xref: /linux/fs/btrfs/extent-tree.c (revision f92b71ffca8c7e45e194aecc85e31bd11582f4d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43 
44 #undef SCRAMBLE_DELAYED_REFS
45 
46 
47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 			       struct btrfs_delayed_ref_head *href,
49 			       const struct btrfs_delayed_ref_node *node,
50 			       struct btrfs_delayed_extent_op *extra_op);
51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52 				    struct extent_buffer *leaf,
53 				    struct btrfs_extent_item *ei);
54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55 				      u64 parent, u64 root_objectid,
56 				      u64 flags, u64 owner, u64 offset,
57 				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59 				     const struct btrfs_delayed_ref_node *node,
60 				     struct btrfs_delayed_extent_op *extent_op);
61 static int find_next_key(const struct btrfs_path *path, int level,
62 			 struct btrfs_key *key);
63 
block_group_bits(const struct btrfs_block_group * cache,u64 bits)64 static int block_group_bits(const struct btrfs_block_group *cache, u64 bits)
65 {
66 	return (cache->flags & bits) == bits;
67 }
68 
69 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71 {
72 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73 	struct btrfs_key key;
74 	BTRFS_PATH_AUTO_FREE(path);
75 
76 	path = btrfs_alloc_path();
77 	if (!path)
78 		return -ENOMEM;
79 
80 	key.objectid = start;
81 	key.type = BTRFS_EXTENT_ITEM_KEY;
82 	key.offset = len;
83 	return btrfs_search_slot(NULL, root, &key, path, 0, 0);
84 }
85 
86 /*
87  * helper function to lookup reference count and flags of a tree block.
88  *
89  * the head node for delayed ref is used to store the sum of all the
90  * reference count modifications queued up in the rbtree. the head
91  * node may also store the extent flags to set. This way you can check
92  * to see what the reference count and extent flags would be if all of
93  * the delayed refs are not processed.
94  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags,u64 * owning_root)95 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
96 			     struct btrfs_fs_info *fs_info, u64 bytenr,
97 			     u64 offset, int metadata, u64 *refs, u64 *flags,
98 			     u64 *owning_root)
99 {
100 	struct btrfs_root *extent_root;
101 	struct btrfs_delayed_ref_head *head;
102 	struct btrfs_delayed_ref_root *delayed_refs;
103 	BTRFS_PATH_AUTO_FREE(path);
104 	struct btrfs_key key;
105 	u64 num_refs;
106 	u64 extent_flags;
107 	u64 owner = 0;
108 	int ret;
109 
110 	/*
111 	 * If we don't have skinny metadata, don't bother doing anything
112 	 * different
113 	 */
114 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
115 		offset = fs_info->nodesize;
116 		metadata = 0;
117 	}
118 
119 	path = btrfs_alloc_path();
120 	if (!path)
121 		return -ENOMEM;
122 
123 search_again:
124 	key.objectid = bytenr;
125 	if (metadata)
126 		key.type = BTRFS_METADATA_ITEM_KEY;
127 	else
128 		key.type = BTRFS_EXTENT_ITEM_KEY;
129 	key.offset = offset;
130 
131 	extent_root = btrfs_extent_root(fs_info, bytenr);
132 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
133 	if (ret < 0)
134 		return ret;
135 
136 	if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
137 		if (path->slots[0]) {
138 			path->slots[0]--;
139 			btrfs_item_key_to_cpu(path->nodes[0], &key,
140 					      path->slots[0]);
141 			if (key.objectid == bytenr &&
142 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
143 			    key.offset == fs_info->nodesize)
144 				ret = 0;
145 		}
146 	}
147 
148 	if (ret == 0) {
149 		struct extent_buffer *leaf = path->nodes[0];
150 		struct btrfs_extent_item *ei;
151 		const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
152 
153 		if (unlikely(item_size < sizeof(*ei))) {
154 			ret = -EUCLEAN;
155 			btrfs_err(fs_info,
156 			"unexpected extent item size, has %u expect >= %zu",
157 				  item_size, sizeof(*ei));
158 			btrfs_abort_transaction(trans, ret);
159 			return ret;
160 		}
161 
162 		ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
163 		num_refs = btrfs_extent_refs(leaf, ei);
164 		if (unlikely(num_refs == 0)) {
165 			ret = -EUCLEAN;
166 			btrfs_err(fs_info,
167 		"unexpected zero reference count for extent item (%llu %u %llu)",
168 				  key.objectid, key.type, key.offset);
169 			btrfs_abort_transaction(trans, ret);
170 			return ret;
171 		}
172 		extent_flags = btrfs_extent_flags(leaf, ei);
173 		owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
174 	} else {
175 		num_refs = 0;
176 		extent_flags = 0;
177 		ret = 0;
178 	}
179 
180 	delayed_refs = &trans->transaction->delayed_refs;
181 	spin_lock(&delayed_refs->lock);
182 	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
183 	if (head) {
184 		if (!mutex_trylock(&head->mutex)) {
185 			refcount_inc(&head->refs);
186 			spin_unlock(&delayed_refs->lock);
187 
188 			btrfs_release_path(path);
189 
190 			/*
191 			 * Mutex was contended, block until it's released and try
192 			 * again
193 			 */
194 			mutex_lock(&head->mutex);
195 			mutex_unlock(&head->mutex);
196 			btrfs_put_delayed_ref_head(head);
197 			goto search_again;
198 		}
199 		spin_lock(&head->lock);
200 		if (head->extent_op && head->extent_op->update_flags)
201 			extent_flags |= head->extent_op->flags_to_set;
202 
203 		num_refs += head->ref_mod;
204 		spin_unlock(&head->lock);
205 		mutex_unlock(&head->mutex);
206 	}
207 	spin_unlock(&delayed_refs->lock);
208 
209 	WARN_ON(num_refs == 0);
210 	if (refs)
211 		*refs = num_refs;
212 	if (flags)
213 		*flags = extent_flags;
214 	if (owning_root)
215 		*owning_root = owner;
216 
217 	return ret;
218 }
219 
220 /*
221  * Back reference rules.  Back refs have three main goals:
222  *
223  * 1) differentiate between all holders of references to an extent so that
224  *    when a reference is dropped we can make sure it was a valid reference
225  *    before freeing the extent.
226  *
227  * 2) Provide enough information to quickly find the holders of an extent
228  *    if we notice a given block is corrupted or bad.
229  *
230  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
231  *    maintenance.  This is actually the same as #2, but with a slightly
232  *    different use case.
233  *
234  * There are two kinds of back refs. The implicit back refs is optimized
235  * for pointers in non-shared tree blocks. For a given pointer in a block,
236  * back refs of this kind provide information about the block's owner tree
237  * and the pointer's key. These information allow us to find the block by
238  * b-tree searching. The full back refs is for pointers in tree blocks not
239  * referenced by their owner trees. The location of tree block is recorded
240  * in the back refs. Actually the full back refs is generic, and can be
241  * used in all cases the implicit back refs is used. The major shortcoming
242  * of the full back refs is its overhead. Every time a tree block gets
243  * COWed, we have to update back refs entry for all pointers in it.
244  *
245  * For a newly allocated tree block, we use implicit back refs for
246  * pointers in it. This means most tree related operations only involve
247  * implicit back refs. For a tree block created in old transaction, the
248  * only way to drop a reference to it is COW it. So we can detect the
249  * event that tree block loses its owner tree's reference and do the
250  * back refs conversion.
251  *
252  * When a tree block is COWed through a tree, there are four cases:
253  *
254  * The reference count of the block is one and the tree is the block's
255  * owner tree. Nothing to do in this case.
256  *
257  * The reference count of the block is one and the tree is not the
258  * block's owner tree. In this case, full back refs is used for pointers
259  * in the block. Remove these full back refs, add implicit back refs for
260  * every pointers in the new block.
261  *
262  * The reference count of the block is greater than one and the tree is
263  * the block's owner tree. In this case, implicit back refs is used for
264  * pointers in the block. Add full back refs for every pointers in the
265  * block, increase lower level extents' reference counts. The original
266  * implicit back refs are entailed to the new block.
267  *
268  * The reference count of the block is greater than one and the tree is
269  * not the block's owner tree. Add implicit back refs for every pointer in
270  * the new block, increase lower level extents' reference count.
271  *
272  * Back Reference Key composing:
273  *
274  * The key objectid corresponds to the first byte in the extent,
275  * The key type is used to differentiate between types of back refs.
276  * There are different meanings of the key offset for different types
277  * of back refs.
278  *
279  * File extents can be referenced by:
280  *
281  * - multiple snapshots, subvolumes, or different generations in one subvol
282  * - different files inside a single subvolume
283  * - different offsets inside a file (bookend extents in file.c)
284  *
285  * The extent ref structure for the implicit back refs has fields for:
286  *
287  * - Objectid of the subvolume root
288  * - objectid of the file holding the reference
289  * - original offset in the file
290  * - how many bookend extents
291  *
292  * The key offset for the implicit back refs is hash of the first
293  * three fields.
294  *
295  * The extent ref structure for the full back refs has field for:
296  *
297  * - number of pointers in the tree leaf
298  *
299  * The key offset for the implicit back refs is the first byte of
300  * the tree leaf
301  *
302  * When a file extent is allocated, The implicit back refs is used.
303  * the fields are filled in:
304  *
305  *     (root_key.objectid, inode objectid, offset in file, 1)
306  *
307  * When a file extent is removed file truncation, we find the
308  * corresponding implicit back refs and check the following fields:
309  *
310  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
311  *
312  * Btree extents can be referenced by:
313  *
314  * - Different subvolumes
315  *
316  * Both the implicit back refs and the full back refs for tree blocks
317  * only consist of key. The key offset for the implicit back refs is
318  * objectid of block's owner tree. The key offset for the full back refs
319  * is the first byte of parent block.
320  *
321  * When implicit back refs is used, information about the lowest key and
322  * level of the tree block are required. These information are stored in
323  * tree block info structure.
324  */
325 
326 /*
327  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
328  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
329  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
330  */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,const struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)331 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
332 				     const struct btrfs_extent_inline_ref *iref,
333 				     enum btrfs_inline_ref_type is_data)
334 {
335 	struct btrfs_fs_info *fs_info = eb->fs_info;
336 	int type = btrfs_extent_inline_ref_type(eb, iref);
337 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
338 
339 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
340 		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
341 		return type;
342 	}
343 
344 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
345 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
346 	    type == BTRFS_SHARED_DATA_REF_KEY ||
347 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
348 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
349 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
350 				return type;
351 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
352 				ASSERT(fs_info);
353 				/*
354 				 * Every shared one has parent tree block,
355 				 * which must be aligned to sector size.
356 				 */
357 				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
358 					return type;
359 			}
360 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
361 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
362 				return type;
363 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
364 				ASSERT(fs_info);
365 				/*
366 				 * Every shared one has parent tree block,
367 				 * which must be aligned to sector size.
368 				 */
369 				if (offset &&
370 				    IS_ALIGNED(offset, fs_info->sectorsize))
371 					return type;
372 			}
373 		} else {
374 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
375 			return type;
376 		}
377 	}
378 
379 	WARN_ON(1);
380 	btrfs_print_leaf(eb);
381 	btrfs_err(fs_info,
382 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
383 		  eb->start, (unsigned long)iref, type);
384 
385 	return BTRFS_REF_TYPE_INVALID;
386 }
387 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)388 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
389 {
390 	u32 high_crc = ~(u32)0;
391 	u32 low_crc = ~(u32)0;
392 	__le64 lenum;
393 
394 	lenum = cpu_to_le64(root_objectid);
395 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
396 	lenum = cpu_to_le64(owner);
397 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
398 	lenum = cpu_to_le64(offset);
399 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
400 
401 	return ((u64)high_crc << 31) ^ (u64)low_crc;
402 }
403 
hash_extent_data_ref_item(const struct extent_buffer * leaf,const struct btrfs_extent_data_ref * ref)404 static u64 hash_extent_data_ref_item(const struct extent_buffer *leaf,
405 				     const struct btrfs_extent_data_ref *ref)
406 {
407 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
408 				    btrfs_extent_data_ref_objectid(leaf, ref),
409 				    btrfs_extent_data_ref_offset(leaf, ref));
410 }
411 
match_extent_data_ref(const struct extent_buffer * leaf,const struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)412 static bool match_extent_data_ref(const struct extent_buffer *leaf,
413 				  const struct btrfs_extent_data_ref *ref,
414 				  u64 root_objectid, u64 owner, u64 offset)
415 {
416 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
417 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
418 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
419 		return false;
420 	return true;
421 }
422 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)423 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
424 					   struct btrfs_path *path,
425 					   u64 bytenr, u64 parent,
426 					   u64 root_objectid,
427 					   u64 owner, u64 offset)
428 {
429 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
430 	struct btrfs_key key;
431 	struct btrfs_extent_data_ref *ref;
432 	struct extent_buffer *leaf;
433 	u32 nritems;
434 	int recow;
435 	int ret;
436 
437 	key.objectid = bytenr;
438 	if (parent) {
439 		key.type = BTRFS_SHARED_DATA_REF_KEY;
440 		key.offset = parent;
441 	} else {
442 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
443 		key.offset = hash_extent_data_ref(root_objectid,
444 						  owner, offset);
445 	}
446 again:
447 	recow = 0;
448 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
449 	if (ret < 0)
450 		return ret;
451 
452 	if (parent) {
453 		if (ret)
454 			return -ENOENT;
455 		return 0;
456 	}
457 
458 	ret = -ENOENT;
459 	leaf = path->nodes[0];
460 	nritems = btrfs_header_nritems(leaf);
461 	while (1) {
462 		if (path->slots[0] >= nritems) {
463 			ret = btrfs_next_leaf(root, path);
464 			if (ret) {
465 				if (ret > 0)
466 					return -ENOENT;
467 				return ret;
468 			}
469 
470 			leaf = path->nodes[0];
471 			nritems = btrfs_header_nritems(leaf);
472 			recow = 1;
473 		}
474 
475 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
476 		if (key.objectid != bytenr ||
477 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
478 			goto fail;
479 
480 		ref = btrfs_item_ptr(leaf, path->slots[0],
481 				     struct btrfs_extent_data_ref);
482 
483 		if (match_extent_data_ref(leaf, ref, root_objectid,
484 					  owner, offset)) {
485 			if (recow) {
486 				btrfs_release_path(path);
487 				goto again;
488 			}
489 			ret = 0;
490 			break;
491 		}
492 		path->slots[0]++;
493 	}
494 fail:
495 	return ret;
496 }
497 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_delayed_ref_node * node,u64 bytenr)498 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
499 					   struct btrfs_path *path,
500 					   const struct btrfs_delayed_ref_node *node,
501 					   u64 bytenr)
502 {
503 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
504 	struct btrfs_key key;
505 	struct extent_buffer *leaf;
506 	u64 owner = btrfs_delayed_ref_owner(node);
507 	u64 offset = btrfs_delayed_ref_offset(node);
508 	u32 size;
509 	u32 num_refs;
510 	int ret;
511 
512 	key.objectid = bytenr;
513 	if (node->parent) {
514 		key.type = BTRFS_SHARED_DATA_REF_KEY;
515 		key.offset = node->parent;
516 		size = sizeof(struct btrfs_shared_data_ref);
517 	} else {
518 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
519 		key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
520 		size = sizeof(struct btrfs_extent_data_ref);
521 	}
522 
523 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
524 	if (ret && ret != -EEXIST)
525 		goto fail;
526 
527 	leaf = path->nodes[0];
528 	if (node->parent) {
529 		struct btrfs_shared_data_ref *ref;
530 		ref = btrfs_item_ptr(leaf, path->slots[0],
531 				     struct btrfs_shared_data_ref);
532 		if (ret == 0) {
533 			btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
534 		} else {
535 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
536 			num_refs += node->ref_mod;
537 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
538 		}
539 	} else {
540 		struct btrfs_extent_data_ref *ref;
541 		while (ret == -EEXIST) {
542 			ref = btrfs_item_ptr(leaf, path->slots[0],
543 					     struct btrfs_extent_data_ref);
544 			if (match_extent_data_ref(leaf, ref, node->ref_root,
545 						  owner, offset))
546 				break;
547 			btrfs_release_path(path);
548 			key.offset++;
549 			ret = btrfs_insert_empty_item(trans, root, path, &key,
550 						      size);
551 			if (ret && ret != -EEXIST)
552 				goto fail;
553 
554 			leaf = path->nodes[0];
555 		}
556 		ref = btrfs_item_ptr(leaf, path->slots[0],
557 				     struct btrfs_extent_data_ref);
558 		if (ret == 0) {
559 			btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
560 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
561 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
562 			btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
563 		} else {
564 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
565 			num_refs += node->ref_mod;
566 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
567 		}
568 	}
569 	ret = 0;
570 fail:
571 	btrfs_release_path(path);
572 	return ret;
573 }
574 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)575 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
576 					   struct btrfs_root *root,
577 					   struct btrfs_path *path,
578 					   int refs_to_drop)
579 {
580 	struct btrfs_key key;
581 	struct btrfs_extent_data_ref *ref1 = NULL;
582 	struct btrfs_shared_data_ref *ref2 = NULL;
583 	struct extent_buffer *leaf;
584 	u32 num_refs = 0;
585 	int ret = 0;
586 
587 	leaf = path->nodes[0];
588 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 
590 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
591 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
592 				      struct btrfs_extent_data_ref);
593 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
594 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
595 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
596 				      struct btrfs_shared_data_ref);
597 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
598 	} else {
599 		btrfs_err(trans->fs_info,
600 			  "unrecognized backref key (%llu %u %llu)",
601 			  key.objectid, key.type, key.offset);
602 		btrfs_abort_transaction(trans, -EUCLEAN);
603 		return -EUCLEAN;
604 	}
605 
606 	BUG_ON(num_refs < refs_to_drop);
607 	num_refs -= refs_to_drop;
608 
609 	if (num_refs == 0) {
610 		ret = btrfs_del_item(trans, root, path);
611 	} else {
612 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
613 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
614 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
615 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
616 	}
617 	return ret;
618 }
619 
extent_data_ref_count(const struct btrfs_path * path,const struct btrfs_extent_inline_ref * iref)620 static noinline u32 extent_data_ref_count(const struct btrfs_path *path,
621 					  const struct btrfs_extent_inline_ref *iref)
622 {
623 	struct btrfs_key key;
624 	struct extent_buffer *leaf;
625 	const struct btrfs_extent_data_ref *ref1;
626 	const struct btrfs_shared_data_ref *ref2;
627 	u32 num_refs = 0;
628 	int type;
629 
630 	leaf = path->nodes[0];
631 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
632 
633 	if (iref) {
634 		/*
635 		 * If type is invalid, we should have bailed out earlier than
636 		 * this call.
637 		 */
638 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
639 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
640 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
641 			ref1 = (const struct btrfs_extent_data_ref *)(&iref->offset);
642 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
643 		} else {
644 			ref2 = (const struct btrfs_shared_data_ref *)(iref + 1);
645 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
646 		}
647 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
648 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
649 				      struct btrfs_extent_data_ref);
650 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
651 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
652 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
653 				      struct btrfs_shared_data_ref);
654 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
655 	} else {
656 		WARN_ON(1);
657 	}
658 	return num_refs;
659 }
660 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)661 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
662 					  struct btrfs_path *path,
663 					  u64 bytenr, u64 parent,
664 					  u64 root_objectid)
665 {
666 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
667 	struct btrfs_key key;
668 	int ret;
669 
670 	key.objectid = bytenr;
671 	if (parent) {
672 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
673 		key.offset = parent;
674 	} else {
675 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
676 		key.offset = root_objectid;
677 	}
678 
679 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
680 	if (ret > 0)
681 		ret = -ENOENT;
682 	return ret;
683 }
684 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_delayed_ref_node * node,u64 bytenr)685 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
686 					  struct btrfs_path *path,
687 					  const struct btrfs_delayed_ref_node *node,
688 					  u64 bytenr)
689 {
690 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
691 	struct btrfs_key key;
692 	int ret;
693 
694 	key.objectid = bytenr;
695 	if (node->parent) {
696 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
697 		key.offset = node->parent;
698 	} else {
699 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
700 		key.offset = node->ref_root;
701 	}
702 
703 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
704 	btrfs_release_path(path);
705 	return ret;
706 }
707 
extent_ref_type(u64 parent,u64 owner)708 static inline int extent_ref_type(u64 parent, u64 owner)
709 {
710 	int type;
711 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
712 		if (parent > 0)
713 			type = BTRFS_SHARED_BLOCK_REF_KEY;
714 		else
715 			type = BTRFS_TREE_BLOCK_REF_KEY;
716 	} else {
717 		if (parent > 0)
718 			type = BTRFS_SHARED_DATA_REF_KEY;
719 		else
720 			type = BTRFS_EXTENT_DATA_REF_KEY;
721 	}
722 	return type;
723 }
724 
find_next_key(const struct btrfs_path * path,int level,struct btrfs_key * key)725 static int find_next_key(const struct btrfs_path *path, int level,
726 			 struct btrfs_key *key)
727 
728 {
729 	for (; level < BTRFS_MAX_LEVEL; level++) {
730 		if (!path->nodes[level])
731 			break;
732 		if (path->slots[level] + 1 >=
733 		    btrfs_header_nritems(path->nodes[level]))
734 			continue;
735 		if (level == 0)
736 			btrfs_item_key_to_cpu(path->nodes[level], key,
737 					      path->slots[level] + 1);
738 		else
739 			btrfs_node_key_to_cpu(path->nodes[level], key,
740 					      path->slots[level] + 1);
741 		return 0;
742 	}
743 	return 1;
744 }
745 
746 /*
747  * look for inline back ref. if back ref is found, *ref_ret is set
748  * to the address of inline back ref, and 0 is returned.
749  *
750  * if back ref isn't found, *ref_ret is set to the address where it
751  * should be inserted, and -ENOENT is returned.
752  *
753  * if insert is true and there are too many inline back refs, the path
754  * points to the extent item, and -EAGAIN is returned.
755  *
756  * NOTE: inline back refs are ordered in the same way that back ref
757  *	 items in the tree are ordered.
758  */
759 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)760 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
761 				 struct btrfs_path *path,
762 				 struct btrfs_extent_inline_ref **ref_ret,
763 				 u64 bytenr, u64 num_bytes,
764 				 u64 parent, u64 root_objectid,
765 				 u64 owner, u64 offset, int insert)
766 {
767 	struct btrfs_fs_info *fs_info = trans->fs_info;
768 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
769 	struct btrfs_key key;
770 	struct extent_buffer *leaf;
771 	struct btrfs_extent_item *ei;
772 	struct btrfs_extent_inline_ref *iref;
773 	u64 flags;
774 	u64 item_size;
775 	unsigned long ptr;
776 	unsigned long end;
777 	int extra_size;
778 	int type;
779 	int want;
780 	int ret;
781 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
782 	int needed;
783 
784 	key.objectid = bytenr;
785 	key.type = BTRFS_EXTENT_ITEM_KEY;
786 	key.offset = num_bytes;
787 
788 	want = extent_ref_type(parent, owner);
789 	if (insert) {
790 		extra_size = btrfs_extent_inline_ref_size(want);
791 		path->search_for_extension = 1;
792 	} else
793 		extra_size = -1;
794 
795 	/*
796 	 * Owner is our level, so we can just add one to get the level for the
797 	 * block we are interested in.
798 	 */
799 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
800 		key.type = BTRFS_METADATA_ITEM_KEY;
801 		key.offset = owner;
802 	}
803 
804 again:
805 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
806 	if (ret < 0)
807 		goto out;
808 
809 	/*
810 	 * We may be a newly converted file system which still has the old fat
811 	 * extent entries for metadata, so try and see if we have one of those.
812 	 */
813 	if (ret > 0 && skinny_metadata) {
814 		skinny_metadata = false;
815 		if (path->slots[0]) {
816 			path->slots[0]--;
817 			btrfs_item_key_to_cpu(path->nodes[0], &key,
818 					      path->slots[0]);
819 			if (key.objectid == bytenr &&
820 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
821 			    key.offset == num_bytes)
822 				ret = 0;
823 		}
824 		if (ret) {
825 			key.objectid = bytenr;
826 			key.type = BTRFS_EXTENT_ITEM_KEY;
827 			key.offset = num_bytes;
828 			btrfs_release_path(path);
829 			goto again;
830 		}
831 	}
832 
833 	if (ret && !insert) {
834 		ret = -ENOENT;
835 		goto out;
836 	} else if (WARN_ON(ret)) {
837 		btrfs_print_leaf(path->nodes[0]);
838 		btrfs_err(fs_info,
839 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
840 			  bytenr, num_bytes, parent, root_objectid, owner,
841 			  offset);
842 		ret = -EUCLEAN;
843 		goto out;
844 	}
845 
846 	leaf = path->nodes[0];
847 	item_size = btrfs_item_size(leaf, path->slots[0]);
848 	if (unlikely(item_size < sizeof(*ei))) {
849 		ret = -EUCLEAN;
850 		btrfs_err(fs_info,
851 			  "unexpected extent item size, has %llu expect >= %zu",
852 			  item_size, sizeof(*ei));
853 		btrfs_abort_transaction(trans, ret);
854 		goto out;
855 	}
856 
857 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
858 	flags = btrfs_extent_flags(leaf, ei);
859 
860 	ptr = (unsigned long)(ei + 1);
861 	end = (unsigned long)ei + item_size;
862 
863 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
864 		ptr += sizeof(struct btrfs_tree_block_info);
865 		BUG_ON(ptr > end);
866 	}
867 
868 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
869 		needed = BTRFS_REF_TYPE_DATA;
870 	else
871 		needed = BTRFS_REF_TYPE_BLOCK;
872 
873 	ret = -ENOENT;
874 	while (ptr < end) {
875 		iref = (struct btrfs_extent_inline_ref *)ptr;
876 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
877 		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
878 			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
879 			ptr += btrfs_extent_inline_ref_size(type);
880 			continue;
881 		}
882 		if (type == BTRFS_REF_TYPE_INVALID) {
883 			ret = -EUCLEAN;
884 			goto out;
885 		}
886 
887 		if (want < type)
888 			break;
889 		if (want > type) {
890 			ptr += btrfs_extent_inline_ref_size(type);
891 			continue;
892 		}
893 
894 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
895 			struct btrfs_extent_data_ref *dref;
896 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
897 			if (match_extent_data_ref(leaf, dref, root_objectid,
898 						  owner, offset)) {
899 				ret = 0;
900 				break;
901 			}
902 			if (hash_extent_data_ref_item(leaf, dref) <
903 			    hash_extent_data_ref(root_objectid, owner, offset))
904 				break;
905 		} else {
906 			u64 ref_offset;
907 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
908 			if (parent > 0) {
909 				if (parent == ref_offset) {
910 					ret = 0;
911 					break;
912 				}
913 				if (ref_offset < parent)
914 					break;
915 			} else {
916 				if (root_objectid == ref_offset) {
917 					ret = 0;
918 					break;
919 				}
920 				if (ref_offset < root_objectid)
921 					break;
922 			}
923 		}
924 		ptr += btrfs_extent_inline_ref_size(type);
925 	}
926 
927 	if (unlikely(ptr > end)) {
928 		ret = -EUCLEAN;
929 		btrfs_print_leaf(path->nodes[0]);
930 		btrfs_crit(fs_info,
931 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
932 			   path->slots[0], root_objectid, owner, offset, parent);
933 		goto out;
934 	}
935 
936 	if (ret == -ENOENT && insert) {
937 		if (item_size + extra_size >=
938 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
939 			ret = -EAGAIN;
940 			goto out;
941 		}
942 
943 		if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
944 			struct btrfs_key tmp_key;
945 
946 			btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
947 			if (tmp_key.objectid == bytenr &&
948 			    tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
949 				ret = -EAGAIN;
950 				goto out;
951 			}
952 			goto out_no_entry;
953 		}
954 
955 		if (!path->keep_locks) {
956 			btrfs_release_path(path);
957 			path->keep_locks = 1;
958 			goto again;
959 		}
960 
961 		/*
962 		 * To add new inline back ref, we have to make sure
963 		 * there is no corresponding back ref item.
