag mismatch for page %p",
1640 __func__, m));
1641 vm_page_assert_xbusied(m);
1642
1643 /*
1644 * The object reference can be released without an atomic
1645 * operation.
1646 */
1647 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1648 m->ref_count == VPRC_OBJREF,
1649 ("%s: page %p has unexpected ref_count %u",
1650 __func__, m, m->ref_count));
1651 vm_page_remove_radixdone(m);
1652 m->ref_count -= VPRC_OBJREF;
1653 }
1654
1655 /*
1656 * vm_page_iter_free:
1657 *
1658 * Free the given page, and use the iterator to remove it from the radix
1659 * tree.
1660 */
1661 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1662 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1663 {
1664 vm_radix_iter_remove(pages);
1665 vm_page_free_object_prep(m);
1666 vm_page_xunbusy(m);
1667 m->flags &= ~PG_ZERO;
1668 vm_page_free_toq(m);
1669 }
1670
1671 /*
1672 * vm_page_remove:
1673 *
1674 * Removes the specified page from its containing object, but does not
1675 * invalidate any backing storage. Returns true if the object's reference
1676 * was the last reference to the page, and false otherwise.
1677 *
1678 * The object must be locked and the page must be exclusively busied.
1679 * The exclusive busy will be released on return. If this is not the
1680 * final ref and the caller does not hold a wire reference it may not
1681 * continue to access the page.
1682 */
1683 bool
vm_page_remove(vm_page_t m)1684 vm_page_remove(vm_page_t m)
1685 {
1686 bool dropped;
1687
1688 dropped = vm_page_remove_xbusy(m);
1689 vm_page_xunbusy(m);
1690
1691 return (dropped);
1692 }
1693
1694 /*
1695 * vm_page_iter_remove:
1696 *
1697 * Remove the current page, and use the iterator to remove it from the
1698 * radix tree.
1699 */
1700 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1701 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1702 {
1703 bool dropped;
1704
1705 vm_radix_iter_remove(pages);
1706 vm_page_remove_radixdone(m);
1707 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1708 vm_page_xunbusy(m);
1709
1710 return (dropped);
1711 }
1712
1713 /*
1714 * vm_page_radix_remove
1715 *
1716 * Removes the specified page from the radix tree.
1717 */
1718 static void
vm_page_radix_remove(vm_page_t m)1719 vm_page_radix_remove(vm_page_t m)
1720 {
1721 vm_page_t mrem __diagused;
1722
1723 mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1724 KASSERT(mrem == m,
1725 ("removed page %p, expected page %p", mrem, m));
1726 }
1727
1728 /*
1729 * vm_page_remove_xbusy
1730 *
1731 * Removes the page but leaves the xbusy held. Returns true if this
1732 * removed the final ref and false otherwise.
1733 */
1734 bool
vm_page_remove_xbusy(vm_page_t m)1735 vm_page_remove_xbusy(vm_page_t m)
1736 {
1737
1738 vm_page_radix_remove(m);
1739 vm_page_remove_radixdone(m);
1740 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1741 }
1742
1743 /*
1744 * vm_page_lookup:
1745 *
1746 * Returns the page associated with the object/offset
1747 * pair specified; if none is found, NULL is returned.
1748 *
1749 * The object must be locked.
1750 */
1751 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1752 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1753 {
1754
1755 VM_OBJECT_ASSERT_LOCKED(object);
1756 return (vm_radix_lookup(&object->rtree, pindex));
1757 }
1758
1759 /*
1760 * vm_page_iter_init:
1761 *
1762 * Initialize iterator for vm pages.
1763 */
1764 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1765 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1766 {
1767
1768 vm_radix_iter_init(pages, &object->rtree);
1769 }
1770
1771 /*
1772 * vm_page_iter_init:
1773 *
1774 * Initialize iterator for vm pages.
1775 */
1776 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1777 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1778 vm_pindex_t limit)
1779 {
1780
1781 vm_radix_iter_limit_init(pages, &object->rtree, limit);
1782 }
1783
1784 /*
1785 * vm_page_lookup_unlocked:
1786 *
1787 * Returns the page associated with the object/offset pair specified;
1788 * if none is found, NULL is returned. The page may be no longer be
1789 * present in the object at the time that this function returns. Only
1790 * useful for opportunistic checks such as inmem().
1791 */
1792 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1793 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1794 {
1795
1796 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1797 }
1798
1799 /*
1800 * vm_page_relookup:
1801 *
1802 * Returns a page that must already have been busied by
1803 * the caller. Used for bogus page replacement.
1804 */
1805 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1806 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1807 {
1808 vm_page_t m;
1809
1810 m = vm_page_lookup_unlocked(object, pindex);
1811 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1812 m->object == object && m->pindex == pindex,
1813 ("vm_page_relookup: Invalid page %p", m));
1814 return (m);
1815 }
1816
1817 /*
1818 * This should only be used by lockless functions for releasing transient
1819 * incorrect acquires. The page may have been freed after we acquired a
1820 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1821 * further to do.
1822 */
1823 static void
vm_page_busy_release(vm_page_t m)1824 vm_page_busy_release(vm_page_t m)
1825 {
1826 u_int x;
1827
1828 x = vm_page_busy_fetch(m);
1829 for (;;) {
1830 if (x == VPB_FREED)
1831 break;
1832 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1833 if (atomic_fcmpset_int(&m->busy_lock, &x,
1834 x - VPB_ONE_SHARER))
1835 break;
1836 continue;
1837 }
1838 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1839 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1840 ("vm_page_busy_release: %p xbusy not owned.", m));
1841 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1842 continue;
1843 if ((x & VPB_BIT_WAITERS) != 0)
1844 wakeup(m);
1845 break;
1846 }
1847 }
1848
1849 /*
1850 * Uses the page mnew as a replacement for an existing page at index
1851 * pindex which must be already present in the object.
1852 *
1853 * Both pages must be exclusively busied on enter. The old page is
1854 * unbusied on exit.
1855 *
1856 * A return value of true means mold is now free. If this is not the
1857 * final ref and the caller does not hold a wire reference it may not
1858 * continue to access the page.
1859 */
1860 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1861 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1862 vm_page_t mold)
1863 {
1864 vm_page_t mret __diagused;
1865 bool dropped;
1866
1867 VM_OBJECT_ASSERT_WLOCKED(object);
1868 vm_page_assert_xbusied(mold);
1869 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1870 ("vm_page_replace: page %p already in object", mnew));
1871
1872 /*
1873 * This function mostly follows vm_page_insert() and
1874 * vm_page_remove() without the radix, object count and vnode
1875 * dance. Double check such functions for more comments.
1876 */
1877
1878 mnew->object = object;
1879 mnew->pindex = pindex;
1880 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1881 mret = vm_radix_replace(&object->rtree, mnew);
1882 KASSERT(mret == mold,
1883 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1884 KASSERT((mold->oflags & VPO_UNMANAGED) ==
1885 (mnew->oflags & VPO_UNMANAGED),
1886 ("vm_page_replace: mismatched VPO_UNMANAGED"));
1887
1888 mold->object = NULL;
1889
1890 /*
1891 * The object's resident_page_count does not change because we have
1892 * swapped one page for another, but the generation count should
1893 * change if the page is dirty.
1894 */
1895 if (pmap_page_is_write_mapped(mnew))
1896 vm_object_set_writeable_dirty(object);
1897 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1898 vm_page_xunbusy(mold);
1899
1900 return (dropped);
1901 }
1902
1903 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1904 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1905 vm_page_t mold)
1906 {
1907
1908 vm_page_assert_xbusied(mnew);
1909
1910 if (vm_page_replace_hold(mnew, object, pindex, mold))
1911 vm_page_free(mold);
1912 }
1913
1914 /*
1915 * vm_page_iter_rename:
1916 *
1917 * Tries to move the specified page from its current object to a new object
1918 * and pindex, using the given iterator to remove the page from its current
1919 * object. Returns true if the move was successful, and false if the move
1920 * was aborted due to a failed memory allocation.
1921 *
1922 * Panics if a page already resides in the new object at the new pindex.
1923 *
1924 * This routine dirties the page if it is valid, as callers are expected to
1925 * transfer backing storage only after moving the page. Dirtying the page
1926 * ensures that the destination object retains the most recent copy of the
1927 * page.
1928 *
1929 * The objects must be locked.
1930 */
1931 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)1932 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
1933 vm_object_t new_object, vm_pindex_t new_pindex)
1934 {
1935 vm_pindex_t opidx;
1936
1937 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1938 ("%s: page %p is missing object ref", __func__, m));
1939 VM_OBJECT_ASSERT_WLOCKED(m->object);
1940 VM_OBJECT_ASSERT_WLOCKED(new_object);
1941
1942 /*
1943 * Create a custom version of vm_page_insert() which does not depend
1944 * by m_prev and can cheat on the implementation aspects of the
1945 * function.
1946 */
1947 opidx = m->pindex;
1948 m->pindex = new_pindex;
1949 if (vm_radix_insert(&new_object->rtree, m) != 0) {
1950 m->pindex = opidx;
1951 return (false);
1952 }
1953
1954 /*
1955 * The operation cannot fail anymore.
1956 */
1957 m->pindex = opidx;
1958 vm_radix_iter_remove(old_pages);
1959 vm_page_remove_radixdone(m);
1960
1961 /* Return back to the new pindex to complete vm_page_insert(). */
1962 m->pindex = new_pindex;
1963 m->object = new_object;
1964
1965 vm_page_insert_radixdone(m, new_object);
1966 if (vm_page_any_valid(m))
1967 vm_page_dirty(m);
1968 vm_pager_page_inserted(new_object, m);
1969 return (true);
1970 }
1971
1972 /*
1973 * vm_page_alloc:
1974 *
1975 * Allocate and return a page that is associated with the specified
1976 * object and offset pair. By default, this page is exclusive busied.
1977 *
1978 * The caller must always specify an allocation class.
1979 *
1980 * allocation classes:
1981 * VM_ALLOC_NORMAL normal process request
1982 * VM_ALLOC_SYSTEM system *really* needs a page
1983 * VM_ALLOC_INTERRUPT interrupt time request
1984 *
1985 * optional allocation flags:
1986 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1987 * intends to allocate
1988 * VM_ALLOC_NOBUSY do not exclusive busy the page
1989 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
1990 * VM_ALLOC_NOFREE page will never be freed
1991 * VM_ALLOC_NOWAIT ignored (default behavior)
1992 * VM_ALLOC_SBUSY shared busy the allocated page
1993 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
1994 * VM_ALLOC_WIRED wire the allocated page
1995 * VM_ALLOC_ZERO prefer a zeroed page
1996 */
1997 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)1998 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1999 {
2000 struct pctrie_iter pages;
2001
2002 vm_page_iter_init(&pages, object);
2003 return (vm_page_alloc_iter(object, pindex, req, &pages));
2004 }
2005
2006 /*
2007 * Allocate a page in the specified object with the given page index. If the
2008 * object lock is dropped and regained, the pages iter is reset.
2009 */
2010 vm_page_t
vm_page_alloc_iter(vm_object_t object,vm_pindex_t pindex,int req,struct pctrie_iter * pages)2011 vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req,
2012 struct pctrie_iter *pages)
2013 {
2014 struct vm_domainset_iter di;
2015 vm_page_t m;
2016 int domain;
2017
2018 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req,
2019 pages);
2020 do {
2021 m = vm_page_alloc_domain_iter(object, pindex, domain, req,
2022 pages);
2023 if (m != NULL)
2024 break;
2025 } while (vm_domainset_iter_page(&di, object, &domain, pages) == 0);
2026
2027 return (m);
2028 }
2029
2030 /*
2031 * Returns true if the number of free pages exceeds the minimum
2032 * for the request class and false otherwise.
2033 */
2034 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2035 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2036 {
2037 u_int limit, old, new;
2038
2039 if (req_class == VM_ALLOC_INTERRUPT)
2040 limit = 0;
2041 else if (req_class == VM_ALLOC_SYSTEM)
2042 limit = vmd->vmd_interrupt_free_min;
2043 else
2044 limit = vmd->vmd_free_reserved;
2045
2046 /*
2047 * Attempt to reserve the pages. Fail if we're below the limit.
2048 */
2049 limit += npages;
2050 old = atomic_load_int(&vmd->vmd_free_count);
2051 do {
2052 if (old < limit)
2053 return (0);
2054 new = old - npages;
2055 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2056
2057 /* Wake the page daemon if we've crossed the threshold. */
2058 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2059 pagedaemon_wakeup(vmd->vmd_domain);
2060
2061 /* Only update bitsets on transitions. */
2062 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2063 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2064 vm_domain_set(vmd);
2065
2066 return (1);
2067 }
2068
2069 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2070 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2071 {
2072 int req_class;
2073
2074 /*
2075 * The page daemon is allowed to dig deeper into the free page list.
2076 */
2077 req_class = req & VM_ALLOC_CLASS_MASK;
2078 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2079 req_class = VM_ALLOC_SYSTEM;
2080 return (_vm_domain_allocate(vmd, req_class, npages));
2081 }
2082
2083 vm_page_t
vm_page_alloc_domain_iter(vm_object_t object,vm_pindex_t pindex,int domain,int req,struct pctrie_iter * pages)2084 vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex, int domain,
2085 int req, struct pctrie_iter *pages)
2086 {
2087 struct vm_domain *vmd;
2088 vm_page_t m;
2089 int flags;
2090
2091 #define VM_ALLOC_COMMON (VM_ALLOC_CLASS_MASK | VM_ALLOC_NODUMP | \
2092 VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | \
2093 VM_ALLOC_WIRED | VM_ALLOC_ZERO)
2094 #define VPA_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2095 VM_ALLOC_NOBUSY | VM_ALLOC_NOFREE | \
2096 VM_ALLOC_SBUSY)
2097 KASSERT((req & ~VPA_FLAGS) == 0,
2098 ("invalid request %#x", req));
2099 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2100 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2101 ("invalid request %#x", req));
2102 VM_OBJECT_ASSERT_WLOCKED(object);
2103
2104 flags = 0;
2105 m = NULL;
2106 if (!vm_pager_can_alloc_page(object, pindex))
2107 return (NULL);
2108 #if VM_NRESERVLEVEL > 0
2109 again:
2110 #endif
2111 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2112 m = vm_page_alloc_nofree_domain(domain, req);
2113 if (m != NULL)
2114 goto found;
2115 }
2116 #if VM_NRESERVLEVEL > 0
2117 /*
2118 * Can we allocate the page from a reservation?
2119 */
2120 if (vm_object_reserv(object) &&
2121 (m = vm_reserv_alloc_page(object, pindex, domain, req, pages)) !=
2122 NULL) {
2123 goto found;
2124 }
2125 #endif
2126 vmd = VM_DOMAIN(domain);
2127 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2128 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2129 M_NOWAIT | M_NOVM);
2130 if (m != NULL) {
2131 flags |= PG_PCPU_CACHE;
2132 goto found;
2133 }
2134 }
2135 if (vm_domain_allocate(vmd, req, 1)) {
2136 /*
2137 * If not, allocate it from the free page queues.
2138 */
2139 vm_domain_free_lock(vmd);
2140 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2141 vm_domain_free_unlock(vmd);
2142 if (m == NULL) {
2143 vm_domain_freecnt_inc(vmd, 1);
2144 #if VM_NRESERVLEVEL > 0
2145 if (vm_reserv_reclaim_inactive(domain))
2146 goto again;
2147 #endif
2148 }
2149 }
2150 if (m == NULL) {
2151 /*
2152 * Not allocatable, give up.
2153 */
2154 (void)vm_domain_alloc_fail(vmd, object, req);
2155 if ((req & VM_ALLOC_WAITFAIL) != 0)
2156 pctrie_iter_reset(pages);
2157 return (NULL);
2158 }
2159
2160 /*
2161 * At this point we had better have found a good page.
2162 */
2163 found:
2164 vm_page_dequeue(m);
2165 vm_page_alloc_check(m);
2166
2167 /*
2168 * Initialize the page. Only the PG_ZERO flag is inherited.
