1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Resident memory management module.
65 */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110
111 #include <machine/md_var.h>
112
113 struct vm_domain vm_dom[MAXMEMDOM];
114
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116
117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
118
119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
120 /* The following fields are protected by the domainset lock. */
121 domainset_t __exclusive_cache_line vm_min_domains;
122 domainset_t __exclusive_cache_line vm_severe_domains;
123 static int vm_min_waiters;
124 static int vm_severe_waiters;
125 static int vm_pageproc_waiters;
126
127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
128 "VM page statistics");
129
130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
132 CTLFLAG_RD, &pqstate_commit_retries,
133 "Number of failed per-page atomic queue state updates");
134
135 static COUNTER_U64_DEFINE_EARLY(queue_ops);
136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
137 CTLFLAG_RD, &queue_ops,
138 "Number of batched queue operations");
139
140 static COUNTER_U64_DEFINE_EARLY(queue_nops);
141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
142 CTLFLAG_RD, &queue_nops,
143 "Number of batched queue operations with no effects");
144
145 /*
146 * bogus page -- for I/O to/from partially complete buffers,
147 * or for paging into sparsely invalid regions.
148 */
149 vm_page_t bogus_page;
150
151 vm_page_t vm_page_array;
152 long vm_page_array_size;
153 long first_page;
154
155 struct bitset *vm_page_dump;
156 long vm_page_dump_pages;
157
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162
163 static uma_zone_t fakepg_zone;
164
165 static vm_page_t vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
166 int req, vm_page_t mpred);
167 static void vm_page_alloc_check(vm_page_t m);
168 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
169 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
170 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
171 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
172 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
173 static bool vm_page_free_prep(vm_page_t m);
174 static void vm_page_free_toq(vm_page_t m);
175 static void vm_page_init(void *dummy);
176 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
177 vm_pindex_t pindex, vm_page_t mpred);
178 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
179 vm_page_t mpred);
180 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
181 const uint16_t nflag);
182 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
183 vm_page_t m_run, vm_paddr_t high);
184 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
185 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
186 int req);
187 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
188 int flags);
189 static void vm_page_zone_release(void *arg, void **store, int cnt);
190
191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
192
193 static void
vm_page_init(void * dummy)194 vm_page_init(void *dummy)
195 {
196
197 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
198 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
199 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
200 }
201
202 static int pgcache_zone_max_pcpu;
203 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
204 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
205 "Per-CPU page cache size");
206
207 /*
208 * The cache page zone is initialized later since we need to be able to allocate
209 * pages before UMA is fully initialized.
210 */
211 static void
vm_page_init_cache_zones(void * dummy __unused)212 vm_page_init_cache_zones(void *dummy __unused)
213 {
214 struct vm_domain *vmd;
215 struct vm_pgcache *pgcache;
216 int cache, domain, maxcache, pool;
217
218 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
219 maxcache = pgcache_zone_max_pcpu * mp_ncpus;
220 for (domain = 0; domain < vm_ndomains; domain++) {
221 vmd = VM_DOMAIN(domain);
222 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
223 pgcache = &vmd->vmd_pgcache[pool];
224 pgcache->domain = domain;
225 pgcache->pool = pool;
226 pgcache->zone = uma_zcache_create("vm pgcache",
227 PAGE_SIZE, NULL, NULL, NULL, NULL,
228 vm_page_zone_import, vm_page_zone_release, pgcache,
229 UMA_ZONE_VM);
230
231 /*
232 * Limit each pool's zone to 0.1% of the pages in the
233 * domain.
234 */
235 cache = maxcache != 0 ? maxcache :
236 vmd->vmd_page_count / 1000;
237 uma_zone_set_maxcache(pgcache->zone, cache);
238 }
239 }
240 }
241 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
242
243 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
244 #if PAGE_SIZE == 32768
245 #ifdef CTASSERT
246 CTASSERT(sizeof(u_long) >= 8);
247 #endif
248 #endif
249
250 /*
251 * vm_set_page_size:
252 *
253 * Sets the page size, perhaps based upon the memory
254 * size. Must be called before any use of page-size
255 * dependent functions.
256 */
257 void
vm_set_page_size(void)258 vm_set_page_size(void)
259 {
260 if (vm_cnt.v_page_size == 0)
261 vm_cnt.v_page_size = PAGE_SIZE;
262 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
263 panic("vm_set_page_size: page size not a power of two");
264 }
265
266 /*
267 * vm_page_blacklist_next:
268 *
269 * Find the next entry in the provided string of blacklist
270 * addresses. Entries are separated by space, comma, or newline.
271 * If an invalid integer is encountered then the rest of the
272 * string is skipped. Updates the list pointer to the next
273 * character, or NULL if the string is exhausted or invalid.
274 */
275 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)276 vm_page_blacklist_next(char **list, char *end)
277 {
278 vm_paddr_t bad;
279 char *cp, *pos;
280
281 if (list == NULL || *list == NULL)
282 return (0);
283 if (**list =='\0') {
284 *list = NULL;
285 return (0);
286 }
287
288 /*
289 * If there's no end pointer then the buffer is coming from
290 * the kenv and we know it's null-terminated.
291 */
292 if (end == NULL)
293 end = *list + strlen(*list);
294
295 /* Ensure that strtoq() won't walk off the end */
296 if (*end != '\0') {
297 if (*end == '\n' || *end == ' ' || *end == ',')
298 *end = '\0';
299 else {
300 printf("Blacklist not terminated, skipping\n");
301 *list = NULL;
302 return (0);
303 }
304 }
305
306 for (pos = *list; *pos != '\0'; pos = cp) {
307 bad = strtoq(pos, &cp, 0);
308 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
309 if (bad == 0) {
310 if (++cp < end)
311 continue;
312 else
313 break;
314 }
315 } else
316 break;
317 if (*cp == '\0' || ++cp >= end)
318 *list = NULL;
319 else
320 *list = cp;
321 return (trunc_page(bad));
322 }
323 printf("Garbage in RAM blacklist, skipping\n");
324 *list = NULL;
325 return (0);
326 }
327
328 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)329 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
330 {
331 struct vm_domain *vmd;
332 vm_page_t m;
333 bool found;
334
335 m = vm_phys_paddr_to_vm_page(pa);
336 if (m == NULL)
337 return (true); /* page does not exist, no failure */
338
339 vmd = VM_DOMAIN(vm_phys_domain(pa));
340 vm_domain_free_lock(vmd);
341 found = vm_phys_unfree_page(pa);
342 vm_domain_free_unlock(vmd);
343 if (found) {
344 vm_domain_freecnt_inc(vmd, -1);
345 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
346 if (verbose)
347 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
348 }
349 return (found);
350 }
351
352 /*
353 * vm_page_blacklist_check:
354 *
355 * Iterate through the provided string of blacklist addresses, pulling
356 * each entry out of the physical allocator free list and putting it
357 * onto a list for reporting via the vm.page_blacklist sysctl.
358 */
359 static void
vm_page_blacklist_check(char * list,char * end)360 vm_page_blacklist_check(char *list, char *end)
361 {
362 vm_paddr_t pa;
363 char *next;
364
365 next = list;
366 while (next != NULL) {
367 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
368 continue;
369 vm_page_blacklist_add(pa, bootverbose);
370 }
371 }
372
373 /*
374 * vm_page_blacklist_load:
375 *
376 * Search for a special module named "ram_blacklist". It'll be a
377 * plain text file provided by the user via the loader directive
378 * of the same name.
379 */
380 static void
vm_page_blacklist_load(char ** list,char ** end)381 vm_page_blacklist_load(char **list, char **end)
382 {
383 void *mod;
384 u_char *ptr;
385 u_int len;
386
387 mod = NULL;
388 ptr = NULL;
389
390 mod = preload_search_by_type("ram_blacklist");
391 if (mod != NULL) {
392 ptr = preload_fetch_addr(mod);
393 len = preload_fetch_size(mod);
394 }
395 *list = ptr;
396 if (ptr != NULL)
397 *end = ptr + len;
398 else
399 *end = NULL;
400 return;
401 }
402
403 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)404 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
405 {
406 vm_page_t m;
407 struct sbuf sbuf;
408 int error, first;
409
410 first = 1;
411 error = sysctl_wire_old_buffer(req, 0);
412 if (error != 0)
413 return (error);
414 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
415 TAILQ_FOREACH(m, &blacklist_head, listq) {
416 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
417 (uintmax_t)m->phys_addr);
418 first = 0;
419 }
420 error = sbuf_finish(&sbuf);
421 sbuf_delete(&sbuf);
422 return (error);
423 }
424
425 /*
426 * Initialize a dummy page for use in scans of the specified paging queue.
427 * In principle, this function only needs to set the flag PG_MARKER.
428 * Nonetheless, it write busies the page as a safety precaution.
429 */
430 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)431 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
432 {
433
434 bzero(marker, sizeof(*marker));
435 marker->flags = PG_MARKER;
436 marker->a.flags = aflags;
437 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
438 marker->a.queue = queue;
439 }
440
441 static void
vm_page_domain_init(int domain)442 vm_page_domain_init(int domain)
443 {
444 struct vm_domain *vmd;
445 struct vm_pagequeue *pq;
446 int i;
447
448 vmd = VM_DOMAIN(domain);
449 bzero(vmd, sizeof(*vmd));
450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
451 "vm inactive pagequeue";
452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
453 "vm active pagequeue";
454 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
455 "vm laundry pagequeue";
456 *__DECONST(const char **,
457 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
458 "vm unswappable pagequeue";
459 vmd->vmd_domain = domain;
460 vmd->vmd_page_count = 0;
461 vmd->vmd_free_count = 0;
462 vmd->vmd_segs = 0;
463 vmd->vmd_oom = false;
464 vmd->vmd_helper_threads_enabled = true;
465 for (i = 0; i < PQ_COUNT; i++) {
466 pq = &vmd->vmd_pagequeues[i];
467 TAILQ_INIT(&pq->pq_pl);
468 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
469 MTX_DEF | MTX_DUPOK);
470 pq->pq_pdpages = 0;
471 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
472 }
473 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
474 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
475 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
476
477 /*
478 * inacthead is used to provide FIFO ordering for LRU-bypassing
479 * insertions.
480 */
481 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
482 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
483 &vmd->vmd_inacthead, plinks.q);
484
485 /*
486 * The clock pages are used to implement active queue scanning without
487 * requeues. Scans start at clock[0], which is advanced after the scan
488 * ends. When the two clock hands meet, they are reset and scanning
489 * resumes from the head of the queue.
490 */
491 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
492 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
493 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
494 &vmd->vmd_clock[0], plinks.q);
495 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
496 &vmd->vmd_clock[1], plinks.q);
497 }
498
499 /*
500 * Initialize a physical page in preparation for adding it to the free
501 * lists.
502 */
503 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)504 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
505 {
506 m->object = NULL;
507 m->ref_count = 0;
508 m->busy_lock = VPB_FREED;
509 m->flags = m->a.flags = 0;
510 m->phys_addr = pa;
511 m->a.queue = PQ_NONE;
512 m->psind = 0;
513 m->segind = segind;
514 m->order = VM_NFREEORDER;
515 m->pool = pool;
516 m->valid = m->dirty = 0;
517 pmap_page_init(m);
518 }
519
520 #ifndef PMAP_HAS_PAGE_ARRAY
521 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)522 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
523 {
524 vm_paddr_t new_end;
525
526 /*
527 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
528 * However, because this page is allocated from KVM, out-of-bounds
529 * accesses using the direct map will not be trapped.
530 */
531 *vaddr += PAGE_SIZE;
532
533 /*
534 * Allocate physical memory for the page structures, and map it.
535 */
536 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
537 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
538 VM_PROT_READ | VM_PROT_WRITE);
539 vm_page_array_size = page_range;
540
541 return (new_end);
542 }
543 #endif
544
545 /*
546 * vm_page_startup:
547 *
548 * Initializes the resident memory module. Allocates physical memory for
549 * bootstrapping UMA and some data structures that are used to manage
550 * physical pages. Initializes these structures, and populates the free
551 * page queues.
552 */
553 vm_offset_t
vm_page_startup(vm_offset_t vaddr)554 vm_page_startup(vm_offset_t vaddr)
555 {
556 struct vm_phys_seg *seg;
557 struct vm_domain *vmd;
558 vm_page_t m;
559 char *list, *listend;
560 vm_paddr_t end, high_avail, low_avail, new_end, size;
561 vm_paddr_t page_range __unused;
562 vm_paddr_t last_pa, pa, startp, endp;
563 u_long pagecount;
564 #if MINIDUMP_PAGE_TRACKING
565 u_long vm_page_dump_size;
566 #endif
567 int biggestone, i, segind;
568 #ifdef WITNESS
569 vm_offset_t mapped;
570 int witness_size;
571 #endif
572 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
573 long ii;
574 #endif
575 #ifdef VM_FREEPOOL_LAZYINIT
576 int lazyinit;
577 #endif
578
579 vaddr = round_page(vaddr);
580
581 vm_phys_early_startup();
582 biggestone = vm_phys_avail_largest();
583 end = phys_avail[biggestone+1];
584
585 /*
586 * Initialize the page and queue locks.
587 */
588 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
589 for (i = 0; i < PA_LOCK_COUNT; i++)
590 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
591 for (i = 0; i < vm_ndomains; i++)
592 vm_page_domain_init(i);
593
594 new_end = end;
595 #ifdef WITNESS
596 witness_size = round_page(witness_startup_count());
597 new_end -= witness_size;
598 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
599 VM_PROT_READ | VM_PROT_WRITE);
600 bzero((void *)mapped, witness_size);
601 witness_startup((void *)mapped);
602 #endif
603
604 #if MINIDUMP_PAGE_TRACKING
605 /*
606 * Allocate a bitmap to indicate that a random physical page
607 * needs to be included in a minidump.
608 *
609 * The amd64 port needs this to indicate which direct map pages
610 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
611 *
612 * However, i386 still needs this workspace internally within the
613 * minidump code. In theory, they are not needed on i386, but are
614 * included should the sf_buf code decide to use them.
615 */
616 last_pa = 0;
617 vm_page_dump_pages = 0;
618 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
619 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
620 dump_avail[i] / PAGE_SIZE;
621 if (dump_avail[i + 1] > last_pa)
622 last_pa = dump_avail[i + 1];
623 }
624 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
625 new_end -= vm_page_dump_size;
626 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
627 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
628 bzero((void *)vm_page_dump, vm_page_dump_size);
629 #if MINIDUMP_STARTUP_PAGE_TRACKING
630 /*
631 * Include the UMA bootstrap pages, witness pages and vm_page_dump
632 * in a crash dump. When pmap_map() uses the direct map, they are
633 * not automatically included.
634 */
635 for (pa = new_end; pa < end; pa += PAGE_SIZE)
636 dump_add_page(pa);
637 #endif
638 #else
639 (void)last_pa;
640 #endif
641 phys_avail[biggestone + 1] = new_end;
642 #ifdef __amd64__
643 /*
644 * Request that the physical pages underlying the message buffer be
645 * included in a crash dump. Since the message buffer is accessed
646 * through the direct map, they are not automatically included.
647 */
648 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
649 last_pa = pa + round_page(msgbufsize);
650 while (pa < last_pa) {
651 dump_add_page(pa);
652 pa += PAGE_SIZE;
653 }
654 #endif
655 /*
656 * Compute the number of pages of memory that will be available for
657 * use, taking into account the overhead of a page structure per page.
658 * In other words, solve
659 * "available physical memory" - round_page(page_range *
660 * sizeof(struct vm_page)) = page_range * PAGE_SIZE
661 * for page_range.
662 */
663 low_avail = phys_avail[0];
664 high_avail = phys_avail[1];
665 for (i = 0; i < vm_phys_nsegs; i++) {
666 if (vm_phys_segs[i].start < low_avail)
667 low_avail = vm_phys_segs[i].start;
668 if (vm_phys_segs[i].end > high_avail)
669 high_avail = vm_phys_segs[i].end;
670 }
671 /* Skip the first chunk. It is already accounted for. */
672 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
673 if (phys_avail[i] < low_avail)
674 low_avail = phys_avail[i];
675 if (phys_avail[i + 1] > high_avail)
676 high_avail = phys_avail[i + 1];
677 }
678 first_page = low_avail / PAGE_SIZE;
679 #ifdef VM_PHYSSEG_SPARSE
680 size = 0;
681 for (i = 0; i < vm_phys_nsegs; i++)
682 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
683 for (i = 0; phys_avail[i + 1] != 0; i += 2)
684 size += phys_avail[i + 1] - phys_avail[i];
685 #elif defined(VM_PHYSSEG_DENSE)
686 size = high_avail - low_avail;
687 #else
688 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
689 #endif
690
691 #ifdef PMAP_HAS_PAGE_ARRAY
692 pmap_page_array_startup(size / PAGE_SIZE);
693 biggestone = vm_phys_avail_largest();
694 end = new_end = phys_avail[biggestone + 1];
695 #else
696 #ifdef VM_PHYSSEG_DENSE
697 /*
698 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
699 * the overhead of a page structure per page only if vm_page_array is
700 * allocated from the last physical memory chunk. Otherwise, we must
701 * allocate page structures representing the physical memory
702 * underlying vm_page_array, even though they will not be used.
703 */
704 if (new_end != high_avail)
705 page_range = size / PAGE_SIZE;
706 else
707 #endif
708 {
709 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
710
711 /*
712 * If the partial bytes remaining are large enough for
713 * a page (PAGE_SIZE) without a corresponding
714 * 'struct vm_page', then new_end will contain an
715 * extra page after subtracting the length of the VM
716 * page array. Compensate by subtracting an extra
717 * page from new_end.
718 */
719 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
720 if (new_end == high_avail)
721 high_avail -= PAGE_SIZE;
722 new_end -= PAGE_SIZE;
723 }
724 }
725 end = new_end;
726 new_end = vm_page_array_alloc(&vaddr, end, page_range);
727 #endif
728
729 #if VM_NRESERVLEVEL > 0
730 /*
731 * Allocate physical memory for the reservation management system's
732 * data structures, and map it.
733 */
734 new_end = vm_reserv_startup(&vaddr, new_end);
735 #endif
736 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
737 /*
738 * Include vm_page_array and vm_reserv_array in a crash dump.
739 */
740 for (pa = new_end; pa < end; pa += PAGE_SIZE)
741 dump_add_page(pa);
742 #endif
743 phys_avail[biggestone + 1] = new_end;
744
745 /*
746 * Add physical memory segments corresponding to the available
747 * physical pages.
748 */
749 for (i = 0; phys_avail[i + 1] != 0; i += 2)
750 if (vm_phys_avail_size(i) != 0)
751 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
752
753 /*
754 * Initialize the physical memory allocator.
755 */
756 vm_phys_init();
757
758 #ifdef VM_FREEPOOL_LAZYINIT
759 lazyinit = 1;
760 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
761 #endif
762
763 /*
764 * Initialize the page structures and add every available page to the
765 * physical memory allocator's free lists.
766 */
767 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
768 for (ii = 0; ii < vm_page_array_size; ii++) {
769 m = &vm_page_array[ii];
770 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
771 VM_FREEPOOL_DEFAULT);
772 m->flags = PG_FICTITIOUS;
773 }
774 #endif
775 vm_cnt.v_page_count = 0;
776 for (segind = 0; segind < vm_phys_nsegs; segind++) {
777 seg = &vm_phys_segs[segind];
778
779 /*
780 * If lazy vm_page initialization is not enabled, simply
781 * initialize all of the pages in the segment. Otherwise, we
782 * only initialize:
783 * 1. Pages not covered by phys_avail[], since they might be
784 * freed to the allocator at some future point, e.g., by
785 * kmem_bootstrap_free().
786 * 2. The first page of each run of free pages handed to the
787 * vm_phys allocator, which in turn defers initialization
788 * of pages until they are needed.
789 * This avoids blocking the boot process for long periods, which
790 * may be relevant for VMs (which ought to boot as quickly as
791 * possible) and/or systems with large amounts of physical
792 * memory.
793 */
794 #ifdef VM_FREEPOOL_LAZYINIT
795 if (lazyinit) {
796 startp = seg->start;
797 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
798 if (startp >= seg->end)
799 break;
800
801 if (phys_avail[i + 1] < startp)
802 continue;
803 if (phys_avail[i] <= startp) {
804 startp = phys_avail[i + 1];
805 continue;
806 }
807
808 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
809 for (endp = MIN(phys_avail[i], seg->end);
810 startp < endp; startp += PAGE_SIZE, m++) {
811 vm_page_init_page(m, startp, segind,
812 VM_FREEPOOL_DEFAULT);
813 }
814 }
815 } else
816 #endif
817 for (m = seg->first_page, pa = seg->start;
818 pa < seg->end; m++, pa += PAGE_SIZE) {
819 vm_page_init_page(m, pa, segind,
820 VM_FREEPOOL_DEFAULT);
821 }
822
823 /*
824 * Add the segment's pages that are covered by one of
825 * phys_avail's ranges to the free lists.
826 */
827 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
828 if (seg->end <= phys_avail[i] ||
829 seg->start >= phys_avail[i + 1])
830 continue;
831
832 startp = MAX(seg->start, phys_avail[i]);
833 endp = MIN(seg->end, phys_avail[i + 1]);
834 pagecount = (u_long)atop(endp - startp);
835 if (pagecount == 0)
836 continue;
837
838 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
839 #ifdef VM_FREEPOOL_LAZYINIT
840 if (lazyinit) {
841 vm_page_init_page(m, startp, segind,
842 VM_FREEPOOL_LAZYINIT);
843 }
844 #endif
845 vmd = VM_DOMAIN(seg->domain);
846 vm_domain_free_lock(vmd);
847 vm_phys_enqueue_contig(m, pagecount);
848 vm_domain_free_unlock(vmd);
849 vm_domain_freecnt_inc(vmd, pagecount);
850 vm_cnt.v_page_count += (u_int)pagecount;
851 vmd->vmd_page_count += (u_int)pagecount;
852 vmd->vmd_segs |= 1UL << segind;
853 }
854 }
855
856 /*
857 * Remove blacklisted pages from the physical memory allocator.