964 		 * For simplicity, we just do not add new inline back
965 		 * ref if there is any kind of item for this block
966 		 */
967 		if (find_next_key(path, 0, &key) == 0 &&
968 		    key.objectid == bytenr &&
969 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
970 			ret = -EAGAIN;
971 			goto out;
972 		}
973 	}
974 out_no_entry:
975 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
976 out:
977 	if (path->keep_locks) {
978 		path->keep_locks = 0;
979 		btrfs_unlock_up_safe(path, 1);
980 	}
981 	if (insert)
982 		path->search_for_extension = 0;
983 	return ret;
984 }
985 
986 /*
987  * helper to add new inline back ref
988  */
989 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)990 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
991 				 struct btrfs_path *path,
992 				 struct btrfs_extent_inline_ref *iref,
993 				 u64 parent, u64 root_objectid,
994 				 u64 owner, u64 offset, int refs_to_add,
995 				 struct btrfs_delayed_extent_op *extent_op)
996 {
997 	struct extent_buffer *leaf;
998 	struct btrfs_extent_item *ei;
999 	unsigned long ptr;
1000 	unsigned long end;
1001 	unsigned long item_offset;
1002 	u64 refs;
1003 	int size;
1004 	int type;
1005 
1006 	leaf = path->nodes[0];
1007 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1008 	item_offset = (unsigned long)iref - (unsigned long)ei;
1009 
1010 	type = extent_ref_type(parent, owner);
1011 	size = btrfs_extent_inline_ref_size(type);
1012 
1013 	btrfs_extend_item(trans, path, size);
1014 
1015 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 	refs = btrfs_extent_refs(leaf, ei);
1017 	refs += refs_to_add;
1018 	btrfs_set_extent_refs(leaf, ei, refs);
1019 	if (extent_op)
1020 		__run_delayed_extent_op(extent_op, leaf, ei);
1021 
1022 	ptr = (unsigned long)ei + item_offset;
1023 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1024 	if (ptr < end - size)
1025 		memmove_extent_buffer(leaf, ptr + size, ptr,
1026 				      end - size - ptr);
1027 
1028 	iref = (struct btrfs_extent_inline_ref *)ptr;
1029 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1030 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1031 		struct btrfs_extent_data_ref *dref;
1032 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1033 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1034 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1035 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1036 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1037 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1038 		struct btrfs_shared_data_ref *sref;
1039 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1040 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1041 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1042 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1043 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1044 	} else {
1045 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1046 	}
1047 }
1048 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1049 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1050 				 struct btrfs_path *path,
1051 				 struct btrfs_extent_inline_ref **ref_ret,
1052 				 u64 bytenr, u64 num_bytes, u64 parent,
1053 				 u64 root_objectid, u64 owner, u64 offset)
1054 {
1055 	int ret;
1056 
1057 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1058 					   num_bytes, parent, root_objectid,
1059 					   owner, offset, 0);
1060 	if (ret != -ENOENT)
1061 		return ret;
1062 
1063 	btrfs_release_path(path);
1064 	*ref_ret = NULL;
1065 
1066 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1067 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1068 					    root_objectid);
1069 	} else {
1070 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1071 					     root_objectid, owner, offset);
1072 	}
1073 	return ret;
1074 }
1075 
1076 /*
1077  * helper to update/remove inline back ref
1078  */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1079 static noinline_for_stack int update_inline_extent_backref(
1080 				  struct btrfs_trans_handle *trans,
1081 				  struct btrfs_path *path,
1082 				  struct btrfs_extent_inline_ref *iref,
1083 				  int refs_to_mod,
1084 				  struct btrfs_delayed_extent_op *extent_op)
1085 {
1086 	struct extent_buffer *leaf = path->nodes[0];
1087 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1088 	struct btrfs_extent_item *ei;
1089 	struct btrfs_extent_data_ref *dref = NULL;
1090 	struct btrfs_shared_data_ref *sref = NULL;
1091 	unsigned long ptr;
1092 	unsigned long end;
1093 	u32 item_size;
1094 	int size;
1095 	int type;
1096 	u64 refs;
1097 
1098 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1099 	refs = btrfs_extent_refs(leaf, ei);
1100 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1101 		struct btrfs_key key;
1102 		u32 extent_size;
1103 
1104 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1105 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1106 			extent_size = fs_info->nodesize;
1107 		else
1108 			extent_size = key.offset;
1109 		btrfs_print_leaf(leaf);
1110 		btrfs_err(fs_info,
1111 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1112 			  key.objectid, extent_size, refs_to_mod, refs);
1113 		return -EUCLEAN;
1114 	}
1115 	refs += refs_to_mod;
1116 	btrfs_set_extent_refs(leaf, ei, refs);
1117 	if (extent_op)
1118 		__run_delayed_extent_op(extent_op, leaf, ei);
1119 
1120 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1121 	/*
1122 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1123 	 * error messages.
1124 	 */
1125 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1126 		return -EUCLEAN;
1127 
1128 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1129 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1130 		refs = btrfs_extent_data_ref_count(leaf, dref);
1131 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1132 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1133 		refs = btrfs_shared_data_ref_count(leaf, sref);
1134 	} else {
1135 		refs = 1;
1136 		/*
1137 		 * For tree blocks we can only drop one ref for it, and tree
1138 		 * blocks should not have refs > 1.
1139 		 *
1140 		 * Furthermore if we're inserting a new inline backref, we
1141 		 * won't reach this path either. That would be
1142 		 * setup_inline_extent_backref().
1143 		 */
1144 		if (unlikely(refs_to_mod != -1)) {
1145 			struct btrfs_key key;
1146 
1147 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1148 
1149 			btrfs_print_leaf(leaf);
1150 			btrfs_err(fs_info,
1151 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1152 				  key.objectid, refs_to_mod);
1153 			return -EUCLEAN;
1154 		}
1155 	}
1156 
1157 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1158 		struct btrfs_key key;
1159 		u32 extent_size;
1160 
1161 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1162 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1163 			extent_size = fs_info->nodesize;
1164 		else
1165 			extent_size = key.offset;
1166 		btrfs_print_leaf(leaf);
1167 		btrfs_err(fs_info,
1168 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1169 			  (unsigned long)iref, key.objectid, extent_size,
1170 			  refs_to_mod, refs);
1171 		return -EUCLEAN;
1172 	}
1173 	refs += refs_to_mod;
1174 
1175 	if (refs > 0) {
1176 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1177 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1178 		else
1179 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1180 	} else {
1181 		size =  btrfs_extent_inline_ref_size(type);
1182 		item_size = btrfs_item_size(leaf, path->slots[0]);
1183 		ptr = (unsigned long)iref;
1184 		end = (unsigned long)ei + item_size;
1185 		if (ptr + size < end)
1186 			memmove_extent_buffer(leaf, ptr, ptr + size,
1187 					      end - ptr - size);
1188 		item_size -= size;
1189 		btrfs_truncate_item(trans, path, item_size, 1);
1190 	}
1191 	return 0;
1192 }
1193 
1194 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1195 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1196 				 struct btrfs_path *path,
1197 				 u64 bytenr, u64 num_bytes, u64 parent,
1198 				 u64 root_objectid, u64 owner,
1199 				 u64 offset, int refs_to_add,
1200 				 struct btrfs_delayed_extent_op *extent_op)
1201 {
1202 	struct btrfs_extent_inline_ref *iref;
1203 	int ret;
1204 
1205 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1206 					   num_bytes, parent, root_objectid,
1207 					   owner, offset, 1);
1208 	if (ret == 0) {
1209 		/*
1210 		 * We're adding refs to a tree block we already own, this
1211 		 * should not happen at all.
1212 		 */
1213 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1214 			btrfs_print_leaf(path->nodes[0]);
1215 			btrfs_crit(trans->fs_info,
1216 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1217 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1218 			return -EUCLEAN;
1219 		}
1220 		ret = update_inline_extent_backref(trans, path, iref,
1221 						   refs_to_add, extent_op);
1222 	} else if (ret == -ENOENT) {
1223 		setup_inline_extent_backref(trans, path, iref, parent,
1224 					    root_objectid, owner, offset,
1225 					    refs_to_add, extent_op);
1226 		ret = 0;
1227 	}
1228 	return ret;
1229 }
1230 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1231 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1232 				 struct btrfs_root *root,
1233 				 struct btrfs_path *path,
1234 				 struct btrfs_extent_inline_ref *iref,
1235 				 int refs_to_drop, int is_data)
1236 {
1237 	int ret = 0;
1238 
1239 	BUG_ON(!is_data && refs_to_drop != 1);
1240 	if (iref)
1241 		ret = update_inline_extent_backref(trans, path, iref,
1242 						   -refs_to_drop, NULL);
1243 	else if (is_data)
1244 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1245 	else
1246 		ret = btrfs_del_item(trans, root, path);
1247 	return ret;
1248 }
1249 
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1250 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1251 			       u64 *discarded_bytes)
1252 {
1253 	int j, ret = 0;
1254 	u64 bytes_left, end;
1255 	u64 aligned_start = ALIGN(start, SECTOR_SIZE);
1256 
1257 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1258 	if (start != aligned_start) {
1259 		len -= aligned_start - start;
1260 		len = round_down(len, SECTOR_SIZE);
1261 		start = aligned_start;
1262 	}
1263 
1264 	*discarded_bytes = 0;
1265 
1266 	if (!len)
1267 		return 0;
1268 
1269 	end = start + len;
1270 	bytes_left = len;
1271 
1272 	/* Skip any superblocks on this device. */
1273 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1274 		u64 sb_start = btrfs_sb_offset(j);
1275 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1276 		u64 size = sb_start - start;
1277 
1278 		if (!in_range(sb_start, start, bytes_left) &&
1279 		    !in_range(sb_end, start, bytes_left) &&
1280 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1281 			continue;
1282 
1283 		/*
1284 		 * Superblock spans beginning of range.  Adjust start and
1285 		 * try again.
1286 		 */
1287 		if (sb_start <= start) {
1288 			start += sb_end - start;
1289 			if (start > end) {
1290 				bytes_left = 0;
1291 				break;
1292 			}
1293 			bytes_left = end - start;
1294 			continue;
1295 		}
1296 
1297 		if (size) {
1298 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1299 						   size >> SECTOR_SHIFT,
1300 						   GFP_NOFS);
1301 			if (!ret)
1302 				*discarded_bytes += size;
1303 			else if (ret != -EOPNOTSUPP)
1304 				return ret;
1305 		}
1306 
1307 		start = sb_end;
1308 		if (start > end) {
1309 			bytes_left = 0;
1310 			break;
1311 		}
1312 		bytes_left = end - start;
1313 	}
1314 
1315 	while (bytes_left) {
1316 		u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1317 
1318 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1319 					   bytes_to_discard >> SECTOR_SHIFT,
1320 					   GFP_NOFS);
1321 
1322 		if (ret) {
1323 			if (ret != -EOPNOTSUPP)
1324 				break;
1325 			continue;
1326 		}
1327 
1328 		start += bytes_to_discard;
1329 		bytes_left -= bytes_to_discard;
1330 		*discarded_bytes += bytes_to_discard;
1331 
1332 		if (btrfs_trim_interrupted()) {
1333 			ret = -ERESTARTSYS;
1334 			break;
1335 		}
1336 	}
1337 
1338 	return ret;
1339 }
1340 
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1341 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1342 {
1343 	struct btrfs_device *dev = stripe->dev;
1344 	struct btrfs_fs_info *fs_info = dev->fs_info;
1345 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1346 	u64 phys = stripe->physical;
1347 	u64 len = stripe->length;
1348 	u64 discarded = 0;
1349 	int ret = 0;
1350 
1351 	/* Zone reset on a zoned filesystem */
1352 	if (btrfs_can_zone_reset(dev, phys, len)) {
1353 		u64 src_disc;
1354 
1355 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1356 		if (ret)
1357 			goto out;
1358 
1359 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1360 		    dev != dev_replace->srcdev)
1361 			goto out;
1362 
1363 		src_disc = discarded;
1364 
1365 		/* Send to replace target as well */
1366 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1367 					      &discarded);
1368 		discarded += src_disc;
1369 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1370 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1371 	} else {
1372 		ret = 0;
1373 		*bytes = 0;
1374 	}
1375 
1376 out:
1377 	*bytes = discarded;
1378 	return ret;
1379 }
1380 
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1381 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1382 			 u64 num_bytes, u64 *actual_bytes)
1383 {
1384 	int ret = 0;
1385 	u64 discarded_bytes = 0;
1386 	u64 end = bytenr + num_bytes;
1387 	u64 cur = bytenr;
1388 
1389 	/*
1390 	 * Avoid races with device replace and make sure the devices in the
1391 	 * stripes don't go away while we are discarding.
1392 	 */
1393 	btrfs_bio_counter_inc_blocked(fs_info);
1394 	while (cur < end) {
1395 		struct btrfs_discard_stripe *stripes;
1396 		unsigned int num_stripes;
1397 		int i;
1398 
1399 		num_bytes = end - cur;
1400 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1401 		if (IS_ERR(stripes)) {
1402 			ret = PTR_ERR(stripes);
1403 			if (ret == -EOPNOTSUPP)
1404 				ret = 0;
1405 			break;
1406 		}
1407 
1408 		for (i = 0; i < num_stripes; i++) {
1409 			struct btrfs_discard_stripe *stripe = stripes + i;
1410 			u64 bytes;
1411 
1412 			if (!stripe->dev->bdev) {
1413 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1414 				continue;
1415 			}
1416 
1417 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1418 					&stripe->dev->dev_state))
1419 				continue;
1420 
1421 			ret = do_discard_extent(stripe, &bytes);
1422 			if (ret) {
1423 				/*
1424 				 * Keep going if discard is not supported by the
1425 				 * device.
1426 				 */
1427 				if (ret != -EOPNOTSUPP)
1428 					break;
1429 				ret = 0;
1430 			} else {
1431 				discarded_bytes += bytes;
1432 			}
1433 		}
1434 		kfree(stripes);
1435 		if (ret)
1436 			break;
1437 		cur += num_bytes;
1438 	}
1439 	btrfs_bio_counter_dec(fs_info);
1440 	if (actual_bytes)
1441 		*actual_bytes = discarded_bytes;
1442 	return ret;
1443 }
1444 
1445 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1446 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1447 			 struct btrfs_ref *generic_ref)
1448 {
1449 	struct btrfs_fs_info *fs_info = trans->fs_info;
1450 	int ret;
1451 
1452 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1453 	       generic_ref->action);
1454 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1455 	       generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1456 
1457 	if (generic_ref->type == BTRFS_REF_METADATA)
1458 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1459 	else
1460 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1461 
1462 	btrfs_ref_tree_mod(fs_info, generic_ref);
1463 
1464 	return ret;
1465 }
1466 
1467 /*
1468  * Insert backreference for a given extent.
1469  *
1470  * The counterpart is in __btrfs_free_extent(), with examples and more details
1471  * how it works.
1472  *
1473  * @trans:	    Handle of transaction
1474  *
1475  * @node:	    The delayed ref node used to get the bytenr/length for
1476  *		    extent whose references are incremented.
1477  *
1478  * @extent_op       Pointer to a structure, holding information necessary when
1479  *                  updating a tree block's flags
1480  *
1481  */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,const struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)1482 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1483 				  const struct btrfs_delayed_ref_node *node,
1484 				  struct btrfs_delayed_extent_op *extent_op)
1485 {
1486 	BTRFS_PATH_AUTO_FREE(path);
1487 	struct extent_buffer *leaf;
1488 	struct btrfs_extent_item *item;
1489 	struct btrfs_key key;
1490 	u64 bytenr = node->bytenr;
1491 	u64 num_bytes = node->num_bytes;
1492 	u64 owner = btrfs_delayed_ref_owner(node);
1493 	u64 offset = btrfs_delayed_ref_offset(node);
1494 	u64 refs;
1495 	int refs_to_add = node->ref_mod;
1496 	int ret;
1497 
1498 	path = btrfs_alloc_path();
1499 	if (!path)
1500 		return -ENOMEM;
1501 
1502 	/* this will setup the path even if it fails to insert the back ref */
1503 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1504 					   node->parent, node->ref_root, owner,
1505 					   offset, refs_to_add, extent_op);
1506 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1507 		return ret;
1508 
1509 	/*
1510 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1511 	 * inline extent ref, so just update the reference count and add a
1512 	 * normal backref.
1513 	 */
1514 	leaf = path->nodes[0];
1515 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1516 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1517 	refs = btrfs_extent_refs(leaf, item);
1518 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1519 	if (extent_op)
1520 		__run_delayed_extent_op(extent_op, leaf, item);
1521 
1522 	btrfs_release_path(path);
1523 
1524 	/* now insert the actual backref */
1525 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1526 		ret = insert_tree_block_ref(trans, path, node, bytenr);
1527 		if (ret)
1528 			btrfs_abort_transaction(trans, ret);
1529 	} else {
1530 		ret = insert_extent_data_ref(trans, path, node, bytenr);
1531 		if (ret)
1532 			btrfs_abort_transaction(trans, ret);
1533 	}
1534 
1535 	return ret;
1536 }
1537 
free_head_ref_squota_rsv(struct btrfs_fs_info * fs_info,const struct btrfs_delayed_ref_head * href)1538 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1539 				     const struct btrfs_delayed_ref_head *href)
1540 {
1541 	u64 root = href->owning_root;
1542 
1543 	/*
1544 	 * Don't check must_insert_reserved, as this is called from contexts
1545 	 * where it has already been unset.
1546 	 */
1547 	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1548 	    !href->is_data || !btrfs_is_fstree(root))
1549 		return;
1550 
1551 	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1552 				  BTRFS_QGROUP_RSV_DATA);
1553 }
1554 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,const struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1555 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1556 				struct btrfs_delayed_ref_head *href,
1557 				const struct btrfs_delayed_ref_node *node,
1558 				struct btrfs_delayed_extent_op *extent_op,
1559 				bool insert_reserved)
1560 {
1561 	int ret = 0;
1562 	u64 parent = 0;
1563 	u64 flags = 0;
1564 
1565 	trace_run_delayed_data_ref(trans->fs_info, node);
1566 
1567 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1568 		parent = node->parent;
1569 
1570 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1571 		struct btrfs_key key;
1572 		struct btrfs_squota_delta delta = {
1573 			.root = href->owning_root,
1574 			.num_bytes = node->num_bytes,
1575 			.is_data = true,
1576 			.is_inc	= true,
1577 			.generation = trans->transid,
1578 		};
1579 		u64 owner = btrfs_delayed_ref_owner(node);
1580 		u64 offset = btrfs_delayed_ref_offset(node);
1581 
1582 		if (extent_op)
1583 			flags |= extent_op->flags_to_set;
1584 
1585 		key.objectid = node->bytenr;
1586 		key.type = BTRFS_EXTENT_ITEM_KEY;
1587 		key.offset = node->num_bytes;
1588 
1589 		ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1590 						 flags, owner, offset, &key,
1591 						 node->ref_mod,
1592 						 href->owning_root);
1593 		free_head_ref_squota_rsv(trans->fs_info, href);
1594 		if (!ret)
1595 			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1596 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1597 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1598 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1599 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1600 	} else {
1601 		BUG();
1602 	}
1603 	return ret;
1604 }
1605 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1606 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1607 				    struct extent_buffer *leaf,
1608 				    struct btrfs_extent_item *ei)
1609 {
1610 	u64 flags = btrfs_extent_flags(leaf, ei);
1611 	if (extent_op->update_flags) {
1612 		flags |= extent_op->flags_to_set;
1613 		btrfs_set_extent_flags(leaf, ei, flags);
1614 	}
1615 
1616 	if (extent_op->update_key) {
1617 		struct btrfs_tree_block_info *bi;
1618 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1619 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1620 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1621 	}
1622 }
1623 
run_delayed_extent_op(struct btrfs_trans_handle * trans,const struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1624 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1625 				 const struct btrfs_delayed_ref_head *head,
1626 				 struct btrfs_delayed_extent_op *extent_op)
1627 {
1628 	struct btrfs_fs_info *fs_info = trans->fs_info;
1629 	struct btrfs_root *root;
1630 	struct btrfs_key key;
1631 	BTRFS_PATH_AUTO_FREE(path);
1632 	struct btrfs_extent_item *ei;
1633 	struct extent_buffer *leaf;
1634 	u32 item_size;
1635 	int ret;
1636 	int metadata = 1;
1637 
1638 	if (TRANS_ABORTED(trans))
1639 		return 0;
1640 
1641 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1642 		metadata = 0;
1643 
1644 	path = btrfs_alloc_path();
1645 	if (!path)
1646 		return -ENOMEM;
1647 
1648 	key.objectid = head->bytenr;
1649 
1650 	if (metadata) {
1651 		key.type = BTRFS_METADATA_ITEM_KEY;
1652 		key.offset = head->level;
1653 	} else {
1654 		key.type = BTRFS_EXTENT_ITEM_KEY;
1655 		key.offset = head->num_bytes;
1656 	}
1657 
1658 	root = btrfs_extent_root(fs_info, key.objectid);
1659 again:
1660 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1661 	if (ret < 0) {
1662 		return ret;
1663 	} else if (ret > 0) {
1664 		if (metadata) {
1665 			if (path->slots[0] > 0) {
1666 				path->slots[0]--;
1667 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1668 						      path->slots[0]);
1669 				if (key.objectid == head->bytenr &&
1670 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1671 				    key.offset == head->num_bytes)
1672 					ret = 0;
1673 			}
1674 			if (ret > 0) {
1675 				btrfs_release_path(path);
1676 				metadata = 0;
1677 
1678 				key.objectid = head->bytenr;
1679 				key.type = BTRFS_EXTENT_ITEM_KEY;
1680 				key.offset = head->num_bytes;
1681 				goto again;
1682 			}
1683 		} else {
1684 			ret = -EUCLEAN;
1685 			btrfs_err(fs_info,
1686 		  "missing extent item for extent %llu num_bytes %llu level %d",
1687 				  head->bytenr, head->num_bytes, head->level);
1688 			return ret;
1689 		}
1690 	}
1691 
1692 	leaf = path->nodes[0];
1693 	item_size = btrfs_item_size(leaf, path->slots[0]);
1694 
1695 	if (unlikely(item_size < sizeof(*ei))) {
1696 		ret = -EUCLEAN;
1697 		btrfs_err(fs_info,
1698 			  "unexpected extent item size, has %u expect >= %zu",
1699 			  item_size, sizeof(*ei));
1700 		btrfs_abort_transaction(trans, ret);
1701 		return ret;
1702 	}
1703 
1704 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1705 	__run_delayed_extent_op(extent_op, leaf, ei);
1706 
1707 	return ret;
1708 }
1709 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,const struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1710 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1711 				struct btrfs_delayed_ref_head *href,
1712 				const struct btrfs_delayed_ref_node *node,
1713 				struct btrfs_delayed_extent_op *extent_op,
1714 				bool insert_reserved)
1715 {
1716 	int ret = 0;
1717 	struct btrfs_fs_info *fs_info = trans->fs_info;
1718 	u64 parent = 0;
1719 	u64 ref_root = 0;
1720 
1721 	trace_run_delayed_tree_ref(trans->fs_info, node);
1722 
1723 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1724 		parent = node->parent;
1725 	ref_root = node->ref_root;
1726 
1727 	if (unlikely(node->ref_mod != 1)) {
1728 		btrfs_err(trans->fs_info,
1729 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1730 			  node->bytenr, node->ref_mod, node->action, ref_root,
1731 			  parent);
1732 		return -EUCLEAN;
1733 	}
1734 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1735 		struct btrfs_squota_delta delta = {
1736 			.root = href->owning_root,
1737 			.num_bytes = fs_info->nodesize,
1738 			.is_data = false,
1739 			.is_inc = true,
1740 			.generation = trans->transid,
1741 		};
1742 
1743 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1744 		if (!ret)
1745 			btrfs_record_squota_delta(fs_info, &delta);
1746 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1747 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1748 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1749 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1750 	} else {
1751 		BUG();
1752 	}
1753 	return ret;
1754 }
1755 
1756 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,const struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1757 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1758 			       struct btrfs_delayed_ref_head *href,
1759 			       const struct btrfs_delayed_ref_node *node,
1760 			       struct btrfs_delayed_extent_op *extent_op,
1761 			       bool insert_reserved)
1762 {
1763 	int ret = 0;
1764 
1765 	if (TRANS_ABORTED(trans)) {
1766 		if (insert_reserved) {
1767 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1768 			free_head_ref_squota_rsv(trans->fs_info, href);
1769 		}
1770 		return 0;
1771 	}
1772 
1773 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1774 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1775 		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1776 					   insert_reserved);
1777 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1778 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1779 		ret = run_delayed_data_ref(trans, href, node, extent_op,
1780 					   insert_reserved);
1781 	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1782 		ret = 0;
1783 	else
1784 		BUG();
1785 	if (ret && insert_reserved)
1786 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1787 	if (ret < 0)
1788 		btrfs_err(trans->fs_info,
1789 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1790 			  node->bytenr, node->num_bytes, node->type,
1791 			  node->action, node->ref_mod, ret);
1792 	return ret;
1793 }
1794 
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1795 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1796 				struct btrfs_delayed_ref_head *head)
1797 {
1798 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1799 
1800 	if (!extent_op)
1801 		return NULL;
1802 
1803 	if (head->must_insert_reserved) {
1804 		head->extent_op = NULL;
1805 		btrfs_free_delayed_extent_op(extent_op);
1806 		return NULL;
1807 	}
1808 	return extent_op;
1809 }
1810 
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1811 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1812 				     struct btrfs_delayed_ref_head *head)
1813 {
1814 	struct btrfs_delayed_extent_op *extent_op;
1815 	int ret;
1816 
1817 	extent_op = cleanup_extent_op(head);
1818 	if (!extent_op)
1819 		return 0;
1820 	head->extent_op = NULL;
1821 	spin_unlock(&head->lock);
1822 	ret = run_delayed_extent_op(trans, head, extent_op);
1823 	btrfs_free_delayed_extent_op(extent_op);
1824 	return ret ? ret : 1;
1825 }
1826 
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1827 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1828 				  struct btrfs_delayed_ref_root *delayed_refs,
1829 				  struct btrfs_delayed_ref_head *head)
1830 {
1831 	u64 ret = 0;
1832 
1833 	/*
1834 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1835 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1836 	 */
1837 	if (head->total_ref_mod < 0 && head->is_data) {
1838 		int nr_csums;
1839 
1840 		spin_lock(&delayed_refs->lock);
1841 		delayed_refs->pending_csums -= head->num_bytes;
1842 		spin_unlock(&delayed_refs->lock);
1843 		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1844 
1845 		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1846 
1847 		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1848 	}
1849 	/* must_insert_reserved can be set only if we didn't run the head ref. */
1850 	if (head->must_insert_reserved)
1851 		free_head_ref_squota_rsv(fs_info, head);
1852 
1853 	return ret;
1854 }
1855 
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,u64 * bytes_released)1856 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1857 			    struct btrfs_delayed_ref_head *head,
1858 			    u64 *bytes_released)
1859 {
1860 
1861 	struct btrfs_fs_info *fs_info = trans->fs_info;
1862 	struct btrfs_delayed_ref_root *delayed_refs;
1863 	int ret;
1864 
1865 	delayed_refs = &trans->transaction->delayed_refs;
1866 
1867 	ret = run_and_cleanup_extent_op(trans, head);
1868 	if (ret < 0) {
1869 		btrfs_unselect_ref_head(delayed_refs, head);
1870 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1871 		return ret;
1872 	} else if (ret) {
1873 		return ret;
1874 	}
1875 
1876 	/*
1877 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1878 	 * and then re-check to make sure nobody got added.