2169 */
2170 flags |= m->flags & PG_ZERO;
2171 if ((req & VM_ALLOC_NODUMP) != 0)
2172 flags |= PG_NODUMP;
2173 if ((req & VM_ALLOC_NOFREE) != 0)
2174 flags |= PG_NOFREE;
2175 m->flags = flags;
2176 m->a.flags = 0;
2177 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2178 m->pool = VM_FREEPOOL_DEFAULT;
2179 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2180 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2181 else if ((req & VM_ALLOC_SBUSY) != 0)
2182 m->busy_lock = VPB_SHARERS_WORD(1);
2183 else
2184 m->busy_lock = VPB_UNBUSIED;
2185 if (req & VM_ALLOC_WIRED) {
2186 vm_wire_add(1);
2187 m->ref_count = 1;
2188 }
2189 m->a.act_count = 0;
2190
2191 if (vm_page_iter_insert(m, object, pindex, pages)) {
2192 if (req & VM_ALLOC_WIRED) {
2193 vm_wire_sub(1);
2194 m->ref_count = 0;
2195 }
2196 KASSERT(m->object == NULL, ("page %p has object", m));
2197 m->oflags = VPO_UNMANAGED;
2198 m->busy_lock = VPB_UNBUSIED;
2199 /* Don't change PG_ZERO. */
2200 vm_page_free_toq(m);
2201 if (req & VM_ALLOC_WAITFAIL) {
2202 VM_OBJECT_WUNLOCK(object);
2203 vm_radix_wait();
2204 pctrie_iter_reset(pages);
2205 VM_OBJECT_WLOCK(object);
2206 }
2207 return (NULL);
2208 }
2209
2210 /* Ignore device objects; the pager sets "memattr" for them. */
2211 if (object->memattr != VM_MEMATTR_DEFAULT &&
2212 (object->flags & OBJ_FICTITIOUS) == 0)
2213 pmap_page_set_memattr(m, object->memattr);
2214
2215 return (m);
2216 }
2217
2218 /*
2219 * vm_page_alloc_contig:
2220 *
2221 * Allocate a contiguous set of physical pages of the given size "npages"
2222 * from the free lists. All of the physical pages must be at or above
2223 * the given physical address "low" and below the given physical address
2224 * "high". The given value "alignment" determines the alignment of the
2225 * first physical page in the set. If the given value "boundary" is
2226 * non-zero, then the set of physical pages cannot cross any physical
2227 * address boundary that is a multiple of that value. Both "alignment"
2228 * and "boundary" must be a power of two.
2229 *
2230 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2231 * then the memory attribute setting for the physical pages is configured
2232 * to the object's memory attribute setting. Otherwise, the memory
2233 * attribute setting for the physical pages is configured to "memattr",
2234 * overriding the object's memory attribute setting. However, if the
2235 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2236 * memory attribute setting for the physical pages cannot be configured
2237 * to VM_MEMATTR_DEFAULT.
2238 *
2239 * The specified object may not contain fictitious pages.
2240 *
2241 * The caller must always specify an allocation class.
2242 *
2243 * allocation classes:
2244 * VM_ALLOC_NORMAL normal process request
2245 * VM_ALLOC_SYSTEM system *really* needs the pages
2246 * VM_ALLOC_INTERRUPT interrupt time request
2247 *
2248 * optional allocation flags:
2249 * VM_ALLOC_NOBUSY do not exclusive busy the pages
2250 * VM_ALLOC_NODUMP do not include the pages in a kernel core dump
2251 * VM_ALLOC_NORECLAIM do not reclaim after initial failure
2252 * VM_ALLOC_NOWAIT ignored (default behavior)
2253 * VM_ALLOC_SBUSY shared busy the allocated pages
2254 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
2255 * VM_ALLOC_WIRED wire the allocated pages
2256 * VM_ALLOC_ZERO prefer zeroed pages
2257 */
2258 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2259 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2260 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2261 vm_paddr_t boundary, vm_memattr_t memattr)
2262 {
2263 struct vm_domainset_iter di;
2264 vm_page_t bounds[2];
2265 vm_page_t m;
2266 int domain;
2267 int start_segind;
2268
2269 start_segind = -1;
2270
2271 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req, NULL);
2272 do {
2273 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2274 npages, low, high, alignment, boundary, memattr);
2275 if (m != NULL)
2276 break;
2277 if (start_segind == -1)
2278 start_segind = vm_phys_lookup_segind(low);
2279 if (vm_phys_find_range(bounds, start_segind, domain,
2280 npages, low, high) == -1) {
2281 vm_domainset_iter_ignore(&di, domain);
2282 }
2283 } while (vm_domainset_iter_page(&di, object, &domain, NULL) == 0);
2284
2285 return (m);
2286 }
2287
2288 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2289 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2290 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2291 {
2292 struct vm_domain *vmd;
2293 vm_page_t m_ret;
2294
2295 /*
2296 * Can we allocate the pages without the number of free pages falling
2297 * below the lower bound for the allocation class?
2298 */
2299 vmd = VM_DOMAIN(domain);
2300 if (!vm_domain_allocate(vmd, req, npages))
2301 return (NULL);
2302 /*
2303 * Try to allocate the pages from the free page queues.
2304 */
2305 vm_domain_free_lock(vmd);
2306 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2307 alignment, boundary);
2308 vm_domain_free_unlock(vmd);
2309 if (m_ret != NULL)
2310 return (m_ret);
2311 #if VM_NRESERVLEVEL > 0
2312 /*
2313 * Try to break a reservation to allocate the pages.
2314 */
2315 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2316 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2317 high, alignment, boundary);
2318 if (m_ret != NULL)
2319 return (m_ret);
2320 }
2321 #endif
2322 vm_domain_freecnt_inc(vmd, npages);
2323 return (NULL);
2324 }
2325
2326 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2327 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2328 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2329 vm_paddr_t boundary, vm_memattr_t memattr)
2330 {
2331 struct pctrie_iter pages;
2332 vm_page_t m, m_ret, mpred;
2333 u_int busy_lock, flags, oflags;
2334
2335 #define VPAC_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2336 VM_ALLOC_NOBUSY | VM_ALLOC_NORECLAIM | \
2337 VM_ALLOC_SBUSY)
2338 KASSERT((req & ~VPAC_FLAGS) == 0,
2339 ("invalid request %#x", req));
2340 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2341 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2342 ("invalid request %#x", req));
2343 VM_OBJECT_ASSERT_WLOCKED(object);
2344 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2345 ("vm_page_alloc_contig: object %p has fictitious pages",
2346 object));
2347 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2348
2349 vm_page_iter_init(&pages, object);
2350 m_ret = NULL;
2351 #if VM_NRESERVLEVEL > 0
2352 /*
2353 * Can we allocate the pages from a reservation?
2354 */
2355 if (vm_object_reserv(object)) {
2356 m_ret = vm_reserv_alloc_contig(object, pindex, domain,
2357 req, npages, low, high, alignment, boundary, &pages);
2358 }
2359 #endif
2360 if (m_ret == NULL) {
2361 m_ret = vm_page_find_contig_domain(domain, req, npages,
2362 low, high, alignment, boundary);
2363 }
2364 if (m_ret == NULL) {
2365 (void)vm_domain_alloc_fail(VM_DOMAIN(domain), object, req);
2366 return (NULL);
2367 }
2368
2369 /*
2370 * Initialize the pages. Only the PG_ZERO flag is inherited.
2371 */
2372 flags = PG_ZERO;
2373 if ((req & VM_ALLOC_NODUMP) != 0)
2374 flags |= PG_NODUMP;
2375 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2376 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2377 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2378 else if ((req & VM_ALLOC_SBUSY) != 0)
2379 busy_lock = VPB_SHARERS_WORD(1);
2380 else
2381 busy_lock = VPB_UNBUSIED;
2382 if ((req & VM_ALLOC_WIRED) != 0)
2383 vm_wire_add(npages);
2384 if (object->memattr != VM_MEMATTR_DEFAULT &&
2385 memattr == VM_MEMATTR_DEFAULT)
2386 memattr = object->memattr;
2387 for (m = m_ret; m < &m_ret[npages]; m++) {
2388 vm_page_dequeue(m);
2389 vm_page_alloc_check(m);
2390 m->a.flags = 0;
2391 m->flags = (m->flags | PG_NODUMP) & flags;
2392 m->busy_lock = busy_lock;
2393 if ((req & VM_ALLOC_WIRED) != 0)
2394 m->ref_count = 1;
2395 m->a.act_count = 0;
2396 m->oflags = oflags;
2397 m->pool = VM_FREEPOOL_DEFAULT;
2398 if (vm_page_iter_insert(m, object, pindex, &pages)) {
2399 if ((req & VM_ALLOC_WIRED) != 0)
2400 vm_wire_sub(npages);
2401 KASSERT(m->object == NULL,
2402 ("page %p has object", m));
2403 mpred = m;
2404 for (m = m_ret; m < &m_ret[npages]; m++) {
2405 if (m <= mpred &&
2406 (req & VM_ALLOC_WIRED) != 0)
2407 m->ref_count = 0;
2408 m->oflags = VPO_UNMANAGED;
2409 m->busy_lock = VPB_UNBUSIED;
2410 /* Don't change PG_ZERO. */
2411 vm_page_free_toq(m);
2412 }
2413 if (req & VM_ALLOC_WAITFAIL) {
2414 VM_OBJECT_WUNLOCK(object);
2415 vm_radix_wait();
2416 VM_OBJECT_WLOCK(object);
2417 }
2418 return (NULL);
2419 }
2420 if (memattr != VM_MEMATTR_DEFAULT)
2421 pmap_page_set_memattr(m, memattr);
2422 pindex++;
2423 }
2424 return (m_ret);
2425 }
2426
2427 /*
2428 * Allocate a physical page that is not intended to be inserted into a VM
2429 * object.
2430 */
2431 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2432 vm_page_alloc_noobj_domain(int domain, int req)
2433 {
2434 struct vm_domain *vmd;
2435 vm_page_t m;
2436 int flags;
2437
2438 #define VPAN_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2439 VM_ALLOC_NOFREE | VM_ALLOC_WAITOK)
2440 KASSERT((req & ~VPAN_FLAGS) == 0,
2441 ("invalid request %#x", req));
2442
2443 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2444 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2445 vmd = VM_DOMAIN(domain);
2446 again:
2447 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2448 m = vm_page_alloc_nofree_domain(domain, req);
2449 if (m != NULL)
2450 goto found;
2451 }
2452
2453 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2454 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2455 M_NOWAIT | M_NOVM);
2456 if (m != NULL) {
2457 flags |= PG_PCPU_CACHE;
2458 goto found;
2459 }
2460 }
2461
2462 if (vm_domain_allocate(vmd, req, 1)) {
2463 vm_domain_free_lock(vmd);
2464 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2465 vm_domain_free_unlock(vmd);
2466 if (m == NULL) {
2467 vm_domain_freecnt_inc(vmd, 1);
2468 #if VM_NRESERVLEVEL > 0
2469 if (vm_reserv_reclaim_inactive(domain))
2470 goto again;
2471 #endif
2472 }
2473 }
2474 if (m == NULL) {
2475 if (!vm_domain_alloc_fail(vmd, NULL, req))
2476 return (NULL);
2477 goto again;
2478 }
2479
2480 found:
2481 /*
2482 * If the page comes from the free page cache, then it might still
2483 * have a pending deferred dequeue. Specifically, when the page is
2484 * imported from a different pool by vm_phys_alloc_npages(), the
2485 * second, third, etc. pages in a non-zero order set could have
2486 * pending deferred dequeues.
2487 */
2488 vm_page_dequeue(m);
2489 vm_page_alloc_check(m);
2490
2491 /*
2492 * Consumers should not rely on a useful default pindex value.
2493 */
2494 m->pindex = 0xdeadc0dedeadc0de;
2495 m->flags = (m->flags & PG_ZERO) | flags;
2496 m->a.flags = 0;
2497 m->oflags = VPO_UNMANAGED;
2498 m->pool = VM_FREEPOOL_DIRECT;
2499 m->busy_lock = VPB_UNBUSIED;
2500 if ((req & VM_ALLOC_WIRED) != 0) {
2501 vm_wire_add(1);
2502 m->ref_count = 1;
2503 }
2504
2505 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2506 pmap_zero_page(m);
2507
2508 return (m);
2509 }
2510
2511 #if VM_NRESERVLEVEL > 1
2512 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2513 #elif VM_NRESERVLEVEL > 0
2514 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER
2515 #else
2516 #define VM_NOFREE_IMPORT_ORDER 8
2517 #endif
2518
2519 /*
2520 * Allocate a single NOFREE page.
2521 *
2522 * This routine hands out NOFREE pages from higher-order
2523 * physical memory blocks in order to reduce memory fragmentation.
2524 * When a NOFREE for a given domain chunk is used up,
2525 * the routine will try to fetch a new one from the freelists
2526 * and discard the old one.
2527 */
2528 static vm_page_t __noinline
vm_page_alloc_nofree_domain(int domain,int req)2529 vm_page_alloc_nofree_domain(int domain, int req)
2530 {
2531 vm_page_t m;
2532 struct vm_domain *vmd;
2533
2534 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2535
2536 vmd = VM_DOMAIN(domain);
2537 vm_domain_free_lock(vmd);
2538 if (TAILQ_EMPTY(&vmd->vmd_nofreeq)) {
2539 int count;
2540
2541 count = 1 << VM_NOFREE_IMPORT_ORDER;
2542 if (!vm_domain_allocate(vmd, req, count)) {
2543 vm_domain_free_unlock(vmd);
2544 return (NULL);
2545 }
2546 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2547 VM_NOFREE_IMPORT_ORDER);
2548 if (m == NULL) {
2549 vm_domain_freecnt_inc(vmd, count);
2550 vm_domain_free_unlock(vmd);
2551 return (NULL);
2552 }
2553 m->ref_count = count - 1;
2554 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2555 atomic_add_long(&nofreeq_size, count);
2556 }
2557 m = TAILQ_FIRST(&vmd->vmd_nofreeq);
2558 TAILQ_REMOVE(&vmd->vmd_nofreeq, m, plinks.q);
2559 if (m->ref_count > 0) {
2560 vm_page_t m_next;
2561
2562 m_next = &m[1];
2563 vm_page_dequeue(m_next);
2564 m_next->ref_count = m->ref_count - 1;
2565 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m_next, plinks.q);
2566 m->ref_count = 0;
2567 }
2568 vm_domain_free_unlock(vmd);
2569 atomic_add_long(&nofreeq_size, -1);
2570 VM_CNT_INC(v_nofree_count);
2571
2572 return (m);
2573 }
2574
2575 /*
2576 * Though a NOFREE page by definition should not be freed, we support putting
2577 * them aside for future NOFREE allocations. This enables code which allocates
2578 * NOFREE pages for some purpose but then encounters an error and releases
2579 * resources.
2580 */
2581 static void __noinline
vm_page_free_nofree(struct vm_domain * vmd,vm_page_t m)2582 vm_page_free_nofree(struct vm_domain *vmd, vm_page_t m)
2583 {
2584 VM_CNT_ADD(v_nofree_count, -1);
2585 atomic_add_long(&nofreeq_size, 1);
2586 vm_domain_free_lock(vmd);
2587 MPASS(m->ref_count == 0);
2588 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2589 vm_domain_free_unlock(vmd);
2590 }
2591
2592 vm_page_t
vm_page_alloc_noobj(int req)2593 vm_page_alloc_noobj(int req)
2594 {
2595 struct vm_domainset_iter di;
2596 vm_page_t m;
2597 int domain;
2598
2599 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL);
2600 do {
2601 m = vm_page_alloc_noobj_domain(domain, req);
2602 if (m != NULL)
2603 break;
2604 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2605
2606 return (m);
2607 }
2608
2609 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2610 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2611 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2612 vm_memattr_t memattr)
2613 {
2614 struct vm_domainset_iter di;
2615 vm_page_t m;
2616 int domain;
2617
2618 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL);
2619 do {
2620 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2621 high, alignment, boundary, memattr);
2622 if (m != NULL)
2623 break;
2624 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2625
2626 return (m);
2627 }
2628
2629 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2630 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2631 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2632 vm_memattr_t memattr)
2633 {
2634 vm_page_t m, m_ret;
2635 u_int flags;
2636
2637 #define VPANC_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2638 VM_ALLOC_NORECLAIM | VM_ALLOC_WAITOK)
2639 KASSERT((req & ~VPANC_FLAGS) == 0,
2640 ("invalid request %#x", req));
2641 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2642 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2643 ("invalid request %#x", req));
2644 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2645
2646 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2647 low, high, alignment, boundary)) == NULL) {
2648 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2649 return (NULL);
2650 }
2651
2652 /*
2653 * Initialize the pages. Only the PG_ZERO flag is inherited.
2654 */
2655 flags = PG_ZERO;
2656 if ((req & VM_ALLOC_NODUMP) != 0)
2657 flags |= PG_NODUMP;
2658 if ((req & VM_ALLOC_WIRED) != 0)
2659 vm_wire_add(npages);
2660 for (m = m_ret; m < &m_ret[npages]; m++) {
2661 vm_page_dequeue(m);
2662 vm_page_alloc_check(m);
2663
2664 /*
2665 * Consumers should not rely on a useful default pindex value.
2666 */
2667 m->pindex = 0xdeadc0dedeadc0de;
2668 m->a.flags = 0;
2669 m->flags = (m->flags | PG_NODUMP) & flags;
2670 m->busy_lock = VPB_UNBUSIED;
2671 if ((req & VM_ALLOC_WIRED) != 0)
2672 m->ref_count = 1;
2673 m->a.act_count = 0;
2674 m->oflags = VPO_UNMANAGED;
2675 m->pool = VM_FREEPOOL_DIRECT;
2676
2677 /*
2678 * Zero the page before updating any mappings since the page is
2679 * not yet shared with any devices which might require the
2680 * non-default memory attribute. pmap_page_set_memattr()
2681 * flushes data caches before returning.
