1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <deque>
108 #include <iterator>
109 #include <limits>
110 #include <optional>
111 #include <tuple>
112
113 using namespace llvm;
114 using namespace PatternMatch;
115 using namespace SwitchCG;
116
117 #define DEBUG_TYPE "isel"
118
119 /// LimitFloatPrecision - Generate low-precision inline sequences for
120 /// some float libcalls (6, 8 or 12 bits).
121 static unsigned LimitFloatPrecision;
122
123 static cl::opt<bool>
124 InsertAssertAlign("insert-assert-align", cl::init(true),
125 cl::desc("Insert the experimental `assertalign` node."),
126 cl::ReallyHidden);
127
128 static cl::opt<unsigned, true>
129 LimitFPPrecision("limit-float-precision",
130 cl::desc("Generate low-precision inline sequences "
131 "for some float libcalls"),
132 cl::location(LimitFloatPrecision), cl::Hidden,
133 cl::init(0));
134
135 static cl::opt<unsigned> SwitchPeelThreshold(
136 "switch-peel-threshold", cl::Hidden, cl::init(66),
137 cl::desc("Set the case probability threshold for peeling the case from a "
138 "switch statement. A value greater than 100 will void this "
139 "optimization"));
140
141 // Limit the width of DAG chains. This is important in general to prevent
142 // DAG-based analysis from blowing up. For example, alias analysis and
143 // load clustering may not complete in reasonable time. It is difficult to
144 // recognize and avoid this situation within each individual analysis, and
145 // future analyses are likely to have the same behavior. Limiting DAG width is
146 // the safe approach and will be especially important with global DAGs.
147 //
148 // MaxParallelChains default is arbitrarily high to avoid affecting
149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
150 // sequence over this should have been converted to llvm.memcpy by the
151 // frontend. It is easy to induce this behavior with .ll code such as:
152 // %buffer = alloca [4096 x i8]
153 // %data = load [4096 x i8]* %argPtr
154 // store [4096 x i8] %data, [4096 x i8]* %buffer
155 static const unsigned MaxParallelChains = 64;
156
157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
158 const SDValue *Parts, unsigned NumParts,
159 MVT PartVT, EVT ValueVT, const Value *V,
160 SDValue InChain,
161 std::optional<CallingConv::ID> CC);
162
163 /// getCopyFromParts - Create a value that contains the specified legal parts
164 /// combined into the value they represent. If the parts combine to a type
165 /// larger than ValueVT then AssertOp can be used to specify whether the extra
166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
167 /// (ISD::AssertSext).
168 static SDValue
getCopyFromParts(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,SDValue InChain,std::optional<CallingConv::ID> CC=std::nullopt,std::optional<ISD::NodeType> AssertOp=std::nullopt)169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
170 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
171 SDValue InChain,
172 std::optional<CallingConv::ID> CC = std::nullopt,
173 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
174 // Let the target assemble the parts if it wants to
175 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
176 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
177 PartVT, ValueVT, CC))
178 return Val;
179
180 if (ValueVT.isVector())
181 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
182 InChain, CC);
183
184 assert(NumParts > 0 && "No parts to assemble!");
185 SDValue Val = Parts[0];
186
187 if (NumParts > 1) {
188 // Assemble the value from multiple parts.
189 if (ValueVT.isInteger()) {
190 unsigned PartBits = PartVT.getSizeInBits();
191 unsigned ValueBits = ValueVT.getSizeInBits();
192
193 // Assemble the power of 2 part.
194 unsigned RoundParts = llvm::bit_floor(NumParts);
195 unsigned RoundBits = PartBits * RoundParts;
196 EVT RoundVT = RoundBits == ValueBits ?
197 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
198 SDValue Lo, Hi;
199
200 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
201
202 if (RoundParts > 2) {
203 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
204 InChain);
205 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
206 PartVT, HalfVT, V, InChain);
207 } else {
208 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
209 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
210 }
211
212 if (DAG.getDataLayout().isBigEndian())
213 std::swap(Lo, Hi);
214
215 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
216
217 if (RoundParts < NumParts) {
218 // Assemble the trailing non-power-of-2 part.
219 unsigned OddParts = NumParts - RoundParts;
220 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
221 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
222 OddVT, V, InChain, CC);
223
224 // Combine the round and odd parts.
225 Lo = Val;
226 if (DAG.getDataLayout().isBigEndian())
227 std::swap(Lo, Hi);
228 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
229 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
230 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
231 DAG.getConstant(Lo.getValueSizeInBits(), DL,
232 TLI.getShiftAmountTy(
233 TotalVT, DAG.getDataLayout())));
234 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
235 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
236 }
237 } else if (PartVT.isFloatingPoint()) {
238 // FP split into multiple FP parts (for ppcf128)
239 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
240 "Unexpected split");
241 SDValue Lo, Hi;
242 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
243 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
244 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
245 std::swap(Lo, Hi);
246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
247 } else {
248 // FP split into integer parts (soft fp)
249 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
250 !PartVT.isVector() && "Unexpected split");
251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
252 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
253 InChain, CC);
254 }
255 }
256
257 // There is now one part, held in Val. Correct it to match ValueVT.
258 // PartEVT is the type of the register class that holds the value.
259 // ValueVT is the type of the inline asm operation.
260 EVT PartEVT = Val.getValueType();
261
262 if (PartEVT == ValueVT)
263 return Val;
264
265 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
266 ValueVT.bitsLT(PartEVT)) {
267 // For an FP value in an integer part, we need to truncate to the right
268 // width first.
269 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
270 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
271 }
272
273 // Handle types that have the same size.
274 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
275 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
276
277 // Handle types with different sizes.
278 if (PartEVT.isInteger() && ValueVT.isInteger()) {
279 if (ValueVT.bitsLT(PartEVT)) {
280 // For a truncate, see if we have any information to
281 // indicate whether the truncated bits will always be
282 // zero or sign-extension.
283 if (AssertOp)
284 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
285 DAG.getValueType(ValueVT));
286 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
287 }
288 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
289 }
290
291 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
292 // FP_ROUND's are always exact here.
293 if (ValueVT.bitsLT(Val.getValueType())) {
294
295 SDValue NoChange =
296 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
297
298 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
299 llvm::Attribute::StrictFP)) {
300 return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
301 DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
302 NoChange);
303 }
304
305 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
306 }
307
308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
309 }
310
311 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
312 // then truncating.
313 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
314 ValueVT.bitsLT(PartEVT)) {
315 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317 }
318
319 report_fatal_error("Unknown mismatch in getCopyFromParts!");
320 }
321
diagnosePossiblyInvalidConstraint(LLVMContext & Ctx,const Value * V,const Twine & ErrMsg)322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
323 const Twine &ErrMsg) {
324 const Instruction *I = dyn_cast_or_null<Instruction>(V);
325 if (!V)
326 return Ctx.emitError(ErrMsg);
327
328 const char *AsmError = ", possible invalid constraint for vector type";
329 if (const CallInst *CI = dyn_cast<CallInst>(I))
330 if (CI->isInlineAsm())
331 return Ctx.emitError(I, ErrMsg + AsmError);
332
333 return Ctx.emitError(I, ErrMsg);
334 }
335
336 /// getCopyFromPartsVector - Create a value that contains the specified legal
337 /// parts combined into the value they represent. If the parts combine to a
338 /// type larger than ValueVT then AssertOp can be used to specify whether the
339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
340 /// ValueVT (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,SDValue InChain,std::optional<CallingConv::ID> CallConv)341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
342 const SDValue *Parts, unsigned NumParts,
343 MVT PartVT, EVT ValueVT, const Value *V,
344 SDValue InChain,
345 std::optional<CallingConv::ID> CallConv) {
346 assert(ValueVT.isVector() && "Not a vector value");
347 assert(NumParts > 0 && "No parts to assemble!");
348 const bool IsABIRegCopy = CallConv.has_value();
349
350 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
351 SDValue Val = Parts[0];
352
353 // Handle a multi-element vector.
354 if (NumParts > 1) {
355 EVT IntermediateVT;
356 MVT RegisterVT;
357 unsigned NumIntermediates;
358 unsigned NumRegs;
359
360 if (IsABIRegCopy) {
361 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
362 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
363 NumIntermediates, RegisterVT);
364 } else {
365 NumRegs =
366 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
367 NumIntermediates, RegisterVT);
368 }
369
370 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
371 NumParts = NumRegs; // Silence a compiler warning.
372 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
373 assert(RegisterVT.getSizeInBits() ==
374 Parts[0].getSimpleValueType().getSizeInBits() &&
375 "Part type sizes don't match!");
376
377 // Assemble the parts into intermediate operands.
378 SmallVector<SDValue, 8> Ops(NumIntermediates);
379 if (NumIntermediates == NumParts) {
380 // If the register was not expanded, truncate or copy the value,
381 // as appropriate.
382 for (unsigned i = 0; i != NumParts; ++i)
383 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
384 V, InChain, CallConv);
385 } else if (NumParts > 0) {
386 // If the intermediate type was expanded, build the intermediate
387 // operands from the parts.
388 assert(NumParts % NumIntermediates == 0 &&
389 "Must expand into a divisible number of parts!");
390 unsigned Factor = NumParts / NumIntermediates;
391 for (unsigned i = 0; i != NumIntermediates; ++i)
392 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
393 IntermediateVT, V, InChain, CallConv);
394 }
395
396 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
397 // intermediate operands.
398 EVT BuiltVectorTy =
399 IntermediateVT.isVector()
400 ? EVT::getVectorVT(
401 *DAG.getContext(), IntermediateVT.getScalarType(),
402 IntermediateVT.getVectorElementCount() * NumParts)
403 : EVT::getVectorVT(*DAG.getContext(),
404 IntermediateVT.getScalarType(),
405 NumIntermediates);
406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407 : ISD::BUILD_VECTOR,
408 DL, BuiltVectorTy, Ops);
409 }
410
411 // There is now one part, held in Val. Correct it to match ValueVT.
412 EVT PartEVT = Val.getValueType();
413
414 if (PartEVT == ValueVT)
415 return Val;
416
417 if (PartEVT.isVector()) {
418 // Vector/Vector bitcast.
419 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421
422 // If the parts vector has more elements than the value vector, then we
423 // have a vector widening case (e.g. <2 x float> -> <4 x float>).
424 // Extract the elements we want.
425 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
426 assert((PartEVT.getVectorElementCount().getKnownMinValue() >
427 ValueVT.getVectorElementCount().getKnownMinValue()) &&
428 (PartEVT.getVectorElementCount().isScalable() ==
429 ValueVT.getVectorElementCount().isScalable()) &&
430 "Cannot narrow, it would be a lossy transformation");
431 PartEVT =
432 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
433 ValueVT.getVectorElementCount());
434 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
435 DAG.getVectorIdxConstant(0, DL));
436 if (PartEVT == ValueVT)
437 return Val;
438 if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440
441 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
444 }
445
446 // Promoted vector extract
447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448 }
449
450 // Trivial bitcast if the types are the same size and the destination
451 // vector type is legal.
452 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
453 TLI.isTypeLegal(ValueVT))
454 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
455
456 if (ValueVT.getVectorNumElements() != 1) {
457 // Certain ABIs require that vectors are passed as integers. For vectors
458 // are the same size, this is an obvious bitcast.
459 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
461 } else if (ValueVT.bitsLT(PartEVT)) {
462 const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
463 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
464 // Drop the extra bits.
465 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
466 return DAG.getBitcast(ValueVT, Val);
467 }
468
469 diagnosePossiblyInvalidConstraint(
470 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
471 return DAG.getUNDEF(ValueVT);
472 }
473
474 // Handle cases such as i8 -> <1 x i1>
475 EVT ValueSVT = ValueVT.getVectorElementType();
476 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
477 unsigned ValueSize = ValueSVT.getSizeInBits();
478 if (ValueSize == PartEVT.getSizeInBits()) {
479 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
480 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
481 // It's possible a scalar floating point type gets softened to integer and
482 // then promoted to a larger integer. If PartEVT is the larger integer
483 // we need to truncate it and then bitcast to the FP type.
484 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
485 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
486 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
487 Val = DAG.getBitcast(ValueSVT, Val);
488 } else {
489 Val = ValueVT.isFloatingPoint()
490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
492 }
493 }
494
495 return DAG.getBuildVector(ValueVT, DL, Val);
496 }
497
498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
499 SDValue Val, SDValue *Parts, unsigned NumParts,
500 MVT PartVT, const Value *V,
501 std::optional<CallingConv::ID> CallConv);
502
503 /// getCopyToParts - Create a series of nodes that contain the specified value
504 /// split into legal parts. If the parts contain more bits than Val, then, for
505 /// integers, ExtendKind can be used to specify how to generate the extra bits.
506 static void
getCopyToParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,std::optional<CallingConv::ID> CallConv=std::nullopt,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
508 unsigned NumParts, MVT PartVT, const Value *V,
509 std::optional<CallingConv::ID> CallConv = std::nullopt,
510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
511 // Let the target split the parts if it wants to
512 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
513 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
514 CallConv))
515 return;
516 EVT ValueVT = Val.getValueType();
517
518 // Handle the vector case separately.
519 if (ValueVT.isVector())
520 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
521 CallConv);
522
523 unsigned OrigNumParts = NumParts;
524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
525 "Copying to an illegal type!");
526
527 if (NumParts == 0)
528 return;
529
530 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
531 EVT PartEVT = PartVT;
532 if (PartEVT == ValueVT) {
533 assert(NumParts == 1 && "No-op copy with multiple parts!");
534 Parts[0] = Val;
535 return;
536 }
537
538 unsigned PartBits = PartVT.getSizeInBits();
539 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
540 // If the parts cover more bits than the value has, promote the value.
541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
542 assert(NumParts == 1 && "Do not know what to promote to!");
543 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
544 } else {
545 if (ValueVT.isFloatingPoint()) {
546 // FP values need to be bitcast, then extended if they are being put
547 // into a larger container.
548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
549 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
550 }
551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
552 ValueVT.isInteger() &&
553 "Unknown mismatch!");
554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
555 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
556 if (PartVT == MVT::x86mmx)
557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
558 }
559 } else if (PartBits == ValueVT.getSizeInBits()) {
560 // Different types of the same size.
561 assert(NumParts == 1 && PartEVT != ValueVT);
562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
564 // If the parts cover less bits than value has, truncate the value.
565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
566 ValueVT.isInteger() &&
567 "Unknown mismatch!");
568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
569 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
570 if (PartVT == MVT::x86mmx)
571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
572 }
573
574 // The value may have changed - recompute ValueVT.
575 ValueVT = Val.getValueType();
576 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
577 "Failed to tile the value with PartVT!");
578
579 if (NumParts == 1) {
580 if (PartEVT != ValueVT) {
581 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
582 "scalar-to-vector conversion failed");
583 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
584 }
585
586 Parts[0] = Val;
587 return;
588 }
589
590 // Expand the value into multiple parts.
591 if (NumParts & (NumParts - 1)) {
592 // The number of parts is not a power of 2. Split off and copy the tail.
593 assert(PartVT.isInteger() && ValueVT.isInteger() &&
594 "Do not know what to expand to!");
595 unsigned RoundParts = llvm::bit_floor(NumParts);
596 unsigned RoundBits = RoundParts * PartBits;
597 unsigned OddParts = NumParts - RoundParts;
598 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
599 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
600
601 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
602 CallConv);
603
604 if (DAG.getDataLayout().isBigEndian())
605 // The odd parts were reversed by getCopyToParts - unreverse them.
606 std::reverse(Parts + RoundParts, Parts + NumParts);
607
608 NumParts = RoundParts;
609 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
611 }
612
613 // The number of parts is a power of 2. Repeatedly bisect the value using
614 // EXTRACT_ELEMENT.
615 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
616 EVT::getIntegerVT(*DAG.getContext(),
617 ValueVT.getSizeInBits()),
618 Val);
619
620 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
621 for (unsigned i = 0; i < NumParts; i += StepSize) {
622 unsigned ThisBits = StepSize * PartBits / 2;
623 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
624 SDValue &Part0 = Parts[i];
625 SDValue &Part1 = Parts[i+StepSize/2];
626
627 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
629 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
630 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
631
632 if (ThisBits == PartBits && ThisVT != PartVT) {
633 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
634 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
635 }
636 }
637 }
638
639 if (DAG.getDataLayout().isBigEndian())
640 std::reverse(Parts, Parts + OrigNumParts);
641 }
642
widenVectorToPartType(SelectionDAG & DAG,SDValue Val,const SDLoc & DL,EVT PartVT)643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
644 const SDLoc &DL, EVT PartVT) {
645 if (!PartVT.isVector())
646 return SDValue();
647
648 EVT ValueVT = Val.getValueType();
649 EVT PartEVT = PartVT.getVectorElementType();
650 EVT ValueEVT = ValueVT.getVectorElementType();
651 ElementCount PartNumElts = PartVT.getVectorElementCount();
652 ElementCount ValueNumElts = ValueVT.getVectorElementCount();
653
654 // We only support widening vectors with equivalent element types and
655 // fixed/scalable properties. If a target needs to widen a fixed-length type
656 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
657 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
658 PartNumElts.isScalable() != ValueNumElts.isScalable())
659 return SDValue();
660
661 // Have a try for bf16 because some targets share its ABI with fp16.
662 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
663 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
664 "Cannot widen to illegal type");
665 Val = DAG.getNode(ISD::BITCAST, DL,
666 ValueVT.changeVectorElementType(MVT::f16), Val);
667 } else if (PartEVT != ValueEVT) {
668 return SDValue();
669 }
670
671 // Widening a scalable vector to another scalable vector is done by inserting
672 // the vector into a larger undef one.
673 if (PartNumElts.isScalable())
674 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
675 Val, DAG.getVectorIdxConstant(0, DL));
676
677 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
678 // undef elements.
679 SmallVector<SDValue, 16> Ops;
680 DAG.ExtractVectorElements(Val, Ops);
681 SDValue EltUndef = DAG.getUNDEF(PartEVT);
682 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
683
684 // FIXME: Use CONCAT for 2x -> 4x.
685 return DAG.getBuildVector(PartVT, DL, Ops);
686 }
687
688 /// getCopyToPartsVector - Create a series of nodes that contain the specified
689 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,std::optional<CallingConv::ID> CallConv)690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
691 SDValue Val, SDValue *Parts, unsigned NumParts,
692 MVT PartVT, const Value *V,
693 std::optional<CallingConv::ID> CallConv) {
694 EVT ValueVT = Val.getValueType();
695 assert(ValueVT.isVector() && "Not a vector");
696 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
697 const bool IsABIRegCopy = CallConv.has_value();
698
699 if (NumParts == 1) {
700 EVT PartEVT = PartVT;
701 if (PartEVT == ValueVT) {
702 // Nothing to do.
703 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
704 // Bitconvert vector->vector case.
705 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
706 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
707 Val = Widened;
708 } else if (PartVT.isVector() &&
709 PartEVT.getVectorElementType().bitsGE(
710 ValueVT.getVectorElementType()) &&
711 PartEVT.getVectorElementCount() ==
712 ValueVT.getVectorElementCount()) {
713
714 // Promoted vector extract
715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
716 } else if (PartEVT.isVector() &&
717 PartEVT.getVectorElementType() !=
718 ValueVT.getVectorElementType() &&
719 TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
720 TargetLowering::TypeWidenVector) {
721 // Combination of widening and promotion.
722 EVT WidenVT =
723 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
724 PartVT.getVectorElementCount());
725 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
726 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
727 } else {
728 // Don't extract an integer from a float vector. This can happen if the
729 // FP type gets softened to integer and then promoted. The promotion
730 // prevents it from being picked up by the earlier bitcast case.
731 if (ValueVT.getVectorElementCount().isScalar() &&
732 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
733 // If we reach this condition and PartVT is FP, this means that
734 // ValueVT is also FP and both have a different size, otherwise we
735 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
736 // would be invalid since that would mean the smaller FP type has to
737 // be extended to the larger one.
738 if (PartVT.isFloatingPoint()) {
739 Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
740 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
741 } else
742 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
743 DAG.getVectorIdxConstant(0, DL));
744 } else {
745 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
746 assert(PartVT.getFixedSizeInBits() > ValueSize &&
747 "lossy conversion of vector to scalar type");
748 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
749 Val = DAG.getBitcast(IntermediateType, Val);
750 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
751 }
752 }
753
754 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
755 Parts[0] = Val;
756 return;
757 }
758
759 // Handle a multi-element vector.
760 EVT IntermediateVT;
761 MVT RegisterVT;
762 unsigned NumIntermediates;
763 unsigned NumRegs;
764 if (IsABIRegCopy) {
765 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
766 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
767 RegisterVT);
768 } else {
769 NumRegs =
770 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
771 NumIntermediates, RegisterVT);
772 }
773
774 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
775 NumParts = NumRegs; // Silence a compiler warning.
776 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
777
778 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
779 "Mixing scalable and fixed vectors when copying in parts");
780
781 std::optional<ElementCount> DestEltCnt;
782
783 if (IntermediateVT.isVector())
784 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
785 else
786 DestEltCnt = ElementCount::getFixed(NumIntermediates);
787
788 EVT BuiltVectorTy = EVT::getVectorVT(
789 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
790
791 if (ValueVT == BuiltVectorTy) {
792 // Nothing to do.
793 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
794 // Bitconvert vector->vector case.
795 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
796 } else {
797 if (BuiltVectorTy.getVectorElementType().bitsGT(
798 ValueVT.getVectorElementType())) {
799 // Integer promotion.
800 ValueVT = EVT::getVectorVT(*DAG.getContext(),
801 BuiltVectorTy.getVectorElementType(),
802 ValueVT.getVectorElementCount());
803 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
804 }
805
806 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
807 Val = Widened;
808 }
809 }
810
811 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
812
813 // Split the vector into intermediate operands.
814 SmallVector<SDValue, 8> Ops(NumIntermediates);
815 for (unsigned i = 0; i != NumIntermediates; ++i) {
816 if (IntermediateVT.isVector()) {
817 // This does something sensible for scalable vectors - see the
818 // definition of EXTRACT_SUBVECTOR for further details.
819 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
820 Ops[i] =
821 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
822 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
823 } else {
824 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
825 DAG.getVectorIdxConstant(i, DL));
826 }
827 }
828
829 // Split the intermediate operands into legal parts.
830 if (NumParts == NumIntermediates) {
831 // If the register was not expanded, promote or copy the value,
832 // as appropriate.
833 for (unsigned i = 0; i != NumParts; ++i)
834 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
835 } else if (NumParts > 0) {
836 // If the intermediate type was expanded, split each the value into
837 // legal parts.
838 assert(NumIntermediates != 0 && "division by zero");
839 assert(NumParts % NumIntermediates == 0 &&
840 "Must expand into a divisible number of parts!");
841 unsigned Factor = NumParts / NumIntermediates;
842 for (unsigned i = 0; i != NumIntermediates; ++i)
843 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
844 CallConv);
845 }
846 }
847
RegsForValue(const SmallVector<unsigned,4> & regs,MVT regvt,EVT valuevt,std::optional<CallingConv::ID> CC)848 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt,
849 EVT valuevt, std::optional<CallingConv::ID> CC)
850 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
851 RegCount(1, regs.size()), CallConv(CC) {}
852
RegsForValue(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL,unsigned Reg,Type * Ty,std::optional<CallingConv::ID> CC)853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
854 const DataLayout &DL, unsigned Reg, Type *Ty,
855 std::optional<CallingConv::ID> CC) {
856 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
857
858 CallConv = CC;
859
860 for (EVT ValueVT : ValueVTs) {
861 unsigned NumRegs =
862 isABIMangled()
863 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
864 : TLI.getNumRegisters(Context, ValueVT);
865 MVT RegisterVT =
866 isABIMangled()
867 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
868 : TLI.getRegisterType(Context, ValueVT);
869 for (unsigned i = 0; i != NumRegs; ++i)
870 Regs.push_back(Reg + i);
871 RegVTs.push_back(RegisterVT);
872 RegCount.push_back(NumRegs);
873 Reg += NumRegs;
874 }
875 }
876
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,const SDLoc & dl,SDValue & Chain,SDValue * Glue,const Value * V) const877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
878 FunctionLoweringInfo &FuncInfo,
879 const SDLoc &dl, SDValue &Chain,
880 SDValue *Glue, const Value *V) const {
881 // A Value with type {} or [0 x %t] needs no registers.
882 if (ValueVTs.empty())
883 return SDValue();
884
885 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
886
887 // Assemble the legal parts into the final values.
888 SmallVector<SDValue, 4> Values(ValueVTs.size());
889 SmallVector<SDValue, 8> Parts;
890 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
891 // Copy the legal parts from the registers.
892 EVT ValueVT = ValueVTs[Value];
893 unsigned NumRegs = RegCount[Value];
894 MVT RegisterVT = isABIMangled()
895 ? TLI.getRegisterTypeForCallingConv(
896 *DAG.getContext(), *CallConv, RegVTs[Value])
897 : RegVTs[Value];
898
899 Parts.resize(NumRegs);
900 for (unsigned i = 0; i != NumRegs; ++i) {
901 SDValue P;
902 if (!Glue) {
903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
904 } else {
905 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
906 *Glue = P.getValue(2);
907 }
908
909 Chain = P.getValue(1);
910 Parts[i] = P;
911
912 // If the source register was virtual and if we know something about it,
913 // add an assert node.
914 if (!Register::isVirtualRegister(Regs[Part + i]) ||
915 !RegisterVT.isInteger())
916 continue;
917
918 const FunctionLoweringInfo::LiveOutInfo *LOI =
919 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
920 if (!LOI)
921 continue;
922
923 unsigned RegSize = RegisterVT.getScalarSizeInBits();
924 unsigned NumSignBits = LOI->NumSignBits;
925 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
926
927 if (NumZeroBits == RegSize) {
928 // The current value is a zero.
929 // Explicitly express that as it would be easier for
930 // optimizations to kick in.
931 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
932 continue;
933 }
934
935 // FIXME: We capture more information than the dag can represent. For
936 // now, just use the tightest assertzext/assertsext possible.
937 bool isSExt;
938 EVT FromVT(MVT::Other);
939 if (NumZeroBits) {
940 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
941 isSExt = false;
942 } else if (NumSignBits > 1) {
943 FromVT =
944 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
945 isSExt = true;
946 } else {
947 continue;
948 }
949 // Add an assertion node.
950 assert(FromVT != MVT::Other);
951 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
952 RegisterVT, P, DAG.getValueType(FromVT));
953 }
954
955 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
956 RegisterVT, ValueVT, V, Chain, CallConv);
957 Part += NumRegs;
958 Parts.clear();
959 }
960
961 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
962 }
963
getCopyToRegs(SDValue Val,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,SDValue * Glue,const Value * V,ISD::NodeType PreferredExtendType) const964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
965 const SDLoc &dl, SDValue &Chain, SDValue *Glue,
966 const Value *V,
967 ISD::NodeType PreferredExtendType) const {
968 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
969 ISD::NodeType ExtendKind = PreferredExtendType;
970
971 // Get the list of the values's legal parts.
972 unsigned NumRegs = Regs.size();
973 SmallVector<SDValue, 8> Parts(NumRegs);
974 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
975 unsigned NumParts = RegCount[Value];
976
977 MVT RegisterVT = isABIMangled()
978 ? TLI.getRegisterTypeForCallingConv(
979 *DAG.getContext(), *CallConv, RegVTs[Value])
980 : RegVTs[Value];
981
982 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
983 ExtendKind = ISD::ZERO_EXTEND;
984
985 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
986 NumParts, RegisterVT, V, CallConv, ExtendKind);
987 Part += NumParts;
988 }
989
990 // Copy the parts into the registers.
991 SmallVector<SDValue, 8> Chains(NumRegs);
992 for (unsigned i = 0; i != NumRegs; ++i) {
993 SDValue Part;
994 if (!Glue) {
995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
996 } else {
997 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
998 *Glue = Part.getValue(1);
999 }
1000
1001 Chains[i] = Part.getValue(0);
1002 }
1003
1004 if (NumRegs == 1 || Glue)
1005 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1006 // flagged to it. That is the CopyToReg nodes and the user are considered
1007 // a single scheduling unit. If we create a TokenFactor and return it as
1008 // chain, then the TokenFactor is both a predecessor (operand) of the
1009 // user as well as a successor (the TF operands are flagged to the user).
1010 // c1, f1 = CopyToReg
1011 // c2, f2 = CopyToReg
1012 // c3 = TokenFactor c1, c2
1013 // ...
1014 // = op c3, ..., f2
1015 Chain = Chains[NumRegs-1];
1016 else
1017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1018 }
1019
AddInlineAsmOperands(InlineAsm::Kind Code,bool HasMatching,unsigned MatchingIdx,const SDLoc & dl,SelectionDAG & DAG,std::vector<SDValue> & Ops) const1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1021 unsigned MatchingIdx, const SDLoc &dl,
1022 SelectionDAG &DAG,
1023 std::vector<SDValue> &Ops) const {
1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1025
1026 InlineAsm::Flag Flag(Code, Regs.size());
1027 if (HasMatching)
1028 Flag.setMatchingOp(MatchingIdx);
1029 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1030 // Put the register class of the virtual registers in the flag word. That
1031 // way, later passes can recompute register class constraints for inline
1032 // assembly as well as normal instructions.
1033 // Don't do this for tied operands that can use the regclass information
1034 // from the def.
1035 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1036 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1037 Flag.setRegClass(RC->getID());
1038 }
1039
1040 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1041 Ops.push_back(Res);
1042
1043 if (Code == InlineAsm::Kind::Clobber) {
1044 // Clobbers should always have a 1:1 mapping with registers, and may
1045 // reference registers that have illegal (e.g. vector) types. Hence, we
1046 // shouldn't try to apply any sort of splitting logic to them.
1047 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1048 "No 1:1 mapping from clobbers to regs?");
1049 Register SP = TLI.getStackPointerRegisterToSaveRestore();
1050 (void)SP;
1051 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1052 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1053 assert(
1054 (Regs[I] != SP ||
1055 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1056 "If we clobbered the stack pointer, MFI should know about it.");
1057 }
1058 return;
1059 }
1060
1061 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1062 MVT RegisterVT = RegVTs[Value];
1063 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1064 RegisterVT);
1065 for (unsigned i = 0; i != NumRegs; ++i) {
1066 assert(Reg < Regs.size() && "Mismatch in # registers expected");
1067 unsigned TheReg = Regs[Reg++];
1068 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1069 }
1070 }
1071 }
1072
1073 SmallVector<std::pair<unsigned, TypeSize>, 4>
getRegsAndSizes() const1074 RegsForValue::getRegsAndSizes() const {
1075 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1076 unsigned I = 0;
1077 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1078 unsigned RegCount = std::get<0>(CountAndVT);
1079 MVT RegisterVT = std::get<1>(CountAndVT);
1080 TypeSize RegisterSize = RegisterVT.getSizeInBits();
1081 for (unsigned E = I + RegCount; I != E; ++I)
1082 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1083 }
1084 return OutVec;
1085 }
1086
init(GCFunctionInfo * gfi,AliasAnalysis * aa,AssumptionCache * ac,const TargetLibraryInfo * li)1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1088 AssumptionCache *ac,
1089 const TargetLibraryInfo *li) {
1090 AA = aa;
1091 AC = ac;
1092 GFI = gfi;
1093 LibInfo = li;
1094 Context = DAG.getContext();
1095 LPadToCallSiteMap.clear();
1096 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1097 AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1098 *DAG.getMachineFunction().getFunction().getParent());
1099 }
1100
clear()1101 void SelectionDAGBuilder::clear() {
1102 NodeMap.clear();
1103 UnusedArgNodeMap.clear();
1104 PendingLoads.clear();
1105 PendingExports.clear();
1106 PendingConstrainedFP.clear();
1107 PendingConstrainedFPStrict.clear();
1108 CurInst = nullptr;
1109 HasTailCall = false;
1110 SDNodeOrder = LowestSDNodeOrder;
1111 StatepointLowering.clear();
1112 }
1113
clearDanglingDebugInfo()1114 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1115 DanglingDebugInfoMap.clear();
1116 }
1117
1118 // Update DAG root to include dependencies on Pending chains.
updateRoot(SmallVectorImpl<SDValue> & Pending)1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1120 SDValue Root = DAG.getRoot();
1121
1122 if (Pending.empty())
1123 return Root;
1124
1125 // Add current root to PendingChains, unless we already indirectly
1126 // depend on it.
1127 if (Root.getOpcode() != ISD::EntryToken) {
1128 unsigned i = 0, e = Pending.size();
1129 for (; i != e; ++i) {
1130 assert(Pending[i].getNode()->getNumOperands() > 1);
1131 if (Pending[i].getNode()->getOperand(0) == Root)
1132 break; // Don't add the root if we already indirectly depend on it.
1133 }
1134
1135 if (i == e)
1136 Pending.push_back(Root);
1137 }
1138
1139 if (Pending.size() == 1)
1140 Root = Pending[0];
1141 else
1142 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1143
1144 DAG.setRoot(Root);
1145 Pending.clear();
1146 return Root;
1147 }
1148
getMemoryRoot()1149 SDValue SelectionDAGBuilder::getMemoryRoot() {
1150 return updateRoot(PendingLoads);
1151 }
1152
getRoot()1153 SDValue SelectionDAGBuilder::getRoot() {
1154 // Chain up all pending constrained intrinsics together with all
1155 // pending loads, by simply appending them to PendingLoads and
1156 // then calling getMemoryRoot().
1157 PendingLoads.reserve(PendingLoads.size() +
1158 PendingConstrainedFP.size() +
1159 PendingConstrainedFPStrict.size());
1160 PendingLoads.append(PendingConstrainedFP.begin(),
1161 PendingConstrainedFP.end());
1162 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1163 PendingConstrainedFPStrict.end());
1164 PendingConstrainedFP.clear();
1165 PendingConstrainedFPStrict.clear();
1166 return getMemoryRoot();
1167 }
1168
getControlRoot()1169 SDValue SelectionDAGBuilder::getControlRoot() {
1170 // We need to emit pending fpexcept.strict constrained intrinsics,
1171 // so append them to the PendingExports list.
1172 PendingExports.append(PendingConstrainedFPStrict.begin(),
1173 PendingConstrainedFPStrict.end());
1174 PendingConstrainedFPStrict.clear();
1175 return updateRoot(PendingExports);
1176 }
1177
handleDebugDeclare(Value * Address,DILocalVariable * Variable,DIExpression * Expression,DebugLoc DL)1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1179 DILocalVariable *Variable,
1180 DIExpression *Expression,
1181 DebugLoc DL) {
1182 assert(Variable && "Missing variable");
1183
1184 // Check if address has undef value.
1185 if (!Address || isa<UndefValue>(Address) ||
1186 (Address->use_empty() && !isa<Argument>(Address))) {
1187 LLVM_DEBUG(
1188 dbgs()
1189 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1190 return;
1191 }
1192
1193 bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1194
1195 SDValue &N = NodeMap[Address];
1196 if (!N.getNode() && isa<Argument>(Address))
1197 // Check unused arguments map.
1198 N = UnusedArgNodeMap[Address];
1199 SDDbgValue *SDV;
1200 if (N.getNode()) {
1201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1202 Address = BCI->getOperand(0);
1203 // Parameters are handled specially.
1204 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1205 if (IsParameter && FINode) {
1206 // Byval parameter. We have a frame index at this point.
1207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1208 /*IsIndirect*/ true, DL, SDNodeOrder);
1209 } else if (isa<Argument>(Address)) {
1210 // Address is an argument, so try to emit its dbg value using
1211 // virtual register info from the FuncInfo.ValueMap.