1879 	 */
1880 	spin_unlock(&head->lock);
1881 	spin_lock(&delayed_refs->lock);
1882 	spin_lock(&head->lock);
1883 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1884 		spin_unlock(&head->lock);
1885 		spin_unlock(&delayed_refs->lock);
1886 		return 1;
1887 	}
1888 	btrfs_delete_ref_head(fs_info, delayed_refs, head);
1889 	spin_unlock(&head->lock);
1890 	spin_unlock(&delayed_refs->lock);
1891 
1892 	if (head->must_insert_reserved) {
1893 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1894 		if (head->is_data) {
1895 			struct btrfs_root *csum_root;
1896 
1897 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1898 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1899 					      head->num_bytes);
1900 		}
1901 	}
1902 
1903 	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1904 
1905 	trace_run_delayed_ref_head(fs_info, head, 0);
1906 	btrfs_delayed_ref_unlock(head);
1907 	btrfs_put_delayed_ref_head(head);
1908 	return ret;
1909 }
1910 
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,u64 * bytes_released)1911 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1912 					   struct btrfs_delayed_ref_head *locked_ref,
1913 					   u64 *bytes_released)
1914 {
1915 	struct btrfs_fs_info *fs_info = trans->fs_info;
1916 	struct btrfs_delayed_ref_root *delayed_refs;
1917 	struct btrfs_delayed_extent_op *extent_op;
1918 	struct btrfs_delayed_ref_node *ref;
1919 	bool must_insert_reserved;
1920 	int ret;
1921 
1922 	delayed_refs = &trans->transaction->delayed_refs;
1923 
1924 	lockdep_assert_held(&locked_ref->mutex);
1925 	lockdep_assert_held(&locked_ref->lock);
1926 
1927 	while ((ref = btrfs_select_delayed_ref(locked_ref))) {
1928 		if (ref->seq &&
1929 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1930 			spin_unlock(&locked_ref->lock);
1931 			btrfs_unselect_ref_head(delayed_refs, locked_ref);
1932 			return -EAGAIN;
1933 		}
1934 
1935 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1936 		RB_CLEAR_NODE(&ref->ref_node);
1937 		if (!list_empty(&ref->add_list))
1938 			list_del(&ref->add_list);
1939 		/*
1940 		 * When we play the delayed ref, also correct the ref_mod on
1941 		 * head
1942 		 */
1943 		switch (ref->action) {
1944 		case BTRFS_ADD_DELAYED_REF:
1945 		case BTRFS_ADD_DELAYED_EXTENT:
1946 			locked_ref->ref_mod -= ref->ref_mod;
1947 			break;
1948 		case BTRFS_DROP_DELAYED_REF:
1949 			locked_ref->ref_mod += ref->ref_mod;
1950 			break;
1951 		default:
1952 			WARN_ON(1);
1953 		}
1954 
1955 		/*
1956 		 * Record the must_insert_reserved flag before we drop the
1957 		 * spin lock.
1958 		 */
1959 		must_insert_reserved = locked_ref->must_insert_reserved;
1960 		/*
1961 		 * Unsetting this on the head ref relinquishes ownership of
1962 		 * the rsv_bytes, so it is critical that every possible code
1963 		 * path from here forward frees all reserves including qgroup
1964 		 * reserve.
1965 		 */
1966 		locked_ref->must_insert_reserved = false;
1967 
1968 		extent_op = locked_ref->extent_op;
1969 		locked_ref->extent_op = NULL;
1970 		spin_unlock(&locked_ref->lock);
1971 
1972 		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
1973 					  must_insert_reserved);
1974 		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
1975 		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
1976 
1977 		btrfs_free_delayed_extent_op(extent_op);
1978 		if (ret) {
1979 			btrfs_unselect_ref_head(delayed_refs, locked_ref);
1980 			btrfs_put_delayed_ref(ref);
1981 			return ret;
1982 		}
1983 
1984 		btrfs_put_delayed_ref(ref);
1985 		cond_resched();
1986 
1987 		spin_lock(&locked_ref->lock);
1988 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 /*
1995  * Returns 0 on success or if called with an already aborted transaction.
1996  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1997  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)1998 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1999 					     u64 min_bytes)
2000 {
2001 	struct btrfs_fs_info *fs_info = trans->fs_info;
2002 	struct btrfs_delayed_ref_root *delayed_refs;
2003 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2004 	int ret;
2005 	unsigned long count = 0;
2006 	unsigned long max_count = 0;
2007 	u64 bytes_processed = 0;
2008 
2009 	delayed_refs = &trans->transaction->delayed_refs;
2010 	if (min_bytes == 0) {
2011 		/*
2012 		 * We may be subject to a harmless race if some task is
2013 		 * concurrently adding or removing a delayed ref, so silence
2014 		 * KCSAN and similar tools.
2015 		 */
2016 		max_count = data_race(delayed_refs->num_heads_ready);
2017 		min_bytes = U64_MAX;
2018 	}
2019 
2020 	do {
2021 		if (!locked_ref) {
2022 			locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2023 			if (IS_ERR_OR_NULL(locked_ref)) {
2024 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2025 					continue;
2026 				} else {
2027 					break;
2028 				}
2029 			}
2030 			count++;
2031 		}
2032 		/*
2033 		 * We need to try and merge add/drops of the same ref since we
2034 		 * can run into issues with relocate dropping the implicit ref
2035 		 * and then it being added back again before the drop can
2036 		 * finish.  If we merged anything we need to re-loop so we can
2037 		 * get a good ref.
2038 		 * Or we can get node references of the same type that weren't
2039 		 * merged when created due to bumps in the tree mod seq, and
2040 		 * we need to merge them to prevent adding an inline extent
2041 		 * backref before dropping it (triggering a BUG_ON at
2042 		 * insert_inline_extent_backref()).
2043 		 */
2044 		spin_lock(&locked_ref->lock);
2045 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2046 
2047 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2048 		if (ret < 0 && ret != -EAGAIN) {
2049 			/*
2050 			 * Error, btrfs_run_delayed_refs_for_head already
2051 			 * unlocked everything so just bail out
2052 			 */
2053 			return ret;
2054 		} else if (!ret) {
2055 			/*
2056 			 * Success, perform the usual cleanup of a processed
2057 			 * head
2058 			 */
2059 			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2060 			if (ret > 0 ) {
2061 				/* We dropped our lock, we need to loop. */
2062 				ret = 0;
2063 				continue;
2064 			} else if (ret) {
2065 				return ret;
2066 			}
2067 		}
2068 
2069 		/*
2070 		 * Either success case or btrfs_run_delayed_refs_for_head
2071 		 * returned -EAGAIN, meaning we need to select another head
2072 		 */
2073 
2074 		locked_ref = NULL;
2075 		cond_resched();
2076 	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2077 		 (max_count > 0 && count < max_count) ||
2078 		 locked_ref);
2079 
2080 	return 0;
2081 }
2082 
2083 #ifdef SCRAMBLE_DELAYED_REFS
2084 /*
2085  * Normally delayed refs get processed in ascending bytenr order. This
2086  * correlates in most cases to the order added. To expose dependencies on this
2087  * order, we start to process the tree in the middle instead of the beginning
2088  */
find_middle(struct rb_root * root)2089 static u64 find_middle(struct rb_root *root)
2090 {
2091 	struct rb_node *n = root->rb_node;
2092 	struct btrfs_delayed_ref_node *entry;
2093 	int alt = 1;
2094 	u64 middle;
2095 	u64 first = 0, last = 0;
2096 
2097 	n = rb_first(root);
2098 	if (n) {
2099 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2100 		first = entry->bytenr;
2101 	}
2102 	n = rb_last(root);
2103 	if (n) {
2104 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2105 		last = entry->bytenr;
2106 	}
2107 	n = root->rb_node;
2108 
2109 	while (n) {
2110 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2111 		WARN_ON(!entry->in_tree);
2112 
2113 		middle = entry->bytenr;
2114 
2115 		if (alt)
2116 			n = n->rb_left;
2117 		else
2118 			n = n->rb_right;
2119 
2120 		alt = 1 - alt;
2121 	}
2122 	return middle;
2123 }
2124 #endif
2125 
2126 /*
2127  * Start processing the delayed reference count updates and extent insertions
2128  * we have queued up so far.
2129  *
2130  * @trans:	Transaction handle.
2131  * @min_bytes:	How many bytes of delayed references to process. After this
2132  *		many bytes we stop processing delayed references if there are
2133  *		any more. If 0 it means to run all existing delayed references,
2134  *		but not new ones added after running all existing ones.
2135  *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2136  *		plus any new ones that are added.
2137  *
2138  * Returns 0 on success or if called with an aborted transaction
2139  * Returns <0 on error and aborts the transaction
2140  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2141 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2142 {
2143 	struct btrfs_fs_info *fs_info = trans->fs_info;
2144 	struct btrfs_delayed_ref_root *delayed_refs;
2145 	int ret;
2146 
2147 	/* We'll clean this up in btrfs_cleanup_transaction */
2148 	if (TRANS_ABORTED(trans))
2149 		return 0;
2150 
2151 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2152 		return 0;
2153 
2154 	delayed_refs = &trans->transaction->delayed_refs;
2155 again:
2156 #ifdef SCRAMBLE_DELAYED_REFS
2157 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2158 #endif
2159 	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2160 	if (ret < 0) {
2161 		btrfs_abort_transaction(trans, ret);
2162 		return ret;
2163 	}
2164 
2165 	if (min_bytes == U64_MAX) {
2166 		btrfs_create_pending_block_groups(trans);
2167 
2168 		spin_lock(&delayed_refs->lock);
2169 		if (xa_empty(&delayed_refs->head_refs)) {
2170 			spin_unlock(&delayed_refs->lock);
2171 			return 0;
2172 		}
2173 		spin_unlock(&delayed_refs->lock);
2174 
2175 		cond_resched();
2176 		goto again;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2182 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2183 				struct extent_buffer *eb, u64 flags)
2184 {
2185 	struct btrfs_delayed_extent_op *extent_op;
2186 	int ret;
2187 
2188 	extent_op = btrfs_alloc_delayed_extent_op();
2189 	if (!extent_op)
2190 		return -ENOMEM;
2191 
2192 	extent_op->flags_to_set = flags;
2193 	extent_op->update_flags = true;
2194 	extent_op->update_key = false;
2195 
2196 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2197 					  btrfs_header_level(eb), extent_op);
2198 	if (ret)
2199 		btrfs_free_delayed_extent_op(extent_op);
2200 	return ret;
2201 }
2202 
check_delayed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2203 static noinline int check_delayed_ref(struct btrfs_inode *inode,
2204 				      struct btrfs_path *path,
2205 				      u64 offset, u64 bytenr)
2206 {
2207 	struct btrfs_root *root = inode->root;
2208 	struct btrfs_delayed_ref_head *head;
2209 	struct btrfs_delayed_ref_node *ref;
2210 	struct btrfs_delayed_ref_root *delayed_refs;
2211 	struct btrfs_transaction *cur_trans;
2212 	struct rb_node *node;
2213 	int ret = 0;
2214 
2215 	spin_lock(&root->fs_info->trans_lock);
2216 	cur_trans = root->fs_info->running_transaction;
2217 	if (cur_trans)
2218 		refcount_inc(&cur_trans->use_count);
2219 	spin_unlock(&root->fs_info->trans_lock);
2220 	if (!cur_trans)
2221 		return 0;
2222 
2223 	delayed_refs = &cur_trans->delayed_refs;
2224 	spin_lock(&delayed_refs->lock);
2225 	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2226 	if (!head) {
2227 		spin_unlock(&delayed_refs->lock);
2228 		btrfs_put_transaction(cur_trans);
2229 		return 0;
2230 	}
2231 
2232 	if (!mutex_trylock(&head->mutex)) {
2233 		if (path->nowait) {
2234 			spin_unlock(&delayed_refs->lock);
2235 			btrfs_put_transaction(cur_trans);
2236 			return -EAGAIN;
2237 		}
2238 
2239 		refcount_inc(&head->refs);
2240 		spin_unlock(&delayed_refs->lock);
2241 
2242 		btrfs_release_path(path);
2243 
2244 		/*
2245 		 * Mutex was contended, block until it's released and let
2246 		 * caller try again
2247 		 */
2248 		mutex_lock(&head->mutex);
2249 		mutex_unlock(&head->mutex);
2250 		btrfs_put_delayed_ref_head(head);
2251 		btrfs_put_transaction(cur_trans);
2252 		return -EAGAIN;
2253 	}
2254 	spin_unlock(&delayed_refs->lock);
2255 
2256 	spin_lock(&head->lock);
2257 	/*
2258 	 * XXX: We should replace this with a proper search function in the
2259 	 * future.
2260 	 */
2261 	for (node = rb_first_cached(&head->ref_tree); node;
2262 	     node = rb_next(node)) {
2263 		u64 ref_owner;
2264 		u64 ref_offset;
2265 
2266 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2267 		/* If it's a shared ref we know a cross reference exists */
2268 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2269 			ret = 1;
2270 			break;
2271 		}
2272 
2273 		ref_owner = btrfs_delayed_ref_owner(ref);
2274 		ref_offset = btrfs_delayed_ref_offset(ref);
2275 
2276 		/*
2277 		 * If our ref doesn't match the one we're currently looking at
2278 		 * then we have a cross reference.
2279 		 */
2280 		if (ref->ref_root != btrfs_root_id(root) ||
2281 		    ref_owner != btrfs_ino(inode) || ref_offset != offset) {
2282 			ret = 1;
2283 			break;
2284 		}
2285 	}
2286 	spin_unlock(&head->lock);
2287 	mutex_unlock(&head->mutex);
2288 	btrfs_put_transaction(cur_trans);
2289 	return ret;
2290 }
2291 
2292 /*
2293  * Check if there are references for a data extent other than the one belonging
2294  * to the given inode and offset.
2295  *
2296  * @inode:     The only inode we expect to find associated with the data extent.
2297  * @path:      A path to use for searching the extent tree.
2298  * @offset:    The only offset we expect to find associated with the data extent.
2299  * @bytenr:    The logical address of the data extent.
2300  *
2301  * When the extent does not have any other references other than the one we
2302  * expect to find, we always return a value of 0 with the path having a locked
2303  * leaf that contains the extent's extent item - this is necessary to ensure
2304  * we don't race with a task running delayed references, and our caller must
2305  * have such a path when calling check_delayed_ref() - it must lock a delayed
2306  * ref head while holding the leaf locked. In case the extent item is not found
2307  * in the extent tree, we return -ENOENT with the path having the leaf (locked)
2308  * where the extent item should be, in order to prevent races with another task
2309  * running delayed references, so that we don't miss any reference when calling
2310  * check_delayed_ref().
2311  *
2312  * Note: this may return false positives, and this is because we want to be
2313  *       quick here as we're called in write paths (when flushing delalloc and
2314  *       in the direct IO write path). For example we can have an extent with
2315  *       a single reference but that reference is not inlined, or we may have
2316  *       many references in the extent tree but we also have delayed references
2317  *       that cancel all the reference except the one for our inode and offset,
2318  *       but it would be expensive to do such checks and complex due to all
2319  *       locking to avoid races between the checks and flushing delayed refs,
2320  *       plus non-inline references may be located on leaves other than the one
2321  *       that contains the extent item in the extent tree. The important thing
2322  *       here is to not return false negatives and that the false positives are
2323  *       not very common.
2324  *
2325  * Returns: 0 if there are no cross references and with the path having a locked
2326  *          leaf from the extent tree that contains the extent's extent item.
2327  *
2328  *          1 if there are cross references (false positives can happen).
2329  *
2330  *          < 0 in case of an error. In case of -ENOENT the leaf in the extent
2331  *          tree where the extent item should be located at is read locked and
2332  *          accessible in the given path.
2333  */
check_committed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2334 static noinline int check_committed_ref(struct btrfs_inode *inode,
2335 					struct btrfs_path *path,
2336 					u64 offset, u64 bytenr)
2337 {
2338 	struct btrfs_root *root = inode->root;
2339 	struct btrfs_fs_info *fs_info = root->fs_info;
2340 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2341 	struct extent_buffer *leaf;
2342 	struct btrfs_extent_data_ref *ref;
2343 	struct btrfs_extent_inline_ref *iref;
2344 	struct btrfs_extent_item *ei;
2345 	struct btrfs_key key;
2346 	u32 item_size;
2347 	u32 expected_size;
2348 	int type;
2349 	int ret;
2350 
2351 	key.objectid = bytenr;
2352 	key.type = BTRFS_EXTENT_ITEM_KEY;
2353 	key.offset = (u64)-1;
2354 
2355 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2356 	if (ret < 0)
2357 		return ret;
2358 	if (ret == 0) {
2359 		/*
2360 		 * Key with offset -1 found, there would have to exist an extent
2361 		 * item with such offset, but this is out of the valid range.
2362 		 */
2363 		return -EUCLEAN;
2364 	}
2365 
2366 	if (path->slots[0] == 0)
2367 		return -ENOENT;
2368 
2369 	path->slots[0]--;
2370 	leaf = path->nodes[0];
2371 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2372 
2373 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2374 		return -ENOENT;
2375 
2376 	item_size = btrfs_item_size(leaf, path->slots[0]);
2377 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2378 	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2379 
2380 	/* No inline refs; we need to bail before checking for owner ref. */
2381 	if (item_size == sizeof(*ei))
2382 		return 1;
2383 
2384 	/* Check for an owner ref; skip over it to the real inline refs. */
2385 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2386 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2387 	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2388 		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2389 		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2390 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2391 	}
2392 
2393 	/* If extent item has more than 1 inline ref then it's shared */
2394 	if (item_size != expected_size)
2395 		return 1;
2396 
2397 	/* If this extent has SHARED_DATA_REF then it's shared */
2398 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2399 		return 1;
2400 
2401 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2402 	if (btrfs_extent_refs(leaf, ei) !=
2403 	    btrfs_extent_data_ref_count(leaf, ref) ||
2404 	    btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2405 	    btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) ||
2406 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2407 		return 1;
2408 
2409 	return 0;
2410 }
2411 
btrfs_cross_ref_exist(struct btrfs_inode * inode,u64 offset,u64 bytenr,struct btrfs_path * path)2412 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset,
2413 			  u64 bytenr, struct btrfs_path *path)
2414 {
2415 	int ret;
2416 
2417 	do {
2418 		ret = check_committed_ref(inode, path, offset, bytenr);
2419 		if (ret && ret != -ENOENT)
2420 			goto out;
2421 
2422 		/*
2423 		 * The path must have a locked leaf from the extent tree where
2424 		 * the extent item for our extent is located, in case it exists,
2425 		 * or where it should be located in case it doesn't exist yet
2426 		 * because it's new and its delayed ref was not yet flushed.
2427 		 * We need to lock the delayed ref head at check_delayed_ref(),
2428 		 * if one exists, while holding the leaf locked in order to not
2429 		 * race with delayed ref flushing, missing references and
2430 		 * incorrectly reporting that the extent is not shared.
2431 		 */
2432 		if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) {
2433 			struct extent_buffer *leaf = path->nodes[0];
2434 
2435 			ASSERT(leaf != NULL);
2436 			btrfs_assert_tree_read_locked(leaf);
2437 
2438 			if (ret != -ENOENT) {
2439 				struct btrfs_key key;
2440 
2441 				btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2442 				ASSERT(key.objectid == bytenr);
2443 				ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY);
2444 			}
2445 		}
2446 
2447 		ret = check_delayed_ref(inode, path, offset, bytenr);
2448 	} while (ret == -EAGAIN && !path->nowait);
2449 
2450 out:
2451 	btrfs_release_path(path);
2452 	if (btrfs_is_data_reloc_root(inode->root))
2453 		WARN_ON(ret > 0);
2454 	return ret;
2455 }
2456 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2457 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2458 			   struct btrfs_root *root,
2459 			   struct extent_buffer *buf,
2460 			   int full_backref, int inc)
2461 {
2462 	struct btrfs_fs_info *fs_info = root->fs_info;
2463 	u64 parent;
2464 	u64 ref_root;
2465 	u32 nritems;
2466 	struct btrfs_key key;
2467 	struct btrfs_file_extent_item *fi;
2468 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2469 	int i;
2470 	int action;
2471 	int level;
2472 	int ret = 0;
2473 
2474 	if (btrfs_is_testing(fs_info))
2475 		return 0;
2476 
2477 	ref_root = btrfs_header_owner(buf);
2478 	nritems = btrfs_header_nritems(buf);
2479 	level = btrfs_header_level(buf);
2480 
2481 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2482 		return 0;
2483 
2484 	if (full_backref)
2485 		parent = buf->start;
2486 	else
2487 		parent = 0;
2488 	if (inc)
2489 		action = BTRFS_ADD_DELAYED_REF;
2490 	else
2491 		action = BTRFS_DROP_DELAYED_REF;
2492 
2493 	for (i = 0; i < nritems; i++) {
2494 		struct btrfs_ref ref = {
2495 			.action = action,
2496 			.parent = parent,
2497 			.ref_root = ref_root,
2498 		};
2499 
2500 		if (level == 0) {
2501 			btrfs_item_key_to_cpu(buf, &key, i);
2502 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2503 				continue;
2504 			fi = btrfs_item_ptr(buf, i,
2505 					    struct btrfs_file_extent_item);
2506 			if (btrfs_file_extent_type(buf, fi) ==
2507 			    BTRFS_FILE_EXTENT_INLINE)
2508 				continue;
2509 			ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2510 			if (ref.bytenr == 0)
2511 				continue;
2512 
2513 			ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2514 			ref.owning_root = ref_root;
2515 
2516 			key.offset -= btrfs_file_extent_offset(buf, fi);
2517 			btrfs_init_data_ref(&ref, key.objectid, key.offset,
2518 					    btrfs_root_id(root), for_reloc);
2519 			if (inc)
2520 				ret = btrfs_inc_extent_ref(trans, &ref);
2521 			else
2522 				ret = btrfs_free_extent(trans, &ref);
2523 			if (ret)
2524 				goto fail;
2525 		} else {
2526 			/* We don't know the owning_root, leave as 0. */
2527 			ref.bytenr = btrfs_node_blockptr(buf, i);
2528 			ref.num_bytes = fs_info->nodesize;
2529 
2530 			btrfs_init_tree_ref(&ref, level - 1,
2531 					    btrfs_root_id(root), for_reloc);
2532 			if (inc)
2533 				ret = btrfs_inc_extent_ref(trans, &ref);
2534 			else
2535 				ret = btrfs_free_extent(trans, &ref);
2536 			if (ret)
2537 				goto fail;
2538 		}
2539 	}
2540 	return 0;
2541 fail:
2542 	return ret;
2543 }
2544 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2545 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2546 		  struct extent_buffer *buf, int full_backref)
2547 {
2548 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2549 }
2550 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2551 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2552 		  struct extent_buffer *buf, int full_backref)
2553 {
2554 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2555 }
2556 
get_alloc_profile_by_root(struct btrfs_root * root,int data)2557 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2558 {
2559 	struct btrfs_fs_info *fs_info = root->fs_info;
2560 	u64 flags;
2561 	u64 ret;
2562 
2563 	if (data)
2564 		flags = BTRFS_BLOCK_GROUP_DATA;
2565 	else if (root == fs_info->chunk_root)
2566 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2567 	else
2568 		flags = BTRFS_BLOCK_GROUP_METADATA;
2569 
2570 	ret = btrfs_get_alloc_profile(fs_info, flags);
2571 	return ret;
2572 }
2573 
first_logical_byte(struct btrfs_fs_info * fs_info)2574 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2575 {
2576 	struct rb_node *leftmost;
2577 	u64 bytenr = 0;
2578 
2579 	read_lock(&fs_info->block_group_cache_lock);
2580 	/* Get the block group with the lowest logical start address. */
2581 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2582 	if (leftmost) {
2583 		struct btrfs_block_group *bg;
2584 
2585 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2586 		bytenr = bg->start;
2587 	}
2588 	read_unlock(&fs_info->block_group_cache_lock);
2589 
2590 	return bytenr;
2591 }
2592 
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2593 static int pin_down_extent(struct btrfs_trans_handle *trans,
2594 			   struct btrfs_block_group *cache,
2595 			   u64 bytenr, u64 num_bytes, int reserved)
2596 {
2597 	spin_lock(&cache->space_info->lock);
2598 	spin_lock(&cache->lock);
2599 	cache->pinned += num_bytes;
2600 	btrfs_space_info_update_bytes_pinned(cache->space_info, num_bytes);
2601 	if (reserved) {
2602 		cache->reserved -= num_bytes;
2603 		cache->space_info->bytes_reserved -= num_bytes;
2604 	}
2605 	spin_unlock(&cache->lock);
2606 	spin_unlock(&cache->space_info->lock);
2607 
2608 	btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2609 			     bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2610 	return 0;
2611 }
2612 
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2613 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2614 		     u64 bytenr, u64 num_bytes, int reserved)
2615 {
2616 	struct btrfs_block_group *cache;
2617 
2618 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2619 	BUG_ON(!cache); /* Logic error */
2620 
2621 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2622 
2623 	btrfs_put_block_group(cache);
2624 	return 0;
2625 }
2626 
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)2627 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2628 				    const struct extent_buffer *eb)
2629 {
2630 	struct btrfs_block_group *cache;
2631 	int ret;
2632 
2633 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2634 	if (!cache)
2635 		return -EINVAL;
2636 
2637 	/*
2638 	 * Fully cache the free space first so that our pin removes the free space
2639 	 * from the cache.