2682 */
2683 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2684 pmap_zero_page(m);
2685 if (memattr != VM_MEMATTR_DEFAULT)
2686 pmap_page_set_memattr(m, memattr);
2687 }
2688 return (m_ret);
2689 }
2690
2691 /*
2692 * Check a page that has been freshly dequeued from a freelist.
2693 */
2694 static void
vm_page_alloc_check(vm_page_t m)2695 vm_page_alloc_check(vm_page_t m)
2696 {
2697
2698 KASSERT(m->object == NULL, ("page %p has object", m));
2699 KASSERT(m->a.queue == PQ_NONE &&
2700 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2701 ("page %p has unexpected queue %d, flags %#x",
2702 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2703 KASSERT(m->ref_count == 0, ("page %p has references", m));
2704 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2705 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2706 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2707 ("page %p has unexpected memattr %d",
2708 m, pmap_page_get_memattr(m)));
2709 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2710 pmap_vm_page_alloc_check(m);
2711 }
2712
2713 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2714 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2715 {
2716 struct vm_domain *vmd;
2717 struct vm_pgcache *pgcache;
2718 int i;
2719
2720 pgcache = arg;
2721 vmd = VM_DOMAIN(pgcache->domain);
2722
2723 /*
2724 * The page daemon should avoid creating extra memory pressure since its
2725 * main purpose is to replenish the store of free pages.
2726 */
2727 if (vmd->vmd_severeset || curproc == pageproc ||
2728 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2729 return (0);
2730 domain = vmd->vmd_domain;
2731 vm_domain_free_lock(vmd);
2732 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2733 (vm_page_t *)store);
2734 vm_domain_free_unlock(vmd);
2735 if (cnt != i)
2736 vm_domain_freecnt_inc(vmd, cnt - i);
2737
2738 return (i);
2739 }
2740
2741 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2742 vm_page_zone_release(void *arg, void **store, int cnt)
2743 {
2744 struct vm_domain *vmd;
2745 struct vm_pgcache *pgcache;
2746 vm_page_t m;
2747 int i;
2748
2749 pgcache = arg;
2750 vmd = VM_DOMAIN(pgcache->domain);
2751 vm_domain_free_lock(vmd);
2752 for (i = 0; i < cnt; i++) {
2753 m = (vm_page_t)store[i];
2754 vm_phys_free_pages(m, pgcache->pool, 0);
2755 }
2756 vm_domain_free_unlock(vmd);
2757 vm_domain_freecnt_inc(vmd, cnt);
2758 }
2759
2760 #define VPSC_ANY 0 /* No restrictions. */
2761 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2762 #define VPSC_NOSUPER 2 /* Skip superpages. */
2763
2764 /*
2765 * vm_page_scan_contig:
2766 *
2767 * Scan vm_page_array[] between the specified entries "m_start" and
2768 * "m_end" for a run of contiguous physical pages that satisfy the
2769 * specified conditions, and return the lowest page in the run. The
2770 * specified "alignment" determines the alignment of the lowest physical
2771 * page in the run. If the specified "boundary" is non-zero, then the
2772 * run of physical pages cannot span a physical address that is a
2773 * multiple of "boundary".
2774 *
2775 * "m_end" is never dereferenced, so it need not point to a vm_page
2776 * structure within vm_page_array[].
2777 *
2778 * "npages" must be greater than zero. "m_start" and "m_end" must not
2779 * span a hole (or discontiguity) in the physical address space. Both
2780 * "alignment" and "boundary" must be a power of two.
2781 */
2782 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2783 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2784 u_long alignment, vm_paddr_t boundary, int options)
2785 {
2786 vm_object_t object;
2787 vm_paddr_t pa;
2788 vm_page_t m, m_run;
2789 #if VM_NRESERVLEVEL > 0
2790 int level;
2791 #endif
2792 int m_inc, order, run_ext, run_len;
2793
2794 KASSERT(npages > 0, ("npages is 0"));
2795 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2796 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2797 m_run = NULL;
2798 run_len = 0;
2799 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2800 KASSERT((m->flags & PG_MARKER) == 0,
2801 ("page %p is PG_MARKER", m));
2802 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2803 ("fictitious page %p has invalid ref count", m));
2804
2805 /*
2806 * If the current page would be the start of a run, check its
2807 * physical address against the end, alignment, and boundary
2808 * conditions. If it doesn't satisfy these conditions, either
2809 * terminate the scan or advance to the next page that
2810 * satisfies the failed condition.
2811 */
2812 if (run_len == 0) {
2813 KASSERT(m_run == NULL, ("m_run != NULL"));
2814 if (m + npages > m_end)
2815 break;
2816 pa = VM_PAGE_TO_PHYS(m);
2817 if (!vm_addr_align_ok(pa, alignment)) {
2818 m_inc = atop(roundup2(pa, alignment) - pa);
2819 continue;
2820 }
2821 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2822 m_inc = atop(roundup2(pa, boundary) - pa);
2823 continue;
2824 }
2825 } else
2826 KASSERT(m_run != NULL, ("m_run == NULL"));
2827
2828 retry:
2829 m_inc = 1;
2830 if (vm_page_wired(m))
2831 run_ext = 0;
2832 #if VM_NRESERVLEVEL > 0
2833 else if ((level = vm_reserv_level(m)) >= 0 &&
2834 (options & VPSC_NORESERV) != 0) {
2835 run_ext = 0;
2836 /* Advance to the end of the reservation. */
2837 pa = VM_PAGE_TO_PHYS(m);
2838 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2839 pa);
2840 }
2841 #endif
2842 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2843 /*
2844 * The page is considered eligible for relocation if
2845 * and only if it could be laundered or reclaimed by
2846 * the page daemon.
2847 */
2848 VM_OBJECT_RLOCK(object);
2849 if (object != m->object) {
2850 VM_OBJECT_RUNLOCK(object);
2851 goto retry;
2852 }
2853 /* Don't care: PG_NODUMP, PG_ZERO. */
2854 if ((object->flags & OBJ_SWAP) == 0 &&
2855 object->type != OBJT_VNODE) {
2856 run_ext = 0;
2857 #if VM_NRESERVLEVEL > 0
2858 } else if ((options & VPSC_NOSUPER) != 0 &&
2859 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2860 run_ext = 0;
2861 /* Advance to the end of the superpage. */
2862 pa = VM_PAGE_TO_PHYS(m);
2863 m_inc = atop(roundup2(pa + 1,
2864 vm_reserv_size(level)) - pa);
2865 #endif
2866 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2867 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2868 /*
2869 * The page is allocated but eligible for
2870 * relocation. Extend the current run by one
2871 * page.
2872 */
2873 KASSERT(pmap_page_get_memattr(m) ==
2874 VM_MEMATTR_DEFAULT,
2875 ("page %p has an unexpected memattr", m));
2876 KASSERT((m->oflags & (VPO_SWAPINPROG |
2877 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2878 ("page %p has unexpected oflags", m));
2879 /* Don't care: PGA_NOSYNC. */
2880 run_ext = 1;
2881 } else
2882 run_ext = 0;
2883 VM_OBJECT_RUNLOCK(object);
2884 #if VM_NRESERVLEVEL > 0
2885 } else if (level >= 0) {
2886 /*
2887 * The page is reserved but not yet allocated. In
2888 * other words, it is still free. Extend the current
2889 * run by one page.
2890 */
2891 run_ext = 1;
2892 #endif
2893 } else if ((order = m->order) < VM_NFREEORDER) {
2894 /*
2895 * The page is enqueued in the physical memory
2896 * allocator's free page queues. Moreover, it is the
2897 * first page in a power-of-two-sized run of
2898 * contiguous free pages. Add these pages to the end
2899 * of the current run, and jump ahead.
2900 */
2901 run_ext = 1 << order;
2902 m_inc = 1 << order;
2903 } else {
2904 /*
2905 * Skip the page for one of the following reasons: (1)
2906 * It is enqueued in the physical memory allocator's
2907 * free page queues. However, it is not the first
2908 * page in a run of contiguous free pages. (This case
2909 * rarely occurs because the scan is performed in
2910 * ascending order.) (2) It is not reserved, and it is
2911 * transitioning from free to allocated. (Conversely,
2912 * the transition from allocated to free for managed
2913 * pages is blocked by the page busy lock.) (3) It is
2914 * allocated but not contained by an object and not
2915 * wired, e.g., allocated by Xen's balloon driver.
2916 */
2917 run_ext = 0;
2918 }
2919
2920 /*
2921 * Extend or reset the current run of pages.
2922 */
2923 if (run_ext > 0) {
2924 if (run_len == 0)
2925 m_run = m;
2926 run_len += run_ext;
2927 } else {
2928 if (run_len > 0) {
2929 m_run = NULL;
2930 run_len = 0;
2931 }
2932 }
2933 }
2934 if (run_len >= npages)
2935 return (m_run);
2936 return (NULL);
2937 }
2938
2939 /*
2940 * vm_page_reclaim_run:
2941 *
2942 * Try to relocate each of the allocated virtual pages within the
2943 * specified run of physical pages to a new physical address. Free the
2944 * physical pages underlying the relocated virtual pages. A virtual page
2945 * is relocatable if and only if it could be laundered or reclaimed by
2946 * the page daemon. Whenever possible, a virtual page is relocated to a
2947 * physical address above "high".
2948 *
2949 * Returns 0 if every physical page within the run was already free or
2950 * just freed by a successful relocation. Otherwise, returns a non-zero
2951 * value indicating why the last attempt to relocate a virtual page was
2952 * unsuccessful.
2953 *
2954 * "req_class" must be an allocation class.
2955 */
2956 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)2957 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2958 vm_paddr_t high)
2959 {
2960 struct vm_domain *vmd;
2961 struct spglist free;
2962 vm_object_t object;
2963 vm_paddr_t pa;
2964 vm_page_t m, m_end, m_new;
2965 int error, order, req;
2966
2967 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2968 ("req_class is not an allocation class"));
2969 SLIST_INIT(&free);
2970 error = 0;
2971 m = m_run;
2972 m_end = m_run + npages;
2973 for (; error == 0 && m < m_end; m++) {
2974 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2975 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2976
2977 /*
2978 * Racily check for wirings. Races are handled once the object
2979 * lock is held and the page is unmapped.
2980 */
2981 if (vm_page_wired(m))
2982 error = EBUSY;
2983 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2984 /*
2985 * The page is relocated if and only if it could be
2986 * laundered or reclaimed by the page daemon.
2987 */
2988 VM_OBJECT_WLOCK(object);
2989 /* Don't care: PG_NODUMP, PG_ZERO. */
2990 if (m->object != object ||
2991 ((object->flags & OBJ_SWAP) == 0 &&
2992 object->type != OBJT_VNODE))
2993 error = EINVAL;
2994 else if (object->memattr != VM_MEMATTR_DEFAULT)
2995 error = EINVAL;
2996 else if (vm_page_queue(m) != PQ_NONE &&
2997 vm_page_tryxbusy(m) != 0) {
2998 if (vm_page_wired(m)) {
2999 vm_page_xunbusy(m);
3000 error = EBUSY;
3001 goto unlock;
3002 }
3003 KASSERT(pmap_page_get_memattr(m) ==
3004 VM_MEMATTR_DEFAULT,
3005 ("page %p has an unexpected memattr", m));
3006 KASSERT(m->oflags == 0,
3007 ("page %p has unexpected oflags", m));
3008 /* Don't care: PGA_NOSYNC. */
3009 if (!vm_page_none_valid(m)) {
3010 /*
3011 * First, try to allocate a new page
3012 * that is above "high". Failing
3013 * that, try to allocate a new page
3014 * that is below "m_run". Allocate
3015 * the new page between the end of
3016 * "m_run" and "high" only as a last
3017 * resort.
3018 */
3019 req = req_class;
3020 if ((m->flags & PG_NODUMP) != 0)
3021 req |= VM_ALLOC_NODUMP;
3022 if (trunc_page(high) !=
3023 ~(vm_paddr_t)PAGE_MASK) {
3024 m_new =
3025 vm_page_alloc_noobj_contig(
3026 req, 1, round_page(high),
3027 ~(vm_paddr_t)0, PAGE_SIZE,
3028 0, VM_MEMATTR_DEFAULT);
3029 } else
3030 m_new = NULL;
3031 if (m_new == NULL) {
3032 pa = VM_PAGE_TO_PHYS(m_run);
3033 m_new =
3034 vm_page_alloc_noobj_contig(
3035 req, 1, 0, pa - 1,
3036 PAGE_SIZE, 0,
3037 VM_MEMATTR_DEFAULT);
3038 }
3039 if (m_new == NULL) {
3040 pa += ptoa(npages);
3041 m_new =
3042 vm_page_alloc_noobj_contig(
3043 req, 1, pa, high, PAGE_SIZE,
3044 0, VM_MEMATTR_DEFAULT);
3045 }
3046 if (m_new == NULL) {
3047 vm_page_xunbusy(m);
3048 error = ENOMEM;
3049 goto unlock;
3050 }
3051
3052 /*
3053 * Unmap the page and check for new
3054 * wirings that may have been acquired
3055 * through a pmap lookup.
3056 */
3057 if (object->ref_count != 0 &&
3058 !vm_page_try_remove_all(m)) {
3059 vm_page_xunbusy(m);
3060 vm_page_free(m_new);
3061 error = EBUSY;
3062 goto unlock;
3063 }
3064
3065 /*
3066 * Replace "m" with the new page. For
3067 * vm_page_replace(), "m" must be busy
3068 * and dequeued. Finally, change "m"
3069 * as if vm_page_free() was called.
3070 */
3071 m_new->a.flags = m->a.flags &
3072 ~PGA_QUEUE_STATE_MASK;
3073 KASSERT(m_new->oflags == VPO_UNMANAGED,
3074 ("page %p is managed", m_new));
3075 m_new->oflags = 0;
3076 pmap_copy_page(m, m_new);
3077 m_new->valid = m->valid;
3078 m_new->dirty = m->dirty;
3079 m->flags &= ~PG_ZERO;
3080 vm_page_dequeue(m);
3081 if (vm_page_replace_hold(m_new, object,
3082 m->pindex, m) &&
3083 vm_page_free_prep(m))
3084 SLIST_INSERT_HEAD(&free, m,
3085 plinks.s.ss);
3086
3087 /*
3088 * The new page must be deactivated
3089 * before the object is unlocked.
3090 */
3091 vm_page_deactivate(m_new);
3092 } else {
3093 m->flags &= ~PG_ZERO;
3094 vm_page_dequeue(m);
3095 if (vm_page_free_prep(m))
3096 SLIST_INSERT_HEAD(&free, m,
3097 plinks.s.ss);
3098 KASSERT(m->dirty == 0,
3099 ("page %p is dirty", m));
3100 }
3101 } else
3102 error = EBUSY;
3103 unlock:
3104 VM_OBJECT_WUNLOCK(object);
3105 } else {
3106 MPASS(vm_page_domain(m) == domain);
3107 vmd = VM_DOMAIN(domain);
3108 vm_domain_free_lock(vmd);
3109 order = m->order;
3110 if (order < VM_NFREEORDER) {
3111 /*
3112 * The page is enqueued in the physical memory
3113 * allocator's free page queues. Moreover, it
3114 * is the first page in a power-of-two-sized
3115 * run of contiguous free pages. Jump ahead
3116 * to the last page within that run, and
3117 * continue from there.
3118 */
3119 m += (1 << order) - 1;
3120 }
3121 #if VM_NRESERVLEVEL > 0
3122 else if (vm_reserv_is_page_free(m))
3123 order = 0;
3124 #endif
3125 vm_domain_free_unlock(vmd);
3126 if (order == VM_NFREEORDER)
3127 error = EINVAL;
3128 }
3129 }
3130 if ((m = SLIST_FIRST(&free)) != NULL) {
3131 int cnt;
3132
3133 vmd = VM_DOMAIN(domain);
3134 cnt = 0;
3135 vm_domain_free_lock(vmd);
3136 do {
3137 MPASS(vm_page_domain(m) == domain);
3138 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3139 vm_phys_free_pages(m, m->pool, 0);
3140 cnt++;
3141 } while ((m = SLIST_FIRST(&free)) != NULL);
3142 vm_domain_free_unlock(vmd);
3143 vm_domain_freecnt_inc(vmd, cnt);
3144 }
3145 return (error);
3146 }
3147
3148 #define NRUNS 16
3149
3150 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3151
3152 #define MIN_RECLAIM 8
3153
3154 /*
3155 * vm_page_reclaim_contig:
3156 *
3157 * Reclaim allocated, contiguous physical memory satisfying the specified
3158 * conditions by relocating the virtual pages using that physical memory.
3159 * Returns 0 if reclamation is successful, ERANGE if the specified domain
3160 * can't possibly satisfy the reclamation request, or ENOMEM if not
3161 * currently able to reclaim the requested number of pages. Since
3162 * relocation requires the allocation of physical pages, reclamation may
3163 * fail with ENOMEM due to a shortage of free pages. When reclamation
3164 * fails in this manner, callers are expected to perform vm_wait() before
3165 * retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3166 *
3167 * The caller must always specify an allocation class through "req".