1212 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213 FuncArgumentDbgValueKind::Declare, N);
1214 return;
1215 } else {
1216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1217 true, DL, SDNodeOrder);
1218 }
1219 DAG.AddDbgValue(SDV, IsParameter);
1220 } else {
1221 // If Address is an argument then try to emit its dbg value using
1222 // virtual register info from the FuncInfo.ValueMap.
1223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1224 FuncArgumentDbgValueKind::Declare, N)) {
1225 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1226 << " (could not emit func-arg dbg_value)\n");
1227 }
1228 }
1229 return;
1230 }
1231
visitDbgInfo(const Instruction & I)1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1233 // Add SDDbgValue nodes for any var locs here. Do so before updating
1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1235 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1236 // Add SDDbgValue nodes for any var locs here. Do so before updating
1237 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1238 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1239 It != End; ++It) {
1240 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1241 dropDanglingDebugInfo(Var, It->Expr);
1242 if (It->Values.isKillLocation(It->Expr)) {
1243 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1244 continue;
1245 }
1246 SmallVector<Value *> Values(It->Values.location_ops());
1247 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1248 It->Values.hasArgList())) {
1249 SmallVector<Value *, 4> Vals;
1250 for (Value *V : It->Values.location_ops())
1251 Vals.push_back(V);
1252 addDanglingDebugInfo(Vals,
1253 FnVarLocs->getDILocalVariable(It->VariableID),
1254 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1255 }
1256 }
1257 }
1258
1259 // We must skip DbgVariableRecords if they've already been processed above as
1260 // we have just emitted the debug values resulting from assignment tracking
1261 // analysis, making any existing DbgVariableRecords redundant (and probably
1262 // less correct). We still need to process DbgLabelRecords. This does sink
1263 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1264 // be important as it does so deterministcally and ordering between
1265 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1266 // printing).
1267 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1268 // Is there is any debug-info attached to this instruction, in the form of
1269 // DbgRecord non-instruction debug-info records.
1270 for (DbgRecord &DR : I.getDbgRecordRange()) {
1271 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1272 assert(DLR->getLabel() && "Missing label");
1273 SDDbgLabel *SDV =
1274 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1275 DAG.AddDbgLabel(SDV);
1276 continue;
1277 }
1278
1279 if (SkipDbgVariableRecords)
1280 continue;
1281 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1282 DILocalVariable *Variable = DVR.getVariable();
1283 DIExpression *Expression = DVR.getExpression();
1284 dropDanglingDebugInfo(Variable, Expression);
1285
1286 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1287 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1288 continue;
1289 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1290 << "\n");
1291 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1292 DVR.getDebugLoc());
1293 continue;
1294 }
1295
1296 // A DbgVariableRecord with no locations is a kill location.
1297 SmallVector<Value *, 4> Values(DVR.location_ops());
1298 if (Values.empty()) {
1299 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1300 SDNodeOrder);
1301 continue;
1302 }
1303
1304 // A DbgVariableRecord with an undef or absent location is also a kill
1305 // location.
1306 if (llvm::any_of(Values,
1307 [](Value *V) { return !V || isa<UndefValue>(V); })) {
1308 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1309 SDNodeOrder);
1310 continue;
1311 }
1312
1313 bool IsVariadic = DVR.hasArgList();
1314 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1315 SDNodeOrder, IsVariadic)) {
1316 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1317 DVR.getDebugLoc(), SDNodeOrder);
1318 }
1319 }
1320 }
1321
visit(const Instruction & I)1322 void SelectionDAGBuilder::visit(const Instruction &I) {
1323 visitDbgInfo(I);
1324
1325 // Set up outgoing PHI node register values before emitting the terminator.
1326 if (I.isTerminator()) {
1327 HandlePHINodesInSuccessorBlocks(I.getParent());
1328 }
1329
1330 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1331 if (!isa<DbgInfoIntrinsic>(I))
1332 ++SDNodeOrder;
1333
1334 CurInst = &I;
1335
1336 // Set inserted listener only if required.
1337 bool NodeInserted = false;
1338 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1339 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1340 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1341 if (PCSectionsMD || MMRA) {
1342 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1343 DAG, [&](SDNode *) { NodeInserted = true; });
1344 }
1345
1346 visit(I.getOpcode(), I);
1347
1348 if (!I.isTerminator() && !HasTailCall &&
1349 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1350 CopyToExportRegsIfNeeded(&I);
1351
1352 // Handle metadata.
1353 if (PCSectionsMD || MMRA) {
1354 auto It = NodeMap.find(&I);
1355 if (It != NodeMap.end()) {
1356 if (PCSectionsMD)
1357 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1358 if (MMRA)
1359 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1360 } else if (NodeInserted) {
1361 // This should not happen; if it does, don't let it go unnoticed so we can
1362 // fix it. Relevant visit*() function is probably missing a setValue().
1363 errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1364 << I.getModule()->getName() << "]\n";
1365 LLVM_DEBUG(I.dump());
1366 assert(false);
1367 }
1368 }
1369
1370 CurInst = nullptr;
1371 }
1372
visitPHI(const PHINode &)1373 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1374 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1375 }
1376
visit(unsigned Opcode,const User & I)1377 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1378 // Note: this doesn't use InstVisitor, because it has to work with
1379 // ConstantExpr's in addition to instructions.
1380 switch (Opcode) {
1381 default: llvm_unreachable("Unknown instruction type encountered!");
1382 // Build the switch statement using the Instruction.def file.
1383 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1384 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1385 #include "llvm/IR/Instruction.def"
1386 }
1387 }
1388
handleDanglingVariadicDebugInfo(SelectionDAG & DAG,DILocalVariable * Variable,DebugLoc DL,unsigned Order,SmallVectorImpl<Value * > & Values,DIExpression * Expression)1389 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1390 DILocalVariable *Variable,
1391 DebugLoc DL, unsigned Order,
1392 SmallVectorImpl<Value *> &Values,
1393 DIExpression *Expression) {
1394 // For variadic dbg_values we will now insert an undef.
1395 // FIXME: We can potentially recover these!
1396 SmallVector<SDDbgOperand, 2> Locs;
1397 for (const Value *V : Values) {
1398 auto *Undef = UndefValue::get(V->getType());
1399 Locs.push_back(SDDbgOperand::fromConst(Undef));
1400 }
1401 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1402 /*IsIndirect=*/false, DL, Order,
1403 /*IsVariadic=*/true);
1404 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1405 return true;
1406 }
1407
addDanglingDebugInfo(SmallVectorImpl<Value * > & Values,DILocalVariable * Var,DIExpression * Expr,bool IsVariadic,DebugLoc DL,unsigned Order)1408 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1409 DILocalVariable *Var,
1410 DIExpression *Expr,
1411 bool IsVariadic, DebugLoc DL,
1412 unsigned Order) {
1413 if (IsVariadic) {
1414 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1415 return;
1416 }
1417 // TODO: Dangling debug info will eventually either be resolved or produce
1418 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1419 // between the original dbg.value location and its resolved DBG_VALUE,
1420 // which we should ideally fill with an extra Undef DBG_VALUE.
1421 assert(Values.size() == 1);
1422 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1423 }
1424
dropDanglingDebugInfo(const DILocalVariable * Variable,const DIExpression * Expr)1425 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1426 const DIExpression *Expr) {
1427 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1428 DIVariable *DanglingVariable = DDI.getVariable();
1429 DIExpression *DanglingExpr = DDI.getExpression();
1430 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1431 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1432 << printDDI(nullptr, DDI) << "\n");
1433 return true;
1434 }
1435 return false;
1436 };
1437
1438 for (auto &DDIMI : DanglingDebugInfoMap) {
1439 DanglingDebugInfoVector &DDIV = DDIMI.second;
1440
1441 // If debug info is to be dropped, run it through final checks to see
1442 // whether it can be salvaged.
1443 for (auto &DDI : DDIV)
1444 if (isMatchingDbgValue(DDI))
1445 salvageUnresolvedDbgValue(DDIMI.first, DDI);
1446
1447 erase_if(DDIV, isMatchingDbgValue);
1448 }
1449 }
1450
1451 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1452 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)1453 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1454 SDValue Val) {
1455 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1456 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1457 return;
1458
1459 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1460 for (auto &DDI : DDIV) {
1461 DebugLoc DL = DDI.getDebugLoc();
1462 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1463 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1464 DILocalVariable *Variable = DDI.getVariable();
1465 DIExpression *Expr = DDI.getExpression();
1466 assert(Variable->isValidLocationForIntrinsic(DL) &&
1467 "Expected inlined-at fields to agree");
1468 SDDbgValue *SDV;
1469 if (Val.getNode()) {
1470 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1471 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1472 // we couldn't resolve it directly when examining the DbgValue intrinsic
1473 // in the first place we should not be more successful here). Unless we
1474 // have some test case that prove this to be correct we should avoid
1475 // calling EmitFuncArgumentDbgValue here.
1476 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1477 FuncArgumentDbgValueKind::Value, Val)) {
1478 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1479 << printDDI(V, DDI) << "\n");
1480 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1481 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1482 // inserted after the definition of Val when emitting the instructions
1483 // after ISel. An alternative could be to teach
1484 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1485 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1486 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1487 << ValSDNodeOrder << "\n");
1488 SDV = getDbgValue(Val, Variable, Expr, DL,
1489 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1490 DAG.AddDbgValue(SDV, false);
1491 } else
1492 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1493 << printDDI(V, DDI)
1494 << " in EmitFuncArgumentDbgValue\n");
1495 } else {
1496 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1497 << "\n");
1498 auto Undef = UndefValue::get(V->getType());
1499 auto SDV =
1500 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1501 DAG.AddDbgValue(SDV, false);
1502 }
1503 }
1504 DDIV.clear();
1505 }
1506
salvageUnresolvedDbgValue(const Value * V,DanglingDebugInfo & DDI)1507 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1508 DanglingDebugInfo &DDI) {
1509 // TODO: For the variadic implementation, instead of only checking the fail
1510 // state of `handleDebugValue`, we need know specifically which values were
1511 // invalid, so that we attempt to salvage only those values when processing
1512 // a DIArgList.
1513 const Value *OrigV = V;
1514 DILocalVariable *Var = DDI.getVariable();
1515 DIExpression *Expr = DDI.getExpression();
1516 DebugLoc DL = DDI.getDebugLoc();
1517 unsigned SDOrder = DDI.getSDNodeOrder();
1518
1519 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1520 // that DW_OP_stack_value is desired.
1521 bool StackValue = true;
1522
1523 // Can this Value can be encoded without any further work?
1524 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1525 return;
1526
1527 // Attempt to salvage back through as many instructions as possible. Bail if
1528 // a non-instruction is seen, such as a constant expression or global
1529 // variable. FIXME: Further work could recover those too.
1530 while (isa<Instruction>(V)) {
1531 const Instruction &VAsInst = *cast<const Instruction>(V);
1532 // Temporary "0", awaiting real implementation.
1533 SmallVector<uint64_t, 16> Ops;
1534 SmallVector<Value *, 4> AdditionalValues;
1535 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1536 Expr->getNumLocationOperands(), Ops,
1537 AdditionalValues);
1538 // If we cannot salvage any further, and haven't yet found a suitable debug
1539 // expression, bail out.
1540 if (!V)
1541 break;
1542
1543 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1544 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1545 // here for variadic dbg_values, remove that condition.
1546 if (!AdditionalValues.empty())
1547 break;
1548
1549 // New value and expr now represent this debuginfo.
1550 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1551
1552 // Some kind of simplification occurred: check whether the operand of the
1553 // salvaged debug expression can be encoded in this DAG.
1554 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1555 LLVM_DEBUG(
1556 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"
1557 << *OrigV << "\nBy stripping back to:\n " << *V << "\n");
1558 return;
1559 }
1560 }
1561
1562 // This was the final opportunity to salvage this debug information, and it
1563 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1564 // any earlier variable location.
1565 assert(OrigV && "V shouldn't be null");
1566 auto *Undef = UndefValue::get(OrigV->getType());
1567 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1568 DAG.AddDbgValue(SDV, false);
1569 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n "
1570 << printDDI(OrigV, DDI) << "\n");
1571 }
1572
handleKillDebugValue(DILocalVariable * Var,DIExpression * Expr,DebugLoc DbgLoc,unsigned Order)1573 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1574 DIExpression *Expr,
1575 DebugLoc DbgLoc,
1576 unsigned Order) {
1577 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1578 DIExpression *NewExpr =
1579 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1580 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1581 /*IsVariadic*/ false);
1582 }
1583
handleDebugValue(ArrayRef<const Value * > Values,DILocalVariable * Var,DIExpression * Expr,DebugLoc DbgLoc,unsigned Order,bool IsVariadic)1584 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1585 DILocalVariable *Var,
1586 DIExpression *Expr, DebugLoc DbgLoc,
1587 unsigned Order, bool IsVariadic) {
1588 if (Values.empty())
1589 return true;
1590
1591 // Filter EntryValue locations out early.
1592 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1593 return true;
1594
1595 SmallVector<SDDbgOperand> LocationOps;
1596 SmallVector<SDNode *> Dependencies;
1597 for (const Value *V : Values) {
1598 // Constant value.
1599 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1600 isa<ConstantPointerNull>(V)) {
1601 LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1602 continue;
1603 }
1604
1605 // Look through IntToPtr constants.
1606 if (auto *CE = dyn_cast<ConstantExpr>(V))
1607 if (CE->getOpcode() == Instruction::IntToPtr) {
1608 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1609 continue;
1610 }
1611
1612 // If the Value is a frame index, we can create a FrameIndex debug value
1613 // without relying on the DAG at all.
1614 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1615 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1616 if (SI != FuncInfo.StaticAllocaMap.end()) {
1617 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1618 continue;
1619 }
1620 }
1621
1622 // Do not use getValue() in here; we don't want to generate code at
1623 // this point if it hasn't been done yet.
1624 SDValue N = NodeMap[V];
1625 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1626 N = UnusedArgNodeMap[V];
1627 if (N.getNode()) {
1628 // Only emit func arg dbg value for non-variadic dbg.values for now.
1629 if (!IsVariadic &&
1630 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1631 FuncArgumentDbgValueKind::Value, N))
1632 return true;
1633 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1634 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1635 // describe stack slot locations.
1636 //
1637 // Consider "int x = 0; int *px = &x;". There are two kinds of
1638 // interesting debug values here after optimization:
1639 //
1640 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1641 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1642 //
1643 // Both describe the direct values of their associated variables.
1644 Dependencies.push_back(N.getNode());
1645 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1646 continue;
1647 }
1648 LocationOps.emplace_back(
1649 SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1650 continue;
1651 }
1652
1653 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1654 // Special rules apply for the first dbg.values of parameter variables in a
1655 // function. Identify them by the fact they reference Argument Values, that
1656 // they're parameters, and they are parameters of the current function. We
1657 // need to let them dangle until they get an SDNode.
1658 bool IsParamOfFunc =
1659 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1660 if (IsParamOfFunc)
1661 return false;
1662
1663 // The value is not used in this block yet (or it would have an SDNode).
1664 // We still want the value to appear for the user if possible -- if it has
1665 // an associated VReg, we can refer to that instead.
1666 auto VMI = FuncInfo.ValueMap.find(V);
1667 if (VMI != FuncInfo.ValueMap.end()) {
1668 unsigned Reg = VMI->second;
1669 // If this is a PHI node, it may be split up into several MI PHI nodes
1670 // (in FunctionLoweringInfo::set).
1671 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1672 V->getType(), std::nullopt);
1673 if (RFV.occupiesMultipleRegs()) {
1674 // FIXME: We could potentially support variadic dbg_values here.
1675 if (IsVariadic)
1676 return false;
1677 unsigned Offset = 0;
1678 unsigned BitsToDescribe = 0;
1679 if (auto VarSize = Var->getSizeInBits())
1680 BitsToDescribe = *VarSize;
1681 if (auto Fragment = Expr->getFragmentInfo())
1682 BitsToDescribe = Fragment->SizeInBits;
1683 for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1684 // Bail out if all bits are described already.
1685 if (Offset >= BitsToDescribe)
1686 break;
1687 // TODO: handle scalable vectors.
1688 unsigned RegisterSize = RegAndSize.second;
1689 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1690 ? BitsToDescribe - Offset
1691 : RegisterSize;
1692 auto FragmentExpr = DIExpression::createFragmentExpression(
1693 Expr, Offset, FragmentSize);
1694 if (!FragmentExpr)
1695 continue;
1696 SDDbgValue *SDV = DAG.getVRegDbgValue(
1697 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1698 DAG.AddDbgValue(SDV, false);
1699 Offset += RegisterSize;
1700 }
1701 return true;
1702 }
1703 // We can use simple vreg locations for variadic dbg_values as well.
1704 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1705 continue;
1706 }
1707 // We failed to create a SDDbgOperand for V.
1708 return false;
1709 }
1710
1711 // We have created a SDDbgOperand for each Value in Values.
1712 assert(!LocationOps.empty());
1713 SDDbgValue *SDV =
1714 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1715 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1716 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1717 return true;
1718 }
1719
resolveOrClearDbgInfo()1720 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1721 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1722 for (auto &Pair : DanglingDebugInfoMap)
1723 for (auto &DDI : Pair.second)
1724 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1725 clearDanglingDebugInfo();
1726 }
1727
1728 /// getCopyFromRegs - If there was virtual register allocated for the value V
1729 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
getCopyFromRegs(const Value * V,Type * Ty)1730 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1731 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1732 SDValue Result;
1733
1734 if (It != FuncInfo.ValueMap.end()) {
1735 Register InReg = It->second;
1736
1737 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1738 DAG.getDataLayout(), InReg, Ty,
1739 std::nullopt); // This is not an ABI copy.
1740 SDValue Chain = DAG.getEntryNode();
1741 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1742 V);
1743 resolveDanglingDebugInfo(V, Result);
1744 }
1745
1746 return Result;
1747 }
1748
1749 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)1750 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1751 // If we already have an SDValue for this value, use it. It's important
1752 // to do this first, so that we don't create a CopyFromReg if we already
1753 // have a regular SDValue.
1754 SDValue &N = NodeMap[V];
1755 if (N.getNode()) return N;
1756
1757 // If there's a virtual register allocated and initialized for this
1758 // value, use it.
1759 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1760 return copyFromReg;
1761
1762 // Otherwise create a new SDValue and remember it.
1763 SDValue Val = getValueImpl(V);
1764 NodeMap[V] = Val;
1765 resolveDanglingDebugInfo(V, Val);
1766 return Val;
1767 }
1768
1769 /// getNonRegisterValue - Return an SDValue for the given Value, but
1770 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1771 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1772 // If we already have an SDValue for this value, use it.
1773 SDValue &N = NodeMap[V];
1774 if (N.getNode()) {
1775 if (isIntOrFPConstant(N)) {
1776 // Remove the debug location from the node as the node is about to be used
1777 // in a location which may differ from the original debug location. This
1778 // is relevant to Constant and ConstantFP nodes because they can appear
1779 // as constant expressions inside PHI nodes.
1780 N->setDebugLoc(DebugLoc());
1781 }
1782 return N;
1783 }
1784
1785 // Otherwise create a new SDValue and remember it.
1786 SDValue Val = getValueImpl(V);
1787 NodeMap[V] = Val;
1788 resolveDanglingDebugInfo(V, Val);
1789 return Val;
1790 }
1791
1792 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1793 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1794 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1796
1797 if (const Constant *C = dyn_cast<Constant>(V)) {
1798 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1799
1800 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1801 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1802
1803 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1804 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1805
1806 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1807 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1808 getValue(CPA->getPointer()), getValue(CPA->getKey()),
1809 getValue(CPA->getAddrDiscriminator()),
1810 getValue(CPA->getDiscriminator()));
1811 }
1812
1813 if (isa<ConstantPointerNull>(C)) {
1814 unsigned AS = V->getType()->getPointerAddressSpace();
1815 return DAG.getConstant(0, getCurSDLoc(),
1816 TLI.getPointerTy(DAG.getDataLayout(), AS));
1817 }
1818
1819 if (match(C, m_VScale()))
1820 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1821
1822 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1823 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1824
1825 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1826 return DAG.getUNDEF(VT);
1827
1828 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1829 visit(CE->getOpcode(), *CE);
1830 SDValue N1 = NodeMap[V];
1831 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1832 return N1;
1833 }
1834
1835 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1836 SmallVector<SDValue, 4> Constants;
1837 for (const Use &U : C->operands()) {
1838 SDNode *Val = getValue(U).getNode();
1839 // If the operand is an empty aggregate, there are no values.
1840 if (!Val) continue;
1841 // Add each leaf value from the operand to the Constants list
1842 // to form a flattened list of all the values.
1843 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1844 Constants.push_back(SDValue(Val, i));
1845 }
1846
1847 return DAG.getMergeValues(Constants, getCurSDLoc());
1848 }
1849
1850 if (const ConstantDataSequential *CDS =
1851 dyn_cast<ConstantDataSequential>(C)) {
1852 SmallVector<SDValue, 4> Ops;
1853 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1854 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1855 // Add each leaf value from the operand to the Constants list
1856 // to form a flattened list of all the values.
1857 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1858 Ops.push_back(SDValue(Val, i));
1859 }
1860
1861 if (isa<ArrayType>(CDS->getType()))
1862 return DAG.getMergeValues(Ops, getCurSDLoc());
1863 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1864 }
1865
1866 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1867 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1868 "Unknown struct or array constant!");
1869
1870 SmallVector<EVT, 4> ValueVTs;
1871 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1872 unsigned NumElts = ValueVTs.size();
1873 if (NumElts == 0)
1874 return SDValue(); // empty struct
1875 SmallVector<SDValue, 4> Constants(NumElts);
1876 for (unsigned i = 0; i != NumElts; ++i) {
1877 EVT EltVT = ValueVTs[i];
1878 if (isa<UndefValue>(C))
1879 Constants[i] = DAG.getUNDEF(EltVT);
1880 else if (EltVT.isFloatingPoint())
1881 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1882 else
1883 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1884 }
1885
1886 return DAG.getMergeValues(Constants, getCurSDLoc());
1887 }
1888
1889 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1890 return DAG.getBlockAddress(BA, VT);
1891
1892 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1893 return getValue(Equiv->getGlobalValue());
1894
1895 if (const auto *NC = dyn_cast<NoCFIValue>(C))
1896 return getValue(NC->getGlobalValue());
1897
1898 if (VT == MVT::aarch64svcount) {
1899 assert(C->isNullValue() && "Can only zero this target type!");
1900 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1901 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1902 }
1903
1904 VectorType *VecTy = cast<VectorType>(V->getType());
1905
1906 // Now that we know the number and type of the elements, get that number of
1907 // elements into the Ops array based on what kind of constant it is.
1908 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1909 SmallVector<SDValue, 16> Ops;
1910 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1911 for (unsigned i = 0; i != NumElements; ++i)
1912 Ops.push_back(getValue(CV->getOperand(i)));
1913
1914 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1915 }
1916
1917 if (isa<ConstantAggregateZero>(C)) {
1918 EVT EltVT =
1919 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1920
1921 SDValue Op;
1922 if (EltVT.isFloatingPoint())
1923 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1924 else
1925 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1926
1927 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1928 }
1929
1930 llvm_unreachable("Unknown vector constant");
1931 }
1932
1933 // If this is a static alloca, generate it as the frameindex instead of
1934 // computation.
1935 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1936 DenseMap<const AllocaInst*, int>::iterator SI =
1937 FuncInfo.StaticAllocaMap.find(AI);
1938 if (SI != FuncInfo.StaticAllocaMap.end())
1939 return DAG.getFrameIndex(
1940 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1941 }
1942
1943 // If this is an instruction which fast-isel has deferred, select it now.
1944 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1945 Register InReg = FuncInfo.InitializeRegForValue(Inst);
1946
1947 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1948 Inst->getType(), std::nullopt);
1949 SDValue Chain = DAG.getEntryNode();
1950 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1951 }
1952
1953 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1954 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1955
1956 if (const auto *BB = dyn_cast<BasicBlock>(V))
1957 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1958
1959 llvm_unreachable("Can't get register for value!");
1960 }
1961
visitCatchPad(const CatchPadInst & I)1962 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1963 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1964 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1965 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1966 bool IsSEH = isAsynchronousEHPersonality(Pers);
1967 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1968 if (!IsSEH)
1969 CatchPadMBB->setIsEHScopeEntry();
1970 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1971 if (IsMSVCCXX || IsCoreCLR)
1972 CatchPadMBB->setIsEHFuncletEntry();
1973 }
1974
visitCatchRet(const CatchReturnInst & I)1975 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1976 // Update machine-CFG edge.
1977 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1978 FuncInfo.MBB->addSuccessor(TargetMBB);
1979 TargetMBB->setIsEHCatchretTarget(true);
1980 DAG.getMachineFunction().setHasEHCatchret(true);
1981
1982 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1983 bool IsSEH = isAsynchronousEHPersonality(Pers);
1984 if (IsSEH) {
1985 // If this is not a fall-through branch or optimizations are switched off,
1986 // emit the branch.
1987 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1988 TM.getOptLevel() == CodeGenOptLevel::None)
1989 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1990 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1991 return;
1992 }
1993
1994 // Figure out the funclet membership for the catchret's successor.
1995 // This will be used by the FuncletLayout pass to determine how to order the
1996 // BB's.
1997 // A 'catchret' returns to the outer scope's color.
1998 Value *ParentPad = I.getCatchSwitchParentPad();
1999 const BasicBlock *SuccessorColor;
2000 if (isa<ConstantTokenNone>(ParentPad))
2001 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2002 else
2003 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2004 assert(SuccessorColor && "No parent funclet for catchret!");
2005 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
2006 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2007
2008 // Create the terminator node.
2009 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2010 getControlRoot(), DAG.getBasicBlock(TargetMBB),
2011 DAG.getBasicBlock(SuccessorColorMBB));
2012 DAG.setRoot(Ret);
2013 }
2014
visitCleanupPad(const CleanupPadInst & CPI)2015 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2016 // Don't emit any special code for the cleanuppad instruction. It just marks
2017 // the start of an EH scope/funclet.
2018 FuncInfo.MBB->setIsEHScopeEntry();
2019 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2020 if (Pers != EHPersonality::Wasm_CXX) {
2021 FuncInfo.MBB->setIsEHFuncletEntry();
2022 FuncInfo.MBB->setIsCleanupFuncletEntry();
2023 }
2024 }
2025
2026 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2027 // not match, it is OK to add only the first unwind destination catchpad to the
2028 // successors, because there will be at least one invoke instruction within the
2029 // catch scope that points to the next unwind destination, if one exists, so
2030 // CFGSort cannot mess up with BB sorting order.
2031 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2032 // call within them, and catchpads only consisting of 'catch (...)' have a
2033 // '__cxa_end_catch' call within them, both of which generate invokes in case
2034 // the next unwind destination exists, i.e., the next unwind destination is not
2035 // the caller.)
2036 //
2037 // Having at most one EH pad successor is also simpler and helps later
2038 // transformations.
2039 //
2040 // For example,
2041 // current:
2042 // invoke void @foo to ... unwind label %catch.dispatch
2043 // catch.dispatch:
2044 // %0 = catchswitch within ... [label %catch.start] unwind label %next
2045 // catch.start:
2046 // ...
2047 // ... in this BB or some other child BB dominated by this BB there will be an
2048 // invoke that points to 'next' BB as an unwind destination
2049 //
2050 // next: ; We don't need to add this to 'current' BB's successor
2051 // ...
findWasmUnwindDestinations(FunctionLoweringInfo & FuncInfo,const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)2052 static void findWasmUnwindDestinations(
2053 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2054 BranchProbability Prob,
2055 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2056 &UnwindDests) {
2057 while (EHPadBB) {
2058 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2059 if (isa<CleanupPadInst>(Pad)) {
2060 // Stop on cleanup pads.
2061 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2062 UnwindDests.back().first->setIsEHScopeEntry();
2063 break;
2064 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2065 // Add the catchpad handlers to the possible destinations. We don't
2066 // continue to the unwind destination of the catchswitch for wasm.
2067 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2068 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2069 UnwindDests.back().first->setIsEHScopeEntry();
2070 }
2071 break;
2072 } else {
2073 continue;
2074 }
2075 }
2076 }
2077
2078 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2079 /// many places it could ultimately go. In the IR, we have a single unwind
2080 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2081 /// This function skips over imaginary basic blocks that hold catchswitch
2082 /// instructions, and finds all the "real" machine
2083 /// basic block destinations. As those destinations may not be successors of
2084 /// EHPadBB, here we also calculate the edge probability to those destinations.
2085 /// The passed-in Prob is the edge probability to EHPadBB.
findUnwindDestinations(FunctionLoweringInfo & FuncInfo,const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)2086 static void findUnwindDestinations(
2087 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2088 BranchProbability Prob,
2089 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2090 &UnwindDests) {
2091 EHPersonality Personality =
2092 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2093 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2094 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2095 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2096 bool IsSEH = isAsynchronousEHPersonality(Personality);
2097
2098 if (IsWasmCXX) {
2099 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2100 assert(UnwindDests.size() <= 1 &&
2101 "There should be at most one unwind destination for wasm");
2102 return;
2103 }
2104
2105 while (EHPadBB) {
2106 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2107 BasicBlock *NewEHPadBB = nullptr;
2108 if (isa<LandingPadInst>(Pad)) {
2109 // Stop on landingpads. They are not funclets.
2110 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2111 break;
2112 } else if (isa<CleanupPadInst>(Pad)) {
2113 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2114 // personalities.
2115 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2116 UnwindDests.back().first->setIsEHScopeEntry();
2117 UnwindDests.back().first->setIsEHFuncletEntry();
2118 break;
2119 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2120 // Add the catchpad handlers to the possible destinations.
2121 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2122 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2123 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2124 if (IsMSVCCXX || IsCoreCLR)
2125 UnwindDests.back().first->setIsEHFuncletEntry();
2126 if (!IsSEH)
2127 UnwindDests.back().first->setIsEHScopeEntry();
2128 }
2129 NewEHPadBB = CatchSwitch->getUnwindDest();
2130 } else {
2131 continue;
2132 }
2133
2134 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2135 if (BPI && NewEHPadBB)
2136 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2137 EHPadBB = NewEHPadBB;
2138 }
2139 }
2140
visitCleanupRet(const CleanupReturnInst & I)2141 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2142 // Update successor info.
2143 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2144 auto UnwindDest = I.getUnwindDest();
2145 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2146 BranchProbability UnwindDestProb =
2147 (BPI && UnwindDest)
2148 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2149 : BranchProbability::getZero();
2150 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2151 for (auto &UnwindDest : UnwindDests) {
2152 UnwindDest.first->setIsEHPad();
2153 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2154 }
2155 FuncInfo.MBB->normalizeSuccProbs();
2156
2157 // Create the terminator node.
2158 SDValue Ret =
2159 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2160 DAG.setRoot(Ret);
2161 }
2162
visitCatchSwitch(const CatchSwitchInst & CSI)2163 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2164 report_fatal_error("visitCatchSwitch not yet implemented!");
2165 }
2166
visitRet(const ReturnInst & I)2167 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2168 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2169 auto &DL = DAG.getDataLayout();
2170 SDValue Chain = getControlRoot();
2171 SmallVector<ISD::OutputArg, 8> Outs;
2172 SmallVector<SDValue, 8> OutVals;
2173
2174 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2175 // lower
2176 //
2177 // %val = call <ty> @llvm.experimental.deoptimize()
2178 // ret <ty> %val
2179 //
2180 // differently.
2181 if (I.getParent()->getTerminatingDeoptimizeCall()) {
2182 LowerDeoptimizingReturn();
2183 return;
2184 }
2185
2186 if (!FuncInfo.CanLowerReturn) {
2187 unsigned DemoteReg = FuncInfo.DemoteRegister;
2188 const Function *F = I.getParent()->getParent();
2189
2190 // Emit a store of the return value through the virtual register.
2191 // Leave Outs empty so that LowerReturn won't try to load return
2192 // registers the usual way.
2193 SmallVector<EVT, 1> PtrValueVTs;
2194 ComputeValueVTs(TLI, DL,
2195 PointerType::get(F->getContext(),
2196 DAG.getDataLayout().getAllocaAddrSpace()),
2197 PtrValueVTs);
2198
2199 SDValue RetPtr =
2200 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2201 SDValue RetOp = getValue(I.getOperand(0));
2202
2203 SmallVector<EVT, 4> ValueVTs, MemVTs;
2204 SmallVector<uint64_t, 4> Offsets;
2205 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2206 &Offsets, 0);
2207 unsigned NumValues = ValueVTs.size();
2208
2209 SmallVector<SDValue, 4> Chains(NumValues);
2210 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2211 for (unsigned i = 0; i != NumValues; ++i) {
2212 // An aggregate return value cannot wrap around the address space, so
2213 // offsets to its parts don't wrap either.
2214 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2215 TypeSize::getFixed(Offsets[i]));
2216
2217 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2218 if (MemVTs[i] != ValueVTs[i])
2219 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2220 Chains[i] = DAG.getStore(
2221 Chain, getCurSDLoc(), Val,
2222 // FIXME: better loc info would be nice.
2223 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2224 commonAlignment(BaseAlign, Offsets[i]));
2225 }
2226
2227 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2228 MVT::Other, Chains);
2229 } else if (I.getNumOperands() != 0) {
2230 SmallVector<EVT, 4> ValueVTs;
2231 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2232 unsigned NumValues = ValueVTs.size();
2233 if (NumValues) {
2234 SDValue RetOp = getValue(I.getOperand(0));
2235
2236 const Function *F = I.getParent()->getParent();
2237
2238 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2239 I.getOperand(0)->getType(), F->getCallingConv(),
2240 /*IsVarArg*/ false, DL);
2241
2242 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2243 if (F->getAttributes().hasRetAttr(Attribute::SExt))
2244 ExtendKind = ISD::SIGN_EXTEND;
2245 else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2246 ExtendKind = ISD::ZERO_EXTEND;
2247
2248 LLVMContext &Context = F->getContext();
2249 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2250
2251 for (unsigned j = 0; j != NumValues; ++j) {
2252 EVT VT = ValueVTs[j];
2253
2254 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2255 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2256
2257 CallingConv::ID CC = F->getCallingConv();
2258
2259 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2260 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2261 SmallVector<SDValue, 4> Parts(NumParts);
2262 getCopyToParts(DAG, getCurSDLoc(),
2263 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2264 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2265
2266 // 'inreg' on function refers to return value
2267 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2268 if (RetInReg)
2269 Flags.setInReg();
2270
2271 if (I.getOperand(0)->getType()->isPointerTy()) {
2272 Flags.setPointer();
2273 Flags.setPointerAddrSpace(
2274 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2275 }
2276
2277 if (NeedsRegBlock) {
2278 Flags.setInConsecutiveRegs();
2279 if (j == NumValues - 1)
2280 Flags.setInConsecutiveRegsLast();
2281 }
2282
2283 // Propagate extension type if any
2284 if (ExtendKind == ISD::SIGN_EXTEND)
2285 Flags.setSExt();
2286 else if (ExtendKind == ISD::ZERO_EXTEND)
2287 Flags.setZExt();
2288
2289 for (unsigned i = 0; i < NumParts; ++i) {
2290 Outs.push_back(ISD::OutputArg(Flags,
2291 Parts[i].getValueType().getSimpleVT(),
2292 VT, /*isfixed=*/true, 0, 0));
2293 OutVals.push_back(Parts[i]);
2294 }
2295 }
2296 }
2297 }
2298
2299 // Push in swifterror virtual register as the last element of Outs. This makes
2300 // sure swifterror virtual register will be returned in the swifterror
2301 // physical register.
2302 const Function *F = I.getParent()->getParent();
2303 if (TLI.supportSwiftError() &&
2304 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2305 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2306 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2307 Flags.setSwiftError();
2308 Outs.push_back(ISD::OutputArg(
2309 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2310 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2311 // Create SDNode for the swifterror virtual register.