2640 	 */
2641 	ret = btrfs_cache_block_group(cache, true);
2642 	if (ret)
2643 		goto out;
2644 
2645 	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2646 
2647 	/* remove us from the free space cache (if we're there at all) */
2648 	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2649 out:
2650 	btrfs_put_block_group(cache);
2651 	return ret;
2652 }
2653 
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2654 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2655 				   u64 start, u64 num_bytes)
2656 {
2657 	int ret;
2658 	struct btrfs_block_group *block_group;
2659 
2660 	block_group = btrfs_lookup_block_group(fs_info, start);
2661 	if (!block_group)
2662 		return -EINVAL;
2663 
2664 	ret = btrfs_cache_block_group(block_group, true);
2665 	if (ret)
2666 		goto out;
2667 
2668 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2669 out:
2670 	btrfs_put_block_group(block_group);
2671 	return ret;
2672 }
2673 
btrfs_exclude_logged_extents(struct extent_buffer * eb)2674 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2675 {
2676 	struct btrfs_fs_info *fs_info = eb->fs_info;
2677 	struct btrfs_file_extent_item *item;
2678 	struct btrfs_key key;
2679 	int found_type;
2680 	int i;
2681 	int ret = 0;
2682 
2683 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2684 		return 0;
2685 
2686 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2687 		btrfs_item_key_to_cpu(eb, &key, i);
2688 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2689 			continue;
2690 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2691 		found_type = btrfs_file_extent_type(eb, item);
2692 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2693 			continue;
2694 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2695 			continue;
2696 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2697 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2698 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2699 		if (ret)
2700 			break;
2701 	}
2702 
2703 	return ret;
2704 }
2705 
2706 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2707 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2708 {
2709 	atomic_inc(&bg->reservations);
2710 }
2711 
2712 /*
2713  * Returns the free cluster for the given space info and sets empty_cluster to
2714  * what it should be based on the mount options.
2715  */
2716 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2717 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2718 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2719 {
2720 	struct btrfs_free_cluster *ret = NULL;
2721 
2722 	*empty_cluster = 0;
2723 	if (btrfs_mixed_space_info(space_info))
2724 		return ret;
2725 
2726 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2727 		ret = &fs_info->meta_alloc_cluster;
2728 		if (btrfs_test_opt(fs_info, SSD))
2729 			*empty_cluster = SZ_2M;
2730 		else
2731 			*empty_cluster = SZ_64K;
2732 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2733 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2734 		*empty_cluster = SZ_2M;
2735 		ret = &fs_info->data_alloc_cluster;
2736 	}
2737 
2738 	return ret;
2739 }
2740 
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2741 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2742 			      u64 start, u64 end,
2743 			      const bool return_free_space)
2744 {
2745 	struct btrfs_block_group *cache = NULL;
2746 	struct btrfs_space_info *space_info;
2747 	struct btrfs_free_cluster *cluster = NULL;
2748 	u64 total_unpinned = 0;
2749 	u64 empty_cluster = 0;
2750 	bool readonly;
2751 	int ret = 0;
2752 
2753 	while (start <= end) {
2754 		u64 len;
2755 
2756 		readonly = false;
2757 		if (!cache ||
2758 		    start >= cache->start + cache->length) {
2759 			if (cache)
2760 				btrfs_put_block_group(cache);
2761 			total_unpinned = 0;
2762 			cache = btrfs_lookup_block_group(fs_info, start);
2763 			if (cache == NULL) {
2764 				/* Logic error, something removed the block group. */
2765 				ret = -EUCLEAN;
2766 				goto out;
2767 			}
2768 
2769 			cluster = fetch_cluster_info(fs_info,
2770 						     cache->space_info,
2771 						     &empty_cluster);
2772 			empty_cluster <<= 1;
2773 		}
2774 
2775 		len = cache->start + cache->length - start;
2776 		len = min(len, end + 1 - start);
2777 
2778 		if (return_free_space)
2779 			btrfs_add_free_space(cache, start, len);
2780 
2781 		start += len;
2782 		total_unpinned += len;
2783 		space_info = cache->space_info;
2784 
2785 		/*
2786 		 * If this space cluster has been marked as fragmented and we've
2787 		 * unpinned enough in this block group to potentially allow a
2788 		 * cluster to be created inside of it go ahead and clear the
2789 		 * fragmented check.
2790 		 */
2791 		if (cluster && cluster->fragmented &&
2792 		    total_unpinned > empty_cluster) {
2793 			spin_lock(&cluster->lock);
2794 			cluster->fragmented = 0;
2795 			spin_unlock(&cluster->lock);
2796 		}
2797 
2798 		spin_lock(&space_info->lock);
2799 		spin_lock(&cache->lock);
2800 		cache->pinned -= len;
2801 		btrfs_space_info_update_bytes_pinned(space_info, -len);
2802 		space_info->max_extent_size = 0;
2803 		if (cache->ro) {
2804 			space_info->bytes_readonly += len;
2805 			readonly = true;
2806 		} else if (btrfs_is_zoned(fs_info)) {
2807 			/* Need reset before reusing in a zoned block group */
2808 			btrfs_space_info_update_bytes_zone_unusable(space_info, len);
2809 			readonly = true;
2810 		}
2811 		spin_unlock(&cache->lock);
2812 		if (!readonly && return_free_space)
2813 			btrfs_return_free_space(space_info, len);
2814 		spin_unlock(&space_info->lock);
2815 	}
2816 
2817 	if (cache)
2818 		btrfs_put_block_group(cache);
2819 out:
2820 	return ret;
2821 }
2822 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2823 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2824 {
2825 	struct btrfs_fs_info *fs_info = trans->fs_info;
2826 	struct btrfs_block_group *block_group, *tmp;
2827 	struct list_head *deleted_bgs;
2828 	struct extent_io_tree *unpin = &trans->transaction->pinned_extents;
2829 	struct extent_state *cached_state = NULL;
2830 	u64 start;
2831 	u64 end;
2832 	int unpin_error = 0;
2833 	int ret;
2834 
2835 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
2836 	btrfs_find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, &cached_state);
2837 
2838 	while (!TRANS_ABORTED(trans) && cached_state) {
2839 		struct extent_state *next_state;
2840 
2841 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2842 			ret = btrfs_discard_extent(fs_info, start,
2843 						   end + 1 - start, NULL);
2844 
2845 		next_state = btrfs_next_extent_state(unpin, cached_state);
2846 		btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
2847 		ret = unpin_extent_range(fs_info, start, end, true);
2848 		/*
2849 		 * If we get an error unpinning an extent range, store the first
2850 		 * error to return later after trying to unpin all ranges and do
2851 		 * the sync discards. Our caller will abort the transaction
2852 		 * (which already wrote new superblocks) and on the next mount
2853 		 * the space will be available as it was pinned by in-memory
2854 		 * only structures in this phase.
2855 		 */
2856 		if (ret) {
2857 			btrfs_err_rl(fs_info,
2858 "failed to unpin extent range [%llu, %llu] when committing transaction %llu: %s (%d)",
2859 				     start, end, trans->transid,
2860 				     btrfs_decode_error(ret), ret);
2861 			if (!unpin_error)
2862 				unpin_error = ret;
2863 		}
2864 
2865 		btrfs_free_extent_state(cached_state);
2866 
2867 		if (need_resched()) {
2868 			btrfs_free_extent_state(next_state);
2869 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2870 			cond_resched();
2871 			cached_state = NULL;
2872 			mutex_lock(&fs_info->unused_bg_unpin_mutex);
2873 			btrfs_find_first_extent_bit(unpin, 0, &start, &end,
2874 						    EXTENT_DIRTY, &cached_state);
2875 		} else {
2876 			cached_state = next_state;
2877 			if (cached_state) {
2878 				start = cached_state->start;
2879 				end = cached_state->end;
2880 			}
2881 		}
2882 	}
2883 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2884 	btrfs_free_extent_state(cached_state);
2885 
2886 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2887 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2888 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2889 	}
2890 
2891 	/*
2892 	 * Transaction is finished.  We don't need the lock anymore.  We
2893 	 * do need to clean up the block groups in case of a transaction
2894 	 * abort.
2895 	 */
2896 	deleted_bgs = &trans->transaction->deleted_bgs;
2897 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2898 		ret = -EROFS;
2899 		if (!TRANS_ABORTED(trans))
2900 			ret = btrfs_discard_extent(fs_info, block_group->start,
2901 						   block_group->length, NULL);
2902 
2903 		/*
2904 		 * Not strictly necessary to lock, as the block_group should be
2905 		 * read-only from btrfs_delete_unused_bgs().
2906 		 */
2907 		ASSERT(block_group->ro);
2908 		spin_lock(&fs_info->unused_bgs_lock);
2909 		list_del_init(&block_group->bg_list);
2910 		spin_unlock(&fs_info->unused_bgs_lock);
2911 
2912 		btrfs_unfreeze_block_group(block_group);
2913 		btrfs_put_block_group(block_group);
2914 
2915 		if (ret) {
2916 			const char *errstr = btrfs_decode_error(ret);
2917 			btrfs_warn(fs_info,
2918 			   "discard failed while removing blockgroup: errno=%d %s",
2919 				   ret, errstr);
2920 		}
2921 	}
2922 
2923 	return unpin_error;
2924 }
2925 
2926 /*
2927  * Parse an extent item's inline extents looking for a simple quotas owner ref.
2928  *
2929  * @fs_info:	the btrfs_fs_info for this mount
2930  * @leaf:	a leaf in the extent tree containing the extent item
2931  * @slot:	the slot in the leaf where the extent item is found
2932  *
2933  * Returns the objectid of the root that originally allocated the extent item
2934  * if the inline owner ref is expected and present, otherwise 0.
2935  *
2936  * If an extent item has an owner ref item, it will be the first inline ref
2937  * item. Therefore the logic is to check whether there are any inline ref
2938  * items, then check the type of the first one.
2939  */
btrfs_get_extent_owner_root(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,int slot)2940 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2941 				struct extent_buffer *leaf, int slot)
2942 {
2943 	struct btrfs_extent_item *ei;
2944 	struct btrfs_extent_inline_ref *iref;
2945 	struct btrfs_extent_owner_ref *oref;
2946 	unsigned long ptr;
2947 	unsigned long end;
2948 	int type;
2949 
2950 	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2951 		return 0;
2952 
2953 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2954 	ptr = (unsigned long)(ei + 1);
2955 	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2956 
2957 	/* No inline ref items of any kind, can't check type. */
2958 	if (ptr == end)
2959 		return 0;
2960 
2961 	iref = (struct btrfs_extent_inline_ref *)ptr;
2962 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2963 
2964 	/* We found an owner ref, get the root out of it. */
2965 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2966 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2967 		return btrfs_extent_owner_ref_root_id(leaf, oref);
2968 	}
2969 
2970 	/* We have inline refs, but not an owner ref. */
2971 	return 0;
2972 }
2973 
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,struct btrfs_squota_delta * delta)2974 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2975 				     u64 bytenr, struct btrfs_squota_delta *delta)
2976 {
2977 	int ret;
2978 	u64 num_bytes = delta->num_bytes;
2979 
2980 	if (delta->is_data) {
2981 		struct btrfs_root *csum_root;
2982 
2983 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2984 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2985 		if (ret) {
2986 			btrfs_abort_transaction(trans, ret);
2987 			return ret;
2988 		}
2989 
2990 		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2991 		if (ret) {
2992 			btrfs_abort_transaction(trans, ret);
2993 			return ret;
2994 		}
2995 	}
2996 
2997 	ret = btrfs_record_squota_delta(trans->fs_info, delta);
2998 	if (ret) {
2999 		btrfs_abort_transaction(trans, ret);
3000 		return ret;
3001 	}
3002 
3003 	ret = btrfs_add_to_free_space_tree(trans, bytenr, num_bytes);
3004 	if (ret) {
3005 		btrfs_abort_transaction(trans, ret);
3006 		return ret;
3007 	}
3008 
3009 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3010 	if (ret)
3011 		btrfs_abort_transaction(trans, ret);
3012 
3013 	return ret;
3014 }
3015 
3016 #define abort_and_dump(trans, path, fmt, args...)	\
3017 ({							\
3018 	btrfs_abort_transaction(trans, -EUCLEAN);	\
3019 	btrfs_print_leaf(path->nodes[0]);		\
3020 	btrfs_crit(trans->fs_info, fmt, ##args);	\
3021 })
3022 
3023 /*
3024  * Drop one or more refs of @node.
3025  *
3026  * 1. Locate the extent refs.
3027  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3028  *    Locate it, then reduce the refs number or remove the ref line completely.
3029  *
3030  * 2. Update the refs count in EXTENT/METADATA_ITEM
3031  *
3032  * Inline backref case:
3033  *
3034  * in extent tree we have:
3035  *
3036  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3037  *		refs 2 gen 6 flags DATA
3038  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3039  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3040  *
3041  * This function gets called with:
3042  *
3043  *    node->bytenr = 13631488
3044  *    node->num_bytes = 1048576
3045  *    root_objectid = FS_TREE
3046  *    owner_objectid = 257
3047  *    owner_offset = 0
3048  *    refs_to_drop = 1
3049  *
3050  * Then we should get some like:
3051  *
3052  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3053  *		refs 1 gen 6 flags DATA
3054  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3055  *
3056  * Keyed backref case:
3057  *
3058  * in extent tree we have:
3059  *
3060  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3061  *		refs 754 gen 6 flags DATA
3062  *	[...]
3063  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3064  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3065  *
3066  * This function get called with:
3067  *
3068  *    node->bytenr = 13631488
3069  *    node->num_bytes = 1048576
3070  *    root_objectid = FS_TREE
3071  *    owner_objectid = 866
3072  *    owner_offset = 0
3073  *    refs_to_drop = 1
3074  *
3075  * Then we should get some like:
3076  *
3077  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3078  *		refs 753 gen 6 flags DATA
3079  *
3080  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3081  */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,const struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)3082 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3083 			       struct btrfs_delayed_ref_head *href,
3084 			       const struct btrfs_delayed_ref_node *node,
3085 			       struct btrfs_delayed_extent_op *extent_op)
3086 {
3087 	struct btrfs_fs_info *info = trans->fs_info;
3088 	struct btrfs_key key;
3089 	struct btrfs_path *path;
3090 	struct btrfs_root *extent_root;
3091 	struct extent_buffer *leaf;
3092 	struct btrfs_extent_item *ei;
3093 	struct btrfs_extent_inline_ref *iref;
3094 	int ret;
3095 	int is_data;
3096 	int extent_slot = 0;
3097 	int found_extent = 0;
3098 	int num_to_del = 1;
3099 	int refs_to_drop = node->ref_mod;
3100 	u32 item_size;
3101 	u64 refs;
3102 	u64 bytenr = node->bytenr;
3103 	u64 num_bytes = node->num_bytes;
3104 	u64 owner_objectid = btrfs_delayed_ref_owner(node);
3105 	u64 owner_offset = btrfs_delayed_ref_offset(node);
3106 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3107 	u64 delayed_ref_root = href->owning_root;
3108 
3109 	extent_root = btrfs_extent_root(info, bytenr);
3110 	ASSERT(extent_root);
3111 
3112 	path = btrfs_alloc_path();
3113 	if (!path)
3114 		return -ENOMEM;
3115 
3116 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3117 
3118 	if (!is_data && refs_to_drop != 1) {
3119 		btrfs_crit(info,
3120 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3121 			   node->bytenr, refs_to_drop);
3122 		ret = -EINVAL;
3123 		btrfs_abort_transaction(trans, ret);
3124 		goto out;
3125 	}
3126 
3127 	if (is_data)
3128 		skinny_metadata = false;
3129 
3130 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3131 				    node->parent, node->ref_root, owner_objectid,
3132 				    owner_offset);
3133 	if (ret == 0) {
3134 		/*
3135 		 * Either the inline backref or the SHARED_DATA_REF/
3136 		 * SHARED_BLOCK_REF is found
3137 		 *
3138 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3139 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3140 		 */
3141 		extent_slot = path->slots[0];
3142 		while (extent_slot >= 0) {
3143 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3144 					      extent_slot);
3145 			if (key.objectid != bytenr)
3146 				break;
3147 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3148 			    key.offset == num_bytes) {
3149 				found_extent = 1;
3150 				break;
3151 			}
3152 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3153 			    key.offset == owner_objectid) {
3154 				found_extent = 1;
3155 				break;
3156 			}
3157 
3158 			/* Quick path didn't find the EXTENT/METADATA_ITEM */
3159 			if (path->slots[0] - extent_slot > 5)
3160 				break;
3161 			extent_slot--;
3162 		}
3163 
3164 		if (!found_extent) {
3165 			if (iref) {
3166 				abort_and_dump(trans, path,
3167 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3168 					   path->slots[0]);
3169 				ret = -EUCLEAN;
3170 				goto out;
3171 			}
3172 			/* Must be SHARED_* item, remove the backref first */
3173 			ret = remove_extent_backref(trans, extent_root, path,
3174 						    NULL, refs_to_drop, is_data);
3175 			if (ret) {
3176 				btrfs_abort_transaction(trans, ret);
3177 				goto out;
3178 			}
3179 			btrfs_release_path(path);
3180 
3181 			/* Slow path to locate EXTENT/METADATA_ITEM */
3182 			key.objectid = bytenr;
3183 			key.type = BTRFS_EXTENT_ITEM_KEY;
3184 			key.offset = num_bytes;
3185 
3186 			if (!is_data && skinny_metadata) {
3187 				key.type = BTRFS_METADATA_ITEM_KEY;
3188 				key.offset = owner_objectid;
3189 			}
3190 
3191 			ret = btrfs_search_slot(trans, extent_root,
3192 						&key, path, -1, 1);
3193 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3194 				/*
3195 				 * Couldn't find our skinny metadata item,
3196 				 * see if we have ye olde extent item.
3197 				 */
3198 				path->slots[0]--;
3199 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3200 						      path->slots[0]);
3201 				if (key.objectid == bytenr &&
3202 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3203 				    key.offset == num_bytes)
3204 					ret = 0;
3205 			}
3206 
3207 			if (ret > 0 && skinny_metadata) {
3208 				skinny_metadata = false;
3209 				key.objectid = bytenr;
3210 				key.type = BTRFS_EXTENT_ITEM_KEY;
3211 				key.offset = num_bytes;
3212 				btrfs_release_path(path);
3213 				ret = btrfs_search_slot(trans, extent_root,
3214 							&key, path, -1, 1);
3215 			}
3216 
3217 			if (ret) {
3218 				if (ret > 0)
3219 					btrfs_print_leaf(path->nodes[0]);
3220 				btrfs_err(info,
3221 			"umm, got %d back from search, was looking for %llu, slot %d",
3222 					  ret, bytenr, path->slots[0]);
3223 			}
3224 			if (ret < 0) {
3225 				btrfs_abort_transaction(trans, ret);
3226 				goto out;
3227 			}
3228 			extent_slot = path->slots[0];
3229 		}
3230 	} else if (WARN_ON(ret == -ENOENT)) {
3231 		abort_and_dump(trans, path,
3232 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3233 			       bytenr, node->parent, node->ref_root, owner_objectid,
3234 			       owner_offset, path->slots[0]);
3235 		goto out;
3236 	} else {
3237 		btrfs_abort_transaction(trans, ret);
3238 		goto out;
3239 	}
3240 
3241 	leaf = path->nodes[0];
3242 	item_size = btrfs_item_size(leaf, extent_slot);
3243 	if (unlikely(item_size < sizeof(*ei))) {
3244 		ret = -EUCLEAN;
3245 		btrfs_err(trans->fs_info,
3246 			  "unexpected extent item size, has %u expect >= %zu",
3247 			  item_size, sizeof(*ei));
3248 		btrfs_abort_transaction(trans, ret);
3249 		goto out;
3250 	}
3251 	ei = btrfs_item_ptr(leaf, extent_slot,
3252 			    struct btrfs_extent_item);
3253 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3254 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3255 		struct btrfs_tree_block_info *bi;
3256 
3257 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3258 			abort_and_dump(trans, path,
3259 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3260 				       key.objectid, key.type, key.offset,
3261 				       path->slots[0], owner_objectid, item_size,
3262 				       sizeof(*ei) + sizeof(*bi));
3263 			ret = -EUCLEAN;
3264 			goto out;
3265 		}
3266 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3267 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3268 	}
3269 
3270 	refs = btrfs_extent_refs(leaf, ei);
3271 	if (refs < refs_to_drop) {
3272 		abort_and_dump(trans, path,
3273 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3274 			       refs_to_drop, refs, bytenr, path->slots[0]);
3275 		ret = -EUCLEAN;
3276 		goto out;
3277 	}
3278 	refs -= refs_to_drop;
3279 
3280 	if (refs > 0) {
3281 		if (extent_op)
3282 			__run_delayed_extent_op(extent_op, leaf, ei);
3283 		/*
3284 		 * In the case of inline back ref, reference count will
3285 		 * be updated by remove_extent_backref
3286 		 */
3287 		if (iref) {
3288 			if (!found_extent) {
3289 				abort_and_dump(trans, path,
3290 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3291 					       path->slots[0]);
3292 				ret = -EUCLEAN;
3293 				goto out;
3294 			}
3295 		} else {
3296 			btrfs_set_extent_refs(leaf, ei, refs);
3297 		}
3298 		if (found_extent) {
3299 			ret = remove_extent_backref(trans, extent_root, path,
3300 						    iref, refs_to_drop, is_data);
3301 			if (ret) {
3302 				btrfs_abort_transaction(trans, ret);
3303 				goto out;
3304 			}
3305 		}
3306 	} else {
3307 		struct btrfs_squota_delta delta = {
3308 			.root = delayed_ref_root,
3309 			.num_bytes = num_bytes,
3310 			.is_data = is_data,
3311 			.is_inc = false,
3312 			.generation = btrfs_extent_generation(leaf, ei),
3313 		};
3314 
3315 		/* In this branch refs == 1 */
3316 		if (found_extent) {
3317 			if (is_data && refs_to_drop !=
3318 			    extent_data_ref_count(path, iref)) {
3319 				abort_and_dump(trans, path,
3320 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3321 					       extent_data_ref_count(path, iref),
3322 					       refs_to_drop, path->slots[0]);
3323 				ret = -EUCLEAN;
3324 				goto out;
3325 			}
3326 			if (iref) {
3327 				if (path->slots[0] != extent_slot) {
3328 					abort_and_dump(trans, path,
3329 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3330 						       key.objectid, key.type,
3331 						       key.offset, path->slots[0]);
3332 					ret = -EUCLEAN;
3333 					goto out;
3334 				}
3335 			} else {
3336 				/*
3337 				 * No inline ref, we must be at SHARED_* item,
3338 				 * And it's single ref, it must be:
3339 				 * |	extent_slot	  ||extent_slot + 1|
3340 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3341 				 */
3342 				if (path->slots[0] != extent_slot + 1) {
3343 					abort_and_dump(trans, path,
3344 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3345 						       path->slots[0]);
3346 					ret = -EUCLEAN;
3347 					goto out;
3348 				}
3349 				path->slots[0] = extent_slot;
3350 				num_to_del = 2;
3351 			}
3352 		}
3353 		/*
3354 		 * We can't infer the data owner from the delayed ref, so we need
3355 		 * to try to get it from the owning ref item.
3356 		 *
3357 		 * If it is not present, then that extent was not written under
3358 		 * simple quotas mode, so we don't need to account for its deletion.
3359 		 */
3360 		if (is_data)
3361 			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3362 								 leaf, extent_slot);
3363 
3364 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3365 				      num_to_del);
3366 		if (ret) {
3367 			btrfs_abort_transaction(trans, ret);
3368 			goto out;
3369 		}
3370 		btrfs_release_path(path);
3371 
3372 		ret = do_free_extent_accounting(trans, bytenr, &delta);
3373 	}
3374 	btrfs_release_path(path);
3375 
3376 out:
3377 	btrfs_free_path(path);
3378 	return ret;
3379 }
3380 
3381 /*
3382  * when we free an block, it is possible (and likely) that we free the last
3383  * delayed ref for that extent as well.  This searches the delayed ref tree for
3384  * a given extent, and if there are no other delayed refs to be processed, it
3385  * removes it from the tree.