858 */
859 TAILQ_INIT(&blacklist_head);
860 vm_page_blacklist_load(&list, &listend);
861 vm_page_blacklist_check(list, listend);
862
863 list = kern_getenv("vm.blacklist");
864 vm_page_blacklist_check(list, NULL);
865
866 freeenv(list);
867 #if VM_NRESERVLEVEL > 0
868 /*
869 * Initialize the reservation management system.
870 */
871 vm_reserv_init();
872 #endif
873
874 return (vaddr);
875 }
876
877 void
vm_page_reference(vm_page_t m)878 vm_page_reference(vm_page_t m)
879 {
880
881 vm_page_aflag_set(m, PGA_REFERENCED);
882 }
883
884 /*
885 * vm_page_trybusy
886 *
887 * Helper routine for grab functions to trylock busy.
888 *
889 * Returns true on success and false on failure.
890 */
891 static bool
vm_page_trybusy(vm_page_t m,int allocflags)892 vm_page_trybusy(vm_page_t m, int allocflags)
893 {
894
895 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
896 return (vm_page_trysbusy(m));
897 else
898 return (vm_page_tryxbusy(m));
899 }
900
901 /*
902 * vm_page_tryacquire
903 *
904 * Helper routine for grab functions to trylock busy and wire.
905 *
906 * Returns true on success and false on failure.
907 */
908 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)909 vm_page_tryacquire(vm_page_t m, int allocflags)
910 {
911 bool locked;
912
913 locked = vm_page_trybusy(m, allocflags);
914 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
915 vm_page_wire(m);
916 return (locked);
917 }
918
919 /*
920 * vm_page_busy_acquire:
921 *
922 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
923 * and drop the object lock if necessary.
924 */
925 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)926 vm_page_busy_acquire(vm_page_t m, int allocflags)
927 {
928 vm_object_t obj;
929 bool locked;
930
931 /*
932 * The page-specific object must be cached because page
933 * identity can change during the sleep, causing the
934 * re-lock of a different object.
935 * It is assumed that a reference to the object is already
936 * held by the callers.
937 */
938 obj = atomic_load_ptr(&m->object);
939 for (;;) {
940 if (vm_page_tryacquire(m, allocflags))
941 return (true);
942 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
943 return (false);
944 if (obj != NULL)
945 locked = VM_OBJECT_WOWNED(obj);
946 else
947 locked = false;
948 MPASS(locked || vm_page_wired(m));
949 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
950 locked) && locked)
951 VM_OBJECT_WLOCK(obj);
952 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
953 return (false);
954 KASSERT(m->object == obj || m->object == NULL,
955 ("vm_page_busy_acquire: page %p does not belong to %p",
956 m, obj));
957 }
958 }
959
960 /*
961 * vm_page_busy_downgrade:
962 *
963 * Downgrade an exclusive busy page into a single shared busy page.
964 */
965 void
vm_page_busy_downgrade(vm_page_t m)966 vm_page_busy_downgrade(vm_page_t m)
967 {
968 u_int x;
969
970 vm_page_assert_xbusied(m);
971
972 x = vm_page_busy_fetch(m);
973 for (;;) {
974 if (atomic_fcmpset_rel_int(&m->busy_lock,
975 &x, VPB_SHARERS_WORD(1)))
976 break;
977 }
978 if ((x & VPB_BIT_WAITERS) != 0)
979 wakeup(m);
980 }
981
982 /*
983 *
984 * vm_page_busy_tryupgrade:
985 *
986 * Attempt to upgrade a single shared busy into an exclusive busy.
987 */
988 int
vm_page_busy_tryupgrade(vm_page_t m)989 vm_page_busy_tryupgrade(vm_page_t m)
990 {
991 u_int ce, x;
992
993 vm_page_assert_sbusied(m);
994
995 x = vm_page_busy_fetch(m);
996 ce = VPB_CURTHREAD_EXCLUSIVE;
997 for (;;) {
998 if (VPB_SHARERS(x) > 1)
999 return (0);
1000 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1001 ("vm_page_busy_tryupgrade: invalid lock state"));
1002 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1003 ce | (x & VPB_BIT_WAITERS)))
1004 continue;
1005 return (1);
1006 }
1007 }
1008
1009 /*
1010 * vm_page_sbusied:
1011 *
1012 * Return a positive value if the page is shared busied, 0 otherwise.
1013 */
1014 int
vm_page_sbusied(vm_page_t m)1015 vm_page_sbusied(vm_page_t m)
1016 {
1017 u_int x;
1018
1019 x = vm_page_busy_fetch(m);
1020 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1021 }
1022
1023 /*
1024 * vm_page_sunbusy:
1025 *
1026 * Shared unbusy a page.
1027 */
1028 void
vm_page_sunbusy(vm_page_t m)1029 vm_page_sunbusy(vm_page_t m)
1030 {
1031 u_int x;
1032
1033 vm_page_assert_sbusied(m);
1034
1035 x = vm_page_busy_fetch(m);
1036 for (;;) {
1037 KASSERT(x != VPB_FREED,
1038 ("vm_page_sunbusy: Unlocking freed page."));
1039 if (VPB_SHARERS(x) > 1) {
1040 if (atomic_fcmpset_int(&m->busy_lock, &x,
1041 x - VPB_ONE_SHARER))
1042 break;
1043 continue;
1044 }
1045 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1046 ("vm_page_sunbusy: invalid lock state"));
1047 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1048 continue;
1049 if ((x & VPB_BIT_WAITERS) == 0)
1050 break;
1051 wakeup(m);
1052 break;
1053 }
1054 }
1055
1056 /*
1057 * vm_page_busy_sleep:
1058 *
1059 * Sleep if the page is busy, using the page pointer as wchan.
1060 * This is used to implement the hard-path of the busying mechanism.
1061 *
1062 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1063 * will not sleep if the page is shared-busy.
1064 *
1065 * The object lock must be held on entry.
1066 *
1067 * Returns true if it slept and dropped the object lock, or false
1068 * if there was no sleep and the lock is still held.
1069 */
1070 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1071 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1072 {
1073 vm_object_t obj;
1074
1075 obj = m->object;
1076 VM_OBJECT_ASSERT_LOCKED(obj);
1077
1078 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1079 true));
1080 }
1081
1082 /*
1083 * vm_page_busy_sleep_unlocked:
1084 *
1085 * Sleep if the page is busy, using the page pointer as wchan.
1086 * This is used to implement the hard-path of busying mechanism.
1087 *
1088 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1089 * will not sleep if the page is shared-busy.
1090 *
1091 * The object lock must not be held on entry. The operation will
1092 * return if the page changes identity.
1093 */
1094 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1095 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1096 const char *wmesg, int allocflags)
1097 {
1098 VM_OBJECT_ASSERT_UNLOCKED(obj);
1099
1100 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1101 }
1102
1103 /*
1104 * _vm_page_busy_sleep:
1105 *
1106 * Internal busy sleep function. Verifies the page identity and
1107 * lockstate against parameters. Returns true if it sleeps and
1108 * false otherwise.
1109 *
1110 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1111 *
1112 * If locked is true the lock will be dropped for any true returns
1113 * and held for any false returns.
1114 */
1115 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1116 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1117 const char *wmesg, int allocflags, bool locked)
1118 {
1119 bool xsleep;
1120 u_int x;
1121
1122 /*
1123 * If the object is busy we must wait for that to drain to zero
1124 * before trying the page again.
1125 */
1126 if (obj != NULL && vm_object_busied(obj)) {
1127 if (locked)
1128 VM_OBJECT_DROP(obj);
1129 vm_object_busy_wait(obj, wmesg);
1130 return (true);
1131 }
1132
1133 if (!vm_page_busied(m))
1134 return (false);
1135
1136 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1137 sleepq_lock(m);
1138 x = vm_page_busy_fetch(m);
1139 do {
1140 /*
1141 * If the page changes objects or becomes unlocked we can
1142 * simply return.
1143 */
1144 if (x == VPB_UNBUSIED ||
1145 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1146 m->object != obj || m->pindex != pindex) {
1147 sleepq_release(m);
1148 return (false);
1149 }
1150 if ((x & VPB_BIT_WAITERS) != 0)
1151 break;
1152 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1153 if (locked)
1154 VM_OBJECT_DROP(obj);
1155 DROP_GIANT();
1156 sleepq_add(m, NULL, wmesg, 0, 0);
1157 sleepq_wait(m, PVM);
1158 PICKUP_GIANT();
1159 return (true);
1160 }
1161
1162 /*
1163 * vm_page_trysbusy:
1164 *
1165 * Try to shared busy a page.
1166 * If the operation succeeds 1 is returned otherwise 0.
1167 * The operation never sleeps.
1168 */
1169 int
vm_page_trysbusy(vm_page_t m)1170 vm_page_trysbusy(vm_page_t m)
1171 {
1172 vm_object_t obj;
1173 u_int x;
1174
1175 obj = m->object;
1176 x = vm_page_busy_fetch(m);
1177 for (;;) {
1178 if ((x & VPB_BIT_SHARED) == 0)
1179 return (0);
1180 /*
1181 * Reduce the window for transient busies that will trigger
1182 * false negatives in vm_page_ps_test().
1183 */
1184 if (obj != NULL && vm_object_busied(obj))
1185 return (0);
1186 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1187 x + VPB_ONE_SHARER))
1188 break;
1189 }
1190
1191 /* Refetch the object now that we're guaranteed that it is stable. */
1192 obj = m->object;
1193 if (obj != NULL && vm_object_busied(obj)) {
1194 vm_page_sunbusy(m);
1195 return (0);
1196 }
1197 return (1);
1198 }
1199
1200 /*
1201 * vm_page_tryxbusy:
1202 *
1203 * Try to exclusive busy a page.
1204 * If the operation succeeds 1 is returned otherwise 0.
1205 * The operation never sleeps.
1206 */
1207 int
vm_page_tryxbusy(vm_page_t m)1208 vm_page_tryxbusy(vm_page_t m)
1209 {
1210 vm_object_t obj;
1211
1212 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1213 VPB_CURTHREAD_EXCLUSIVE) == 0)
1214 return (0);
1215
1216 obj = m->object;
1217 if (obj != NULL && vm_object_busied(obj)) {
1218 vm_page_xunbusy(m);
1219 return (0);
1220 }
1221 return (1);
1222 }
1223
1224 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1225 vm_page_xunbusy_hard_tail(vm_page_t m)
1226 {
1227 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1228 /* Wake the waiter. */
1229 wakeup(m);
1230 }
1231
1232 /*
1233 * vm_page_xunbusy_hard:
1234 *
1235 * Called when unbusy has failed because there is a waiter.
1236 */
1237 void
vm_page_xunbusy_hard(vm_page_t m)1238 vm_page_xunbusy_hard(vm_page_t m)
1239 {
1240 vm_page_assert_xbusied(m);
1241 vm_page_xunbusy_hard_tail(m);
1242 }
1243
1244 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1245 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1246 {
1247 vm_page_assert_xbusied_unchecked(m);
1248 vm_page_xunbusy_hard_tail(m);
1249 }
1250
1251 static void
vm_page_busy_free(vm_page_t m)1252 vm_page_busy_free(vm_page_t m)
1253 {
1254 u_int x;
1255
1256 atomic_thread_fence_rel();
1257 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1258 if ((x & VPB_BIT_WAITERS) != 0)
1259 wakeup(m);
1260 }
1261
1262 /*
1263 * vm_page_unhold_pages:
1264 *
1265 * Unhold each of the pages that is referenced by the given array.
1266 */
1267 void
vm_page_unhold_pages(vm_page_t * ma,int count)1268 vm_page_unhold_pages(vm_page_t *ma, int count)
1269 {
1270
1271 for (; count != 0; count--) {
1272 vm_page_unwire(*ma, PQ_ACTIVE);
1273 ma++;
1274 }
1275 }
1276
1277 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1278 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1279 {
1280 vm_page_t m;
1281
1282 #ifdef VM_PHYSSEG_SPARSE
1283 m = vm_phys_paddr_to_vm_page(pa);
1284 if (m == NULL)
1285 m = vm_phys_fictitious_to_vm_page(pa);
1286 return (m);
1287 #elif defined(VM_PHYSSEG_DENSE)
1288 long pi;
1289
1290 pi = atop(pa);
1291 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1292 m = &vm_page_array[pi - first_page];
1293 return (m);
1294 }
1295 return (vm_phys_fictitious_to_vm_page(pa));
1296 #else
1297 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1298 #endif
1299 }
1300
1301 /*
1302 * vm_page_getfake:
1303 *
1304 * Create a fictitious page with the specified physical address and
1305 * memory attribute. The memory attribute is the only the machine-
1306 * dependent aspect of a fictitious page that must be initialized.
1307 */
1308 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1309 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1310 {
1311 vm_page_t m;
1312
1313 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1314 vm_page_initfake(m, paddr, memattr);
1315 return (m);
1316 }
1317
1318 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1319 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1320 {
1321
1322 if ((m->flags & PG_FICTITIOUS) != 0) {
1323 /*
1324 * The page's memattr might have changed since the
1325 * previous initialization. Update the pmap to the
1326 * new memattr.
1327 */
1328 goto memattr;
1329 }
1330 m->phys_addr = paddr;
1331 m->a.queue = PQ_NONE;
1332 /* Fictitious pages don't use "segind". */
1333 m->flags = PG_FICTITIOUS;
1334 /* Fictitious pages don't use "order" or "pool". */
1335 m->oflags = VPO_UNMANAGED;
1336 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1337 /* Fictitious pages are unevictable. */
1338 m->ref_count = 1;
1339 pmap_page_init(m);
1340 memattr:
1341 pmap_page_set_memattr(m, memattr);
1342 }
1343
1344 /*
1345 * vm_page_putfake:
1346 *
1347 * Release a fictitious page.
1348 */
1349 void
vm_page_putfake(vm_page_t m)1350 vm_page_putfake(vm_page_t m)
1351 {
1352
1353 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1354 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1355 ("vm_page_putfake: bad page %p", m));
1356 vm_page_assert_xbusied(m);
1357 vm_page_busy_free(m);
1358 uma_zfree(fakepg_zone, m);
1359 }
1360
1361 /*
1362 * vm_page_updatefake:
1363 *
1364 * Update the given fictitious page to the specified physical address and
1365 * memory attribute.
1366 */
1367 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1368 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1369 {
1370
1371 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1372 ("vm_page_updatefake: bad page %p", m));
1373 m->phys_addr = paddr;
1374 pmap_page_set_memattr(m, memattr);
1375 }
1376
1377 /*
1378 * vm_page_free:
1379 *
1380 * Free a page.
1381 */
1382 void
vm_page_free(vm_page_t m)1383 vm_page_free(vm_page_t m)
1384 {
1385
1386 m->flags &= ~PG_ZERO;
1387 vm_page_free_toq(m);
1388 }
1389
1390 /*
1391 * vm_page_free_zero:
1392 *
1393 * Free a page to the zerod-pages queue
1394 */
1395 void
vm_page_free_zero(vm_page_t m)1396 vm_page_free_zero(vm_page_t m)
1397 {
1398
1399 m->flags |= PG_ZERO;
1400 vm_page_free_toq(m);
1401 }
1402
1403 /*
1404 * Unbusy and handle the page queueing for a page from a getpages request that
1405 * was optionally read ahead or behind.
1406 */
1407 void
vm_page_readahead_finish(vm_page_t m)1408 vm_page_readahead_finish(vm_page_t m)
1409 {
1410
1411 /* We shouldn't put invalid pages on queues. */
1412 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1413
1414 /*
1415 * Since the page is not the actually needed one, whether it should
1416 * be activated or deactivated is not obvious. Empirical results
1417 * have shown that deactivating the page is usually the best choice,
1418 * unless the page is wanted by another thread.
1419 */
1420 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1421 vm_page_activate(m);
1422 else
1423 vm_page_deactivate(m);
1424 vm_page_xunbusy_unchecked(m);
1425 }
1426
1427 /*
1428 * Destroy the identity of an invalid page and free it if possible.
1429 * This is intended to be used when reading a page from backing store fails.
1430 */
1431 void
vm_page_free_invalid(vm_page_t m)1432 vm_page_free_invalid(vm_page_t m)
1433 {
1434
1435 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1436 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1437 KASSERT(m->object != NULL, ("page %p has no object", m));
1438 VM_OBJECT_ASSERT_WLOCKED(m->object);
1439
1440 /*
1441 * We may be attempting to free the page as part of the handling for an
1442 * I/O error, in which case the page was xbusied by a different thread.
1443 */
1444 vm_page_xbusy_claim(m);
1445
1446 /*
1447 * If someone has wired this page while the object lock
1448 * was not held, then the thread that unwires is responsible
1449 * for freeing the page. Otherwise just free the page now.
1450 * The wire count of this unmapped page cannot change while
1451 * we have the page xbusy and the page's object wlocked.
1452 */
1453 if (vm_page_remove(m))
1454 vm_page_free(m);
1455 }
1456
1457 /*
1458 * vm_page_dirty_KBI: [ internal use only ]
1459 *
1460 * Set all bits in the page's dirty field.
1461 *
1462 * The object containing the specified page must be locked if the
1463 * call is made from the machine-independent layer.
1464 *
1465 * See vm_page_clear_dirty_mask().
1466 *
1467 * This function should only be called by vm_page_dirty().
1468 */
1469 void
vm_page_dirty_KBI(vm_page_t m)1470 vm_page_dirty_KBI(vm_page_t m)
1471 {
1472
1473 /* Refer to this operation by its public name. */
1474 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1475 m->dirty = VM_PAGE_BITS_ALL;
1476 }
1477
1478 /*
1479 * Insert the given page into the given object at the given pindex. mpred is
1480 * used for memq linkage. From vm_page_insert, lookup is true, mpred is
1481 * initially NULL, and this procedure looks it up. From vm_page_insert_after
1482 * and vm_page_iter_insert, lookup is false and mpred is known to the caller
1483 * to be valid, and may be NULL if this will be the page with the lowest
1484 * pindex.
1485 *
1486 * The procedure is marked __always_inline to suggest to the compiler to
1487 * eliminate the lookup parameter and the associated alternate branch.
1488 */
1489 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages,bool iter,vm_page_t mpred,bool lookup)1490 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1491 struct pctrie_iter *pages, bool iter, vm_page_t mpred, bool lookup)
1492 {
1493 int error;
1494
1495 VM_OBJECT_ASSERT_WLOCKED(object);
1496 KASSERT(m->object == NULL,
1497 ("vm_page_insert: page %p already inserted", m));
1498
1499 /*
1500 * Record the object/offset pair in this page.
1501 */
1502 m->object = object;
1503 m->pindex = pindex;
1504 m->ref_count |= VPRC_OBJREF;
1505
1506 /*
1507 * Add this page to the object's radix tree, and look up mpred if
1508 * needed.
1509 */
1510 if (iter) {
1511 KASSERT(!lookup, ("%s: cannot lookup mpred", __func__));
1512 error = vm_radix_iter_insert(pages, m);
1513 } else if (lookup)
1514 error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred);
1515 else
1516 error = vm_radix_insert(&object->rtree, m);
1517 if (__predict_false(error != 0)) {
1518 m->object = NULL;
1519 m->pindex = 0;
1520 m->ref_count &= ~VPRC_OBJREF;
1521 return (1);
1522 }
1523
1524 /*
1525 * Now link into the object's ordered list of backed pages.
1526 */
1527 vm_page_insert_radixdone(m, object, mpred);
1528 vm_pager_page_inserted(object, m);
1529 return (0);
1530 }
1531
1532 /*
1533 * vm_page_insert: [ internal use only ]
1534 *
1535 * Inserts the given mem entry into the object and object list.
1536 *
1537 * The object must be locked.
1538 */
1539 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1540 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1541 {
1542 return (vm_page_insert_lookup(m, object, pindex, NULL, false, NULL,
1543 true));
1544 }
1545
1546 /*
1547 * vm_page_insert_after:
1548 *
1549 * Inserts the page "m" into the specified object at offset "pindex".
1550 *
1551 * The page "mpred" must immediately precede the offset "pindex" within
1552 * the specified object.
1553 *
1554 * The object must be locked.
1555 */
1556 static int
vm_page_insert_after(vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1557 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1558 vm_page_t mpred)
1559 {
1560 return (vm_page_insert_lookup(m, object, pindex, NULL, false, mpred,
1561 false));
1562 }
1563
1564 /*
1565 * vm_page_iter_insert:
1566 *
1567 * Tries to insert the page "m" into the specified object at offset
1568 * "pindex" using the iterator "pages". Returns 0 if the insertion was
1569 * successful.
1570 *
1571 * The page "mpred" must immediately precede the offset "pindex" within
1572 * the specified object.
1573 *
1574 * The object must be locked.
1575 */
1576 static int
vm_page_iter_insert(struct pctrie_iter * pages,vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1577 vm_page_iter_insert(struct pctrie_iter *pages, vm_page_t m, vm_object_t object,
1578 vm_pindex_t pindex, vm_page_t mpred)
1579 {
1580 return (vm_page_insert_lookup(m, object, pindex, pages, true, mpred,
1581 false));
1582 }
1583
1584 /*
1585 * vm_page_insert_radixdone:
1586 *
1587 * Complete page "m" insertion into the specified object after the
1588 * radix trie hooking.
1589 *
1590 * The page "mpred" must precede the offset "m->pindex" within the
1591 * specified object.
1592 *
1593 * The object must be locked.
1594 */
1595 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object,vm_page_t mpred)1596 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1597 {
1598
1599 VM_OBJECT_ASSERT_WLOCKED(object);
1600 KASSERT(object != NULL && m->object == object,
1601 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1602 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1603 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1604 if (mpred != NULL) {
1605 KASSERT(mpred->object == object,
1606 ("vm_page_insert_radixdone: object doesn't contain mpred"));
1607 KASSERT(mpred->pindex < m->pindex,
1608 ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1609 KASSERT(TAILQ_NEXT(mpred, listq) == NULL ||
1610 m->pindex < TAILQ_NEXT(mpred, listq)->pindex,
1611 ("vm_page_insert_radixdone: pindex doesn't precede msucc"));
1612 } else {
1613 KASSERT(TAILQ_EMPTY(&object->memq) ||
1614 m->pindex < TAILQ_FIRST(&object->memq)->pindex,
1615 ("vm_page_insert_radixdone: no mpred but not first page"));
1616 }
1617
1618 if (mpred != NULL)
1619 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1620 else
1621 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1622
1623 /*
1624 * Show that the object has one more resident page.