2312 OutVals.push_back(
2313 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2314 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2315 EVT(TLI.getPointerTy(DL))));
2316 }
2317
2318 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2319 CallingConv::ID CallConv =
2320 DAG.getMachineFunction().getFunction().getCallingConv();
2321 Chain = DAG.getTargetLoweringInfo().LowerReturn(
2322 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2323
2324 // Verify that the target's LowerReturn behaved as expected.
2325 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2326 "LowerReturn didn't return a valid chain!");
2327
2328 // Update the DAG with the new chain value resulting from return lowering.
2329 DAG.setRoot(Chain);
2330 }
2331
2332 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2333 /// created for it, emit nodes to copy the value into the virtual
2334 /// registers.
CopyToExportRegsIfNeeded(const Value * V)2335 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2336 // Skip empty types
2337 if (V->getType()->isEmptyTy())
2338 return;
2339
2340 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2341 if (VMI != FuncInfo.ValueMap.end()) {
2342 assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2343 "Unused value assigned virtual registers!");
2344 CopyValueToVirtualRegister(V, VMI->second);
2345 }
2346 }
2347
2348 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2349 /// the current basic block, add it to ValueMap now so that we'll get a
2350 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)2351 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2352 // No need to export constants.
2353 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2354
2355 // Already exported?
2356 if (FuncInfo.isExportedInst(V)) return;
2357
2358 Register Reg = FuncInfo.InitializeRegForValue(V);
2359 CopyValueToVirtualRegister(V, Reg);
2360 }
2361
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)2362 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2363 const BasicBlock *FromBB) {
2364 // The operands of the setcc have to be in this block. We don't know
2365 // how to export them from some other block.
2366 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2367 // Can export from current BB.
2368 if (VI->getParent() == FromBB)
2369 return true;
2370
2371 // Is already exported, noop.
2372 return FuncInfo.isExportedInst(V);
2373 }
2374
2375 // If this is an argument, we can export it if the BB is the entry block or
2376 // if it is already exported.
2377 if (isa<Argument>(V)) {
2378 if (FromBB->isEntryBlock())
2379 return true;
2380
2381 // Otherwise, can only export this if it is already exported.
2382 return FuncInfo.isExportedInst(V);
2383 }
2384
2385 // Otherwise, constants can always be exported.
2386 return true;
2387 }
2388
2389 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2390 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const2391 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2392 const MachineBasicBlock *Dst) const {
2393 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2394 const BasicBlock *SrcBB = Src->getBasicBlock();
2395 const BasicBlock *DstBB = Dst->getBasicBlock();
2396 if (!BPI) {
2397 // If BPI is not available, set the default probability as 1 / N, where N is
2398 // the number of successors.
2399 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2400 return BranchProbability(1, SuccSize);
2401 }
2402 return BPI->getEdgeProbability(SrcBB, DstBB);
2403 }
2404
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)2405 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2406 MachineBasicBlock *Dst,
2407 BranchProbability Prob) {
2408 if (!FuncInfo.BPI)
2409 Src->addSuccessorWithoutProb(Dst);
2410 else {
2411 if (Prob.isUnknown())
2412 Prob = getEdgeProbability(Src, Dst);
2413 Src->addSuccessor(Dst, Prob);
2414 }
2415 }
2416
InBlock(const Value * V,const BasicBlock * BB)2417 static bool InBlock(const Value *V, const BasicBlock *BB) {
2418 if (const Instruction *I = dyn_cast<Instruction>(V))
2419 return I->getParent() == BB;
2420 return true;
2421 }
2422
2423 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2424 /// This function emits a branch and is used at the leaves of an OR or an
2425 /// AND operator tree.
2426 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb,bool InvertCond)2427 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2428 MachineBasicBlock *TBB,
2429 MachineBasicBlock *FBB,
2430 MachineBasicBlock *CurBB,
2431 MachineBasicBlock *SwitchBB,
2432 BranchProbability TProb,
2433 BranchProbability FProb,
2434 bool InvertCond) {
2435 const BasicBlock *BB = CurBB->getBasicBlock();
2436
2437 // If the leaf of the tree is a comparison, merge the condition into
2438 // the caseblock.
2439 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2440 // The operands of the cmp have to be in this block. We don't know
2441 // how to export them from some other block. If this is the first block
2442 // of the sequence, no exporting is needed.
2443 if (CurBB == SwitchBB ||
2444 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2445 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2446 ISD::CondCode Condition;
2447 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2448 ICmpInst::Predicate Pred =
2449 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2450 Condition = getICmpCondCode(Pred);
2451 } else {
2452 const FCmpInst *FC = cast<FCmpInst>(Cond);
2453 FCmpInst::Predicate Pred =
2454 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2455 Condition = getFCmpCondCode(Pred);
2456 if (TM.Options.NoNaNsFPMath)
2457 Condition = getFCmpCodeWithoutNaN(Condition);
2458 }
2459
2460 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2461 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2462 SL->SwitchCases.push_back(CB);
2463 return;
2464 }
2465 }
2466
2467 // Create a CaseBlock record representing this branch.
2468 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2469 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2470 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2471 SL->SwitchCases.push_back(CB);
2472 }
2473
2474 // Collect dependencies on V recursively. This is used for the cost analysis in
2475 // `shouldKeepJumpConditionsTogether`.
collectInstructionDeps(SmallMapVector<const Instruction *,bool,8> * Deps,const Value * V,SmallMapVector<const Instruction *,bool,8> * Necessary=nullptr,unsigned Depth=0)2476 static bool collectInstructionDeps(
2477 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2478 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2479 unsigned Depth = 0) {
2480 // Return false if we have an incomplete count.
2481 if (Depth >= SelectionDAG::MaxRecursionDepth)
2482 return false;
2483
2484 auto *I = dyn_cast<Instruction>(V);
2485 if (I == nullptr)
2486 return true;
2487
2488 if (Necessary != nullptr) {
2489 // This instruction is necessary for the other side of the condition so
2490 // don't count it.
2491 if (Necessary->contains(I))
2492 return true;
2493 }
2494
2495 // Already added this dep.
2496 if (!Deps->try_emplace(I, false).second)
2497 return true;
2498
2499 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2500 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2501 Depth + 1))
2502 return false;
2503 return true;
2504 }
2505
shouldKeepJumpConditionsTogether(const FunctionLoweringInfo & FuncInfo,const BranchInst & I,Instruction::BinaryOps Opc,const Value * Lhs,const Value * Rhs,TargetLoweringBase::CondMergingParams Params) const2506 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2507 const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2508 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2509 TargetLoweringBase::CondMergingParams Params) const {
2510 if (I.getNumSuccessors() != 2)
2511 return false;
2512
2513 if (!I.isConditional())
2514 return false;
2515
2516 if (Params.BaseCost < 0)
2517 return false;
2518
2519 // Baseline cost.
2520 InstructionCost CostThresh = Params.BaseCost;
2521
2522 BranchProbabilityInfo *BPI = nullptr;
2523 if (Params.LikelyBias || Params.UnlikelyBias)
2524 BPI = FuncInfo.BPI;
2525 if (BPI != nullptr) {
2526 // See if we are either likely to get an early out or compute both lhs/rhs
2527 // of the condition.
2528 BasicBlock *IfFalse = I.getSuccessor(0);
2529 BasicBlock *IfTrue = I.getSuccessor(1);
2530
2531 std::optional<bool> Likely;
2532 if (BPI->isEdgeHot(I.getParent(), IfTrue))
2533 Likely = true;
2534 else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2535 Likely = false;
2536
2537 if (Likely) {
2538 if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2539 // Its likely we will have to compute both lhs and rhs of condition
2540 CostThresh += Params.LikelyBias;
2541 else {
2542 if (Params.UnlikelyBias < 0)
2543 return false;
2544 // Its likely we will get an early out.
2545 CostThresh -= Params.UnlikelyBias;
2546 }
2547 }
2548 }
2549
2550 if (CostThresh <= 0)
2551 return false;
2552
2553 // Collect "all" instructions that lhs condition is dependent on.
2554 // Use map for stable iteration (to avoid non-determanism of iteration of
2555 // SmallPtrSet). The `bool` value is just a dummy.
2556 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2557 collectInstructionDeps(&LhsDeps, Lhs);
2558 // Collect "all" instructions that rhs condition is dependent on AND are
2559 // dependencies of lhs. This gives us an estimate on which instructions we
2560 // stand to save by splitting the condition.
2561 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2562 return false;
2563 // Add the compare instruction itself unless its a dependency on the LHS.
2564 if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2565 if (!LhsDeps.contains(RhsI))
2566 RhsDeps.try_emplace(RhsI, false);
2567
2568 const auto &TLI = DAG.getTargetLoweringInfo();
2569 const auto &TTI =
2570 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2571
2572 InstructionCost CostOfIncluding = 0;
2573 // See if this instruction will need to computed independently of whether RHS
2574 // is.
2575 Value *BrCond = I.getCondition();
2576 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2577 for (const auto *U : Ins->users()) {
2578 // If user is independent of RHS calculation we don't need to count it.
2579 if (auto *UIns = dyn_cast<Instruction>(U))
2580 if (UIns != BrCond && !RhsDeps.contains(UIns))
2581 return false;
2582 }
2583 return true;
2584 };
2585
2586 // Prune instructions from RHS Deps that are dependencies of unrelated
2587 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2588 // arbitrary and just meant to cap the how much time we spend in the pruning
2589 // loop. Its highly unlikely to come into affect.
2590 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2591 // Stop after a certain point. No incorrectness from including too many
2592 // instructions.
2593 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2594 const Instruction *ToDrop = nullptr;
2595 for (const auto &InsPair : RhsDeps) {
2596 if (!ShouldCountInsn(InsPair.first)) {
2597 ToDrop = InsPair.first;
2598 break;
2599 }
2600 }
2601 if (ToDrop == nullptr)
2602 break;
2603 RhsDeps.erase(ToDrop);
2604 }
2605
2606 for (const auto &InsPair : RhsDeps) {
2607 // Finally accumulate latency that we can only attribute to computing the
2608 // RHS condition. Use latency because we are essentially trying to calculate
2609 // the cost of the dependency chain.
2610 // Possible TODO: We could try to estimate ILP and make this more precise.
2611 CostOfIncluding +=
2612 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2613
2614 if (CostOfIncluding > CostThresh)
2615 return false;
2616 }
2617 return true;
2618 }
2619
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb,bool InvertCond)2620 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2621 MachineBasicBlock *TBB,
2622 MachineBasicBlock *FBB,
2623 MachineBasicBlock *CurBB,
2624 MachineBasicBlock *SwitchBB,
2625 Instruction::BinaryOps Opc,
2626 BranchProbability TProb,
2627 BranchProbability FProb,
2628 bool InvertCond) {
2629 // Skip over not part of the tree and remember to invert op and operands at
2630 // next level.
2631 Value *NotCond;
2632 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2633 InBlock(NotCond, CurBB->getBasicBlock())) {
2634 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2635 !InvertCond);
2636 return;
2637 }
2638
2639 const Instruction *BOp = dyn_cast<Instruction>(Cond);
2640 const Value *BOpOp0, *BOpOp1;
2641 // Compute the effective opcode for Cond, taking into account whether it needs
2642 // to be inverted, e.g.
2643 // and (not (or A, B)), C
2644 // gets lowered as
2645 // and (and (not A, not B), C)
2646 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2647 if (BOp) {
2648 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2649 ? Instruction::And
2650 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2651 ? Instruction::Or
2652 : (Instruction::BinaryOps)0);
2653 if (InvertCond) {
2654 if (BOpc == Instruction::And)
2655 BOpc = Instruction::Or;
2656 else if (BOpc == Instruction::Or)
2657 BOpc = Instruction::And;
2658 }
2659 }
2660
2661 // If this node is not part of the or/and tree, emit it as a branch.
2662 // Note that all nodes in the tree should have same opcode.
2663 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2664 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2665 !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2666 !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2667 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2668 TProb, FProb, InvertCond);
2669 return;
2670 }
2671
2672 // Create TmpBB after CurBB.
2673 MachineFunction::iterator BBI(CurBB);
2674 MachineFunction &MF = DAG.getMachineFunction();
2675 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2676 CurBB->getParent()->insert(++BBI, TmpBB);
2677
2678 if (Opc == Instruction::Or) {
2679 // Codegen X | Y as:
2680 // BB1:
2681 // jmp_if_X TBB
2682 // jmp TmpBB
2683 // TmpBB:
2684 // jmp_if_Y TBB
2685 // jmp FBB
2686 //
2687
2688 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2689 // The requirement is that
2690 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2691 // = TrueProb for original BB.
2692 // Assuming the original probabilities are A and B, one choice is to set
2693 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2694 // A/(1+B) and 2B/(1+B). This choice assumes that
2695 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2696 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2697 // TmpBB, but the math is more complicated.
2698
2699 auto NewTrueProb = TProb / 2;
2700 auto NewFalseProb = TProb / 2 + FProb;
2701 // Emit the LHS condition.
2702 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2703 NewFalseProb, InvertCond);
2704
2705 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2706 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2707 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2708 // Emit the RHS condition into TmpBB.
2709 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2710 Probs[1], InvertCond);
2711 } else {
2712 assert(Opc == Instruction::And && "Unknown merge op!");
2713 // Codegen X & Y as:
2714 // BB1:
2715 // jmp_if_X TmpBB
2716 // jmp FBB
2717 // TmpBB:
2718 // jmp_if_Y TBB
2719 // jmp FBB
2720 //
2721 // This requires creation of TmpBB after CurBB.
2722
2723 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2724 // The requirement is that
2725 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2726 // = FalseProb for original BB.
2727 // Assuming the original probabilities are A and B, one choice is to set
2728 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2729 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2730 // TrueProb for BB1 * FalseProb for TmpBB.
2731
2732 auto NewTrueProb = TProb + FProb / 2;
2733 auto NewFalseProb = FProb / 2;
2734 // Emit the LHS condition.
2735 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2736 NewFalseProb, InvertCond);
2737
2738 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2739 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2740 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2741 // Emit the RHS condition into TmpBB.
2742 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2743 Probs[1], InvertCond);
2744 }
2745 }
2746
2747 /// If the set of cases should be emitted as a series of branches, return true.
2748 /// If we should emit this as a bunch of and/or'd together conditions, return
2749 /// false.
2750 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)2751 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2752 if (Cases.size() != 2) return true;
2753
2754 // If this is two comparisons of the same values or'd or and'd together, they
2755 // will get folded into a single comparison, so don't emit two blocks.
2756 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2757 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2758 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2759 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2760 return false;
2761 }
2762
2763 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2764 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2765 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2766 Cases[0].CC == Cases[1].CC &&
2767 isa<Constant>(Cases[0].CmpRHS) &&
2768 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2769 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2770 return false;
2771 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2772 return false;
2773 }
2774
2775 return true;
2776 }
2777
visitBr(const BranchInst & I)2778 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2779 MachineBasicBlock *BrMBB = FuncInfo.MBB;
2780
2781 // Update machine-CFG edges.
2782 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2783
2784 if (I.isUnconditional()) {
2785 // Update machine-CFG edges.
2786 BrMBB->addSuccessor(Succ0MBB);
2787
2788 // If this is not a fall-through branch or optimizations are switched off,
2789 // emit the branch.
2790 if (Succ0MBB != NextBlock(BrMBB) ||
2791 TM.getOptLevel() == CodeGenOptLevel::None) {
2792 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2793 getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2794 setValue(&I, Br);
2795 DAG.setRoot(Br);
2796 }
2797
2798 return;
2799 }
2800
2801 // If this condition is one of the special cases we handle, do special stuff
2802 // now.
2803 const Value *CondVal = I.getCondition();
2804 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2805
2806 // If this is a series of conditions that are or'd or and'd together, emit
2807 // this as a sequence of branches instead of setcc's with and/or operations.
2808 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2809 // unpredictable branches, and vector extracts because those jumps are likely
2810 // expensive for any target), this should improve performance.
2811 // For example, instead of something like:
2812 // cmp A, B
2813 // C = seteq
2814 // cmp D, E
2815 // F = setle
2816 // or C, F
2817 // jnz foo
2818 // Emit:
2819 // cmp A, B
2820 // je foo
2821 // cmp D, E
2822 // jle foo
2823 const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2824 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2825 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2826 Value *Vec;
2827 const Value *BOp0, *BOp1;
2828 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2829 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2830 Opcode = Instruction::And;
2831 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2832 Opcode = Instruction::Or;
2833
2834 if (Opcode &&
2835 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2836 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2837 !shouldKeepJumpConditionsTogether(
2838 FuncInfo, I, Opcode, BOp0, BOp1,
2839 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2840 Opcode, BOp0, BOp1))) {
2841 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2842 getEdgeProbability(BrMBB, Succ0MBB),
2843 getEdgeProbability(BrMBB, Succ1MBB),
2844 /*InvertCond=*/false);
2845 // If the compares in later blocks need to use values not currently
2846 // exported from this block, export them now. This block should always
2847 // be the first entry.
2848 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2849
2850 // Allow some cases to be rejected.
2851 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2852 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2853 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2854 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2855 }
2856
2857 // Emit the branch for this block.
2858 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2859 SL->SwitchCases.erase(SL->SwitchCases.begin());
2860 return;
2861 }
2862
2863 // Okay, we decided not to do this, remove any inserted MBB's and clear
2864 // SwitchCases.
2865 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2866 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2867
2868 SL->SwitchCases.clear();
2869 }
2870 }
2871
2872 // Create a CaseBlock record representing this branch.
2873 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2874 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2875
2876 // Use visitSwitchCase to actually insert the fast branch sequence for this
2877 // cond branch.
2878 visitSwitchCase(CB, BrMBB);
2879 }
2880
2881 /// visitSwitchCase - Emits the necessary code to represent a single node in
2882 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)2883 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2884 MachineBasicBlock *SwitchBB) {
2885 SDValue Cond;
2886 SDValue CondLHS = getValue(CB.CmpLHS);
2887 SDLoc dl = CB.DL;
2888
2889 if (CB.CC == ISD::SETTRUE) {
2890 // Branch or fall through to TrueBB.
2891 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2892 SwitchBB->normalizeSuccProbs();
2893 if (CB.TrueBB != NextBlock(SwitchBB)) {
2894 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2895 DAG.getBasicBlock(CB.TrueBB)));
2896 }
2897 return;
2898 }
2899
2900 auto &TLI = DAG.getTargetLoweringInfo();
2901 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2902
2903 // Build the setcc now.
2904 if (!CB.CmpMHS) {
2905 // Fold "(X == true)" to X and "(X == false)" to !X to
2906 // handle common cases produced by branch lowering.
2907 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2908 CB.CC == ISD::SETEQ)
2909 Cond = CondLHS;
2910 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2911 CB.CC == ISD::SETEQ) {
2912 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2913 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2914 } else {
2915 SDValue CondRHS = getValue(CB.CmpRHS);
2916
2917 // If a pointer's DAG type is larger than its memory type then the DAG
2918 // values are zero-extended. This breaks signed comparisons so truncate
2919 // back to the underlying type before doing the compare.
2920 if (CondLHS.getValueType() != MemVT) {
2921 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2922 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2923 }
2924 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2925 }
2926 } else {
2927 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2928
2929 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2930 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2931
2932 SDValue CmpOp = getValue(CB.CmpMHS);
2933 EVT VT = CmpOp.getValueType();
2934
2935 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2936 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2937 ISD::SETLE);
2938 } else {
2939 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2940 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2941 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2942 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2943 }
2944 }
2945
2946 // Update successor info
2947 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2948 // TrueBB and FalseBB are always different unless the incoming IR is
2949 // degenerate. This only happens when running llc on weird IR.
2950 if (CB.TrueBB != CB.FalseBB)
2951 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2952 SwitchBB->normalizeSuccProbs();
2953
2954 // If the lhs block is the next block, invert the condition so that we can
2955 // fall through to the lhs instead of the rhs block.
2956 if (CB.TrueBB == NextBlock(SwitchBB)) {
2957 std::swap(CB.TrueBB, CB.FalseBB);
2958 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2959 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2960 }
2961
2962 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2963 MVT::Other, getControlRoot(), Cond,
2964 DAG.getBasicBlock(CB.TrueBB));
2965
2966 setValue(CurInst, BrCond);
2967
2968 // Insert the false branch. Do this even if it's a fall through branch,
2969 // this makes it easier to do DAG optimizations which require inverting
2970 // the branch condition.
2971 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2972 DAG.getBasicBlock(CB.FalseBB));
2973
2974 DAG.setRoot(BrCond);
2975 }
2976
2977 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(SwitchCG::JumpTable & JT)2978 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2979 // Emit the code for the jump table
2980 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2981 assert(JT.Reg != -1U && "Should lower JT Header first!");
2982 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2983 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2984 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2985 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2986 Index.getValue(1), Table, Index);
2987 DAG.setRoot(BrJumpTable);
2988 }
2989
2990 /// visitJumpTableHeader - This function emits necessary code to produce index
2991 /// in the JumpTable from switch case.
visitJumpTableHeader(SwitchCG::JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)2992 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2993 JumpTableHeader &JTH,
2994 MachineBasicBlock *SwitchBB) {
2995 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2996 const SDLoc &dl = *JT.SL;
2997
2998 // Subtract the lowest switch case value from the value being switched on.
2999 SDValue SwitchOp = getValue(JTH.SValue);
3000 EVT VT = SwitchOp.getValueType();
3001 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3002 DAG.getConstant(JTH.First, dl, VT));
3003
3004 // The SDNode we just created, which holds the value being switched on minus
3005 // the smallest case value, needs to be copied to a virtual register so it
3006 // can be used as an index into the jump table in a subsequent basic block.
3007 // This value may be smaller or larger than the target's pointer type, and
3008 // therefore require extension or truncating.
3009 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3010 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
3011
3012 unsigned JumpTableReg =
3013 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
3014 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
3015 JumpTableReg, SwitchOp);
3016 JT.Reg = JumpTableReg;
3017
3018 if (!JTH.FallthroughUnreachable) {
3019 // Emit the range check for the jump table, and branch to the default block
3020 // for the switch statement if the value being switched on exceeds the
3021 // largest case in the switch.
3022 SDValue CMP = DAG.getSetCC(
3023 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3024 Sub.getValueType()),
3025 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3026
3027 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3028 MVT::Other, CopyTo, CMP,
3029 DAG.getBasicBlock(JT.Default));
3030
3031 // Avoid emitting unnecessary branches to the next block.
3032 if (JT.MBB != NextBlock(SwitchBB))
3033 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3034 DAG.getBasicBlock(JT.MBB));
3035
3036 DAG.setRoot(BrCond);
3037 } else {
3038 // Avoid emitting unnecessary branches to the next block.
3039 if (JT.MBB != NextBlock(SwitchBB))
3040 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3041 DAG.getBasicBlock(JT.MBB)));
3042 else
3043 DAG.setRoot(CopyTo);
3044 }
3045 }
3046
3047 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3048 /// variable if there exists one.
getLoadStackGuard(SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain)3049 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3050 SDValue &Chain) {
3051 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3052 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3053 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3054 MachineFunction &MF = DAG.getMachineFunction();
3055 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3056 MachineSDNode *Node =
3057 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3058 if (Global) {
3059 MachinePointerInfo MPInfo(Global);
3060 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3061 MachineMemOperand::MODereferenceable;
3062 MachineMemOperand *MemRef = MF.getMachineMemOperand(
3063 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3064 DAG.getEVTAlign(PtrTy));
3065 DAG.setNodeMemRefs(Node, {MemRef});
3066 }
3067 if (PtrTy != PtrMemTy)
3068 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3069 return SDValue(Node, 0);
3070 }
3071
3072 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3073 /// tail spliced into a stack protector check success bb.
3074 ///
3075 /// For a high level explanation of how this fits into the stack protector
3076 /// generation see the comment on the declaration of class
3077 /// StackProtectorDescriptor.
visitSPDescriptorParent(StackProtectorDescriptor & SPD,MachineBasicBlock * ParentBB)3078 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3079 MachineBasicBlock *ParentBB) {
3080
3081 // First create the loads to the guard/stack slot for the comparison.
3082 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3083 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3084 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3085
3086 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3087 int FI = MFI.getStackProtectorIndex();
3088
3089 SDValue Guard;
3090 SDLoc dl = getCurSDLoc();
3091 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3092 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3093 Align Align =
3094 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3095
3096 // Generate code to load the content of the guard slot.
3097 SDValue GuardVal = DAG.getLoad(
3098 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3099 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3100 MachineMemOperand::MOVolatile);
3101
3102 if (TLI.useStackGuardXorFP())
3103 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3104
3105 // Retrieve guard check function, nullptr if instrumentation is inlined.
3106 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3107 // The target provides a guard check function to validate the guard value.
3108 // Generate a call to that function with the content of the guard slot as
3109 // argument.
3110 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3111 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3112
3113 TargetLowering::ArgListTy Args;
3114 TargetLowering::ArgListEntry Entry;
3115 Entry.Node = GuardVal;
3116 Entry.Ty = FnTy->getParamType(0);
3117 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3118 Entry.IsInReg = true;
3119 Args.push_back(Entry);
3120
3121 TargetLowering::CallLoweringInfo CLI(DAG);
3122 CLI.setDebugLoc(getCurSDLoc())
3123 .setChain(DAG.getEntryNode())
3124 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3125 getValue(GuardCheckFn), std::move(Args));
3126
3127 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3128 DAG.setRoot(Result.second);
3129 return;
3130 }
3131
3132 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3133 // Otherwise, emit a volatile load to retrieve the stack guard value.
3134 SDValue Chain = DAG.getEntryNode();
3135 if (TLI.useLoadStackGuardNode()) {
3136 Guard = getLoadStackGuard(DAG, dl, Chain);
3137 } else {
3138 const Value *IRGuard = TLI.getSDagStackGuard(M);
3139 SDValue GuardPtr = getValue(IRGuard);
3140
3141 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3142 MachinePointerInfo(IRGuard, 0), Align,
3143 MachineMemOperand::MOVolatile);
3144 }
3145
3146 // Perform the comparison via a getsetcc.
3147 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3148 *DAG.getContext(),
3149 Guard.getValueType()),
3150 Guard, GuardVal, ISD::SETNE);
3151
3152 // If the guard/stackslot do not equal, branch to failure MBB.
3153 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3154 MVT::Other, GuardVal.getOperand(0),
3155 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3156 // Otherwise branch to success MBB.
3157 SDValue Br = DAG.getNode(ISD::BR, dl,
3158 MVT::Other, BrCond,
3159 DAG.getBasicBlock(SPD.getSuccessMBB()));
3160
3161 DAG.setRoot(Br);
3162 }
3163
3164 /// Codegen the failure basic block for a stack protector check.
3165 ///
3166 /// A failure stack protector machine basic block consists simply of a call to
3167 /// __stack_chk_fail().
3168 ///
3169 /// For a high level explanation of how this fits into the stack protector
3170 /// generation see the comment on the declaration of class
3171 /// StackProtectorDescriptor.
3172 void
visitSPDescriptorFailure(StackProtectorDescriptor & SPD)3173 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3174 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3175 TargetLowering::MakeLibCallOptions CallOptions;
3176 CallOptions.setDiscardResult(true);
3177 SDValue Chain =
3178 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3179 std::nullopt, CallOptions, getCurSDLoc())
3180 .second;
3181 // On PS4/PS5, the "return address" must still be within the calling
3182 // function, even if it's at the very end, so emit an explicit TRAP here.
3183 // Passing 'true' for doesNotReturn above won't generate the trap for us.
3184 if (TM.getTargetTriple().isPS())
3185 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3186 // WebAssembly needs an unreachable instruction after a non-returning call,
3187 // because the function return type can be different from __stack_chk_fail's
3188 // return type (void).
3189 if (TM.getTargetTriple().isWasm())
3190 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3191
3192 DAG.setRoot(Chain);
3193 }
3194
3195 /// visitBitTestHeader - This function emits necessary code to produce value
3196 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)3197 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3198 MachineBasicBlock *SwitchBB) {
3199 SDLoc dl = getCurSDLoc();
3200
3201 // Subtract the minimum value.
3202 SDValue SwitchOp = getValue(B.SValue);
3203 EVT VT = SwitchOp.getValueType();
3204 SDValue RangeSub =
3205 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3206
3207 // Determine the type of the test operands.
3208 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3209 bool UsePtrType = false;
3210 if (!TLI.isTypeLegal(VT)) {
3211 UsePtrType = true;
3212 } else {
3213 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3214 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3215 // Switch table case range are encoded into series of masks.
3216 // Just use pointer type, it's guaranteed to fit.
3217 UsePtrType = true;
3218 break;
3219 }
3220 }
3221 SDValue Sub = RangeSub;
3222 if (UsePtrType) {
3223 VT = TLI.getPointerTy(DAG.getDataLayout());
3224 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3225 }
3226
3227 B.RegVT = VT.getSimpleVT();
3228 B.Reg = FuncInfo.CreateReg(B.RegVT);
3229 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3230
3231 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3232
3233 if (!B.FallthroughUnreachable)
3234 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3235 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3236 SwitchBB->normalizeSuccProbs();
3237
3238 SDValue Root = CopyTo;
3239 if (!B.FallthroughUnreachable) {
3240 // Conditional branch to the default block.
3241 SDValue RangeCmp = DAG.getSetCC(dl,
3242 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3243 RangeSub.getValueType()),
3244 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3245 ISD::SETUGT);
3246
3247 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3248 DAG.getBasicBlock(B.Default));
3249 }
3250
3251 // Avoid emitting unnecessary branches to the next block.
3252 if (MBB != NextBlock(SwitchBB))
3253 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3254
3255 DAG.setRoot(Root);
3256 }
3257
3258 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)3259 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3260 MachineBasicBlock* NextMBB,
3261 BranchProbability BranchProbToNext,
3262 unsigned Reg,
3263 BitTestCase &B,
3264 MachineBasicBlock *SwitchBB) {
3265 SDLoc dl = getCurSDLoc();
3266 MVT VT = BB.RegVT;
3267 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3268 SDValue Cmp;
3269 unsigned PopCount = llvm::popcount(B.Mask);
3270 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3271 if (PopCount == 1) {
3272 // Testing for a single bit; just compare the shift count with what it
3273 // would need to be to shift a 1 bit in that position.
3274 Cmp = DAG.getSetCC(
3275 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3276 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3277 ISD::SETEQ);
3278 } else if (PopCount == BB.Range) {
3279 // There is only one zero bit in the range, test for it directly.
3280 Cmp = DAG.getSetCC(
3281 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3282 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3283 } else {
3284 // Make desired shift
3285 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3286 DAG.getConstant(1, dl, VT), ShiftOp);
3287
3288 // Emit bit tests and jumps
3289 SDValue AndOp = DAG.getNode(ISD::AND, dl,
3290 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3291 Cmp = DAG.getSetCC(
3292 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3293 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3294 }
3295
3296 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3297 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3298 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3299 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3300 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3301 // one as they are relative probabilities (and thus work more like weights),
3302 // and hence we need to normalize them to let the sum of them become one.
3303 SwitchBB->normalizeSuccProbs();
3304
3305 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3306 MVT::Other, getControlRoot(),
3307 Cmp, DAG.getBasicBlock(B.TargetBB));
3308
3309 // Avoid emitting unnecessary branches to the next block.
3310 if (NextMBB != NextBlock(SwitchBB))
3311 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3312 DAG.getBasicBlock(NextMBB));
3313
3314 DAG.setRoot(BrAnd);
3315 }
3316
visitInvoke(const InvokeInst & I)3317 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3318 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3319
3320 // Retrieve successors. Look through artificial IR level blocks like
3321 // catchswitch for successors.
3322 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3323 const BasicBlock *EHPadBB = I.getSuccessor(1);
3324 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3325
3326 // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3327 // have to do anything here to lower funclet bundles.
3328 assert(!I.hasOperandBundlesOtherThan(
3329 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3330 LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3331 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3332 LLVMContext::OB_clang_arc_attachedcall}) &&
3333 "Cannot lower invokes with arbitrary operand bundles yet!");
3334
3335 const Value *Callee(I.getCalledOperand());
3336 const Function *Fn = dyn_cast<Function>(Callee);
3337 if (isa<InlineAsm>(Callee))
3338 visitInlineAsm(I, EHPadBB);
3339 else if (Fn && Fn->isIntrinsic()) {
3340 switch (Fn->getIntrinsicID()) {
3341 default:
3342 llvm_unreachable("Cannot invoke this intrinsic");
3343 case Intrinsic::donothing:
3344 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3345 case Intrinsic::seh_try_begin:
3346 case Intrinsic::seh_scope_begin:
3347 case Intrinsic::seh_try_end:
3348 case Intrinsic::seh_scope_end:
3349 if (EHPadMBB)
3350 // a block referenced by EH table
3351 // so dtor-funclet not removed by opts
3352 EHPadMBB->setMachineBlockAddressTaken();
3353 break;
3354 case Intrinsic::experimental_patchpoint_void:
3355 case Intrinsic::experimental_patchpoint:
3356 visitPatchpoint(I, EHPadBB);
3357 break;
3358 case Intrinsic::experimental_gc_statepoint:
3359 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3360 break;
3361 case Intrinsic::wasm_rethrow: {
3362 // This is usually done in visitTargetIntrinsic, but this intrinsic is
3363 // special because it can be invoked, so we manually lower it to a DAG
3364 // node here.
3365 SmallVector<SDValue, 8> Ops;
3366 Ops.push_back(getControlRoot()); // inchain for the terminator node
3367 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3368 Ops.push_back(
3369 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3370 TLI.getPointerTy(DAG.getDataLayout())));
3371 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3372 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3373 break;
3374 }
3375 }
3376 } else if (I.hasDeoptState()) {
3377 // Currently we do not lower any intrinsic calls with deopt operand bundles.
3378 // Eventually we will support lowering the @llvm.experimental.deoptimize
3379 // intrinsic, and right now there are no plans to support other intrinsics
3380 // with deopt state.
3381 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3382 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3383 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3384 } else {
3385 LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3386 }
3387
3388 // If the value of the invoke is used outside of its defining block, make it
3389 // available as a virtual register.
3390 // We already took care of the exported value for the statepoint instruction
3391 // during call to the LowerStatepoint.
3392 if (!isa<GCStatepointInst>(I)) {
3393 CopyToExportRegsIfNeeded(&I);
3394 }
3395
3396 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3397 BranchProbabilityInfo *BPI = FuncInfo.BPI;
3398 BranchProbability EHPadBBProb =
3399 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3400 : BranchProbability::getZero();
3401 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3402
3403 // Update successor info.
3404 addSuccessorWithProb(InvokeMBB, Return);
3405 for (auto &UnwindDest : UnwindDests) {
3406 UnwindDest.first->setIsEHPad();
3407 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3408 }
3409 InvokeMBB->normalizeSuccProbs();
3410
3411 // Drop into normal successor.
3412 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3413 DAG.getBasicBlock(Return)));
3414 }
3415
visitCallBr(const CallBrInst & I)3416 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3417 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3418
3419 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3420 // have to do anything here to lower funclet bundles.
3421 assert(!I.hasOperandBundlesOtherThan(
3422 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3423 "Cannot lower callbrs with arbitrary operand bundles yet!");
3424
3425 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3426 visitInlineAsm(I);
3427 CopyToExportRegsIfNeeded(&I);
3428
3429 // Retrieve successors.
3430 SmallPtrSet<BasicBlock *, 8> Dests;
3431 Dests.insert(I.getDefaultDest());
3432 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3433
3434 // Update successor info.
3435 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3436 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3437 BasicBlock *Dest = I.getIndirectDest(i);
3438 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3439 Target->setIsInlineAsmBrIndirectTarget();
3440 Target->setMachineBlockAddressTaken();
3441 Target->setLabelMustBeEmitted();
3442 // Don't add duplicate machine successors.