3168 *
3169 * allocation classes:
3170 * VM_ALLOC_NORMAL normal process request
3171 * VM_ALLOC_SYSTEM system *really* needs a page
3172 * VM_ALLOC_INTERRUPT interrupt time request
3173 *
3174 * The optional allocation flags are ignored.
3175 *
3176 * "npages" must be greater than zero. Both "alignment" and "boundary"
3177 * must be a power of two.
3178 */
3179 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3180 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3181 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3182 int desired_runs)
3183 {
3184 struct vm_domain *vmd;
3185 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3186 u_long count, minalign, reclaimed;
3187 int error, i, min_reclaim, nruns, options, req_class;
3188 int segind, start_segind;
3189 int ret;
3190
3191 KASSERT(npages > 0, ("npages is 0"));
3192 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3193 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3194
3195 ret = ENOMEM;
3196
3197 /*
3198 * If the caller wants to reclaim multiple runs, try to allocate
3199 * space to store the runs. If that fails, fall back to the old
3200 * behavior of just reclaiming MIN_RECLAIM pages.
3201 */
3202 if (desired_runs > 1)
3203 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3204 M_TEMP, M_NOWAIT);
3205 else
3206 m_runs = NULL;
3207
3208 if (m_runs == NULL) {
3209 m_runs = _m_runs;
3210 nruns = NRUNS;
3211 } else {
3212 nruns = NRUNS + desired_runs - 1;
3213 }
3214 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3215
3216 /*
3217 * The caller will attempt an allocation after some runs have been
3218 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3219 * of vm_phys_alloc_contig(), round up the requested length to the next
3220 * power of two or maximum chunk size, and ensure that each run is
3221 * suitably aligned.
3222 */
3223 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3224 npages = roundup2(npages, minalign);
3225 if (alignment < ptoa(minalign))
3226 alignment = ptoa(minalign);
3227
3228 /*
3229 * The page daemon is allowed to dig deeper into the free page list.
3230 */
3231 req_class = req & VM_ALLOC_CLASS_MASK;
3232 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3233 req_class = VM_ALLOC_SYSTEM;
3234
3235 start_segind = vm_phys_lookup_segind(low);
3236
3237 /*
3238 * Return if the number of free pages cannot satisfy the requested
3239 * allocation.
3240 */
3241 vmd = VM_DOMAIN(domain);
3242 count = vmd->vmd_free_count;
3243 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3244 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3245 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3246 goto done;
3247
3248 /*
3249 * Scan up to three times, relaxing the restrictions ("options") on
3250 * the reclamation of reservations and superpages each time.
3251 */
3252 for (options = VPSC_NORESERV;;) {
3253 bool phys_range_exists = false;
3254
3255 /*
3256 * Find the highest runs that satisfy the given constraints
3257 * and restrictions, and record them in "m_runs".
3258 */
3259 count = 0;
3260 segind = start_segind;
3261 while ((segind = vm_phys_find_range(bounds, segind, domain,
3262 npages, low, high)) != -1) {
3263 phys_range_exists = true;
3264 while ((m_run = vm_page_scan_contig(npages, bounds[0],
3265 bounds[1], alignment, boundary, options))) {
3266 bounds[0] = m_run + npages;
3267 m_runs[RUN_INDEX(count, nruns)] = m_run;
3268 count++;
3269 }
3270 segind++;
3271 }
3272
3273 if (!phys_range_exists) {
3274 ret = ERANGE;
3275 goto done;
3276 }
3277
3278 /*
3279 * Reclaim the highest runs in LIFO (descending) order until
3280 * the number of reclaimed pages, "reclaimed", is at least
3281 * "min_reclaim". Reset "reclaimed" each time because each
3282 * reclamation is idempotent, and runs will (likely) recur
3283 * from one scan to the next as restrictions are relaxed.
3284 */
3285 reclaimed = 0;
3286 for (i = 0; count > 0 && i < nruns; i++) {
3287 count--;
3288 m_run = m_runs[RUN_INDEX(count, nruns)];
3289 error = vm_page_reclaim_run(req_class, domain, npages,
3290 m_run, high);
3291 if (error == 0) {
3292 reclaimed += npages;
3293 if (reclaimed >= min_reclaim) {
3294 ret = 0;
3295 goto done;
3296 }
3297 }
3298 }
3299
3300 /*
3301 * Either relax the restrictions on the next scan or return if
3302 * the last scan had no restrictions.
3303 */
3304 if (options == VPSC_NORESERV)
3305 options = VPSC_NOSUPER;
3306 else if (options == VPSC_NOSUPER)
3307 options = VPSC_ANY;
3308 else if (options == VPSC_ANY) {
3309 if (reclaimed != 0)
3310 ret = 0;
3311 goto done;
3312 }
3313 }
3314 done:
3315 if (m_runs != _m_runs)
3316 free(m_runs, M_TEMP);
3317 return (ret);
3318 }
3319
3320 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3321 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3322 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3323 {
3324 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low,
3325 high, alignment, boundary, 1));
3326 }
3327
3328 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3329 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3330 u_long alignment, vm_paddr_t boundary)
3331 {
3332 struct vm_domainset_iter di;
3333 int domain, ret, status;
3334
3335 ret = ERANGE;
3336
3337 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL);
3338 do {
3339 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3340 high, alignment, boundary);
3341 if (status == 0)
3342 return (0);
3343 else if (status == ERANGE)
3344 vm_domainset_iter_ignore(&di, domain);
3345 else {
3346 KASSERT(status == ENOMEM, ("Unrecognized error %d "
3347 "from vm_page_reclaim_contig_domain()", status));
3348 ret = ENOMEM;
3349 }
3350 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
3351
3352 return (ret);
3353 }
3354
3355 /*
3356 * Set the domain in the appropriate page level domainset.
3357 */
3358 void
vm_domain_set(struct vm_domain * vmd)3359 vm_domain_set(struct vm_domain *vmd)
3360 {
3361
3362 mtx_lock(&vm_domainset_lock);
3363 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3364 vmd->vmd_minset = 1;
3365 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3366 }
3367 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3368 vmd->vmd_severeset = 1;
3369 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3370 }
3371 mtx_unlock(&vm_domainset_lock);
3372 }
3373
3374 /*
3375 * Clear the domain from the appropriate page level domainset.
3376 */
3377 void
vm_domain_clear(struct vm_domain * vmd)3378 vm_domain_clear(struct vm_domain *vmd)
3379 {
3380
3381 mtx_lock(&vm_domainset_lock);
3382 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3383 vmd->vmd_minset = 0;
3384 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3385 if (vm_min_waiters != 0) {
3386 vm_min_waiters = 0;
3387 wakeup(&vm_min_domains);
3388 }
3389 }
3390 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3391 vmd->vmd_severeset = 0;
3392 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3393 if (vm_severe_waiters != 0) {
3394 vm_severe_waiters = 0;
3395 wakeup(&vm_severe_domains);
3396 }
3397 }
3398
3399 /*
3400 * If pageout daemon needs pages, then tell it that there are
3401 * some free.
3402 */
3403 if (vmd->vmd_pageout_pages_needed &&
3404 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3405 wakeup(&vmd->vmd_pageout_pages_needed);
3406 vmd->vmd_pageout_pages_needed = 0;
3407 }
3408
3409 /* See comments in vm_wait_doms(). */
3410 if (vm_pageproc_waiters) {
3411 vm_pageproc_waiters = 0;
3412 wakeup(&vm_pageproc_waiters);
3413 }
3414 mtx_unlock(&vm_domainset_lock);
3415 }
3416
3417 /*
3418 * Wait for free pages to exceed the min threshold globally.
3419 */
3420 void
vm_wait_min(void)3421 vm_wait_min(void)
3422 {
3423
3424 mtx_lock(&vm_domainset_lock);
3425 while (vm_page_count_min()) {
3426 vm_min_waiters++;
3427 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3428 }
3429 mtx_unlock(&vm_domainset_lock);
3430 }
3431
3432 /*
3433 * Wait for free pages to exceed the severe threshold globally.
3434 */
3435 void
vm_wait_severe(void)3436 vm_wait_severe(void)
3437 {
3438
3439 mtx_lock(&vm_domainset_lock);
3440 while (vm_page_count_severe()) {
3441 vm_severe_waiters++;
3442 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3443 "vmwait", 0);
3444 }
3445 mtx_unlock(&vm_domainset_lock);
3446 }
3447
3448 u_int
vm_wait_count(void)3449 vm_wait_count(void)
3450 {
3451
3452 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3453 }
3454
3455 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3456 vm_wait_doms(const domainset_t *wdoms, int mflags)
3457 {
3458 int error;
3459
3460 error = 0;
3461
3462 /*
3463 * We use racey wakeup synchronization to avoid expensive global
3464 * locking for the pageproc when sleeping with a non-specific vm_wait.
3465 * To handle this, we only sleep for one tick in this instance. It
3466 * is expected that most allocations for the pageproc will come from
3467 * kmem or vm_page_grab* which will use the more specific and
3468 * race-free vm_wait_domain().
3469 */
3470 if (curproc == pageproc) {
3471 mtx_lock(&vm_domainset_lock);
3472 vm_pageproc_waiters++;
3473 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3474 PVM | PDROP | mflags, "pageprocwait", 1);
3475 } else {
3476 /*
3477 * XXX Ideally we would wait only until the allocation could
3478 * be satisfied. This condition can cause new allocators to
3479 * consume all freed pages while old allocators wait.
3480 */
3481 mtx_lock(&vm_domainset_lock);
3482 if (vm_page_count_min_set(wdoms)) {
3483 if (pageproc == NULL)
3484 panic("vm_wait in early boot");
3485 vm_min_waiters++;
3486 error = msleep(&vm_min_domains, &vm_domainset_lock,
3487 PVM | PDROP | mflags, "vmwait", 0);
3488 } else
3489 mtx_unlock(&vm_domainset_lock);
3490 }
3491 return (error);
3492 }
3493
3494 /*
3495 * vm_wait_domain:
3496 *
3497 * Sleep until free pages are available for allocation.
3498 * - Called in various places after failed memory allocations.
3499 */
3500 void
vm_wait_domain(int domain)3501 vm_wait_domain(int domain)
3502 {
3503 struct vm_domain *vmd;
3504 domainset_t wdom;
3505
3506 vmd = VM_DOMAIN(domain);
3507 vm_domain_free_assert_unlocked(vmd);
3508
3509 if (curproc == pageproc) {
3510 mtx_lock(&vm_domainset_lock);
3511 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3512 vmd->vmd_pageout_pages_needed = 1;
3513 msleep(&vmd->vmd_pageout_pages_needed,
3514 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3515 } else
3516 mtx_unlock(&vm_domainset_lock);
3517 } else {
3518 DOMAINSET_ZERO(&wdom);
3519 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3520 vm_wait_doms(&wdom, 0);
3521 }
3522 }
3523
3524 static int
vm_wait_flags(vm_object_t obj,int mflags)3525 vm_wait_flags(vm_object_t obj, int mflags)
3526 {
3527 struct domainset *d;
3528
3529 d = NULL;
3530
3531 /*
3532 * Carefully fetch pointers only once: the struct domainset
3533 * itself is ummutable but the pointer might change.
3534 */
3535 if (obj != NULL)
3536 d = obj->domain.dr_policy;
3537 if (d == NULL)
3538 d = curthread->td_domain.dr_policy;
3539
3540 return (vm_wait_doms(&d->ds_mask, mflags));
3541 }
3542
3543 /*
3544 * vm_wait:
3545 *
3546 * Sleep until free pages are available for allocation in the
3547 * affinity domains of the obj. If obj is NULL, the domain set
3548 * for the calling thread is used.
3549 * Called in various places after failed memory allocations.
3550 */
3551 void
vm_wait(vm_object_t obj)3552 vm_wait(vm_object_t obj)
3553 {
3554 (void)vm_wait_flags(obj, 0);
3555 }
3556
3557 int
vm_wait_intr(vm_object_t obj)3558 vm_wait_intr(vm_object_t obj)
3559 {
3560 return (vm_wait_flags(obj, PCATCH));
3561 }
3562
3563 /*
3564 * vm_domain_alloc_fail:
3565 *
3566 * Called when a page allocation function fails. Informs the
3567 * pagedaemon and performs the requested wait. Requires the
3568 * domain_free and object lock on entry. Returns with the
3569 * object lock held and free lock released. Returns an error when
3570 * retry is necessary.
3571 *
3572 */
3573 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3574 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3575 {
3576
3577 vm_domain_free_assert_unlocked(vmd);
3578
3579 atomic_add_int(&vmd->vmd_pageout_deficit,
3580 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3581 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3582 if (object != NULL)
3583 VM_OBJECT_WUNLOCK(object);
3584 vm_wait_domain(vmd->vmd_domain);
3585 if (object != NULL)
3586 VM_OBJECT_WLOCK(object);
3587 if (req & VM_ALLOC_WAITOK)
3588 return (EAGAIN);
3589 }
3590
3591 return (0);
3592 }
3593
3594 /*
3595 * vm_waitpfault:
3596 *
3597 * Sleep until free pages are available for allocation.
3598 * - Called only in vm_fault so that processes page faulting
3599 * can be easily tracked.
3600 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3601 * processes will be able to grab memory first. Do not change
3602 * this balance without careful testing first.
3603 */
3604 void
vm_waitpfault(struct domainset * dset,int timo)3605 vm_waitpfault(struct domainset *dset, int timo)
3606 {
3607
3608 /*
3609 * XXX Ideally we would wait only until the allocation could
3610 * be satisfied. This condition can cause new allocators to
3611 * consume all freed pages while old allocators wait.
3612 */
3613 mtx_lock(&vm_domainset_lock);
3614 if (vm_page_count_min_set(&dset->ds_mask)) {
3615 vm_min_waiters++;
3616 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3617 "pfault", timo);
3618 } else
3619 mtx_unlock(&vm_domainset_lock);
3620 }
3621
3622 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3623 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3624 {
3625
3626 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3627 }
3628
3629 #ifdef INVARIANTS
3630 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3631 vm_page_pagequeue(vm_page_t m)
3632 {
3633
3634 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3635 }
3636 #endif
3637
3638 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3639 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old,
3640 vm_page_astate_t new)
3641 {
3642 vm_page_astate_t tmp;
3643
3644 tmp = *old;
3645 do {
3646 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3647 return (true);
3648 counter_u64_add(pqstate_commit_retries, 1);
3649 } while (old->_bits == tmp._bits);
3650
3651 return (false);
3652 }
3653
3654 /*
3655 * Do the work of committing a queue state update that moves the page out of
3656 * its current queue.
3657 */
3658 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3659 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3660 vm_page_astate_t *old, vm_page_astate_t new)
3661 {
3662 vm_page_t next;
3663
3664 vm_pagequeue_assert_locked(pq);
3665 KASSERT(vm_page_pagequeue(m) == pq,
3666 ("%s: queue %p does not match page %p", __func__, pq, m));
3667 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3668 ("%s: invalid queue indices %d %d",
3669 __func__, old->queue, new.queue));
3670
3671 /*
3672 * Once the queue index of the page changes there is nothing
3673 * synchronizing with further updates to the page's physical
3674 * queue state. Therefore we must speculatively remove the page
3675 * from the queue now and be prepared to roll back if the queue
3676 * state update fails. If the page is not physically enqueued then
3677 * we just update its queue index.
3678 */
3679 if ((old->flags & PGA_ENQUEUED) != 0) {
3680 new.flags &= ~PGA_ENQUEUED;
3681 next = TAILQ_NEXT(m, plinks.q);
3682 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3683 vm_pagequeue_cnt_dec(pq);
3684 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3685 if (next == NULL)
3686 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3687 else
3688 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3689 vm_pagequeue_cnt_inc(pq);
3690 return (false);
3691 } else {
3692 return (true);
3693 }
3694 } else {
3695 return (vm_page_pqstate_fcmpset(m, old, new));
3696 }
3697 }
3698
3699 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3700 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3701 vm_page_astate_t new)
3702 {
3703 struct vm_pagequeue *pq;
3704 vm_page_astate_t as;
3705 bool ret;
3706
3707 pq = _vm_page_pagequeue(m, old->queue);
3708
3709 /*
3710 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3711 * corresponding page queue lock is held.
3712 */
3713 vm_pagequeue_lock(pq);
3714 as = vm_page_astate_load(m);
3715 if (__predict_false(as._bits != old->_bits)) {
3716 *old = as;
3717 ret = false;
3718 } else {
3719 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3720 }
3721 vm_pagequeue_unlock(pq);
3722 return (ret);
3723 }
3724
3725 /*
3726 * Commit a queue state update that enqueues or requeues a page.