1625 */
1626 object->resident_page_count++;
1627
1628 /*
1629 * Hold the vnode until the last page is released.
1630 */
1631 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1632 vhold(object->handle);
1633
1634 /*
1635 * Since we are inserting a new and possibly dirty page,
1636 * update the object's generation count.
1637 */
1638 if (pmap_page_is_write_mapped(m))
1639 vm_object_set_writeable_dirty(object);
1640 }
1641
1642 /*
1643 * vm_page_remove_radixdone
1644 *
1645 * Complete page "m" removal from the specified object after the radix trie
1646 * unhooking.
1647 *
1648 * The caller is responsible for updating the page's fields to reflect this
1649 * removal.
1650 */
1651 static void
vm_page_remove_radixdone(vm_page_t m)1652 vm_page_remove_radixdone(vm_page_t m)
1653 {
1654 vm_object_t object;
1655
1656 vm_page_assert_xbusied(m);
1657 object = m->object;
1658 VM_OBJECT_ASSERT_WLOCKED(object);
1659 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1660 ("page %p is missing its object ref", m));
1661
1662 /* Deferred free of swap space. */
1663 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1664 vm_pager_page_unswapped(m);
1665
1666 vm_pager_page_removed(object, m);
1667 m->object = NULL;
1668
1669 /*
1670 * Now remove from the object's list of backed pages.
1671 */
1672 TAILQ_REMOVE(&object->memq, m, listq);
1673
1674 /*
1675 * And show that the object has one fewer resident page.
1676 */
1677 object->resident_page_count--;
1678
1679 /*
1680 * The vnode may now be recycled.
1681 */
1682 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1683 vdrop(object->handle);
1684 }
1685
1686 /*
1687 * vm_page_free_object_prep:
1688 *
1689 * Disassociates the given page from its VM object.
1690 *
1691 * The object must be locked, and the page must be xbusy.
1692 */
1693 static void
vm_page_free_object_prep(vm_page_t m)1694 vm_page_free_object_prep(vm_page_t m)
1695 {
1696 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1697 ((m->object->flags & OBJ_UNMANAGED) != 0),
1698 ("%s: managed flag mismatch for page %p",
1699 __func__, m));
1700 vm_page_assert_xbusied(m);
1701
1702 /*
1703 * The object reference can be released without an atomic
1704 * operation.
1705 */
1706 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1707 m->ref_count == VPRC_OBJREF,
1708 ("%s: page %p has unexpected ref_count %u",
1709 __func__, m, m->ref_count));
1710 vm_page_remove_radixdone(m);
1711 m->ref_count -= VPRC_OBJREF;
1712 }
1713
1714 /*
1715 * vm_page_iter_free:
1716 *
1717 * Free the given page, and use the iterator to remove it from the radix
1718 * tree.
1719 */
1720 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1721 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1722 {
1723 vm_radix_iter_remove(pages);
1724 vm_page_free_object_prep(m);
1725 vm_page_xunbusy(m);
1726 m->flags &= ~PG_ZERO;
1727 vm_page_free_toq(m);
1728 }
1729
1730 /*
1731 * vm_page_remove:
1732 *
1733 * Removes the specified page from its containing object, but does not
1734 * invalidate any backing storage. Returns true if the object's reference
1735 * was the last reference to the page, and false otherwise.
1736 *
1737 * The object must be locked and the page must be exclusively busied.
1738 * The exclusive busy will be released on return. If this is not the
1739 * final ref and the caller does not hold a wire reference it may not
1740 * continue to access the page.
1741 */
1742 bool
vm_page_remove(vm_page_t m)1743 vm_page_remove(vm_page_t m)
1744 {
1745 bool dropped;
1746
1747 dropped = vm_page_remove_xbusy(m);
1748 vm_page_xunbusy(m);
1749
1750 return (dropped);
1751 }
1752
1753 /*
1754 * vm_page_iter_remove:
1755 *
1756 * Remove the current page, and use the iterator to remove it from the
1757 * radix tree.
1758 */
1759 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1760 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1761 {
1762 bool dropped;
1763
1764 vm_radix_iter_remove(pages);
1765 vm_page_remove_radixdone(m);
1766 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1767 vm_page_xunbusy(m);
1768
1769 return (dropped);
1770 }
1771
1772 /*
1773 * vm_page_radix_remove
1774 *
1775 * Removes the specified page from the radix tree.
1776 */
1777 static void
vm_page_radix_remove(vm_page_t m)1778 vm_page_radix_remove(vm_page_t m)
1779 {
1780 vm_page_t mrem __diagused;
1781
1782 mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1783 KASSERT(mrem == m,
1784 ("removed page %p, expected page %p", mrem, m));
1785 }
1786
1787 /*
1788 * vm_page_remove_xbusy
1789 *
1790 * Removes the page but leaves the xbusy held. Returns true if this
1791 * removed the final ref and false otherwise.
1792 */
1793 bool
vm_page_remove_xbusy(vm_page_t m)1794 vm_page_remove_xbusy(vm_page_t m)
1795 {
1796
1797 vm_page_radix_remove(m);
1798 vm_page_remove_radixdone(m);
1799 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1800 }
1801
1802 /*
1803 * vm_page_lookup:
1804 *
1805 * Returns the page associated with the object/offset
1806 * pair specified; if none is found, NULL is returned.
1807 *
1808 * The object must be locked.
1809 */
1810 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1811 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1812 {
1813
1814 VM_OBJECT_ASSERT_LOCKED(object);
1815 return (vm_radix_lookup(&object->rtree, pindex));
1816 }
1817
1818 /*
1819 * vm_page_iter_init:
1820 *
1821 * Initialize iterator for vm pages.
1822 */
1823 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1824 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1825 {
1826
1827 vm_radix_iter_init(pages, &object->rtree);
1828 }
1829
1830 /*
1831 * vm_page_iter_init:
1832 *
1833 * Initialize iterator for vm pages.
1834 */
1835 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1836 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1837 vm_pindex_t limit)
1838 {
1839
1840 vm_radix_iter_limit_init(pages, &object->rtree, limit);
1841 }
1842
1843 /*
1844 * vm_page_iter_lookup:
1845 *
1846 * Returns the page associated with the object/offset pair specified, and
1847 * stores the path to its position; if none is found, NULL is returned.
1848 *
1849 * The iter pctrie must be locked.
1850 */
1851 vm_page_t
vm_page_iter_lookup(struct pctrie_iter * pages,vm_pindex_t pindex)1852 vm_page_iter_lookup(struct pctrie_iter *pages, vm_pindex_t pindex)
1853 {
1854
1855 return (vm_radix_iter_lookup(pages, pindex));
1856 }
1857
1858 /*
1859 * vm_page_lookup_unlocked:
1860 *
1861 * Returns the page associated with the object/offset pair specified;
1862 * if none is found, NULL is returned. The page may be no longer be
1863 * present in the object at the time that this function returns. Only
1864 * useful for opportunistic checks such as inmem().
1865 */
1866 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1867 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1868 {
1869
1870 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1871 }
1872
1873 /*
1874 * vm_page_relookup:
1875 *
1876 * Returns a page that must already have been busied by
1877 * the caller. Used for bogus page replacement.
1878 */
1879 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1880 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1881 {
1882 vm_page_t m;
1883
1884 m = vm_page_lookup_unlocked(object, pindex);
1885 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1886 m->object == object && m->pindex == pindex,
1887 ("vm_page_relookup: Invalid page %p", m));
1888 return (m);
1889 }
1890
1891 /*
1892 * This should only be used by lockless functions for releasing transient
1893 * incorrect acquires. The page may have been freed after we acquired a
1894 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1895 * further to do.
1896 */
1897 static void
vm_page_busy_release(vm_page_t m)1898 vm_page_busy_release(vm_page_t m)
1899 {
1900 u_int x;
1901
1902 x = vm_page_busy_fetch(m);
1903 for (;;) {
1904 if (x == VPB_FREED)
1905 break;
1906 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1907 if (atomic_fcmpset_int(&m->busy_lock, &x,
1908 x - VPB_ONE_SHARER))
1909 break;
1910 continue;
1911 }
1912 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1913 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1914 ("vm_page_busy_release: %p xbusy not owned.", m));
1915 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1916 continue;
1917 if ((x & VPB_BIT_WAITERS) != 0)
1918 wakeup(m);
1919 break;
1920 }
1921 }
1922
1923 /*
1924 * vm_page_find_least:
1925 *
1926 * Returns the page associated with the object with least pindex
1927 * greater than or equal to the parameter pindex, or NULL.
1928 *
1929 * The object must be locked.
1930 */
1931 vm_page_t
vm_page_find_least(vm_object_t object,vm_pindex_t pindex)1932 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1933 {
1934 vm_page_t m;
1935
1936 VM_OBJECT_ASSERT_LOCKED(object);
1937 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1938 m = vm_radix_lookup_ge(&object->rtree, pindex);
1939 return (m);
1940 }
1941
1942 /*
1943 * vm_page_iter_lookup_ge:
1944 *
1945 * Returns the page associated with the object with least pindex
1946 * greater than or equal to the parameter pindex, or NULL. Initializes the
1947 * iterator to point to that page.
1948 *
1949 * The iter pctrie must be locked.
1950 */
1951 vm_page_t
vm_page_iter_lookup_ge(struct pctrie_iter * pages,vm_pindex_t pindex)1952 vm_page_iter_lookup_ge(struct pctrie_iter *pages, vm_pindex_t pindex)
1953 {
1954
1955 return (vm_radix_iter_lookup_ge(pages, pindex));
1956 }
1957
1958 /*
1959 * Returns the given page's successor (by pindex) within the object if it is
1960 * resident; if none is found, NULL is returned.
1961 *
1962 * The object must be locked.
1963 */
1964 vm_page_t
vm_page_next(vm_page_t m)1965 vm_page_next(vm_page_t m)
1966 {
1967 vm_page_t next;
1968
1969 VM_OBJECT_ASSERT_LOCKED(m->object);
1970 if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1971 MPASS(next->object == m->object);
1972 if (next->pindex != m->pindex + 1)
1973 next = NULL;
1974 }
1975 return (next);
1976 }
1977
1978 /*
1979 * Returns the given page's predecessor (by pindex) within the object if it is
1980 * resident; if none is found, NULL is returned.
1981 *
1982 * The object must be locked.
1983 */
1984 vm_page_t
vm_page_prev(vm_page_t m)1985 vm_page_prev(vm_page_t m)
1986 {
1987 vm_page_t prev;
1988
1989 VM_OBJECT_ASSERT_LOCKED(m->object);
1990 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1991 MPASS(prev->object == m->object);
1992 if (prev->pindex != m->pindex - 1)
1993 prev = NULL;
1994 }
1995 return (prev);
1996 }
1997
1998 /*
1999 * Uses the page mnew as a replacement for an existing page at index
2000 * pindex which must be already present in the object.
2001 *
2002 * Both pages must be exclusively busied on enter. The old page is
2003 * unbusied on exit.
2004 *
2005 * A return value of true means mold is now free. If this is not the
2006 * final ref and the caller does not hold a wire reference it may not
2007 * continue to access the page.
2008 */
2009 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)2010 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2011 vm_page_t mold)
2012 {
2013 vm_page_t mret __diagused;
2014 bool dropped;
2015
2016 VM_OBJECT_ASSERT_WLOCKED(object);
2017 vm_page_assert_xbusied(mold);
2018 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
2019 ("vm_page_replace: page %p already in object", mnew));
2020
2021 /*
2022 * This function mostly follows vm_page_insert() and
2023 * vm_page_remove() without the radix, object count and vnode
2024 * dance. Double check such functions for more comments.
2025 */
2026
2027 mnew->object = object;
2028 mnew->pindex = pindex;
2029 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
2030 mret = vm_radix_replace(&object->rtree, mnew);
2031 KASSERT(mret == mold,
2032 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
2033 KASSERT((mold->oflags & VPO_UNMANAGED) ==
2034 (mnew->oflags & VPO_UNMANAGED),
2035 ("vm_page_replace: mismatched VPO_UNMANAGED"));
2036
2037 /* Keep the resident page list in sorted order. */
2038 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
2039 TAILQ_REMOVE(&object->memq, mold, listq);
2040 mold->object = NULL;
2041
2042 /*
2043 * The object's resident_page_count does not change because we have
2044 * swapped one page for another, but the generation count should
2045 * change if the page is dirty.
2046 */
2047 if (pmap_page_is_write_mapped(mnew))
2048 vm_object_set_writeable_dirty(object);
2049 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
2050 vm_page_xunbusy(mold);
2051
2052 return (dropped);
2053 }
2054
2055 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)2056 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2057 vm_page_t mold)
2058 {
2059
2060 vm_page_assert_xbusied(mnew);
2061
2062 if (vm_page_replace_hold(mnew, object, pindex, mold))
2063 vm_page_free(mold);
2064 }
2065
2066 /*
2067 * vm_page_iter_rename:
2068 *
2069 * Tries to move the specified page from its current object to a new object
2070 * and pindex, using the given iterator to remove the page from its current
2071 * object. Returns true if the move was successful, and false if the move
2072 * was aborted due to a failed memory allocation.
2073 *
2074 * Panics if a page already resides in the new object at the new pindex.
2075 *
2076 * Note: swap associated with the page must be invalidated by the move. We
2077 * have to do this for several reasons: (1) we aren't freeing the
2078 * page, (2) we are dirtying the page, (3) the VM system is probably
2079 * moving the page from object A to B, and will then later move
2080 * the backing store from A to B and we can't have a conflict.
2081 *
2082 * Note: we *always* dirty the page. It is necessary both for the
2083 * fact that we moved it, and because we may be invalidating
2084 * swap.
2085 *
2086 * The objects must be locked.
2087 */
2088 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)2089 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
2090 vm_object_t new_object, vm_pindex_t new_pindex)
2091 {
2092 vm_page_t mpred;
2093 vm_pindex_t opidx;
2094
2095 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
2096 ("%s: page %p is missing object ref", __func__, m));
2097 VM_OBJECT_ASSERT_WLOCKED(m->object);
2098 VM_OBJECT_ASSERT_WLOCKED(new_object);
2099
2100 /*
2101 * Create a custom version of vm_page_insert() which does not depend
2102 * by m_prev and can cheat on the implementation aspects of the
2103 * function.
2104 */
2105 opidx = m->pindex;
2106 m->pindex = new_pindex;
2107 if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) {
2108 m->pindex = opidx;
2109 return (false);
2110 }
2111
2112 /*
2113 * The operation cannot fail anymore. The removal must happen before
2114 * the listq iterator is tainted.
2115 */
2116 m->pindex = opidx;
2117 vm_radix_iter_remove(old_pages);
2118 vm_page_remove_radixdone(m);
2119
2120 /* Return back to the new pindex to complete vm_page_insert(). */
2121 m->pindex = new_pindex;
2122 m->object = new_object;
2123
2124 vm_page_insert_radixdone(m, new_object, mpred);
2125 vm_page_dirty(m);
2126 vm_pager_page_inserted(new_object, m);
2127 return (true);
2128 }
2129
2130 /*
2131 * vm_page_mpred:
2132 *
2133 * Return the greatest page of the object with index <= pindex,
2134 * or NULL, if there is none. Assumes object lock is held.
2135 */
2136 vm_page_t
vm_page_mpred(vm_object_t object,vm_pindex_t pindex)2137 vm_page_mpred(vm_object_t object, vm_pindex_t pindex)
2138 {
2139 return (vm_radix_lookup_le(&object->rtree, pindex));
2140 }
2141
2142 /*
2143 * vm_page_alloc:
2144 *
2145 * Allocate and return a page that is associated with the specified
2146 * object and offset pair. By default, this page is exclusive busied.
2147 *
2148 * The caller must always specify an allocation class.
2149 *
2150 * allocation classes:
2151 * VM_ALLOC_NORMAL normal process request
2152 * VM_ALLOC_SYSTEM system *really* needs a page
2153 * VM_ALLOC_INTERRUPT interrupt time request
2154 *
2155 * optional allocation flags:
2156 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
2157 * intends to allocate
2158 * VM_ALLOC_NOBUSY do not exclusive busy the page
2159 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2160 * VM_ALLOC_SBUSY shared busy the allocated page
2161 * VM_ALLOC_WIRED wire the allocated page
2162 * VM_ALLOC_ZERO prefer a zeroed page
2163 */
2164 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)2165 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
2166 {
2167
2168 return (vm_page_alloc_after(object, pindex, req,
2169 vm_page_mpred(object, pindex)));
2170 }
2171
2172 /*
2173 * Allocate a page in the specified object with the given page index. To
2174 * optimize insertion of the page into the object, the caller must also specify
2175 * the resident page in the object with largest index smaller than the given
2176 * page index, or NULL if no such page exists.
2177 */
2178 static vm_page_t
vm_page_alloc_after(vm_object_t object,vm_pindex_t pindex,int req,vm_page_t mpred)2179 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
2180 int req, vm_page_t mpred)
2181 {
2182 struct vm_domainset_iter di;
2183 vm_page_t m;
2184 int domain;
2185
2186 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2187 do {
2188 m = vm_page_alloc_domain_after(object, pindex, domain, req,
2189 mpred);
2190 if (m != NULL)
2191 break;
2192 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2193
2194 return (m);
2195 }
2196
2197 /*
2198 * Returns true if the number of free pages exceeds the minimum
2199 * for the request class and false otherwise.
2200 */
2201 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2202 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2203 {
2204 u_int limit, old, new;
2205
2206 if (req_class == VM_ALLOC_INTERRUPT)
2207 limit = 0;
2208 else if (req_class == VM_ALLOC_SYSTEM)
2209 limit = vmd->vmd_interrupt_free_min;
2210 else
2211 limit = vmd->vmd_free_reserved;
2212
2213 /*
2214 * Attempt to reserve the pages. Fail if we're below the limit.
2215 */
2216 limit += npages;
2217 old = atomic_load_int(&vmd->vmd_free_count);
2218 do {
2219 if (old < limit)
2220 return (0);
2221 new = old - npages;
2222 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2223
2224 /* Wake the page daemon if we've crossed the threshold. */
2225 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2226 pagedaemon_wakeup(vmd->vmd_domain);
2227
2228 /* Only update bitsets on transitions. */
2229 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2230 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2231 vm_domain_set(vmd);
2232
2233 return (1);
2234 }
2235
2236 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2237 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2238 {
2239 int req_class;
2240
2241 /*
2242 * The page daemon is allowed to dig deeper into the free page list.
2243 */
2244 req_class = req & VM_ALLOC_CLASS_MASK;
2245 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2246 req_class = VM_ALLOC_SYSTEM;
2247 return (_vm_domain_allocate(vmd, req_class, npages));
2248 }
2249
2250 vm_page_t
vm_page_alloc_domain_after(vm_object_t object,vm_pindex_t pindex,int domain,int req,vm_page_t mpred)2251 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2252 int req, vm_page_t mpred)
2253 {
2254 struct vm_domain *vmd;
2255 vm_page_t m;
2256 int flags;
2257
2258 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2259 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \
2260 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \
2261 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2262 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2263 KASSERT((req & ~VPA_FLAGS) == 0,
2264 ("invalid request %#x", req));
2265 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2266 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2267 ("invalid request %#x", req));
2268 KASSERT(mpred == NULL || mpred->pindex < pindex,
2269 ("mpred %p doesn't precede pindex 0x%jx", mpred,
2270 (uintmax_t)pindex));
2271 VM_OBJECT_ASSERT_WLOCKED(object);
2272
2273 flags = 0;
2274 m = NULL;
2275 if (!vm_pager_can_alloc_page(object, pindex))
2276 return (NULL);
2277 again:
2278 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2279 m = vm_page_alloc_nofree_domain(domain, req);
2280 if (m != NULL)
2281 goto found;
2282 }
2283 #if VM_NRESERVLEVEL > 0
2284 /*
2285 * Can we allocate the page from a reservation?
2286 */
2287 if (vm_object_reserv(object) &&
2288 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2289 NULL) {
2290 goto found;
2291 }
2292 #endif
2293 vmd = VM_DOMAIN(domain);
2294 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2295 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2296 M_NOWAIT | M_NOVM);
2297 if (m != NULL) {
2298 flags |= PG_PCPU_CACHE;
2299 goto found;
2300 }
2301 }
2302 if (vm_domain_allocate(vmd, req, 1)) {
2303 /*
2304 * If not, allocate it from the free page queues.
2305 */
2306 vm_domain_free_lock(vmd);
2307 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2308 vm_domain_free_unlock(vmd);
2309 if (m == NULL) {
2310 vm_domain_freecnt_inc(vmd, 1);
2311 #if VM_NRESERVLEVEL > 0
2312 if (vm_reserv_reclaim_inactive(domain))
2313 goto again;
2314 #endif
2315 }
2316 }
2317 if (m == NULL) {
2318 /*
2319 * Not allocatable, give up.
2320 */
2321 if (vm_domain_alloc_fail(vmd, object, req))
2322 goto again;
2323 return (NULL);
2324 }
2325
2326 /*
2327 * At this point we had better have found a good page.
2328 */
2329 found:
2330 vm_page_dequeue(m);
2331 vm_page_alloc_check(m);
2332
2333 /*
2334 * Initialize the page. Only the PG_ZERO flag is inherited.