3443 if (Dests.insert(Dest).second)
3444 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3445 }
3446 CallBrMBB->normalizeSuccProbs();
3447
3448 // Drop into default successor.
3449 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3450 MVT::Other, getControlRoot(),
3451 DAG.getBasicBlock(Return)));
3452 }
3453
visitResume(const ResumeInst & RI)3454 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3455 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3456 }
3457
visitLandingPad(const LandingPadInst & LP)3458 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3459 assert(FuncInfo.MBB->isEHPad() &&
3460 "Call to landingpad not in landing pad!");
3461
3462 // If there aren't registers to copy the values into (e.g., during SjLj
3463 // exceptions), then don't bother to create these DAG nodes.
3464 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3465 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3466 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3467 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3468 return;
3469
3470 // If landingpad's return type is token type, we don't create DAG nodes
3471 // for its exception pointer and selector value. The extraction of exception
3472 // pointer or selector value from token type landingpads is not currently
3473 // supported.
3474 if (LP.getType()->isTokenTy())
3475 return;
3476
3477 SmallVector<EVT, 2> ValueVTs;
3478 SDLoc dl = getCurSDLoc();
3479 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3480 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3481
3482 // Get the two live-in registers as SDValues. The physregs have already been
3483 // copied into virtual registers.
3484 SDValue Ops[2];
3485 if (FuncInfo.ExceptionPointerVirtReg) {
3486 Ops[0] = DAG.getZExtOrTrunc(
3487 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3488 FuncInfo.ExceptionPointerVirtReg,
3489 TLI.getPointerTy(DAG.getDataLayout())),
3490 dl, ValueVTs[0]);
3491 } else {
3492 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3493 }
3494 Ops[1] = DAG.getZExtOrTrunc(
3495 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3496 FuncInfo.ExceptionSelectorVirtReg,
3497 TLI.getPointerTy(DAG.getDataLayout())),
3498 dl, ValueVTs[1]);
3499
3500 // Merge into one.
3501 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3502 DAG.getVTList(ValueVTs), Ops);
3503 setValue(&LP, Res);
3504 }
3505
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)3506 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3507 MachineBasicBlock *Last) {
3508 // Update JTCases.
3509 for (JumpTableBlock &JTB : SL->JTCases)
3510 if (JTB.first.HeaderBB == First)
3511 JTB.first.HeaderBB = Last;
3512
3513 // Update BitTestCases.
3514 for (BitTestBlock &BTB : SL->BitTestCases)
3515 if (BTB.Parent == First)
3516 BTB.Parent = Last;
3517 }
3518
visitIndirectBr(const IndirectBrInst & I)3519 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3520 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3521
3522 // Update machine-CFG edges with unique successors.
3523 SmallSet<BasicBlock*, 32> Done;
3524 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3525 BasicBlock *BB = I.getSuccessor(i);
3526 bool Inserted = Done.insert(BB).second;
3527 if (!Inserted)
3528 continue;
3529
3530 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3531 addSuccessorWithProb(IndirectBrMBB, Succ);
3532 }
3533 IndirectBrMBB->normalizeSuccProbs();
3534
3535 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3536 MVT::Other, getControlRoot(),
3537 getValue(I.getAddress())));
3538 }
3539
visitUnreachable(const UnreachableInst & I)3540 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3541 if (!DAG.getTarget().Options.TrapUnreachable)
3542 return;
3543
3544 // We may be able to ignore unreachable behind a noreturn call.
3545 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode());
3546 Call && Call->doesNotReturn()) {
3547 if (DAG.getTarget().Options.NoTrapAfterNoreturn)
3548 return;
3549 // Do not emit an additional trap instruction.
3550 if (Call->isNonContinuableTrap())
3551 return;
3552 }
3553
3554 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3555 }
3556
visitUnary(const User & I,unsigned Opcode)3557 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3558 SDNodeFlags Flags;
3559 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3560 Flags.copyFMF(*FPOp);
3561
3562 SDValue Op = getValue(I.getOperand(0));
3563 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3564 Op, Flags);
3565 setValue(&I, UnNodeValue);
3566 }
3567
visitBinary(const User & I,unsigned Opcode)3568 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3569 SDNodeFlags Flags;
3570 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3571 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3572 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3573 }
3574 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3575 Flags.setExact(ExactOp->isExact());
3576 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3577 Flags.setDisjoint(DisjointOp->isDisjoint());
3578 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3579 Flags.copyFMF(*FPOp);
3580
3581 SDValue Op1 = getValue(I.getOperand(0));
3582 SDValue Op2 = getValue(I.getOperand(1));
3583 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3584 Op1, Op2, Flags);
3585 setValue(&I, BinNodeValue);
3586 }
3587
visitShift(const User & I,unsigned Opcode)3588 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3589 SDValue Op1 = getValue(I.getOperand(0));
3590 SDValue Op2 = getValue(I.getOperand(1));
3591
3592 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3593 Op1.getValueType(), DAG.getDataLayout());
3594
3595 // Coerce the shift amount to the right type if we can. This exposes the
3596 // truncate or zext to optimization early.
3597 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3598 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3599 "Unexpected shift type");
3600 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3601 }
3602
3603 bool nuw = false;
3604 bool nsw = false;
3605 bool exact = false;
3606
3607 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3608
3609 if (const OverflowingBinaryOperator *OFBinOp =
3610 dyn_cast<const OverflowingBinaryOperator>(&I)) {
3611 nuw = OFBinOp->hasNoUnsignedWrap();
3612 nsw = OFBinOp->hasNoSignedWrap();
3613 }
3614 if (const PossiblyExactOperator *ExactOp =
3615 dyn_cast<const PossiblyExactOperator>(&I))
3616 exact = ExactOp->isExact();
3617 }
3618 SDNodeFlags Flags;
3619 Flags.setExact(exact);
3620 Flags.setNoSignedWrap(nsw);
3621 Flags.setNoUnsignedWrap(nuw);
3622 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3623 Flags);
3624 setValue(&I, Res);
3625 }
3626
visitSDiv(const User & I)3627 void SelectionDAGBuilder::visitSDiv(const User &I) {
3628 SDValue Op1 = getValue(I.getOperand(0));
3629 SDValue Op2 = getValue(I.getOperand(1));
3630
3631 SDNodeFlags Flags;
3632 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3633 cast<PossiblyExactOperator>(&I)->isExact());
3634 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3635 Op2, Flags));
3636 }
3637
visitICmp(const ICmpInst & I)3638 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3639 ICmpInst::Predicate predicate = I.getPredicate();
3640 SDValue Op1 = getValue(I.getOperand(0));
3641 SDValue Op2 = getValue(I.getOperand(1));
3642 ISD::CondCode Opcode = getICmpCondCode(predicate);
3643
3644 auto &TLI = DAG.getTargetLoweringInfo();
3645 EVT MemVT =
3646 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3647
3648 // If a pointer's DAG type is larger than its memory type then the DAG values
3649 // are zero-extended. This breaks signed comparisons so truncate back to the
3650 // underlying type before doing the compare.
3651 if (Op1.getValueType() != MemVT) {
3652 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3653 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3654 }
3655
3656 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3657 I.getType());
3658 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3659 }
3660
visitFCmp(const FCmpInst & I)3661 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3662 FCmpInst::Predicate predicate = I.getPredicate();
3663 SDValue Op1 = getValue(I.getOperand(0));
3664 SDValue Op2 = getValue(I.getOperand(1));
3665
3666 ISD::CondCode Condition = getFCmpCondCode(predicate);
3667 auto *FPMO = cast<FPMathOperator>(&I);
3668 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3669 Condition = getFCmpCodeWithoutNaN(Condition);
3670
3671 SDNodeFlags Flags;
3672 Flags.copyFMF(*FPMO);
3673 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3674
3675 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3676 I.getType());
3677 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3678 }
3679
3680 // Check if the condition of the select has one use or two users that are both
3681 // selects with the same condition.
hasOnlySelectUsers(const Value * Cond)3682 static bool hasOnlySelectUsers(const Value *Cond) {
3683 return llvm::all_of(Cond->users(), [](const Value *V) {
3684 return isa<SelectInst>(V);
3685 });
3686 }
3687
visitSelect(const User & I)3688 void SelectionDAGBuilder::visitSelect(const User &I) {
3689 SmallVector<EVT, 4> ValueVTs;
3690 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3691 ValueVTs);
3692 unsigned NumValues = ValueVTs.size();
3693 if (NumValues == 0) return;
3694
3695 SmallVector<SDValue, 4> Values(NumValues);
3696 SDValue Cond = getValue(I.getOperand(0));
3697 SDValue LHSVal = getValue(I.getOperand(1));
3698 SDValue RHSVal = getValue(I.getOperand(2));
3699 SmallVector<SDValue, 1> BaseOps(1, Cond);
3700 ISD::NodeType OpCode =
3701 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3702
3703 bool IsUnaryAbs = false;
3704 bool Negate = false;
3705
3706 SDNodeFlags Flags;
3707 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3708 Flags.copyFMF(*FPOp);
3709
3710 Flags.setUnpredictable(
3711 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3712
3713 // Min/max matching is only viable if all output VTs are the same.
3714 if (all_equal(ValueVTs)) {
3715 EVT VT = ValueVTs[0];
3716 LLVMContext &Ctx = *DAG.getContext();
3717 auto &TLI = DAG.getTargetLoweringInfo();
3718
3719 // We care about the legality of the operation after it has been type
3720 // legalized.
3721 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3722 VT = TLI.getTypeToTransformTo(Ctx, VT);
3723
3724 // If the vselect is legal, assume we want to leave this as a vector setcc +
3725 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3726 // min/max is legal on the scalar type.
3727 bool UseScalarMinMax = VT.isVector() &&
3728 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3729
3730 // ValueTracking's select pattern matching does not account for -0.0,
3731 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3732 // -0.0 is less than +0.0.
3733 Value *LHS, *RHS;
3734 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3735 ISD::NodeType Opc = ISD::DELETED_NODE;
3736 switch (SPR.Flavor) {
3737 case SPF_UMAX: Opc = ISD::UMAX; break;
3738 case SPF_UMIN: Opc = ISD::UMIN; break;
3739 case SPF_SMAX: Opc = ISD::SMAX; break;
3740 case SPF_SMIN: Opc = ISD::SMIN; break;
3741 case SPF_FMINNUM:
3742 switch (SPR.NaNBehavior) {
3743 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3744 case SPNB_RETURNS_NAN: break;
3745 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3746 case SPNB_RETURNS_ANY:
3747 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3748 (UseScalarMinMax &&
3749 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3750 Opc = ISD::FMINNUM;
3751 break;
3752 }
3753 break;
3754 case SPF_FMAXNUM:
3755 switch (SPR.NaNBehavior) {
3756 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3757 case SPNB_RETURNS_NAN: break;
3758 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3759 case SPNB_RETURNS_ANY:
3760 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3761 (UseScalarMinMax &&
3762 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3763 Opc = ISD::FMAXNUM;
3764 break;
3765 }
3766 break;
3767 case SPF_NABS:
3768 Negate = true;
3769 [[fallthrough]];
3770 case SPF_ABS:
3771 IsUnaryAbs = true;
3772 Opc = ISD::ABS;
3773 break;
3774 default: break;
3775 }
3776
3777 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3778 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3779 (UseScalarMinMax &&
3780 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3781 // If the underlying comparison instruction is used by any other
3782 // instruction, the consumed instructions won't be destroyed, so it is
3783 // not profitable to convert to a min/max.
3784 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3785 OpCode = Opc;
3786 LHSVal = getValue(LHS);
3787 RHSVal = getValue(RHS);
3788 BaseOps.clear();
3789 }
3790
3791 if (IsUnaryAbs) {
3792 OpCode = Opc;
3793 LHSVal = getValue(LHS);
3794 BaseOps.clear();
3795 }
3796 }
3797
3798 if (IsUnaryAbs) {
3799 for (unsigned i = 0; i != NumValues; ++i) {
3800 SDLoc dl = getCurSDLoc();
3801 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3802 Values[i] =
3803 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3804 if (Negate)
3805 Values[i] = DAG.getNegative(Values[i], dl, VT);
3806 }
3807 } else {
3808 for (unsigned i = 0; i != NumValues; ++i) {
3809 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3810 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3811 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3812 Values[i] = DAG.getNode(
3813 OpCode, getCurSDLoc(),
3814 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3815 }
3816 }
3817
3818 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3819 DAG.getVTList(ValueVTs), Values));
3820 }
3821
visitTrunc(const User & I)3822 void SelectionDAGBuilder::visitTrunc(const User &I) {
3823 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3824 SDValue N = getValue(I.getOperand(0));
3825 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3826 I.getType());
3827 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3828 }
3829
visitZExt(const User & I)3830 void SelectionDAGBuilder::visitZExt(const User &I) {
3831 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3832 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3833 SDValue N = getValue(I.getOperand(0));
3834 auto &TLI = DAG.getTargetLoweringInfo();
3835 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3836
3837 SDNodeFlags Flags;
3838 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3839 Flags.setNonNeg(PNI->hasNonNeg());
3840
3841 // Eagerly use nonneg information to canonicalize towards sign_extend if
3842 // that is the target's preference.
3843 // TODO: Let the target do this later.
3844 if (Flags.hasNonNeg() &&
3845 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3846 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3847 return;
3848 }
3849
3850 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3851 }
3852
visitSExt(const User & I)3853 void SelectionDAGBuilder::visitSExt(const User &I) {
3854 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3855 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3856 SDValue N = getValue(I.getOperand(0));
3857 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3858 I.getType());
3859 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3860 }
3861
visitFPTrunc(const User & I)3862 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3863 // FPTrunc is never a no-op cast, no need to check
3864 SDValue N = getValue(I.getOperand(0));
3865 SDLoc dl = getCurSDLoc();
3866 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3867 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3868 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3869 DAG.getTargetConstant(
3870 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3871 }
3872
visitFPExt(const User & I)3873 void SelectionDAGBuilder::visitFPExt(const User &I) {
3874 // FPExt is never a no-op cast, no need to check
3875 SDValue N = getValue(I.getOperand(0));
3876 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3877 I.getType());
3878 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3879 }
3880
visitFPToUI(const User & I)3881 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3882 // FPToUI is never a no-op cast, no need to check
3883 SDValue N = getValue(I.getOperand(0));
3884 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3885 I.getType());
3886 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3887 }
3888
visitFPToSI(const User & I)3889 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3890 // FPToSI is never a no-op cast, no need to check
3891 SDValue N = getValue(I.getOperand(0));
3892 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3893 I.getType());
3894 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3895 }
3896
visitUIToFP(const User & I)3897 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3898 // UIToFP is never a no-op cast, no need to check
3899 SDValue N = getValue(I.getOperand(0));
3900 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3901 I.getType());
3902 SDNodeFlags Flags;
3903 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3904 Flags.setNonNeg(PNI->hasNonNeg());
3905
3906 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3907 }
3908
visitSIToFP(const User & I)3909 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3910 // SIToFP is never a no-op cast, no need to check
3911 SDValue N = getValue(I.getOperand(0));
3912 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3913 I.getType());
3914 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3915 }
3916
visitPtrToInt(const User & I)3917 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3918 // What to do depends on the size of the integer and the size of the pointer.
3919 // We can either truncate, zero extend, or no-op, accordingly.
3920 SDValue N = getValue(I.getOperand(0));
3921 auto &TLI = DAG.getTargetLoweringInfo();
3922 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3923 I.getType());
3924 EVT PtrMemVT =
3925 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3926 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3927 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3928 setValue(&I, N);
3929 }
3930
visitIntToPtr(const User & I)3931 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3932 // What to do depends on the size of the integer and the size of the pointer.
3933 // We can either truncate, zero extend, or no-op, accordingly.
3934 SDValue N = getValue(I.getOperand(0));
3935 auto &TLI = DAG.getTargetLoweringInfo();
3936 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3937 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3938 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3939 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3940 setValue(&I, N);
3941 }
3942
visitBitCast(const User & I)3943 void SelectionDAGBuilder::visitBitCast(const User &I) {
3944 SDValue N = getValue(I.getOperand(0));
3945 SDLoc dl = getCurSDLoc();
3946 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3947 I.getType());
3948
3949 // BitCast assures us that source and destination are the same size so this is
3950 // either a BITCAST or a no-op.
3951 if (DestVT != N.getValueType())
3952 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3953 DestVT, N)); // convert types.
3954 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3955 // might fold any kind of constant expression to an integer constant and that
3956 // is not what we are looking for. Only recognize a bitcast of a genuine
3957 // constant integer as an opaque constant.
3958 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3959 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3960 /*isOpaque*/true));
3961 else
3962 setValue(&I, N); // noop cast.
3963 }
3964
visitAddrSpaceCast(const User & I)3965 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3966 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3967 const Value *SV = I.getOperand(0);
3968 SDValue N = getValue(SV);
3969 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3970
3971 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3972 unsigned DestAS = I.getType()->getPointerAddressSpace();
3973
3974 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3975 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3976
3977 setValue(&I, N);
3978 }
3979
visitInsertElement(const User & I)3980 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3981 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3982 SDValue InVec = getValue(I.getOperand(0));
3983 SDValue InVal = getValue(I.getOperand(1));
3984 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3985 TLI.getVectorIdxTy(DAG.getDataLayout()));
3986 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3987 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3988 InVec, InVal, InIdx));
3989 }
3990
visitExtractElement(const User & I)3991 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3992 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3993 SDValue InVec = getValue(I.getOperand(0));
3994 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3995 TLI.getVectorIdxTy(DAG.getDataLayout()));
3996 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3997 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3998 InVec, InIdx));
3999 }
4000
visitShuffleVector(const User & I)4001 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4002 SDValue Src1 = getValue(I.getOperand(0));
4003 SDValue Src2 = getValue(I.getOperand(1));
4004 ArrayRef<int> Mask;
4005 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4006 Mask = SVI->getShuffleMask();
4007 else
4008 Mask = cast<ConstantExpr>(I).getShuffleMask();
4009 SDLoc DL = getCurSDLoc();
4010 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4011 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4012 EVT SrcVT = Src1.getValueType();
4013
4014 if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4015 VT.isScalableVector()) {
4016 // Canonical splat form of first element of first input vector.
4017 SDValue FirstElt =
4018 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4019 DAG.getVectorIdxConstant(0, DL));
4020 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4021 return;
4022 }
4023
4024 // For now, we only handle splats for scalable vectors.
4025 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4026 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4027 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4028
4029 unsigned SrcNumElts = SrcVT.getVectorNumElements();
4030 unsigned MaskNumElts = Mask.size();
4031
4032 if (SrcNumElts == MaskNumElts) {
4033 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4034 return;
4035 }
4036
4037 // Normalize the shuffle vector since mask and vector length don't match.
4038 if (SrcNumElts < MaskNumElts) {
4039 // Mask is longer than the source vectors. We can use concatenate vector to
4040 // make the mask and vectors lengths match.
4041
4042 if (MaskNumElts % SrcNumElts == 0) {
4043 // Mask length is a multiple of the source vector length.
4044 // Check if the shuffle is some kind of concatenation of the input
4045 // vectors.
4046 unsigned NumConcat = MaskNumElts / SrcNumElts;
4047 bool IsConcat = true;
4048 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4049 for (unsigned i = 0; i != MaskNumElts; ++i) {
4050 int Idx = Mask[i];
4051 if (Idx < 0)
4052 continue;
4053 // Ensure the indices in each SrcVT sized piece are sequential and that
4054 // the same source is used for the whole piece.
4055 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4056 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4057 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4058 IsConcat = false;
4059 break;
4060 }
4061 // Remember which source this index came from.
4062 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4063 }
4064
4065 // The shuffle is concatenating multiple vectors together. Just emit
4066 // a CONCAT_VECTORS operation.
4067 if (IsConcat) {
4068 SmallVector<SDValue, 8> ConcatOps;
4069 for (auto Src : ConcatSrcs) {
4070 if (Src < 0)
4071 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4072 else if (Src == 0)
4073 ConcatOps.push_back(Src1);
4074 else
4075 ConcatOps.push_back(Src2);
4076 }
4077 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4078 return;
4079 }
4080 }
4081
4082 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4083 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4084 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4085 PaddedMaskNumElts);
4086
4087 // Pad both vectors with undefs to make them the same length as the mask.
4088 SDValue UndefVal = DAG.getUNDEF(SrcVT);
4089
4090 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4091 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4092 MOps1[0] = Src1;
4093 MOps2[0] = Src2;
4094
4095 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4096 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4097
4098 // Readjust mask for new input vector length.
4099 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4100 for (unsigned i = 0; i != MaskNumElts; ++i) {
4101 int Idx = Mask[i];
4102 if (Idx >= (int)SrcNumElts)
4103 Idx -= SrcNumElts - PaddedMaskNumElts;
4104 MappedOps[i] = Idx;
4105 }
4106
4107 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4108
4109 // If the concatenated vector was padded, extract a subvector with the
4110 // correct number of elements.
4111 if (MaskNumElts != PaddedMaskNumElts)
4112 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4113 DAG.getVectorIdxConstant(0, DL));
4114
4115 setValue(&I, Result);
4116 return;
4117 }
4118
4119 if (SrcNumElts > MaskNumElts) {
4120 // Analyze the access pattern of the vector to see if we can extract
4121 // two subvectors and do the shuffle.
4122 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
4123 bool CanExtract = true;
4124 for (int Idx : Mask) {
4125 unsigned Input = 0;
4126 if (Idx < 0)
4127 continue;
4128
4129 if (Idx >= (int)SrcNumElts) {
4130 Input = 1;
4131 Idx -= SrcNumElts;
4132 }
4133
4134 // If all the indices come from the same MaskNumElts sized portion of
4135 // the sources we can use extract. Also make sure the extract wouldn't
4136 // extract past the end of the source.
4137 int NewStartIdx = alignDown(Idx, MaskNumElts);
4138 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4139 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4140 CanExtract = false;
4141 // Make sure we always update StartIdx as we use it to track if all
4142 // elements are undef.
4143 StartIdx[Input] = NewStartIdx;
4144 }
4145
4146 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4147 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4148 return;
4149 }
4150 if (CanExtract) {
4151 // Extract appropriate subvector and generate a vector shuffle
4152 for (unsigned Input = 0; Input < 2; ++Input) {
4153 SDValue &Src = Input == 0 ? Src1 : Src2;
4154 if (StartIdx[Input] < 0)
4155 Src = DAG.getUNDEF(VT);
4156 else {
4157 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4158 DAG.getVectorIdxConstant(StartIdx[Input], DL));
4159 }
4160 }
4161
4162 // Calculate new mask.
4163 SmallVector<int, 8> MappedOps(Mask);
4164 for (int &Idx : MappedOps) {
4165 if (Idx >= (int)SrcNumElts)
4166 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4167 else if (Idx >= 0)
4168 Idx -= StartIdx[0];
4169 }
4170
4171 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4172 return;
4173 }
4174 }
4175
4176 // We can't use either concat vectors or extract subvectors so fall back to
4177 // replacing the shuffle with extract and build vector.
4178 // to insert and build vector.
4179 EVT EltVT = VT.getVectorElementType();
4180 SmallVector<SDValue,8> Ops;
4181 for (int Idx : Mask) {
4182 SDValue Res;
4183
4184 if (Idx < 0) {
4185 Res = DAG.getUNDEF(EltVT);
4186 } else {
4187 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4188 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4189
4190 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4191 DAG.getVectorIdxConstant(Idx, DL));
4192 }
4193
4194 Ops.push_back(Res);
4195 }
4196
4197 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4198 }
4199
visitInsertValue(const InsertValueInst & I)4200 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4201 ArrayRef<unsigned> Indices = I.getIndices();
4202 const Value *Op0 = I.getOperand(0);
4203 const Value *Op1 = I.getOperand(1);
4204 Type *AggTy = I.getType();
4205 Type *ValTy = Op1->getType();
4206 bool IntoUndef = isa<UndefValue>(Op0);
4207 bool FromUndef = isa<UndefValue>(Op1);
4208
4209 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4210
4211 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4212 SmallVector<EVT, 4> AggValueVTs;
4213 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4214 SmallVector<EVT, 4> ValValueVTs;
4215 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4216
4217 unsigned NumAggValues = AggValueVTs.size();
4218 unsigned NumValValues = ValValueVTs.size();
4219 SmallVector<SDValue, 4> Values(NumAggValues);
4220
4221 // Ignore an insertvalue that produces an empty object
4222 if (!NumAggValues) {
4223 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4224 return;
4225 }
4226
4227 SDValue Agg = getValue(Op0);
4228 unsigned i = 0;
4229 // Copy the beginning value(s) from the original aggregate.
4230 for (; i != LinearIndex; ++i)
4231 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4232 SDValue(Agg.getNode(), Agg.getResNo() + i);
4233 // Copy values from the inserted value(s).
4234 if (NumValValues) {
4235 SDValue Val = getValue(Op1);
4236 for (; i != LinearIndex + NumValValues; ++i)
4237 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4238 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4239 }
4240 // Copy remaining value(s) from the original aggregate.
4241 for (; i != NumAggValues; ++i)
4242 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4243 SDValue(Agg.getNode(), Agg.getResNo() + i);
4244
4245 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4246 DAG.getVTList(AggValueVTs), Values));
4247 }
4248
visitExtractValue(const ExtractValueInst & I)4249 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4250 ArrayRef<unsigned> Indices = I.getIndices();
4251 const Value *Op0 = I.getOperand(0);
4252 Type *AggTy = Op0->getType();
4253 Type *ValTy = I.getType();
4254 bool OutOfUndef = isa<UndefValue>(Op0);
4255
4256 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4257
4258 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4259 SmallVector<EVT, 4> ValValueVTs;
4260 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4261
4262 unsigned NumValValues = ValValueVTs.size();
4263
4264 // Ignore a extractvalue that produces an empty object
4265 if (!NumValValues) {
4266 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4267 return;
4268 }
4269
4270 SmallVector<SDValue, 4> Values(NumValValues);
4271
4272 SDValue Agg = getValue(Op0);
4273 // Copy out the selected value(s).
4274 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4275 Values[i - LinearIndex] =
4276 OutOfUndef ?
4277 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4278 SDValue(Agg.getNode(), Agg.getResNo() + i);
4279
4280 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4281 DAG.getVTList(ValValueVTs), Values));
4282 }
4283
visitGetElementPtr(const User & I)4284 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4285 Value *Op0 = I.getOperand(0);
4286 // Note that the pointer operand may be a vector of pointers. Take the scalar
4287 // element which holds a pointer.
4288 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4289 SDValue N = getValue(Op0);
4290 SDLoc dl = getCurSDLoc();
4291 auto &TLI = DAG.getTargetLoweringInfo();
4292
4293 // Normalize Vector GEP - all scalar operands should be converted to the
4294 // splat vector.
4295 bool IsVectorGEP = I.getType()->isVectorTy();
4296 ElementCount VectorElementCount =
4297 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4298 : ElementCount::getFixed(0);
4299
4300 if (IsVectorGEP && !N.getValueType().isVector()) {
4301 LLVMContext &Context = *DAG.getContext();
4302 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4303 N = DAG.getSplat(VT, dl, N);
4304 }
4305
4306 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4307 GTI != E; ++GTI) {
4308 const Value *Idx = GTI.getOperand();
4309 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4310 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4311 if (Field) {
4312 // N = N + Offset
4313 uint64_t Offset =
4314 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4315
4316 // In an inbounds GEP with an offset that is nonnegative even when
4317 // interpreted as signed, assume there is no unsigned overflow.
4318 SDNodeFlags Flags;
4319 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4320 Flags.setNoUnsignedWrap(true);
4321
4322 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4323 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4324 }
4325 } else {
4326 // IdxSize is the width of the arithmetic according to IR semantics.
4327 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4328 // (and fix up the result later).
4329 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4330 MVT IdxTy = MVT::getIntegerVT(IdxSize);
4331 TypeSize ElementSize =
4332 GTI.getSequentialElementStride(DAG.getDataLayout());
4333 // We intentionally mask away the high bits here; ElementSize may not
4334 // fit in IdxTy.
4335 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4336 bool ElementScalable = ElementSize.isScalable();
4337
4338 // If this is a scalar constant or a splat vector of constants,
4339 // handle it quickly.
4340 const auto *C = dyn_cast<Constant>(Idx);
4341 if (C && isa<VectorType>(C->getType()))
4342 C = C->getSplatValue();
4343
4344 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4345 if (CI && CI->isZero())
4346 continue;
4347 if (CI && !ElementScalable) {
4348 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4349 LLVMContext &Context = *DAG.getContext();
4350 SDValue OffsVal;
4351 if (IsVectorGEP)
4352 OffsVal = DAG.getConstant(
4353 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4354 else
4355 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4356
4357 // In an inbounds GEP with an offset that is nonnegative even when
4358 // interpreted as signed, assume there is no unsigned overflow.
4359 SDNodeFlags Flags;
4360 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4361 Flags.setNoUnsignedWrap(true);
4362
4363 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4364
4365 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4366 continue;
4367 }
4368
4369 // N = N + Idx * ElementMul;
4370 SDValue IdxN = getValue(Idx);
4371
4372 if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4373 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4374 VectorElementCount);
4375 IdxN = DAG.getSplat(VT, dl, IdxN);
4376 }
4377
4378 // If the index is smaller or larger than intptr_t, truncate or extend
4379 // it.
4380 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4381
4382 if (ElementScalable) {
4383 EVT VScaleTy = N.getValueType().getScalarType();
4384 SDValue VScale = DAG.getNode(
4385 ISD::VSCALE, dl, VScaleTy,
4386 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4387 if (IsVectorGEP)
4388 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4389 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4390 } else {
4391 // If this is a multiply by a power of two, turn it into a shl
4392 // immediately. This is a very common case.
4393 if (ElementMul != 1) {
4394 if (ElementMul.isPowerOf2()) {
4395 unsigned Amt = ElementMul.logBase2();
4396 IdxN = DAG.getNode(ISD::SHL, dl,
4397 N.getValueType(), IdxN,
4398 DAG.getConstant(Amt, dl, IdxN.getValueType()));
4399 } else {
4400 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4401 IdxN.getValueType());
4402 IdxN = DAG.getNode(ISD::MUL, dl,
4403 N.getValueType(), IdxN, Scale);
4404 }
4405 }
4406 }
4407
4408 N = DAG.getNode(ISD::ADD, dl,
4409 N.getValueType(), N, IdxN);
4410 }
4411 }
4412
4413 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4414 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4415 if (IsVectorGEP) {
4416 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4417 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4418 }
4419
4420 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4421 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4422
4423 setValue(&I, N);
4424 }
4425
visitAlloca(const AllocaInst & I)4426 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4427 // If this is a fixed sized alloca in the entry block of the function,
4428 // allocate it statically on the stack.
4429 if (FuncInfo.StaticAllocaMap.count(&I))
4430 return; // getValue will auto-populate this.
4431
4432 SDLoc dl = getCurSDLoc();
4433 Type *Ty = I.getAllocatedType();
4434 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4435 auto &DL = DAG.getDataLayout();
4436 TypeSize TySize = DL.getTypeAllocSize(Ty);
4437 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4438
4439 SDValue AllocSize = getValue(I.getArraySize());
4440
4441 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4442 if (AllocSize.getValueType() != IntPtr)
4443 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4444
4445 if (TySize.isScalable())
4446 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4447 DAG.getVScale(dl, IntPtr,
4448 APInt(IntPtr.getScalarSizeInBits(),
4449 TySize.getKnownMinValue())));
4450 else {
4451 SDValue TySizeValue =
4452 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4453 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4454 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4455 }
4456
4457 // Handle alignment. If the requested alignment is less than or equal to
4458 // the stack alignment, ignore it. If the size is greater than or equal to
4459 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4460 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4461 if (*Alignment <= StackAlign)
4462 Alignment = std::nullopt;
4463
4464 const uint64_t StackAlignMask = StackAlign.value() - 1U;
4465 // Round the size of the allocation up to the stack alignment size
4466 // by add SA-1 to the size. This doesn't overflow because we're computing
4467 // an address inside an alloca.
4468 SDNodeFlags Flags;
4469 Flags.setNoUnsignedWrap(true);
4470 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4471 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4472
4473 // Mask out the low bits for alignment purposes.
4474 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4475 DAG.getConstant(~StackAlignMask, dl, IntPtr));
4476
4477 SDValue Ops[] = {
4478 getRoot(), AllocSize,
4479 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4480 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4481 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4482 setValue(&I, DSA);
4483 DAG.setRoot(DSA.getValue(1));
4484
4485 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4486 }
4487
getRangeMetadata(const Instruction & I)4488 static const MDNode *getRangeMetadata(const Instruction &I) {
4489 // If !noundef is not present, then !range violation results in a poison
4490 // value rather than immediate undefined behavior. In theory, transferring
4491 // these annotations to SDAG is fine, but in practice there are key SDAG
4492 // transforms that are known not to be poison-safe, such as folding logical
4493 // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4494 // also present.
4495 if (!I.hasMetadata(LLVMContext::MD_noundef))
4496 return nullptr;
4497 return I.getMetadata(LLVMContext::MD_range);
4498 }
4499
getRange(const Instruction & I)4500 static std::optional<ConstantRange> getRange(const Instruction &I) {
4501 if (const auto *CB = dyn_cast<CallBase>(&I)) {
4502 // see comment in getRangeMetadata about this check
4503 if (CB->hasRetAttr(Attribute::NoUndef))
4504 return CB->getRange();
4505 }
4506 if (const MDNode *Range = getRangeMetadata(I))
4507 return getConstantRangeFromMetadata(*Range);
4508 return std::nullopt;
4509 }
4510
visitLoad(const LoadInst & I)4511 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4512 if (I.isAtomic())
4513 return visitAtomicLoad(I);
4514
4515 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4516 const Value *SV = I.getOperand(0);
4517 if (TLI.supportSwiftError()) {
4518 // Swifterror values can come from either a function parameter with
4519 // swifterror attribute or an alloca with swifterror attribute.
4520 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4521 if (Arg->hasSwiftErrorAttr())
4522 return visitLoadFromSwiftError(I);
4523 }
4524
4525 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4526 if (Alloca->isSwiftError())
4527 return visitLoadFromSwiftError(I);
4528 }
4529 }
4530
4531 SDValue Ptr = getValue(SV);
4532
4533 Type *Ty = I.getType();
4534 SmallVector<EVT, 4> ValueVTs, MemVTs;
4535 SmallVector<TypeSize, 4> Offsets;
4536 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4537 unsigned NumValues = ValueVTs.size();
4538 if (NumValues == 0)
4539 return;
4540
4541 Align Alignment = I.getAlign();
4542 AAMDNodes AAInfo = I.getAAMetadata();
4543 const MDNode *Ranges = getRangeMetadata(I);
4544 bool isVolatile = I.isVolatile();
4545 MachineMemOperand::Flags MMOFlags =
4546 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4547
4548 SDValue Root;
4549 bool ConstantMemory = false;
4550 if (isVolatile)
4551 // Serialize volatile loads with other side effects.
4552 Root = getRoot();
4553 else if (NumValues > MaxParallelChains)
4554 Root = getMemoryRoot();
4555 else if (AA &&
4556 AA->pointsToConstantMemory(MemoryLocation(
4557 SV,
4558 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4559 AAInfo))) {
4560 // Do not serialize (non-volatile) loads of constant memory with anything.
4561 Root = DAG.getEntryNode();
4562 ConstantMemory = true;
4563 MMOFlags |= MachineMemOperand::MOInvariant;
4564 } else {
4565 // Do not serialize non-volatile loads against each other.