3727 */
3728 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3729 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3730 vm_page_astate_t *old, vm_page_astate_t new)
3731 {
3732 struct vm_domain *vmd;
3733
3734 vm_pagequeue_assert_locked(pq);
3735 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3736 ("%s: invalid queue indices %d %d",
3737 __func__, old->queue, new.queue));
3738
3739 new.flags |= PGA_ENQUEUED;
3740 if (!vm_page_pqstate_fcmpset(m, old, new))
3741 return (false);
3742
3743 if ((old->flags & PGA_ENQUEUED) != 0)
3744 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3745 else
3746 vm_pagequeue_cnt_inc(pq);
3747
3748 /*
3749 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3750 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3751 * applied, even if it was set first.
3752 */
3753 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3754 vmd = vm_pagequeue_domain(m);
3755 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3756 ("%s: invalid page queue for page %p", __func__, m));
3757 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3758 } else {
3759 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3760 }
3761 return (true);
3762 }
3763
3764 /*
3765 * Commit a queue state update that encodes a request for a deferred queue
3766 * operation.
3767 */
3768 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3769 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3770 vm_page_astate_t new)
3771 {
3772
3773 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3774 ("%s: invalid state, queue %d flags %x",
3775 __func__, new.queue, new.flags));
3776
3777 if (old->_bits != new._bits &&
3778 !vm_page_pqstate_fcmpset(m, old, new))
3779 return (false);
3780 vm_page_pqbatch_submit(m, new.queue);
3781 return (true);
3782 }
3783
3784 /*
3785 * A generic queue state update function. This handles more cases than the
3786 * specialized functions above.
3787 */
3788 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3789 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3790 {
3791
3792 if (old->_bits == new._bits)
3793 return (true);
3794
3795 if (old->queue != PQ_NONE && new.queue != old->queue) {
3796 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3797 return (false);
3798 if (new.queue != PQ_NONE)
3799 vm_page_pqbatch_submit(m, new.queue);
3800 } else {
3801 if (!vm_page_pqstate_fcmpset(m, old, new))
3802 return (false);
3803 if (new.queue != PQ_NONE &&
3804 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3805 vm_page_pqbatch_submit(m, new.queue);
3806 }
3807 return (true);
3808 }
3809
3810 /*
3811 * Apply deferred queue state updates to a page.
3812 */
3813 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3814 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3815 {
3816 vm_page_astate_t new, old;
3817
3818 CRITICAL_ASSERT(curthread);
3819 vm_pagequeue_assert_locked(pq);
3820 KASSERT(queue < PQ_COUNT,
3821 ("%s: invalid queue index %d", __func__, queue));
3822 KASSERT(pq == _vm_page_pagequeue(m, queue),
3823 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3824
3825 for (old = vm_page_astate_load(m);;) {
3826 if (__predict_false(old.queue != queue ||
3827 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3828 counter_u64_add(queue_nops, 1);
3829 break;
3830 }
3831 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3832 ("%s: page %p is unmanaged", __func__, m));
3833
3834 new = old;
3835 if ((old.flags & PGA_DEQUEUE) != 0) {
3836 new.flags &= ~PGA_QUEUE_OP_MASK;
3837 new.queue = PQ_NONE;
3838 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3839 m, &old, new))) {
3840 counter_u64_add(queue_ops, 1);
3841 break;
3842 }
3843 } else {
3844 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3845 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3846 m, &old, new))) {
3847 counter_u64_add(queue_ops, 1);
3848 break;
3849 }
3850 }
3851 }
3852 }
3853
3854 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3855 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3856 uint8_t queue)
3857 {
3858 int i;
3859
3860 for (i = 0; i < bq->bq_cnt; i++)
3861 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3862 vm_batchqueue_init(bq);
3863 }
3864
3865 /*
3866 * vm_page_pqbatch_submit: [ internal use only ]
3867 *
3868 * Enqueue a page in the specified page queue's batched work queue.
3869 * The caller must have encoded the requested operation in the page
3870 * structure's a.flags field.
3871 */
3872 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3873 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3874 {
3875 struct vm_batchqueue *bq;
3876 struct vm_pagequeue *pq;
3877 int domain, slots_remaining;
3878
3879 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3880
3881 domain = vm_page_domain(m);
3882 critical_enter();
3883 bq = DPCPU_PTR(pqbatch[domain][queue]);
3884 slots_remaining = vm_batchqueue_insert(bq, m);
3885 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3886 /* keep building the bq */
3887 critical_exit();
3888 return;
3889 } else if (slots_remaining > 0 ) {
3890 /* Try to process the bq if we can get the lock */
3891 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3892 if (vm_pagequeue_trylock(pq)) {
3893 vm_pqbatch_process(pq, bq, queue);
3894 vm_pagequeue_unlock(pq);
3895 }
3896 critical_exit();
3897 return;
3898 }
3899 critical_exit();
3900
3901 /* if we make it here, the bq is full so wait for the lock */
3902
3903 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3904 vm_pagequeue_lock(pq);
3905 critical_enter();
3906 bq = DPCPU_PTR(pqbatch[domain][queue]);
3907 vm_pqbatch_process(pq, bq, queue);
3908 vm_pqbatch_process_page(pq, m, queue);
3909 vm_pagequeue_unlock(pq);
3910 critical_exit();
3911 }
3912
3913 /*
3914 * vm_page_pqbatch_drain: [ internal use only ]
3915 *
3916 * Force all per-CPU page queue batch queues to be drained. This is
3917 * intended for use in severe memory shortages, to ensure that pages
3918 * do not remain stuck in the batch queues.
3919 */
3920 void
vm_page_pqbatch_drain(void)3921 vm_page_pqbatch_drain(void)
3922 {
3923 struct thread *td;
3924 struct vm_domain *vmd;
3925 struct vm_pagequeue *pq;
3926 int cpu, domain, queue;
3927
3928 td = curthread;
3929 CPU_FOREACH(cpu) {
3930 thread_lock(td);
3931 sched_bind(td, cpu);
3932 thread_unlock(td);
3933
3934 for (domain = 0; domain < vm_ndomains; domain++) {
3935 vmd = VM_DOMAIN(domain);
3936 for (queue = 0; queue < PQ_COUNT; queue++) {
3937 pq = &vmd->vmd_pagequeues[queue];
3938 vm_pagequeue_lock(pq);
3939 critical_enter();
3940 vm_pqbatch_process(pq,
3941 DPCPU_PTR(pqbatch[domain][queue]), queue);
3942 critical_exit();
3943 vm_pagequeue_unlock(pq);
3944 }
3945 }
3946 }
3947 thread_lock(td);
3948 sched_unbind(td);
3949 thread_unlock(td);
3950 }
3951
3952 /*
3953 * vm_page_dequeue_deferred: [ internal use only ]
3954 *
3955 * Request removal of the given page from its current page
3956 * queue. Physical removal from the queue may be deferred
3957 * indefinitely.
3958 */
3959 void
vm_page_dequeue_deferred(vm_page_t m)3960 vm_page_dequeue_deferred(vm_page_t m)
3961 {
3962 vm_page_astate_t new, old;
3963
3964 old = vm_page_astate_load(m);
3965 do {
3966 if (old.queue == PQ_NONE) {
3967 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3968 ("%s: page %p has unexpected queue state",
3969 __func__, m));
3970 break;
3971 }
3972 new = old;
3973 new.flags |= PGA_DEQUEUE;
3974 } while (!vm_page_pqstate_commit_request(m, &old, new));
3975 }
3976
3977 /*
3978 * vm_page_dequeue:
3979 *
3980 * Remove the page from whichever page queue it's in, if any, before
3981 * returning.
3982 */
3983 void
vm_page_dequeue(vm_page_t m)3984 vm_page_dequeue(vm_page_t m)
3985 {
3986 vm_page_astate_t new, old;
3987
3988 old = vm_page_astate_load(m);
3989 do {
3990 if (__predict_true(old.queue == PQ_NONE)) {
3991 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3992 ("%s: page %p has unexpected queue state",
3993 __func__, m));
3994 break;
3995 }
3996 new = old;
3997 new.flags &= ~PGA_QUEUE_OP_MASK;
3998 new.queue = PQ_NONE;
3999 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4000
4001 }
4002
4003 /*
4004 * Schedule the given page for insertion into the specified page queue.
4005 * Physical insertion of the page may be deferred indefinitely.
4006 */
4007 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4008 vm_page_enqueue(vm_page_t m, uint8_t queue)
4009 {
4010
4011 KASSERT(m->a.queue == PQ_NONE &&
4012 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4013 ("%s: page %p is already enqueued", __func__, m));
4014 KASSERT(m->ref_count > 0,
4015 ("%s: page %p does not carry any references", __func__, m));
4016
4017 m->a.queue = queue;
4018 if ((m->a.flags & PGA_REQUEUE) == 0)
4019 vm_page_aflag_set(m, PGA_REQUEUE);
4020 vm_page_pqbatch_submit(m, queue);
4021 }
4022
4023 /*
4024 * vm_page_free_prep:
4025 *
4026 * Prepares the given page to be put on the free list,
4027 * disassociating it from any VM object. The caller may return
4028 * the page to the free list only if this function returns true.
4029 *
4030 * The object, if it exists, must be locked, and then the page must
4031 * be xbusy. Otherwise the page must be not busied. A managed
4032 * page must be unmapped.
4033 */
4034 static bool
vm_page_free_prep(vm_page_t m)4035 vm_page_free_prep(vm_page_t m)
4036 {
4037
4038 /*
4039 * Synchronize with threads that have dropped a reference to this
4040 * page.
4041 */
4042 atomic_thread_fence_acq();
4043
4044 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4045 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4046 uint64_t *p;
4047 int i;
4048 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4049 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4050 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4051 m, i, (uintmax_t)*p));
4052 }
4053 #endif
4054 if ((m->oflags & VPO_UNMANAGED) == 0) {
4055 KASSERT(!pmap_page_is_mapped(m),
4056 ("vm_page_free_prep: freeing mapped page %p", m));
4057 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4058 ("vm_page_free_prep: mapping flags set in page %p", m));
4059 } else {
4060 KASSERT(m->a.queue == PQ_NONE,
4061 ("vm_page_free_prep: unmanaged page %p is queued", m));
4062 }
4063 VM_CNT_INC(v_tfree);
4064
4065 if (m->object != NULL) {
4066 vm_page_radix_remove(m);
4067 vm_page_free_object_prep(m);
4068 } else
4069 vm_page_assert_unbusied(m);
4070
4071 vm_page_busy_free(m);
4072
4073 /*
4074 * If fictitious remove object association and
4075 * return.
4076 */
4077 if ((m->flags & PG_FICTITIOUS) != 0) {
4078 KASSERT(m->ref_count == 1,
4079 ("fictitious page %p is referenced", m));
4080 KASSERT(m->a.queue == PQ_NONE,
4081 ("fictitious page %p is queued", m));
4082 return (false);
4083 }
4084
4085 /*
4086 * Pages need not be dequeued before they are returned to the physical
4087 * memory allocator, but they must at least be marked for a deferred
4088 * dequeue.
4089 */
4090 if ((m->oflags & VPO_UNMANAGED) == 0)
4091 vm_page_dequeue_deferred(m);
4092
4093 m->valid = 0;
4094 vm_page_undirty(m);
4095
4096 if (m->ref_count != 0)
4097 panic("vm_page_free_prep: page %p has references", m);
4098
4099 /*
4100 * Restore the default memory attribute to the page.
4101 */
4102 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4103 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4104
4105 #if VM_NRESERVLEVEL > 0
4106 /*
4107 * Determine whether the page belongs to a reservation. If the page was
4108 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4109 * as an optimization, we avoid the check in that case.
4110 */
4111 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4112 return (false);
4113 #endif
4114
4115 return (true);
4116 }
4117
4118 /*
4119 * vm_page_free_toq:
4120 *
4121 * Returns the given page to the free list, disassociating it
4122 * from any VM object.
4123 *
4124 * The object must be locked. The page must be exclusively busied if it
4125 * belongs to an object.
4126 */
4127 static void
vm_page_free_toq(vm_page_t m)4128 vm_page_free_toq(vm_page_t m)
4129 {
4130 struct vm_domain *vmd;
4131 uma_zone_t zone;
4132
4133 if (!vm_page_free_prep(m))
4134 return;
4135
4136 vmd = vm_pagequeue_domain(m);
4137 if (__predict_false((m->flags & PG_NOFREE) != 0)) {
4138 vm_page_free_nofree(vmd, m);
4139 return;
4140 }
4141 zone = vmd->vmd_pgcache[m->pool].zone;
4142 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4143 uma_zfree(zone, m);
4144 return;
4145 }
4146 vm_domain_free_lock(vmd);
4147 vm_phys_free_pages(m, m->pool, 0);
4148 vm_domain_free_unlock(vmd);
4149 vm_domain_freecnt_inc(vmd, 1);
4150 }
4151
4152 /*
4153 * vm_page_free_pages_toq:
4154 *
4155 * Returns a list of pages to the free list, disassociating it
4156 * from any VM object. In other words, this is equivalent to
4157 * calling vm_page_free_toq() for each page of a list of VM objects.
4158 */
4159 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4160 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4161 {
4162 vm_page_t m;
4163 int count;
4164
4165 if (SLIST_EMPTY(free))
4166 return (0);
4167
4168 count = 0;
4169 while ((m = SLIST_FIRST(free)) != NULL) {
4170 count++;
4171 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4172 vm_page_free_toq(m);
4173 }
4174
4175 if (update_wire_count)
4176 vm_wire_sub(count);
4177 return (count);
4178 }
4179
4180 /*
4181 * Mark this page as wired down. For managed pages, this prevents reclamation
4182 * by the page daemon, or when the containing object, if any, is destroyed.
4183 */
4184 void
vm_page_wire(vm_page_t m)4185 vm_page_wire(vm_page_t m)
4186 {
4187 u_int old;
4188
4189 #ifdef INVARIANTS
4190 if (m->object != NULL && !vm_page_busied(m) &&
4191 !vm_object_busied(m->object))
4192 VM_OBJECT_ASSERT_LOCKED(m->object);
4193 #endif
4194 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4195 VPRC_WIRE_COUNT(m->ref_count) >= 1,
4196 ("vm_page_wire: fictitious page %p has zero wirings", m));
4197
4198 old = atomic_fetchadd_int(&m->ref_count, 1);
4199 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4200 ("vm_page_wire: counter overflow for page %p", m));
4201 if (VPRC_WIRE_COUNT(old) == 0) {
4202 if ((m->oflags & VPO_UNMANAGED) == 0)
4203 vm_page_aflag_set(m, PGA_DEQUEUE);
4204 vm_wire_add(1);
4205 }
4206 }
4207
4208 /*
4209 * Attempt to wire a mapped page following a pmap lookup of that page.
4210 * This may fail if a thread is concurrently tearing down mappings of the page.
4211 * The transient failure is acceptable because it translates to the
4212 * failure of the caller pmap_extract_and_hold(), which should be then
4213 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4214 */
4215 bool
vm_page_wire_mapped(vm_page_t m)4216 vm_page_wire_mapped(vm_page_t m)
4217 {
4218 u_int old;
4219
4220 old = atomic_load_int(&m->ref_count);
4221 do {
4222 KASSERT(old > 0,
4223 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4224 if ((old & VPRC_BLOCKED) != 0)
4225 return (false);
4226 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4227
4228 if (VPRC_WIRE_COUNT(old) == 0) {
4229 if ((m->oflags & VPO_UNMANAGED) == 0)
4230 vm_page_aflag_set(m, PGA_DEQUEUE);
4231 vm_wire_add(1);
4232 }
4233 return (true);
4234 }
4235
4236 /*
4237 * Release a wiring reference to a managed page. If the page still belongs to
4238 * an object, update its position in the page queues to reflect the reference.
4239 * If the wiring was the last reference to the page, free the page.
4240 */
4241 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4242 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4243 {
4244 u_int old;
4245
4246 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4247 ("%s: page %p is unmanaged", __func__, m));
4248
4249 /*
4250 * Update LRU state before releasing the wiring reference.
4251 * Use a release store when updating the reference count to
4252 * synchronize with vm_page_free_prep().
4253 */
4254 old = atomic_load_int(&m->ref_count);
4255 do {
4256 u_int count;
4257
4258 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4259 ("vm_page_unwire: wire count underflow for page %p", m));
4260
4261 count = old & ~VPRC_BLOCKED;
4262 if (count > VPRC_OBJREF + 1) {
4263 /*
4264 * The page has at least one other wiring reference. An
4265 * earlier iteration of this loop may have called
4266 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4267 * re-set it if necessary.
4268 */
4269 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4270 vm_page_aflag_set(m, PGA_DEQUEUE);
4271 } else if (count == VPRC_OBJREF + 1) {
4272 /*
4273 * This is the last wiring. Clear PGA_DEQUEUE and
4274 * update the page's queue state to reflect the
4275 * reference. If the page does not belong to an object
4276 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4277 * clear leftover queue state.
4278 */
4279 vm_page_release_toq(m, nqueue, noreuse);
4280 } else if (count == 1) {
4281 vm_page_aflag_clear(m, PGA_DEQUEUE);
4282 }
4283 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4284
4285 if (VPRC_WIRE_COUNT(old) == 1) {
4286 vm_wire_sub(1);
4287 if (old == 1)
4288 vm_page_free(m);
4289 }
4290 }
4291
4292 /*
4293 * Release one wiring of the specified page, potentially allowing it to be
4294 * paged out.