2335 */
2336 flags |= m->flags & PG_ZERO;
2337 if ((req & VM_ALLOC_NODUMP) != 0)
2338 flags |= PG_NODUMP;
2339 if ((req & VM_ALLOC_NOFREE) != 0)
2340 flags |= PG_NOFREE;
2341 m->flags = flags;
2342 m->a.flags = 0;
2343 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2344 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2345 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2346 else if ((req & VM_ALLOC_SBUSY) != 0)
2347 m->busy_lock = VPB_SHARERS_WORD(1);
2348 else
2349 m->busy_lock = VPB_UNBUSIED;
2350 if (req & VM_ALLOC_WIRED) {
2351 vm_wire_add(1);
2352 m->ref_count = 1;
2353 }
2354 m->a.act_count = 0;
2355
2356 if (vm_page_insert_after(m, object, pindex, mpred)) {
2357 if (req & VM_ALLOC_WIRED) {
2358 vm_wire_sub(1);
2359 m->ref_count = 0;
2360 }
2361 KASSERT(m->object == NULL, ("page %p has object", m));
2362 m->oflags = VPO_UNMANAGED;
2363 m->busy_lock = VPB_UNBUSIED;
2364 /* Don't change PG_ZERO. */
2365 vm_page_free_toq(m);
2366 if (req & VM_ALLOC_WAITFAIL) {
2367 VM_OBJECT_WUNLOCK(object);
2368 vm_radix_wait();
2369 VM_OBJECT_WLOCK(object);
2370 }
2371 return (NULL);
2372 }
2373
2374 /* Ignore device objects; the pager sets "memattr" for them. */
2375 if (object->memattr != VM_MEMATTR_DEFAULT &&
2376 (object->flags & OBJ_FICTITIOUS) == 0)
2377 pmap_page_set_memattr(m, object->memattr);
2378
2379 return (m);
2380 }
2381
2382 /*
2383 * vm_page_alloc_contig:
2384 *
2385 * Allocate a contiguous set of physical pages of the given size "npages"
2386 * from the free lists. All of the physical pages must be at or above
2387 * the given physical address "low" and below the given physical address
2388 * "high". The given value "alignment" determines the alignment of the
2389 * first physical page in the set. If the given value "boundary" is
2390 * non-zero, then the set of physical pages cannot cross any physical
2391 * address boundary that is a multiple of that value. Both "alignment"
2392 * and "boundary" must be a power of two.
2393 *
2394 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2395 * then the memory attribute setting for the physical pages is configured
2396 * to the object's memory attribute setting. Otherwise, the memory
2397 * attribute setting for the physical pages is configured to "memattr",
2398 * overriding the object's memory attribute setting. However, if the
2399 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2400 * memory attribute setting for the physical pages cannot be configured
2401 * to VM_MEMATTR_DEFAULT.
2402 *
2403 * The specified object may not contain fictitious pages.
2404 *
2405 * The caller must always specify an allocation class.
2406 *
2407 * allocation classes:
2408 * VM_ALLOC_NORMAL normal process request
2409 * VM_ALLOC_SYSTEM system *really* needs a page
2410 * VM_ALLOC_INTERRUPT interrupt time request
2411 *
2412 * optional allocation flags:
2413 * VM_ALLOC_NOBUSY do not exclusive busy the page
2414 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2415 * VM_ALLOC_SBUSY shared busy the allocated page
2416 * VM_ALLOC_WIRED wire the allocated page
2417 * VM_ALLOC_ZERO prefer a zeroed page
2418 */
2419 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2420 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2421 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2422 vm_paddr_t boundary, vm_memattr_t memattr)
2423 {
2424 struct vm_domainset_iter di;
2425 vm_page_t bounds[2];
2426 vm_page_t m;
2427 int domain;
2428 int start_segind;
2429
2430 start_segind = -1;
2431
2432 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2433 do {
2434 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2435 npages, low, high, alignment, boundary, memattr);
2436 if (m != NULL)
2437 break;
2438 if (start_segind == -1)
2439 start_segind = vm_phys_lookup_segind(low);
2440 if (vm_phys_find_range(bounds, start_segind, domain,
2441 npages, low, high) == -1) {
2442 vm_domainset_iter_ignore(&di, domain);
2443 }
2444 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2445
2446 return (m);
2447 }
2448
2449 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2450 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2451 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2452 {
2453 struct vm_domain *vmd;
2454 vm_page_t m_ret;
2455
2456 /*
2457 * Can we allocate the pages without the number of free pages falling
2458 * below the lower bound for the allocation class?
2459 */
2460 vmd = VM_DOMAIN(domain);
2461 if (!vm_domain_allocate(vmd, req, npages))
2462 return (NULL);
2463 /*
2464 * Try to allocate the pages from the free page queues.
2465 */
2466 vm_domain_free_lock(vmd);
2467 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2468 alignment, boundary);
2469 vm_domain_free_unlock(vmd);
2470 if (m_ret != NULL)
2471 return (m_ret);
2472 #if VM_NRESERVLEVEL > 0
2473 /*
2474 * Try to break a reservation to allocate the pages.
2475 */
2476 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2477 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2478 high, alignment, boundary);
2479 if (m_ret != NULL)
2480 return (m_ret);
2481 }
2482 #endif
2483 vm_domain_freecnt_inc(vmd, npages);
2484 return (NULL);
2485 }
2486
2487 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2488 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2489 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2490 vm_paddr_t boundary, vm_memattr_t memattr)
2491 {
2492 struct pctrie_iter pages;
2493 vm_page_t m, m_ret, mpred;
2494 u_int busy_lock, flags, oflags;
2495
2496 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM)
2497 KASSERT((req & ~VPAC_FLAGS) == 0,
2498 ("invalid request %#x", req));
2499 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2500 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2501 ("invalid request %#x", req));
2502 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2503 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2504 ("invalid request %#x", req));
2505 VM_OBJECT_ASSERT_WLOCKED(object);
2506 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2507 ("vm_page_alloc_contig: object %p has fictitious pages",
2508 object));
2509 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2510
2511 vm_page_iter_init(&pages, object);
2512 mpred = vm_radix_iter_lookup_le(&pages, pindex);
2513 KASSERT(mpred == NULL || mpred->pindex != pindex,
2514 ("vm_page_alloc_contig: pindex already allocated"));
2515 for (;;) {
2516 #if VM_NRESERVLEVEL > 0
2517 /*
2518 * Can we allocate the pages from a reservation?
2519 */
2520 if (vm_object_reserv(object) &&
2521 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2522 mpred, npages, low, high, alignment, boundary)) != NULL) {
2523 break;
2524 }
2525 #endif
2526 if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2527 low, high, alignment, boundary)) != NULL)
2528 break;
2529 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2530 return (NULL);
2531 }
2532
2533 /*
2534 * Initialize the pages. Only the PG_ZERO flag is inherited.
2535 */
2536 flags = PG_ZERO;
2537 if ((req & VM_ALLOC_NODUMP) != 0)
2538 flags |= PG_NODUMP;
2539 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2540 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2541 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2542 else if ((req & VM_ALLOC_SBUSY) != 0)
2543 busy_lock = VPB_SHARERS_WORD(1);
2544 else
2545 busy_lock = VPB_UNBUSIED;
2546 if ((req & VM_ALLOC_WIRED) != 0)
2547 vm_wire_add(npages);
2548 if (object->memattr != VM_MEMATTR_DEFAULT &&
2549 memattr == VM_MEMATTR_DEFAULT)
2550 memattr = object->memattr;
2551 for (m = m_ret; m < &m_ret[npages]; m++) {
2552 vm_page_dequeue(m);
2553 vm_page_alloc_check(m);
2554 m->a.flags = 0;
2555 m->flags = (m->flags | PG_NODUMP) & flags;
2556 m->busy_lock = busy_lock;
2557 if ((req & VM_ALLOC_WIRED) != 0)
2558 m->ref_count = 1;
2559 m->a.act_count = 0;
2560 m->oflags = oflags;
2561 if (vm_page_iter_insert(&pages, m, object, pindex, mpred)) {
2562 if ((req & VM_ALLOC_WIRED) != 0)
2563 vm_wire_sub(npages);
2564 KASSERT(m->object == NULL,
2565 ("page %p has object", m));
2566 mpred = m;
2567 for (m = m_ret; m < &m_ret[npages]; m++) {
2568 if (m <= mpred &&
2569 (req & VM_ALLOC_WIRED) != 0)
2570 m->ref_count = 0;
2571 m->oflags = VPO_UNMANAGED;
2572 m->busy_lock = VPB_UNBUSIED;
2573 /* Don't change PG_ZERO. */
2574 vm_page_free_toq(m);
2575 }
2576 if (req & VM_ALLOC_WAITFAIL) {
2577 VM_OBJECT_WUNLOCK(object);
2578 vm_radix_wait();
2579 VM_OBJECT_WLOCK(object);
2580 }
2581 return (NULL);
2582 }
2583 mpred = m;
2584 if (memattr != VM_MEMATTR_DEFAULT)
2585 pmap_page_set_memattr(m, memattr);
2586 pindex++;
2587 }
2588 return (m_ret);
2589 }
2590
2591 /*
2592 * Allocate a physical page that is not intended to be inserted into a VM
2593 * object.
2594 */
2595 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2596 vm_page_alloc_noobj_domain(int domain, int req)
2597 {
2598 struct vm_domain *vmd;
2599 vm_page_t m;
2600 int flags;
2601
2602 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2603 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \
2604 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \
2605 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2606 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2607 KASSERT((req & ~VPAN_FLAGS) == 0,
2608 ("invalid request %#x", req));
2609
2610 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2611 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2612 vmd = VM_DOMAIN(domain);
2613 again:
2614 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2615 m = vm_page_alloc_nofree_domain(domain, req);
2616 if (m != NULL)
2617 goto found;
2618 }
2619
2620 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2621 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2622 M_NOWAIT | M_NOVM);
2623 if (m != NULL) {
2624 flags |= PG_PCPU_CACHE;
2625 goto found;
2626 }
2627 }
2628
2629 if (vm_domain_allocate(vmd, req, 1)) {
2630 vm_domain_free_lock(vmd);
2631 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2632 vm_domain_free_unlock(vmd);
2633 if (m == NULL) {
2634 vm_domain_freecnt_inc(vmd, 1);
2635 #if VM_NRESERVLEVEL > 0
2636 if (vm_reserv_reclaim_inactive(domain))
2637 goto again;
2638 #endif
2639 }
2640 }
2641 if (m == NULL) {
2642 if (vm_domain_alloc_fail(vmd, NULL, req))
2643 goto again;
2644 return (NULL);
2645 }
2646
2647 found:
2648 vm_page_dequeue(m);
2649 vm_page_alloc_check(m);
2650
2651 /*
2652 * Consumers should not rely on a useful default pindex value.
2653 */
2654 m->pindex = 0xdeadc0dedeadc0de;
2655 m->flags = (m->flags & PG_ZERO) | flags;
2656 m->a.flags = 0;
2657 m->oflags = VPO_UNMANAGED;
2658 m->busy_lock = VPB_UNBUSIED;
2659 if ((req & VM_ALLOC_WIRED) != 0) {
2660 vm_wire_add(1);
2661 m->ref_count = 1;
2662 }
2663
2664 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2665 pmap_zero_page(m);
2666
2667 return (m);
2668 }
2669
2670 #if VM_NRESERVLEVEL > 1
2671 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2672 #elif VM_NRESERVLEVEL > 0
2673 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER
2674 #else
2675 #define VM_NOFREE_IMPORT_ORDER 8
2676 #endif
2677
2678 /*
2679 * Allocate a single NOFREE page.
2680 *
2681 * This routine hands out NOFREE pages from higher-order
2682 * physical memory blocks in order to reduce memory fragmentation.
2683 * When a NOFREE for a given domain chunk is used up,
2684 * the routine will try to fetch a new one from the freelists
2685 * and discard the old one.
2686 */
2687 static vm_page_t
vm_page_alloc_nofree_domain(int domain,int req)2688 vm_page_alloc_nofree_domain(int domain, int req)
2689 {
2690 vm_page_t m;
2691 struct vm_domain *vmd;
2692 struct vm_nofreeq *nqp;
2693
2694 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2695
2696 vmd = VM_DOMAIN(domain);
2697 nqp = &vmd->vmd_nofreeq;
2698 vm_domain_free_lock(vmd);
2699 if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) {
2700 if (!vm_domain_allocate(vmd, req,
2701 1 << VM_NOFREE_IMPORT_ORDER)) {
2702 vm_domain_free_unlock(vmd);
2703 return (NULL);
2704 }
2705 nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2706 VM_NOFREE_IMPORT_ORDER);
2707 if (nqp->ma == NULL) {
2708 vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER);
2709 vm_domain_free_unlock(vmd);
2710 return (NULL);
2711 }
2712 nqp->offs = 0;
2713 }
2714 m = &nqp->ma[nqp->offs++];
2715 vm_domain_free_unlock(vmd);
2716 VM_CNT_ADD(v_nofree_count, 1);
2717
2718 return (m);
2719 }
2720
2721 vm_page_t
vm_page_alloc_noobj(int req)2722 vm_page_alloc_noobj(int req)
2723 {
2724 struct vm_domainset_iter di;
2725 vm_page_t m;
2726 int domain;
2727
2728 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2729 do {
2730 m = vm_page_alloc_noobj_domain(domain, req);
2731 if (m != NULL)
2732 break;
2733 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2734
2735 return (m);
2736 }
2737
2738 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2739 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2740 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2741 vm_memattr_t memattr)
2742 {
2743 struct vm_domainset_iter di;
2744 vm_page_t m;
2745 int domain;
2746
2747 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2748 do {
2749 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2750 high, alignment, boundary, memattr);
2751 if (m != NULL)
2752 break;
2753 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2754
2755 return (m);
2756 }
2757
2758 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2759 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2760 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2761 vm_memattr_t memattr)
2762 {
2763 vm_page_t m, m_ret;
2764 u_int flags;
2765
2766 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2767 KASSERT((req & ~VPANC_FLAGS) == 0,
2768 ("invalid request %#x", req));
2769 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2770 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2771 ("invalid request %#x", req));
2772 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2773 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2774 ("invalid request %#x", req));
2775 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2776
2777 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2778 low, high, alignment, boundary)) == NULL) {
2779 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2780 return (NULL);
2781 }
2782
2783 /*
2784 * Initialize the pages. Only the PG_ZERO flag is inherited.
2785 */
2786 flags = PG_ZERO;
2787 if ((req & VM_ALLOC_NODUMP) != 0)
2788 flags |= PG_NODUMP;
2789 if ((req & VM_ALLOC_WIRED) != 0)
2790 vm_wire_add(npages);
2791 for (m = m_ret; m < &m_ret[npages]; m++) {
2792 vm_page_dequeue(m);
2793 vm_page_alloc_check(m);
2794
2795 /*
2796 * Consumers should not rely on a useful default pindex value.
2797 */
2798 m->pindex = 0xdeadc0dedeadc0de;
2799 m->a.flags = 0;
2800 m->flags = (m->flags | PG_NODUMP) & flags;
2801 m->busy_lock = VPB_UNBUSIED;
2802 if ((req & VM_ALLOC_WIRED) != 0)
2803 m->ref_count = 1;
2804 m->a.act_count = 0;
2805 m->oflags = VPO_UNMANAGED;
2806
2807 /*
2808 * Zero the page before updating any mappings since the page is
2809 * not yet shared with any devices which might require the
2810 * non-default memory attribute. pmap_page_set_memattr()
2811 * flushes data caches before returning.
2812 */
2813 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2814 pmap_zero_page(m);
2815 if (memattr != VM_MEMATTR_DEFAULT)
2816 pmap_page_set_memattr(m, memattr);
2817 }
2818 return (m_ret);
2819 }
2820
2821 /*
2822 * Check a page that has been freshly dequeued from a freelist.
2823 */
2824 static void
vm_page_alloc_check(vm_page_t m)2825 vm_page_alloc_check(vm_page_t m)
2826 {
2827
2828 KASSERT(m->object == NULL, ("page %p has object", m));
2829 KASSERT(m->a.queue == PQ_NONE &&
2830 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2831 ("page %p has unexpected queue %d, flags %#x",
2832 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2833 KASSERT(m->ref_count == 0, ("page %p has references", m));
2834 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2835 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2836 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2837 ("page %p has unexpected memattr %d",
2838 m, pmap_page_get_memattr(m)));
2839 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2840 pmap_vm_page_alloc_check(m);
2841 }
2842
2843 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2844 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2845 {
2846 struct vm_domain *vmd;
2847 struct vm_pgcache *pgcache;
2848 int i;
2849
2850 pgcache = arg;
2851 vmd = VM_DOMAIN(pgcache->domain);
2852
2853 /*
2854 * The page daemon should avoid creating extra memory pressure since its
2855 * main purpose is to replenish the store of free pages.
2856 */
2857 if (vmd->vmd_severeset || curproc == pageproc ||
2858 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2859 return (0);
2860 domain = vmd->vmd_domain;
2861 vm_domain_free_lock(vmd);
2862 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2863 (vm_page_t *)store);
2864 vm_domain_free_unlock(vmd);
2865 if (cnt != i)
2866 vm_domain_freecnt_inc(vmd, cnt - i);
2867
2868 return (i);
2869 }
2870
2871 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2872 vm_page_zone_release(void *arg, void **store, int cnt)
2873 {
2874 struct vm_domain *vmd;
2875 struct vm_pgcache *pgcache;
2876 vm_page_t m;
2877 int i;
2878
2879 pgcache = arg;
2880 vmd = VM_DOMAIN(pgcache->domain);
2881 vm_domain_free_lock(vmd);
2882 for (i = 0; i < cnt; i++) {
2883 m = (vm_page_t)store[i];
2884 vm_phys_free_pages(m, 0);
2885 }
2886 vm_domain_free_unlock(vmd);
2887 vm_domain_freecnt_inc(vmd, cnt);
2888 }
2889
2890 #define VPSC_ANY 0 /* No restrictions. */
2891 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2892 #define VPSC_NOSUPER 2 /* Skip superpages. */
2893
2894 /*
2895 * vm_page_scan_contig:
2896 *
2897 * Scan vm_page_array[] between the specified entries "m_start" and
2898 * "m_end" for a run of contiguous physical pages that satisfy the
2899 * specified conditions, and return the lowest page in the run. The
2900 * specified "alignment" determines the alignment of the lowest physical
2901 * page in the run. If the specified "boundary" is non-zero, then the
2902 * run of physical pages cannot span a physical address that is a
2903 * multiple of "boundary".
2904 *
2905 * "m_end" is never dereferenced, so it need not point to a vm_page
2906 * structure within vm_page_array[].
2907 *
2908 * "npages" must be greater than zero. "m_start" and "m_end" must not
2909 * span a hole (or discontiguity) in the physical address space. Both
2910 * "alignment" and "boundary" must be a power of two.
2911 */
2912 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2913 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2914 u_long alignment, vm_paddr_t boundary, int options)
2915 {
2916 vm_object_t object;
2917 vm_paddr_t pa;
2918 vm_page_t m, m_run;
2919 #if VM_NRESERVLEVEL > 0
2920 int level;
2921 #endif
2922 int m_inc, order, run_ext, run_len;
2923
2924 KASSERT(npages > 0, ("npages is 0"));
2925 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2926 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2927 m_run = NULL;
2928 run_len = 0;
2929 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2930 KASSERT((m->flags & PG_MARKER) == 0,
2931 ("page %p is PG_MARKER", m));
2932 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2933 ("fictitious page %p has invalid ref count", m));
2934
2935 /*
2936 * If the current page would be the start of a run, check its
2937 * physical address against the end, alignment, and boundary
2938 * conditions. If it doesn't satisfy these conditions, either
2939 * terminate the scan or advance to the next page that
2940 * satisfies the failed condition.
2941 */
2942 if (run_len == 0) {
2943 KASSERT(m_run == NULL, ("m_run != NULL"));
2944 if (m + npages > m_end)
2945 break;
2946 pa = VM_PAGE_TO_PHYS(m);
2947 if (!vm_addr_align_ok(pa, alignment)) {
2948 m_inc = atop(roundup2(pa, alignment) - pa);
2949 continue;
2950 }
2951 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2952 m_inc = atop(roundup2(pa, boundary) - pa);
2953 continue;
2954 }
2955 } else
2956 KASSERT(m_run != NULL, ("m_run == NULL"));
2957
2958 retry:
2959 m_inc = 1;
2960 if (vm_page_wired(m))
2961 run_ext = 0;
2962 #if VM_NRESERVLEVEL > 0
2963 else if ((level = vm_reserv_level(m)) >= 0 &&
2964 (options & VPSC_NORESERV) != 0) {
2965 run_ext = 0;
2966 /* Advance to the end of the reservation. */
2967 pa = VM_PAGE_TO_PHYS(m);
2968 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2969 pa);
2970 }
2971 #endif
2972 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2973 /*
2974 * The page is considered eligible for relocation if
2975 * and only if it could be laundered or reclaimed by
2976 * the page daemon.
2977 */
2978 VM_OBJECT_RLOCK(object);
2979 if (object != m->object) {
2980 VM_OBJECT_RUNLOCK(object);
2981 goto retry;
2982 }
2983 /* Don't care: PG_NODUMP, PG_ZERO. */
2984 if ((object->flags & OBJ_SWAP) == 0 &&
2985 object->type != OBJT_VNODE) {
2986 run_ext = 0;
2987 #if VM_NRESERVLEVEL > 0
2988 } else if ((options & VPSC_NOSUPER) != 0 &&
2989 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2990 run_ext = 0;
2991 /* Advance to the end of the superpage. */
2992 pa = VM_PAGE_TO_PHYS(m);
2993 m_inc = atop(roundup2(pa + 1,
2994 vm_reserv_size(level)) - pa);
2995 #endif
2996 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2997 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2998 /*
2999 * The page is allocated but eligible for
3000 * relocation. Extend the current run by one
3001 * page.
3002 */
3003 KASSERT(pmap_page_get_memattr(m) ==
3004 VM_MEMATTR_DEFAULT,
3005 ("page %p has an unexpected memattr", m));
3006 KASSERT((m->oflags & (VPO_SWAPINPROG |
3007 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
3008 ("page %p has unexpected oflags", m));
3009 /* Don't care: PGA_NOSYNC. */
3010 run_ext = 1;
3011 } else
3012 run_ext = 0;
3013 VM_OBJECT_RUNLOCK(object);
3014 #if VM_NRESERVLEVEL > 0
3015 } else if (level >= 0) {
3016 /*
3017 * The page is reserved but not yet allocated. In
3018 * other words, it is still free. Extend the current
3019 * run by one page.
3020 */
3021 run_ext = 1;
3022 #endif
3023 } else if ((order = m->order) < VM_NFREEORDER) {
3024 /*
3025 * The page is enqueued in the physical memory
3026 * allocator's free page queues. Moreover, it is the
3027 * first page in a power-of-two-sized run of
3028 * contiguous free pages. Add these pages to the end
3029 * of the current run, and jump ahead.