3386  */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3387 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3388 				      u64 bytenr)
3389 {
3390 	struct btrfs_fs_info *fs_info = trans->fs_info;
3391 	struct btrfs_delayed_ref_head *head;
3392 	struct btrfs_delayed_ref_root *delayed_refs;
3393 	int ret = 0;
3394 
3395 	delayed_refs = &trans->transaction->delayed_refs;
3396 	spin_lock(&delayed_refs->lock);
3397 	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3398 	if (!head)
3399 		goto out_delayed_unlock;
3400 
3401 	spin_lock(&head->lock);
3402 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3403 		goto out;
3404 
3405 	if (cleanup_extent_op(head) != NULL)
3406 		goto out;
3407 
3408 	/*
3409 	 * waiting for the lock here would deadlock.  If someone else has it
3410 	 * locked they are already in the process of dropping it anyway
3411 	 */
3412 	if (!mutex_trylock(&head->mutex))
3413 		goto out;
3414 
3415 	btrfs_delete_ref_head(fs_info, delayed_refs, head);
3416 	head->processing = false;
3417 
3418 	spin_unlock(&head->lock);
3419 	spin_unlock(&delayed_refs->lock);
3420 
3421 	BUG_ON(head->extent_op);
3422 	if (head->must_insert_reserved)
3423 		ret = 1;
3424 
3425 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3426 	mutex_unlock(&head->mutex);
3427 	btrfs_put_delayed_ref_head(head);
3428 	return ret;
3429 out:
3430 	spin_unlock(&head->lock);
3431 
3432 out_delayed_unlock:
3433 	spin_unlock(&delayed_refs->lock);
3434 	return 0;
3435 }
3436 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3437 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3438 			  u64 root_id,
3439 			  struct extent_buffer *buf,
3440 			  u64 parent, int last_ref)
3441 {
3442 	struct btrfs_fs_info *fs_info = trans->fs_info;
3443 	struct btrfs_block_group *bg;
3444 	int ret;
3445 
3446 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3447 		struct btrfs_ref generic_ref = {
3448 			.action = BTRFS_DROP_DELAYED_REF,
3449 			.bytenr = buf->start,
3450 			.num_bytes = buf->len,
3451 			.parent = parent,
3452 			.owning_root = btrfs_header_owner(buf),
3453 			.ref_root = root_id,
3454 		};
3455 
3456 		/*
3457 		 * Assert that the extent buffer is not cleared due to
3458 		 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3459 		 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3460 		 * detail.
3461 		 */
3462 		ASSERT(btrfs_header_bytenr(buf) != 0);
3463 
3464 		btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3465 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3466 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3467 		if (ret < 0)
3468 			return ret;
3469 	}
3470 
3471 	if (!last_ref)
3472 		return 0;
3473 
3474 	if (btrfs_header_generation(buf) != trans->transid)
3475 		goto out;
3476 
3477 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3478 		ret = check_ref_cleanup(trans, buf->start);
3479 		if (!ret)
3480 			goto out;
3481 	}
3482 
3483 	bg = btrfs_lookup_block_group(fs_info, buf->start);
3484 
3485 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3486 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3487 		btrfs_put_block_group(bg);
3488 		goto out;
3489 	}
3490 
3491 	/*
3492 	 * If there are tree mod log users we may have recorded mod log
3493 	 * operations for this node.  If we re-allocate this node we
3494 	 * could replay operations on this node that happened when it
3495 	 * existed in a completely different root.  For example if it
3496 	 * was part of root A, then was reallocated to root B, and we
3497 	 * are doing a btrfs_old_search_slot(root b), we could replay
3498 	 * operations that happened when the block was part of root A,
3499 	 * giving us an inconsistent view of the btree.
3500 	 *
3501 	 * We are safe from races here because at this point no other
3502 	 * node or root points to this extent buffer, so if after this
3503 	 * check a new tree mod log user joins we will not have an
3504 	 * existing log of operations on this node that we have to
3505 	 * contend with.
3506 	 */
3507 
3508 	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3509 		     || btrfs_is_zoned(fs_info)) {
3510 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3511 		btrfs_put_block_group(bg);
3512 		goto out;
3513 	}
3514 
3515 	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3516 
3517 	btrfs_add_free_space(bg, buf->start, buf->len);
3518 	btrfs_free_reserved_bytes(bg, buf->len, false);
3519 	btrfs_put_block_group(bg);
3520 	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3521 
3522 out:
3523 	return 0;
3524 }
3525 
3526 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3527 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3528 {
3529 	struct btrfs_fs_info *fs_info = trans->fs_info;
3530 	int ret;
3531 
3532 	if (btrfs_is_testing(fs_info))
3533 		return 0;
3534 
3535 	/*
3536 	 * tree log blocks never actually go into the extent allocation
3537 	 * tree, just update pinning info and exit early.
3538 	 */
3539 	if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3540 		btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3541 		ret = 0;
3542 	} else if (ref->type == BTRFS_REF_METADATA) {
3543 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3544 	} else {
3545 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3546 	}
3547 
3548 	if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3549 		btrfs_ref_tree_mod(fs_info, ref);
3550 
3551 	return ret;
3552 }
3553 
3554 enum btrfs_loop_type {
3555 	/*
3556 	 * Start caching block groups but do not wait for progress or for them
3557 	 * to be done.
3558 	 */
3559 	LOOP_CACHING_NOWAIT,
3560 
3561 	/*
3562 	 * Wait for the block group free_space >= the space we're waiting for if
3563 	 * the block group isn't cached.
3564 	 */
3565 	LOOP_CACHING_WAIT,
3566 
3567 	/*
3568 	 * Allow allocations to happen from block groups that do not yet have a
3569 	 * size classification.
3570 	 */
3571 	LOOP_UNSET_SIZE_CLASS,
3572 
3573 	/*
3574 	 * Allocate a chunk and then retry the allocation.
3575 	 */
3576 	LOOP_ALLOC_CHUNK,
3577 
3578 	/*
3579 	 * Ignore the size class restrictions for this allocation.
3580 	 */
3581 	LOOP_WRONG_SIZE_CLASS,
3582 
3583 	/*
3584 	 * Ignore the empty size, only try to allocate the number of bytes
3585 	 * needed for this allocation.
3586 	 */
3587 	LOOP_NO_EMPTY_SIZE,
3588 };
3589 
3590 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3591 btrfs_lock_block_group(struct btrfs_block_group *cache,
3592 		       int delalloc)
3593 {
3594 	if (delalloc)
3595 		down_read(&cache->data_rwsem);
3596 }
3597 
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3598 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3599 		       int delalloc)
3600 {
3601 	btrfs_get_block_group(cache);
3602 	if (delalloc)
3603 		down_read(&cache->data_rwsem);
3604 }
3605 
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3606 static struct btrfs_block_group *btrfs_lock_cluster(
3607 		   struct btrfs_block_group *block_group,
3608 		   struct btrfs_free_cluster *cluster,
3609 		   int delalloc)
3610 	__acquires(&cluster->refill_lock)
3611 {
3612 	struct btrfs_block_group *used_bg = NULL;
3613 
3614 	spin_lock(&cluster->refill_lock);
3615 	while (1) {
3616 		used_bg = cluster->block_group;
3617 		if (!used_bg)
3618 			return NULL;
3619 
3620 		if (used_bg == block_group)
3621 			return used_bg;
3622 
3623 		btrfs_get_block_group(used_bg);
3624 
3625 		if (!delalloc)
3626 			return used_bg;
3627 
3628 		if (down_read_trylock(&used_bg->data_rwsem))
3629 			return used_bg;
3630 
3631 		spin_unlock(&cluster->refill_lock);
3632 
3633 		/* We should only have one-level nested. */
3634 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3635 
3636 		spin_lock(&cluster->refill_lock);
3637 		if (used_bg == cluster->block_group)
3638 			return used_bg;
3639 
3640 		up_read(&used_bg->data_rwsem);
3641 		btrfs_put_block_group(used_bg);
3642 	}
3643 }
3644 
3645 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3646 btrfs_release_block_group(struct btrfs_block_group *cache,
3647 			 int delalloc)
3648 {
3649 	if (delalloc)
3650 		up_read(&cache->data_rwsem);
3651 	btrfs_put_block_group(cache);
3652 }
3653 
find_free_extent_check_size_class(const struct find_free_extent_ctl * ffe_ctl,const struct btrfs_block_group * bg)3654 static bool find_free_extent_check_size_class(const struct find_free_extent_ctl *ffe_ctl,
3655 					      const struct btrfs_block_group *bg)
3656 {
3657 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
3658 		return true;
3659 	if (!btrfs_block_group_should_use_size_class(bg))
3660 		return true;
3661 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
3662 		return true;
3663 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
3664 	    bg->size_class == BTRFS_BG_SZ_NONE)
3665 		return true;
3666 	return ffe_ctl->size_class == bg->size_class;
3667 }
3668 
3669 /*
3670  * Helper function for find_free_extent().
3671  *
3672  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3673  * Return >0 to inform caller that we find nothing
3674  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3675  */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3676 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3677 				      struct find_free_extent_ctl *ffe_ctl,
3678 				      struct btrfs_block_group **cluster_bg_ret)
3679 {
3680 	struct btrfs_block_group *cluster_bg;
3681 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3682 	u64 aligned_cluster;
3683 	u64 offset;
3684 	int ret;
3685 
3686 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3687 	if (!cluster_bg)
3688 		goto refill_cluster;
3689 	if (cluster_bg != bg && (cluster_bg->ro ||
3690 	    !block_group_bits(cluster_bg, ffe_ctl->flags) ||
3691 	    !find_free_extent_check_size_class(ffe_ctl, cluster_bg)))
3692 		goto release_cluster;
3693 
3694 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3695 			ffe_ctl->num_bytes, cluster_bg->start,
3696 			&ffe_ctl->max_extent_size);
3697 	if (offset) {
3698 		/* We have a block, we're done */
3699 		spin_unlock(&last_ptr->refill_lock);
3700 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3701 		*cluster_bg_ret = cluster_bg;
3702 		ffe_ctl->found_offset = offset;
3703 		return 0;
3704 	}
3705 	WARN_ON(last_ptr->block_group != cluster_bg);
3706 
3707 release_cluster:
3708 	/*
3709 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3710 	 * lets just skip it and let the allocator find whatever block it can
3711 	 * find. If we reach this point, we will have tried the cluster
3712 	 * allocator plenty of times and not have found anything, so we are
3713 	 * likely way too fragmented for the clustering stuff to find anything.
3714 	 *
3715 	 * However, if the cluster is taken from the current block group,
3716 	 * release the cluster first, so that we stand a better chance of
3717 	 * succeeding in the unclustered allocation.
3718 	 */
3719 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3720 		spin_unlock(&last_ptr->refill_lock);
3721 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3722 		return -ENOENT;
3723 	}
3724 
3725 	/* This cluster didn't work out, free it and start over */
3726 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3727 
3728 	if (cluster_bg != bg)
3729 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3730 
3731 refill_cluster:
3732 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3733 		spin_unlock(&last_ptr->refill_lock);
3734 		return -ENOENT;
3735 	}
3736 
3737 	aligned_cluster = max_t(u64,
3738 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3739 			bg->full_stripe_len);
3740 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3741 			ffe_ctl->num_bytes, aligned_cluster);
3742 	if (ret == 0) {
3743 		/* Now pull our allocation out of this cluster */
3744 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3745 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3746 				&ffe_ctl->max_extent_size);
3747 		if (offset) {
3748 			/* We found one, proceed */
3749 			spin_unlock(&last_ptr->refill_lock);
3750 			ffe_ctl->found_offset = offset;
3751 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3752 			return 0;
3753 		}
3754 	}
3755 	/*
3756 	 * At this point we either didn't find a cluster or we weren't able to
3757 	 * allocate a block from our cluster.  Free the cluster we've been
3758 	 * trying to use, and go to the next block group.
3759 	 */
3760 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3761 	spin_unlock(&last_ptr->refill_lock);
3762 	return 1;
3763 }
3764 
3765 /*
3766  * Return >0 to inform caller that we find nothing
3767  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3768  */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3769 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3770 					struct find_free_extent_ctl *ffe_ctl)
3771 {
3772 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3773 	u64 offset;
3774 
3775 	/*
3776 	 * We are doing an unclustered allocation, set the fragmented flag so
3777 	 * we don't bother trying to setup a cluster again until we get more
3778 	 * space.
3779 	 */
3780 	if (unlikely(last_ptr)) {
3781 		spin_lock(&last_ptr->lock);
3782 		last_ptr->fragmented = 1;
3783 		spin_unlock(&last_ptr->lock);
3784 	}
3785 	if (ffe_ctl->cached) {
3786 		struct btrfs_free_space_ctl *free_space_ctl;
3787 
3788 		free_space_ctl = bg->free_space_ctl;
3789 		spin_lock(&free_space_ctl->tree_lock);
3790 		if (free_space_ctl->free_space <
3791 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3792 		    ffe_ctl->empty_size) {
3793 			ffe_ctl->total_free_space = max_t(u64,
3794 					ffe_ctl->total_free_space,
3795 					free_space_ctl->free_space);
3796 			spin_unlock(&free_space_ctl->tree_lock);
3797 			return 1;
3798 		}
3799 		spin_unlock(&free_space_ctl->tree_lock);
3800 	}
3801 
3802 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3803 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3804 			&ffe_ctl->max_extent_size);
3805 	if (!offset)
3806 		return 1;
3807 	ffe_ctl->found_offset = offset;
3808 	return 0;
3809 }
3810 
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3811 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3812 				   struct find_free_extent_ctl *ffe_ctl,
3813 				   struct btrfs_block_group **bg_ret)
3814 {
3815 	int ret;
3816 
3817 	/* We want to try and use the cluster allocator, so lets look there */
3818 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3819 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3820 		if (ret >= 0)
3821 			return ret;
3822 		/* ret == -ENOENT case falls through */
3823 	}
3824 
3825 	return find_free_extent_unclustered(block_group, ffe_ctl);
3826 }
3827 
3828 /*
3829  * Tree-log block group locking
3830  * ============================
3831  *
3832  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3833  * indicates the starting address of a block group, which is reserved only
3834  * for tree-log metadata.
3835  *
3836  * Lock nesting
3837  * ============
3838  *
3839  * space_info::lock
3840  *   block_group::lock
3841  *     fs_info::treelog_bg_lock
3842  */
3843 
3844 /*
3845  * Simple allocator for sequential-only block group. It only allows sequential
3846  * allocation. No need to play with trees. This function also reserves the
3847  * bytes as in btrfs_add_reserved_bytes.
3848  */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3849 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3850 			       struct find_free_extent_ctl *ffe_ctl,
3851 			       struct btrfs_block_group **bg_ret)
3852 {
3853 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3854 	struct btrfs_space_info *space_info = block_group->space_info;
3855 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3856 	u64 start = block_group->start;
3857 	u64 num_bytes = ffe_ctl->num_bytes;
3858 	u64 avail;
3859 	u64 bytenr = block_group->start;
3860 	u64 log_bytenr;
3861 	u64 data_reloc_bytenr;
3862 	int ret = 0;
3863 	bool skip = false;
3864 
3865 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3866 
3867 	/*
3868 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3869 	 * group, and vice versa.
3870 	 */
3871 	spin_lock(&fs_info->treelog_bg_lock);
3872 	log_bytenr = fs_info->treelog_bg;
3873 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3874 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3875 		skip = true;
3876 	spin_unlock(&fs_info->treelog_bg_lock);
3877 	if (skip)
3878 		return 1;
3879 
3880 	/*
3881 	 * Do not allow non-relocation blocks in the dedicated relocation block
3882 	 * group, and vice versa.
3883 	 */
3884 	spin_lock(&fs_info->relocation_bg_lock);
3885 	data_reloc_bytenr = fs_info->data_reloc_bg;
3886 	if (data_reloc_bytenr &&
3887 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3888 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3889 		skip = true;
3890 	spin_unlock(&fs_info->relocation_bg_lock);
3891 	if (skip)
3892 		return 1;
3893 
3894 	/* Check RO and no space case before trying to activate it */
3895 	spin_lock(&block_group->lock);
3896 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3897 		ret = 1;
3898 		/*
3899 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3900 		 * Return the error after taking the locks.
3901 		 */
3902 	}
3903 	spin_unlock(&block_group->lock);
3904 
3905 	/* Metadata block group is activated at write time. */
3906 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3907 	    !btrfs_zone_activate(block_group)) {
3908 		ret = 1;
3909 		/*
3910 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3911 		 * Return the error after taking the locks.
3912 		 */
3913 	}
3914 
3915 	spin_lock(&space_info->lock);
3916 	spin_lock(&block_group->lock);
3917 	spin_lock(&fs_info->treelog_bg_lock);
3918 	spin_lock(&fs_info->relocation_bg_lock);
3919 
3920 	if (ret)
3921 		goto out;
3922 
3923 	ASSERT(!ffe_ctl->for_treelog ||
3924 	       block_group->start == fs_info->treelog_bg ||
3925 	       fs_info->treelog_bg == 0);
3926 	ASSERT(!ffe_ctl->for_data_reloc ||
3927 	       block_group->start == fs_info->data_reloc_bg ||
3928 	       fs_info->data_reloc_bg == 0);
3929 
3930 	if (block_group->ro ||
3931 	    (!ffe_ctl->for_data_reloc &&
3932 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3933 		ret = 1;
3934 		goto out;
3935 	}
3936 
3937 	/*
3938 	 * Do not allow currently using block group to be tree-log dedicated
3939 	 * block group.
3940 	 */
3941 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3942 	    (block_group->used || block_group->reserved)) {
3943 		ret = 1;
3944 		goto out;
3945 	}
3946 
3947 	/*
3948 	 * Do not allow currently used block group to be the data relocation
3949 	 * dedicated block group.
3950 	 */
3951 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3952 	    (block_group->used || block_group->reserved)) {
3953 		ret = 1;
3954 		goto out;
3955 	}
3956 
3957 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3958 	avail = block_group->zone_capacity - block_group->alloc_offset;
3959 	if (avail < num_bytes) {
3960 		if (ffe_ctl->max_extent_size < avail) {
3961 			/*
3962 			 * With sequential allocator, free space is always
3963 			 * contiguous
3964 			 */
3965 			ffe_ctl->max_extent_size = avail;
3966 			ffe_ctl->total_free_space = avail;
3967 		}
3968 		ret = 1;
3969 		goto out;
3970 	}
3971 
3972 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3973 		fs_info->treelog_bg = block_group->start;
3974 
3975 	if (ffe_ctl->for_data_reloc) {
3976 		if (!fs_info->data_reloc_bg)
3977 			fs_info->data_reloc_bg = block_group->start;
3978 		/*
3979 		 * Do not allow allocations from this block group, unless it is
3980 		 * for data relocation. Compared to increasing the ->ro, setting
3981 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3982 		 * writers to come in. See btrfs_inc_nocow_writers().
3983 		 *
3984 		 * We need to disable an allocation to avoid an allocation of
3985 		 * regular (non-relocation data) extent. With mix of relocation
3986 		 * extents and regular extents, we can dispatch WRITE commands
3987 		 * (for relocation extents) and ZONE APPEND commands (for
3988 		 * regular extents) at the same time to the same zone, which
3989 		 * easily break the write pointer.
3990 		 *
3991 		 * Also, this flag avoids this block group to be zone finished.
3992 		 */
3993 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3994 	}
3995 
3996 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3997 	block_group->alloc_offset += num_bytes;
3998 	spin_lock(&ctl->tree_lock);
3999 	ctl->free_space -= num_bytes;
4000 	spin_unlock(&ctl->tree_lock);
4001 
4002 	/*
4003 	 * We do not check if found_offset is aligned to stripesize. The
4004 	 * address is anyway rewritten when using zone append writing.
4005 	 */
4006 
4007 	ffe_ctl->search_start = ffe_ctl->found_offset;
4008 
4009 out:
4010 	if (ret && ffe_ctl->for_treelog)
4011 		fs_info->treelog_bg = 0;
4012 	if (ret && ffe_ctl->for_data_reloc)
4013 		fs_info->data_reloc_bg = 0;
4014 	spin_unlock(&fs_info->relocation_bg_lock);
4015 	spin_unlock(&fs_info->treelog_bg_lock);
4016 	spin_unlock(&block_group->lock);
4017 	spin_unlock(&space_info->lock);
4018 	return ret;
4019 }
4020 
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)4021 static int do_allocation(struct btrfs_block_group *block_group,
4022 			 struct find_free_extent_ctl *ffe_ctl,
4023 			 struct btrfs_block_group **bg_ret)
4024 {
4025 	switch (ffe_ctl->policy) {
4026 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4027 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4028 	case BTRFS_EXTENT_ALLOC_ZONED:
4029 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4030 	default:
4031 		BUG();
4032 	}
4033 }
4034 
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)4035 static void release_block_group(struct btrfs_block_group *block_group,
4036 				struct find_free_extent_ctl *ffe_ctl,
4037 				int delalloc)
4038 {
4039 	switch (ffe_ctl->policy) {
4040 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4041 		ffe_ctl->retry_uncached = false;
4042 		break;
4043 	case BTRFS_EXTENT_ALLOC_ZONED:
4044 		/* Nothing to do */
4045 		break;
4046 	default:
4047 		BUG();
4048 	}
4049 
4050 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4051 	       ffe_ctl->index);
4052 	btrfs_release_block_group(block_group, delalloc);
4053 }
4054 
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4055 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4056 				   struct btrfs_key *ins)
4057 {
4058 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4059 
4060 	if (!ffe_ctl->use_cluster && last_ptr) {
4061 		spin_lock(&last_ptr->lock);
4062 		last_ptr->window_start = ins->objectid;
4063 		spin_unlock(&last_ptr->lock);
4064 	}
4065 }
4066 
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4067 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4068 			 struct btrfs_key *ins)
4069 {
4070 	switch (ffe_ctl->policy) {
4071 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4072 		found_extent_clustered(ffe_ctl, ins);
4073 		break;
4074 	case BTRFS_EXTENT_ALLOC_ZONED:
4075 		/* Nothing to do */
4076 		break;
4077 	default:
4078 		BUG();
4079 	}
4080 }
4081 
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4082 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4083 				    struct find_free_extent_ctl *ffe_ctl)
4084 {
4085 	/* Block group's activeness is not a requirement for METADATA block groups. */
4086 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4087 		return 0;
4088 
4089 	/* If we can activate new zone, just allocate a chunk and use it */
4090 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4091 		return 0;
4092 
4093 	/*
4094 	 * We already reached the max active zones. Try to finish one block
4095 	 * group to make a room for a new block group. This is only possible
4096 	 * for a data block group because btrfs_zone_finish() may need to wait
4097 	 * for a running transaction which can cause a deadlock for metadata
4098 	 * allocation.
4099 	 */
4100 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4101 		int ret = btrfs_zone_finish_one_bg(fs_info);
4102 
4103 		if (ret == 1)
4104 			return 0;
4105 		else if (ret < 0)
4106 			return ret;
4107 	}
4108 
4109 	/*
4110 	 * If we have enough free space left in an already active block group
4111 	 * and we can't activate any other zone now, do not allow allocating a
4112 	 * new chunk and let find_free_extent() retry with a smaller size.
4113 	 */
4114 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4115 		return -ENOSPC;
4116 
4117 	/*
4118 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4119 	 * activate a new block group, allocating it may not help. Let's tell a
4120 	 * caller to try again and hope it progress something by writing some
4121 	 * parts of the region. That is only possible for data block groups,
4122 	 * where a part of the region can be written.
4123 	 */
4124 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4125 		return -EAGAIN;
4126 
4127 	/*
4128 	 * We cannot activate a new block group and no enough space left in any
4129 	 * block groups. So, allocating a new block group may not help. But,
4130 	 * there is nothing to do anyway, so let's go with it.
4131 	 */
4132 	return 0;
4133 }
4134 
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4135 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4136 			      struct find_free_extent_ctl *ffe_ctl)
4137 {
4138 	switch (ffe_ctl->policy) {
4139 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4140 		return 0;
4141 	case BTRFS_EXTENT_ALLOC_ZONED:
4142 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4143 	default:
4144 		BUG();
4145 	}
4146 }
4147 
4148 /*
4149  * Return >0 means caller needs to re-search for free extent
4150  * Return 0 means we have the needed free extent.
4151  * Return <0 means we failed to locate any free extent.
4152  */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,bool full_search)4153 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4154 					struct btrfs_key *ins,
4155 					struct find_free_extent_ctl *ffe_ctl,
4156 					struct btrfs_space_info *space_info,
4157 					bool full_search)
4158 {
4159 	struct btrfs_root *root = fs_info->chunk_root;
4160 	int ret;
4161 
4162 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4163 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4164 		ffe_ctl->orig_have_caching_bg = true;
4165 
4166 	if (ins->objectid) {
4167 		found_extent(ffe_ctl, ins);
4168 		return 0;
4169 	}
4170 
4171 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4172 		return 1;
4173 
4174 	ffe_ctl->index++;
4175 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4176 		return 1;
4177 
4178 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4179 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4180 		ffe_ctl->index = 0;
4181 		/*
4182 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4183 		 * any uncached bgs and we've already done a full search
4184 		 * through.
4185 		 */
4186 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4187 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4188 			ffe_ctl->loop++;
4189 		ffe_ctl->loop++;
4190 
4191 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4192 			struct btrfs_trans_handle *trans;
4193 			int exist = 0;
4194 
4195 			/* Check if allocation policy allows to create a new chunk */
4196 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4197 			if (ret)
4198 				return ret;
4199 
4200 			trans = current->journal_info;
4201 			if (trans)
4202 				exist = 1;
4203 			else
4204 				trans = btrfs_join_transaction(root);
4205 
4206 			if (IS_ERR(trans)) {
4207 				ret = PTR_ERR(trans);
4208 				return ret;
4209 			}
4210 
4211 			ret = btrfs_chunk_alloc(trans, space_info, ffe_ctl->flags,
4212 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4213 
4214 			/* Do not bail out on ENOSPC since we can do more. */
4215 			if (ret == -ENOSPC) {
4216 				ret = 0;
4217 				ffe_ctl->loop++;
4218 			}
4219 			else if (ret < 0)
4220 				btrfs_abort_transaction(trans, ret);
4221 			else
4222 				ret = 0;
4223 			if (!exist)
4224 				btrfs_end_transaction(trans);
4225 			if (ret)
4226 				return ret;
4227 		}
4228 
4229 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4230 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4231 				return -ENOSPC;
4232 
4233 			/*
4234 			 * Don't loop again if we already have no empty_size and
4235 			 * no empty_cluster.