4295 *
4296 * Only managed pages belonging to an object can be paged out. If the number
4297 * of wirings transitions to zero and the page is eligible for page out, then
4298 * the page is added to the specified paging queue. If the released wiring
4299 * represented the last reference to the page, the page is freed.
4300 */
4301 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4302 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4303 {
4304
4305 KASSERT(nqueue < PQ_COUNT,
4306 ("vm_page_unwire: invalid queue %u request for page %p",
4307 nqueue, m));
4308
4309 if ((m->oflags & VPO_UNMANAGED) != 0) {
4310 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4311 vm_page_free(m);
4312 return;
4313 }
4314 vm_page_unwire_managed(m, nqueue, false);
4315 }
4316
4317 /*
4318 * Unwire a page without (re-)inserting it into a page queue. It is up
4319 * to the caller to enqueue, requeue, or free the page as appropriate.
4320 * In most cases involving managed pages, vm_page_unwire() should be used
4321 * instead.
4322 */
4323 bool
vm_page_unwire_noq(vm_page_t m)4324 vm_page_unwire_noq(vm_page_t m)
4325 {
4326 u_int old;
4327
4328 old = vm_page_drop(m, 1);
4329 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4330 ("%s: counter underflow for page %p", __func__, m));
4331 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4332 ("%s: missing ref on fictitious page %p", __func__, m));
4333
4334 if (VPRC_WIRE_COUNT(old) > 1)
4335 return (false);
4336 if ((m->oflags & VPO_UNMANAGED) == 0)
4337 vm_page_aflag_clear(m, PGA_DEQUEUE);
4338 vm_wire_sub(1);
4339 return (true);
4340 }
4341
4342 /*
4343 * Ensure that the page ends up in the specified page queue. If the page is
4344 * active or being moved to the active queue, ensure that its act_count is
4345 * at least ACT_INIT but do not otherwise mess with it.
4346 */
4347 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4348 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4349 {
4350 vm_page_astate_t old, new;
4351
4352 KASSERT(m->ref_count > 0,
4353 ("%s: page %p does not carry any references", __func__, m));
4354 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4355 ("%s: invalid flags %x", __func__, nflag));
4356
4357 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4358 return;
4359
4360 old = vm_page_astate_load(m);
4361 do {
4362 if ((old.flags & PGA_DEQUEUE) != 0)
4363 break;
4364 new = old;
4365 new.flags &= ~PGA_QUEUE_OP_MASK;
4366 if (nqueue == PQ_ACTIVE)
4367 new.act_count = max(old.act_count, ACT_INIT);
4368 if (old.queue == nqueue) {
4369 /*
4370 * There is no need to requeue pages already in the
4371 * active queue.
4372 */
4373 if (nqueue != PQ_ACTIVE ||
4374 (old.flags & PGA_ENQUEUED) == 0)
4375 new.flags |= nflag;
4376 } else {
4377 new.flags |= nflag;
4378 new.queue = nqueue;
4379 }
4380 } while (!vm_page_pqstate_commit(m, &old, new));
4381 }
4382
4383 /*
4384 * Put the specified page on the active list (if appropriate).
4385 */
4386 void
vm_page_activate(vm_page_t m)4387 vm_page_activate(vm_page_t m)
4388 {
4389
4390 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4391 }
4392
4393 /*
4394 * Move the specified page to the tail of the inactive queue, or requeue
4395 * the page if it is already in the inactive queue.
4396 */
4397 void
vm_page_deactivate(vm_page_t m)4398 vm_page_deactivate(vm_page_t m)
4399 {
4400
4401 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4402 }
4403
4404 void
vm_page_deactivate_noreuse(vm_page_t m)4405 vm_page_deactivate_noreuse(vm_page_t m)
4406 {
4407
4408 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4409 }
4410
4411 /*
4412 * Put a page in the laundry, or requeue it if it is already there.
4413 */
4414 void
vm_page_launder(vm_page_t m)4415 vm_page_launder(vm_page_t m)
4416 {
4417
4418 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4419 }
4420
4421 /*
4422 * Put a page in the PQ_UNSWAPPABLE holding queue.
4423 */
4424 void
vm_page_unswappable(vm_page_t m)4425 vm_page_unswappable(vm_page_t m)
4426 {
4427
4428 VM_OBJECT_ASSERT_LOCKED(m->object);
4429 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4430 ("page %p already unswappable", m));
4431
4432 vm_page_dequeue(m);
4433 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4434 }
4435
4436 /*
4437 * Release a page back to the page queues in preparation for unwiring.
4438 */
4439 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4440 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4441 {
4442 vm_page_astate_t old, new;
4443 uint16_t nflag;
4444
4445 /*
4446 * Use a check of the valid bits to determine whether we should
4447 * accelerate reclamation of the page. The object lock might not be
4448 * held here, in which case the check is racy. At worst we will either
4449 * accelerate reclamation of a valid page and violate LRU, or
4450 * unnecessarily defer reclamation of an invalid page.
4451 *
4452 * If we were asked to not cache the page, place it near the head of the
4453 * inactive queue so that is reclaimed sooner.
4454 */
4455 if (noreuse || vm_page_none_valid(m)) {
4456 nqueue = PQ_INACTIVE;
4457 nflag = PGA_REQUEUE_HEAD;
4458 } else {
4459 nflag = PGA_REQUEUE;
4460 }
4461
4462 old = vm_page_astate_load(m);
4463 do {
4464 new = old;
4465
4466 /*
4467 * If the page is already in the active queue and we are not
4468 * trying to accelerate reclamation, simply mark it as
4469 * referenced and avoid any queue operations.
4470 */
4471 new.flags &= ~PGA_QUEUE_OP_MASK;
4472 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4473 (old.flags & PGA_ENQUEUED) != 0)
4474 new.flags |= PGA_REFERENCED;
4475 else {
4476 new.flags |= nflag;
4477 new.queue = nqueue;
4478 }
4479 } while (!vm_page_pqstate_commit(m, &old, new));
4480 }
4481
4482 /*
4483 * Unwire a page and either attempt to free it or re-add it to the page queues.
4484 */
4485 void
vm_page_release(vm_page_t m,int flags)4486 vm_page_release(vm_page_t m, int flags)
4487 {
4488 vm_object_t object;
4489
4490 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4491 ("vm_page_release: page %p is unmanaged", m));
4492
4493 if ((flags & VPR_TRYFREE) != 0) {
4494 for (;;) {
4495 object = atomic_load_ptr(&m->object);
4496 if (object == NULL)
4497 break;
4498 /* Depends on type-stability. */
4499 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4500 break;
4501 if (object == m->object) {
4502 vm_page_release_locked(m, flags);
4503 VM_OBJECT_WUNLOCK(object);
4504 return;
4505 }
4506 VM_OBJECT_WUNLOCK(object);
4507 }
4508 }
4509 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4510 }
4511
4512 /* See vm_page_release(). */
4513 void
vm_page_release_locked(vm_page_t m,int flags)4514 vm_page_release_locked(vm_page_t m, int flags)
4515 {
4516
4517 VM_OBJECT_ASSERT_WLOCKED(m->object);
4518 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4519 ("vm_page_release_locked: page %p is unmanaged", m));
4520
4521 if (vm_page_unwire_noq(m)) {
4522 if ((flags & VPR_TRYFREE) != 0 &&
4523 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4524 m->dirty == 0 && vm_page_tryxbusy(m)) {
4525 /*
4526 * An unlocked lookup may have wired the page before the
4527 * busy lock was acquired, in which case the page must
4528 * not be freed.
4529 */
4530 if (__predict_true(!vm_page_wired(m))) {
4531 vm_page_free(m);
4532 return;
4533 }
4534 vm_page_xunbusy(m);
4535 } else {
4536 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4537 }
4538 }
4539 }
4540
4541 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4542 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4543 {
4544 u_int old;
4545
4546 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4547 ("vm_page_try_blocked_op: page %p has no object", m));
4548 KASSERT(vm_page_busied(m),
4549 ("vm_page_try_blocked_op: page %p is not busy", m));
4550 VM_OBJECT_ASSERT_LOCKED(m->object);
4551
4552 old = atomic_load_int(&m->ref_count);
4553 do {
4554 KASSERT(old != 0,
4555 ("vm_page_try_blocked_op: page %p has no references", m));
4556 KASSERT((old & VPRC_BLOCKED) == 0,
4557 ("vm_page_try_blocked_op: page %p blocks wirings", m));
4558 if (VPRC_WIRE_COUNT(old) != 0)
4559 return (false);
4560 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4561
4562 (op)(m);
4563
4564 /*
4565 * If the object is read-locked, new wirings may be created via an
4566 * object lookup.
4567 */
4568 old = vm_page_drop(m, VPRC_BLOCKED);
4569 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4570 old == (VPRC_BLOCKED | VPRC_OBJREF),
4571 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4572 old, m));
4573 return (true);
4574 }
4575
4576 /*
4577 * Atomically check for wirings and remove all mappings of the page.
4578 */
4579 bool
vm_page_try_remove_all(vm_page_t m)4580 vm_page_try_remove_all(vm_page_t m)
4581 {
4582
4583 return (vm_page_try_blocked_op(m, pmap_remove_all));
4584 }
4585
4586 /*
4587 * Atomically check for wirings and remove all writeable mappings of the page.
4588 */
4589 bool
vm_page_try_remove_write(vm_page_t m)4590 vm_page_try_remove_write(vm_page_t m)
4591 {
4592
4593 return (vm_page_try_blocked_op(m, pmap_remove_write));
4594 }
4595
4596 /*
4597 * vm_page_advise
4598 *
4599 * Apply the specified advice to the given page.
4600 */
4601 void
vm_page_advise(vm_page_t m,int advice)4602 vm_page_advise(vm_page_t m, int advice)
4603 {
4604
4605 VM_OBJECT_ASSERT_WLOCKED(m->object);
4606 vm_page_assert_xbusied(m);
4607
4608 if (advice == MADV_FREE)
4609 /*
4610 * Mark the page clean. This will allow the page to be freed
4611 * without first paging it out. MADV_FREE pages are often
4612 * quickly reused by malloc(3), so we do not do anything that
4613 * would result in a page fault on a later access.
4614 */
4615 vm_page_undirty(m);
4616 else if (advice != MADV_DONTNEED) {
4617 if (advice == MADV_WILLNEED)
4618 vm_page_activate(m);
4619 return;
4620 }
4621
4622 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4623 vm_page_dirty(m);
4624
4625 /*
4626 * Clear any references to the page. Otherwise, the page daemon will
4627 * immediately reactivate the page.
4628 */
4629 vm_page_aflag_clear(m, PGA_REFERENCED);
4630
4631 /*
4632 * Place clean pages near the head of the inactive queue rather than
4633 * the tail, thus defeating the queue's LRU operation and ensuring that
4634 * the page will be reused quickly. Dirty pages not already in the
4635 * laundry are moved there.
4636 */
4637 if (m->dirty == 0)
4638 vm_page_deactivate_noreuse(m);
4639 else if (!vm_page_in_laundry(m))
4640 vm_page_launder(m);
4641 }
4642
4643 /*
4644 * vm_page_grab_release
4645 *
4646 * Helper routine for grab functions to release busy on return.
4647 */
4648 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4649 vm_page_grab_release(vm_page_t m, int allocflags)
4650 {
4651
4652 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4653 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4654 vm_page_sunbusy(m);
4655 else
4656 vm_page_xunbusy(m);
4657 }
4658 }
4659
4660 /*
4661 * vm_page_grab_sleep
4662 *
4663 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4664 * if the caller should retry and false otherwise.
4665 *
4666 * If the object is locked on entry the object will be unlocked with
4667 * false returns and still locked but possibly having been dropped
4668 * with true returns.
4669 */
4670 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4671 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4672 const char *wmesg, int allocflags, bool locked)
4673 {
4674
4675 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4676 return (false);
4677
4678 /*
4679 * Reference the page before unlocking and sleeping so that
4680 * the page daemon is less likely to reclaim it.
4681 */
4682 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4683 vm_page_reference(m);
4684
4685 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4686 locked)
4687 VM_OBJECT_WLOCK(object);
4688 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4689 return (false);
4690
4691 return (true);
4692 }
4693
4694 /*
4695 * Assert that the grab flags are valid.
4696 */
4697 static inline void
vm_page_grab_check(int allocflags)4698 vm_page_grab_check(int allocflags)
4699 {
4700
4701 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4702 (allocflags & VM_ALLOC_WIRED) != 0,
4703 ("vm_page_grab*: the pages must be busied or wired"));
4704
4705 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4706 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4707 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4708 }
4709
4710 /*
4711 * Calculate the page allocation flags for grab.
4712 */
4713 static inline int
vm_page_grab_pflags(int allocflags)4714 vm_page_grab_pflags(int allocflags)
4715 {
4716 int pflags;
4717
4718 pflags = allocflags &
4719 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4720 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4721 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4722 pflags |= VM_ALLOC_WAITFAIL;
4723 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4724 pflags |= VM_ALLOC_SBUSY;
4725
4726 return (pflags);
4727 }
4728
4729 /*
4730 * Grab a page, waiting until we are woken up due to the page changing state.
4731 * We keep on waiting, if the page continues to be in the object, unless
4732 * allocflags forbid waiting.
4733 *
4734 * The object must be locked on entry. This routine may sleep. The lock will,
4735 * however, be released and reacquired if the routine sleeps.
4736 *
4737 * Return a grabbed page, or NULL. Set *found if a page was found, whether or
4738 * not it was grabbed.
4739 */
4740 static inline vm_page_t
vm_page_grab_lookup(vm_object_t object,vm_pindex_t pindex,int allocflags,bool * found,struct pctrie_iter * pages)4741 vm_page_grab_lookup(vm_object_t object, vm_pindex_t pindex, int allocflags,
4742 bool *found, struct pctrie_iter *pages)
4743 {
4744 vm_page_t m;
4745
4746 while ((*found = (m = vm_radix_iter_lookup(pages, pindex)) != NULL) &&
4747 !vm_page_tryacquire(m, allocflags)) {
4748 if (!vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4749 allocflags, true))
4750 return (NULL);
4751 pctrie_iter_reset(pages);
4752 }
4753 return (m);
4754 }
4755
4756 /*
4757 * Grab a page. Use an iterator parameter. Keep on waiting, as long as the page
4758 * exists in the object. If the page doesn't exist, first allocate it and then
4759 * conditionally zero it.
4760 *
4761 * The object must be locked on entry. This routine may sleep. The lock will,
4762 * however, be released and reacquired if the routine sleeps.
4763 */
4764 vm_page_t
vm_page_grab_iter(vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4765 vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex, int allocflags,
4766 struct pctrie_iter *pages)
4767 {
4768 vm_page_t m;
4769 bool found;
4770
4771 VM_OBJECT_ASSERT_WLOCKED(object);
4772 vm_page_grab_check(allocflags);
4773
4774 while ((m = vm_page_grab_lookup(
4775 object, pindex, allocflags, &found, pages)) == NULL) {
4776 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4777 return (NULL);
4778 if (found &&
4779 (allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4780 return (NULL);
4781 m = vm_page_alloc_iter(object, pindex,
4782 vm_page_grab_pflags(allocflags), pages);
4783 if (m != NULL) {
4784 if ((allocflags & VM_ALLOC_ZERO) != 0 &&
4785 (m->flags & PG_ZERO) == 0)
4786 pmap_zero_page(m);
4787 break;
4788 }
4789 if ((allocflags &
4790 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4791 return (NULL);
4792 }
4793 vm_page_grab_release(m, allocflags);
4794
4795 return (m);
4796 }
4797
4798 /*
4799 * Grab a page. Keep on waiting, as long as the page exists in the object. If
4800 * the page doesn't exist, first allocate it and then conditionally zero it.
4801 *
4802 * The object must be locked on entry. This routine may sleep. The lock will,
4803 * however, be released and reacquired if the routine sleeps.
4804 */
4805 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4806 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4807 {
4808 struct pctrie_iter pages;
4809
4810 VM_OBJECT_ASSERT_WLOCKED(object);
4811 vm_page_iter_init(&pages, object);
4812 return (vm_page_grab_iter(object, pindex, allocflags, &pages));
4813 }
4814
4815 /*
4816 * Attempt to validate a page, locklessly acquiring it if necessary, given a
4817 * (object, pindex) tuple and either an invalided page or NULL. The resulting
4818 * page will be validated against the identity tuple, and busied or wired as
4819 * requested. A NULL page returned guarantees that the page was not in radix at
4820 * the time of the call but callers must perform higher level synchronization or
4821 * retry the operation under a lock if they require an atomic answer. This is
4822 * the only lock free validation routine, other routines can depend on the
4823 * resulting page state.
4824 *
4825 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4826 * caller flags.