4566 Root = DAG.getRoot();
4567 }
4568
4569 SDLoc dl = getCurSDLoc();
4570
4571 if (isVolatile)
4572 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4573
4574 SmallVector<SDValue, 4> Values(NumValues);
4575 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4576
4577 unsigned ChainI = 0;
4578 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4579 // Serializing loads here may result in excessive register pressure, and
4580 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4581 // could recover a bit by hoisting nodes upward in the chain by recognizing
4582 // they are side-effect free or do not alias. The optimizer should really
4583 // avoid this case by converting large object/array copies to llvm.memcpy
4584 // (MaxParallelChains should always remain as failsafe).
4585 if (ChainI == MaxParallelChains) {
4586 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4587 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4588 ArrayRef(Chains.data(), ChainI));
4589 Root = Chain;
4590 ChainI = 0;
4591 }
4592
4593 // TODO: MachinePointerInfo only supports a fixed length offset.
4594 MachinePointerInfo PtrInfo =
4595 !Offsets[i].isScalable() || Offsets[i].isZero()
4596 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4597 : MachinePointerInfo();
4598
4599 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4600 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4601 MMOFlags, AAInfo, Ranges);
4602 Chains[ChainI] = L.getValue(1);
4603
4604 if (MemVTs[i] != ValueVTs[i])
4605 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4606
4607 Values[i] = L;
4608 }
4609
4610 if (!ConstantMemory) {
4611 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4612 ArrayRef(Chains.data(), ChainI));
4613 if (isVolatile)
4614 DAG.setRoot(Chain);
4615 else
4616 PendingLoads.push_back(Chain);
4617 }
4618
4619 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4620 DAG.getVTList(ValueVTs), Values));
4621 }
4622
visitStoreToSwiftError(const StoreInst & I)4623 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4624 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4625 "call visitStoreToSwiftError when backend supports swifterror");
4626
4627 SmallVector<EVT, 4> ValueVTs;
4628 SmallVector<uint64_t, 4> Offsets;
4629 const Value *SrcV = I.getOperand(0);
4630 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4631 SrcV->getType(), ValueVTs, &Offsets, 0);
4632 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4633 "expect a single EVT for swifterror");
4634
4635 SDValue Src = getValue(SrcV);
4636 // Create a virtual register, then update the virtual register.
4637 Register VReg =
4638 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4639 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4640 // Chain can be getRoot or getControlRoot.
4641 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4642 SDValue(Src.getNode(), Src.getResNo()));
4643 DAG.setRoot(CopyNode);
4644 }
4645
visitLoadFromSwiftError(const LoadInst & I)4646 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4647 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4648 "call visitLoadFromSwiftError when backend supports swifterror");
4649
4650 assert(!I.isVolatile() &&
4651 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4652 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4653 "Support volatile, non temporal, invariant for load_from_swift_error");
4654
4655 const Value *SV = I.getOperand(0);
4656 Type *Ty = I.getType();
4657 assert(
4658 (!AA ||
4659 !AA->pointsToConstantMemory(MemoryLocation(
4660 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4661 I.getAAMetadata()))) &&
4662 "load_from_swift_error should not be constant memory");
4663
4664 SmallVector<EVT, 4> ValueVTs;
4665 SmallVector<uint64_t, 4> Offsets;
4666 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4667 ValueVTs, &Offsets, 0);
4668 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4669 "expect a single EVT for swifterror");
4670
4671 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4672 SDValue L = DAG.getCopyFromReg(
4673 getRoot(), getCurSDLoc(),
4674 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4675
4676 setValue(&I, L);
4677 }
4678
visitStore(const StoreInst & I)4679 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4680 if (I.isAtomic())
4681 return visitAtomicStore(I);
4682
4683 const Value *SrcV = I.getOperand(0);
4684 const Value *PtrV = I.getOperand(1);
4685
4686 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4687 if (TLI.supportSwiftError()) {
4688 // Swifterror values can come from either a function parameter with
4689 // swifterror attribute or an alloca with swifterror attribute.
4690 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4691 if (Arg->hasSwiftErrorAttr())
4692 return visitStoreToSwiftError(I);
4693 }
4694
4695 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4696 if (Alloca->isSwiftError())
4697 return visitStoreToSwiftError(I);
4698 }
4699 }
4700
4701 SmallVector<EVT, 4> ValueVTs, MemVTs;
4702 SmallVector<TypeSize, 4> Offsets;
4703 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4704 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4705 unsigned NumValues = ValueVTs.size();
4706 if (NumValues == 0)
4707 return;
4708
4709 // Get the lowered operands. Note that we do this after
4710 // checking if NumResults is zero, because with zero results
4711 // the operands won't have values in the map.
4712 SDValue Src = getValue(SrcV);
4713 SDValue Ptr = getValue(PtrV);
4714
4715 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4716 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4717 SDLoc dl = getCurSDLoc();
4718 Align Alignment = I.getAlign();
4719 AAMDNodes AAInfo = I.getAAMetadata();
4720
4721 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4722
4723 unsigned ChainI = 0;
4724 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4725 // See visitLoad comments.
4726 if (ChainI == MaxParallelChains) {
4727 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4728 ArrayRef(Chains.data(), ChainI));
4729 Root = Chain;
4730 ChainI = 0;
4731 }
4732
4733 // TODO: MachinePointerInfo only supports a fixed length offset.
4734 MachinePointerInfo PtrInfo =
4735 !Offsets[i].isScalable() || Offsets[i].isZero()
4736 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4737 : MachinePointerInfo();
4738
4739 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4740 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4741 if (MemVTs[i] != ValueVTs[i])
4742 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4743 SDValue St =
4744 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4745 Chains[ChainI] = St;
4746 }
4747
4748 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4749 ArrayRef(Chains.data(), ChainI));
4750 setValue(&I, StoreNode);
4751 DAG.setRoot(StoreNode);
4752 }
4753
visitMaskedStore(const CallInst & I,bool IsCompressing)4754 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4755 bool IsCompressing) {
4756 SDLoc sdl = getCurSDLoc();
4757
4758 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4759 Align &Alignment) {
4760 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4761 Src0 = I.getArgOperand(0);
4762 Ptr = I.getArgOperand(1);
4763 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4764 Mask = I.getArgOperand(3);
4765 };
4766 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4767 Align &Alignment) {
4768 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4769 Src0 = I.getArgOperand(0);
4770 Ptr = I.getArgOperand(1);
4771 Mask = I.getArgOperand(2);
4772 Alignment = I.getParamAlign(1).valueOrOne();
4773 };
4774
4775 Value *PtrOperand, *MaskOperand, *Src0Operand;
4776 Align Alignment;
4777 if (IsCompressing)
4778 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4779 else
4780 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4781
4782 SDValue Ptr = getValue(PtrOperand);
4783 SDValue Src0 = getValue(Src0Operand);
4784 SDValue Mask = getValue(MaskOperand);
4785 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4786
4787 EVT VT = Src0.getValueType();
4788
4789 auto MMOFlags = MachineMemOperand::MOStore;
4790 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4791 MMOFlags |= MachineMemOperand::MONonTemporal;
4792
4793 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4794 MachinePointerInfo(PtrOperand), MMOFlags,
4795 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4796
4797 const auto &TLI = DAG.getTargetLoweringInfo();
4798 const auto &TTI =
4799 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4800 SDValue StoreNode =
4801 !IsCompressing &&
4802 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType())
4803 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4804 Mask)
4805 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4806 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4807 IsCompressing);
4808 DAG.setRoot(StoreNode);
4809 setValue(&I, StoreNode);
4810 }
4811
4812 // Get a uniform base for the Gather/Scatter intrinsic.
4813 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4814 // We try to represent it as a base pointer + vector of indices.
4815 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4816 // The first operand of the GEP may be a single pointer or a vector of pointers
4817 // Example:
4818 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4819 // or
4820 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4821 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4822 //
4823 // When the first GEP operand is a single pointer - it is the uniform base we
4824 // are looking for. If first operand of the GEP is a splat vector - we
4825 // extract the splat value and use it as a uniform base.
4826 // In all other cases the function returns 'false'.
getUniformBase(const Value * Ptr,SDValue & Base,SDValue & Index,ISD::MemIndexType & IndexType,SDValue & Scale,SelectionDAGBuilder * SDB,const BasicBlock * CurBB,uint64_t ElemSize)4827 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4828 ISD::MemIndexType &IndexType, SDValue &Scale,
4829 SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4830 uint64_t ElemSize) {
4831 SelectionDAG& DAG = SDB->DAG;
4832 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4833 const DataLayout &DL = DAG.getDataLayout();
4834
4835 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4836
4837 // Handle splat constant pointer.
4838 if (auto *C = dyn_cast<Constant>(Ptr)) {
4839 C = C->getSplatValue();
4840 if (!C)
4841 return false;
4842
4843 Base = SDB->getValue(C);
4844
4845 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4846 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4847 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4848 IndexType = ISD::SIGNED_SCALED;
4849 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4850 return true;
4851 }
4852
4853 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4854 if (!GEP || GEP->getParent() != CurBB)
4855 return false;
4856
4857 if (GEP->getNumOperands() != 2)
4858 return false;
4859
4860 const Value *BasePtr = GEP->getPointerOperand();
4861 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4862
4863 // Make sure the base is scalar and the index is a vector.
4864 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4865 return false;
4866
4867 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4868 if (ScaleVal.isScalable())
4869 return false;
4870
4871 // Target may not support the required addressing mode.
4872 if (ScaleVal != 1 &&
4873 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4874 return false;
4875
4876 Base = SDB->getValue(BasePtr);
4877 Index = SDB->getValue(IndexVal);
4878 IndexType = ISD::SIGNED_SCALED;
4879
4880 Scale =
4881 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4882 return true;
4883 }
4884
visitMaskedScatter(const CallInst & I)4885 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4886 SDLoc sdl = getCurSDLoc();
4887
4888 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4889 const Value *Ptr = I.getArgOperand(1);
4890 SDValue Src0 = getValue(I.getArgOperand(0));
4891 SDValue Mask = getValue(I.getArgOperand(3));
4892 EVT VT = Src0.getValueType();
4893 Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4894 ->getMaybeAlignValue()
4895 .value_or(DAG.getEVTAlign(VT.getScalarType()));
4896 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4897
4898 SDValue Base;
4899 SDValue Index;
4900 ISD::MemIndexType IndexType;
4901 SDValue Scale;
4902 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4903 I.getParent(), VT.getScalarStoreSize());
4904
4905 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4906 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4907 MachinePointerInfo(AS), MachineMemOperand::MOStore,
4908 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4909 if (!UniformBase) {
4910 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4911 Index = getValue(Ptr);
4912 IndexType = ISD::SIGNED_SCALED;
4913 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4914 }
4915
4916 EVT IdxVT = Index.getValueType();
4917 EVT EltTy = IdxVT.getVectorElementType();
4918 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4919 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4920 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4921 }
4922
4923 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4924 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4925 Ops, MMO, IndexType, false);
4926 DAG.setRoot(Scatter);
4927 setValue(&I, Scatter);
4928 }
4929
visitMaskedLoad(const CallInst & I,bool IsExpanding)4930 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4931 SDLoc sdl = getCurSDLoc();
4932
4933 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4934 Align &Alignment) {
4935 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4936 Ptr = I.getArgOperand(0);
4937 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4938 Mask = I.getArgOperand(2);
4939 Src0 = I.getArgOperand(3);
4940 };
4941 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4942 Align &Alignment) {
4943 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4944 Ptr = I.getArgOperand(0);
4945 Alignment = I.getParamAlign(0).valueOrOne();
4946 Mask = I.getArgOperand(1);
4947 Src0 = I.getArgOperand(2);
4948 };
4949
4950 Value *PtrOperand, *MaskOperand, *Src0Operand;
4951 Align Alignment;
4952 if (IsExpanding)
4953 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4954 else
4955 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4956
4957 SDValue Ptr = getValue(PtrOperand);
4958 SDValue Src0 = getValue(Src0Operand);
4959 SDValue Mask = getValue(MaskOperand);
4960 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4961
4962 EVT VT = Src0.getValueType();
4963 AAMDNodes AAInfo = I.getAAMetadata();
4964 const MDNode *Ranges = getRangeMetadata(I);
4965
4966 // Do not serialize masked loads of constant memory with anything.
4967 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4968 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4969
4970 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4971
4972 auto MMOFlags = MachineMemOperand::MOLoad;
4973 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4974 MMOFlags |= MachineMemOperand::MONonTemporal;
4975
4976 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4977 MachinePointerInfo(PtrOperand), MMOFlags,
4978 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4979
4980 const auto &TLI = DAG.getTargetLoweringInfo();
4981 const auto &TTI =
4982 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4983 // The Load/Res may point to different values and both of them are output
4984 // variables.
4985 SDValue Load;
4986 SDValue Res;
4987 if (!IsExpanding &&
4988 TTI.hasConditionalLoadStoreForType(Src0Operand->getType()))
4989 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
4990 else
4991 Res = Load =
4992 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4993 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4994 if (AddToChain)
4995 PendingLoads.push_back(Load.getValue(1));
4996 setValue(&I, Res);
4997 }
4998
visitMaskedGather(const CallInst & I)4999 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5000 SDLoc sdl = getCurSDLoc();
5001
5002 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
5003 const Value *Ptr = I.getArgOperand(0);
5004 SDValue Src0 = getValue(I.getArgOperand(3));
5005 SDValue Mask = getValue(I.getArgOperand(2));
5006
5007 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5008 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5009 Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
5010 ->getMaybeAlignValue()
5011 .value_or(DAG.getEVTAlign(VT.getScalarType()));
5012
5013 const MDNode *Ranges = getRangeMetadata(I);
5014
5015 SDValue Root = DAG.getRoot();
5016 SDValue Base;
5017 SDValue Index;
5018 ISD::MemIndexType IndexType;
5019 SDValue Scale;
5020 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
5021 I.getParent(), VT.getScalarStoreSize());
5022 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5023 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5024 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5025 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5026 Ranges);
5027
5028 if (!UniformBase) {
5029 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5030 Index = getValue(Ptr);
5031 IndexType = ISD::SIGNED_SCALED;
5032 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5033 }
5034
5035 EVT IdxVT = Index.getValueType();
5036 EVT EltTy = IdxVT.getVectorElementType();
5037 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5038 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5039 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5040 }
5041
5042 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5043 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5044 Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5045
5046 PendingLoads.push_back(Gather.getValue(1));
5047 setValue(&I, Gather);
5048 }
5049
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)5050 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5051 SDLoc dl = getCurSDLoc();
5052 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5053 AtomicOrdering FailureOrdering = I.getFailureOrdering();
5054 SyncScope::ID SSID = I.getSyncScopeID();
5055
5056 SDValue InChain = getRoot();
5057
5058 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5059 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5060
5061 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5062 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5063
5064 MachineFunction &MF = DAG.getMachineFunction();
5065 MachineMemOperand *MMO = MF.getMachineMemOperand(
5066 MachinePointerInfo(I.getPointerOperand()), Flags,
5067 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5068 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5069
5070 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5071 dl, MemVT, VTs, InChain,
5072 getValue(I.getPointerOperand()),
5073 getValue(I.getCompareOperand()),
5074 getValue(I.getNewValOperand()), MMO);
5075
5076 SDValue OutChain = L.getValue(2);
5077
5078 setValue(&I, L);
5079 DAG.setRoot(OutChain);
5080 }
5081
visitAtomicRMW(const AtomicRMWInst & I)5082 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5083 SDLoc dl = getCurSDLoc();
5084 ISD::NodeType NT;
5085 switch (I.getOperation()) {
5086 default: llvm_unreachable("Unknown atomicrmw operation");
5087 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5088 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
5089 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
5090 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
5091 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5092 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
5093 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
5094 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
5095 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
5096 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5097 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5098 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5099 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5100 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5101 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5102 case AtomicRMWInst::UIncWrap:
5103 NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5104 break;
5105 case AtomicRMWInst::UDecWrap:
5106 NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5107 break;
5108 }
5109 AtomicOrdering Ordering = I.getOrdering();
5110 SyncScope::ID SSID = I.getSyncScopeID();
5111
5112 SDValue InChain = getRoot();
5113
5114 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5115 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5116 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5117
5118 MachineFunction &MF = DAG.getMachineFunction();
5119 MachineMemOperand *MMO = MF.getMachineMemOperand(
5120 MachinePointerInfo(I.getPointerOperand()), Flags,
5121 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5122 AAMDNodes(), nullptr, SSID, Ordering);
5123
5124 SDValue L =
5125 DAG.getAtomic(NT, dl, MemVT, InChain,
5126 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5127 MMO);
5128
5129 SDValue OutChain = L.getValue(1);
5130
5131 setValue(&I, L);
5132 DAG.setRoot(OutChain);
5133 }
5134
visitFence(const FenceInst & I)5135 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5136 SDLoc dl = getCurSDLoc();
5137 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5138 SDValue Ops[3];
5139 Ops[0] = getRoot();
5140 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5141 TLI.getFenceOperandTy(DAG.getDataLayout()));
5142 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5143 TLI.getFenceOperandTy(DAG.getDataLayout()));
5144 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5145 setValue(&I, N);
5146 DAG.setRoot(N);
5147 }
5148
visitAtomicLoad(const LoadInst & I)5149 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5150 SDLoc dl = getCurSDLoc();
5151 AtomicOrdering Order = I.getOrdering();
5152 SyncScope::ID SSID = I.getSyncScopeID();
5153
5154 SDValue InChain = getRoot();
5155
5156 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5157 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5158 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5159
5160 if (!TLI.supportsUnalignedAtomics() &&
5161 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5162 report_fatal_error("Cannot generate unaligned atomic load");
5163
5164 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5165
5166 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5167 MachinePointerInfo(I.getPointerOperand()), Flags,
5168 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5169 nullptr, SSID, Order);
5170
5171 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5172
5173 SDValue Ptr = getValue(I.getPointerOperand());
5174 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5175 Ptr, MMO);
5176
5177 SDValue OutChain = L.getValue(1);
5178 if (MemVT != VT)
5179 L = DAG.getPtrExtOrTrunc(L, dl, VT);
5180
5181 setValue(&I, L);
5182 DAG.setRoot(OutChain);
5183 }
5184
visitAtomicStore(const StoreInst & I)5185 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5186 SDLoc dl = getCurSDLoc();
5187
5188 AtomicOrdering Ordering = I.getOrdering();
5189 SyncScope::ID SSID = I.getSyncScopeID();
5190
5191 SDValue InChain = getRoot();
5192
5193 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5194 EVT MemVT =
5195 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5196
5197 if (!TLI.supportsUnalignedAtomics() &&
5198 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5199 report_fatal_error("Cannot generate unaligned atomic store");
5200
5201 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5202
5203 MachineFunction &MF = DAG.getMachineFunction();
5204 MachineMemOperand *MMO = MF.getMachineMemOperand(
5205 MachinePointerInfo(I.getPointerOperand()), Flags,
5206 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5207 nullptr, SSID, Ordering);
5208
5209 SDValue Val = getValue(I.getValueOperand());
5210 if (Val.getValueType() != MemVT)
5211 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5212 SDValue Ptr = getValue(I.getPointerOperand());
5213
5214 SDValue OutChain =
5215 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5216
5217 setValue(&I, OutChain);
5218 DAG.setRoot(OutChain);
5219 }
5220
5221 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5222 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)5223 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5224 unsigned Intrinsic) {
5225 // Ignore the callsite's attributes. A specific call site may be marked with
5226 // readnone, but the lowering code will expect the chain based on the
5227 // definition.
5228 const Function *F = I.getCalledFunction();
5229 bool HasChain = !F->doesNotAccessMemory();
5230 bool OnlyLoad = HasChain && F->onlyReadsMemory();
5231
5232 // Build the operand list.
5233 SmallVector<SDValue, 8> Ops;
5234 if (HasChain) { // If this intrinsic has side-effects, chainify it.
5235 if (OnlyLoad) {
5236 // We don't need to serialize loads against other loads.
5237 Ops.push_back(DAG.getRoot());
5238 } else {
5239 Ops.push_back(getRoot());
5240 }
5241 }
5242
5243 // Info is set by getTgtMemIntrinsic
5244 TargetLowering::IntrinsicInfo Info;
5245 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5246 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5247 DAG.getMachineFunction(),
5248 Intrinsic);
5249
5250 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5251 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5252 Info.opc == ISD::INTRINSIC_W_CHAIN)
5253 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5254 TLI.getPointerTy(DAG.getDataLayout())));
5255
5256 // Add all operands of the call to the operand list.
5257 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5258 const Value *Arg = I.getArgOperand(i);
5259 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5260 Ops.push_back(getValue(Arg));
5261 continue;
5262 }
5263
5264 // Use TargetConstant instead of a regular constant for immarg.
5265 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5266 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5267 assert(CI->getBitWidth() <= 64 &&
5268 "large intrinsic immediates not handled");
5269 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5270 } else {
5271 Ops.push_back(
5272 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5273 }
5274 }
5275
5276 SmallVector<EVT, 4> ValueVTs;
5277 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5278
5279 if (HasChain)
5280 ValueVTs.push_back(MVT::Other);
5281
5282 SDVTList VTs = DAG.getVTList(ValueVTs);
5283
5284 // Propagate fast-math-flags from IR to node(s).
5285 SDNodeFlags Flags;
5286 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5287 Flags.copyFMF(*FPMO);
5288 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5289
5290 // Create the node.
5291 SDValue Result;
5292
5293 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5294 auto *Token = Bundle->Inputs[0].get();
5295 SDValue ConvControlToken = getValue(Token);
5296 assert(Ops.back().getValueType() != MVT::Glue &&
5297 "Did not expected another glue node here.");
5298 ConvControlToken =
5299 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5300 Ops.push_back(ConvControlToken);
5301 }
5302
5303 // In some cases, custom collection of operands from CallInst I may be needed.
5304 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5305 if (IsTgtIntrinsic) {
5306 // This is target intrinsic that touches memory
5307 //
5308 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5309 // didn't yield anything useful.
5310 MachinePointerInfo MPI;
5311 if (Info.ptrVal)
5312 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5313 else if (Info.fallbackAddressSpace)
5314 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5315 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5316 Info.memVT, MPI, Info.align, Info.flags,
5317 Info.size, I.getAAMetadata());
5318 } else if (!HasChain) {
5319 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5320 } else if (!I.getType()->isVoidTy()) {
5321 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5322 } else {
5323 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5324 }
5325
5326 if (HasChain) {
5327 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5328 if (OnlyLoad)
5329 PendingLoads.push_back(Chain);
5330 else
5331 DAG.setRoot(Chain);
5332 }
5333
5334 if (!I.getType()->isVoidTy()) {
5335 if (!isa<VectorType>(I.getType()))
5336 Result = lowerRangeToAssertZExt(DAG, I, Result);
5337
5338 MaybeAlign Alignment = I.getRetAlign();
5339
5340 // Insert `assertalign` node if there's an alignment.
5341 if (InsertAssertAlign && Alignment) {
5342 Result =
5343 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5344 }
5345 }
5346
5347 setValue(&I, Result);
5348 }
5349
5350 /// GetSignificand - Get the significand and build it into a floating-point
5351 /// number with exponent of 1:
5352 ///
5353 /// Op = (Op & 0x007fffff) | 0x3f800000;
5354 ///
5355 /// where Op is the hexadecimal representation of floating point value.
GetSignificand(SelectionDAG & DAG,SDValue Op,const SDLoc & dl)5356 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5357 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5358 DAG.getConstant(0x007fffff, dl, MVT::i32));
5359 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5360 DAG.getConstant(0x3f800000, dl, MVT::i32));
5361 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5362 }
5363
5364 /// GetExponent - Get the exponent:
5365 ///
5366 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5367 ///
5368 /// where Op is the hexadecimal representation of floating point value.
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,const SDLoc & dl)5369 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5370 const TargetLowering &TLI, const SDLoc &dl) {
5371 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5372 DAG.getConstant(0x7f800000, dl, MVT::i32));
5373 SDValue t1 = DAG.getNode(
5374 ISD::SRL, dl, MVT::i32, t0,
5375 DAG.getConstant(23, dl,
5376 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5377 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5378 DAG.getConstant(127, dl, MVT::i32));
5379 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5380 }
5381
5382 /// getF32Constant - Get 32-bit floating point constant.
getF32Constant(SelectionDAG & DAG,unsigned Flt,const SDLoc & dl)5383 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5384 const SDLoc &dl) {
5385 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5386 MVT::f32);
5387 }
5388
getLimitedPrecisionExp2(SDValue t0,const SDLoc & dl,SelectionDAG & DAG)5389 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5390 SelectionDAG &DAG) {
5391 // TODO: What fast-math-flags should be set on the floating-point nodes?
5392
5393 // IntegerPartOfX = ((int32_t)(t0);
5394 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5395
5396 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
5397 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5398 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5399
5400 // IntegerPartOfX <<= 23;
5401 IntegerPartOfX =
5402 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5403 DAG.getConstant(23, dl,
5404 DAG.getTargetLoweringInfo().getShiftAmountTy(
5405 MVT::i32, DAG.getDataLayout())));
5406
5407 SDValue TwoToFractionalPartOfX;
5408 if (LimitFloatPrecision <= 6) {
5409 // For floating-point precision of 6:
5410 //
5411 // TwoToFractionalPartOfX =
5412 // 0.997535578f +
5413 // (0.735607626f + 0.252464424f * x) * x;
5414 //
5415 // error 0.0144103317, which is 6 bits
5416 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5417 getF32Constant(DAG, 0x3e814304, dl));
5418 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5419 getF32Constant(DAG, 0x3f3c50c8, dl));
5420 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5421 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5422 getF32Constant(DAG, 0x3f7f5e7e, dl));
5423 } else if (LimitFloatPrecision <= 12) {
5424 // For floating-point precision of 12:
5425 //
5426 // TwoToFractionalPartOfX =
5427 // 0.999892986f +
5428 // (0.696457318f +
5429 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
5430 //
5431 // error 0.000107046256, which is 13 to 14 bits
5432 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5433 getF32Constant(DAG, 0x3da235e3, dl));
5434 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5435 getF32Constant(DAG, 0x3e65b8f3, dl));
5436 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5437 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5438 getF32Constant(DAG, 0x3f324b07, dl));
5439 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5440 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5441 getF32Constant(DAG, 0x3f7ff8fd, dl));
5442 } else { // LimitFloatPrecision <= 18
5443 // For floating-point precision of 18:
5444 //
5445 // TwoToFractionalPartOfX =
5446 // 0.999999982f +
5447 // (0.693148872f +
5448 // (0.240227044f +
5449 // (0.554906021e-1f +
5450 // (0.961591928e-2f +
5451 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5452 // error 2.47208000*10^(-7), which is better than 18 bits
5453 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5454 getF32Constant(DAG, 0x3924b03e, dl));
5455 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5456 getF32Constant(DAG, 0x3ab24b87, dl));
5457 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5458 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5459 getF32Constant(DAG, 0x3c1d8c17, dl));
5460 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5461 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5462 getF32Constant(DAG, 0x3d634a1d, dl));
5463 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5464 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5465 getF32Constant(DAG, 0x3e75fe14, dl));
5466 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5467 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5468 getF32Constant(DAG, 0x3f317234, dl));
5469 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5470 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5471 getF32Constant(DAG, 0x3f800000, dl));
5472 }
5473
5474 // Add the exponent into the result in integer domain.
5475 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5476 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5477 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5478 }
5479
5480 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5481 /// limited-precision mode.
expandExp(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5482 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5483 const TargetLowering &TLI, SDNodeFlags Flags) {
5484 if (Op.getValueType() == MVT::f32 &&
5485 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5486
5487 // Put the exponent in the right bit position for later addition to the
5488 // final result:
5489 //
5490 // t0 = Op * log2(e)
5491
5492 // TODO: What fast-math-flags should be set here?
5493 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5494 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5495 return getLimitedPrecisionExp2(t0, dl, DAG);
5496 }
5497
5498 // No special expansion.
5499 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5500 }
5501
5502 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5503 /// limited-precision mode.
expandLog(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5504 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5505 const TargetLowering &TLI, SDNodeFlags Flags) {
5506 // TODO: What fast-math-flags should be set on the floating-point nodes?
5507
5508 if (Op.getValueType() == MVT::f32 &&
5509 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5510 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5511
5512 // Scale the exponent by log(2).
5513 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5514 SDValue LogOfExponent =
5515 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5516 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5517
5518 // Get the significand and build it into a floating-point number with
5519 // exponent of 1.
5520 SDValue X = GetSignificand(DAG, Op1, dl);
5521
5522 SDValue LogOfMantissa;
5523 if (LimitFloatPrecision <= 6) {
5524 // For floating-point precision of 6:
5525 //
5526 // LogofMantissa =
5527 // -1.1609546f +
5528 // (1.4034025f - 0.23903021f * x) * x;
5529 //
5530 // error 0.0034276066, which is better than 8 bits
5531 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5532 getF32Constant(DAG, 0xbe74c456, dl));
5533 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5534 getF32Constant(DAG, 0x3fb3a2b1, dl));
5535 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5536 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5537 getF32Constant(DAG, 0x3f949a29, dl));
5538 } else if (LimitFloatPrecision <= 12) {
5539 // For floating-point precision of 12:
5540 //
5541 // LogOfMantissa =
5542 // -1.7417939f +
5543 // (2.8212026f +
5544 // (-1.4699568f +
5545 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5546 //
5547 // error 0.000061011436, which is 14 bits
5548 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5549 getF32Constant(DAG, 0xbd67b6d6, dl));
5550 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5551 getF32Constant(DAG, 0x3ee4f4b8, dl));
5552 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5553 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5554 getF32Constant(DAG, 0x3fbc278b, dl));
5555 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5556 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5557 getF32Constant(DAG, 0x40348e95, dl));
5558 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5559 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5560 getF32Constant(DAG, 0x3fdef31a, dl));
5561 } else { // LimitFloatPrecision <= 18
5562 // For floating-point precision of 18:
5563 //
5564 // LogOfMantissa =
5565 // -2.1072184f +
5566 // (4.2372794f +
5567 // (-3.7029485f +
5568 // (2.2781945f +
5569 // (-0.87823314f +
5570 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5571 //
5572 // error 0.0000023660568, which is better than 18 bits
5573 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5574 getF32Constant(DAG, 0xbc91e5ac, dl));
5575 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5576 getF32Constant(DAG, 0x3e4350aa, dl));
5577 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5578 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5579 getF32Constant(DAG, 0x3f60d3e3, dl));
5580 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5581 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5582 getF32Constant(DAG, 0x4011cdf0, dl));
5583 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5584 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5585 getF32Constant(DAG, 0x406cfd1c, dl));
5586 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5587 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5588 getF32Constant(DAG, 0x408797cb, dl));
5589 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5590 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5591 getF32Constant(DAG, 0x4006dcab, dl));
5592 }
5593
5594 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5595 }
5596
5597 // No special expansion.
5598 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5599 }
5600
5601 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5602 /// limited-precision mode.
expandLog2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5603 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5604 const TargetLowering &TLI, SDNodeFlags Flags) {
5605 // TODO: What fast-math-flags should be set on the floating-point nodes?
5606
5607 if (Op.getValueType() == MVT::f32 &&
5608 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5609 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5610
5611 // Get the exponent.
5612 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5613
5614 // Get the significand and build it into a floating-point number with
5615 // exponent of 1.
5616 SDValue X = GetSignificand(DAG, Op1, dl);
5617
5618 // Different possible minimax approximations of significand in
5619 // floating-point for various degrees of accuracy over [1,2].
5620 SDValue Log2ofMantissa;
5621 if (LimitFloatPrecision <= 6) {
5622 // For floating-point precision of 6:
5623 //
5624 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5625 //
5626 // error 0.0049451742, which is more than 7 bits
5627 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5628 getF32Constant(DAG, 0xbeb08fe0, dl));
5629 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5630 getF32Constant(DAG, 0x40019463, dl));
5631 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5632 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5633 getF32Constant(DAG, 0x3fd6633d, dl));
5634 } else if (LimitFloatPrecision <= 12) {
5635 // For floating-point precision of 12:
5636 //
5637 // Log2ofMantissa =
5638 // -2.51285454f +
5639 // (4.07009056f +
5640 // (-2.12067489f +
5641 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5642 //
5643 // error 0.0000876136000, which is better than 13 bits
5644 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5645 getF32Constant(DAG, 0xbda7262e, dl));
5646 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5647 getF32Constant(DAG, 0x3f25280b, dl));
5648 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5649 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5650 getF32Constant(DAG, 0x4007b923, dl));
5651 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5652 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5653 getF32Constant(DAG, 0x40823e2f, dl));
5654 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5655 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5656 getF32Constant(DAG, 0x4020d29c, dl));
5657 } else { // LimitFloatPrecision <= 18
5658 // For floating-point precision of 18:
5659 //
5660 // Log2ofMantissa =
5661 // -3.0400495f +
5662 // (6.1129976f +
5663 // (-5.3420409f +
5664 // (3.2865683f +
5665 // (-1.2669343f +
5666 // (0.27515199f -
5667 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5668 //
5669 // error 0.0000018516, which is better than 18 bits
5670 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5671 getF32Constant(DAG, 0xbcd2769e, dl));
5672 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5673 getF32Constant(DAG, 0x3e8ce0b9, dl));
5674 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5675 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5676 getF32Constant(DAG, 0x3fa22ae7, dl));
5677 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5678 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5679 getF32Constant(DAG, 0x40525723, dl));
5680 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5681 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5682 getF32Constant(DAG, 0x40aaf200, dl));
5683 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5684 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5685 getF32Constant(DAG, 0x40c39dad, dl));
5686 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5687 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5688 getF32Constant(DAG, 0x4042902c, dl));
5689 }
5690
5691 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5692 }
5693
5694 // No special expansion.
5695 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5696 }
5697
5698 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5699 /// limited-precision mode.
expandLog10(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5700 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5701 const TargetLowering &TLI, SDNodeFlags Flags) {
5702 // TODO: What fast-math-flags should be set on the floating-point nodes?
5703
5704 if (Op.getValueType() == MVT::f32 &&
5705 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5706 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5707
5708 // Scale the exponent by log10(2) [0.30102999f].
5709 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5710 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5711 getF32Constant(DAG, 0x3e9a209a, dl));
5712
5713 // Get the significand and build it into a floating-point number with
5714 // exponent of 1.
5715 SDValue X = GetSignificand(DAG, Op1, dl);
5716
5717 SDValue Log10ofMantissa;
5718 if (LimitFloatPrecision <= 6) {
5719 // For floating-point precision of 6:
5720 //
5721 // Log10ofMantissa =
5722 // -0.50419619f +
5723 // (0.60948995f - 0.10380950f * x) * x;
5724 //
5725 // error 0.0014886165, which is 6 bits
5726 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5727 getF32Constant(DAG, 0xbdd49a13, dl));
5728 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5729 getF32Constant(DAG, 0x3f1c0789, dl));
5730 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5731 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5732 getF32Constant(DAG, 0x3f011300, dl));
5733 } else if (LimitFloatPrecision <= 12) {
5734 // For floating-point precision of 12:
5735 //
5736 // Log10ofMantissa =
5737 // -0.64831180f +
5738 // (0.91751397f +
5739 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5740 //
5741 // error 0.00019228036, which is better than 12 bits
5742 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5743 getF32Constant(DAG, 0x3d431f31, dl));
5744 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5745 getF32Constant(DAG, 0x3ea21fb2, dl));
5746 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5747 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5748 getF32Constant(DAG, 0x3f6ae232, dl));
5749 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5750 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5751 getF32Constant(DAG, 0x3f25f7c3, dl));
5752 } else { // LimitFloatPrecision <= 18
5753 // For floating-point precision of 18:
5754 //
5755 // Log10ofMantissa =
5756 // -0.84299375f +
5757 // (1.5327582f +
5758 // (-1.0688956f +
5759 // (0.49102474f +
5760 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5761 //
5762 // error 0.0000037995730, which is better than 18 bits
5763 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5764 getF32Constant(DAG, 0x3c5d51ce, dl));
5765 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5766 getF32Constant(DAG, 0x3e00685a, dl));
5767 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5768 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5769 getF32Constant(DAG, 0x3efb6798, dl));
5770 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5771 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5772 getF32Constant(DAG, 0x3f88d192, dl));
5773 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5774 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5775 getF32Constant(DAG, 0x3fc4316c, dl));
5776 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5777 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5778 getF32Constant(DAG, 0x3f57ce70, dl));
5779 }
5780
5781 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5782 }
5783
5784 // No special expansion.