4236 			 */
4237 			if (ffe_ctl->empty_size == 0 &&
4238 			    ffe_ctl->empty_cluster == 0)
4239 				return -ENOSPC;
4240 			ffe_ctl->empty_size = 0;
4241 			ffe_ctl->empty_cluster = 0;
4242 		}
4243 		return 1;
4244 	}
4245 	return -ENOSPC;
4246 }
4247 
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4248 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4249 					struct find_free_extent_ctl *ffe_ctl,
4250 					struct btrfs_space_info *space_info,
4251 					struct btrfs_key *ins)
4252 {
4253 	/*
4254 	 * If our free space is heavily fragmented we may not be able to make
4255 	 * big contiguous allocations, so instead of doing the expensive search
4256 	 * for free space, simply return ENOSPC with our max_extent_size so we
4257 	 * can go ahead and search for a more manageable chunk.
4258 	 *
4259 	 * If our max_extent_size is large enough for our allocation simply
4260 	 * disable clustering since we will likely not be able to find enough
4261 	 * space to create a cluster and induce latency trying.
4262 	 */
4263 	if (space_info->max_extent_size) {
4264 		spin_lock(&space_info->lock);
4265 		if (space_info->max_extent_size &&
4266 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4267 			ins->offset = space_info->max_extent_size;
4268 			spin_unlock(&space_info->lock);
4269 			return -ENOSPC;
4270 		} else if (space_info->max_extent_size) {
4271 			ffe_ctl->use_cluster = false;
4272 		}
4273 		spin_unlock(&space_info->lock);
4274 	}
4275 
4276 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4277 					       &ffe_ctl->empty_cluster);
4278 	if (ffe_ctl->last_ptr) {
4279 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4280 
4281 		spin_lock(&last_ptr->lock);
4282 		if (last_ptr->block_group)
4283 			ffe_ctl->hint_byte = last_ptr->window_start;
4284 		if (last_ptr->fragmented) {
4285 			/*
4286 			 * We still set window_start so we can keep track of the
4287 			 * last place we found an allocation to try and save
4288 			 * some time.
4289 			 */
4290 			ffe_ctl->hint_byte = last_ptr->window_start;
4291 			ffe_ctl->use_cluster = false;
4292 		}
4293 		spin_unlock(&last_ptr->lock);
4294 	}
4295 
4296 	return 0;
4297 }
4298 
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4299 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4300 				    struct find_free_extent_ctl *ffe_ctl)
4301 {
4302 	if (ffe_ctl->for_treelog) {
4303 		spin_lock(&fs_info->treelog_bg_lock);
4304 		if (fs_info->treelog_bg)
4305 			ffe_ctl->hint_byte = fs_info->treelog_bg;
4306 		spin_unlock(&fs_info->treelog_bg_lock);
4307 	} else if (ffe_ctl->for_data_reloc) {
4308 		spin_lock(&fs_info->relocation_bg_lock);
4309 		if (fs_info->data_reloc_bg)
4310 			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4311 		spin_unlock(&fs_info->relocation_bg_lock);
4312 	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4313 		struct btrfs_block_group *block_group;
4314 
4315 		spin_lock(&fs_info->zone_active_bgs_lock);
4316 		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4317 			/*
4318 			 * No lock is OK here because avail is monotinically
4319 			 * decreasing, and this is just a hint.
4320 			 */
4321 			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4322 
4323 			if (block_group_bits(block_group, ffe_ctl->flags) &&
4324 			    avail >= ffe_ctl->num_bytes) {
4325 				ffe_ctl->hint_byte = block_group->start;
4326 				break;
4327 			}
4328 		}
4329 		spin_unlock(&fs_info->zone_active_bgs_lock);
4330 	}
4331 
4332 	return 0;
4333 }
4334 
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4335 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4336 			      struct find_free_extent_ctl *ffe_ctl,
4337 			      struct btrfs_space_info *space_info,
4338 			      struct btrfs_key *ins)
4339 {
4340 	switch (ffe_ctl->policy) {
4341 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4342 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4343 						    space_info, ins);
4344 	case BTRFS_EXTENT_ALLOC_ZONED:
4345 		return prepare_allocation_zoned(fs_info, ffe_ctl);
4346 	default:
4347 		BUG();
4348 	}
4349 }
4350 
4351 /*
4352  * walks the btree of allocated extents and find a hole of a given size.
4353  * The key ins is changed to record the hole:
4354  * ins->objectid == start position
4355  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4356  * ins->offset == the size of the hole.
4357  * Any available blocks before search_start are skipped.
4358  *
4359  * If there is no suitable free space, we will record the max size of
4360  * the free space extent currently.
4361  *
4362  * The overall logic and call chain:
4363  *
4364  * find_free_extent()
4365  * |- Iterate through all block groups
4366  * |  |- Get a valid block group
4367  * |  |- Try to do clustered allocation in that block group
4368  * |  |- Try to do unclustered allocation in that block group
4369  * |  |- Check if the result is valid
4370  * |  |  |- If valid, then exit
4371  * |  |- Jump to next block group
4372  * |
4373  * |- Push harder to find free extents
4374  *    |- If not found, re-iterate all block groups
4375  */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4376 static noinline int find_free_extent(struct btrfs_root *root,
4377 				     struct btrfs_key *ins,
4378 				     struct find_free_extent_ctl *ffe_ctl)
4379 {
4380 	struct btrfs_fs_info *fs_info = root->fs_info;
4381 	int ret = 0;
4382 	int cache_block_group_error = 0;
4383 	struct btrfs_block_group *block_group = NULL;
4384 	struct btrfs_space_info *space_info;
4385 	bool full_search = false;
4386 
4387 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4388 
4389 	ffe_ctl->search_start = 0;
4390 	/* For clustered allocation */
4391 	ffe_ctl->empty_cluster = 0;
4392 	ffe_ctl->last_ptr = NULL;
4393 	ffe_ctl->use_cluster = true;
4394 	ffe_ctl->have_caching_bg = false;
4395 	ffe_ctl->orig_have_caching_bg = false;
4396 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4397 	ffe_ctl->loop = 0;
4398 	ffe_ctl->retry_uncached = false;
4399 	ffe_ctl->cached = 0;
4400 	ffe_ctl->max_extent_size = 0;
4401 	ffe_ctl->total_free_space = 0;
4402 	ffe_ctl->found_offset = 0;
4403 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4404 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4405 
4406 	if (btrfs_is_zoned(fs_info))
4407 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4408 
4409 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4410 	ins->objectid = 0;
4411 	ins->offset = 0;
4412 
4413 	trace_btrfs_find_free_extent(root, ffe_ctl);
4414 
4415 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4416 	if (btrfs_is_zoned(fs_info) && space_info) {
4417 		/* Use dedicated sub-space_info for dedicated block group users. */
4418 		if (ffe_ctl->for_data_reloc) {
4419 			space_info = space_info->sub_group[0];
4420 			ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC);
4421 		} else if (ffe_ctl->for_treelog) {
4422 			space_info = space_info->sub_group[0];
4423 			ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_TREELOG);
4424 		}
4425 	}
4426 	if (!space_info) {
4427 		btrfs_err(fs_info, "no space info for %llu, tree-log %d, relocation %d",
4428 			  ffe_ctl->flags, ffe_ctl->for_treelog, ffe_ctl->for_data_reloc);
4429 		return -ENOSPC;
4430 	}
4431 
4432 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4433 	if (ret < 0)
4434 		return ret;
4435 
4436 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4437 				    first_logical_byte(fs_info));
4438 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4439 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4440 		block_group = btrfs_lookup_block_group(fs_info,
4441 						       ffe_ctl->search_start);
4442 		/*
4443 		 * we don't want to use the block group if it doesn't match our
4444 		 * allocation bits, or if its not cached.
4445 		 *
4446 		 * However if we are re-searching with an ideal block group
4447 		 * picked out then we don't care that the block group is cached.
4448 		 */
4449 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4450 		    block_group->space_info == space_info &&
4451 		    block_group->cached != BTRFS_CACHE_NO) {
4452 			down_read(&space_info->groups_sem);
4453 			if (list_empty(&block_group->list) ||
4454 			    block_group->ro) {
4455 				/*
4456 				 * someone is removing this block group,
4457 				 * we can't jump into the have_block_group
4458 				 * target because our list pointers are not
4459 				 * valid
4460 				 */
4461 				btrfs_put_block_group(block_group);
4462 				up_read(&space_info->groups_sem);
4463 			} else {
4464 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4465 							block_group->flags);
4466 				btrfs_lock_block_group(block_group,
4467 						       ffe_ctl->delalloc);
4468 				ffe_ctl->hinted = true;
4469 				goto have_block_group;
4470 			}
4471 		} else if (block_group) {
4472 			btrfs_put_block_group(block_group);
4473 		}
4474 	}
4475 search:
4476 	trace_btrfs_find_free_extent_search_loop(root, ffe_ctl);
4477 	ffe_ctl->have_caching_bg = false;
4478 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4479 	    ffe_ctl->index == 0)
4480 		full_search = true;
4481 	down_read(&space_info->groups_sem);
4482 	list_for_each_entry(block_group,
4483 			    &space_info->block_groups[ffe_ctl->index], list) {
4484 		struct btrfs_block_group *bg_ret;
4485 
4486 		ffe_ctl->hinted = false;
4487 		/* If the block group is read-only, we can skip it entirely. */
4488 		if (unlikely(block_group->ro)) {
4489 			if (ffe_ctl->for_treelog)
4490 				btrfs_clear_treelog_bg(block_group);
4491 			if (ffe_ctl->for_data_reloc)
4492 				btrfs_clear_data_reloc_bg(block_group);
4493 			continue;
4494 		}
4495 
4496 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4497 		ffe_ctl->search_start = block_group->start;
4498 
4499 		/*
4500 		 * this can happen if we end up cycling through all the
4501 		 * raid types, but we want to make sure we only allocate
4502 		 * for the proper type.
4503 		 */
4504 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4505 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4506 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4507 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4508 				BTRFS_BLOCK_GROUP_RAID10;
4509 
4510 			/*
4511 			 * if they asked for extra copies and this block group
4512 			 * doesn't provide them, bail.  This does allow us to
4513 			 * fill raid0 from raid1.
4514 			 */
4515 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4516 				goto loop;
4517 
4518 			/*
4519 			 * This block group has different flags than we want.
4520 			 * It's possible that we have MIXED_GROUP flag but no
4521 			 * block group is mixed.  Just skip such block group.
4522 			 */
4523 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4524 			continue;
4525 		}
4526 
4527 have_block_group:
4528 		trace_btrfs_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4529 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4530 		if (unlikely(!ffe_ctl->cached)) {
4531 			ffe_ctl->have_caching_bg = true;
4532 			ret = btrfs_cache_block_group(block_group, false);
4533 
4534 			/*
4535 			 * If we get ENOMEM here or something else we want to
4536 			 * try other block groups, because it may not be fatal.
4537 			 * However if we can't find anything else we need to
4538 			 * save our return here so that we return the actual
4539 			 * error that caused problems, not ENOSPC.
4540 			 */
4541 			if (ret < 0) {
4542 				if (!cache_block_group_error)
4543 					cache_block_group_error = ret;
4544 				ret = 0;
4545 				goto loop;
4546 			}
4547 			ret = 0;
4548 		}
4549 
4550 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4551 			if (!cache_block_group_error)
4552 				cache_block_group_error = -EIO;
4553 			goto loop;
4554 		}
4555 
4556 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4557 			goto loop;
4558 
4559 		bg_ret = NULL;
4560 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4561 		if (ret > 0)
4562 			goto loop;
4563 
4564 		if (bg_ret && bg_ret != block_group) {
4565 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4566 			block_group = bg_ret;
4567 		}
4568 
4569 		/* Checks */
4570 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4571 						 fs_info->stripesize);
4572 
4573 		/* move on to the next group */
4574 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4575 		    block_group->start + block_group->length) {
4576 			btrfs_add_free_space_unused(block_group,
4577 					    ffe_ctl->found_offset,
4578 					    ffe_ctl->num_bytes);
4579 			goto loop;
4580 		}
4581 
4582 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4583 			btrfs_add_free_space_unused(block_group,
4584 					ffe_ctl->found_offset,
4585 					ffe_ctl->search_start - ffe_ctl->found_offset);
4586 
4587 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4588 					       ffe_ctl->num_bytes,
4589 					       ffe_ctl->delalloc,
4590 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4591 		if (ret == -EAGAIN) {
4592 			btrfs_add_free_space_unused(block_group,
4593 					ffe_ctl->found_offset,
4594 					ffe_ctl->num_bytes);
4595 			goto loop;
4596 		}
4597 		btrfs_inc_block_group_reservations(block_group);
4598 
4599 		/* we are all good, lets return */
4600 		ins->objectid = ffe_ctl->search_start;
4601 		ins->offset = ffe_ctl->num_bytes;
4602 
4603 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4604 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4605 		break;
4606 loop:
4607 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4608 		    !ffe_ctl->retry_uncached) {
4609 			ffe_ctl->retry_uncached = true;
4610 			btrfs_wait_block_group_cache_progress(block_group,
4611 						ffe_ctl->num_bytes +
4612 						ffe_ctl->empty_cluster +
4613 						ffe_ctl->empty_size);
4614 			goto have_block_group;
4615 		}
4616 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4617 		cond_resched();
4618 	}
4619 	up_read(&space_info->groups_sem);
4620 
4621 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, space_info,
4622 					   full_search);
4623 	if (ret > 0)
4624 		goto search;
4625 
4626 	if (ret == -ENOSPC && !cache_block_group_error) {
4627 		/*
4628 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4629 		 * any contiguous hole.
4630 		 */
4631 		if (!ffe_ctl->max_extent_size)
4632 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4633 		spin_lock(&space_info->lock);
4634 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4635 		spin_unlock(&space_info->lock);
4636 		ins->offset = ffe_ctl->max_extent_size;
4637 	} else if (ret == -ENOSPC) {
4638 		ret = cache_block_group_error;
4639 	}
4640 	return ret;
4641 }
4642 
4643 /*
4644  * Entry point to the extent allocator. Tries to find a hole that is at least
4645  * as big as @num_bytes.
4646  *
4647  * @root           -	The root that will contain this extent
4648  *
4649  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4650  *			is used for accounting purposes. This value differs
4651  *			from @num_bytes only in the case of compressed extents.
4652  *
4653  * @num_bytes      -	Number of bytes to allocate on-disk.
4654  *
4655  * @min_alloc_size -	Indicates the minimum amount of space that the
4656  *			allocator should try to satisfy. In some cases
4657  *			@num_bytes may be larger than what is required and if
4658  *			the filesystem is fragmented then allocation fails.
4659  *			However, the presence of @min_alloc_size gives a
4660  *			chance to try and satisfy the smaller allocation.
4661  *
4662  * @empty_size     -	A hint that you plan on doing more COW. This is the
4663  *			size in bytes the allocator should try to find free
4664  *			next to the block it returns.  This is just a hint and
4665  *			may be ignored by the allocator.
4666  *
4667  * @hint_byte      -	Hint to the allocator to start searching above the byte
4668  *			address passed. It might be ignored.
4669  *
4670  * @ins            -	This key is modified to record the found hole. It will
4671  *			have the following values:
4672  *			ins->objectid == start position
4673  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4674  *			ins->offset == the size of the hole.
4675  *
4676  * @is_data        -	Boolean flag indicating whether an extent is
4677  *			allocated for data (true) or metadata (false)
4678  *
4679  * @delalloc       -	Boolean flag indicating whether this allocation is for
4680  *			delalloc or not. If 'true' data_rwsem of block groups
4681  *			is going to be acquired.
4682  *
4683  *
4684  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4685  * case -ENOSPC is returned then @ins->offset will contain the size of the
4686  * largest available hole the allocator managed to find.
4687  */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4688 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4689 			 u64 num_bytes, u64 min_alloc_size,
4690 			 u64 empty_size, u64 hint_byte,
4691 			 struct btrfs_key *ins, int is_data, int delalloc)
4692 {
4693 	struct btrfs_fs_info *fs_info = root->fs_info;
4694 	struct find_free_extent_ctl ffe_ctl = {};
4695 	bool final_tried = num_bytes == min_alloc_size;
4696 	u64 flags;
4697 	int ret;
4698 	bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4699 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4700 
4701 	flags = get_alloc_profile_by_root(root, is_data);
4702 again:
4703 	WARN_ON(num_bytes < fs_info->sectorsize);
4704 
4705 	ffe_ctl.ram_bytes = ram_bytes;
4706 	ffe_ctl.num_bytes = num_bytes;
4707 	ffe_ctl.min_alloc_size = min_alloc_size;
4708 	ffe_ctl.empty_size = empty_size;
4709 	ffe_ctl.flags = flags;
4710 	ffe_ctl.delalloc = delalloc;
4711 	ffe_ctl.hint_byte = hint_byte;
4712 	ffe_ctl.for_treelog = for_treelog;
4713 	ffe_ctl.for_data_reloc = for_data_reloc;
4714 
4715 	ret = find_free_extent(root, ins, &ffe_ctl);
4716 	if (!ret && !is_data) {
4717 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4718 	} else if (ret == -ENOSPC) {
4719 		if (!final_tried && ins->offset) {
4720 			num_bytes = min(num_bytes >> 1, ins->offset);
4721 			num_bytes = round_down(num_bytes,
4722 					       fs_info->sectorsize);
4723 			num_bytes = max(num_bytes, min_alloc_size);
4724 			ram_bytes = num_bytes;
4725 			if (num_bytes == min_alloc_size)
4726 				final_tried = true;
4727 			goto again;
4728 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4729 			struct btrfs_space_info *sinfo;
4730 
4731 			sinfo = btrfs_find_space_info(fs_info, flags);
4732 			btrfs_err(fs_info,
4733 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4734 				  flags, num_bytes, for_treelog, for_data_reloc);
4735 			if (sinfo)
4736 				btrfs_dump_space_info(fs_info, sinfo,
4737 						      num_bytes, 1);
4738 		}
4739 	}
4740 
4741 	return ret;
4742 }
4743 
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,bool is_delalloc)4744 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len,
4745 			       bool is_delalloc)
4746 {
4747 	struct btrfs_block_group *cache;
4748 
4749 	cache = btrfs_lookup_block_group(fs_info, start);
4750 	if (!cache) {
4751 		btrfs_err(fs_info, "Unable to find block group for %llu",
4752 			  start);
4753 		return -ENOSPC;
4754 	}
4755 
4756 	btrfs_add_free_space(cache, start, len);
4757 	btrfs_free_reserved_bytes(cache, len, is_delalloc);
4758 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4759 
4760 	btrfs_put_block_group(cache);
4761 	return 0;
4762 }
4763 
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)4764 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4765 			      const struct extent_buffer *eb)
4766 {
4767 	struct btrfs_block_group *cache;
4768 	int ret = 0;
4769 
4770 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4771 	if (!cache) {
4772 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4773 			  eb->start);
4774 		return -ENOSPC;
4775 	}
4776 
4777 	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4778 	btrfs_put_block_group(cache);
4779 	return ret;
4780 }
4781 
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4782 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4783 				 u64 num_bytes)
4784 {
4785 	struct btrfs_fs_info *fs_info = trans->fs_info;
4786 	int ret;
4787 
4788 	ret = btrfs_remove_from_free_space_tree(trans, bytenr, num_bytes);
4789 	if (ret)
4790 		return ret;
4791 
4792 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4793 	if (ret) {
4794 		ASSERT(!ret);
4795 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4796 			  bytenr, num_bytes);
4797 		return ret;
4798 	}
4799 
4800 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4801 	return 0;
4802 }
4803 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod,u64 oref_root)4804 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4805 				      u64 parent, u64 root_objectid,
4806 				      u64 flags, u64 owner, u64 offset,
4807 				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4808 {
4809 	struct btrfs_fs_info *fs_info = trans->fs_info;
4810 	struct btrfs_root *extent_root;
4811 	int ret;
4812 	struct btrfs_extent_item *extent_item;
4813 	struct btrfs_extent_owner_ref *oref;
4814 	struct btrfs_extent_inline_ref *iref;
4815 	struct btrfs_path *path;
4816 	struct extent_buffer *leaf;
4817 	int type;
4818 	u32 size;
4819 	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4820 
4821 	if (parent > 0)
4822 		type = BTRFS_SHARED_DATA_REF_KEY;
4823 	else
4824 		type = BTRFS_EXTENT_DATA_REF_KEY;
4825 
4826 	size = sizeof(*extent_item);
4827 	if (simple_quota)
4828 		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4829 	size += btrfs_extent_inline_ref_size(type);
4830 
4831 	path = btrfs_alloc_path();
4832 	if (!path)
4833 		return -ENOMEM;
4834 
4835 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4836 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4837 	if (ret) {
4838 		btrfs_free_path(path);
4839 		return ret;
4840 	}
4841 
4842 	leaf = path->nodes[0];
4843 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4844 				     struct btrfs_extent_item);
4845 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4846 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4847 	btrfs_set_extent_flags(leaf, extent_item,
4848 			       flags | BTRFS_EXTENT_FLAG_DATA);
4849 
4850 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4851 	if (simple_quota) {
4852 		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4853 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4854 		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4855 		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4856 	}
4857 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4858 
4859 	if (parent > 0) {
4860 		struct btrfs_shared_data_ref *ref;
4861 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4862 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4863 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4864 	} else {
4865 		struct btrfs_extent_data_ref *ref;
4866 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4867 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4868 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4869 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4870 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4871 	}
4872 
4873 	btrfs_free_path(path);
4874 
4875 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4876 }
4877 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,const struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4878 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4879 				     const struct btrfs_delayed_ref_node *node,
4880 				     struct btrfs_delayed_extent_op *extent_op)
4881 {
4882 	struct btrfs_fs_info *fs_info = trans->fs_info;
4883 	struct btrfs_root *extent_root;
4884 	int ret;
4885 	struct btrfs_extent_item *extent_item;
4886 	struct btrfs_key extent_key;
4887 	struct btrfs_tree_block_info *block_info;
4888 	struct btrfs_extent_inline_ref *iref;
4889 	struct btrfs_path *path;
4890 	struct extent_buffer *leaf;
4891 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4892 	const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4893 	/* The owner of a tree block is the level. */
4894 	int level = btrfs_delayed_ref_owner(node);
4895 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4896 
4897 	extent_key.objectid = node->bytenr;
4898 	if (skinny_metadata) {
4899 		/* The owner of a tree block is the level. */
4900 		extent_key.offset = level;
4901 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4902 	} else {
4903 		extent_key.offset = node->num_bytes;
4904 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4905 		size += sizeof(*block_info);
4906 	}
4907 
4908 	path = btrfs_alloc_path();
4909 	if (!path)
4910 		return -ENOMEM;
4911 
4912 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4913 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4914 				      size);
4915 	if (ret) {
4916 		btrfs_free_path(path);
4917 		return ret;
4918 	}
4919 
4920 	leaf = path->nodes[0];
4921 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4922 				     struct btrfs_extent_item);
4923 	btrfs_set_extent_refs(leaf, extent_item, 1);
4924 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4925 	btrfs_set_extent_flags(leaf, extent_item,
4926 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4927 
4928 	if (skinny_metadata) {
4929 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4930 	} else {
4931 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4932 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4933 		btrfs_set_tree_block_level(leaf, block_info, level);
4934 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4935 	}
4936 
4937 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4938 		btrfs_set_extent_inline_ref_type(leaf, iref,
4939 						 BTRFS_SHARED_BLOCK_REF_KEY);
4940 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4941 	} else {
4942 		btrfs_set_extent_inline_ref_type(leaf, iref,
4943 						 BTRFS_TREE_BLOCK_REF_KEY);
4944 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4945 	}
4946 
4947 	btrfs_free_path(path);
4948 
4949 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4950 }
4951 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4952 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4953 				     struct btrfs_root *root, u64 owner,
4954 				     u64 offset, u64 ram_bytes,
4955 				     struct btrfs_key *ins)
4956 {
4957 	struct btrfs_ref generic_ref = {
4958 		.action = BTRFS_ADD_DELAYED_EXTENT,
4959 		.bytenr = ins->objectid,
4960 		.num_bytes = ins->offset,
4961 		.owning_root = btrfs_root_id(root),
4962 		.ref_root = btrfs_root_id(root),
4963 	};
4964 
4965 	ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4966 
4967 	if (btrfs_is_data_reloc_root(root) && btrfs_is_fstree(root->relocation_src_root))
4968 		generic_ref.owning_root = root->relocation_src_root;
4969 
4970 	btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4971 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4972 
4973 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4974 }
4975 
4976 /*
4977  * this is used by the tree logging recovery code.  It records that
4978  * an extent has been allocated and makes sure to clear the free
4979  * space cache bits as well
4980  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4981 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4982 				   u64 root_objectid, u64 owner, u64 offset,
4983 				   struct btrfs_key *ins)
4984 {
4985 	struct btrfs_fs_info *fs_info = trans->fs_info;
4986 	int ret;
4987 	struct btrfs_block_group *block_group;
4988 	struct btrfs_space_info *space_info;
4989 	const struct btrfs_squota_delta delta = {
4990 		.root = root_objectid,
4991 		.num_bytes = ins->offset,
4992 		.generation = trans->transid,
4993 		.is_data = true,
4994 		.is_inc = true,
4995 	};
4996 
4997 	/*
4998 	 * Mixed block groups will exclude before processing the log so we only
4999 	 * need to do the exclude dance if this fs isn't mixed.
5000 	 */
5001 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
5002 		ret = __exclude_logged_extent(fs_info, ins->objectid,
5003 					      ins->offset);
5004 		if (ret)
5005 			return ret;
5006 	}
5007 
5008 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
5009 	if (!block_group)
5010 		return -EINVAL;
5011 
5012 	space_info = block_group->space_info;
5013 	spin_lock(&space_info->lock);
5014 	spin_lock(&block_group->lock);
5015 	space_info->bytes_reserved += ins->offset;
5016 	block_group->reserved += ins->offset;
5017 	spin_unlock(&block_group->lock);
5018 	spin_unlock(&space_info->lock);
5019 
5020 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
5021 					 offset, ins, 1, root_objectid);
5022 	if (ret)
5023 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
5024 	ret = btrfs_record_squota_delta(fs_info, &delta);
5025 	btrfs_put_block_group(block_group);
5026 	return ret;
5027 }
5028 
5029 #ifdef CONFIG_BTRFS_DEBUG
5030 /*
5031  * Extra safety check in case the extent tree is corrupted and extent allocator
5032  * chooses to use a tree block which is already used and locked.