3030 */
3031 run_ext = 1 << order;
3032 m_inc = 1 << order;
3033 } else {
3034 /*
3035 * Skip the page for one of the following reasons: (1)
3036 * It is enqueued in the physical memory allocator's
3037 * free page queues. However, it is not the first
3038 * page in a run of contiguous free pages. (This case
3039 * rarely occurs because the scan is performed in
3040 * ascending order.) (2) It is not reserved, and it is
3041 * transitioning from free to allocated. (Conversely,
3042 * the transition from allocated to free for managed
3043 * pages is blocked by the page busy lock.) (3) It is
3044 * allocated but not contained by an object and not
3045 * wired, e.g., allocated by Xen's balloon driver.
3046 */
3047 run_ext = 0;
3048 }
3049
3050 /*
3051 * Extend or reset the current run of pages.
3052 */
3053 if (run_ext > 0) {
3054 if (run_len == 0)
3055 m_run = m;
3056 run_len += run_ext;
3057 } else {
3058 if (run_len > 0) {
3059 m_run = NULL;
3060 run_len = 0;
3061 }
3062 }
3063 }
3064 if (run_len >= npages)
3065 return (m_run);
3066 return (NULL);
3067 }
3068
3069 /*
3070 * vm_page_reclaim_run:
3071 *
3072 * Try to relocate each of the allocated virtual pages within the
3073 * specified run of physical pages to a new physical address. Free the
3074 * physical pages underlying the relocated virtual pages. A virtual page
3075 * is relocatable if and only if it could be laundered or reclaimed by
3076 * the page daemon. Whenever possible, a virtual page is relocated to a
3077 * physical address above "high".
3078 *
3079 * Returns 0 if every physical page within the run was already free or
3080 * just freed by a successful relocation. Otherwise, returns a non-zero
3081 * value indicating why the last attempt to relocate a virtual page was
3082 * unsuccessful.
3083 *
3084 * "req_class" must be an allocation class.
3085 */
3086 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)3087 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
3088 vm_paddr_t high)
3089 {
3090 struct vm_domain *vmd;
3091 struct spglist free;
3092 vm_object_t object;
3093 vm_paddr_t pa;
3094 vm_page_t m, m_end, m_new;
3095 int error, order, req;
3096
3097 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
3098 ("req_class is not an allocation class"));
3099 SLIST_INIT(&free);
3100 error = 0;
3101 m = m_run;
3102 m_end = m_run + npages;
3103 for (; error == 0 && m < m_end; m++) {
3104 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
3105 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
3106
3107 /*
3108 * Racily check for wirings. Races are handled once the object
3109 * lock is held and the page is unmapped.
3110 */
3111 if (vm_page_wired(m))
3112 error = EBUSY;
3113 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
3114 /*
3115 * The page is relocated if and only if it could be
3116 * laundered or reclaimed by the page daemon.
3117 */
3118 VM_OBJECT_WLOCK(object);
3119 /* Don't care: PG_NODUMP, PG_ZERO. */
3120 if (m->object != object ||
3121 ((object->flags & OBJ_SWAP) == 0 &&
3122 object->type != OBJT_VNODE))
3123 error = EINVAL;
3124 else if (object->memattr != VM_MEMATTR_DEFAULT)
3125 error = EINVAL;
3126 else if (vm_page_queue(m) != PQ_NONE &&
3127 vm_page_tryxbusy(m) != 0) {
3128 if (vm_page_wired(m)) {
3129 vm_page_xunbusy(m);
3130 error = EBUSY;
3131 goto unlock;
3132 }
3133 KASSERT(pmap_page_get_memattr(m) ==
3134 VM_MEMATTR_DEFAULT,
3135 ("page %p has an unexpected memattr", m));
3136 KASSERT(m->oflags == 0,
3137 ("page %p has unexpected oflags", m));
3138 /* Don't care: PGA_NOSYNC. */
3139 if (!vm_page_none_valid(m)) {
3140 /*
3141 * First, try to allocate a new page
3142 * that is above "high". Failing
3143 * that, try to allocate a new page
3144 * that is below "m_run". Allocate
3145 * the new page between the end of
3146 * "m_run" and "high" only as a last
3147 * resort.
3148 */
3149 req = req_class;
3150 if ((m->flags & PG_NODUMP) != 0)
3151 req |= VM_ALLOC_NODUMP;
3152 if (trunc_page(high) !=
3153 ~(vm_paddr_t)PAGE_MASK) {
3154 m_new =
3155 vm_page_alloc_noobj_contig(
3156 req, 1, round_page(high),
3157 ~(vm_paddr_t)0, PAGE_SIZE,
3158 0, VM_MEMATTR_DEFAULT);
3159 } else
3160 m_new = NULL;
3161 if (m_new == NULL) {
3162 pa = VM_PAGE_TO_PHYS(m_run);
3163 m_new =
3164 vm_page_alloc_noobj_contig(
3165 req, 1, 0, pa - 1,
3166 PAGE_SIZE, 0,
3167 VM_MEMATTR_DEFAULT);
3168 }
3169 if (m_new == NULL) {
3170 pa += ptoa(npages);
3171 m_new =
3172 vm_page_alloc_noobj_contig(
3173 req, 1, pa, high, PAGE_SIZE,
3174 0, VM_MEMATTR_DEFAULT);
3175 }
3176 if (m_new == NULL) {
3177 vm_page_xunbusy(m);
3178 error = ENOMEM;
3179 goto unlock;
3180 }
3181
3182 /*
3183 * Unmap the page and check for new
3184 * wirings that may have been acquired
3185 * through a pmap lookup.
3186 */
3187 if (object->ref_count != 0 &&
3188 !vm_page_try_remove_all(m)) {
3189 vm_page_xunbusy(m);
3190 vm_page_free(m_new);
3191 error = EBUSY;
3192 goto unlock;
3193 }
3194
3195 /*
3196 * Replace "m" with the new page. For
3197 * vm_page_replace(), "m" must be busy
3198 * and dequeued. Finally, change "m"
3199 * as if vm_page_free() was called.
3200 */
3201 m_new->a.flags = m->a.flags &
3202 ~PGA_QUEUE_STATE_MASK;
3203 KASSERT(m_new->oflags == VPO_UNMANAGED,
3204 ("page %p is managed", m_new));
3205 m_new->oflags = 0;
3206 pmap_copy_page(m, m_new);
3207 m_new->valid = m->valid;
3208 m_new->dirty = m->dirty;
3209 m->flags &= ~PG_ZERO;
3210 vm_page_dequeue(m);
3211 if (vm_page_replace_hold(m_new, object,
3212 m->pindex, m) &&
3213 vm_page_free_prep(m))
3214 SLIST_INSERT_HEAD(&free, m,
3215 plinks.s.ss);
3216
3217 /*
3218 * The new page must be deactivated
3219 * before the object is unlocked.
3220 */
3221 vm_page_deactivate(m_new);
3222 } else {
3223 m->flags &= ~PG_ZERO;
3224 vm_page_dequeue(m);
3225 if (vm_page_free_prep(m))
3226 SLIST_INSERT_HEAD(&free, m,
3227 plinks.s.ss);
3228 KASSERT(m->dirty == 0,
3229 ("page %p is dirty", m));
3230 }
3231 } else
3232 error = EBUSY;
3233 unlock:
3234 VM_OBJECT_WUNLOCK(object);
3235 } else {
3236 MPASS(vm_page_domain(m) == domain);
3237 vmd = VM_DOMAIN(domain);
3238 vm_domain_free_lock(vmd);
3239 order = m->order;
3240 if (order < VM_NFREEORDER) {
3241 /*
3242 * The page is enqueued in the physical memory
3243 * allocator's free page queues. Moreover, it
3244 * is the first page in a power-of-two-sized
3245 * run of contiguous free pages. Jump ahead
3246 * to the last page within that run, and
3247 * continue from there.
3248 */
3249 m += (1 << order) - 1;
3250 }
3251 #if VM_NRESERVLEVEL > 0
3252 else if (vm_reserv_is_page_free(m))
3253 order = 0;
3254 #endif
3255 vm_domain_free_unlock(vmd);
3256 if (order == VM_NFREEORDER)
3257 error = EINVAL;
3258 }
3259 }
3260 if ((m = SLIST_FIRST(&free)) != NULL) {
3261 int cnt;
3262
3263 vmd = VM_DOMAIN(domain);
3264 cnt = 0;
3265 vm_domain_free_lock(vmd);
3266 do {
3267 MPASS(vm_page_domain(m) == domain);
3268 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3269 vm_phys_free_pages(m, 0);
3270 cnt++;
3271 } while ((m = SLIST_FIRST(&free)) != NULL);
3272 vm_domain_free_unlock(vmd);
3273 vm_domain_freecnt_inc(vmd, cnt);
3274 }
3275 return (error);
3276 }
3277
3278 #define NRUNS 16
3279
3280 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3281
3282 #define MIN_RECLAIM 8
3283
3284 /*
3285 * vm_page_reclaim_contig:
3286 *
3287 * Reclaim allocated, contiguous physical memory satisfying the specified
3288 * conditions by relocating the virtual pages using that physical memory.
3289 * Returns 0 if reclamation is successful, ERANGE if the specified domain
3290 * can't possibly satisfy the reclamation request, or ENOMEM if not
3291 * currently able to reclaim the requested number of pages. Since
3292 * relocation requires the allocation of physical pages, reclamation may
3293 * fail with ENOMEM due to a shortage of free pages. When reclamation
3294 * fails in this manner, callers are expected to perform vm_wait() before
3295 * retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3296 *
3297 * The caller must always specify an allocation class through "req".
3298 *
3299 * allocation classes:
3300 * VM_ALLOC_NORMAL normal process request
3301 * VM_ALLOC_SYSTEM system *really* needs a page
3302 * VM_ALLOC_INTERRUPT interrupt time request
3303 *
3304 * The optional allocation flags are ignored.
3305 *
3306 * "npages" must be greater than zero. Both "alignment" and "boundary"
3307 * must be a power of two.
3308 */
3309 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3310 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3311 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3312 int desired_runs)
3313 {
3314 struct vm_domain *vmd;
3315 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3316 u_long count, minalign, reclaimed;
3317 int error, i, min_reclaim, nruns, options, req_class;
3318 int segind, start_segind;
3319 int ret;
3320
3321 KASSERT(npages > 0, ("npages is 0"));
3322 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3323 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3324
3325 ret = ENOMEM;
3326
3327 /*
3328 * If the caller wants to reclaim multiple runs, try to allocate
3329 * space to store the runs. If that fails, fall back to the old
3330 * behavior of just reclaiming MIN_RECLAIM pages.
3331 */
3332 if (desired_runs > 1)
3333 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3334 M_TEMP, M_NOWAIT);
3335 else
3336 m_runs = NULL;
3337
3338 if (m_runs == NULL) {
3339 m_runs = _m_runs;
3340 nruns = NRUNS;
3341 } else {
3342 nruns = NRUNS + desired_runs - 1;
3343 }
3344 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3345
3346 /*
3347 * The caller will attempt an allocation after some runs have been
3348 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3349 * of vm_phys_alloc_contig(), round up the requested length to the next
3350 * power of two or maximum chunk size, and ensure that each run is
3351 * suitably aligned.
3352 */
3353 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3354 npages = roundup2(npages, minalign);
3355 if (alignment < ptoa(minalign))
3356 alignment = ptoa(minalign);
3357
3358 /*
3359 * The page daemon is allowed to dig deeper into the free page list.
3360 */
3361 req_class = req & VM_ALLOC_CLASS_MASK;
3362 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3363 req_class = VM_ALLOC_SYSTEM;
3364
3365 start_segind = vm_phys_lookup_segind(low);
3366
3367 /*
3368 * Return if the number of free pages cannot satisfy the requested
3369 * allocation.
3370 */
3371 vmd = VM_DOMAIN(domain);
3372 count = vmd->vmd_free_count;
3373 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3374 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3375 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3376 goto done;
3377
3378 /*
3379 * Scan up to three times, relaxing the restrictions ("options") on
3380 * the reclamation of reservations and superpages each time.
3381 */
3382 for (options = VPSC_NORESERV;;) {
3383 bool phys_range_exists = false;
3384
3385 /*
3386 * Find the highest runs that satisfy the given constraints
3387 * and restrictions, and record them in "m_runs".
3388 */
3389 count = 0;
3390 segind = start_segind;
3391 while ((segind = vm_phys_find_range(bounds, segind, domain,
3392 npages, low, high)) != -1) {
3393 phys_range_exists = true;
3394 while ((m_run = vm_page_scan_contig(npages, bounds[0],
3395 bounds[1], alignment, boundary, options))) {
3396 bounds[0] = m_run + npages;
3397 m_runs[RUN_INDEX(count, nruns)] = m_run;
3398 count++;
3399 }
3400 segind++;
3401 }
3402
3403 if (!phys_range_exists) {
3404 ret = ERANGE;
3405 goto done;
3406 }
3407
3408 /*
3409 * Reclaim the highest runs in LIFO (descending) order until
3410 * the number of reclaimed pages, "reclaimed", is at least
3411 * "min_reclaim". Reset "reclaimed" each time because each
3412 * reclamation is idempotent, and runs will (likely) recur
3413 * from one scan to the next as restrictions are relaxed.
3414 */
3415 reclaimed = 0;
3416 for (i = 0; count > 0 && i < nruns; i++) {
3417 count--;
3418 m_run = m_runs[RUN_INDEX(count, nruns)];
3419 error = vm_page_reclaim_run(req_class, domain, npages,
3420 m_run, high);
3421 if (error == 0) {
3422 reclaimed += npages;
3423 if (reclaimed >= min_reclaim) {
3424 ret = 0;
3425 goto done;
3426 }
3427 }
3428 }
3429
3430 /*
3431 * Either relax the restrictions on the next scan or return if
3432 * the last scan had no restrictions.
3433 */
3434 if (options == VPSC_NORESERV)
3435 options = VPSC_NOSUPER;
3436 else if (options == VPSC_NOSUPER)
3437 options = VPSC_ANY;
3438 else if (options == VPSC_ANY) {
3439 if (reclaimed != 0)
3440 ret = 0;
3441 goto done;
3442 }
3443 }
3444 done:
3445 if (m_runs != _m_runs)
3446 free(m_runs, M_TEMP);
3447 return (ret);
3448 }
3449
3450 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3451 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3452 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3453 {
3454 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3455 alignment, boundary, 1));
3456 }
3457
3458 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3459 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3460 u_long alignment, vm_paddr_t boundary)
3461 {
3462 struct vm_domainset_iter di;
3463 int domain, ret, status;
3464
3465 ret = ERANGE;
3466
3467 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3468 do {
3469 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3470 high, alignment, boundary);
3471 if (status == 0)
3472 return (0);
3473 else if (status == ERANGE)
3474 vm_domainset_iter_ignore(&di, domain);
3475 else {
3476 KASSERT(status == ENOMEM, ("Unrecognized error %d "
3477 "from vm_page_reclaim_contig_domain()", status));
3478 ret = ENOMEM;
3479 }
3480 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3481
3482 return (ret);
3483 }
3484
3485 /*
3486 * Set the domain in the appropriate page level domainset.
3487 */
3488 void
vm_domain_set(struct vm_domain * vmd)3489 vm_domain_set(struct vm_domain *vmd)
3490 {
3491
3492 mtx_lock(&vm_domainset_lock);
3493 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3494 vmd->vmd_minset = 1;
3495 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3496 }
3497 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3498 vmd->vmd_severeset = 1;
3499 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3500 }
3501 mtx_unlock(&vm_domainset_lock);
3502 }
3503
3504 /*
3505 * Clear the domain from the appropriate page level domainset.
3506 */
3507 void
vm_domain_clear(struct vm_domain * vmd)3508 vm_domain_clear(struct vm_domain *vmd)
3509 {
3510
3511 mtx_lock(&vm_domainset_lock);
3512 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3513 vmd->vmd_minset = 0;
3514 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3515 if (vm_min_waiters != 0) {
3516 vm_min_waiters = 0;
3517 wakeup(&vm_min_domains);
3518 }
3519 }
3520 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3521 vmd->vmd_severeset = 0;
3522 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3523 if (vm_severe_waiters != 0) {
3524 vm_severe_waiters = 0;
3525 wakeup(&vm_severe_domains);
3526 }
3527 }
3528
3529 /*
3530 * If pageout daemon needs pages, then tell it that there are
3531 * some free.
3532 */
3533 if (vmd->vmd_pageout_pages_needed &&
3534 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3535 wakeup(&vmd->vmd_pageout_pages_needed);
3536 vmd->vmd_pageout_pages_needed = 0;
3537 }
3538
3539 /* See comments in vm_wait_doms(). */
3540 if (vm_pageproc_waiters) {
3541 vm_pageproc_waiters = 0;
3542 wakeup(&vm_pageproc_waiters);
3543 }
3544 mtx_unlock(&vm_domainset_lock);
3545 }
3546
3547 /*
3548 * Wait for free pages to exceed the min threshold globally.
3549 */
3550 void
vm_wait_min(void)3551 vm_wait_min(void)
3552 {
3553
3554 mtx_lock(&vm_domainset_lock);
3555 while (vm_page_count_min()) {
3556 vm_min_waiters++;
3557 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3558 }
3559 mtx_unlock(&vm_domainset_lock);
3560 }
3561
3562 /*
3563 * Wait for free pages to exceed the severe threshold globally.
3564 */
3565 void
vm_wait_severe(void)3566 vm_wait_severe(void)
3567 {
3568
3569 mtx_lock(&vm_domainset_lock);
3570 while (vm_page_count_severe()) {
3571 vm_severe_waiters++;
3572 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3573 "vmwait", 0);
3574 }
3575 mtx_unlock(&vm_domainset_lock);
3576 }
3577
3578 u_int
vm_wait_count(void)3579 vm_wait_count(void)
3580 {
3581
3582 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3583 }
3584
3585 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3586 vm_wait_doms(const domainset_t *wdoms, int mflags)
3587 {
3588 int error;
3589
3590 error = 0;
3591
3592 /*
3593 * We use racey wakeup synchronization to avoid expensive global
3594 * locking for the pageproc when sleeping with a non-specific vm_wait.
3595 * To handle this, we only sleep for one tick in this instance. It
3596 * is expected that most allocations for the pageproc will come from
3597 * kmem or vm_page_grab* which will use the more specific and
3598 * race-free vm_wait_domain().
3599 */
3600 if (curproc == pageproc) {
3601 mtx_lock(&vm_domainset_lock);
3602 vm_pageproc_waiters++;
3603 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3604 PVM | PDROP | mflags, "pageprocwait", 1);
3605 } else {
3606 /*
3607 * XXX Ideally we would wait only until the allocation could
3608 * be satisfied. This condition can cause new allocators to
3609 * consume all freed pages while old allocators wait.
3610 */
3611 mtx_lock(&vm_domainset_lock);
3612 if (vm_page_count_min_set(wdoms)) {
3613 if (pageproc == NULL)
3614 panic("vm_wait in early boot");
3615 vm_min_waiters++;
3616 error = msleep(&vm_min_domains, &vm_domainset_lock,
3617 PVM | PDROP | mflags, "vmwait", 0);
3618 } else
3619 mtx_unlock(&vm_domainset_lock);
3620 }
3621 return (error);
3622 }
3623
3624 /*
3625 * vm_wait_domain:
3626 *
3627 * Sleep until free pages are available for allocation.
3628 * - Called in various places after failed memory allocations.
3629 */
3630 void
vm_wait_domain(int domain)3631 vm_wait_domain(int domain)
3632 {
3633 struct vm_domain *vmd;
3634 domainset_t wdom;
3635
3636 vmd = VM_DOMAIN(domain);
3637 vm_domain_free_assert_unlocked(vmd);
3638
3639 if (curproc == pageproc) {
3640 mtx_lock(&vm_domainset_lock);
3641 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3642 vmd->vmd_pageout_pages_needed = 1;
3643 msleep(&vmd->vmd_pageout_pages_needed,
3644 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3645 } else
3646 mtx_unlock(&vm_domainset_lock);
3647 } else {
3648 DOMAINSET_ZERO(&wdom);
3649 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3650 vm_wait_doms(&wdom, 0);
3651 }
3652 }
3653
3654 static int
vm_wait_flags(vm_object_t obj,int mflags)3655 vm_wait_flags(vm_object_t obj, int mflags)
3656 {
3657 struct domainset *d;
3658
3659 d = NULL;
3660
3661 /*
3662 * Carefully fetch pointers only once: the struct domainset
3663 * itself is ummutable but the pointer might change.
3664 */
3665 if (obj != NULL)
3666 d = obj->domain.dr_policy;
3667 if (d == NULL)
3668 d = curthread->td_domain.dr_policy;
3669
3670 return (vm_wait_doms(&d->ds_mask, mflags));
3671 }
3672
3673 /*
3674 * vm_wait:
3675 *
3676 * Sleep until free pages are available for allocation in the
3677 * affinity domains of the obj. If obj is NULL, the domain set
3678 * for the calling thread is used.
3679 * Called in various places after failed memory allocations.
3680 */
3681 void
vm_wait(vm_object_t obj)3682 vm_wait(vm_object_t obj)
3683 {
3684 (void)vm_wait_flags(obj, 0);
3685 }
3686
3687 int
vm_wait_intr(vm_object_t obj)3688 vm_wait_intr(vm_object_t obj)
3689 {
3690 return (vm_wait_flags(obj, PCATCH));
3691 }
3692
3693 /*
3694 * vm_domain_alloc_fail:
3695 *
3696 * Called when a page allocation function fails. Informs the
3697 * pagedaemon and performs the requested wait. Requires the
3698 * domain_free and object lock on entry. Returns with the
3699 * object lock held and free lock released. Returns an error when
3700 * retry is necessary.
3701 *
3702 */
3703 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3704 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3705 {
3706
3707 vm_domain_free_assert_unlocked(vmd);
3708
3709 atomic_add_int(&vmd->vmd_pageout_deficit,
3710 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3711 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3712 if (object != NULL)
3713 VM_OBJECT_WUNLOCK(object);
3714 vm_wait_domain(vmd->vmd_domain);
3715 if (object != NULL)
3716 VM_OBJECT_WLOCK(object);
3717 if (req & VM_ALLOC_WAITOK)
3718 return (EAGAIN);
3719 }
3720
3721 return (0);
3722 }
3723
3724 /*
3725 * vm_waitpfault:
3726 *
3727 * Sleep until free pages are available for allocation.