4827 */
4828 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4829 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4830 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4831 int allocflags)
4832 {
4833 if (m == NULL)
4834 m = vm_page_lookup_unlocked(object, pindex);
4835 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4836 if (vm_page_trybusy(m, allocflags)) {
4837 if (m->object == object && m->pindex == pindex) {
4838 if ((allocflags & VM_ALLOC_WIRED) != 0)
4839 vm_page_wire(m);
4840 vm_page_grab_release(m, allocflags);
4841 break;
4842 }
4843 /* relookup. */
4844 vm_page_busy_release(m);
4845 cpu_spinwait();
4846 continue;
4847 }
4848 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4849 allocflags, false))
4850 return (PAGE_NOT_ACQUIRED);
4851 }
4852 return (m);
4853 }
4854
4855 /*
4856 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4857 * is not set.
4858 */
4859 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4860 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4861 {
4862 vm_page_t m;
4863
4864 vm_page_grab_check(allocflags);
4865 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4866 if (m == PAGE_NOT_ACQUIRED)
4867 return (NULL);
4868 if (m != NULL)
4869 return (m);
4870
4871 /*
4872 * The radix lockless lookup should never return a false negative
4873 * errors. If the user specifies NOCREAT they are guaranteed there
4874 * was no page present at the instant of the call. A NOCREAT caller
4875 * must handle create races gracefully.
4876 */
4877 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4878 return (NULL);
4879
4880 VM_OBJECT_WLOCK(object);
4881 m = vm_page_grab(object, pindex, allocflags);
4882 VM_OBJECT_WUNLOCK(object);
4883
4884 return (m);
4885 }
4886
4887 /*
4888 * Grab a page and make it valid, paging in if necessary. Use an iterator
4889 * parameter. Pages missing from their pager are zero filled and validated. If
4890 * a VM_ALLOC_COUNT is supplied and the page is not valid as many as
4891 * VM_INITIAL_PAGEIN pages can be brought in simultaneously. Additional pages
4892 * will be left on a paging queue but will neither be wired nor busy regardless
4893 * of allocflags.
4894 */
4895 int
vm_page_grab_valid_iter(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4896 vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
4897 int allocflags, struct pctrie_iter *pages)
4898 {
4899 vm_page_t m;
4900 vm_page_t ma[VM_INITIAL_PAGEIN];
4901 int after, ahead, i, pflags, rv;
4902
4903 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4904 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4905 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4906 KASSERT((allocflags &
4907 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4908 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4909 VM_OBJECT_ASSERT_WLOCKED(object);
4910 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4911 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4912 pflags |= VM_ALLOC_WAITFAIL;
4913
4914 retrylookup:
4915 if ((m = vm_radix_iter_lookup(pages, pindex)) != NULL) {
4916 /*
4917 * If the page is fully valid it can only become invalid
4918 * with the object lock held. If it is not valid it can
4919 * become valid with the busy lock held. Therefore, we
4920 * may unnecessarily lock the exclusive busy here if we
4921 * race with I/O completion not using the object lock.
4922 * However, we will not end up with an invalid page and a
4923 * shared lock.
4924 */
4925 if (!vm_page_trybusy(m,
4926 vm_page_all_valid(m) ? allocflags : 0)) {
4927 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4928 allocflags, true);
4929 pctrie_iter_reset(pages);
4930 goto retrylookup;
4931 }
4932 if (vm_page_all_valid(m))
4933 goto out;
4934 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4935 vm_page_busy_release(m);
4936 *mp = NULL;
4937 return (VM_PAGER_FAIL);
4938 }
4939 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4940 *mp = NULL;
4941 return (VM_PAGER_FAIL);
4942 } else {
4943 m = vm_page_alloc_iter(object, pindex, pflags, pages);
4944 if (m == NULL) {
4945 if (!vm_pager_can_alloc_page(object, pindex)) {
4946 *mp = NULL;
4947 return (VM_PAGER_AGAIN);
4948 }
4949 goto retrylookup;
4950 }
4951 }
4952
4953 vm_page_assert_xbusied(m);
4954 if (vm_pager_has_page(object, pindex, NULL, &after)) {
4955 after = MIN(after, VM_INITIAL_PAGEIN);
4956 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4957 after = MAX(after, 1);
4958 ma[0] = m;
4959 pctrie_iter_reset(pages);
4960 for (i = 1; i < after; i++) {
4961 m = vm_radix_iter_lookup_ge(pages, pindex + i);
4962 ahead = after;
4963 if (m != NULL)
4964 ahead = MIN(ahead, m->pindex - pindex);
4965 for (; i < ahead; i++) {
4966 ma[i] = vm_page_alloc_iter(object, pindex + i,
4967 VM_ALLOC_NORMAL, pages);
4968 if (ma[i] == NULL)
4969 break;
4970 }
4971 if (m == NULL || m->pindex != pindex + i ||
4972 vm_page_any_valid(m) || !vm_page_tryxbusy(m))
4973 break;
4974 ma[i] = m;
4975 }
4976 after = i;
4977 vm_object_pip_add(object, after);
4978 VM_OBJECT_WUNLOCK(object);
4979 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4980 pctrie_iter_reset(pages);
4981 VM_OBJECT_WLOCK(object);
4982 vm_object_pip_wakeupn(object, after);
4983 /* Pager may have replaced a page. */
4984 m = ma[0];
4985 if (rv != VM_PAGER_OK) {
4986 for (i = 0; i < after; i++) {
4987 if (!vm_page_wired(ma[i]))
4988 vm_page_free(ma[i]);
4989 else
4990 vm_page_xunbusy(ma[i]);
4991 }
4992 *mp = NULL;
4993 return (rv);
4994 }
4995 for (i = 1; i < after; i++)
4996 vm_page_readahead_finish(ma[i]);
4997 MPASS(vm_page_all_valid(m));
4998 } else {
4999 vm_page_zero_invalid(m, TRUE);
5000 pctrie_iter_reset(pages);
5001 }
5002 out:
5003 if ((allocflags & VM_ALLOC_WIRED) != 0)
5004 vm_page_wire(m);
5005 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5006 vm_page_busy_downgrade(m);
5007 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5008 vm_page_busy_release(m);
5009 *mp = m;
5010 return (VM_PAGER_OK);
5011 }
5012
5013 /*
5014 * Grab a page and make it valid, paging in if necessary. Pages missing from
5015 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
5016 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
5017 * in simultaneously. Additional pages will be left on a paging queue but
5018 * will neither be wired nor busy regardless of allocflags.
5019 */
5020 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5021 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
5022 int allocflags)
5023 {
5024 struct pctrie_iter pages;
5025
5026 VM_OBJECT_ASSERT_WLOCKED(object);
5027 vm_page_iter_init(&pages, object);
5028 return (vm_page_grab_valid_iter(mp, object, pindex, allocflags,
5029 &pages));
5030 }
5031
5032 /*
5033 * Grab a page. Keep on waiting, as long as the page exists in the object. If
5034 * the page doesn't exist, and the pager has it, allocate it and zero part of
5035 * it.
5036 *
5037 * The object must be locked on entry. This routine may sleep. The lock will,
5038 * however, be released and reacquired if the routine sleeps.
5039 */
5040 int
vm_page_grab_zero_partial(vm_object_t object,vm_pindex_t pindex,int base,int end)5041 vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
5042 int end)
5043 {
5044 struct pctrie_iter pages;
5045 vm_page_t m;
5046 int allocflags, rv;
5047 bool found;
5048
5049 VM_OBJECT_ASSERT_WLOCKED(object);
5050 KASSERT(base >= 0, ("%s: base %d", __func__, base));
5051 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
5052 end));
5053
5054 allocflags = VM_ALLOC_NOCREAT | VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL;
5055 vm_page_iter_init(&pages, object);
5056 while ((m = vm_page_grab_lookup(
5057 object, pindex, allocflags, &found, &pages)) == NULL) {
5058 if (!vm_pager_has_page(object, pindex, NULL, NULL))
5059 return (0);
5060 m = vm_page_alloc_iter(object, pindex,
5061 vm_page_grab_pflags(allocflags), &pages);
5062 if (m != NULL) {
5063 vm_object_pip_add(object, 1);
5064 VM_OBJECT_WUNLOCK(object);
5065 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
5066 VM_OBJECT_WLOCK(object);
5067 vm_object_pip_wakeup(object);
5068 if (rv != VM_PAGER_OK) {
5069 vm_page_free(m);
5070 return (EIO);
5071 }
5072
5073 /*
5074 * Since the page was not resident, and therefore not
5075 * recently accessed, immediately enqueue it for
5076 * asynchronous laundering. The current operation is
5077 * not regarded as an access.
5078 */
5079 vm_page_launder(m);
5080 break;
5081 }
5082 }
5083
5084 pmap_zero_page_area(m, base, end - base);
5085 KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid", __func__, m));
5086 vm_page_set_dirty(m);
5087 vm_page_xunbusy(m);
5088 return (0);
5089 }
5090
5091 /*
5092 * Locklessly grab a valid page. If the page is not valid or not yet
5093 * allocated this will fall back to the object lock method.
5094 */
5095 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5096 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5097 vm_pindex_t pindex, int allocflags)
5098 {
5099 vm_page_t m;
5100 int flags;
5101 int error;
5102
5103 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5104 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5105 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5106 "mismatch"));
5107 KASSERT((allocflags &
5108 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5109 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5110
5111 /*
5112 * Attempt a lockless lookup and busy. We need at least an sbusy
5113 * before we can inspect the valid field and return a wired page.
5114 */
5115 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5116 vm_page_grab_check(flags);
5117 m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5118 if (m == PAGE_NOT_ACQUIRED)
5119 return (VM_PAGER_FAIL);
5120 if (m != NULL) {
5121 if (vm_page_all_valid(m)) {
5122 if ((allocflags & VM_ALLOC_WIRED) != 0)
5123 vm_page_wire(m);
5124 vm_page_grab_release(m, allocflags);
5125 *mp = m;
5126 return (VM_PAGER_OK);
5127 }
5128 vm_page_busy_release(m);
5129 }
5130 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5131 *mp = NULL;
5132 return (VM_PAGER_FAIL);
5133 }
5134 VM_OBJECT_WLOCK(object);
5135 error = vm_page_grab_valid(mp, object, pindex, allocflags);
5136 VM_OBJECT_WUNLOCK(object);
5137
5138 return (error);
5139 }
5140
5141 /*
5142 * Return the specified range of pages from the given object. For each
5143 * page offset within the range, if a page already exists within the object
5144 * at that offset and it is busy, then wait for it to change state. If,
5145 * instead, the page doesn't exist, then allocate it.
5146 *
5147 * The caller must always specify an allocation class.
5148 *
5149 * allocation classes:
5150 * VM_ALLOC_NORMAL normal process request
5151 * VM_ALLOC_SYSTEM system *really* needs the pages
5152 * VM_ALLOC_INTERRUPT interrupt time request
5153 *
5154 * The caller must always specify that the pages are to be busied and/or
5155 * wired.
5156 *
5157 * optional allocation flags:
5158 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
5159 * VM_ALLOC_NOBUSY do not exclusive busy the pages
5160 * VM_ALLOC_NODUMP do not include the pages in a kernel core dump
5161 * VM_ALLOC_NOFREE pages will never be freed
5162 * VM_ALLOC_NOWAIT do not sleep
5163 * VM_ALLOC_SBUSY set pages to sbusy state
5164 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
5165 * VM_ALLOC_WAITOK ignored (default behavior)
5166 * VM_ALLOC_WIRED wire the pages
5167 * VM_ALLOC_ZERO zero and validate any invalid pages
5168 *
5169 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
5170 * may return a partial prefix of the requested range.
5171 */
5172 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5173 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5174 vm_page_t *ma, int count)
5175 {
5176 struct pctrie_iter pages;
5177 vm_page_t m;
5178 int pflags;
5179 int ahead, i;
5180
5181 VM_OBJECT_ASSERT_WLOCKED(object);
5182 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5183 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5184 KASSERT(count > 0,
5185 ("vm_page_grab_pages: invalid page count %d", count));
5186 vm_page_grab_check(allocflags);
5187
5188 pflags = vm_page_grab_pflags(allocflags);
5189 i = 0;
5190 vm_page_iter_init(&pages, object);
5191 retrylookup:
5192 ahead = -1;
5193 for (; i < count; i++) {
5194 if (ahead < 0) {
5195 ahead = vm_radix_iter_lookup_range(
5196 &pages, pindex + i, &ma[i], count - i);
5197 }
5198 if (ahead-- > 0) {
5199 m = ma[i];
5200 if (!vm_page_tryacquire(m, allocflags)) {
5201 if (vm_page_grab_sleep(object, m, pindex + i,
5202 "grbmaw", allocflags, true)) {
5203 pctrie_iter_reset(&pages);
5204 goto retrylookup;
5205 }
5206 break;
5207 }
5208 } else {
5209 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5210 break;
5211 m = vm_page_alloc_iter(object, pindex + i,
5212 pflags | VM_ALLOC_COUNT(count - i), &pages);
5213 /* pages was reset if alloc_iter lost the lock. */
5214 if (m == NULL) {
5215 if ((allocflags & (VM_ALLOC_NOWAIT |
5216 VM_ALLOC_WAITFAIL)) != 0)
5217 break;
5218 goto retrylookup;
5219 }
5220 ma[i] = m;
5221 }
5222 if (vm_page_none_valid(m) &&
5223 (allocflags & VM_ALLOC_ZERO) != 0) {
5224 if ((m->flags & PG_ZERO) == 0)
5225 pmap_zero_page(m);
5226 vm_page_valid(m);
5227 }
5228 vm_page_grab_release(m, allocflags);
5229 }
5230 return (i);
5231 }
5232
5233 /*
5234 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
5235 * and will fall back to the locked variant to handle allocation.
5236 */
5237 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5238 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5239 int allocflags, vm_page_t *ma, int count)
5240 {
5241 vm_page_t m;
5242 int flags;
5243 int i, num_fetched;
5244
5245 KASSERT(count > 0,
5246 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5247 vm_page_grab_check(allocflags);
5248
5249 /*
5250 * Modify flags for lockless acquire to hold the page until we
5251 * set it valid if necessary.
5252 */
5253 flags = allocflags & ~VM_ALLOC_NOBUSY;
5254 vm_page_grab_check(flags);
5255 num_fetched = vm_radix_lookup_range_unlocked(&object->rtree, pindex,
5256 ma, count);
5257 for (i = 0; i < num_fetched; i++, pindex++) {
5258 m = vm_page_acquire_unlocked(object, pindex, ma[i], flags);
5259 if (m == PAGE_NOT_ACQUIRED)
5260 return (i);
5261 if (m == NULL)
5262 break;
5263 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5264 if ((m->flags & PG_ZERO) == 0)
5265 pmap_zero_page(m);
5266 vm_page_valid(m);
5267 }
5268 /* m will still be wired or busy according to flags. */
5269 vm_page_grab_release(m, allocflags);
5270 /* vm_page_acquire_unlocked() may not return ma[i]. */
5271 ma[i] = m;
5272 }
5273 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5274 return (i);
5275 count -= i;
5276 VM_OBJECT_WLOCK(object);
5277 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5278 VM_OBJECT_WUNLOCK(object);
5279
5280 return (i);
5281 }
5282
5283 /*
5284 * Mapping function for valid or dirty bits in a page.
5285 *
5286 * Inputs are required to range within a page.
5287 */
5288 vm_page_bits_t
vm_page_bits(int base,int size)5289 vm_page_bits(int base, int size)
5290 {
5291 int first_bit;
5292 int last_bit;
5293
5294 KASSERT(
5295 base + size <= PAGE_SIZE,
5296 ("vm_page_bits: illegal base/size %d/%d", base, size)
5297 );
5298
5299 if (size == 0) /* handle degenerate case */
5300 return (0);
5301
5302 first_bit = base >> DEV_BSHIFT;
5303 last_bit = (base + size - 1) >> DEV_BSHIFT;
5304
5305 return (((vm_page_bits_t)2 << last_bit) -
5306 ((vm_page_bits_t)1 << first_bit));
5307 }
5308
5309 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5310 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5311 {
5312
5313 #if PAGE_SIZE == 32768
5314 atomic_set_64((uint64_t *)bits, set);
5315 #elif PAGE_SIZE == 16384
5316 atomic_set_32((uint32_t *)bits, set);
5317 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5318 atomic_set_16((uint16_t *)bits, set);
5319 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5320 atomic_set_8((uint8_t *)bits, set);
5321 #else /* PAGE_SIZE <= 8192 */
5322 uintptr_t addr;
5323 int shift;
5324
5325 addr = (uintptr_t)bits;
5326 /*
5327 * Use a trick to perform a 32-bit atomic on the
5328 * containing aligned word, to not depend on the existence
5329 * of atomic_{set, clear}_{8, 16}.