5785 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5786 }
5787
5788 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5789 /// limited-precision mode.
expandExp2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5790 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5791 const TargetLowering &TLI, SDNodeFlags Flags) {
5792 if (Op.getValueType() == MVT::f32 &&
5793 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5794 return getLimitedPrecisionExp2(Op, dl, DAG);
5795
5796 // No special expansion.
5797 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5798 }
5799
5800 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5801 /// limited-precision mode with x == 10.0f.
expandPow(const SDLoc & dl,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5802 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5803 SelectionDAG &DAG, const TargetLowering &TLI,
5804 SDNodeFlags Flags) {
5805 bool IsExp10 = false;
5806 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5807 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5808 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5809 APFloat Ten(10.0f);
5810 IsExp10 = LHSC->isExactlyValue(Ten);
5811 }
5812 }
5813
5814 // TODO: What fast-math-flags should be set on the FMUL node?
5815 if (IsExp10) {
5816 // Put the exponent in the right bit position for later addition to the
5817 // final result:
5818 //
5819 // #define LOG2OF10 3.3219281f
5820 // t0 = Op * LOG2OF10;
5821 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5822 getF32Constant(DAG, 0x40549a78, dl));
5823 return getLimitedPrecisionExp2(t0, dl, DAG);
5824 }
5825
5826 // No special expansion.
5827 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5828 }
5829
5830 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(const SDLoc & DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)5831 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5832 SelectionDAG &DAG) {
5833 // If RHS is a constant, we can expand this out to a multiplication tree if
5834 // it's beneficial on the target, otherwise we end up lowering to a call to
5835 // __powidf2 (for example).
5836 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5837 unsigned Val = RHSC->getSExtValue();
5838
5839 // powi(x, 0) -> 1.0
5840 if (Val == 0)
5841 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5842
5843 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5844 Val, DAG.shouldOptForSize())) {
5845 // Get the exponent as a positive value.
5846 if ((int)Val < 0)
5847 Val = -Val;
5848 // We use the simple binary decomposition method to generate the multiply
5849 // sequence. There are more optimal ways to do this (for example,
5850 // powi(x,15) generates one more multiply than it should), but this has
5851 // the benefit of being both really simple and much better than a libcall.
5852 SDValue Res; // Logically starts equal to 1.0
5853 SDValue CurSquare = LHS;
5854 // TODO: Intrinsics should have fast-math-flags that propagate to these
5855 // nodes.
5856 while (Val) {
5857 if (Val & 1) {
5858 if (Res.getNode())
5859 Res =
5860 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5861 else
5862 Res = CurSquare; // 1.0*CurSquare.
5863 }
5864
5865 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5866 CurSquare, CurSquare);
5867 Val >>= 1;
5868 }
5869
5870 // If the original was negative, invert the result, producing 1/(x*x*x).
5871 if (RHSC->getSExtValue() < 0)
5872 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5873 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5874 return Res;
5875 }
5876 }
5877
5878 // Otherwise, expand to a libcall.
5879 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5880 }
5881
expandDivFix(unsigned Opcode,const SDLoc & DL,SDValue LHS,SDValue RHS,SDValue Scale,SelectionDAG & DAG,const TargetLowering & TLI)5882 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5883 SDValue LHS, SDValue RHS, SDValue Scale,
5884 SelectionDAG &DAG, const TargetLowering &TLI) {
5885 EVT VT = LHS.getValueType();
5886 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5887 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5888 LLVMContext &Ctx = *DAG.getContext();
5889
5890 // If the type is legal but the operation isn't, this node might survive all
5891 // the way to operation legalization. If we end up there and we do not have
5892 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5893 // node.
5894
5895 // Coax the legalizer into expanding the node during type legalization instead
5896 // by bumping the size by one bit. This will force it to Promote, enabling the
5897 // early expansion and avoiding the need to expand later.
5898
5899 // We don't have to do this if Scale is 0; that can always be expanded, unless
5900 // it's a saturating signed operation. Those can experience true integer
5901 // division overflow, a case which we must avoid.
5902
5903 // FIXME: We wouldn't have to do this (or any of the early
5904 // expansion/promotion) if it was possible to expand a libcall of an
5905 // illegal type during operation legalization. But it's not, so things
5906 // get a bit hacky.
5907 unsigned ScaleInt = Scale->getAsZExtVal();
5908 if ((ScaleInt > 0 || (Saturating && Signed)) &&
5909 (TLI.isTypeLegal(VT) ||
5910 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5911 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5912 Opcode, VT, ScaleInt);
5913 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5914 EVT PromVT;
5915 if (VT.isScalarInteger())
5916 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5917 else if (VT.isVector()) {
5918 PromVT = VT.getVectorElementType();
5919 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5920 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5921 } else
5922 llvm_unreachable("Wrong VT for DIVFIX?");
5923 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5924 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5925 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5926 // For saturating operations, we need to shift up the LHS to get the
5927 // proper saturation width, and then shift down again afterwards.
5928 if (Saturating)
5929 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5930 DAG.getConstant(1, DL, ShiftTy));
5931 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5932 if (Saturating)
5933 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5934 DAG.getConstant(1, DL, ShiftTy));
5935 return DAG.getZExtOrTrunc(Res, DL, VT);
5936 }
5937 }
5938
5939 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5940 }
5941
5942 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5943 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5944 static void
getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned,TypeSize>> & Regs,const SDValue & N)5945 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5946 const SDValue &N) {
5947 switch (N.getOpcode()) {
5948 case ISD::CopyFromReg: {
5949 SDValue Op = N.getOperand(1);
5950 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5951 Op.getValueType().getSizeInBits());
5952 return;
5953 }
5954 case ISD::BITCAST:
5955 case ISD::AssertZext:
5956 case ISD::AssertSext:
5957 case ISD::TRUNCATE:
5958 getUnderlyingArgRegs(Regs, N.getOperand(0));
5959 return;
5960 case ISD::BUILD_PAIR:
5961 case ISD::BUILD_VECTOR:
5962 case ISD::CONCAT_VECTORS:
5963 for (SDValue Op : N->op_values())
5964 getUnderlyingArgRegs(Regs, Op);
5965 return;
5966 default:
5967 return;
5968 }
5969 }
5970
5971 /// If the DbgValueInst is a dbg_value of a function argument, create the
5972 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5973 /// instruction selection, they will be inserted to the entry BB.
5974 /// We don't currently support this for variadic dbg_values, as they shouldn't
5975 /// appear for function arguments or in the prologue.
EmitFuncArgumentDbgValue(const Value * V,DILocalVariable * Variable,DIExpression * Expr,DILocation * DL,FuncArgumentDbgValueKind Kind,const SDValue & N)5976 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5977 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5978 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5979 const Argument *Arg = dyn_cast<Argument>(V);
5980 if (!Arg)
5981 return false;
5982
5983 MachineFunction &MF = DAG.getMachineFunction();
5984 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5985
5986 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5987 // we've been asked to pursue.
5988 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5989 bool Indirect) {
5990 if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5991 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5992 // pointing at the VReg, which will be patched up later.
5993 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5994 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5995 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5996 /* isKill */ false, /* isDead */ false,
5997 /* isUndef */ false, /* isEarlyClobber */ false,
5998 /* SubReg */ 0, /* isDebug */ true)});
5999
6000 auto *NewDIExpr = FragExpr;
6001 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6002 // the DIExpression.
6003 if (Indirect)
6004 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6005 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
6006 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6007 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6008 } else {
6009 // Create a completely standard DBG_VALUE.
6010 auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6011 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6012 }
6013 };
6014
6015 if (Kind == FuncArgumentDbgValueKind::Value) {
6016 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6017 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6018 // the entry block.
6019 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6020 if (!IsInEntryBlock)
6021 return false;
6022
6023 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6024 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6025 // variable that also is a param.
6026 //
6027 // Although, if we are at the top of the entry block already, we can still
6028 // emit using ArgDbgValue. This might catch some situations when the
6029 // dbg.value refers to an argument that isn't used in the entry block, so
6030 // any CopyToReg node would be optimized out and the only way to express
6031 // this DBG_VALUE is by using the physical reg (or FI) as done in this
6032 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
6033 // we should only emit as ArgDbgValue if the Variable is an argument to the
6034 // current function, and the dbg.value intrinsic is found in the entry
6035 // block.
6036 bool VariableIsFunctionInputArg = Variable->isParameter() &&
6037 !DL->getInlinedAt();
6038 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6039 if (!IsInPrologue && !VariableIsFunctionInputArg)
6040 return false;
6041
6042 // Here we assume that a function argument on IR level only can be used to
6043 // describe one input parameter on source level. If we for example have
6044 // source code like this
6045 //
6046 // struct A { long x, y; };
6047 // void foo(struct A a, long b) {
6048 // ...
6049 // b = a.x;
6050 // ...
6051 // }
6052 //
6053 // and IR like this
6054 //
6055 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
6056 // entry:
6057 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6058 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6059 // call void @llvm.dbg.value(metadata i32 %b, "b",
6060 // ...
6061 // call void @llvm.dbg.value(metadata i32 %a1, "b"
6062 // ...
6063 //
6064 // then the last dbg.value is describing a parameter "b" using a value that
6065 // is an argument. But since we already has used %a1 to describe a parameter
6066 // we should not handle that last dbg.value here (that would result in an
6067 // incorrect hoisting of the DBG_VALUE to the function entry).
6068 // Notice that we allow one dbg.value per IR level argument, to accommodate
6069 // for the situation with fragments above.
6070 // If there is no node for the value being handled, we return true to skip
6071 // the normal generation of debug info, as it would kill existing debug
6072 // info for the parameter in case of duplicates.
6073 if (VariableIsFunctionInputArg) {
6074 unsigned ArgNo = Arg->getArgNo();
6075 if (ArgNo >= FuncInfo.DescribedArgs.size())
6076 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6077 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6078 return !NodeMap[V].getNode();
6079 FuncInfo.DescribedArgs.set(ArgNo);
6080 }
6081 }
6082
6083 bool IsIndirect = false;
6084 std::optional<MachineOperand> Op;
6085 // Some arguments' frame index is recorded during argument lowering.
6086 int FI = FuncInfo.getArgumentFrameIndex(Arg);
6087 if (FI != std::numeric_limits<int>::max())
6088 Op = MachineOperand::CreateFI(FI);
6089
6090 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6091 if (!Op && N.getNode()) {
6092 getUnderlyingArgRegs(ArgRegsAndSizes, N);
6093 Register Reg;
6094 if (ArgRegsAndSizes.size() == 1)
6095 Reg = ArgRegsAndSizes.front().first;
6096
6097 if (Reg && Reg.isVirtual()) {
6098 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6099 Register PR = RegInfo.getLiveInPhysReg(Reg);
6100 if (PR)
6101 Reg = PR;
6102 }
6103 if (Reg) {
6104 Op = MachineOperand::CreateReg(Reg, false);
6105 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6106 }
6107 }
6108
6109 if (!Op && N.getNode()) {
6110 // Check if frame index is available.
6111 SDValue LCandidate = peekThroughBitcasts(N);
6112 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6113 if (FrameIndexSDNode *FINode =
6114 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6115 Op = MachineOperand::CreateFI(FINode->getIndex());
6116 }
6117
6118 if (!Op) {
6119 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6120 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6121 SplitRegs) {
6122 unsigned Offset = 0;
6123 for (const auto &RegAndSize : SplitRegs) {
6124 // If the expression is already a fragment, the current register
6125 // offset+size might extend beyond the fragment. In this case, only
6126 // the register bits that are inside the fragment are relevant.
6127 int RegFragmentSizeInBits = RegAndSize.second;
6128 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6129 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6130 // The register is entirely outside the expression fragment,
6131 // so is irrelevant for debug info.
6132 if (Offset >= ExprFragmentSizeInBits)
6133 break;
6134 // The register is partially outside the expression fragment, only
6135 // the low bits within the fragment are relevant for debug info.
6136 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6137 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6138 }
6139 }
6140
6141 auto FragmentExpr = DIExpression::createFragmentExpression(
6142 Expr, Offset, RegFragmentSizeInBits);
6143 Offset += RegAndSize.second;
6144 // If a valid fragment expression cannot be created, the variable's
6145 // correct value cannot be determined and so it is set as Undef.
6146 if (!FragmentExpr) {
6147 SDDbgValue *SDV = DAG.getConstantDbgValue(
6148 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6149 DAG.AddDbgValue(SDV, false);
6150 continue;
6151 }
6152 MachineInstr *NewMI =
6153 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6154 Kind != FuncArgumentDbgValueKind::Value);
6155 FuncInfo.ArgDbgValues.push_back(NewMI);
6156 }
6157 };
6158
6159 // Check if ValueMap has reg number.
6160 DenseMap<const Value *, Register>::const_iterator
6161 VMI = FuncInfo.ValueMap.find(V);
6162 if (VMI != FuncInfo.ValueMap.end()) {
6163 const auto &TLI = DAG.getTargetLoweringInfo();
6164 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6165 V->getType(), std::nullopt);
6166 if (RFV.occupiesMultipleRegs()) {
6167 splitMultiRegDbgValue(RFV.getRegsAndSizes());
6168 return true;
6169 }
6170
6171 Op = MachineOperand::CreateReg(VMI->second, false);
6172 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6173 } else if (ArgRegsAndSizes.size() > 1) {
6174 // This was split due to the calling convention, and no virtual register
6175 // mapping exists for the value.
6176 splitMultiRegDbgValue(ArgRegsAndSizes);
6177 return true;
6178 }
6179 }
6180
6181 if (!Op)
6182 return false;
6183
6184 assert(Variable->isValidLocationForIntrinsic(DL) &&
6185 "Expected inlined-at fields to agree");
6186 MachineInstr *NewMI = nullptr;
6187
6188 if (Op->isReg())
6189 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6190 else
6191 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6192 Variable, Expr);
6193
6194 // Otherwise, use ArgDbgValues.
6195 FuncInfo.ArgDbgValues.push_back(NewMI);
6196 return true;
6197 }
6198
6199 /// Return the appropriate SDDbgValue based on N.
getDbgValue(SDValue N,DILocalVariable * Variable,DIExpression * Expr,const DebugLoc & dl,unsigned DbgSDNodeOrder)6200 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6201 DILocalVariable *Variable,
6202 DIExpression *Expr,
6203 const DebugLoc &dl,
6204 unsigned DbgSDNodeOrder) {
6205 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6206 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6207 // stack slot locations.
6208 //
6209 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6210 // debug values here after optimization:
6211 //
6212 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
6213 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6214 //
6215 // Both describe the direct values of their associated variables.
6216 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6217 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6218 }
6219 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6220 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6221 }
6222
FixedPointIntrinsicToOpcode(unsigned Intrinsic)6223 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6224 switch (Intrinsic) {
6225 case Intrinsic::smul_fix:
6226 return ISD::SMULFIX;
6227 case Intrinsic::umul_fix:
6228 return ISD::UMULFIX;
6229 case Intrinsic::smul_fix_sat:
6230 return ISD::SMULFIXSAT;
6231 case Intrinsic::umul_fix_sat:
6232 return ISD::UMULFIXSAT;
6233 case Intrinsic::sdiv_fix:
6234 return ISD::SDIVFIX;
6235 case Intrinsic::udiv_fix:
6236 return ISD::UDIVFIX;
6237 case Intrinsic::sdiv_fix_sat:
6238 return ISD::SDIVFIXSAT;
6239 case Intrinsic::udiv_fix_sat:
6240 return ISD::UDIVFIXSAT;
6241 default:
6242 llvm_unreachable("Unhandled fixed point intrinsic");
6243 }
6244 }
6245
lowerCallToExternalSymbol(const CallInst & I,const char * FunctionName)6246 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6247 const char *FunctionName) {
6248 assert(FunctionName && "FunctionName must not be nullptr");
6249 SDValue Callee = DAG.getExternalSymbol(
6250 FunctionName,
6251 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6252 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6253 }
6254
6255 /// Given a @llvm.call.preallocated.setup, return the corresponding
6256 /// preallocated call.
FindPreallocatedCall(const Value * PreallocatedSetup)6257 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6258 assert(cast<CallBase>(PreallocatedSetup)
6259 ->getCalledFunction()
6260 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6261 "expected call_preallocated_setup Value");
6262 for (const auto *U : PreallocatedSetup->users()) {
6263 auto *UseCall = cast<CallBase>(U);
6264 const Function *Fn = UseCall->getCalledFunction();
6265 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6266 return UseCall;
6267 }
6268 }
6269 llvm_unreachable("expected corresponding call to preallocated setup/arg");
6270 }
6271
6272 /// If DI is a debug value with an EntryValue expression, lower it using the
6273 /// corresponding physical register of the associated Argument value
6274 /// (guaranteed to exist by the verifier).
visitEntryValueDbgValue(ArrayRef<const Value * > Values,DILocalVariable * Variable,DIExpression * Expr,DebugLoc DbgLoc)6275 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6276 ArrayRef<const Value *> Values, DILocalVariable *Variable,
6277 DIExpression *Expr, DebugLoc DbgLoc) {
6278 if (!Expr->isEntryValue() || !hasSingleElement(Values))
6279 return false;
6280
6281 // These properties are guaranteed by the verifier.
6282 const Argument *Arg = cast<Argument>(Values[0]);
6283 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6284
6285 auto ArgIt = FuncInfo.ValueMap.find(Arg);
6286 if (ArgIt == FuncInfo.ValueMap.end()) {
6287 LLVM_DEBUG(
6288 dbgs() << "Dropping dbg.value: expression is entry_value but "
6289 "couldn't find an associated register for the Argument\n");
6290 return true;
6291 }
6292 Register ArgVReg = ArgIt->getSecond();
6293
6294 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6295 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6296 SDDbgValue *SDV = DAG.getVRegDbgValue(
6297 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6298 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6299 return true;
6300 }
6301 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6302 "couldn't find a physical register\n");
6303 return true;
6304 }
6305
6306 /// Lower the call to the specified intrinsic function.
visitConvergenceControl(const CallInst & I,unsigned Intrinsic)6307 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6308 unsigned Intrinsic) {
6309 SDLoc sdl = getCurSDLoc();
6310 switch (Intrinsic) {
6311 case Intrinsic::experimental_convergence_anchor:
6312 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6313 break;
6314 case Intrinsic::experimental_convergence_entry:
6315 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6316 break;
6317 case Intrinsic::experimental_convergence_loop: {
6318 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6319 auto *Token = Bundle->Inputs[0].get();
6320 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6321 getValue(Token)));
6322 break;
6323 }
6324 }
6325 }
6326
visitVectorHistogram(const CallInst & I,unsigned IntrinsicID)6327 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6328 unsigned IntrinsicID) {
6329 // For now, we're only lowering an 'add' histogram.
6330 // We can add others later, e.g. saturating adds, min/max.
6331 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6332 "Tried to lower unsupported histogram type");
6333 SDLoc sdl = getCurSDLoc();
6334 Value *Ptr = I.getOperand(0);
6335 SDValue Inc = getValue(I.getOperand(1));
6336 SDValue Mask = getValue(I.getOperand(2));
6337
6338 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6339 DataLayout TargetDL = DAG.getDataLayout();
6340 EVT VT = Inc.getValueType();
6341 Align Alignment = DAG.getEVTAlign(VT);
6342
6343 const MDNode *Ranges = getRangeMetadata(I);
6344
6345 SDValue Root = DAG.getRoot();
6346 SDValue Base;
6347 SDValue Index;
6348 ISD::MemIndexType IndexType;
6349 SDValue Scale;
6350 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6351 I.getParent(), VT.getScalarStoreSize());
6352
6353 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6354
6355 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6356 MachinePointerInfo(AS),
6357 MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6358 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6359
6360 if (!UniformBase) {
6361 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6362 Index = getValue(Ptr);
6363 IndexType = ISD::SIGNED_SCALED;
6364 Scale =
6365 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6366 }
6367
6368 EVT IdxVT = Index.getValueType();
6369 EVT EltTy = IdxVT.getVectorElementType();
6370 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6371 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6372 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6373 }
6374
6375 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6376
6377 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6378 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6379 Ops, MMO, IndexType);
6380
6381 setValue(&I, Histogram);
6382 DAG.setRoot(Histogram);
6383 }
6384
6385 /// Lower the call to the specified intrinsic function.
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)6386 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6387 unsigned Intrinsic) {
6388 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6389 SDLoc sdl = getCurSDLoc();
6390 DebugLoc dl = getCurDebugLoc();
6391 SDValue Res;
6392
6393 SDNodeFlags Flags;
6394 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6395 Flags.copyFMF(*FPOp);
6396
6397 switch (Intrinsic) {
6398 default:
6399 // By default, turn this into a target intrinsic node.
6400 visitTargetIntrinsic(I, Intrinsic);
6401 return;
6402 case Intrinsic::vscale: {
6403 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6404 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6405 return;
6406 }
6407 case Intrinsic::vastart: visitVAStart(I); return;
6408 case Intrinsic::vaend: visitVAEnd(I); return;
6409 case Intrinsic::vacopy: visitVACopy(I); return;
6410 case Intrinsic::returnaddress:
6411 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6412 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6413 getValue(I.getArgOperand(0))));
6414 return;
6415 case Intrinsic::addressofreturnaddress:
6416 setValue(&I,
6417 DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6418 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6419 return;
6420 case Intrinsic::sponentry:
6421 setValue(&I,
6422 DAG.getNode(ISD::SPONENTRY, sdl,
6423 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6424 return;
6425 case Intrinsic::frameaddress:
6426 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6427 TLI.getFrameIndexTy(DAG.getDataLayout()),
6428 getValue(I.getArgOperand(0))));
6429 return;
6430 case Intrinsic::read_volatile_register:
6431 case Intrinsic::read_register: {
6432 Value *Reg = I.getArgOperand(0);
6433 SDValue Chain = getRoot();
6434 SDValue RegName =
6435 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6436 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6437 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6438 DAG.getVTList(VT, MVT::Other), Chain, RegName);
6439 setValue(&I, Res);
6440 DAG.setRoot(Res.getValue(1));
6441 return;
6442 }
6443 case Intrinsic::write_register: {
6444 Value *Reg = I.getArgOperand(0);
6445 Value *RegValue = I.getArgOperand(1);
6446 SDValue Chain = getRoot();
6447 SDValue RegName =
6448 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6449 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6450 RegName, getValue(RegValue)));
6451 return;
6452 }
6453 case Intrinsic::memcpy: {
6454 const auto &MCI = cast<MemCpyInst>(I);
6455 SDValue Op1 = getValue(I.getArgOperand(0));
6456 SDValue Op2 = getValue(I.getArgOperand(1));
6457 SDValue Op3 = getValue(I.getArgOperand(2));
6458 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6459 Align DstAlign = MCI.getDestAlign().valueOrOne();
6460 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6461 Align Alignment = std::min(DstAlign, SrcAlign);
6462 bool isVol = MCI.isVolatile();
6463 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6464 // node.
6465 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6466 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6467 /* AlwaysInline */ false, &I, std::nullopt,
6468 MachinePointerInfo(I.getArgOperand(0)),
6469 MachinePointerInfo(I.getArgOperand(1)),
6470 I.getAAMetadata(), AA);
6471 updateDAGForMaybeTailCall(MC);
6472 return;
6473 }
6474 case Intrinsic::memcpy_inline: {
6475 const auto &MCI = cast<MemCpyInlineInst>(I);
6476 SDValue Dst = getValue(I.getArgOperand(0));
6477 SDValue Src = getValue(I.getArgOperand(1));
6478 SDValue Size = getValue(I.getArgOperand(2));
6479 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6480 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6481 Align DstAlign = MCI.getDestAlign().valueOrOne();
6482 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6483 Align Alignment = std::min(DstAlign, SrcAlign);
6484 bool isVol = MCI.isVolatile();
6485 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6486 // node.
6487 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6488 /* AlwaysInline */ true, &I, std::nullopt,
6489 MachinePointerInfo(I.getArgOperand(0)),
6490 MachinePointerInfo(I.getArgOperand(1)),
6491 I.getAAMetadata(), AA);
6492 updateDAGForMaybeTailCall(MC);
6493 return;
6494 }
6495 case Intrinsic::memset: {
6496 const auto &MSI = cast<MemSetInst>(I);
6497 SDValue Op1 = getValue(I.getArgOperand(0));
6498 SDValue Op2 = getValue(I.getArgOperand(1));
6499 SDValue Op3 = getValue(I.getArgOperand(2));
6500 // @llvm.memset defines 0 and 1 to both mean no alignment.
6501 Align Alignment = MSI.getDestAlign().valueOrOne();
6502 bool isVol = MSI.isVolatile();
6503 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6504 SDValue MS = DAG.getMemset(
6505 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6506 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6507 updateDAGForMaybeTailCall(MS);
6508 return;
6509 }
6510 case Intrinsic::memset_inline: {
6511 const auto &MSII = cast<MemSetInlineInst>(I);
6512 SDValue Dst = getValue(I.getArgOperand(0));
6513 SDValue Value = getValue(I.getArgOperand(1));
6514 SDValue Size = getValue(I.getArgOperand(2));
6515 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6516 // @llvm.memset defines 0 and 1 to both mean no alignment.
6517 Align DstAlign = MSII.getDestAlign().valueOrOne();
6518 bool isVol = MSII.isVolatile();
6519 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6520 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6521 /* AlwaysInline */ true, &I,
6522 MachinePointerInfo(I.getArgOperand(0)),
6523 I.getAAMetadata());
6524 updateDAGForMaybeTailCall(MC);
6525 return;
6526 }
6527 case Intrinsic::memmove: {
6528 const auto &MMI = cast<MemMoveInst>(I);
6529 SDValue Op1 = getValue(I.getArgOperand(0));
6530 SDValue Op2 = getValue(I.getArgOperand(1));
6531 SDValue Op3 = getValue(I.getArgOperand(2));
6532 // @llvm.memmove defines 0 and 1 to both mean no alignment.
6533 Align DstAlign = MMI.getDestAlign().valueOrOne();
6534 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6535 Align Alignment = std::min(DstAlign, SrcAlign);
6536 bool isVol = MMI.isVolatile();
6537 // FIXME: Support passing different dest/src alignments to the memmove DAG
6538 // node.
6539 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6540 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6541 /* OverrideTailCall */ std::nullopt,
6542 MachinePointerInfo(I.getArgOperand(0)),
6543 MachinePointerInfo(I.getArgOperand(1)),
6544 I.getAAMetadata(), AA);
6545 updateDAGForMaybeTailCall(MM);
6546 return;
6547 }
6548 case Intrinsic::memcpy_element_unordered_atomic: {
6549 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6550 SDValue Dst = getValue(MI.getRawDest());
6551 SDValue Src = getValue(MI.getRawSource());
6552 SDValue Length = getValue(MI.getLength());
6553
6554 Type *LengthTy = MI.getLength()->getType();
6555 unsigned ElemSz = MI.getElementSizeInBytes();
6556 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6557 SDValue MC =
6558 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6559 isTC, MachinePointerInfo(MI.getRawDest()),
6560 MachinePointerInfo(MI.getRawSource()));
6561 updateDAGForMaybeTailCall(MC);
6562 return;
6563 }
6564 case Intrinsic::memmove_element_unordered_atomic: {
6565 auto &MI = cast<AtomicMemMoveInst>(I);
6566 SDValue Dst = getValue(MI.getRawDest());
6567 SDValue Src = getValue(MI.getRawSource());
6568 SDValue Length = getValue(MI.getLength());
6569
6570 Type *LengthTy = MI.getLength()->getType();
6571 unsigned ElemSz = MI.getElementSizeInBytes();
6572 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6573 SDValue MC =
6574 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6575 isTC, MachinePointerInfo(MI.getRawDest()),
6576 MachinePointerInfo(MI.getRawSource()));
6577 updateDAGForMaybeTailCall(MC);
6578 return;
6579 }
6580 case Intrinsic::memset_element_unordered_atomic: {
6581 auto &MI = cast<AtomicMemSetInst>(I);
6582 SDValue Dst = getValue(MI.getRawDest());
6583 SDValue Val = getValue(MI.getValue());
6584 SDValue Length = getValue(MI.getLength());
6585
6586 Type *LengthTy = MI.getLength()->getType();
6587 unsigned ElemSz = MI.getElementSizeInBytes();
6588 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6589 SDValue MC =
6590 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6591 isTC, MachinePointerInfo(MI.getRawDest()));
6592 updateDAGForMaybeTailCall(MC);
6593 return;
6594 }
6595 case Intrinsic::call_preallocated_setup: {
6596 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6597 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6598 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6599 getRoot(), SrcValue);
6600 setValue(&I, Res);
6601 DAG.setRoot(Res);
6602 return;
6603 }
6604 case Intrinsic::call_preallocated_arg: {
6605 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6606 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6607 SDValue Ops[3];
6608 Ops[0] = getRoot();
6609 Ops[1] = SrcValue;
6610 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6611 MVT::i32); // arg index
6612 SDValue Res = DAG.getNode(
6613 ISD::PREALLOCATED_ARG, sdl,
6614 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6615 setValue(&I, Res);
6616 DAG.setRoot(Res.getValue(1));
6617 return;
6618 }
6619 case Intrinsic::dbg_declare: {
6620 const auto &DI = cast<DbgDeclareInst>(I);
6621 // Debug intrinsics are handled separately in assignment tracking mode.
6622 // Some intrinsics are handled right after Argument lowering.
6623 if (AssignmentTrackingEnabled ||
6624 FuncInfo.PreprocessedDbgDeclares.count(&DI))
6625 return;
6626 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6627 DILocalVariable *Variable = DI.getVariable();
6628 DIExpression *Expression = DI.getExpression();
6629 dropDanglingDebugInfo(Variable, Expression);
6630 // Assume dbg.declare can not currently use DIArgList, i.e.
6631 // it is non-variadic.
6632 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6633 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6634 DI.getDebugLoc());
6635 return;
6636 }
6637 case Intrinsic::dbg_label: {
6638 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6639 DILabel *Label = DI.getLabel();
6640 assert(Label && "Missing label");
6641
6642 SDDbgLabel *SDV;
6643 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6644 DAG.AddDbgLabel(SDV);
6645 return;
6646 }
6647 case Intrinsic::dbg_assign: {
6648 // Debug intrinsics are handled separately in assignment tracking mode.
6649 if (AssignmentTrackingEnabled)
6650 return;
6651 // If assignment tracking hasn't been enabled then fall through and treat
6652 // the dbg.assign as a dbg.value.
6653 [[fallthrough]];
6654 }
6655 case Intrinsic::dbg_value: {
6656 // Debug intrinsics are handled separately in assignment tracking mode.
6657 if (AssignmentTrackingEnabled)
6658 return;
6659 const DbgValueInst &DI = cast<DbgValueInst>(I);
6660 assert(DI.getVariable() && "Missing variable");
6661
6662 DILocalVariable *Variable = DI.getVariable();
6663 DIExpression *Expression = DI.getExpression();
6664 dropDanglingDebugInfo(Variable, Expression);
6665
6666 if (DI.isKillLocation()) {
6667 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6668 return;
6669 }
6670
6671 SmallVector<Value *, 4> Values(DI.getValues());
6672 if (Values.empty())
6673 return;
6674
6675 bool IsVariadic = DI.hasArgList();
6676 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6677 SDNodeOrder, IsVariadic))
6678 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6679 DI.getDebugLoc(), SDNodeOrder);
6680 return;
6681 }
6682
6683 case Intrinsic::eh_typeid_for: {
6684 // Find the type id for the given typeinfo.
6685 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6686 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6687 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6688 setValue(&I, Res);
6689 return;
6690 }
6691
6692 case Intrinsic::eh_return_i32:
6693 case Intrinsic::eh_return_i64:
6694 DAG.getMachineFunction().setCallsEHReturn(true);
6695 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6696 MVT::Other,
6697 getControlRoot(),
6698 getValue(I.getArgOperand(0)),
6699 getValue(I.getArgOperand(1))));
6700 return;
6701 case Intrinsic::eh_unwind_init:
6702 DAG.getMachineFunction().setCallsUnwindInit(true);
6703 return;
6704 case Intrinsic::eh_dwarf_cfa:
6705 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6706 TLI.getPointerTy(DAG.getDataLayout()),
6707 getValue(I.getArgOperand(0))));
6708 return;
6709 case Intrinsic::eh_sjlj_callsite: {
6710 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6711 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6712 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6713
6714 MMI.setCurrentCallSite(CI->getZExtValue());
6715 return;
6716 }
6717 case Intrinsic::eh_sjlj_functioncontext: {
6718 // Get and store the index of the function context.