3728 * - Called only in vm_fault so that processes page faulting
3729 * can be easily tracked.
3730 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3731 * processes will be able to grab memory first. Do not change
3732 * this balance without careful testing first.
3733 */
3734 void
vm_waitpfault(struct domainset * dset,int timo)3735 vm_waitpfault(struct domainset *dset, int timo)
3736 {
3737
3738 /*
3739 * XXX Ideally we would wait only until the allocation could
3740 * be satisfied. This condition can cause new allocators to
3741 * consume all freed pages while old allocators wait.
3742 */
3743 mtx_lock(&vm_domainset_lock);
3744 if (vm_page_count_min_set(&dset->ds_mask)) {
3745 vm_min_waiters++;
3746 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3747 "pfault", timo);
3748 } else
3749 mtx_unlock(&vm_domainset_lock);
3750 }
3751
3752 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3753 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3754 {
3755
3756 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3757 }
3758
3759 #ifdef INVARIANTS
3760 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3761 vm_page_pagequeue(vm_page_t m)
3762 {
3763
3764 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3765 }
3766 #endif
3767
3768 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3769 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3770 {
3771 vm_page_astate_t tmp;
3772
3773 tmp = *old;
3774 do {
3775 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3776 return (true);
3777 counter_u64_add(pqstate_commit_retries, 1);
3778 } while (old->_bits == tmp._bits);
3779
3780 return (false);
3781 }
3782
3783 /*
3784 * Do the work of committing a queue state update that moves the page out of
3785 * its current queue.
3786 */
3787 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3788 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3789 vm_page_astate_t *old, vm_page_astate_t new)
3790 {
3791 vm_page_t next;
3792
3793 vm_pagequeue_assert_locked(pq);
3794 KASSERT(vm_page_pagequeue(m) == pq,
3795 ("%s: queue %p does not match page %p", __func__, pq, m));
3796 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3797 ("%s: invalid queue indices %d %d",
3798 __func__, old->queue, new.queue));
3799
3800 /*
3801 * Once the queue index of the page changes there is nothing
3802 * synchronizing with further updates to the page's physical
3803 * queue state. Therefore we must speculatively remove the page
3804 * from the queue now and be prepared to roll back if the queue
3805 * state update fails. If the page is not physically enqueued then
3806 * we just update its queue index.
3807 */
3808 if ((old->flags & PGA_ENQUEUED) != 0) {
3809 new.flags &= ~PGA_ENQUEUED;
3810 next = TAILQ_NEXT(m, plinks.q);
3811 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3812 vm_pagequeue_cnt_dec(pq);
3813 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3814 if (next == NULL)
3815 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3816 else
3817 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3818 vm_pagequeue_cnt_inc(pq);
3819 return (false);
3820 } else {
3821 return (true);
3822 }
3823 } else {
3824 return (vm_page_pqstate_fcmpset(m, old, new));
3825 }
3826 }
3827
3828 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3829 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3830 vm_page_astate_t new)
3831 {
3832 struct vm_pagequeue *pq;
3833 vm_page_astate_t as;
3834 bool ret;
3835
3836 pq = _vm_page_pagequeue(m, old->queue);
3837
3838 /*
3839 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3840 * corresponding page queue lock is held.
3841 */
3842 vm_pagequeue_lock(pq);
3843 as = vm_page_astate_load(m);
3844 if (__predict_false(as._bits != old->_bits)) {
3845 *old = as;
3846 ret = false;
3847 } else {
3848 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3849 }
3850 vm_pagequeue_unlock(pq);
3851 return (ret);
3852 }
3853
3854 /*
3855 * Commit a queue state update that enqueues or requeues a page.
3856 */
3857 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3858 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3859 vm_page_astate_t *old, vm_page_astate_t new)
3860 {
3861 struct vm_domain *vmd;
3862
3863 vm_pagequeue_assert_locked(pq);
3864 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3865 ("%s: invalid queue indices %d %d",
3866 __func__, old->queue, new.queue));
3867
3868 new.flags |= PGA_ENQUEUED;
3869 if (!vm_page_pqstate_fcmpset(m, old, new))
3870 return (false);
3871
3872 if ((old->flags & PGA_ENQUEUED) != 0)
3873 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3874 else
3875 vm_pagequeue_cnt_inc(pq);
3876
3877 /*
3878 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3879 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3880 * applied, even if it was set first.
3881 */
3882 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3883 vmd = vm_pagequeue_domain(m);
3884 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3885 ("%s: invalid page queue for page %p", __func__, m));
3886 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3887 } else {
3888 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3889 }
3890 return (true);
3891 }
3892
3893 /*
3894 * Commit a queue state update that encodes a request for a deferred queue
3895 * operation.
3896 */
3897 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3898 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3899 vm_page_astate_t new)
3900 {
3901
3902 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3903 ("%s: invalid state, queue %d flags %x",
3904 __func__, new.queue, new.flags));
3905
3906 if (old->_bits != new._bits &&
3907 !vm_page_pqstate_fcmpset(m, old, new))
3908 return (false);
3909 vm_page_pqbatch_submit(m, new.queue);
3910 return (true);
3911 }
3912
3913 /*
3914 * A generic queue state update function. This handles more cases than the
3915 * specialized functions above.
3916 */
3917 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3918 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3919 {
3920
3921 if (old->_bits == new._bits)
3922 return (true);
3923
3924 if (old->queue != PQ_NONE && new.queue != old->queue) {
3925 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3926 return (false);
3927 if (new.queue != PQ_NONE)
3928 vm_page_pqbatch_submit(m, new.queue);
3929 } else {
3930 if (!vm_page_pqstate_fcmpset(m, old, new))
3931 return (false);
3932 if (new.queue != PQ_NONE &&
3933 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3934 vm_page_pqbatch_submit(m, new.queue);
3935 }
3936 return (true);
3937 }
3938
3939 /*
3940 * Apply deferred queue state updates to a page.
3941 */
3942 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3943 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3944 {
3945 vm_page_astate_t new, old;
3946
3947 CRITICAL_ASSERT(curthread);
3948 vm_pagequeue_assert_locked(pq);
3949 KASSERT(queue < PQ_COUNT,
3950 ("%s: invalid queue index %d", __func__, queue));
3951 KASSERT(pq == _vm_page_pagequeue(m, queue),
3952 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3953
3954 for (old = vm_page_astate_load(m);;) {
3955 if (__predict_false(old.queue != queue ||
3956 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3957 counter_u64_add(queue_nops, 1);
3958 break;
3959 }
3960 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3961 ("%s: page %p is unmanaged", __func__, m));
3962
3963 new = old;
3964 if ((old.flags & PGA_DEQUEUE) != 0) {
3965 new.flags &= ~PGA_QUEUE_OP_MASK;
3966 new.queue = PQ_NONE;
3967 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3968 m, &old, new))) {
3969 counter_u64_add(queue_ops, 1);
3970 break;
3971 }
3972 } else {
3973 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3974 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3975 m, &old, new))) {
3976 counter_u64_add(queue_ops, 1);
3977 break;
3978 }
3979 }
3980 }
3981 }
3982
3983 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3984 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3985 uint8_t queue)
3986 {
3987 int i;
3988
3989 for (i = 0; i < bq->bq_cnt; i++)
3990 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3991 vm_batchqueue_init(bq);
3992 }
3993
3994 /*
3995 * vm_page_pqbatch_submit: [ internal use only ]
3996 *
3997 * Enqueue a page in the specified page queue's batched work queue.
3998 * The caller must have encoded the requested operation in the page
3999 * structure's a.flags field.
4000 */
4001 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)4002 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
4003 {
4004 struct vm_batchqueue *bq;
4005 struct vm_pagequeue *pq;
4006 int domain, slots_remaining;
4007
4008 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
4009
4010 domain = vm_page_domain(m);
4011 critical_enter();
4012 bq = DPCPU_PTR(pqbatch[domain][queue]);
4013 slots_remaining = vm_batchqueue_insert(bq, m);
4014 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
4015 /* keep building the bq */
4016 critical_exit();
4017 return;
4018 } else if (slots_remaining > 0 ) {
4019 /* Try to process the bq if we can get the lock */
4020 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4021 if (vm_pagequeue_trylock(pq)) {
4022 vm_pqbatch_process(pq, bq, queue);
4023 vm_pagequeue_unlock(pq);
4024 }
4025 critical_exit();
4026 return;
4027 }
4028 critical_exit();
4029
4030 /* if we make it here, the bq is full so wait for the lock */
4031
4032 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4033 vm_pagequeue_lock(pq);
4034 critical_enter();
4035 bq = DPCPU_PTR(pqbatch[domain][queue]);
4036 vm_pqbatch_process(pq, bq, queue);
4037 vm_pqbatch_process_page(pq, m, queue);
4038 vm_pagequeue_unlock(pq);
4039 critical_exit();
4040 }
4041
4042 /*
4043 * vm_page_pqbatch_drain: [ internal use only ]
4044 *
4045 * Force all per-CPU page queue batch queues to be drained. This is
4046 * intended for use in severe memory shortages, to ensure that pages
4047 * do not remain stuck in the batch queues.
4048 */
4049 void
vm_page_pqbatch_drain(void)4050 vm_page_pqbatch_drain(void)
4051 {
4052 struct thread *td;
4053 struct vm_domain *vmd;
4054 struct vm_pagequeue *pq;
4055 int cpu, domain, queue;
4056
4057 td = curthread;
4058 CPU_FOREACH(cpu) {
4059 thread_lock(td);
4060 sched_bind(td, cpu);
4061 thread_unlock(td);
4062
4063 for (domain = 0; domain < vm_ndomains; domain++) {
4064 vmd = VM_DOMAIN(domain);
4065 for (queue = 0; queue < PQ_COUNT; queue++) {
4066 pq = &vmd->vmd_pagequeues[queue];
4067 vm_pagequeue_lock(pq);
4068 critical_enter();
4069 vm_pqbatch_process(pq,
4070 DPCPU_PTR(pqbatch[domain][queue]), queue);
4071 critical_exit();
4072 vm_pagequeue_unlock(pq);
4073 }
4074 }
4075 }
4076 thread_lock(td);
4077 sched_unbind(td);
4078 thread_unlock(td);
4079 }
4080
4081 /*
4082 * vm_page_dequeue_deferred: [ internal use only ]
4083 *
4084 * Request removal of the given page from its current page
4085 * queue. Physical removal from the queue may be deferred
4086 * indefinitely.
4087 */
4088 void
vm_page_dequeue_deferred(vm_page_t m)4089 vm_page_dequeue_deferred(vm_page_t m)
4090 {
4091 vm_page_astate_t new, old;
4092
4093 old = vm_page_astate_load(m);
4094 do {
4095 if (old.queue == PQ_NONE) {
4096 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4097 ("%s: page %p has unexpected queue state",
4098 __func__, m));
4099 break;
4100 }
4101 new = old;
4102 new.flags |= PGA_DEQUEUE;
4103 } while (!vm_page_pqstate_commit_request(m, &old, new));
4104 }
4105
4106 /*
4107 * vm_page_dequeue:
4108 *
4109 * Remove the page from whichever page queue it's in, if any, before
4110 * returning.
4111 */
4112 void
vm_page_dequeue(vm_page_t m)4113 vm_page_dequeue(vm_page_t m)
4114 {
4115 vm_page_astate_t new, old;
4116
4117 old = vm_page_astate_load(m);
4118 do {
4119 if (old.queue == PQ_NONE) {
4120 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4121 ("%s: page %p has unexpected queue state",
4122 __func__, m));
4123 break;
4124 }
4125 new = old;
4126 new.flags &= ~PGA_QUEUE_OP_MASK;
4127 new.queue = PQ_NONE;
4128 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4129
4130 }
4131
4132 /*
4133 * Schedule the given page for insertion into the specified page queue.
4134 * Physical insertion of the page may be deferred indefinitely.
4135 */
4136 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4137 vm_page_enqueue(vm_page_t m, uint8_t queue)
4138 {
4139
4140 KASSERT(m->a.queue == PQ_NONE &&
4141 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4142 ("%s: page %p is already enqueued", __func__, m));
4143 KASSERT(m->ref_count > 0,
4144 ("%s: page %p does not carry any references", __func__, m));
4145
4146 m->a.queue = queue;
4147 if ((m->a.flags & PGA_REQUEUE) == 0)
4148 vm_page_aflag_set(m, PGA_REQUEUE);
4149 vm_page_pqbatch_submit(m, queue);
4150 }
4151
4152 /*
4153 * vm_page_free_prep:
4154 *
4155 * Prepares the given page to be put on the free list,
4156 * disassociating it from any VM object. The caller may return
4157 * the page to the free list only if this function returns true.
4158 *
4159 * The object, if it exists, must be locked, and then the page must
4160 * be xbusy. Otherwise the page must be not busied. A managed
4161 * page must be unmapped.
4162 */
4163 static bool
vm_page_free_prep(vm_page_t m)4164 vm_page_free_prep(vm_page_t m)
4165 {
4166
4167 /*
4168 * Synchronize with threads that have dropped a reference to this
4169 * page.
4170 */
4171 atomic_thread_fence_acq();
4172
4173 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4174 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4175 uint64_t *p;
4176 int i;
4177 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4178 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4179 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4180 m, i, (uintmax_t)*p));
4181 }
4182 #endif
4183 KASSERT((m->flags & PG_NOFREE) == 0,
4184 ("%s: attempting to free a PG_NOFREE page", __func__));
4185 if ((m->oflags & VPO_UNMANAGED) == 0) {
4186 KASSERT(!pmap_page_is_mapped(m),
4187 ("vm_page_free_prep: freeing mapped page %p", m));
4188 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4189 ("vm_page_free_prep: mapping flags set in page %p", m));
4190 } else {
4191 KASSERT(m->a.queue == PQ_NONE,
4192 ("vm_page_free_prep: unmanaged page %p is queued", m));
4193 }
4194 VM_CNT_INC(v_tfree);
4195
4196 if (m->object != NULL) {
4197 vm_page_radix_remove(m);
4198 vm_page_free_object_prep(m);
4199 } else
4200 vm_page_assert_unbusied(m);
4201
4202 vm_page_busy_free(m);
4203
4204 /*
4205 * If fictitious remove object association and
4206 * return.
4207 */
4208 if ((m->flags & PG_FICTITIOUS) != 0) {
4209 KASSERT(m->ref_count == 1,
4210 ("fictitious page %p is referenced", m));
4211 KASSERT(m->a.queue == PQ_NONE,
4212 ("fictitious page %p is queued", m));
4213 return (false);
4214 }
4215
4216 /*
4217 * Pages need not be dequeued before they are returned to the physical
4218 * memory allocator, but they must at least be marked for a deferred
4219 * dequeue.
4220 */
4221 if ((m->oflags & VPO_UNMANAGED) == 0)
4222 vm_page_dequeue_deferred(m);
4223
4224 m->valid = 0;
4225 vm_page_undirty(m);
4226
4227 if (m->ref_count != 0)
4228 panic("vm_page_free_prep: page %p has references", m);
4229
4230 /*
4231 * Restore the default memory attribute to the page.
4232 */
4233 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4234 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4235
4236 #if VM_NRESERVLEVEL > 0
4237 /*
4238 * Determine whether the page belongs to a reservation. If the page was
4239 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4240 * as an optimization, we avoid the check in that case.
4241 */
4242 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4243 return (false);
4244 #endif
4245
4246 return (true);
4247 }
4248
4249 /*
4250 * vm_page_free_toq:
4251 *
4252 * Returns the given page to the free list, disassociating it
4253 * from any VM object.
4254 *
4255 * The object must be locked. The page must be exclusively busied if it
4256 * belongs to an object.
4257 */
4258 static void
vm_page_free_toq(vm_page_t m)4259 vm_page_free_toq(vm_page_t m)
4260 {
4261 struct vm_domain *vmd;
4262 uma_zone_t zone;
4263
4264 if (!vm_page_free_prep(m))
4265 return;
4266
4267 vmd = vm_pagequeue_domain(m);
4268 zone = vmd->vmd_pgcache[m->pool].zone;
4269 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4270 uma_zfree(zone, m);
4271 return;
4272 }
4273 vm_domain_free_lock(vmd);
4274 vm_phys_free_pages(m, 0);
4275 vm_domain_free_unlock(vmd);
4276 vm_domain_freecnt_inc(vmd, 1);
4277 }
4278
4279 /*
4280 * vm_page_free_pages_toq:
4281 *
4282 * Returns a list of pages to the free list, disassociating it
4283 * from any VM object. In other words, this is equivalent to
4284 * calling vm_page_free_toq() for each page of a list of VM objects.
4285 */
4286 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4287 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4288 {
4289 vm_page_t m;
4290 int count;
4291
4292 if (SLIST_EMPTY(free))
4293 return (0);
4294
4295 count = 0;
4296 while ((m = SLIST_FIRST(free)) != NULL) {
4297 count++;
4298 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4299 vm_page_free_toq(m);
4300 }
4301
4302 if (update_wire_count)
4303 vm_wire_sub(count);
4304 return (count);
4305 }
4306
4307 /*
4308 * Mark this page as wired down. For managed pages, this prevents reclamation
4309 * by the page daemon, or when the containing object, if any, is destroyed.
4310 */
4311 void
vm_page_wire(vm_page_t m)4312 vm_page_wire(vm_page_t m)
4313 {
4314 u_int old;
4315
4316 #ifdef INVARIANTS
4317 if (m->object != NULL && !vm_page_busied(m) &&
4318 !vm_object_busied(m->object))
4319 VM_OBJECT_ASSERT_LOCKED(m->object);
4320 #endif
4321 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4322 VPRC_WIRE_COUNT(m->ref_count) >= 1,
4323 ("vm_page_wire: fictitious page %p has zero wirings", m));
4324
4325 old = atomic_fetchadd_int(&m->ref_count, 1);
4326 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4327 ("vm_page_wire: counter overflow for page %p", m));
4328 if (VPRC_WIRE_COUNT(old) == 0) {
4329 if ((m->oflags & VPO_UNMANAGED) == 0)
4330 vm_page_aflag_set(m, PGA_DEQUEUE);
4331 vm_wire_add(1);
4332 }
4333 }
4334
4335 /*
4336 * Attempt to wire a mapped page following a pmap lookup of that page.
4337 * This may fail if a thread is concurrently tearing down mappings of the page.
4338 * The transient failure is acceptable because it translates to the
4339 * failure of the caller pmap_extract_and_hold(), which should be then
4340 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4341 */
4342 bool
vm_page_wire_mapped(vm_page_t m)4343 vm_page_wire_mapped(vm_page_t m)
4344 {
4345 u_int old;
4346
4347 old = atomic_load_int(&m->ref_count);
4348 do {
4349 KASSERT(old > 0,
4350 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4351 if ((old & VPRC_BLOCKED) != 0)
4352 return (false);
4353 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4354
4355 if (VPRC_WIRE_COUNT(old) == 0) {
4356 if ((m->oflags & VPO_UNMANAGED) == 0)
4357 vm_page_aflag_set(m, PGA_DEQUEUE);
4358 vm_wire_add(1);
4359 }
4360 return (true);
4361 }
4362
4363 /*
4364 * Release a wiring reference to a managed page. If the page still belongs to
4365 * an object, update its position in the page queues to reflect the reference.
4366 * If the wiring was the last reference to the page, free the page.
4367 */
4368 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4369 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4370 {
4371 u_int old;
4372
4373 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4374 ("%s: page %p is unmanaged", __func__, m));
4375
4376 /*
4377 * Update LRU state before releasing the wiring reference.
4378 * Use a release store when updating the reference count to
4379 * synchronize with vm_page_free_prep().
4380 */
4381 old = atomic_load_int(&m->ref_count);
4382 do {
4383 u_int count;
4384
4385 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4386 ("vm_page_unwire: wire count underflow for page %p", m));
4387
4388 count = old & ~VPRC_BLOCKED;
4389 if (count > VPRC_OBJREF + 1) {
4390 /*
4391 * The page has at least one other wiring reference. An
4392 * earlier iteration of this loop may have called
4393 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4394 * re-set it if necessary.
4395 */
4396 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4397 vm_page_aflag_set(m, PGA_DEQUEUE);
4398 } else if (count == VPRC_OBJREF + 1) {
4399 /*
4400 * This is the last wiring. Clear PGA_DEQUEUE and
4401 * update the page's queue state to reflect the
4402 * reference. If the page does not belong to an object
4403 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4404 * clear leftover queue state.
4405 */
4406 vm_page_release_toq(m, nqueue, noreuse);
4407 } else if (count == 1) {
4408 vm_page_aflag_clear(m, PGA_DEQUEUE);
4409 }
4410 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4411
4412 if (VPRC_WIRE_COUNT(old) == 1) {
4413 vm_wire_sub(1);
4414 if (old == 1)
4415 vm_page_free(m);
4416 }
4417 }
4418
4419 /*
4420 * Release one wiring of the specified page, potentially allowing it to be
4421 * paged out.
4422 *
4423 * Only managed pages belonging to an object can be paged out. If the number
4424 * of wirings transitions to zero and the page is eligible for page out, then
4425 * the page is added to the specified paging queue. If the released wiring
4426 * represented the last reference to the page, the page is freed.
4427 */
4428 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4429 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4430 {
4431
4432 KASSERT(nqueue < PQ_COUNT,
4433 ("vm_page_unwire: invalid queue %u request for page %p",
4434 nqueue, m));
4435
4436 if ((m->oflags & VPO_UNMANAGED) != 0) {
4437 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4438 vm_page_free(m);
4439 return;
4440 }
4441 vm_page_unwire_managed(m, nqueue, false);
4442 }
4443
4444 /*
4445 * Unwire a page without (re-)inserting it into a page queue. It is up
4446 * to the caller to enqueue, requeue, or free the page as appropriate.
4447 * In most cases involving managed pages, vm_page_unwire() should be used
4448 * instead.