5330 */
5331 shift = addr & (sizeof(uint32_t) - 1);
5332 #if BYTE_ORDER == BIG_ENDIAN
5333 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5334 #else
5335 shift *= NBBY;
5336 #endif
5337 addr &= ~(sizeof(uint32_t) - 1);
5338 atomic_set_32((uint32_t *)addr, set << shift);
5339 #endif /* PAGE_SIZE */
5340 }
5341
5342 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5343 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5344 {
5345
5346 #if PAGE_SIZE == 32768
5347 atomic_clear_64((uint64_t *)bits, clear);
5348 #elif PAGE_SIZE == 16384
5349 atomic_clear_32((uint32_t *)bits, clear);
5350 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5351 atomic_clear_16((uint16_t *)bits, clear);
5352 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5353 atomic_clear_8((uint8_t *)bits, clear);
5354 #else /* PAGE_SIZE <= 8192 */
5355 uintptr_t addr;
5356 int shift;
5357
5358 addr = (uintptr_t)bits;
5359 /*
5360 * Use a trick to perform a 32-bit atomic on the
5361 * containing aligned word, to not depend on the existence
5362 * of atomic_{set, clear}_{8, 16}.
5363 */
5364 shift = addr & (sizeof(uint32_t) - 1);
5365 #if BYTE_ORDER == BIG_ENDIAN
5366 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5367 #else
5368 shift *= NBBY;
5369 #endif
5370 addr &= ~(sizeof(uint32_t) - 1);
5371 atomic_clear_32((uint32_t *)addr, clear << shift);
5372 #endif /* PAGE_SIZE */
5373 }
5374
5375 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5376 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5377 {
5378 #if PAGE_SIZE == 32768
5379 uint64_t old;
5380
5381 old = *bits;
5382 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5383 return (old);
5384 #elif PAGE_SIZE == 16384
5385 uint32_t old;
5386
5387 old = *bits;
5388 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5389 return (old);
5390 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5391 uint16_t old;
5392
5393 old = *bits;
5394 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5395 return (old);
5396 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5397 uint8_t old;
5398
5399 old = *bits;
5400 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5401 return (old);
5402 #else /* PAGE_SIZE <= 4096*/
5403 uintptr_t addr;
5404 uint32_t old, new, mask;
5405 int shift;
5406
5407 addr = (uintptr_t)bits;
5408 /*
5409 * Use a trick to perform a 32-bit atomic on the
5410 * containing aligned word, to not depend on the existence
5411 * of atomic_{set, swap, clear}_{8, 16}.
5412 */
5413 shift = addr & (sizeof(uint32_t) - 1);
5414 #if BYTE_ORDER == BIG_ENDIAN
5415 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5416 #else
5417 shift *= NBBY;
5418 #endif
5419 addr &= ~(sizeof(uint32_t) - 1);
5420 mask = VM_PAGE_BITS_ALL << shift;
5421
5422 old = *bits;
5423 do {
5424 new = old & ~mask;
5425 new |= newbits << shift;
5426 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5427 return (old >> shift);
5428 #endif /* PAGE_SIZE */
5429 }
5430
5431 /*
5432 * vm_page_set_valid_range:
5433 *
5434 * Sets portions of a page valid. The arguments are expected
5435 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5436 * of any partial chunks touched by the range. The invalid portion of
5437 * such chunks will be zeroed.
5438 *
5439 * (base + size) must be less then or equal to PAGE_SIZE.
5440 */
5441 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5442 vm_page_set_valid_range(vm_page_t m, int base, int size)
5443 {
5444 int endoff, frag;
5445 vm_page_bits_t pagebits;
5446
5447 vm_page_assert_busied(m);
5448 if (size == 0) /* handle degenerate case */
5449 return;
5450
5451 /*
5452 * If the base is not DEV_BSIZE aligned and the valid
5453 * bit is clear, we have to zero out a portion of the
5454 * first block.
5455 */
5456 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5457 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5458 pmap_zero_page_area(m, frag, base - frag);
5459
5460 /*
5461 * If the ending offset is not DEV_BSIZE aligned and the
5462 * valid bit is clear, we have to zero out a portion of
5463 * the last block.
5464 */
5465 endoff = base + size;
5466 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5467 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5468 pmap_zero_page_area(m, endoff,
5469 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5470
5471 /*
5472 * Assert that no previously invalid block that is now being validated
5473 * is already dirty.
5474 */
5475 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5476 ("vm_page_set_valid_range: page %p is dirty", m));
5477
5478 /*
5479 * Set valid bits inclusive of any overlap.
5480 */
5481 pagebits = vm_page_bits(base, size);
5482 if (vm_page_xbusied(m))
5483 m->valid |= pagebits;
5484 else
5485 vm_page_bits_set(m, &m->valid, pagebits);
5486 }
5487
5488 /*
5489 * Set the page dirty bits and free the invalid swap space if
5490 * present. Returns the previous dirty bits.
5491 */
5492 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5493 vm_page_set_dirty(vm_page_t m)
5494 {
5495 vm_page_bits_t old;
5496
5497 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5498
5499 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5500 old = m->dirty;
5501 m->dirty = VM_PAGE_BITS_ALL;
5502 } else
5503 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5504 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5505 vm_pager_page_unswapped(m);
5506
5507 return (old);
5508 }
5509
5510 /*
5511 * Clear the given bits from the specified page's dirty field.
5512 */
5513 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5514 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5515 {
5516
5517 vm_page_assert_busied(m);
5518
5519 /*
5520 * If the page is xbusied and not write mapped we are the
5521 * only thread that can modify dirty bits. Otherwise, The pmap
5522 * layer can call vm_page_dirty() without holding a distinguished
5523 * lock. The combination of page busy and atomic operations
5524 * suffice to guarantee consistency of the page dirty field.
5525 */
5526 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5527 m->dirty &= ~pagebits;
5528 else
5529 vm_page_bits_clear(m, &m->dirty, pagebits);
5530 }
5531
5532 /*
5533 * vm_page_set_validclean:
5534 *
5535 * Sets portions of a page valid and clean. The arguments are expected
5536 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5537 * of any partial chunks touched by the range. The invalid portion of
5538 * such chunks will be zero'd.
5539 *
5540 * (base + size) must be less then or equal to PAGE_SIZE.
5541 */
5542 void
vm_page_set_validclean(vm_page_t m,int base,int size)5543 vm_page_set_validclean(vm_page_t m, int base, int size)
5544 {
5545 vm_page_bits_t oldvalid, pagebits;
5546 int endoff, frag;
5547
5548 vm_page_assert_busied(m);
5549 if (size == 0) /* handle degenerate case */
5550 return;
5551
5552 /*
5553 * If the base is not DEV_BSIZE aligned and the valid
5554 * bit is clear, we have to zero out a portion of the
5555 * first block.
5556 */
5557 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5558 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5559 pmap_zero_page_area(m, frag, base - frag);
5560
5561 /*
5562 * If the ending offset is not DEV_BSIZE aligned and the
5563 * valid bit is clear, we have to zero out a portion of
5564 * the last block.
5565 */
5566 endoff = base + size;
5567 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5568 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5569 pmap_zero_page_area(m, endoff,
5570 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5571
5572 /*
5573 * Set valid, clear dirty bits. If validating the entire
5574 * page we can safely clear the pmap modify bit. We also
5575 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5576 * takes a write fault on a MAP_NOSYNC memory area the flag will
5577 * be set again.
5578 *
5579 * We set valid bits inclusive of any overlap, but we can only
5580 * clear dirty bits for DEV_BSIZE chunks that are fully within
5581 * the range.
5582 */
5583 oldvalid = m->valid;
5584 pagebits = vm_page_bits(base, size);
5585 if (vm_page_xbusied(m))
5586 m->valid |= pagebits;
5587 else
5588 vm_page_bits_set(m, &m->valid, pagebits);
5589 #if 0 /* NOT YET */
5590 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5591 frag = DEV_BSIZE - frag;
5592 base += frag;
5593 size -= frag;
5594 if (size < 0)
5595 size = 0;
5596 }
5597 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5598 #endif
5599 if (base == 0 && size == PAGE_SIZE) {
5600 /*
5601 * The page can only be modified within the pmap if it is
5602 * mapped, and it can only be mapped if it was previously
5603 * fully valid.
5604 */
5605 if (oldvalid == VM_PAGE_BITS_ALL)
5606 /*
5607 * Perform the pmap_clear_modify() first. Otherwise,
5608 * a concurrent pmap operation, such as
5609 * pmap_protect(), could clear a modification in the
5610 * pmap and set the dirty field on the page before
5611 * pmap_clear_modify() had begun and after the dirty
5612 * field was cleared here.
5613 */
5614 pmap_clear_modify(m);
5615 m->dirty = 0;
5616 vm_page_aflag_clear(m, PGA_NOSYNC);
5617 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5618 m->dirty &= ~pagebits;
5619 else
5620 vm_page_clear_dirty_mask(m, pagebits);
5621 }
5622
5623 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5624 vm_page_clear_dirty(vm_page_t m, int base, int size)
5625 {
5626
5627 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5628 }
5629
5630 /*
5631 * vm_page_set_invalid:
5632 *
5633 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5634 * valid and dirty bits for the effected areas are cleared.
5635 */
5636 void
vm_page_set_invalid(vm_page_t m,int base,int size)5637 vm_page_set_invalid(vm_page_t m, int base, int size)
5638 {
5639 vm_page_bits_t bits;
5640 vm_object_t object;
5641
5642 /*
5643 * The object lock is required so that pages can't be mapped
5644 * read-only while we're in the process of invalidating them.
5645 */
5646 object = m->object;
5647 VM_OBJECT_ASSERT_WLOCKED(object);
5648 vm_page_assert_busied(m);
5649
5650 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5651 size >= object->un_pager.vnp.vnp_size)
5652 bits = VM_PAGE_BITS_ALL;
5653 else
5654 bits = vm_page_bits(base, size);
5655 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5656 pmap_remove_all(m);
5657 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5658 !pmap_page_is_mapped(m),
5659 ("vm_page_set_invalid: page %p is mapped", m));
5660 if (vm_page_xbusied(m)) {
5661 m->valid &= ~bits;
5662 m->dirty &= ~bits;
5663 } else {
5664 vm_page_bits_clear(m, &m->valid, bits);
5665 vm_page_bits_clear(m, &m->dirty, bits);
5666 }
5667 }
5668
5669 /*
5670 * vm_page_invalid:
5671 *
5672 * Invalidates the entire page. The page must be busy, unmapped, and
5673 * the enclosing object must be locked. The object locks protects
5674 * against concurrent read-only pmap enter which is done without
5675 * busy.
5676 */
5677 void
vm_page_invalid(vm_page_t m)5678 vm_page_invalid(vm_page_t m)
5679 {
5680
5681 vm_page_assert_busied(m);
5682 VM_OBJECT_ASSERT_WLOCKED(m->object);
5683 MPASS(!pmap_page_is_mapped(m));
5684
5685 if (vm_page_xbusied(m))
5686 m->valid = 0;
5687 else
5688 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5689 }
5690
5691 /*
5692 * vm_page_zero_invalid()
5693 *
5694 * The kernel assumes that the invalid portions of a page contain
5695 * garbage, but such pages can be mapped into memory by user code.
5696 * When this occurs, we must zero out the non-valid portions of the
5697 * page so user code sees what it expects.
5698 *
5699 * Pages are most often semi-valid when the end of a file is mapped
5700 * into memory and the file's size is not page aligned.
5701 */
5702 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5703 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5704 {
5705 int b;
5706 int i;
5707
5708 /*
5709 * Scan the valid bits looking for invalid sections that
5710 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5711 * valid bit may be set ) have already been zeroed by
5712 * vm_page_set_validclean().
5713 */
5714 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5715 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5716 (m->valid & ((vm_page_bits_t)1 << i))) {
5717 if (i > b) {
5718 pmap_zero_page_area(m,
5719 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5720 }
5721 b = i + 1;
5722 }
5723 }
5724
5725 /*
5726 * setvalid is TRUE when we can safely set the zero'd areas
5727 * as being valid. We can do this if there are no cache consistency
5728 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5729 */
5730 if (setvalid)
5731 vm_page_valid(m);
5732 }
5733
5734 /*
5735 * vm_page_is_valid:
5736 *
5737 * Is (partial) page valid? Note that the case where size == 0
5738 * will return FALSE in the degenerate case where the page is
5739 * entirely invalid, and TRUE otherwise.
5740 *
5741 * Some callers envoke this routine without the busy lock held and
5742 * handle races via higher level locks. Typical callers should
5743 * hold a busy lock to prevent invalidation.
5744 */
5745 int
vm_page_is_valid(vm_page_t m,int base,int size)5746 vm_page_is_valid(vm_page_t m, int base, int size)
5747 {
5748 vm_page_bits_t bits;
5749
5750 bits = vm_page_bits(base, size);
5751 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5752 }
5753
5754 /*
5755 * Returns true if all of the specified predicates are true for the entire
5756 * (super)page and false otherwise.
5757 */
5758 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5759 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5760 {
5761 vm_object_t object;
5762 int i, npages;
5763
5764 object = m->object;
5765 if (skip_m != NULL && skip_m->object != object)
5766 return (false);
5767 VM_OBJECT_ASSERT_LOCKED(object);
5768 KASSERT(psind <= m->psind,
5769 ("psind %d > psind %d of m %p", psind, m->psind, m));
5770 npages = atop(pagesizes[psind]);
5771
5772 /*
5773 * The physically contiguous pages that make up a superpage, i.e., a
5774 * page with a page size index ("psind") greater than zero, will
5775 * occupy adjacent entries in vm_page_array[].
5776 */
5777 for (i = 0; i < npages; i++) {
5778 /* Always test object consistency, including "skip_m". */
5779 if (m[i].object != object)
5780 return (false);
5781 if (&m[i] == skip_m)
5782 continue;
5783 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5784 return (false);
5785 if ((flags & PS_ALL_DIRTY) != 0) {
5786 /*
5787 * Calling vm_page_test_dirty() or pmap_is_modified()
5788 * might stop this case from spuriously returning
5789 * "false". However, that would require a write lock
5790 * on the object containing "m[i]".
5791 */
5792 if (m[i].dirty != VM_PAGE_BITS_ALL)
5793 return (false);
5794 }
5795 if ((flags & PS_ALL_VALID) != 0 &&
5796 m[i].valid != VM_PAGE_BITS_ALL)
5797 return (false);
5798 }
5799 return (true);
5800 }
5801
5802 /*
5803 * Set the page's dirty bits if the page is modified.
5804 */
5805 void
vm_page_test_dirty(vm_page_t m)5806 vm_page_test_dirty(vm_page_t m)
5807 {
5808
5809 vm_page_assert_busied(m);
5810 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5811 vm_page_dirty(m);
5812 }
5813
5814 void
vm_page_valid(vm_page_t m)5815 vm_page_valid(vm_page_t m)
5816 {
5817
5818 vm_page_assert_busied(m);
5819 if (vm_page_xbusied(m))
5820 m->valid = VM_PAGE_BITS_ALL;
5821 else
5822 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5823 }
5824
5825 #ifdef INVARIANTS
5826 void
vm_page_object_busy_assert(vm_page_t m)5827 vm_page_object_busy_assert(vm_page_t m)
5828 {
5829
5830 /*
5831 * Certain of the page's fields may only be modified by the
5832 * holder of a page or object busy.
5833 */
5834 if (m->object != NULL && !vm_page_busied(m))
5835 VM_OBJECT_ASSERT_BUSY(m->object);
5836 }
5837
5838 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5839 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5840 {
5841
5842 if ((bits & PGA_WRITEABLE) == 0)
5843 return;
5844
5845 /*
5846 * The PGA_WRITEABLE flag can only be set if the page is
5847 * managed, is exclusively busied or the object is locked.
5848 * Currently, this flag is only set by pmap_enter().
5849 */
5850 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5851 ("PGA_WRITEABLE on unmanaged page"));
5852 if (!vm_page_xbusied(m))
5853 VM_OBJECT_ASSERT_BUSY(m->object);
5854 }
5855 #endif
5856
5857 #include "opt_ddb.h"
5858 #ifdef DDB
5859 #include <sys/kernel.h>
5860
5861 #include <ddb/ddb.h>
5862
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5863 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5864 {
5865
5866 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5867 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5868 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5869 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5870 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5871 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5872 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5873 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5874 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5875 }
5876
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5877 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5878 {
5879 int dom;
5880
5881 db_printf("pq_free %d\n", vm_free_count());
5882 for (dom = 0; dom < vm_ndomains; dom++) {
5883 db_printf(
5884 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5885 dom,
5886 vm_dom[dom].vmd_page_count,
5887 vm_dom[dom].vmd_free_count,
5888 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5889 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5890 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5891 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5892 }
5893 }
5894
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5895 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5896 {
5897 vm_page_t m;
5898 boolean_t phys, virt;
5899
5900 if (!have_addr) {
5901 db_printf("show pginfo addr\n");
5902 return;
5903 }
5904
5905 phys = strchr(modif, 'p') != NULL;
5906 virt = strchr(modif, 'v') != NULL;
5907 if (virt)
5908 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5909 else if (phys)
5910 m = PHYS_TO_VM_PAGE(addr);
5911 else
5912 m = (vm_page_t)addr;
5913 db_printf(
5914 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5915 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5916 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5917 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5918 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5919 }
5920 #endif /* DDB */
5921