6719 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6720 AllocaInst *FnCtx =
6721 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6722 int FI = FuncInfo.StaticAllocaMap[FnCtx];
6723 MFI.setFunctionContextIndex(FI);
6724 return;
6725 }
6726 case Intrinsic::eh_sjlj_setjmp: {
6727 SDValue Ops[2];
6728 Ops[0] = getRoot();
6729 Ops[1] = getValue(I.getArgOperand(0));
6730 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6731 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6732 setValue(&I, Op.getValue(0));
6733 DAG.setRoot(Op.getValue(1));
6734 return;
6735 }
6736 case Intrinsic::eh_sjlj_longjmp:
6737 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6738 getRoot(), getValue(I.getArgOperand(0))));
6739 return;
6740 case Intrinsic::eh_sjlj_setup_dispatch:
6741 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6742 getRoot()));
6743 return;
6744 case Intrinsic::masked_gather:
6745 visitMaskedGather(I);
6746 return;
6747 case Intrinsic::masked_load:
6748 visitMaskedLoad(I);
6749 return;
6750 case Intrinsic::masked_scatter:
6751 visitMaskedScatter(I);
6752 return;
6753 case Intrinsic::masked_store:
6754 visitMaskedStore(I);
6755 return;
6756 case Intrinsic::masked_expandload:
6757 visitMaskedLoad(I, true /* IsExpanding */);
6758 return;
6759 case Intrinsic::masked_compressstore:
6760 visitMaskedStore(I, true /* IsCompressing */);
6761 return;
6762 case Intrinsic::powi:
6763 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6764 getValue(I.getArgOperand(1)), DAG));
6765 return;
6766 case Intrinsic::log:
6767 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6768 return;
6769 case Intrinsic::log2:
6770 setValue(&I,
6771 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6772 return;
6773 case Intrinsic::log10:
6774 setValue(&I,
6775 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6776 return;
6777 case Intrinsic::exp:
6778 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6779 return;
6780 case Intrinsic::exp2:
6781 setValue(&I,
6782 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6783 return;
6784 case Intrinsic::pow:
6785 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6786 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6787 return;
6788 case Intrinsic::sqrt:
6789 case Intrinsic::fabs:
6790 case Intrinsic::sin:
6791 case Intrinsic::cos:
6792 case Intrinsic::tan:
6793 case Intrinsic::asin:
6794 case Intrinsic::acos:
6795 case Intrinsic::atan:
6796 case Intrinsic::sinh:
6797 case Intrinsic::cosh:
6798 case Intrinsic::tanh:
6799 case Intrinsic::exp10:
6800 case Intrinsic::floor:
6801 case Intrinsic::ceil:
6802 case Intrinsic::trunc:
6803 case Intrinsic::rint:
6804 case Intrinsic::nearbyint:
6805 case Intrinsic::round:
6806 case Intrinsic::roundeven:
6807 case Intrinsic::canonicalize: {
6808 unsigned Opcode;
6809 // clang-format off
6810 switch (Intrinsic) {
6811 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6812 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6813 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6814 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6815 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6816 case Intrinsic::tan: Opcode = ISD::FTAN; break;
6817 case Intrinsic::asin: Opcode = ISD::FASIN; break;
6818 case Intrinsic::acos: Opcode = ISD::FACOS; break;
6819 case Intrinsic::atan: Opcode = ISD::FATAN; break;
6820 case Intrinsic::sinh: Opcode = ISD::FSINH; break;
6821 case Intrinsic::cosh: Opcode = ISD::FCOSH; break;
6822 case Intrinsic::tanh: Opcode = ISD::FTANH; break;
6823 case Intrinsic::exp10: Opcode = ISD::FEXP10; break;
6824 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6825 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6826 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6827 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6828 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6829 case Intrinsic::round: Opcode = ISD::FROUND; break;
6830 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6831 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6832 }
6833 // clang-format on
6834
6835 setValue(&I, DAG.getNode(Opcode, sdl,
6836 getValue(I.getArgOperand(0)).getValueType(),
6837 getValue(I.getArgOperand(0)), Flags));
6838 return;
6839 }
6840 case Intrinsic::lround:
6841 case Intrinsic::llround:
6842 case Intrinsic::lrint:
6843 case Intrinsic::llrint: {
6844 unsigned Opcode;
6845 // clang-format off
6846 switch (Intrinsic) {
6847 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6848 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6849 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6850 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6851 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6852 }
6853 // clang-format on
6854
6855 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6856 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6857 getValue(I.getArgOperand(0))));
6858 return;
6859 }
6860 case Intrinsic::minnum:
6861 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6862 getValue(I.getArgOperand(0)).getValueType(),
6863 getValue(I.getArgOperand(0)),
6864 getValue(I.getArgOperand(1)), Flags));
6865 return;
6866 case Intrinsic::maxnum:
6867 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6868 getValue(I.getArgOperand(0)).getValueType(),
6869 getValue(I.getArgOperand(0)),
6870 getValue(I.getArgOperand(1)), Flags));
6871 return;
6872 case Intrinsic::minimum:
6873 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6874 getValue(I.getArgOperand(0)).getValueType(),
6875 getValue(I.getArgOperand(0)),
6876 getValue(I.getArgOperand(1)), Flags));
6877 return;
6878 case Intrinsic::maximum:
6879 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6880 getValue(I.getArgOperand(0)).getValueType(),
6881 getValue(I.getArgOperand(0)),
6882 getValue(I.getArgOperand(1)), Flags));
6883 return;
6884 case Intrinsic::copysign:
6885 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6886 getValue(I.getArgOperand(0)).getValueType(),
6887 getValue(I.getArgOperand(0)),
6888 getValue(I.getArgOperand(1)), Flags));
6889 return;
6890 case Intrinsic::ldexp:
6891 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6892 getValue(I.getArgOperand(0)).getValueType(),
6893 getValue(I.getArgOperand(0)),
6894 getValue(I.getArgOperand(1)), Flags));
6895 return;
6896 case Intrinsic::frexp: {
6897 SmallVector<EVT, 2> ValueVTs;
6898 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6899 SDVTList VTs = DAG.getVTList(ValueVTs);
6900 setValue(&I,
6901 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6902 return;
6903 }
6904 case Intrinsic::arithmetic_fence: {
6905 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6906 getValue(I.getArgOperand(0)).getValueType(),
6907 getValue(I.getArgOperand(0)), Flags));
6908 return;
6909 }
6910 case Intrinsic::fma:
6911 setValue(&I, DAG.getNode(
6912 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6913 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6914 getValue(I.getArgOperand(2)), Flags));
6915 return;
6916 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6917 case Intrinsic::INTRINSIC:
6918 #include "llvm/IR/ConstrainedOps.def"
6919 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6920 return;
6921 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6922 #include "llvm/IR/VPIntrinsics.def"
6923 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6924 return;
6925 case Intrinsic::fptrunc_round: {
6926 // Get the last argument, the metadata and convert it to an integer in the
6927 // call
6928 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6929 std::optional<RoundingMode> RoundMode =
6930 convertStrToRoundingMode(cast<MDString>(MD)->getString());
6931
6932 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6933
6934 // Propagate fast-math-flags from IR to node(s).
6935 SDNodeFlags Flags;
6936 Flags.copyFMF(*cast<FPMathOperator>(&I));
6937 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6938
6939 SDValue Result;
6940 Result = DAG.getNode(
6941 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6942 DAG.getTargetConstant((int)*RoundMode, sdl,
6943 TLI.getPointerTy(DAG.getDataLayout())));
6944 setValue(&I, Result);
6945
6946 return;
6947 }
6948 case Intrinsic::fmuladd: {
6949 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6950 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6951 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6952 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6953 getValue(I.getArgOperand(0)).getValueType(),
6954 getValue(I.getArgOperand(0)),
6955 getValue(I.getArgOperand(1)),
6956 getValue(I.getArgOperand(2)), Flags));
6957 } else {
6958 // TODO: Intrinsic calls should have fast-math-flags.
6959 SDValue Mul = DAG.getNode(
6960 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6961 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6962 SDValue Add = DAG.getNode(ISD::FADD, sdl,
6963 getValue(I.getArgOperand(0)).getValueType(),
6964 Mul, getValue(I.getArgOperand(2)), Flags);
6965 setValue(&I, Add);
6966 }
6967 return;
6968 }
6969 case Intrinsic::convert_to_fp16:
6970 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6971 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6972 getValue(I.getArgOperand(0)),
6973 DAG.getTargetConstant(0, sdl,
6974 MVT::i32))));
6975 return;
6976 case Intrinsic::convert_from_fp16:
6977 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6978 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6979 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6980 getValue(I.getArgOperand(0)))));
6981 return;
6982 case Intrinsic::fptosi_sat: {
6983 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6984 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6985 getValue(I.getArgOperand(0)),
6986 DAG.getValueType(VT.getScalarType())));
6987 return;
6988 }
6989 case Intrinsic::fptoui_sat: {
6990 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6991 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6992 getValue(I.getArgOperand(0)),
6993 DAG.getValueType(VT.getScalarType())));
6994 return;
6995 }
6996 case Intrinsic::set_rounding:
6997 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6998 {getRoot(), getValue(I.getArgOperand(0))});
6999 setValue(&I, Res);
7000 DAG.setRoot(Res.getValue(0));
7001 return;
7002 case Intrinsic::is_fpclass: {
7003 const DataLayout DLayout = DAG.getDataLayout();
7004 EVT DestVT = TLI.getValueType(DLayout, I.getType());
7005 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7006 FPClassTest Test = static_cast<FPClassTest>(
7007 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7008 MachineFunction &MF = DAG.getMachineFunction();
7009 const Function &F = MF.getFunction();
7010 SDValue Op = getValue(I.getArgOperand(0));
7011 SDNodeFlags Flags;
7012 Flags.setNoFPExcept(
7013 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7014 // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7015 // expansion can use illegal types. Making expansion early allows
7016 // legalizing these types prior to selection.
7017 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
7018 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7019 setValue(&I, Result);
7020 return;
7021 }
7022
7023 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7024 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7025 setValue(&I, V);
7026 return;
7027 }
7028 case Intrinsic::get_fpenv: {
7029 const DataLayout DLayout = DAG.getDataLayout();
7030 EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7031 Align TempAlign = DAG.getEVTAlign(EnvVT);
7032 SDValue Chain = getRoot();
7033 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7034 // and temporary storage in stack.
7035 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7036 Res = DAG.getNode(
7037 ISD::GET_FPENV, sdl,
7038 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7039 MVT::Other),
7040 Chain);
7041 } else {
7042 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7043 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7044 auto MPI =
7045 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7046 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7047 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
7048 TempAlign);
7049 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7050 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7051 }
7052 setValue(&I, Res);
7053 DAG.setRoot(Res.getValue(1));
7054 return;
7055 }
7056 case Intrinsic::set_fpenv: {
7057 const DataLayout DLayout = DAG.getDataLayout();
7058 SDValue Env = getValue(I.getArgOperand(0));
7059 EVT EnvVT = Env.getValueType();
7060 Align TempAlign = DAG.getEVTAlign(EnvVT);
7061 SDValue Chain = getRoot();
7062 // If SET_FPENV is custom or legal, use it. Otherwise use loading
7063 // environment from memory.
7064 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7065 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7066 } else {
7067 // Allocate space in stack, copy environment bits into it and use this
7068 // memory in SET_FPENV_MEM.
7069 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7070 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7071 auto MPI =
7072 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7073 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7074 MachineMemOperand::MOStore);
7075 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7076 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7077 TempAlign);
7078 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7079 }
7080 DAG.setRoot(Chain);
7081 return;
7082 }
7083 case Intrinsic::reset_fpenv:
7084 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7085 return;
7086 case Intrinsic::get_fpmode:
7087 Res = DAG.getNode(
7088 ISD::GET_FPMODE, sdl,
7089 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7090 MVT::Other),
7091 DAG.getRoot());
7092 setValue(&I, Res);
7093 DAG.setRoot(Res.getValue(1));
7094 return;
7095 case Intrinsic::set_fpmode:
7096 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7097 getValue(I.getArgOperand(0)));
7098 DAG.setRoot(Res);
7099 return;
7100 case Intrinsic::reset_fpmode: {
7101 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7102 DAG.setRoot(Res);
7103 return;
7104 }
7105 case Intrinsic::pcmarker: {
7106 SDValue Tmp = getValue(I.getArgOperand(0));
7107 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7108 return;
7109 }
7110 case Intrinsic::readcyclecounter: {
7111 SDValue Op = getRoot();
7112 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7113 DAG.getVTList(MVT::i64, MVT::Other), Op);
7114 setValue(&I, Res);
7115 DAG.setRoot(Res.getValue(1));
7116 return;
7117 }
7118 case Intrinsic::readsteadycounter: {
7119 SDValue Op = getRoot();
7120 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7121 DAG.getVTList(MVT::i64, MVT::Other), Op);
7122 setValue(&I, Res);
7123 DAG.setRoot(Res.getValue(1));
7124 return;
7125 }
7126 case Intrinsic::bitreverse:
7127 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7128 getValue(I.getArgOperand(0)).getValueType(),
7129 getValue(I.getArgOperand(0))));
7130 return;
7131 case Intrinsic::bswap:
7132 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7133 getValue(I.getArgOperand(0)).getValueType(),
7134 getValue(I.getArgOperand(0))));
7135 return;
7136 case Intrinsic::cttz: {
7137 SDValue Arg = getValue(I.getArgOperand(0));
7138 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7139 EVT Ty = Arg.getValueType();
7140 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7141 sdl, Ty, Arg));
7142 return;
7143 }
7144 case Intrinsic::ctlz: {
7145 SDValue Arg = getValue(I.getArgOperand(0));
7146 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7147 EVT Ty = Arg.getValueType();
7148 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7149 sdl, Ty, Arg));
7150 return;
7151 }
7152 case Intrinsic::ctpop: {
7153 SDValue Arg = getValue(I.getArgOperand(0));
7154 EVT Ty = Arg.getValueType();
7155 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7156 return;
7157 }
7158 case Intrinsic::fshl:
7159 case Intrinsic::fshr: {
7160 bool IsFSHL = Intrinsic == Intrinsic::fshl;
7161 SDValue X = getValue(I.getArgOperand(0));
7162 SDValue Y = getValue(I.getArgOperand(1));
7163 SDValue Z = getValue(I.getArgOperand(2));
7164 EVT VT = X.getValueType();
7165
7166 if (X == Y) {
7167 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7168 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7169 } else {
7170 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7171 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7172 }
7173 return;
7174 }
7175 case Intrinsic::sadd_sat: {
7176 SDValue Op1 = getValue(I.getArgOperand(0));
7177 SDValue Op2 = getValue(I.getArgOperand(1));
7178 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7179 return;
7180 }
7181 case Intrinsic::uadd_sat: {
7182 SDValue Op1 = getValue(I.getArgOperand(0));
7183 SDValue Op2 = getValue(I.getArgOperand(1));
7184 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7185 return;
7186 }
7187 case Intrinsic::ssub_sat: {
7188 SDValue Op1 = getValue(I.getArgOperand(0));
7189 SDValue Op2 = getValue(I.getArgOperand(1));
7190 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7191 return;
7192 }
7193 case Intrinsic::usub_sat: {
7194 SDValue Op1 = getValue(I.getArgOperand(0));
7195 SDValue Op2 = getValue(I.getArgOperand(1));
7196 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7197 return;
7198 }
7199 case Intrinsic::sshl_sat: {
7200 SDValue Op1 = getValue(I.getArgOperand(0));
7201 SDValue Op2 = getValue(I.getArgOperand(1));
7202 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7203 return;
7204 }
7205 case Intrinsic::ushl_sat: {
7206 SDValue Op1 = getValue(I.getArgOperand(0));
7207 SDValue Op2 = getValue(I.getArgOperand(1));
7208 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7209 return;
7210 }
7211 case Intrinsic::smul_fix:
7212 case Intrinsic::umul_fix:
7213 case Intrinsic::smul_fix_sat:
7214 case Intrinsic::umul_fix_sat: {
7215 SDValue Op1 = getValue(I.getArgOperand(0));
7216 SDValue Op2 = getValue(I.getArgOperand(1));
7217 SDValue Op3 = getValue(I.getArgOperand(2));
7218 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7219 Op1.getValueType(), Op1, Op2, Op3));
7220 return;
7221 }
7222 case Intrinsic::sdiv_fix:
7223 case Intrinsic::udiv_fix:
7224 case Intrinsic::sdiv_fix_sat:
7225 case Intrinsic::udiv_fix_sat: {
7226 SDValue Op1 = getValue(I.getArgOperand(0));
7227 SDValue Op2 = getValue(I.getArgOperand(1));
7228 SDValue Op3 = getValue(I.getArgOperand(2));
7229 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7230 Op1, Op2, Op3, DAG, TLI));
7231 return;
7232 }
7233 case Intrinsic::smax: {
7234 SDValue Op1 = getValue(I.getArgOperand(0));
7235 SDValue Op2 = getValue(I.getArgOperand(1));
7236 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7237 return;
7238 }
7239 case Intrinsic::smin: {
7240 SDValue Op1 = getValue(I.getArgOperand(0));
7241 SDValue Op2 = getValue(I.getArgOperand(1));
7242 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7243 return;
7244 }
7245 case Intrinsic::umax: {
7246 SDValue Op1 = getValue(I.getArgOperand(0));
7247 SDValue Op2 = getValue(I.getArgOperand(1));
7248 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7249 return;
7250 }
7251 case Intrinsic::umin: {
7252 SDValue Op1 = getValue(I.getArgOperand(0));
7253 SDValue Op2 = getValue(I.getArgOperand(1));
7254 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7255 return;
7256 }
7257 case Intrinsic::abs: {
7258 // TODO: Preserve "int min is poison" arg in SDAG?
7259 SDValue Op1 = getValue(I.getArgOperand(0));
7260 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7261 return;
7262 }
7263 case Intrinsic::scmp: {
7264 SDValue Op1 = getValue(I.getArgOperand(0));
7265 SDValue Op2 = getValue(I.getArgOperand(1));
7266 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7267 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7268 break;
7269 }
7270 case Intrinsic::ucmp: {
7271 SDValue Op1 = getValue(I.getArgOperand(0));
7272 SDValue Op2 = getValue(I.getArgOperand(1));
7273 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7274 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7275 break;
7276 }
7277 case Intrinsic::stacksave: {
7278 SDValue Op = getRoot();
7279 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7280 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7281 setValue(&I, Res);
7282 DAG.setRoot(Res.getValue(1));
7283 return;
7284 }
7285 case Intrinsic::stackrestore:
7286 Res = getValue(I.getArgOperand(0));
7287 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7288 return;
7289 case Intrinsic::get_dynamic_area_offset: {
7290 SDValue Op = getRoot();
7291 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7292 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7293 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7294 // target.
7295 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7296 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7297 " intrinsic!");
7298 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7299 Op);
7300 DAG.setRoot(Op);
7301 setValue(&I, Res);
7302 return;
7303 }
7304 case Intrinsic::stackguard: {
7305 MachineFunction &MF = DAG.getMachineFunction();
7306 const Module &M = *MF.getFunction().getParent();
7307 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7308 SDValue Chain = getRoot();
7309 if (TLI.useLoadStackGuardNode()) {
7310 Res = getLoadStackGuard(DAG, sdl, Chain);
7311 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7312 } else {
7313 const Value *Global = TLI.getSDagStackGuard(M);
7314 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7315 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7316 MachinePointerInfo(Global, 0), Align,
7317 MachineMemOperand::MOVolatile);
7318 }
7319 if (TLI.useStackGuardXorFP())
7320 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7321 DAG.setRoot(Chain);
7322 setValue(&I, Res);
7323 return;
7324 }
7325 case Intrinsic::stackprotector: {
7326 // Emit code into the DAG to store the stack guard onto the stack.
7327 MachineFunction &MF = DAG.getMachineFunction();
7328 MachineFrameInfo &MFI = MF.getFrameInfo();
7329 SDValue Src, Chain = getRoot();
7330
7331 if (TLI.useLoadStackGuardNode())
7332 Src = getLoadStackGuard(DAG, sdl, Chain);
7333 else
7334 Src = getValue(I.getArgOperand(0)); // The guard's value.
7335
7336 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7337
7338 int FI = FuncInfo.StaticAllocaMap[Slot];
7339 MFI.setStackProtectorIndex(FI);
7340 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7341
7342 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7343
7344 // Store the stack protector onto the stack.
7345 Res = DAG.getStore(
7346 Chain, sdl, Src, FIN,
7347 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7348 MaybeAlign(), MachineMemOperand::MOVolatile);
7349 setValue(&I, Res);
7350 DAG.setRoot(Res);
7351 return;
7352 }
7353 case Intrinsic::objectsize:
7354 llvm_unreachable("llvm.objectsize.* should have been lowered already");
7355
7356 case Intrinsic::is_constant:
7357 llvm_unreachable("llvm.is.constant.* should have been lowered already");
7358
7359 case Intrinsic::annotation:
7360 case Intrinsic::ptr_annotation:
7361 case Intrinsic::launder_invariant_group:
7362 case Intrinsic::strip_invariant_group:
7363 // Drop the intrinsic, but forward the value
7364 setValue(&I, getValue(I.getOperand(0)));
7365 return;
7366
7367 case Intrinsic::assume:
7368 case Intrinsic::experimental_noalias_scope_decl:
7369 case Intrinsic::var_annotation:
7370 case Intrinsic::sideeffect:
7371 // Discard annotate attributes, noalias scope declarations, assumptions, and
7372 // artificial side-effects.
7373 return;
7374
7375 case Intrinsic::codeview_annotation: {
7376 // Emit a label associated with this metadata.
7377 MachineFunction &MF = DAG.getMachineFunction();
7378 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7379 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7380 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7381 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7382 DAG.setRoot(Res);
7383 return;
7384 }
7385
7386 case Intrinsic::init_trampoline: {
7387 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7388
7389 SDValue Ops[6];
7390 Ops[0] = getRoot();
7391 Ops[1] = getValue(I.getArgOperand(0));
7392 Ops[2] = getValue(I.getArgOperand(1));
7393 Ops[3] = getValue(I.getArgOperand(2));
7394 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7395 Ops[5] = DAG.getSrcValue(F);
7396
7397 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7398
7399 DAG.setRoot(Res);
7400 return;
7401 }
7402 case Intrinsic::adjust_trampoline:
7403 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7404 TLI.getPointerTy(DAG.getDataLayout()),
7405 getValue(I.getArgOperand(0))));
7406 return;
7407 case Intrinsic::gcroot: {
7408 assert(DAG.getMachineFunction().getFunction().hasGC() &&
7409 "only valid in functions with gc specified, enforced by Verifier");
7410 assert(GFI && "implied by previous");
7411 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7412 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7413
7414 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7415 GFI->addStackRoot(FI->getIndex(), TypeMap);
7416 return;
7417 }
7418 case Intrinsic::gcread:
7419 case Intrinsic::gcwrite:
7420 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7421 case Intrinsic::get_rounding:
7422 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7423 setValue(&I, Res);
7424 DAG.setRoot(Res.getValue(1));
7425 return;
7426
7427 case Intrinsic::expect:
7428 // Just replace __builtin_expect(exp, c) with EXP.
7429 setValue(&I, getValue(I.getArgOperand(0)));
7430 return;
7431
7432 case Intrinsic::ubsantrap:
7433 case Intrinsic::debugtrap:
7434 case Intrinsic::trap: {
7435 StringRef TrapFuncName =
7436 I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7437 if (TrapFuncName.empty()) {
7438 switch (Intrinsic) {
7439 case Intrinsic::trap:
7440 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7441 break;
7442 case Intrinsic::debugtrap:
7443 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7444 break;
7445 case Intrinsic::ubsantrap:
7446 DAG.setRoot(DAG.getNode(
7447 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7448 DAG.getTargetConstant(
7449 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7450 MVT::i32)));
7451 break;
7452 default: llvm_unreachable("unknown trap intrinsic");
7453 }
7454 return;
7455 }
7456 TargetLowering::ArgListTy Args;
7457 if (Intrinsic == Intrinsic::ubsantrap) {
7458 Args.push_back(TargetLoweringBase::ArgListEntry());
7459 Args[0].Val = I.getArgOperand(0);
7460 Args[0].Node = getValue(Args[0].Val);
7461 Args[0].Ty = Args[0].Val->getType();
7462 }
7463
7464 TargetLowering::CallLoweringInfo CLI(DAG);
7465 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7466 CallingConv::C, I.getType(),
7467 DAG.getExternalSymbol(TrapFuncName.data(),
7468 TLI.getPointerTy(DAG.getDataLayout())),
7469 std::move(Args));
7470
7471 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7472 DAG.setRoot(Result.second);
7473 return;
7474 }
7475
7476 case Intrinsic::allow_runtime_check:
7477 case Intrinsic::allow_ubsan_check:
7478 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7479 return;
7480
7481 case Intrinsic::uadd_with_overflow:
7482 case Intrinsic::sadd_with_overflow:
7483 case Intrinsic::usub_with_overflow:
7484 case Intrinsic::ssub_with_overflow:
7485 case Intrinsic::umul_with_overflow:
7486 case Intrinsic::smul_with_overflow: {
7487 ISD::NodeType Op;
7488 switch (Intrinsic) {
7489 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7490 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7491 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7492 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7493 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7494 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7495 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7496 }
7497 SDValue Op1 = getValue(I.getArgOperand(0));
7498 SDValue Op2 = getValue(I.getArgOperand(1));
7499
7500 EVT ResultVT = Op1.getValueType();
7501 EVT OverflowVT = MVT::i1;
7502 if (ResultVT.isVector())
7503 OverflowVT = EVT::getVectorVT(
7504 *Context, OverflowVT, ResultVT.getVectorElementCount());
7505
7506 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7507 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7508 return;
7509 }
7510 case Intrinsic::prefetch: {
7511 SDValue Ops[5];
7512 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7513 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7514 Ops[0] = DAG.getRoot();
7515 Ops[1] = getValue(I.getArgOperand(0));
7516 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7517 MVT::i32);
7518 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7519 MVT::i32);
7520 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7521 MVT::i32);
7522 SDValue Result = DAG.getMemIntrinsicNode(
7523 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7524 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7525 /* align */ std::nullopt, Flags);
7526
7527 // Chain the prefetch in parallel with any pending loads, to stay out of
7528 // the way of later optimizations.
7529 PendingLoads.push_back(Result);
7530 Result = getRoot();
7531 DAG.setRoot(Result);
7532 return;
7533 }
7534 case Intrinsic::lifetime_start:
7535 case Intrinsic::lifetime_end: {
7536 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7537 // Stack coloring is not enabled in O0, discard region information.
7538 if (TM.getOptLevel() == CodeGenOptLevel::None)
7539 return;
7540
7541 const int64_t ObjectSize =
7542 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7543 Value *const ObjectPtr = I.getArgOperand(1);
7544 SmallVector<const Value *, 4> Allocas;
7545 getUnderlyingObjects(ObjectPtr, Allocas);
7546
7547 for (const Value *Alloca : Allocas) {
7548 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7549
7550 // Could not find an Alloca.
7551 if (!LifetimeObject)
7552 continue;
7553
7554 // First check that the Alloca is static, otherwise it won't have a
7555 // valid frame index.
7556 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7557 if (SI == FuncInfo.StaticAllocaMap.end())
7558 return;
7559
7560 const int FrameIndex = SI->second;
7561 int64_t Offset;
7562 if (GetPointerBaseWithConstantOffset(
7563 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7564 Offset = -1; // Cannot determine offset from alloca to lifetime object.
7565 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7566 Offset);
7567 DAG.setRoot(Res);
7568 }
7569 return;
7570 }
7571 case Intrinsic::pseudoprobe: {
7572 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7573 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7574 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7575 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7576 DAG.setRoot(Res);
7577 return;
7578 }
7579 case Intrinsic::invariant_start:
7580 // Discard region information.
7581 setValue(&I,
7582 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7583 return;
7584 case Intrinsic::invariant_end:
7585 // Discard region information.
7586 return;
7587 case Intrinsic::clear_cache: {
7588 SDValue InputChain = DAG.getRoot();
7589 SDValue StartVal = getValue(I.getArgOperand(0));
7590 SDValue EndVal = getValue(I.getArgOperand(1));
7591 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7592 {InputChain, StartVal, EndVal});
7593 setValue(&I, Res);
7594 DAG.setRoot(Res);
7595 return;
7596 }
7597 case Intrinsic::donothing:
7598 case Intrinsic::seh_try_begin:
7599 case Intrinsic::seh_scope_begin:
7600 case Intrinsic::seh_try_end:
7601 case Intrinsic::seh_scope_end:
7602 // ignore
7603 return;
7604 case Intrinsic::experimental_stackmap:
7605 visitStackmap(I);
7606 return;
7607 case Intrinsic::experimental_patchpoint_void:
7608 case Intrinsic::experimental_patchpoint:
7609 visitPatchpoint(I);
7610 return;
7611 case Intrinsic::experimental_gc_statepoint:
7612 LowerStatepoint(cast<GCStatepointInst>(I));
7613 return;
7614 case Intrinsic::experimental_gc_result:
7615 visitGCResult(cast<GCResultInst>(I));
7616 return;
7617 case Intrinsic::experimental_gc_relocate:
7618 visitGCRelocate(cast<GCRelocateInst>(I));
7619 return;
7620 case Intrinsic::instrprof_cover:
7621 llvm_unreachable("instrprof failed to lower a cover");
7622 case Intrinsic::instrprof_increment:
7623 llvm_unreachable("instrprof failed to lower an increment");
7624 case Intrinsic::instrprof_timestamp:
7625 llvm_unreachable("instrprof failed to lower a timestamp");
7626 case Intrinsic::instrprof_value_profile:
7627 llvm_unreachable("instrprof failed to lower a value profiling call");
7628 case Intrinsic::instrprof_mcdc_parameters:
7629 llvm_unreachable("instrprof failed to lower mcdc parameters");
7630 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7631 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7632 case Intrinsic::localescape: {
7633 MachineFunction &MF = DAG.getMachineFunction();
7634 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7635
7636 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7637 // is the same on all targets.
7638 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7639 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7640 if (isa<ConstantPointerNull>(Arg))
7641 continue; // Skip null pointers. They represent a hole in index space.
7642 AllocaInst *Slot = cast<AllocaInst>(Arg);
7643 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7644 "can only escape static allocas");
7645 int FI = FuncInfo.StaticAllocaMap[Slot];
7646 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7647 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7649 TII->get(TargetOpcode::LOCAL_ESCAPE))
7650 .addSym(FrameAllocSym)
7651 .addFrameIndex(FI);
7652 }
7653
7654 return;
7655 }
7656
7657 case Intrinsic::localrecover: {
7658 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7659 MachineFunction &MF = DAG.getMachineFunction();
7660
7661 // Get the symbol that defines the frame offset.
7662 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7663 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7664 unsigned IdxVal =
7665 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7666 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7667 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7668
7669 Value *FP = I.getArgOperand(1);
7670 SDValue FPVal = getValue(FP);
7671 EVT PtrVT = FPVal.getValueType();
7672
7673 // Create a MCSymbol for the label to avoid any target lowering
7674 // that would make this PC relative.
7675 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7676 SDValue OffsetVal =
7677 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7678
7679 // Add the offset to the FP.
7680 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7681 setValue(&I, Add);
7682
7683 return;
7684 }
7685
7686 case Intrinsic::eh_exceptionpointer:
7687 case Intrinsic::eh_exceptioncode: {
7688 // Get the exception pointer vreg, copy from it, and resize it to fit.
7689 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7690 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7691 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7692 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7693 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7694 if (Intrinsic == Intrinsic::eh_exceptioncode)
7695 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7696 setValue(&I, N);
7697 return;
7698 }
7699 case Intrinsic::xray_customevent: {
7700 // Here we want to make sure that the intrinsic behaves as if it has a
7701 // specific calling convention.
7702 const auto &Triple = DAG.getTarget().getTargetTriple();
7703 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7704 return;
7705
7706 SmallVector<SDValue, 8> Ops;
7707
7708 // We want to say that we always want the arguments in registers.
7709 SDValue LogEntryVal = getValue(I.getArgOperand(0));
7710 SDValue StrSizeVal = getValue(I.getArgOperand(1));
7711 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7712 SDValue Chain = getRoot();
7713 Ops.push_back(LogEntryVal);
7714 Ops.push_back(StrSizeVal);
7715 Ops.push_back(Chain);
7716
7717 // We need to enforce the calling convention for the callsite, so that
7718 // argument ordering is enforced correctly, and that register allocation can
7719 // see that some registers may be assumed clobbered and have to preserve
7720 // them across calls to the intrinsic.
7721 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7722 sdl, NodeTys, Ops);
7723 SDValue patchableNode = SDValue(MN, 0);
7724 DAG.setRoot(patchableNode);
7725 setValue(&I, patchableNode);
7726 return;
7727 }
7728 case Intrinsic::xray_typedevent: {
7729 // Here we want to make sure that the intrinsic behaves as if it has a
7730 // specific calling convention.
7731 const auto &Triple = DAG.getTarget().getTargetTriple();
7732 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7733 return;
7734
7735 SmallVector<SDValue, 8> Ops;
7736
7737 // We want to say that we always want the arguments in registers.
7738 // It's unclear to me how manipulating the selection DAG here forces callers
7739 // to provide arguments in registers instead of on the stack.
7740 SDValue LogTypeId = getValue(I.getArgOperand(0));
7741 SDValue LogEntryVal = getValue(I.getArgOperand(1));
7742 SDValue StrSizeVal = getValue(I.getArgOperand(2));
7743 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7744 SDValue Chain = getRoot();
7745 Ops.push_back(LogTypeId);
7746 Ops.push_back(LogEntryVal);
7747 Ops.push_back(StrSizeVal);
7748 Ops.push_back(Chain);
7749
7750 // We need to enforce the calling convention for the callsite, so that
7751 // argument ordering is enforced correctly, and that register allocation can
7752 // see that some registers may be assumed clobbered and have to preserve
7753 // them across calls to the intrinsic.
7754 MachineSDNode *MN = DAG.getMachineNode(
7755 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7756 SDValue patchableNode = SDValue(MN, 0);
7757 DAG.setRoot(patchableNode);
7758 setValue(&I, patchableNode);
7759 return;
7760 }
7761 case Intrinsic::experimental_deoptimize:
7762 LowerDeoptimizeCall(&I);
7763 return;
7764 case Intrinsic::experimental_stepvector:
7765 visitStepVector(I);
7766 return;
7767 case Intrinsic::vector_reduce_fadd:
7768 case Intrinsic::vector_reduce_fmul:
7769 case Intrinsic::vector_reduce_add:
7770 case Intrinsic::vector_reduce_mul:
7771 case Intrinsic::vector_reduce_and:
7772 case Intrinsic::vector_reduce_or:
7773 case Intrinsic::vector_reduce_xor:
7774 case Intrinsic::vector_reduce_smax:
7775 case Intrinsic::vector_reduce_smin:
7776 case Intrinsic::vector_reduce_umax:
7777 case Intrinsic::vector_reduce_umin:
7778 case Intrinsic::vector_reduce_fmax:
7779 case Intrinsic::vector_reduce_fmin:
7780 case Intrinsic::vector_reduce_fmaximum:
7781 case Intrinsic::vector_reduce_fminimum:
7782 visitVectorReduce(I, Intrinsic);
7783 return;
7784
7785 case Intrinsic::icall_branch_funnel: {
7786 SmallVector<SDValue, 16> Ops;
7787 Ops.push_back(getValue(I.getArgOperand(0)));
7788
7789 int64_t Offset;
7790 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7791 I.getArgOperand(1), Offset, DAG.getDataLayout()));
7792 if (!Base)
7793 report_fatal_error(
7794 "llvm.icall.branch.funnel operand must be a GlobalValue");
7795 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7796
7797 struct BranchFunnelTarget {
7798 int64_t Offset;
7799 SDValue Target;
7800 };
7801 SmallVector<BranchFunnelTarget, 8> Targets;
7802
7803 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7804 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7805 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7806 if (ElemBase != Base)
7807 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7808 "to the same GlobalValue");
7809
7810 SDValue Val = getValue(I.getArgOperand(Op + 1));
7811 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7812 if (!GA)
7813 report_fatal_error(
7814 "llvm.icall.branch.funnel operand must be a GlobalValue");
7815 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7816 GA->getGlobal(), sdl, Val.getValueType(),
7817 GA->getOffset())});
7818 }
7819 llvm::sort(Targets,
7820 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7821 return T1.Offset < T2.Offset;
7822 });
7823
7824 for (auto &T : Targets) {
7825 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7826 Ops.push_back(T.Target);
7827 }
7828
7829 Ops.push_back(DAG.getRoot()); // Chain
7830 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7831 MVT::Other, Ops),
7832 0);
7833 DAG.setRoot(N);
7834 setValue(&I, N);
7835 HasTailCall = true;
7836 return;
7837 }
7838
7839 case Intrinsic::wasm_landingpad_index:
7840 // Information this intrinsic contained has been transferred to
7841 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7842 // delete it now.
7843 return;
7844
7845 case Intrinsic::aarch64_settag:
7846 case Intrinsic::aarch64_settag_zero: {
7847 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7848 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7849 SDValue Val = TSI.EmitTargetCodeForSetTag(
7850 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7851 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7852 ZeroMemory);
7853 DAG.setRoot(Val);
7854 setValue(&I, Val);
7855 return;
7856 }
7857 case Intrinsic::amdgcn_cs_chain: {
7858 assert(I.arg_size() == 5 && "Additional args not supported yet");
7859 assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7860 "Non-zero flags not supported yet");
7861
7862 // At this point we don't care if it's amdgpu_cs_chain or
7863 // amdgpu_cs_chain_preserve.
7864 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7865
7866 Type *RetTy = I.getType();
7867 assert(RetTy->isVoidTy() && "Should not return");
7868
7869 SDValue Callee = getValue(I.getOperand(0));
7870
7871 // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7872 // We'll also tack the value of the EXEC mask at the end.