4449 */
4450 bool
vm_page_unwire_noq(vm_page_t m)4451 vm_page_unwire_noq(vm_page_t m)
4452 {
4453 u_int old;
4454
4455 old = vm_page_drop(m, 1);
4456 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4457 ("%s: counter underflow for page %p", __func__, m));
4458 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4459 ("%s: missing ref on fictitious page %p", __func__, m));
4460
4461 if (VPRC_WIRE_COUNT(old) > 1)
4462 return (false);
4463 if ((m->oflags & VPO_UNMANAGED) == 0)
4464 vm_page_aflag_clear(m, PGA_DEQUEUE);
4465 vm_wire_sub(1);
4466 return (true);
4467 }
4468
4469 /*
4470 * Ensure that the page ends up in the specified page queue. If the page is
4471 * active or being moved to the active queue, ensure that its act_count is
4472 * at least ACT_INIT but do not otherwise mess with it.
4473 */
4474 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4475 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4476 {
4477 vm_page_astate_t old, new;
4478
4479 KASSERT(m->ref_count > 0,
4480 ("%s: page %p does not carry any references", __func__, m));
4481 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4482 ("%s: invalid flags %x", __func__, nflag));
4483
4484 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4485 return;
4486
4487 old = vm_page_astate_load(m);
4488 do {
4489 if ((old.flags & PGA_DEQUEUE) != 0)
4490 break;
4491 new = old;
4492 new.flags &= ~PGA_QUEUE_OP_MASK;
4493 if (nqueue == PQ_ACTIVE)
4494 new.act_count = max(old.act_count, ACT_INIT);
4495 if (old.queue == nqueue) {
4496 /*
4497 * There is no need to requeue pages already in the
4498 * active queue.
4499 */
4500 if (nqueue != PQ_ACTIVE ||
4501 (old.flags & PGA_ENQUEUED) == 0)
4502 new.flags |= nflag;
4503 } else {
4504 new.flags |= nflag;
4505 new.queue = nqueue;
4506 }
4507 } while (!vm_page_pqstate_commit(m, &old, new));
4508 }
4509
4510 /*
4511 * Put the specified page on the active list (if appropriate).
4512 */
4513 void
vm_page_activate(vm_page_t m)4514 vm_page_activate(vm_page_t m)
4515 {
4516
4517 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4518 }
4519
4520 /*
4521 * Move the specified page to the tail of the inactive queue, or requeue
4522 * the page if it is already in the inactive queue.
4523 */
4524 void
vm_page_deactivate(vm_page_t m)4525 vm_page_deactivate(vm_page_t m)
4526 {
4527
4528 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4529 }
4530
4531 void
vm_page_deactivate_noreuse(vm_page_t m)4532 vm_page_deactivate_noreuse(vm_page_t m)
4533 {
4534
4535 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4536 }
4537
4538 /*
4539 * Put a page in the laundry, or requeue it if it is already there.
4540 */
4541 void
vm_page_launder(vm_page_t m)4542 vm_page_launder(vm_page_t m)
4543 {
4544
4545 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4546 }
4547
4548 /*
4549 * Put a page in the PQ_UNSWAPPABLE holding queue.
4550 */
4551 void
vm_page_unswappable(vm_page_t m)4552 vm_page_unswappable(vm_page_t m)
4553 {
4554
4555 VM_OBJECT_ASSERT_LOCKED(m->object);
4556 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4557 ("page %p already unswappable", m));
4558
4559 vm_page_dequeue(m);
4560 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4561 }
4562
4563 /*
4564 * Release a page back to the page queues in preparation for unwiring.
4565 */
4566 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4567 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4568 {
4569 vm_page_astate_t old, new;
4570 uint16_t nflag;
4571
4572 /*
4573 * Use a check of the valid bits to determine whether we should
4574 * accelerate reclamation of the page. The object lock might not be
4575 * held here, in which case the check is racy. At worst we will either
4576 * accelerate reclamation of a valid page and violate LRU, or
4577 * unnecessarily defer reclamation of an invalid page.
4578 *
4579 * If we were asked to not cache the page, place it near the head of the
4580 * inactive queue so that is reclaimed sooner.
4581 */
4582 if (noreuse || vm_page_none_valid(m)) {
4583 nqueue = PQ_INACTIVE;
4584 nflag = PGA_REQUEUE_HEAD;
4585 } else {
4586 nflag = PGA_REQUEUE;
4587 }
4588
4589 old = vm_page_astate_load(m);
4590 do {
4591 new = old;
4592
4593 /*
4594 * If the page is already in the active queue and we are not
4595 * trying to accelerate reclamation, simply mark it as
4596 * referenced and avoid any queue operations.
4597 */
4598 new.flags &= ~PGA_QUEUE_OP_MASK;
4599 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4600 (old.flags & PGA_ENQUEUED) != 0)
4601 new.flags |= PGA_REFERENCED;
4602 else {
4603 new.flags |= nflag;
4604 new.queue = nqueue;
4605 }
4606 } while (!vm_page_pqstate_commit(m, &old, new));
4607 }
4608
4609 /*
4610 * Unwire a page and either attempt to free it or re-add it to the page queues.
4611 */
4612 void
vm_page_release(vm_page_t m,int flags)4613 vm_page_release(vm_page_t m, int flags)
4614 {
4615 vm_object_t object;
4616
4617 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4618 ("vm_page_release: page %p is unmanaged", m));
4619
4620 if ((flags & VPR_TRYFREE) != 0) {
4621 for (;;) {
4622 object = atomic_load_ptr(&m->object);
4623 if (object == NULL)
4624 break;
4625 /* Depends on type-stability. */
4626 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4627 break;
4628 if (object == m->object) {
4629 vm_page_release_locked(m, flags);
4630 VM_OBJECT_WUNLOCK(object);
4631 return;
4632 }
4633 VM_OBJECT_WUNLOCK(object);
4634 }
4635 }
4636 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4637 }
4638
4639 /* See vm_page_release(). */
4640 void
vm_page_release_locked(vm_page_t m,int flags)4641 vm_page_release_locked(vm_page_t m, int flags)
4642 {
4643
4644 VM_OBJECT_ASSERT_WLOCKED(m->object);
4645 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4646 ("vm_page_release_locked: page %p is unmanaged", m));
4647
4648 if (vm_page_unwire_noq(m)) {
4649 if ((flags & VPR_TRYFREE) != 0 &&
4650 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4651 m->dirty == 0 && vm_page_tryxbusy(m)) {
4652 /*
4653 * An unlocked lookup may have wired the page before the
4654 * busy lock was acquired, in which case the page must
4655 * not be freed.
4656 */
4657 if (__predict_true(!vm_page_wired(m))) {
4658 vm_page_free(m);
4659 return;
4660 }
4661 vm_page_xunbusy(m);
4662 } else {
4663 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4664 }
4665 }
4666 }
4667
4668 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4669 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4670 {
4671 u_int old;
4672
4673 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4674 ("vm_page_try_blocked_op: page %p has no object", m));
4675 KASSERT(vm_page_busied(m),
4676 ("vm_page_try_blocked_op: page %p is not busy", m));
4677 VM_OBJECT_ASSERT_LOCKED(m->object);
4678
4679 old = atomic_load_int(&m->ref_count);
4680 do {
4681 KASSERT(old != 0,
4682 ("vm_page_try_blocked_op: page %p has no references", m));
4683 KASSERT((old & VPRC_BLOCKED) == 0,
4684 ("vm_page_try_blocked_op: page %p blocks wirings", m));
4685 if (VPRC_WIRE_COUNT(old) != 0)
4686 return (false);
4687 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4688
4689 (op)(m);
4690
4691 /*
4692 * If the object is read-locked, new wirings may be created via an
4693 * object lookup.
4694 */
4695 old = vm_page_drop(m, VPRC_BLOCKED);
4696 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4697 old == (VPRC_BLOCKED | VPRC_OBJREF),
4698 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4699 old, m));
4700 return (true);
4701 }
4702
4703 /*
4704 * Atomically check for wirings and remove all mappings of the page.
4705 */
4706 bool
vm_page_try_remove_all(vm_page_t m)4707 vm_page_try_remove_all(vm_page_t m)
4708 {
4709
4710 return (vm_page_try_blocked_op(m, pmap_remove_all));
4711 }
4712
4713 /*
4714 * Atomically check for wirings and remove all writeable mappings of the page.
4715 */
4716 bool
vm_page_try_remove_write(vm_page_t m)4717 vm_page_try_remove_write(vm_page_t m)
4718 {
4719
4720 return (vm_page_try_blocked_op(m, pmap_remove_write));
4721 }
4722
4723 /*
4724 * vm_page_advise
4725 *
4726 * Apply the specified advice to the given page.
4727 */
4728 void
vm_page_advise(vm_page_t m,int advice)4729 vm_page_advise(vm_page_t m, int advice)
4730 {
4731
4732 VM_OBJECT_ASSERT_WLOCKED(m->object);
4733 vm_page_assert_xbusied(m);
4734
4735 if (advice == MADV_FREE)
4736 /*
4737 * Mark the page clean. This will allow the page to be freed
4738 * without first paging it out. MADV_FREE pages are often
4739 * quickly reused by malloc(3), so we do not do anything that
4740 * would result in a page fault on a later access.
4741 */
4742 vm_page_undirty(m);
4743 else if (advice != MADV_DONTNEED) {
4744 if (advice == MADV_WILLNEED)
4745 vm_page_activate(m);
4746 return;
4747 }
4748
4749 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4750 vm_page_dirty(m);
4751
4752 /*
4753 * Clear any references to the page. Otherwise, the page daemon will
4754 * immediately reactivate the page.
4755 */
4756 vm_page_aflag_clear(m, PGA_REFERENCED);
4757
4758 /*
4759 * Place clean pages near the head of the inactive queue rather than
4760 * the tail, thus defeating the queue's LRU operation and ensuring that
4761 * the page will be reused quickly. Dirty pages not already in the
4762 * laundry are moved there.
4763 */
4764 if (m->dirty == 0)
4765 vm_page_deactivate_noreuse(m);
4766 else if (!vm_page_in_laundry(m))
4767 vm_page_launder(m);
4768 }
4769
4770 /*
4771 * vm_page_grab_release
4772 *
4773 * Helper routine for grab functions to release busy on return.
4774 */
4775 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4776 vm_page_grab_release(vm_page_t m, int allocflags)
4777 {
4778
4779 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4780 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4781 vm_page_sunbusy(m);
4782 else
4783 vm_page_xunbusy(m);
4784 }
4785 }
4786
4787 /*
4788 * vm_page_grab_sleep
4789 *
4790 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4791 * if the caller should retry and false otherwise.
4792 *
4793 * If the object is locked on entry the object will be unlocked with
4794 * false returns and still locked but possibly having been dropped
4795 * with true returns.
4796 */
4797 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4798 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4799 const char *wmesg, int allocflags, bool locked)
4800 {
4801
4802 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4803 return (false);
4804
4805 /*
4806 * Reference the page before unlocking and sleeping so that
4807 * the page daemon is less likely to reclaim it.
4808 */
4809 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4810 vm_page_reference(m);
4811
4812 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4813 locked)
4814 VM_OBJECT_WLOCK(object);
4815 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4816 return (false);
4817
4818 return (true);
4819 }
4820
4821 /*
4822 * Assert that the grab flags are valid.
4823 */
4824 static inline void
vm_page_grab_check(int allocflags)4825 vm_page_grab_check(int allocflags)
4826 {
4827
4828 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4829 (allocflags & VM_ALLOC_WIRED) != 0,
4830 ("vm_page_grab*: the pages must be busied or wired"));
4831
4832 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4833 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4834 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4835 }
4836
4837 /*
4838 * Calculate the page allocation flags for grab.
4839 */
4840 static inline int
vm_page_grab_pflags(int allocflags)4841 vm_page_grab_pflags(int allocflags)
4842 {
4843 int pflags;
4844
4845 pflags = allocflags &
4846 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4847 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4848 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4849 pflags |= VM_ALLOC_WAITFAIL;
4850 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4851 pflags |= VM_ALLOC_SBUSY;
4852
4853 return (pflags);
4854 }
4855
4856 /*
4857 * Grab a page, waiting until we are waken up due to the page
4858 * changing state. We keep on waiting, if the page continues
4859 * to be in the object. If the page doesn't exist, first allocate it
4860 * and then conditionally zero it.
4861 *
4862 * This routine may sleep.
4863 *
4864 * The object must be locked on entry. The lock will, however, be released
4865 * and reacquired if the routine sleeps.
4866 */
4867 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4868 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4869 {
4870 vm_page_t m;
4871
4872 VM_OBJECT_ASSERT_WLOCKED(object);
4873 vm_page_grab_check(allocflags);
4874
4875 retrylookup:
4876 if ((m = vm_page_lookup(object, pindex)) != NULL) {
4877 if (!vm_page_tryacquire(m, allocflags)) {
4878 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4879 allocflags, true))
4880 goto retrylookup;
4881 return (NULL);
4882 }
4883 goto out;
4884 }
4885 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4886 return (NULL);
4887 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4888 if (m == NULL) {
4889 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4890 return (NULL);
4891 goto retrylookup;
4892 }
4893 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4894 pmap_zero_page(m);
4895
4896 out:
4897 vm_page_grab_release(m, allocflags);
4898
4899 return (m);
4900 }
4901
4902 /*
4903 * Attempt to validate a page, locklessly acquiring it if necessary, given a
4904 * (object, pindex) tuple and either an invalided page or NULL. The resulting
4905 * page will be validated against the identity tuple, and busied or wired as
4906 * requested. A NULL page returned guarantees that the page was not in radix at
4907 * the time of the call but callers must perform higher level synchronization or
4908 * retry the operation under a lock if they require an atomic answer. This is
4909 * the only lock free validation routine, other routines can depend on the
4910 * resulting page state.
4911 *
4912 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4913 * caller flags.
4914 */
4915 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4916 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4917 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4918 int allocflags)
4919 {
4920 if (m == NULL)
4921 m = vm_page_lookup_unlocked(object, pindex);
4922 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4923 if (vm_page_trybusy(m, allocflags)) {
4924 if (m->object == object && m->pindex == pindex) {
4925 if ((allocflags & VM_ALLOC_WIRED) != 0)
4926 vm_page_wire(m);
4927 vm_page_grab_release(m, allocflags);
4928 break;
4929 }
4930 /* relookup. */
4931 vm_page_busy_release(m);
4932 cpu_spinwait();
4933 continue;
4934 }
4935 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4936 allocflags, false))
4937 return (PAGE_NOT_ACQUIRED);
4938 }
4939 return (m);
4940 }
4941
4942 /*
4943 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4944 * is not set.
4945 */
4946 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4947 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4948 {
4949 vm_page_t m;
4950
4951 vm_page_grab_check(allocflags);
4952 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4953 if (m == PAGE_NOT_ACQUIRED)
4954 return (NULL);
4955 if (m != NULL)
4956 return (m);
4957
4958 /*
4959 * The radix lockless lookup should never return a false negative
4960 * errors. If the user specifies NOCREAT they are guaranteed there
4961 * was no page present at the instant of the call. A NOCREAT caller
4962 * must handle create races gracefully.
4963 */
4964 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4965 return (NULL);
4966
4967 VM_OBJECT_WLOCK(object);
4968 m = vm_page_grab(object, pindex, allocflags);
4969 VM_OBJECT_WUNLOCK(object);
4970
4971 return (m);
4972 }
4973
4974 /*
4975 * Grab a page and make it valid, paging in if necessary. Pages missing from
4976 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
4977 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4978 * in simultaneously. Additional pages will be left on a paging queue but
4979 * will neither be wired nor busy regardless of allocflags.
4980 */
4981 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)4982 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4983 {
4984 vm_page_t m;
4985 vm_page_t ma[VM_INITIAL_PAGEIN];
4986 int after, i, pflags, rv;
4987
4988 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4989 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4990 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4991 KASSERT((allocflags &
4992 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4993 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4994 VM_OBJECT_ASSERT_WLOCKED(object);
4995 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4996 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4997 pflags |= VM_ALLOC_WAITFAIL;
4998
4999 retrylookup:
5000 if ((m = vm_page_lookup(object, pindex)) != NULL) {
5001 /*
5002 * If the page is fully valid it can only become invalid
5003 * with the object lock held. If it is not valid it can
5004 * become valid with the busy lock held. Therefore, we
5005 * may unnecessarily lock the exclusive busy here if we
5006 * race with I/O completion not using the object lock.
5007 * However, we will not end up with an invalid page and a
5008 * shared lock.
5009 */
5010 if (!vm_page_trybusy(m,
5011 vm_page_all_valid(m) ? allocflags : 0)) {
5012 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
5013 allocflags, true);
5014 goto retrylookup;
5015 }
5016 if (vm_page_all_valid(m))
5017 goto out;
5018 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5019 vm_page_busy_release(m);
5020 *mp = NULL;
5021 return (VM_PAGER_FAIL);
5022 }
5023 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5024 *mp = NULL;
5025 return (VM_PAGER_FAIL);
5026 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
5027 if (!vm_pager_can_alloc_page(object, pindex)) {
5028 *mp = NULL;
5029 return (VM_PAGER_AGAIN);
5030 }
5031 goto retrylookup;
5032 }
5033
5034 vm_page_assert_xbusied(m);
5035 if (vm_pager_has_page(object, pindex, NULL, &after)) {
5036 after = MIN(after, VM_INITIAL_PAGEIN);
5037 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
5038 after = MAX(after, 1);
5039 ma[0] = m;
5040 for (i = 1; i < after; i++) {
5041 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
5042 if (vm_page_any_valid(ma[i]) ||
5043 !vm_page_tryxbusy(ma[i]))
5044 break;
5045 } else {
5046 ma[i] = vm_page_alloc(object, m->pindex + i,
5047 VM_ALLOC_NORMAL);
5048 if (ma[i] == NULL)
5049 break;
5050 }
5051 }
5052 after = i;
5053 vm_object_pip_add(object, after);
5054 VM_OBJECT_WUNLOCK(object);
5055 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
5056 VM_OBJECT_WLOCK(object);
5057 vm_object_pip_wakeupn(object, after);
5058 /* Pager may have replaced a page. */
5059 m = ma[0];
5060 if (rv != VM_PAGER_OK) {
5061 for (i = 0; i < after; i++) {
5062 if (!vm_page_wired(ma[i]))
5063 vm_page_free(ma[i]);
5064 else
5065 vm_page_xunbusy(ma[i]);
5066 }
5067 *mp = NULL;
5068 return (rv);
5069 }
5070 for (i = 1; i < after; i++)
5071 vm_page_readahead_finish(ma[i]);
5072 MPASS(vm_page_all_valid(m));
5073 } else {
5074 vm_page_zero_invalid(m, TRUE);
5075 }
5076 out:
5077 if ((allocflags & VM_ALLOC_WIRED) != 0)
5078 vm_page_wire(m);
5079 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5080 vm_page_busy_downgrade(m);
5081 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5082 vm_page_busy_release(m);
5083 *mp = m;
5084 return (VM_PAGER_OK);
5085 }
5086
5087 /*
5088 * Locklessly grab a valid page. If the page is not valid or not yet
5089 * allocated this will fall back to the object lock method.
5090 */
5091 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5092 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5093 vm_pindex_t pindex, int allocflags)
5094 {
5095 vm_page_t m;
5096 int flags;
5097 int error;
5098
5099 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5100 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5101 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5102 "mismatch"));
5103 KASSERT((allocflags &
5104 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5105 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5106
5107 /*
5108 * Attempt a lockless lookup and busy. We need at least an sbusy
5109 * before we can inspect the valid field and return a wired page.
5110 */
5111 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5112 vm_page_grab_check(flags);
5113 m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5114 if (m == PAGE_NOT_ACQUIRED)
5115 return (VM_PAGER_FAIL);
5116 if (m != NULL) {
5117 if (vm_page_all_valid(m)) {
5118 if ((allocflags & VM_ALLOC_WIRED) != 0)
5119 vm_page_wire(m);
5120 vm_page_grab_release(m, allocflags);
5121 *mp = m;
5122 return (VM_PAGER_OK);
5123 }
5124 vm_page_busy_release(m);
5125 }
5126 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5127 *mp = NULL;
5128 return (VM_PAGER_FAIL);
5129 }
5130 VM_OBJECT_WLOCK(object);
5131 error = vm_page_grab_valid(mp, object, pindex, allocflags);
5132 VM_OBJECT_WUNLOCK(object);
5133
5134 return (error);
5135 }
5136
5137 /*
5138 * Return the specified range of pages from the given object. For each
5139 * page offset within the range, if a page already exists within the object
5140 * at that offset and it is busy, then wait for it to change state. If,
5141 * instead, the page doesn't exist, then allocate it.
5142 *
5143 * The caller must always specify an allocation class.
5144 *
5145 * allocation classes:
5146 * VM_ALLOC_NORMAL normal process request
5147 * VM_ALLOC_SYSTEM system *really* needs the pages
5148 *
5149 * The caller must always specify that the pages are to be busied and/or
5150 * wired.
5151 *
5152 * optional allocation flags:
5153 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
5154 * VM_ALLOC_NOBUSY do not exclusive busy the page
5155 * VM_ALLOC_NOWAIT do not sleep
5156 * VM_ALLOC_SBUSY set page to sbusy state
5157 * VM_ALLOC_WIRED wire the pages
5158 * VM_ALLOC_ZERO zero and validate any invalid pages
5159 *
5160 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
5161 * may return a partial prefix of the requested range.
5162 */
5163 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5164 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5165 vm_page_t *ma, int count)
5166 {
5167 vm_page_t m, mpred;
5168 int pflags;
5169 int i;
5170
5171 VM_OBJECT_ASSERT_WLOCKED(object);
5172 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5173 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5174 KASSERT(count > 0,
5175 ("vm_page_grab_pages: invalid page count %d", count));
5176 vm_page_grab_check(allocflags);
5177
5178 pflags = vm_page_grab_pflags(allocflags);
5179 i = 0;
5180 retrylookup:
5181 m = vm_page_mpred(object, pindex + i);
5182 if (m == NULL || m->pindex != pindex + i) {
5183 mpred = m;
5184 m = NULL;
5185 } else
5186 mpred = TAILQ_PREV(m, pglist, listq);
5187 for (; i < count; i++) {
5188 if (m != NULL) {
5189 if (!vm_page_tryacquire(m, allocflags)) {
5190 if (vm_page_grab_sleep(object, m, pindex + i,
5191 "grbmaw", allocflags, true))
5192 goto retrylookup;
5193 break;
5194 }
5195 } else {
5196 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5197 break;
5198 m = vm_page_alloc_after(object, pindex + i,
5199 pflags | VM_ALLOC_COUNT(count - i), mpred);
5200 if (m == NULL) {
5201 if ((allocflags & (VM_ALLOC_NOWAIT |
5202 VM_ALLOC_WAITFAIL)) != 0)
5203 break;
5204 goto retrylookup;
5205 }
5206 }
5207 if (vm_page_none_valid(m) &&
5208 (allocflags & VM_ALLOC_ZERO) != 0) {
5209 if ((m->flags & PG_ZERO) == 0)
5210 pmap_zero_page(m);
5211 vm_page_valid(m);
5212 }
5213 vm_page_grab_release(m, allocflags);
5214 ma[i] = mpred = m;
5215 m = vm_page_next(m);
5216 }
5217 return (i);
5218 }
5219
5220 /*
5221 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
5222 * and will fall back to the locked variant to handle allocation.