5033  */
check_eb_lock_owner(const struct extent_buffer * eb)5034 static bool check_eb_lock_owner(const struct extent_buffer *eb)
5035 {
5036 	if (eb->lock_owner == current->pid) {
5037 		btrfs_err_rl(eb->fs_info,
5038 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5039 			     eb->start, btrfs_header_owner(eb), current->pid);
5040 		return true;
5041 	}
5042 	return false;
5043 }
5044 #else
check_eb_lock_owner(struct extent_buffer * eb)5045 static bool check_eb_lock_owner(struct extent_buffer *eb)
5046 {
5047 	return false;
5048 }
5049 #endif
5050 
5051 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)5052 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5053 		      u64 bytenr, int level, u64 owner,
5054 		      enum btrfs_lock_nesting nest)
5055 {
5056 	struct btrfs_fs_info *fs_info = root->fs_info;
5057 	struct extent_buffer *buf;
5058 	u64 lockdep_owner = owner;
5059 
5060 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5061 	if (IS_ERR(buf))
5062 		return buf;
5063 
5064 	if (check_eb_lock_owner(buf)) {
5065 		free_extent_buffer(buf);
5066 		return ERR_PTR(-EUCLEAN);
5067 	}
5068 
5069 	/*
5070 	 * The reloc trees are just snapshots, so we need them to appear to be
5071 	 * just like any other fs tree WRT lockdep.
5072 	 *
5073 	 * The exception however is in replace_path() in relocation, where we
5074 	 * hold the lock on the original fs root and then search for the reloc
5075 	 * root.  At that point we need to make sure any reloc root buffers are
5076 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5077 	 * lockdep happy.
5078 	 */
5079 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5080 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5081 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5082 
5083 	/* btrfs_clear_buffer_dirty() accesses generation field. */
5084 	btrfs_set_header_generation(buf, trans->transid);
5085 
5086 	/*
5087 	 * This needs to stay, because we could allocate a freed block from an
5088 	 * old tree into a new tree, so we need to make sure this new block is
5089 	 * set to the appropriate level and owner.
5090 	 */
5091 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5092 
5093 	btrfs_tree_lock_nested(buf, nest);
5094 	btrfs_clear_buffer_dirty(trans, buf);
5095 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5096 	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5097 
5098 	set_extent_buffer_uptodate(buf);
5099 
5100 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5101 	btrfs_set_header_level(buf, level);
5102 	btrfs_set_header_bytenr(buf, buf->start);
5103 	btrfs_set_header_generation(buf, trans->transid);
5104 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5105 	btrfs_set_header_owner(buf, owner);
5106 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5107 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5108 	if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5109 		buf->log_index = root->log_transid % 2;
5110 		/*
5111 		 * we allow two log transactions at a time, use different
5112 		 * EXTENT bit to differentiate dirty pages.
5113 		 */
5114 		if (buf->log_index == 0)
5115 			btrfs_set_extent_bit(&root->dirty_log_pages, buf->start,
5116 					     buf->start + buf->len - 1,
5117 					     EXTENT_DIRTY_LOG1, NULL);
5118 		else
5119 			btrfs_set_extent_bit(&root->dirty_log_pages, buf->start,
5120 					     buf->start + buf->len - 1,
5121 					     EXTENT_DIRTY_LOG2, NULL);
5122 	} else {
5123 		buf->log_index = -1;
5124 		btrfs_set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5125 				     buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5126 	}
5127 	/* this returns a buffer locked for blocking */
5128 	return buf;
5129 }
5130 
5131 /*
5132  * finds a free extent and does all the dirty work required for allocation
5133  * returns the tree buffer or an ERR_PTR on error.
5134  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,u64 reloc_src_root,enum btrfs_lock_nesting nest)5135 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5136 					     struct btrfs_root *root,
5137 					     u64 parent, u64 root_objectid,
5138 					     const struct btrfs_disk_key *key,
5139 					     int level, u64 hint,
5140 					     u64 empty_size,
5141 					     u64 reloc_src_root,
5142 					     enum btrfs_lock_nesting nest)
5143 {
5144 	struct btrfs_fs_info *fs_info = root->fs_info;
5145 	struct btrfs_key ins;
5146 	struct btrfs_block_rsv *block_rsv;
5147 	struct extent_buffer *buf;
5148 	u64 flags = 0;
5149 	int ret;
5150 	u32 blocksize = fs_info->nodesize;
5151 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5152 	u64 owning_root;
5153 
5154 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5155 	if (btrfs_is_testing(fs_info)) {
5156 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5157 					    level, root_objectid, nest);
5158 		if (!IS_ERR(buf))
5159 			root->alloc_bytenr += blocksize;
5160 		return buf;
5161 	}
5162 #endif
5163 
5164 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5165 	if (IS_ERR(block_rsv))
5166 		return ERR_CAST(block_rsv);
5167 
5168 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5169 				   empty_size, hint, &ins, 0, 0);
5170 	if (ret)
5171 		goto out_unuse;
5172 
5173 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5174 				    root_objectid, nest);
5175 	if (IS_ERR(buf)) {
5176 		ret = PTR_ERR(buf);
5177 		goto out_free_reserved;
5178 	}
5179 	owning_root = btrfs_header_owner(buf);
5180 
5181 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5182 		if (parent == 0)
5183 			parent = ins.objectid;
5184 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5185 		owning_root = reloc_src_root;
5186 	} else
5187 		BUG_ON(parent > 0);
5188 
5189 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5190 		struct btrfs_delayed_extent_op *extent_op;
5191 		struct btrfs_ref generic_ref = {
5192 			.action = BTRFS_ADD_DELAYED_EXTENT,
5193 			.bytenr = ins.objectid,
5194 			.num_bytes = ins.offset,
5195 			.parent = parent,
5196 			.owning_root = owning_root,
5197 			.ref_root = root_objectid,
5198 		};
5199 
5200 		if (!skinny_metadata || flags != 0) {
5201 			extent_op = btrfs_alloc_delayed_extent_op();
5202 			if (!extent_op) {
5203 				ret = -ENOMEM;
5204 				goto out_free_buf;
5205 			}
5206 			if (key)
5207 				memcpy(&extent_op->key, key, sizeof(extent_op->key));
5208 			else
5209 				memset(&extent_op->key, 0, sizeof(extent_op->key));
5210 			extent_op->flags_to_set = flags;
5211 			extent_op->update_key = (skinny_metadata ? false : true);
5212 			extent_op->update_flags = (flags != 0);
5213 		} else {
5214 			extent_op = NULL;
5215 		}
5216 
5217 		btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5218 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5219 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5220 		if (ret) {
5221 			btrfs_free_delayed_extent_op(extent_op);
5222 			goto out_free_buf;
5223 		}
5224 	}
5225 	return buf;
5226 
5227 out_free_buf:
5228 	btrfs_tree_unlock(buf);
5229 	free_extent_buffer(buf);
5230 out_free_reserved:
5231 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, false);
5232 out_unuse:
5233 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5234 	return ERR_PTR(ret);
5235 }
5236 
5237 struct walk_control {
5238 	u64 refs[BTRFS_MAX_LEVEL];
5239 	u64 flags[BTRFS_MAX_LEVEL];
5240 	struct btrfs_key update_progress;
5241 	struct btrfs_key drop_progress;
5242 	int drop_level;
5243 	int stage;
5244 	int level;
5245 	int shared_level;
5246 	int update_ref;
5247 	int keep_locks;
5248 	int reada_slot;
5249 	int reada_count;
5250 	int restarted;
5251 	/* Indicate that extent info needs to be looked up when walking the tree. */
5252 	int lookup_info;
5253 };
5254 
5255 /*
5256  * This is our normal stage.  We are traversing blocks the current snapshot owns
5257  * and we are dropping any of our references to any children we are able to, and
5258  * then freeing the block once we've processed all of the children.
5259  */
5260 #define DROP_REFERENCE	1
5261 
5262 /*
5263  * We enter this stage when we have to walk into a child block (meaning we can't
5264  * simply drop our reference to it from our current parent node) and there are
5265  * more than one reference on it.  If we are the owner of any of the children
5266  * blocks from the current parent node then we have to do the FULL_BACKREF dance
5267  * on them in order to drop our normal ref and add the shared ref.
5268  */
5269 #define UPDATE_BACKREF	2
5270 
5271 /*
5272  * Decide if we need to walk down into this node to adjust the references.
5273  *
5274  * @root:	the root we are currently deleting
5275  * @wc:		the walk control for this deletion
5276  * @eb:		the parent eb that we're currently visiting
5277  * @refs:	the number of refs for wc->level - 1
5278  * @flags:	the flags for wc->level - 1
5279  * @slot:	the slot in the eb that we're currently checking
5280  *
5281  * This is meant to be called when we're evaluating if a node we point to at
5282  * wc->level should be read and walked into, or if we can simply delete our
5283  * reference to it.  We return true if we should walk into the node, false if we
5284  * can skip it.
5285  *
5286  * We have assertions in here to make sure this is called correctly.  We assume
5287  * that sanity checking on the blocks read to this point has been done, so any
5288  * corrupted file systems must have been caught before calling this function.
5289  */
visit_node_for_delete(struct btrfs_root * root,struct walk_control * wc,struct extent_buffer * eb,u64 flags,int slot)5290 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5291 				  struct extent_buffer *eb, u64 flags, int slot)
5292 {
5293 	struct btrfs_key key;
5294 	u64 generation;
5295 	int level = wc->level;
5296 
5297 	ASSERT(level > 0);
5298 	ASSERT(wc->refs[level - 1] > 0);
5299 
5300 	/*
5301 	 * The update backref stage we only want to skip if we already have
5302 	 * FULL_BACKREF set, otherwise we need to read.
5303 	 */
5304 	if (wc->stage == UPDATE_BACKREF) {
5305 		if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5306 			return false;
5307 		return true;
5308 	}
5309 
5310 	/*
5311 	 * We're the last ref on this block, we must walk into it and process
5312 	 * any refs it's pointing at.
5313 	 */
5314 	if (wc->refs[level - 1] == 1)
5315 		return true;
5316 
5317 	/*
5318 	 * If we're already FULL_BACKREF then we know we can just drop our
5319 	 * current reference.
5320 	 */
5321 	if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5322 		return false;
5323 
5324 	/*
5325 	 * This block is older than our creation generation, we can drop our
5326 	 * reference to it.
5327 	 */
5328 	generation = btrfs_node_ptr_generation(eb, slot);
5329 	if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5330 		return false;
5331 
5332 	/*
5333 	 * This block was processed from a previous snapshot deletion run, we
5334 	 * can skip it.
5335 	 */
5336 	btrfs_node_key_to_cpu(eb, &key, slot);
5337 	if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5338 		return false;
5339 
5340 	/* All other cases we need to wander into the node. */
5341 	return true;
5342 }
5343 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5344 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5345 				     struct btrfs_root *root,
5346 				     struct walk_control *wc,
5347 				     struct btrfs_path *path)
5348 {
5349 	struct btrfs_fs_info *fs_info = root->fs_info;
5350 	u64 bytenr;
5351 	u64 generation;
5352 	u64 refs;
5353 	u64 flags;
5354 	u32 nritems;
5355 	struct extent_buffer *eb;
5356 	int ret;
5357 	int slot;
5358 	int nread = 0;
5359 
5360 	if (path->slots[wc->level] < wc->reada_slot) {
5361 		wc->reada_count = wc->reada_count * 2 / 3;
5362 		wc->reada_count = max(wc->reada_count, 2);
5363 	} else {
5364 		wc->reada_count = wc->reada_count * 3 / 2;
5365 		wc->reada_count = min_t(int, wc->reada_count,
5366 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5367 	}
5368 
5369 	eb = path->nodes[wc->level];
5370 	nritems = btrfs_header_nritems(eb);
5371 
5372 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5373 		if (nread >= wc->reada_count)
5374 			break;
5375 
5376 		cond_resched();
5377 		bytenr = btrfs_node_blockptr(eb, slot);
5378 		generation = btrfs_node_ptr_generation(eb, slot);
5379 
5380 		if (slot == path->slots[wc->level])
5381 			goto reada;
5382 
5383 		if (wc->stage == UPDATE_BACKREF &&
5384 		    generation <= btrfs_root_origin_generation(root))
5385 			continue;
5386 
5387 		/* We don't lock the tree block, it's OK to be racy here */
5388 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5389 					       wc->level - 1, 1, &refs,
5390 					       &flags, NULL);
5391 		/* We don't care about errors in readahead. */
5392 		if (ret < 0)
5393 			continue;
5394 
5395 		/*
5396 		 * This could be racey, it's conceivable that we raced and end
5397 		 * up with a bogus refs count, if that's the case just skip, if
5398 		 * we are actually corrupt we will notice when we look up
5399 		 * everything again with our locks.
5400 		 */
5401 		if (refs == 0)
5402 			continue;
5403 
5404 		/* If we don't need to visit this node don't reada. */
5405 		if (!visit_node_for_delete(root, wc, eb, flags, slot))
5406 			continue;
5407 reada:
5408 		btrfs_readahead_node_child(eb, slot);
5409 		nread++;
5410 	}
5411 	wc->reada_slot = slot;
5412 }
5413 
5414 /*
5415  * helper to process tree block while walking down the tree.
5416  *
5417  * when wc->stage == UPDATE_BACKREF, this function updates
5418  * back refs for pointers in the block.
5419  *
5420  * NOTE: return value 1 means we should stop walking down.
5421  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5422 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5423 				   struct btrfs_root *root,
5424 				   struct btrfs_path *path,
5425 				   struct walk_control *wc)
5426 {
5427 	struct btrfs_fs_info *fs_info = root->fs_info;
5428 	int level = wc->level;
5429 	struct extent_buffer *eb = path->nodes[level];
5430 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5431 	int ret;
5432 
5433 	if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5434 		return 1;
5435 
5436 	/*
5437 	 * when reference count of tree block is 1, it won't increase
5438 	 * again. once full backref flag is set, we never clear it.
5439 	 */
5440 	if (wc->lookup_info &&
5441 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5442 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5443 		ASSERT(path->locks[level]);
5444 		ret = btrfs_lookup_extent_info(trans, fs_info,
5445 					       eb->start, level, 1,
5446 					       &wc->refs[level],
5447 					       &wc->flags[level],
5448 					       NULL);
5449 		if (ret)
5450 			return ret;
5451 		if (unlikely(wc->refs[level] == 0)) {
5452 			btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5453 				  eb->start);
5454 			return -EUCLEAN;
5455 		}
5456 	}
5457 
5458 	if (wc->stage == DROP_REFERENCE) {
5459 		if (wc->refs[level] > 1)
5460 			return 1;
5461 
5462 		if (path->locks[level] && !wc->keep_locks) {
5463 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5464 			path->locks[level] = 0;
5465 		}
5466 		return 0;
5467 	}
5468 
5469 	/* wc->stage == UPDATE_BACKREF */
5470 	if (!(wc->flags[level] & flag)) {
5471 		ASSERT(path->locks[level]);
5472 		ret = btrfs_inc_ref(trans, root, eb, 1);
5473 		if (ret) {
5474 			btrfs_abort_transaction(trans, ret);
5475 			return ret;
5476 		}
5477 		ret = btrfs_dec_ref(trans, root, eb, 0);
5478 		if (ret) {
5479 			btrfs_abort_transaction(trans, ret);
5480 			return ret;
5481 		}
5482 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5483 		if (ret) {
5484 			btrfs_abort_transaction(trans, ret);
5485 			return ret;
5486 		}
5487 		wc->flags[level] |= flag;
5488 	}
5489 
5490 	/*
5491 	 * the block is shared by multiple trees, so it's not good to
5492 	 * keep the tree lock
5493 	 */
5494 	if (path->locks[level] && level > 0) {
5495 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5496 		path->locks[level] = 0;
5497 	}
5498 	return 0;
5499 }
5500 
5501 /*
5502  * This is used to verify a ref exists for this root to deal with a bug where we
5503  * would have a drop_progress key that hadn't been updated properly.
5504  */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5505 static int check_ref_exists(struct btrfs_trans_handle *trans,
5506 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5507 			    int level)
5508 {
5509 	struct btrfs_delayed_ref_root *delayed_refs;
5510 	struct btrfs_delayed_ref_head *head;
5511 	BTRFS_PATH_AUTO_FREE(path);
5512 	struct btrfs_extent_inline_ref *iref;
5513 	int ret;
5514 	bool exists = false;
5515 
5516 	path = btrfs_alloc_path();
5517 	if (!path)
5518 		return -ENOMEM;
5519 again:
5520 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5521 				    root->fs_info->nodesize, parent,
5522 				    btrfs_root_id(root), level, 0);
5523 	if (ret != -ENOENT) {
5524 		/*
5525 		 * If we get 0 then we found our reference, return 1, else
5526 		 * return the error if it's not -ENOENT;
5527 		 */
5528 		return (ret < 0 ) ? ret : 1;
5529 	}
5530 
5531 	/*
5532 	 * We could have a delayed ref with this reference, so look it up while
5533 	 * we're holding the path open to make sure we don't race with the
5534 	 * delayed ref running.
5535 	 */
5536 	delayed_refs = &trans->transaction->delayed_refs;
5537 	spin_lock(&delayed_refs->lock);
5538 	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5539 	if (!head)
5540 		goto out;
5541 	if (!mutex_trylock(&head->mutex)) {
5542 		/*
5543 		 * We're contended, means that the delayed ref is running, get a
5544 		 * reference and wait for the ref head to be complete and then
5545 		 * try again.
5546 		 */
5547 		refcount_inc(&head->refs);
5548 		spin_unlock(&delayed_refs->lock);
5549 
5550 		btrfs_release_path(path);
5551 
5552 		mutex_lock(&head->mutex);
5553 		mutex_unlock(&head->mutex);
5554 		btrfs_put_delayed_ref_head(head);
5555 		goto again;
5556 	}
5557 
5558 	exists = btrfs_find_delayed_tree_ref(head, btrfs_root_id(root), parent);
5559 	mutex_unlock(&head->mutex);
5560 out:
5561 	spin_unlock(&delayed_refs->lock);
5562 	return exists ? 1 : 0;
5563 }
5564 
5565 /*
5566  * We may not have an uptodate block, so if we are going to walk down into this
5567  * block we need to drop the lock, read it off of the disk, re-lock it and
5568  * return to continue dropping the snapshot.
5569  */
check_next_block_uptodate(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next)5570 static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5571 				     struct btrfs_root *root,
5572 				     struct btrfs_path *path,
5573 				     struct walk_control *wc,
5574 				     struct extent_buffer *next)
5575 {
5576 	struct btrfs_tree_parent_check check = { 0 };
5577 	u64 generation;
5578 	int level = wc->level;
5579 	int ret;
5580 
5581 	btrfs_assert_tree_write_locked(next);
5582 
5583 	generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5584 
5585 	if (btrfs_buffer_uptodate(next, generation, 0))
5586 		return 0;
5587 
5588 	check.level = level - 1;
5589 	check.transid = generation;
5590 	check.owner_root = btrfs_root_id(root);
5591 	check.has_first_key = true;
5592 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5593 
5594 	btrfs_tree_unlock(next);
5595 	if (level == 1)
5596 		reada_walk_down(trans, root, wc, path);
5597 	ret = btrfs_read_extent_buffer(next, &check);
5598 	if (ret) {
5599 		free_extent_buffer(next);
5600 		return ret;
5601 	}
5602 	btrfs_tree_lock(next);
5603 	wc->lookup_info = 1;
5604 	return 0;
5605 }
5606 
5607 /*
5608  * If we determine that we don't have to visit wc->level - 1 then we need to
5609  * determine if we can drop our reference.
5610  *
5611  * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5612  *
5613  * If we are DROP_REFERENCE this will figure out if we need to drop our current
5614  * reference, skipping it if we dropped it from a previous incompleted drop, or
5615  * dropping it if we still have a reference to it.
5616  */
maybe_drop_reference(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next,u64 owner_root)5617 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5618 				struct btrfs_path *path, struct walk_control *wc,
5619 				struct extent_buffer *next, u64 owner_root)
5620 {
5621 	struct btrfs_ref ref = {
5622 		.action = BTRFS_DROP_DELAYED_REF,
5623 		.bytenr = next->start,
5624 		.num_bytes = root->fs_info->nodesize,
5625 		.owning_root = owner_root,
5626 		.ref_root = btrfs_root_id(root),
5627 	};
5628 	int level = wc->level;
5629 	int ret;
5630 
5631 	/* We are UPDATE_BACKREF, we're not dropping anything. */
5632 	if (wc->stage == UPDATE_BACKREF)
5633 		return 0;
5634 
5635 	if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5636 		ref.parent = path->nodes[level]->start;
5637 	} else {
5638 		ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5639 		if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5640 			btrfs_err(root->fs_info, "mismatched block owner");
5641 			return -EIO;
5642 		}
5643 	}
5644 
5645 	/*
5646 	 * If we had a drop_progress we need to verify the refs are set as
5647 	 * expected.  If we find our ref then we know that from here on out
5648 	 * everything should be correct, and we can clear the
5649 	 * ->restarted flag.
5650 	 */
5651 	if (wc->restarted) {
5652 		ret = check_ref_exists(trans, root, next->start, ref.parent,
5653 				       level - 1);
5654 		if (ret <= 0)
5655 			return ret;
5656 		ret = 0;
5657 		wc->restarted = 0;
5658 	}
5659 
5660 	/*
5661 	 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5662 	 * accounted them at merge time (replace_path), thus we could skip
5663 	 * expensive subtree trace here.
5664 	 */
5665 	if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5666 	    wc->refs[level - 1] > 1) {
5667 		u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5668 							   path->slots[level]);
5669 
5670 		ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5671 		if (ret) {
5672 			btrfs_err_rl(root->fs_info,
5673 "error %d accounting shared subtree, quota is out of sync, rescan required",
5674 				     ret);
5675 		}
5676 	}
5677 
5678 	/*
5679 	 * We need to update the next key in our walk control so we can update
5680 	 * the drop_progress key accordingly.  We don't care if find_next_key
5681 	 * doesn't find a key because that means we're at the end and are going
5682 	 * to clean up now.
5683 	 */
5684 	wc->drop_level = level;
5685 	find_next_key(path, level, &wc->drop_progress);
5686 
5687 	btrfs_init_tree_ref(&ref, level - 1, 0, false);
5688 	return btrfs_free_extent(trans, &ref);
5689 }
5690 
5691 /*
5692  * helper to process tree block pointer.
5693  *
5694  * when wc->stage == DROP_REFERENCE, this function checks
5695  * reference count of the block pointed to. if the block
5696  * is shared and we need update back refs for the subtree
5697  * rooted at the block, this function changes wc->stage to
5698  * UPDATE_BACKREF. if the block is shared and there is no
5699  * need to update back, this function drops the reference
5700  * to the block.
5701  *
5702  * NOTE: return value 1 means we should stop walking down.
5703  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5704 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5705 				 struct btrfs_root *root,
5706 				 struct btrfs_path *path,
5707 				 struct walk_control *wc)
5708 {
5709 	struct btrfs_fs_info *fs_info = root->fs_info;
5710 	u64 bytenr;
5711 	u64 generation;
5712 	u64 owner_root = 0;
5713 	struct extent_buffer *next;
5714 	int level = wc->level;
5715 	int ret = 0;
5716 
5717 	generation = btrfs_node_ptr_generation(path->nodes[level],
5718 					       path->slots[level]);
5719 	/*
5720 	 * if the lower level block was created before the snapshot
5721 	 * was created, we know there is no need to update back refs
5722 	 * for the subtree
5723 	 */
5724 	if (wc->stage == UPDATE_BACKREF &&
5725 	    generation <= btrfs_root_origin_generation(root)) {
5726 		wc->lookup_info = 1;
5727 		return 1;
5728 	}
5729 
5730 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5731 
5732 	next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5733 					    level - 1);
5734 	if (IS_ERR(next))
5735 		return PTR_ERR(next);
5736 
5737 	btrfs_tree_lock(next);
5738 
5739 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5740 				       &wc->refs[level - 1],
5741 				       &wc->flags[level - 1],
5742 				       &owner_root);
5743 	if (ret < 0)
5744 		goto out_unlock;
5745 
5746 	if (unlikely(wc->refs[level - 1] == 0)) {
5747 		btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5748 			  bytenr);
5749 		ret = -EUCLEAN;
5750 		goto out_unlock;
5751 	}
5752 	wc->lookup_info = 0;
5753 
5754 	/* If we don't have to walk into this node skip it. */
5755 	if (!visit_node_for_delete(root, wc, path->nodes[level],
5756 				   wc->flags[level - 1], path->slots[level]))
5757 		goto skip;
5758 
5759 	/*
5760 	 * We have to walk down into this node, and if we're currently at the
5761 	 * DROP_REFERNCE stage and this block is shared then we need to switch
5762 	 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5763 	 */
5764 	if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5765 		wc->stage = UPDATE_BACKREF;
5766 		wc->shared_level = level - 1;
5767 	}
5768 
5769 	ret = check_next_block_uptodate(trans, root, path, wc, next);
5770 	if (ret)
5771 		return ret;
5772 
5773 	level--;
5774 	ASSERT(level == btrfs_header_level(next));
5775 	if (level != btrfs_header_level(next)) {
5776 		btrfs_err(root->fs_info, "mismatched level");
5777 		ret = -EIO;
5778 		goto out_unlock;
5779 	}
5780 	path->nodes[level] = next;
5781 	path->slots[level] = 0;
5782 	path->locks[level] = BTRFS_WRITE_LOCK;
5783 	wc->level = level;
5784 	if (wc->level == 1)
5785 		wc->reada_slot = 0;
5786 	return 0;
5787 skip:
5788 	ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5789 	if (ret)
5790 		goto out_unlock;
5791 	wc->refs[level - 1] = 0;
5792 	wc->flags[level - 1] = 0;
5793 	wc->lookup_info = 1;
5794 	ret = 1;
5795 
5796 out_unlock:
5797 	btrfs_tree_unlock(next);
5798 	free_extent_buffer(next);
5799 
5800 	return ret;
5801 }
5802 
5803 /*
5804  * helper to process tree block while walking up the tree.