5223 */
5224 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5225 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5226 int allocflags, vm_page_t *ma, int count)
5227 {
5228 vm_page_t m;
5229 int flags;
5230 int i;
5231
5232 KASSERT(count > 0,
5233 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5234 vm_page_grab_check(allocflags);
5235
5236 /*
5237 * Modify flags for lockless acquire to hold the page until we
5238 * set it valid if necessary.
5239 */
5240 flags = allocflags & ~VM_ALLOC_NOBUSY;
5241 vm_page_grab_check(flags);
5242 m = NULL;
5243 for (i = 0; i < count; i++, pindex++) {
5244 /*
5245 * We may see a false NULL here because the previous page has
5246 * been removed or just inserted and the list is loaded without
5247 * barriers. Switch to radix to verify.
5248 */
5249 if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex ||
5250 atomic_load_ptr(&m->object) != object) {
5251 /*
5252 * This guarantees the result is instantaneously
5253 * correct.
5254 */
5255 m = NULL;
5256 }
5257 m = vm_page_acquire_unlocked(object, pindex, m, flags);
5258 if (m == PAGE_NOT_ACQUIRED)
5259 return (i);
5260 if (m == NULL)
5261 break;
5262 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5263 if ((m->flags & PG_ZERO) == 0)
5264 pmap_zero_page(m);
5265 vm_page_valid(m);
5266 }
5267 /* m will still be wired or busy according to flags. */
5268 vm_page_grab_release(m, allocflags);
5269 ma[i] = m;
5270 m = TAILQ_NEXT(m, listq);
5271 }
5272 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5273 return (i);
5274 count -= i;
5275 VM_OBJECT_WLOCK(object);
5276 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5277 VM_OBJECT_WUNLOCK(object);
5278
5279 return (i);
5280 }
5281
5282 /*
5283 * Mapping function for valid or dirty bits in a page.
5284 *
5285 * Inputs are required to range within a page.
5286 */
5287 vm_page_bits_t
vm_page_bits(int base,int size)5288 vm_page_bits(int base, int size)
5289 {
5290 int first_bit;
5291 int last_bit;
5292
5293 KASSERT(
5294 base + size <= PAGE_SIZE,
5295 ("vm_page_bits: illegal base/size %d/%d", base, size)
5296 );
5297
5298 if (size == 0) /* handle degenerate case */
5299 return (0);
5300
5301 first_bit = base >> DEV_BSHIFT;
5302 last_bit = (base + size - 1) >> DEV_BSHIFT;
5303
5304 return (((vm_page_bits_t)2 << last_bit) -
5305 ((vm_page_bits_t)1 << first_bit));
5306 }
5307
5308 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5309 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5310 {
5311
5312 #if PAGE_SIZE == 32768
5313 atomic_set_64((uint64_t *)bits, set);
5314 #elif PAGE_SIZE == 16384
5315 atomic_set_32((uint32_t *)bits, set);
5316 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5317 atomic_set_16((uint16_t *)bits, set);
5318 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5319 atomic_set_8((uint8_t *)bits, set);
5320 #else /* PAGE_SIZE <= 8192 */
5321 uintptr_t addr;
5322 int shift;
5323
5324 addr = (uintptr_t)bits;
5325 /*
5326 * Use a trick to perform a 32-bit atomic on the
5327 * containing aligned word, to not depend on the existence
5328 * of atomic_{set, clear}_{8, 16}.
5329 */
5330 shift = addr & (sizeof(uint32_t) - 1);
5331 #if BYTE_ORDER == BIG_ENDIAN
5332 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5333 #else
5334 shift *= NBBY;
5335 #endif
5336 addr &= ~(sizeof(uint32_t) - 1);
5337 atomic_set_32((uint32_t *)addr, set << shift);
5338 #endif /* PAGE_SIZE */
5339 }
5340
5341 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5342 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5343 {
5344
5345 #if PAGE_SIZE == 32768
5346 atomic_clear_64((uint64_t *)bits, clear);
5347 #elif PAGE_SIZE == 16384
5348 atomic_clear_32((uint32_t *)bits, clear);
5349 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5350 atomic_clear_16((uint16_t *)bits, clear);
5351 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5352 atomic_clear_8((uint8_t *)bits, clear);
5353 #else /* PAGE_SIZE <= 8192 */
5354 uintptr_t addr;
5355 int shift;
5356
5357 addr = (uintptr_t)bits;
5358 /*
5359 * Use a trick to perform a 32-bit atomic on the
5360 * containing aligned word, to not depend on the existence
5361 * of atomic_{set, clear}_{8, 16}.
5362 */
5363 shift = addr & (sizeof(uint32_t) - 1);
5364 #if BYTE_ORDER == BIG_ENDIAN
5365 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5366 #else
5367 shift *= NBBY;
5368 #endif
5369 addr &= ~(sizeof(uint32_t) - 1);
5370 atomic_clear_32((uint32_t *)addr, clear << shift);
5371 #endif /* PAGE_SIZE */
5372 }
5373
5374 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5375 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5376 {
5377 #if PAGE_SIZE == 32768
5378 uint64_t old;
5379
5380 old = *bits;
5381 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5382 return (old);
5383 #elif PAGE_SIZE == 16384
5384 uint32_t old;
5385
5386 old = *bits;
5387 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5388 return (old);
5389 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5390 uint16_t old;
5391
5392 old = *bits;
5393 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5394 return (old);
5395 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5396 uint8_t old;
5397
5398 old = *bits;
5399 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5400 return (old);
5401 #else /* PAGE_SIZE <= 4096*/
5402 uintptr_t addr;
5403 uint32_t old, new, mask;
5404 int shift;
5405
5406 addr = (uintptr_t)bits;
5407 /*
5408 * Use a trick to perform a 32-bit atomic on the
5409 * containing aligned word, to not depend on the existence
5410 * of atomic_{set, swap, clear}_{8, 16}.
5411 */
5412 shift = addr & (sizeof(uint32_t) - 1);
5413 #if BYTE_ORDER == BIG_ENDIAN
5414 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5415 #else
5416 shift *= NBBY;
5417 #endif
5418 addr &= ~(sizeof(uint32_t) - 1);
5419 mask = VM_PAGE_BITS_ALL << shift;
5420
5421 old = *bits;
5422 do {
5423 new = old & ~mask;
5424 new |= newbits << shift;
5425 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5426 return (old >> shift);
5427 #endif /* PAGE_SIZE */
5428 }
5429
5430 /*
5431 * vm_page_set_valid_range:
5432 *
5433 * Sets portions of a page valid. The arguments are expected
5434 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5435 * of any partial chunks touched by the range. The invalid portion of
5436 * such chunks will be zeroed.
5437 *
5438 * (base + size) must be less then or equal to PAGE_SIZE.
5439 */
5440 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5441 vm_page_set_valid_range(vm_page_t m, int base, int size)
5442 {
5443 int endoff, frag;
5444 vm_page_bits_t pagebits;
5445
5446 vm_page_assert_busied(m);
5447 if (size == 0) /* handle degenerate case */
5448 return;
5449
5450 /*
5451 * If the base is not DEV_BSIZE aligned and the valid
5452 * bit is clear, we have to zero out a portion of the
5453 * first block.
5454 */
5455 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5456 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5457 pmap_zero_page_area(m, frag, base - frag);
5458
5459 /*
5460 * If the ending offset is not DEV_BSIZE aligned and the
5461 * valid bit is clear, we have to zero out a portion of
5462 * the last block.
5463 */
5464 endoff = base + size;
5465 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5466 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5467 pmap_zero_page_area(m, endoff,
5468 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5469
5470 /*
5471 * Assert that no previously invalid block that is now being validated
5472 * is already dirty.
5473 */
5474 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5475 ("vm_page_set_valid_range: page %p is dirty", m));
5476
5477 /*
5478 * Set valid bits inclusive of any overlap.
5479 */
5480 pagebits = vm_page_bits(base, size);
5481 if (vm_page_xbusied(m))
5482 m->valid |= pagebits;
5483 else
5484 vm_page_bits_set(m, &m->valid, pagebits);
5485 }
5486
5487 /*
5488 * Set the page dirty bits and free the invalid swap space if
5489 * present. Returns the previous dirty bits.
5490 */
5491 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5492 vm_page_set_dirty(vm_page_t m)
5493 {
5494 vm_page_bits_t old;
5495
5496 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5497
5498 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5499 old = m->dirty;
5500 m->dirty = VM_PAGE_BITS_ALL;
5501 } else
5502 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5503 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5504 vm_pager_page_unswapped(m);
5505
5506 return (old);
5507 }
5508
5509 /*
5510 * Clear the given bits from the specified page's dirty field.
5511 */
5512 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5513 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5514 {
5515
5516 vm_page_assert_busied(m);
5517
5518 /*
5519 * If the page is xbusied and not write mapped we are the
5520 * only thread that can modify dirty bits. Otherwise, The pmap
5521 * layer can call vm_page_dirty() without holding a distinguished
5522 * lock. The combination of page busy and atomic operations
5523 * suffice to guarantee consistency of the page dirty field.
5524 */
5525 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5526 m->dirty &= ~pagebits;
5527 else
5528 vm_page_bits_clear(m, &m->dirty, pagebits);
5529 }
5530
5531 /*
5532 * vm_page_set_validclean:
5533 *
5534 * Sets portions of a page valid and clean. The arguments are expected
5535 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5536 * of any partial chunks touched by the range. The invalid portion of
5537 * such chunks will be zero'd.
5538 *
5539 * (base + size) must be less then or equal to PAGE_SIZE.
5540 */
5541 void
vm_page_set_validclean(vm_page_t m,int base,int size)5542 vm_page_set_validclean(vm_page_t m, int base, int size)
5543 {
5544 vm_page_bits_t oldvalid, pagebits;
5545 int endoff, frag;
5546
5547 vm_page_assert_busied(m);
5548 if (size == 0) /* handle degenerate case */
5549 return;
5550
5551 /*
5552 * If the base is not DEV_BSIZE aligned and the valid
5553 * bit is clear, we have to zero out a portion of the
5554 * first block.
5555 */
5556 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5557 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5558 pmap_zero_page_area(m, frag, base - frag);
5559
5560 /*
5561 * If the ending offset is not DEV_BSIZE aligned and the
5562 * valid bit is clear, we have to zero out a portion of
5563 * the last block.
5564 */
5565 endoff = base + size;
5566 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5567 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5568 pmap_zero_page_area(m, endoff,
5569 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5570
5571 /*
5572 * Set valid, clear dirty bits. If validating the entire
5573 * page we can safely clear the pmap modify bit. We also
5574 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5575 * takes a write fault on a MAP_NOSYNC memory area the flag will
5576 * be set again.
5577 *
5578 * We set valid bits inclusive of any overlap, but we can only
5579 * clear dirty bits for DEV_BSIZE chunks that are fully within
5580 * the range.
5581 */
5582 oldvalid = m->valid;
5583 pagebits = vm_page_bits(base, size);
5584 if (vm_page_xbusied(m))
5585 m->valid |= pagebits;
5586 else
5587 vm_page_bits_set(m, &m->valid, pagebits);
5588 #if 0 /* NOT YET */
5589 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5590 frag = DEV_BSIZE - frag;
5591 base += frag;
5592 size -= frag;
5593 if (size < 0)
5594 size = 0;
5595 }
5596 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5597 #endif
5598 if (base == 0 && size == PAGE_SIZE) {
5599 /*
5600 * The page can only be modified within the pmap if it is
5601 * mapped, and it can only be mapped if it was previously
5602 * fully valid.
5603 */
5604 if (oldvalid == VM_PAGE_BITS_ALL)
5605 /*
5606 * Perform the pmap_clear_modify() first. Otherwise,
5607 * a concurrent pmap operation, such as
5608 * pmap_protect(), could clear a modification in the
5609 * pmap and set the dirty field on the page before
5610 * pmap_clear_modify() had begun and after the dirty
5611 * field was cleared here.
5612 */
5613 pmap_clear_modify(m);
5614 m->dirty = 0;
5615 vm_page_aflag_clear(m, PGA_NOSYNC);
5616 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5617 m->dirty &= ~pagebits;
5618 else
5619 vm_page_clear_dirty_mask(m, pagebits);
5620 }
5621
5622 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5623 vm_page_clear_dirty(vm_page_t m, int base, int size)
5624 {
5625
5626 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5627 }
5628
5629 /*
5630 * vm_page_set_invalid:
5631 *
5632 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5633 * valid and dirty bits for the effected areas are cleared.
5634 */
5635 void
vm_page_set_invalid(vm_page_t m,int base,int size)5636 vm_page_set_invalid(vm_page_t m, int base, int size)
5637 {
5638 vm_page_bits_t bits;
5639 vm_object_t object;
5640
5641 /*
5642 * The object lock is required so that pages can't be mapped
5643 * read-only while we're in the process of invalidating them.
5644 */
5645 object = m->object;
5646 VM_OBJECT_ASSERT_WLOCKED(object);
5647 vm_page_assert_busied(m);
5648
5649 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5650 size >= object->un_pager.vnp.vnp_size)
5651 bits = VM_PAGE_BITS_ALL;
5652 else
5653 bits = vm_page_bits(base, size);
5654 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5655 pmap_remove_all(m);
5656 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5657 !pmap_page_is_mapped(m),
5658 ("vm_page_set_invalid: page %p is mapped", m));
5659 if (vm_page_xbusied(m)) {
5660 m->valid &= ~bits;
5661 m->dirty &= ~bits;
5662 } else {
5663 vm_page_bits_clear(m, &m->valid, bits);
5664 vm_page_bits_clear(m, &m->dirty, bits);
5665 }
5666 }
5667
5668 /*
5669 * vm_page_invalid:
5670 *
5671 * Invalidates the entire page. The page must be busy, unmapped, and
5672 * the enclosing object must be locked. The object locks protects
5673 * against concurrent read-only pmap enter which is done without
5674 * busy.
5675 */
5676 void
vm_page_invalid(vm_page_t m)5677 vm_page_invalid(vm_page_t m)
5678 {
5679
5680 vm_page_assert_busied(m);
5681 VM_OBJECT_ASSERT_WLOCKED(m->object);
5682 MPASS(!pmap_page_is_mapped(m));
5683
5684 if (vm_page_xbusied(m))
5685 m->valid = 0;
5686 else
5687 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5688 }
5689
5690 /*
5691 * vm_page_zero_invalid()
5692 *
5693 * The kernel assumes that the invalid portions of a page contain
5694 * garbage, but such pages can be mapped into memory by user code.
5695 * When this occurs, we must zero out the non-valid portions of the
5696 * page so user code sees what it expects.
5697 *
5698 * Pages are most often semi-valid when the end of a file is mapped
5699 * into memory and the file's size is not page aligned.
5700 */
5701 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5702 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5703 {
5704 int b;
5705 int i;
5706
5707 /*
5708 * Scan the valid bits looking for invalid sections that
5709 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5710 * valid bit may be set ) have already been zeroed by
5711 * vm_page_set_validclean().
5712 */
5713 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5714 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5715 (m->valid & ((vm_page_bits_t)1 << i))) {
5716 if (i > b) {
5717 pmap_zero_page_area(m,
5718 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5719 }
5720 b = i + 1;
5721 }
5722 }
5723
5724 /*
5725 * setvalid is TRUE when we can safely set the zero'd areas
5726 * as being valid. We can do this if there are no cache consistency
5727 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5728 */
5729 if (setvalid)
5730 vm_page_valid(m);
5731 }
5732
5733 /*
5734 * vm_page_is_valid:
5735 *
5736 * Is (partial) page valid? Note that the case where size == 0
5737 * will return FALSE in the degenerate case where the page is
5738 * entirely invalid, and TRUE otherwise.
5739 *
5740 * Some callers envoke this routine without the busy lock held and
5741 * handle races via higher level locks. Typical callers should
5742 * hold a busy lock to prevent invalidation.
5743 */
5744 int
vm_page_is_valid(vm_page_t m,int base,int size)5745 vm_page_is_valid(vm_page_t m, int base, int size)
5746 {
5747 vm_page_bits_t bits;
5748
5749 bits = vm_page_bits(base, size);
5750 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5751 }
5752
5753 /*
5754 * Returns true if all of the specified predicates are true for the entire
5755 * (super)page and false otherwise.
5756 */
5757 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5758 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5759 {
5760 vm_object_t object;
5761 int i, npages;
5762
5763 object = m->object;
5764 if (skip_m != NULL && skip_m->object != object)
5765 return (false);
5766 VM_OBJECT_ASSERT_LOCKED(object);
5767 KASSERT(psind <= m->psind,
5768 ("psind %d > psind %d of m %p", psind, m->psind, m));
5769 npages = atop(pagesizes[psind]);
5770
5771 /*
5772 * The physically contiguous pages that make up a superpage, i.e., a
5773 * page with a page size index ("psind") greater than zero, will
5774 * occupy adjacent entries in vm_page_array[].
5775 */
5776 for (i = 0; i < npages; i++) {
5777 /* Always test object consistency, including "skip_m". */
5778 if (m[i].object != object)
5779 return (false);
5780 if (&m[i] == skip_m)
5781 continue;
5782 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5783 return (false);
5784 if ((flags & PS_ALL_DIRTY) != 0) {
5785 /*
5786 * Calling vm_page_test_dirty() or pmap_is_modified()
5787 * might stop this case from spuriously returning
5788 * "false". However, that would require a write lock
5789 * on the object containing "m[i]".
5790 */
5791 if (m[i].dirty != VM_PAGE_BITS_ALL)
5792 return (false);
5793 }
5794 if ((flags & PS_ALL_VALID) != 0 &&
5795 m[i].valid != VM_PAGE_BITS_ALL)
5796 return (false);
5797 }
5798 return (true);
5799 }
5800
5801 /*
5802 * Set the page's dirty bits if the page is modified.
5803 */
5804 void
vm_page_test_dirty(vm_page_t m)5805 vm_page_test_dirty(vm_page_t m)
5806 {
5807
5808 vm_page_assert_busied(m);
5809 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5810 vm_page_dirty(m);
5811 }
5812
5813 void
vm_page_valid(vm_page_t m)5814 vm_page_valid(vm_page_t m)
5815 {
5816
5817 vm_page_assert_busied(m);
5818 if (vm_page_xbusied(m))
5819 m->valid = VM_PAGE_BITS_ALL;
5820 else
5821 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5822 }
5823
5824 void
vm_page_lock_KBI(vm_page_t m,const char * file,int line)5825 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5826 {
5827
5828 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5829 }
5830
5831 void
vm_page_unlock_KBI(vm_page_t m,const char * file,int line)5832 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5833 {
5834
5835 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5836 }
5837
5838 int
vm_page_trylock_KBI(vm_page_t m,const char * file,int line)5839 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5840 {
5841
5842 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5843 }
5844
5845 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5846 void
vm_page_assert_locked_KBI(vm_page_t m,const char * file,int line)5847 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5848 {
5849
5850 vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5851 }
5852
5853 void
vm_page_lock_assert_KBI(vm_page_t m,int a,const char * file,int line)5854 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5855 {
5856
5857 mtx_assert_(vm_page_lockptr(m), a, file, line);
5858 }
5859 #endif
5860
5861 #ifdef INVARIANTS
5862 void
vm_page_object_busy_assert(vm_page_t m)5863 vm_page_object_busy_assert(vm_page_t m)
5864 {
5865
5866 /*
5867 * Certain of the page's fields may only be modified by the
5868 * holder of a page or object busy.
5869 */
5870 if (m->object != NULL && !vm_page_busied(m))
5871 VM_OBJECT_ASSERT_BUSY(m->object);
5872 }
5873
5874 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5875 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5876 {
5877
5878 if ((bits & PGA_WRITEABLE) == 0)
5879 return;
5880
5881 /*
5882 * The PGA_WRITEABLE flag can only be set if the page is
5883 * managed, is exclusively busied or the object is locked.
5884 * Currently, this flag is only set by pmap_enter().
5885 */
5886 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5887 ("PGA_WRITEABLE on unmanaged page"));
5888 if (!vm_page_xbusied(m))
5889 VM_OBJECT_ASSERT_BUSY(m->object);
5890 }
5891 #endif
5892
5893 #include "opt_ddb.h"
5894 #ifdef DDB
5895 #include <sys/kernel.h>
5896
5897 #include <ddb/ddb.h>
5898
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5899 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5900 {
5901
5902 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5903 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5904 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5905 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5906 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5907 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5908 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5909 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5910 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5911 }
5912
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5913 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5914 {
5915 int dom;
5916
5917 db_printf("pq_free %d\n", vm_free_count());
5918 for (dom = 0; dom < vm_ndomains; dom++) {
5919 db_printf(
5920 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5921 dom,
5922 vm_dom[dom].vmd_page_count,
5923 vm_dom[dom].vmd_free_count,
5924 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5925 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5926 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5927 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5928 }
5929 }
5930
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5931 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5932 {
5933 vm_page_t m;
5934 boolean_t phys, virt;
5935
5936 if (!have_addr) {
5937 db_printf("show pginfo addr\n");
5938 return;
5939 }
5940
5941 phys = strchr(modif, 'p') != NULL;
5942 virt = strchr(modif, 'v') != NULL;
5943 if (virt)
5944 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5945 else if (phys)
5946 m = PHYS_TO_VM_PAGE(addr);
5947 else
5948 m = (vm_page_t)addr;
5949 db_printf(
5950 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5951 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5952 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5953 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5954 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5955 }
5956 #endif /* DDB */
5957