5805  *
5806  * when wc->stage == DROP_REFERENCE, this function drops
5807  * reference count on the block.
5808  *
5809  * when wc->stage == UPDATE_BACKREF, this function changes
5810  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5811  * to UPDATE_BACKREF previously while processing the block.
5812  *
5813  * NOTE: return value 1 means we should stop walking up.
5814  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5815 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5816 				 struct btrfs_root *root,
5817 				 struct btrfs_path *path,
5818 				 struct walk_control *wc)
5819 {
5820 	struct btrfs_fs_info *fs_info = root->fs_info;
5821 	int ret = 0;
5822 	int level = wc->level;
5823 	struct extent_buffer *eb = path->nodes[level];
5824 	u64 parent = 0;
5825 
5826 	if (wc->stage == UPDATE_BACKREF) {
5827 		ASSERT(wc->shared_level >= level);
5828 		if (level < wc->shared_level)
5829 			goto out;
5830 
5831 		ret = find_next_key(path, level + 1, &wc->update_progress);
5832 		if (ret > 0)
5833 			wc->update_ref = 0;
5834 
5835 		wc->stage = DROP_REFERENCE;
5836 		wc->shared_level = -1;
5837 		path->slots[level] = 0;
5838 
5839 		/*
5840 		 * check reference count again if the block isn't locked.
5841 		 * we should start walking down the tree again if reference
5842 		 * count is one.
5843 		 */
5844 		if (!path->locks[level]) {
5845 			ASSERT(level > 0);
5846 			btrfs_tree_lock(eb);
5847 			path->locks[level] = BTRFS_WRITE_LOCK;
5848 
5849 			ret = btrfs_lookup_extent_info(trans, fs_info,
5850 						       eb->start, level, 1,
5851 						       &wc->refs[level],
5852 						       &wc->flags[level],
5853 						       NULL);
5854 			if (ret < 0) {
5855 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5856 				path->locks[level] = 0;
5857 				return ret;
5858 			}
5859 			if (unlikely(wc->refs[level] == 0)) {
5860 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5861 				btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5862 					  eb->start);
5863 				return -EUCLEAN;
5864 			}
5865 			if (wc->refs[level] == 1) {
5866 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5867 				path->locks[level] = 0;
5868 				return 1;
5869 			}
5870 		}
5871 	}
5872 
5873 	/* wc->stage == DROP_REFERENCE */
5874 	ASSERT(path->locks[level] || wc->refs[level] == 1);
5875 
5876 	if (wc->refs[level] == 1) {
5877 		if (level == 0) {
5878 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5879 				ret = btrfs_dec_ref(trans, root, eb, 1);
5880 				if (ret) {
5881 					btrfs_abort_transaction(trans, ret);
5882 					return ret;
5883 				}
5884 			} else {
5885 				ret = btrfs_dec_ref(trans, root, eb, 0);
5886 				if (ret) {
5887 					btrfs_abort_transaction(trans, ret);
5888 					return ret;
5889 				}
5890 			}
5891 			if (btrfs_is_fstree(btrfs_root_id(root))) {
5892 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5893 				if (ret) {
5894 					btrfs_err_rl(fs_info,
5895 	"error %d accounting leaf items, quota is out of sync, rescan required",
5896 					     ret);
5897 				}
5898 			}
5899 		}
5900 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5901 		if (!path->locks[level]) {
5902 			btrfs_tree_lock(eb);
5903 			path->locks[level] = BTRFS_WRITE_LOCK;
5904 		}
5905 		btrfs_clear_buffer_dirty(trans, eb);
5906 	}
5907 
5908 	if (eb == root->node) {
5909 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5910 			parent = eb->start;
5911 		else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5912 			goto owner_mismatch;
5913 	} else {
5914 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5915 			parent = path->nodes[level + 1]->start;
5916 		else if (btrfs_root_id(root) !=
5917 			 btrfs_header_owner(path->nodes[level + 1]))
5918 			goto owner_mismatch;
5919 	}
5920 
5921 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5922 				    wc->refs[level] == 1);
5923 	if (ret < 0)
5924 		btrfs_abort_transaction(trans, ret);
5925 out:
5926 	wc->refs[level] = 0;
5927 	wc->flags[level] = 0;
5928 	return ret;
5929 
5930 owner_mismatch:
5931 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5932 		     btrfs_header_owner(eb), btrfs_root_id(root));
5933 	return -EUCLEAN;
5934 }
5935 
5936 /*
5937  * walk_down_tree consists of two steps.
5938  *
5939  * walk_down_proc().  Look up the reference count and reference of our current
5940  * wc->level.  At this point path->nodes[wc->level] should be populated and
5941  * uptodate, and in most cases should already be locked.  If we are in
5942  * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5943  * we can walk back up the tree.  If we are UPDATE_BACKREF we have to set
5944  * FULL_BACKREF on this node if it's not already set, and then do the
5945  * FULL_BACKREF conversion dance, which is to drop the root reference and add
5946  * the shared reference to all of this nodes children.
5947  *
5948  * do_walk_down().  This is where we actually start iterating on the children of
5949  * our current path->nodes[wc->level].  For DROP_REFERENCE that means dropping
5950  * our reference to the children that return false from visit_node_for_delete(),
5951  * which has various conditions where we know we can just drop our reference
5952  * without visiting the node.  For UPDATE_BACKREF we will skip any children that
5953  * visit_node_for_delete() returns false for, only walking down when necessary.
5954  * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5955  * snapshot deletion.
5956  */
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5957 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5958 				   struct btrfs_root *root,
5959 				   struct btrfs_path *path,
5960 				   struct walk_control *wc)
5961 {
5962 	int level = wc->level;
5963 	int ret = 0;
5964 
5965 	wc->lookup_info = 1;
5966 	while (level >= 0) {
5967 		ret = walk_down_proc(trans, root, path, wc);
5968 		if (ret)
5969 			break;
5970 
5971 		if (level == 0)
5972 			break;
5973 
5974 		if (path->slots[level] >=
5975 		    btrfs_header_nritems(path->nodes[level]))
5976 			break;
5977 
5978 		ret = do_walk_down(trans, root, path, wc);
5979 		if (ret > 0) {
5980 			path->slots[level]++;
5981 			continue;
5982 		} else if (ret < 0)
5983 			break;
5984 		level = wc->level;
5985 	}
5986 	return (ret == 1) ? 0 : ret;
5987 }
5988 
5989 /*
5990  * walk_up_tree() is responsible for making sure we visit every slot on our
5991  * current node, and if we're at the end of that node then we call
5992  * walk_up_proc() on our current node which will do one of a few things based on
5993  * our stage.
5994  *
5995  * UPDATE_BACKREF.  If we wc->level is currently less than our wc->shared_level
5996  * then we need to walk back up the tree, and then going back down into the
5997  * other slots via walk_down_tree to update any other children from our original
5998  * wc->shared_level.  Once we're at or above our wc->shared_level we can switch
5999  * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
6000  *
6001  * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
6002  * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
6003  * in our current leaf.  After that we call btrfs_free_tree_block() on the
6004  * current node and walk up to the next node to walk down the next slot.
6005  */
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)6006 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6007 				 struct btrfs_root *root,
6008 				 struct btrfs_path *path,
6009 				 struct walk_control *wc, int max_level)
6010 {
6011 	int level = wc->level;
6012 	int ret;
6013 
6014 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6015 	while (level < max_level && path->nodes[level]) {
6016 		wc->level = level;
6017 		if (path->slots[level] + 1 <
6018 		    btrfs_header_nritems(path->nodes[level])) {
6019 			path->slots[level]++;
6020 			return 0;
6021 		} else {
6022 			ret = walk_up_proc(trans, root, path, wc);
6023 			if (ret > 0)
6024 				return 0;
6025 			if (ret < 0)
6026 				return ret;
6027 
6028 			if (path->locks[level]) {
6029 				btrfs_tree_unlock_rw(path->nodes[level],
6030 						     path->locks[level]);
6031 				path->locks[level] = 0;
6032 			}
6033 			free_extent_buffer(path->nodes[level]);
6034 			path->nodes[level] = NULL;
6035 			level++;
6036 		}
6037 	}
6038 	return 1;
6039 }
6040 
6041 /*
6042  * drop a subvolume tree.
6043  *
6044  * this function traverses the tree freeing any blocks that only
6045  * referenced by the tree.
6046  *
6047  * when a shared tree block is found. this function decreases its
6048  * reference count by one. if update_ref is true, this function
6049  * also make sure backrefs for the shared block and all lower level
6050  * blocks are properly updated.
6051  *
6052  * If called with for_reloc == 0, may exit early with -EAGAIN
6053  */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)6054 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6055 {
6056 	const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6057 	struct btrfs_fs_info *fs_info = root->fs_info;
6058 	struct btrfs_path *path;
6059 	struct btrfs_trans_handle *trans;
6060 	struct btrfs_root *tree_root = fs_info->tree_root;
6061 	struct btrfs_root_item *root_item = &root->root_item;
6062 	struct walk_control *wc;
6063 	struct btrfs_key key;
6064 	const u64 rootid = btrfs_root_id(root);
6065 	int ret = 0;
6066 	int level;
6067 	bool root_dropped = false;
6068 	bool unfinished_drop = false;
6069 
6070 	btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6071 
6072 	path = btrfs_alloc_path();
6073 	if (!path) {
6074 		ret = -ENOMEM;
6075 		goto out;
6076 	}
6077 
6078 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6079 	if (!wc) {
6080 		btrfs_free_path(path);
6081 		ret = -ENOMEM;
6082 		goto out;
6083 	}
6084 
6085 	/*
6086 	 * Use join to avoid potential EINTR from transaction start. See
6087 	 * wait_reserve_ticket and the whole reservation callchain.
6088 	 */
6089 	if (for_reloc)
6090 		trans = btrfs_join_transaction(tree_root);
6091 	else
6092 		trans = btrfs_start_transaction(tree_root, 0);
6093 	if (IS_ERR(trans)) {
6094 		ret = PTR_ERR(trans);
6095 		goto out_free;
6096 	}
6097 
6098 	ret = btrfs_run_delayed_items(trans);
6099 	if (ret)
6100 		goto out_end_trans;
6101 
6102 	/*
6103 	 * This will help us catch people modifying the fs tree while we're
6104 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
6105 	 * dropped as we unlock the root node and parent nodes as we walk down
6106 	 * the tree, assuming nothing will change.  If something does change
6107 	 * then we'll have stale information and drop references to blocks we've
6108 	 * already dropped.
6109 	 */
6110 	set_bit(BTRFS_ROOT_DELETING, &root->state);
6111 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6112 
6113 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6114 		level = btrfs_header_level(root->node);
6115 		path->nodes[level] = btrfs_lock_root_node(root);
6116 		path->slots[level] = 0;
6117 		path->locks[level] = BTRFS_WRITE_LOCK;
6118 		memset(&wc->update_progress, 0,
6119 		       sizeof(wc->update_progress));
6120 	} else {
6121 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6122 		memcpy(&wc->update_progress, &key,
6123 		       sizeof(wc->update_progress));
6124 
6125 		level = btrfs_root_drop_level(root_item);
6126 		BUG_ON(level == 0);
6127 		path->lowest_level = level;
6128 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6129 		path->lowest_level = 0;
6130 		if (ret < 0)
6131 			goto out_end_trans;
6132 
6133 		WARN_ON(ret > 0);
6134 		ret = 0;
6135 
6136 		/*
6137 		 * unlock our path, this is safe because only this
6138 		 * function is allowed to delete this snapshot
6139 		 */
6140 		btrfs_unlock_up_safe(path, 0);
6141 
6142 		level = btrfs_header_level(root->node);
6143 		while (1) {
6144 			btrfs_tree_lock(path->nodes[level]);
6145 			path->locks[level] = BTRFS_WRITE_LOCK;
6146 
6147 			/*
6148 			 * btrfs_lookup_extent_info() returns 0 for success,
6149 			 * or < 0 for error.
6150 			 */
6151 			ret = btrfs_lookup_extent_info(trans, fs_info,
6152 						path->nodes[level]->start,
6153 						level, 1, &wc->refs[level],
6154 						&wc->flags[level], NULL);
6155 			if (ret < 0)
6156 				goto out_end_trans;
6157 
6158 			BUG_ON(wc->refs[level] == 0);
6159 
6160 			if (level == btrfs_root_drop_level(root_item))
6161 				break;
6162 
6163 			btrfs_tree_unlock(path->nodes[level]);
6164 			path->locks[level] = 0;
6165 			WARN_ON(wc->refs[level] != 1);
6166 			level--;
6167 		}
6168 	}
6169 
6170 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6171 	wc->level = level;
6172 	wc->shared_level = -1;
6173 	wc->stage = DROP_REFERENCE;
6174 	wc->update_ref = update_ref;
6175 	wc->keep_locks = 0;
6176 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6177 
6178 	while (1) {
6179 
6180 		ret = walk_down_tree(trans, root, path, wc);
6181 		if (ret < 0) {
6182 			btrfs_abort_transaction(trans, ret);
6183 			break;
6184 		}
6185 
6186 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6187 		if (ret < 0) {
6188 			btrfs_abort_transaction(trans, ret);
6189 			break;
6190 		}
6191 
6192 		if (ret > 0) {
6193 			BUG_ON(wc->stage != DROP_REFERENCE);
6194 			ret = 0;
6195 			break;
6196 		}
6197 
6198 		if (wc->stage == DROP_REFERENCE) {
6199 			wc->drop_level = wc->level;
6200 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6201 					      &wc->drop_progress,
6202 					      path->slots[wc->drop_level]);
6203 		}
6204 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
6205 				      &wc->drop_progress);
6206 		btrfs_set_root_drop_level(root_item, wc->drop_level);
6207 
6208 		BUG_ON(wc->level == 0);
6209 		if (btrfs_should_end_transaction(trans) ||
6210 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6211 			ret = btrfs_update_root(trans, tree_root,
6212 						&root->root_key,
6213 						root_item);
6214 			if (ret) {
6215 				btrfs_abort_transaction(trans, ret);
6216 				goto out_end_trans;
6217 			}
6218 
6219 			if (!is_reloc_root)
6220 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6221 
6222 			btrfs_end_transaction_throttle(trans);
6223 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6224 				btrfs_debug(fs_info,
6225 					    "drop snapshot early exit");
6226 				ret = -EAGAIN;
6227 				goto out_free;
6228 			}
6229 
6230 		       /*
6231 			* Use join to avoid potential EINTR from transaction
6232 			* start. See wait_reserve_ticket and the whole
6233 			* reservation callchain.
6234 			*/
6235 			if (for_reloc)
6236 				trans = btrfs_join_transaction(tree_root);
6237 			else
6238 				trans = btrfs_start_transaction(tree_root, 0);
6239 			if (IS_ERR(trans)) {
6240 				ret = PTR_ERR(trans);
6241 				goto out_free;
6242 			}
6243 		}
6244 	}
6245 	btrfs_release_path(path);
6246 	if (ret)
6247 		goto out_end_trans;
6248 
6249 	ret = btrfs_del_root(trans, &root->root_key);
6250 	if (ret) {
6251 		btrfs_abort_transaction(trans, ret);
6252 		goto out_end_trans;
6253 	}
6254 
6255 	if (!is_reloc_root) {
6256 		ret = btrfs_find_root(tree_root, &root->root_key, path,
6257 				      NULL, NULL);
6258 		if (ret < 0) {
6259 			btrfs_abort_transaction(trans, ret);
6260 			goto out_end_trans;
6261 		} else if (ret > 0) {
6262 			ret = 0;
6263 			/*
6264 			 * If we fail to delete the orphan item this time
6265 			 * around, it'll get picked up the next time.
6266 			 *
6267 			 * The most common failure here is just -ENOENT.
6268 			 */
6269 			btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6270 		}
6271 	}
6272 
6273 	/*
6274 	 * This subvolume is going to be completely dropped, and won't be
6275 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6276 	 * commit transaction time.  So free it here manually.
6277 	 */
6278 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6279 	btrfs_qgroup_free_meta_all_pertrans(root);
6280 
6281 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6282 		btrfs_add_dropped_root(trans, root);
6283 	else
6284 		btrfs_put_root(root);
6285 	root_dropped = true;
6286 out_end_trans:
6287 	if (!is_reloc_root)
6288 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6289 
6290 	btrfs_end_transaction_throttle(trans);
6291 out_free:
6292 	kfree(wc);
6293 	btrfs_free_path(path);
6294 out:
6295 	if (!ret && root_dropped) {
6296 		ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6297 		if (ret < 0)
6298 			btrfs_warn_rl(fs_info,
6299 				      "failed to cleanup qgroup 0/%llu: %d",
6300 				      rootid, ret);
6301 		ret = 0;
6302 	}
6303 	/*
6304 	 * We were an unfinished drop root, check to see if there are any
6305 	 * pending, and if not clear and wake up any waiters.
6306 	 */
6307 	if (!ret && unfinished_drop)
6308 		btrfs_maybe_wake_unfinished_drop(fs_info);
6309 
6310 	/*
6311 	 * So if we need to stop dropping the snapshot for whatever reason we
6312 	 * need to make sure to add it back to the dead root list so that we
6313 	 * keep trying to do the work later.  This also cleans up roots if we
6314 	 * don't have it in the radix (like when we recover after a power fail
6315 	 * or unmount) so we don't leak memory.
6316 	 */
6317 	if (!for_reloc && !root_dropped)
6318 		btrfs_add_dead_root(root);
6319 	return ret;
6320 }
6321 
6322 /*
6323  * drop subtree rooted at tree block 'node'.
6324  *
6325  * NOTE: this function will unlock and release tree block 'node'
6326  * only used by relocation code
6327  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)6328 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6329 			struct btrfs_root *root,
6330 			struct extent_buffer *node,
6331 			struct extent_buffer *parent)
6332 {
6333 	struct btrfs_fs_info *fs_info = root->fs_info;
6334 	BTRFS_PATH_AUTO_FREE(path);
6335 	struct walk_control *wc;
6336 	int level;
6337 	int parent_level;
6338 	int ret = 0;
6339 
6340 	BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6341 
6342 	path = btrfs_alloc_path();
6343 	if (!path)
6344 		return -ENOMEM;
6345 
6346 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6347 	if (!wc)
6348 		return -ENOMEM;
6349 
6350 	btrfs_assert_tree_write_locked(parent);
6351 	parent_level = btrfs_header_level(parent);
6352 	refcount_inc(&parent->refs);
6353 	path->nodes[parent_level] = parent;
6354 	path->slots[parent_level] = btrfs_header_nritems(parent);
6355 
6356 	btrfs_assert_tree_write_locked(node);
6357 	level = btrfs_header_level(node);
6358 	path->nodes[level] = node;
6359 	path->slots[level] = 0;
6360 	path->locks[level] = BTRFS_WRITE_LOCK;
6361 
6362 	wc->refs[parent_level] = 1;
6363 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6364 	wc->level = level;
6365 	wc->shared_level = -1;
6366 	wc->stage = DROP_REFERENCE;
6367 	wc->update_ref = 0;
6368 	wc->keep_locks = 1;
6369 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6370 
6371 	while (1) {
6372 		ret = walk_down_tree(trans, root, path, wc);
6373 		if (ret < 0)
6374 			break;
6375 
6376 		ret = walk_up_tree(trans, root, path, wc, parent_level);
6377 		if (ret) {
6378 			if (ret > 0)
6379 				ret = 0;
6380 			break;
6381 		}
6382 	}
6383 
6384 	kfree(wc);
6385 	return ret;
6386 }
6387 
6388 /*
6389  * Unpin the extent range in an error context and don't add the space back.
6390  * Errors are not propagated further.
6391  */
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6392 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6393 {
6394 	unpin_extent_range(fs_info, start, end, false);
6395 }
6396 
6397 /*
6398  * It used to be that old block groups would be left around forever.
6399  * Iterating over them would be enough to trim unused space.  Since we
6400  * now automatically remove them, we also need to iterate over unallocated
6401  * space.
6402  *
6403  * We don't want a transaction for this since the discard may take a
6404  * substantial amount of time.  We don't require that a transaction be
6405  * running, but we do need to take a running transaction into account
6406  * to ensure that we're not discarding chunks that were released or
6407  * allocated in the current transaction.
6408  *
6409  * Holding the chunks lock will prevent other threads from allocating
6410  * or releasing chunks, but it won't prevent a running transaction
6411  * from committing and releasing the memory that the pending chunks
6412  * list head uses.  For that, we need to take a reference to the
6413  * transaction and hold the commit root sem.  We only need to hold
6414  * it while performing the free space search since we have already
6415  * held back allocations.
6416  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6417 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6418 {
6419 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6420 	int ret;
6421 
6422 	*trimmed = 0;
6423 
6424 	/* Discard not supported = nothing to do. */
6425 	if (!bdev_max_discard_sectors(device->bdev))
6426 		return 0;
6427 
6428 	/* Not writable = nothing to do. */
6429 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6430 		return 0;
6431 
6432 	/* No free space = nothing to do. */
6433 	if (device->total_bytes <= device->bytes_used)
6434 		return 0;
6435 
6436 	ret = 0;
6437 
6438 	while (1) {
6439 		struct btrfs_fs_info *fs_info = device->fs_info;
6440 		u64 bytes;
6441 
6442 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6443 		if (ret)
6444 			break;
6445 
6446 		btrfs_find_first_clear_extent_bit(&device->alloc_state, start,
6447 						  &start, &end,
6448 						  CHUNK_TRIMMED | CHUNK_ALLOCATED);
6449 
6450 		/* Check if there are any CHUNK_* bits left */
6451 		if (start > device->total_bytes) {
6452 			DEBUG_WARN();
6453 			btrfs_warn(fs_info,
6454 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6455 					  start, end - start + 1,
6456 					  btrfs_dev_name(device),
6457 					  device->total_bytes);
6458 			mutex_unlock(&fs_info->chunk_mutex);
6459 			ret = 0;
6460 			break;
6461 		}
6462 
6463 		/* Ensure we skip the reserved space on each device. */
6464 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6465 
6466 		/*
6467 		 * If find_first_clear_extent_bit find a range that spans the
6468 		 * end of the device it will set end to -1, in this case it's up
6469 		 * to the caller to trim the value to the size of the device.
6470 		 */
6471 		end = min(end, device->total_bytes - 1);
6472 
6473 		len = end - start + 1;
6474 
6475 		/* We didn't find any extents */
6476 		if (!len) {
6477 			mutex_unlock(&fs_info->chunk_mutex);
6478 			ret = 0;
6479 			break;
6480 		}
6481 
6482 		ret = btrfs_issue_discard(device->bdev, start, len,
6483 					  &bytes);
6484 		if (!ret)
6485 			btrfs_set_extent_bit(&device->alloc_state, start,
6486 					     start + bytes - 1, CHUNK_TRIMMED, NULL);
6487 		mutex_unlock(&fs_info->chunk_mutex);
6488 
6489 		if (ret)
6490 			break;
6491 
6492 		start += len;
6493 		*trimmed += bytes;
6494 
6495 		if (btrfs_trim_interrupted()) {
6496 			ret = -ERESTARTSYS;
6497 			break;
6498 		}
6499 
6500 		cond_resched();
6501 	}
6502 
6503 	return ret;
6504 }
6505 
6506 /*
6507  * Trim the whole filesystem by:
6508  * 1) trimming the free space in each block group
6509  * 2) trimming the unallocated space on each device
6510  *
6511  * This will also continue trimming even if a block group or device encounters
6512  * an error.  The return value will be the last error, or 0 if nothing bad
6513  * happens.
6514  */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6515 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6516 {
6517 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6518 	struct btrfs_block_group *cache = NULL;
6519 	struct btrfs_device *device;
6520 	u64 group_trimmed;
6521 	u64 range_end = U64_MAX;
6522 	u64 start;
6523 	u64 end;
6524 	u64 trimmed = 0;
6525 	u64 bg_failed = 0;
6526 	u64 dev_failed = 0;
6527 	int bg_ret = 0;
6528 	int dev_ret = 0;
6529 	int ret = 0;
6530 
6531 	if (range->start == U64_MAX)
6532 		return -EINVAL;
6533 
6534 	/*
6535 	 * Check range overflow if range->len is set.
6536 	 * The default range->len is U64_MAX.
6537 	 */
6538 	if (range->len != U64_MAX &&
6539 	    check_add_overflow(range->start, range->len, &range_end))
6540 		return -EINVAL;
6541 
6542 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6543 	for (; cache; cache = btrfs_next_block_group(cache)) {
6544 		if (cache->start >= range_end) {
6545 			btrfs_put_block_group(cache);
6546 			break;
6547 		}
6548 
6549 		start = max(range->start, cache->start);
6550 		end = min(range_end, cache->start + cache->length);
6551 
6552 		if (end - start >= range->minlen) {
6553 			if (!btrfs_block_group_done(cache)) {
6554 				ret = btrfs_cache_block_group(cache, true);
6555 				if (ret) {
6556 					bg_failed++;
6557 					bg_ret = ret;
6558 					continue;
6559 				}
6560 			}
6561 			ret = btrfs_trim_block_group(cache,
6562 						     &group_trimmed,
6563 						     start,
6564 						     end,
6565 						     range->minlen);
6566 
6567 			trimmed += group_trimmed;
6568 			if (ret) {
6569 				bg_failed++;
6570 				bg_ret = ret;
6571 				continue;
6572 			}
6573 		}
6574 	}
6575 
6576 	if (bg_failed)
6577 		btrfs_warn(fs_info,
6578 			"failed to trim %llu block group(s), last error %d",
6579 			bg_failed, bg_ret);
6580 
6581 	mutex_lock(&fs_devices->device_list_mutex);
6582 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6583 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6584 			continue;
6585 
6586 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6587 
6588 		trimmed += group_trimmed;
6589 		if (ret) {
6590 			dev_failed++;
6591 			dev_ret = ret;
6592 			break;
6593 		}
6594 	}
6595 	mutex_unlock(&fs_devices->device_list_mutex);
6596 
6597 	if (dev_failed)
6598 		btrfs_warn(fs_info,
6599 			"failed to trim %llu device(s), last error %d",
6600 			dev_failed, dev_ret);
6601 	range->len = trimmed;
6602 	if (bg_ret)
6603 		return bg_ret;
6604 	return dev_ret;
6605 }
6606