7873 TargetLowering::ArgListTy Args;
7874 Args.reserve(3);
7875
7876 for (unsigned Idx : {2, 3, 1}) {
7877 TargetLowering::ArgListEntry Arg;
7878 Arg.Node = getValue(I.getOperand(Idx));
7879 Arg.Ty = I.getOperand(Idx)->getType();
7880 Arg.setAttributes(&I, Idx);
7881 Args.push_back(Arg);
7882 }
7883
7884 assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7885 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7886 Args[2].IsInReg = true; // EXEC should be inreg
7887
7888 TargetLowering::CallLoweringInfo CLI(DAG);
7889 CLI.setDebugLoc(getCurSDLoc())
7890 .setChain(getRoot())
7891 .setCallee(CC, RetTy, Callee, std::move(Args))
7892 .setNoReturn(true)
7893 .setTailCall(true)
7894 .setConvergent(I.isConvergent());
7895 CLI.CB = &I;
7896 std::pair<SDValue, SDValue> Result =
7897 lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7898 (void)Result;
7899 assert(!Result.first.getNode() && !Result.second.getNode() &&
7900 "Should've lowered as tail call");
7901
7902 HasTailCall = true;
7903 return;
7904 }
7905 case Intrinsic::ptrmask: {
7906 SDValue Ptr = getValue(I.getOperand(0));
7907 SDValue Mask = getValue(I.getOperand(1));
7908
7909 // On arm64_32, pointers are 32 bits when stored in memory, but
7910 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to
7911 // match the index type, but the pointer is 64 bits, so the the mask must be
7912 // zero-extended up to 64 bits to match the pointer.
7913 EVT PtrVT =
7914 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7915 EVT MemVT =
7916 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7917 assert(PtrVT == Ptr.getValueType());
7918 assert(MemVT == Mask.getValueType());
7919 if (MemVT != PtrVT)
7920 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
7921
7922 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7923 return;
7924 }
7925 case Intrinsic::threadlocal_address: {
7926 setValue(&I, getValue(I.getOperand(0)));
7927 return;
7928 }
7929 case Intrinsic::get_active_lane_mask: {
7930 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7931 SDValue Index = getValue(I.getOperand(0));
7932 EVT ElementVT = Index.getValueType();
7933
7934 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7935 visitTargetIntrinsic(I, Intrinsic);
7936 return;
7937 }
7938
7939 SDValue TripCount = getValue(I.getOperand(1));
7940 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7941 CCVT.getVectorElementCount());
7942
7943 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7944 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7945 SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7946 SDValue VectorInduction = DAG.getNode(
7947 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7948 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7949 VectorTripCount, ISD::CondCode::SETULT);
7950 setValue(&I, SetCC);
7951 return;
7952 }
7953 case Intrinsic::experimental_get_vector_length: {
7954 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7955 "Expected positive VF");
7956 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7957 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7958
7959 SDValue Count = getValue(I.getOperand(0));
7960 EVT CountVT = Count.getValueType();
7961
7962 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7963 visitTargetIntrinsic(I, Intrinsic);
7964 return;
7965 }
7966
7967 // Expand to a umin between the trip count and the maximum elements the type
7968 // can hold.
7969 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7970
7971 // Extend the trip count to at least the result VT.
7972 if (CountVT.bitsLT(VT)) {
7973 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7974 CountVT = VT;
7975 }
7976
7977 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7978 ElementCount::get(VF, IsScalable));
7979
7980 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7981 // Clip to the result type if needed.
7982 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7983
7984 setValue(&I, Trunc);
7985 return;
7986 }
7987 case Intrinsic::experimental_vector_partial_reduce_add: {
7988 SDValue OpNode = getValue(I.getOperand(1));
7989 EVT ReducedTy = EVT::getEVT(I.getType());
7990 EVT FullTy = OpNode.getValueType();
7991
7992 unsigned Stride = ReducedTy.getVectorMinNumElements();
7993 unsigned ScaleFactor = FullTy.getVectorMinNumElements() / Stride;
7994
7995 // Collect all of the subvectors
7996 std::deque<SDValue> Subvectors;
7997 Subvectors.push_back(getValue(I.getOperand(0)));
7998 for (unsigned i = 0; i < ScaleFactor; i++) {
7999 auto SourceIndex = DAG.getVectorIdxConstant(i * Stride, sdl);
8000 Subvectors.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ReducedTy,
8001 {OpNode, SourceIndex}));
8002 }
8003
8004 // Flatten the subvector tree
8005 while (Subvectors.size() > 1) {
8006 Subvectors.push_back(DAG.getNode(ISD::ADD, sdl, ReducedTy,
8007 {Subvectors[0], Subvectors[1]}));
8008 Subvectors.pop_front();
8009 Subvectors.pop_front();
8010 }
8011
8012 assert(Subvectors.size() == 1 &&
8013 "There should only be one subvector after tree flattening");
8014
8015 setValue(&I, Subvectors[0]);
8016 return;
8017 }
8018 case Intrinsic::experimental_cttz_elts: {
8019 auto DL = getCurSDLoc();
8020 SDValue Op = getValue(I.getOperand(0));
8021 EVT OpVT = Op.getValueType();
8022
8023 if (!TLI.shouldExpandCttzElements(OpVT)) {
8024 visitTargetIntrinsic(I, Intrinsic);
8025 return;
8026 }
8027
8028 if (OpVT.getScalarType() != MVT::i1) {
8029 // Compare the input vector elements to zero & use to count trailing zeros
8030 SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8031 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8032 OpVT.getVectorElementCount());
8033 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8034 }
8035
8036 // If the zero-is-poison flag is set, we can assume the upper limit
8037 // of the result is VF-1.
8038 bool ZeroIsPoison =
8039 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8040 ConstantRange VScaleRange(1, true); // Dummy value.
8041 if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8042 VScaleRange = getVScaleRange(I.getCaller(), 64);
8043 unsigned EltWidth = TLI.getBitWidthForCttzElements(
8044 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8045
8046 MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8047
8048 // Create the new vector type & get the vector length
8049 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8050 OpVT.getVectorElementCount());
8051
8052 SDValue VL =
8053 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8054
8055 SDValue StepVec = DAG.getStepVector(DL, NewVT);
8056 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8057 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8058 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8059 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8060 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8061 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8062
8063 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8064 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8065
8066 setValue(&I, Ret);
8067 return;
8068 }
8069 case Intrinsic::vector_insert: {
8070 SDValue Vec = getValue(I.getOperand(0));
8071 SDValue SubVec = getValue(I.getOperand(1));
8072 SDValue Index = getValue(I.getOperand(2));
8073
8074 // The intrinsic's index type is i64, but the SDNode requires an index type
8075 // suitable for the target. Convert the index as required.
8076 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8077 if (Index.getValueType() != VectorIdxTy)
8078 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8079
8080 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8081 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8082 Index));
8083 return;
8084 }
8085 case Intrinsic::vector_extract: {
8086 SDValue Vec = getValue(I.getOperand(0));
8087 SDValue Index = getValue(I.getOperand(1));
8088 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8089
8090 // The intrinsic's index type is i64, but the SDNode requires an index type
8091 // suitable for the target. Convert the index as required.
8092 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8093 if (Index.getValueType() != VectorIdxTy)
8094 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8095
8096 setValue(&I,
8097 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8098 return;
8099 }
8100 case Intrinsic::vector_reverse:
8101 visitVectorReverse(I);
8102 return;
8103 case Intrinsic::vector_splice:
8104 visitVectorSplice(I);
8105 return;
8106 case Intrinsic::callbr_landingpad:
8107 visitCallBrLandingPad(I);
8108 return;
8109 case Intrinsic::vector_interleave2:
8110 visitVectorInterleave(I);
8111 return;
8112 case Intrinsic::vector_deinterleave2:
8113 visitVectorDeinterleave(I);
8114 return;
8115 case Intrinsic::experimental_vector_compress:
8116 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8117 getValue(I.getArgOperand(0)).getValueType(),
8118 getValue(I.getArgOperand(0)),
8119 getValue(I.getArgOperand(1)),
8120 getValue(I.getArgOperand(2)), Flags));
8121 return;
8122 case Intrinsic::experimental_convergence_anchor:
8123 case Intrinsic::experimental_convergence_entry:
8124 case Intrinsic::experimental_convergence_loop:
8125 visitConvergenceControl(I, Intrinsic);
8126 return;
8127 case Intrinsic::experimental_vector_histogram_add: {
8128 visitVectorHistogram(I, Intrinsic);
8129 return;
8130 }
8131 }
8132 }
8133
visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic & FPI)8134 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8135 const ConstrainedFPIntrinsic &FPI) {
8136 SDLoc sdl = getCurSDLoc();
8137
8138 // We do not need to serialize constrained FP intrinsics against
8139 // each other or against (nonvolatile) loads, so they can be
8140 // chained like loads.
8141 SDValue Chain = DAG.getRoot();
8142 SmallVector<SDValue, 4> Opers;
8143 Opers.push_back(Chain);
8144 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8145 Opers.push_back(getValue(FPI.getArgOperand(I)));
8146
8147 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8148 assert(Result.getNode()->getNumValues() == 2);
8149
8150 // Push node to the appropriate list so that future instructions can be
8151 // chained up correctly.
8152 SDValue OutChain = Result.getValue(1);
8153 switch (EB) {
8154 case fp::ExceptionBehavior::ebIgnore:
8155 // The only reason why ebIgnore nodes still need to be chained is that
8156 // they might depend on the current rounding mode, and therefore must
8157 // not be moved across instruction that may change that mode.
8158 [[fallthrough]];
8159 case fp::ExceptionBehavior::ebMayTrap:
8160 // These must not be moved across calls or instructions that may change
8161 // floating-point exception masks.
8162 PendingConstrainedFP.push_back(OutChain);
8163 break;
8164 case fp::ExceptionBehavior::ebStrict:
8165 // These must not be moved across calls or instructions that may change
8166 // floating-point exception masks or read floating-point exception flags.
8167 // In addition, they cannot be optimized out even if unused.
8168 PendingConstrainedFPStrict.push_back(OutChain);
8169 break;
8170 }
8171 };
8172
8173 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8174 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8175 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8176 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8177
8178 SDNodeFlags Flags;
8179 if (EB == fp::ExceptionBehavior::ebIgnore)
8180 Flags.setNoFPExcept(true);
8181
8182 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8183 Flags.copyFMF(*FPOp);
8184
8185 unsigned Opcode;
8186 switch (FPI.getIntrinsicID()) {
8187 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
8188 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8189 case Intrinsic::INTRINSIC: \
8190 Opcode = ISD::STRICT_##DAGN; \
8191 break;
8192 #include "llvm/IR/ConstrainedOps.def"
8193 case Intrinsic::experimental_constrained_fmuladd: {
8194 Opcode = ISD::STRICT_FMA;
8195 // Break fmuladd into fmul and fadd.
8196 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8197 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8198 Opers.pop_back();
8199 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8200 pushOutChain(Mul, EB);
8201 Opcode = ISD::STRICT_FADD;
8202 Opers.clear();
8203 Opers.push_back(Mul.getValue(1));
8204 Opers.push_back(Mul.getValue(0));
8205 Opers.push_back(getValue(FPI.getArgOperand(2)));
8206 }
8207 break;
8208 }
8209 }
8210
8211 // A few strict DAG nodes carry additional operands that are not
8212 // set up by the default code above.
8213 switch (Opcode) {
8214 default: break;
8215 case ISD::STRICT_FP_ROUND:
8216 Opers.push_back(
8217 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8218 break;
8219 case ISD::STRICT_FSETCC:
8220 case ISD::STRICT_FSETCCS: {
8221 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8222 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8223 if (TM.Options.NoNaNsFPMath)
8224 Condition = getFCmpCodeWithoutNaN(Condition);
8225 Opers.push_back(DAG.getCondCode(Condition));
8226 break;
8227 }
8228 }
8229
8230 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8231 pushOutChain(Result, EB);
8232
8233 SDValue FPResult = Result.getValue(0);
8234 setValue(&FPI, FPResult);
8235 }
8236
getISDForVPIntrinsic(const VPIntrinsic & VPIntrin)8237 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8238 std::optional<unsigned> ResOPC;
8239 switch (VPIntrin.getIntrinsicID()) {
8240 case Intrinsic::vp_ctlz: {
8241 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8242 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8243 break;
8244 }
8245 case Intrinsic::vp_cttz: {
8246 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8247 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8248 break;
8249 }
8250 case Intrinsic::vp_cttz_elts: {
8251 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8252 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8253 break;
8254 }
8255 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8256 case Intrinsic::VPID: \
8257 ResOPC = ISD::VPSD; \
8258 break;
8259 #include "llvm/IR/VPIntrinsics.def"
8260 }
8261
8262 if (!ResOPC)
8263 llvm_unreachable(
8264 "Inconsistency: no SDNode available for this VPIntrinsic!");
8265
8266 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8267 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8268 if (VPIntrin.getFastMathFlags().allowReassoc())
8269 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8270 : ISD::VP_REDUCE_FMUL;
8271 }
8272
8273 return *ResOPC;
8274 }
8275
visitVPLoad(const VPIntrinsic & VPIntrin,EVT VT,const SmallVectorImpl<SDValue> & OpValues)8276 void SelectionDAGBuilder::visitVPLoad(
8277 const VPIntrinsic &VPIntrin, EVT VT,
8278 const SmallVectorImpl<SDValue> &OpValues) {
8279 SDLoc DL = getCurSDLoc();
8280 Value *PtrOperand = VPIntrin.getArgOperand(0);
8281 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8282 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8283 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8284 SDValue LD;
8285 // Do not serialize variable-length loads of constant memory with
8286 // anything.
8287 if (!Alignment)
8288 Alignment = DAG.getEVTAlign(VT);
8289 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8290 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8291 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8292 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8293 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8294 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8295 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8296 MMO, false /*IsExpanding */);
8297 if (AddToChain)
8298 PendingLoads.push_back(LD.getValue(1));
8299 setValue(&VPIntrin, LD);
8300 }
8301
visitVPGather(const VPIntrinsic & VPIntrin,EVT VT,const SmallVectorImpl<SDValue> & OpValues)8302 void SelectionDAGBuilder::visitVPGather(
8303 const VPIntrinsic &VPIntrin, EVT VT,
8304 const SmallVectorImpl<SDValue> &OpValues) {
8305 SDLoc DL = getCurSDLoc();
8306 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8307 Value *PtrOperand = VPIntrin.getArgOperand(0);
8308 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8309 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8310 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8311 SDValue LD;
8312 if (!Alignment)
8313 Alignment = DAG.getEVTAlign(VT.getScalarType());
8314 unsigned AS =
8315 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8316 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8317 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8318 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8319 SDValue Base, Index, Scale;
8320 ISD::MemIndexType IndexType;
8321 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8322 this, VPIntrin.getParent(),
8323 VT.getScalarStoreSize());
8324 if (!UniformBase) {
8325 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8326 Index = getValue(PtrOperand);
8327 IndexType = ISD::SIGNED_SCALED;
8328 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8329 }
8330 EVT IdxVT = Index.getValueType();
8331 EVT EltTy = IdxVT.getVectorElementType();
8332 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8333 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8334 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8335 }
8336 LD = DAG.getGatherVP(
8337 DAG.getVTList(VT, MVT::Other), VT, DL,
8338 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8339 IndexType);
8340 PendingLoads.push_back(LD.getValue(1));
8341 setValue(&VPIntrin, LD);
8342 }
8343
visitVPStore(const VPIntrinsic & VPIntrin,const SmallVectorImpl<SDValue> & OpValues)8344 void SelectionDAGBuilder::visitVPStore(
8345 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8346 SDLoc DL = getCurSDLoc();
8347 Value *PtrOperand = VPIntrin.getArgOperand(1);
8348 EVT VT = OpValues[0].getValueType();
8349 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8350 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8351 SDValue ST;
8352 if (!Alignment)
8353 Alignment = DAG.getEVTAlign(VT);
8354 SDValue Ptr = OpValues[1];
8355 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8356 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8357 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8358 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8359 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8360 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8361 /* IsTruncating */ false, /*IsCompressing*/ false);
8362 DAG.setRoot(ST);
8363 setValue(&VPIntrin, ST);
8364 }
8365
visitVPScatter(const VPIntrinsic & VPIntrin,const SmallVectorImpl<SDValue> & OpValues)8366 void SelectionDAGBuilder::visitVPScatter(
8367 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8368 SDLoc DL = getCurSDLoc();
8369 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8370 Value *PtrOperand = VPIntrin.getArgOperand(1);
8371 EVT VT = OpValues[0].getValueType();
8372 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8373 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8374 SDValue ST;
8375 if (!Alignment)
8376 Alignment = DAG.getEVTAlign(VT.getScalarType());
8377 unsigned AS =
8378 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8379 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8380 MachinePointerInfo(AS), MachineMemOperand::MOStore,
8381 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8382 SDValue Base, Index, Scale;
8383 ISD::MemIndexType IndexType;
8384 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8385 this, VPIntrin.getParent(),
8386 VT.getScalarStoreSize());
8387 if (!UniformBase) {
8388 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8389 Index = getValue(PtrOperand);
8390 IndexType = ISD::SIGNED_SCALED;
8391 Scale =
8392 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8393 }
8394 EVT IdxVT = Index.getValueType();
8395 EVT EltTy = IdxVT.getVectorElementType();
8396 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8397 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8398 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8399 }
8400 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8401 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8402 OpValues[2], OpValues[3]},
8403 MMO, IndexType);
8404 DAG.setRoot(ST);
8405 setValue(&VPIntrin, ST);
8406 }
8407
visitVPStridedLoad(const VPIntrinsic & VPIntrin,EVT VT,const SmallVectorImpl<SDValue> & OpValues)8408 void SelectionDAGBuilder::visitVPStridedLoad(
8409 const VPIntrinsic &VPIntrin, EVT VT,
8410 const SmallVectorImpl<SDValue> &OpValues) {
8411 SDLoc DL = getCurSDLoc();
8412 Value *PtrOperand = VPIntrin.getArgOperand(0);
8413 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8414 if (!Alignment)
8415 Alignment = DAG.getEVTAlign(VT.getScalarType());
8416 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8417 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8418 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8419 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8420 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8421 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8422 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8423 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8424 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8425
8426 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8427 OpValues[2], OpValues[3], MMO,
8428 false /*IsExpanding*/);
8429
8430 if (AddToChain)
8431 PendingLoads.push_back(LD.getValue(1));
8432 setValue(&VPIntrin, LD);
8433 }
8434
visitVPStridedStore(const VPIntrinsic & VPIntrin,const SmallVectorImpl<SDValue> & OpValues)8435 void SelectionDAGBuilder::visitVPStridedStore(
8436 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8437 SDLoc DL = getCurSDLoc();
8438 Value *PtrOperand = VPIntrin.getArgOperand(1);
8439 EVT VT = OpValues[0].getValueType();
8440 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8441 if (!Alignment)
8442 Alignment = DAG.getEVTAlign(VT.getScalarType());
8443 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8444 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8445 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8446 MachinePointerInfo(AS), MachineMemOperand::MOStore,
8447 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8448
8449 SDValue ST = DAG.getStridedStoreVP(
8450 getMemoryRoot(), DL, OpValues[0], OpValues[1],
8451 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8452 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8453 /*IsCompressing*/ false);
8454
8455 DAG.setRoot(ST);
8456 setValue(&VPIntrin, ST);
8457 }
8458
visitVPCmp(const VPCmpIntrinsic & VPIntrin)8459 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8460 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8461 SDLoc DL = getCurSDLoc();
8462
8463 ISD::CondCode Condition;
8464 CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8465 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8466 if (IsFP) {
8467 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8468 // flags, but calls that don't return floating-point types can't be
8469 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8470 Condition = getFCmpCondCode(CondCode);
8471 if (TM.Options.NoNaNsFPMath)
8472 Condition = getFCmpCodeWithoutNaN(Condition);
8473 } else {
8474 Condition = getICmpCondCode(CondCode);
8475 }
8476
8477 SDValue Op1 = getValue(VPIntrin.getOperand(0));
8478 SDValue Op2 = getValue(VPIntrin.getOperand(1));
8479 // #2 is the condition code
8480 SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8481 SDValue EVL = getValue(VPIntrin.getOperand(4));
8482 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8483 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8484 "Unexpected target EVL type");
8485 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8486
8487 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8488 VPIntrin.getType());
8489 setValue(&VPIntrin,
8490 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8491 }
8492
visitVectorPredicationIntrinsic(const VPIntrinsic & VPIntrin)8493 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8494 const VPIntrinsic &VPIntrin) {
8495 SDLoc DL = getCurSDLoc();
8496 unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8497
8498 auto IID = VPIntrin.getIntrinsicID();
8499
8500 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8501 return visitVPCmp(*CmpI);
8502
8503 SmallVector<EVT, 4> ValueVTs;
8504 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8505 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8506 SDVTList VTs = DAG.getVTList(ValueVTs);
8507
8508 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8509
8510 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8511 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8512 "Unexpected target EVL type");
8513
8514 // Request operands.
8515 SmallVector<SDValue, 7> OpValues;
8516 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8517 auto Op = getValue(VPIntrin.getArgOperand(I));
8518 if (I == EVLParamPos)
8519 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8520 OpValues.push_back(Op);
8521 }
8522
8523 switch (Opcode) {
8524 default: {
8525 SDNodeFlags SDFlags;
8526 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8527 SDFlags.copyFMF(*FPMO);
8528 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8529 setValue(&VPIntrin, Result);
8530 break;
8531 }
8532 case ISD::VP_LOAD:
8533 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8534 break;
8535 case ISD::VP_GATHER:
8536 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8537 break;
8538 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8539 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8540 break;
8541 case ISD::VP_STORE:
8542 visitVPStore(VPIntrin, OpValues);
8543 break;
8544 case ISD::VP_SCATTER:
8545 visitVPScatter(VPIntrin, OpValues);
8546 break;
8547 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8548 visitVPStridedStore(VPIntrin, OpValues);
8549 break;
8550 case ISD::VP_FMULADD: {
8551 assert(OpValues.size() == 5 && "Unexpected number of operands");
8552 SDNodeFlags SDFlags;
8553 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8554 SDFlags.copyFMF(*FPMO);
8555 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8556 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8557 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8558 } else {
8559 SDValue Mul = DAG.getNode(
8560 ISD::VP_FMUL, DL, VTs,
8561 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8562 SDValue Add =
8563 DAG.getNode(ISD::VP_FADD, DL, VTs,
8564 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8565 setValue(&VPIntrin, Add);
8566 }
8567 break;
8568 }
8569 case ISD::VP_IS_FPCLASS: {
8570 const DataLayout DLayout = DAG.getDataLayout();
8571 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8572 auto Constant = OpValues[1]->getAsZExtVal();
8573 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8574 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8575 {OpValues[0], Check, OpValues[2], OpValues[3]});
8576 setValue(&VPIntrin, V);
8577 return;
8578 }
8579 case ISD::VP_INTTOPTR: {
8580 SDValue N = OpValues[0];
8581 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8582 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8583 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8584 OpValues[2]);
8585 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8586 OpValues[2]);
8587 setValue(&VPIntrin, N);
8588 break;
8589 }
8590 case ISD::VP_PTRTOINT: {
8591 SDValue N = OpValues[0];
8592 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8593 VPIntrin.getType());
8594 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8595 VPIntrin.getOperand(0)->getType());
8596 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8597 OpValues[2]);
8598 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8599 OpValues[2]);
8600 setValue(&VPIntrin, N);
8601 break;
8602 }
8603 case ISD::VP_ABS:
8604 case ISD::VP_CTLZ:
8605 case ISD::VP_CTLZ_ZERO_UNDEF:
8606 case ISD::VP_CTTZ:
8607 case ISD::VP_CTTZ_ZERO_UNDEF:
8608 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8609 case ISD::VP_CTTZ_ELTS: {
8610 SDValue Result =
8611 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8612 setValue(&VPIntrin, Result);
8613 break;
8614 }
8615 }
8616 }
8617
lowerStartEH(SDValue Chain,const BasicBlock * EHPadBB,MCSymbol * & BeginLabel)8618 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8619 const BasicBlock *EHPadBB,
8620 MCSymbol *&BeginLabel) {
8621 MachineFunction &MF = DAG.getMachineFunction();
8622 MachineModuleInfo &MMI = MF.getMMI();
8623
8624 // Insert a label before the invoke call to mark the try range. This can be
8625 // used to detect deletion of the invoke via the MachineModuleInfo.
8626 BeginLabel = MF.getContext().createTempSymbol();
8627
8628 // For SjLj, keep track of which landing pads go with which invokes
8629 // so as to maintain the ordering of pads in the LSDA.
8630 unsigned CallSiteIndex = MMI.getCurrentCallSite();
8631 if (CallSiteIndex) {
8632 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8633 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8634
8635 // Now that the call site is handled, stop tracking it.
8636 MMI.setCurrentCallSite(0);
8637 }
8638
8639 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8640 }
8641
lowerEndEH(SDValue Chain,const InvokeInst * II,const BasicBlock * EHPadBB,MCSymbol * BeginLabel)8642 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8643 const BasicBlock *EHPadBB,
8644 MCSymbol *BeginLabel) {
8645 assert(BeginLabel && "BeginLabel should've been set");
8646
8647 MachineFunction &MF = DAG.getMachineFunction();
8648
8649 // Insert a label at the end of the invoke call to mark the try range. This
8650 // can be used to detect deletion of the invoke via the MachineModuleInfo.
8651 MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8652 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8653
8654 // Inform MachineModuleInfo of range.
8655 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8656 // There is a platform (e.g. wasm) that uses funclet style IR but does not
8657 // actually use outlined funclets and their LSDA info style.
8658 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8659 assert(II && "II should've been set");
8660 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8661 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8662 } else if (!isScopedEHPersonality(Pers)) {
8663 assert(EHPadBB);
8664 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8665 }
8666
8667 return Chain;
8668 }
8669
8670 std::pair<SDValue, SDValue>
lowerInvokable(TargetLowering::CallLoweringInfo & CLI,const BasicBlock * EHPadBB)8671 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8672 const BasicBlock *EHPadBB) {
8673 MCSymbol *BeginLabel = nullptr;
8674
8675 if (EHPadBB) {
8676 // Both PendingLoads and PendingExports must be flushed here;
8677 // this call might not return.
8678 (void)getRoot();
8679 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8680 CLI.setChain(getRoot());
8681 }
8682
8683 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8684 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8685
8686 assert((CLI.IsTailCall || Result.second.getNode()) &&
8687 "Non-null chain expected with non-tail call!");
8688 assert((Result.second.getNode() || !Result.first.getNode()) &&
8689 "Null value expected with tail call!");
8690
8691 if (!Result.second.getNode()) {
8692 // As a special case, a null chain means that a tail call has been emitted
8693 // and the DAG root is already updated.
8694 HasTailCall = true;
8695
8696 // Since there's no actual continuation from this block, nothing can be
8697 // relying on us setting vregs for them.
8698 PendingExports.clear();
8699 } else {
8700 DAG.setRoot(Result.second);
8701 }
8702
8703 if (EHPadBB) {
8704 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8705 BeginLabel));
8706 Result.second = getRoot();
8707 }
8708
8709 return Result;
8710 }
8711
LowerCallTo(const CallBase & CB,SDValue Callee,bool isTailCall,bool isMustTailCall,const BasicBlock * EHPadBB,const TargetLowering::PtrAuthInfo * PAI)8712 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8713 bool isTailCall, bool isMustTailCall,
8714 const BasicBlock *EHPadBB,
8715 const TargetLowering::PtrAuthInfo *PAI) {
8716 auto &DL = DAG.getDataLayout();
8717 FunctionType *FTy = CB.getFunctionType();
8718 Type *RetTy = CB.getType();
8719
8720 TargetLowering::ArgListTy Args;
8721 Args.reserve(CB.arg_size());
8722
8723 const Value *SwiftErrorVal = nullptr;
8724 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8725
8726 if (isTailCall) {
8727 // Avoid emitting tail calls in functions with the disable-tail-calls
8728 // attribute.
8729 auto *Caller = CB.getParent()->getParent();
8730 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8731 "true" && !isMustTailCall)
8732 isTailCall = false;
8733
8734 // We can't tail call inside a function with a swifterror argument. Lowering
8735 // does not support this yet. It would have to move into the swifterror
8736 // register before the call.
8737 if (TLI.supportSwiftError() &&
8738 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8739 isTailCall = false;
8740 }
8741
8742 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8743 TargetLowering::ArgListEntry Entry;
8744 const Value *V = *I;
8745
8746 // Skip empty types
8747 if (V->getType()->isEmptyTy())
8748 continue;
8749
8750 SDValue ArgNode = getValue(V);
8751 Entry.Node = ArgNode; Entry.Ty = V->getType();
8752
8753 Entry.setAttributes(&CB, I - CB.arg_begin());
8754
8755 // Use swifterror virtual register as input to the call.
8756 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8757 SwiftErrorVal = V;
8758 // We find the virtual register for the actual swifterror argument.
8759 // Instead of using the Value, we use the virtual register instead.
8760 Entry.Node =
8761 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8762 EVT(TLI.getPointerTy(DL)));
8763 }
8764
8765 Args.push_back(Entry);
8766
8767 // If we have an explicit sret argument that is an Instruction, (i.e., it
8768 // might point to function-local memory), we can't meaningfully tail-call.
8769 if (Entry.IsSRet && isa<Instruction>(V))
8770 isTailCall = false;
8771 }
8772
8773 // If call site has a cfguardtarget operand bundle, create and add an
8774 // additional ArgListEntry.
8775 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8776 TargetLowering::ArgListEntry Entry;
8777 Value *V = Bundle->Inputs[0];
8778 SDValue ArgNode = getValue(V);
8779 Entry.Node = ArgNode;
8780 Entry.Ty = V->getType();
8781 Entry.IsCFGuardTarget = true;
8782 Args.push_back(Entry);
8783 }
8784
8785 // Check if target-independent constraints permit a tail call here.
8786 // Target-dependent constraints are checked within TLI->LowerCallTo.
8787 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8788 isTailCall = false;
8789
8790 // Disable tail calls if there is an swifterror argument. Targets have not
8791 // been updated to support tail calls.
8792 if (TLI.supportSwiftError() && SwiftErrorVal)
8793 isTailCall = false;
8794
8795 ConstantInt *CFIType = nullptr;
8796 if (CB.isIndirectCall()) {
8797 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8798 if (!TLI.supportKCFIBundles())
8799 report_fatal_error(
8800 "Target doesn't support calls with kcfi operand bundles.");
8801 CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8802 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8803 }
8804 }
8805
8806 SDValue ConvControlToken;
8807 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8808 auto *Token = Bundle->Inputs[0].get();
8809 ConvControlToken = getValue(Token);
8810 }
8811
8812 TargetLowering::CallLoweringInfo CLI(DAG);
8813 CLI.setDebugLoc(getCurSDLoc())
8814 .setChain(getRoot())
8815 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8816 .setTailCall(isTailCall)
8817 .setConvergent(CB.isConvergent())
8818 .setIsPreallocated(
8819 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8820 .setCFIType(CFIType)
8821 .setConvergenceControlToken(ConvControlToken);
8822
8823 // Set the pointer authentication info if we have it.
8824 if (PAI) {
8825 if (!TLI.supportPtrAuthBundles())
8826 report_fatal_error(
8827 "This target doesn't support calls with ptrauth operand bundles.");
8828 CLI.setPtrAuth(*PAI);
8829 }
8830
8831 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8832
8833 if (Result.first.getNode()) {
8834 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8835 setValue(&CB, Result.first);
8836 }
8837
8838 // The last element of CLI.InVals has the SDValue for swifterror return.
8839 // Here we copy it to a virtual register and update SwiftErrorMap for
8840 // book-keeping.
8841 if (SwiftErrorVal && TLI.supportSwiftError()) {
8842 // Get the last element of InVals.
8843 SDValue Src = CLI.InVals.back();
8844 Register VReg =
8845 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8846 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8847 DAG.setRoot(CopyNode);
8848 }
8849 }
8850
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,SelectionDAGBuilder & Builder)8851 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8852 SelectionDAGBuilder &Builder) {
8853 // Check to see if this load can be trivially constant folded, e.g. if the
8854 // input is from a string literal.
8855 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8856 // Cast pointer to the type we really want to load.
8857 Type *LoadTy =
8858 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8859 if (LoadVT.isVector())
8860 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8861
8862 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8863 PointerType::getUnqual(LoadTy));
8864
8865 if (const Constant *LoadCst =
8866 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8867 LoadTy, Builder.DAG.getDataLayout()))
8868 return Builder.getValue(LoadCst);
8869 }
8870
8871 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
8872 // still constant memory, the input chain can be the entry node.
8873 SDValue Root;
8874 bool ConstantMemory = false;
8875
8876 // Do not serialize (non-volatile) loads of constant memory with anything.
8877 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8878 Root = Builder.DAG.getEntryNode();
8879 ConstantMemory = true;
8880 } else {
8881 // Do not serialize non-volatile loads against each other.
8882 Root = Builder.DAG.getRoot();
8883 }
8884
8885 SDValue Ptr = Builder.getValue(PtrVal);
8886 SDValue LoadVal =
8887 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8888 MachinePointerInfo(PtrVal), Align(1));
8889
8890 if (!ConstantMemory)
8891 Builder.PendingLoads.push_back(LoadVal.getValue(1));
8892 return LoadVal;
8893 }
8894
8895 /// Record the value for an instruction that produces an integer result,
8896 /// converting the type where necessary.
processIntegerCallValue(const Instruction & I,SDValue Value,bool IsSigned)8897 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8898 SDValue Value,
8899 bool IsSigned) {
8900 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8901 I.getType(), true);
8902 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8903 setValue(&I, Value);
8904 }
8905
8906 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8907 /// true and lower it. Otherwise return false, and it will be lowered like a
8908 /// normal call.
8909 /// The caller already checked that \p I calls the appropriate LibFunc with a
8910 /// correct prototype.
visitMemCmpBCmpCall(const CallInst & I)8911 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8912 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8913 const Value *Size = I.getArgOperand(2);
8914 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8915 if (CSize && CSize->getZExtValue() == 0) {
8916 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8917 I.getType(), true);
8918 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8919 return true;
8920 }
8921
8922 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8923 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8924 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8925 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8926 if (Res.first.getNode()) {
8927 processIntegerCallValue(I, Res.first, true);
8928 PendingLoads.push_back(Res.second);
8929 return true;
8930 }
8931
8932 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
8933 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
8934 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8935 return false;
8936
8937 // If the target has a fast compare for the given size, it will return a
8938 // preferred load type for that size. Require that the load VT is legal and
8939 // that the target supports unaligned loads of that type. Otherwise, return
8940 // INVALID.
8941 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8942 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8943 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8944 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8945 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8946 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8947 // TODO: Check alignment of src and dest ptrs.
8948 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8949 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8950 if (!TLI.isTypeLegal(LVT) ||
8951 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8952 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8953 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8954 }
8955
8956 return LVT;
8957 };
8958
8959 // This turns into unaligned loads. We only do this if the target natively
8960 // supports the MVT we'll be loading or if it is small enough (<= 4) that
8961 // we'll only produce a small number of byte loads.
8962 MVT LoadVT;
8963 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8964 switch (NumBitsToCompare) {
8965 default:
8966 return false;
8967 case 16:
8968 LoadVT = MVT::i16;
8969 break;
8970 case 32:
8971 LoadVT = MVT::i32;
8972 break;
8973 case 64:
8974 case 128:
8975 case 256:
8976 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8977 break;
8978 }
8979
8980 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8981 return false;
8982
8983 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8984 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8985
8986 // Bitcast to a wide integer type if the loads are vectors.
8987 if (LoadVT.isVector()) {
8988 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8989 LoadL = DAG.getBitcast(CmpVT, LoadL);
8990 LoadR = DAG.getBitcast(CmpVT, LoadR);
8991 }
8992
8993 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8994 processIntegerCallValue(I, Cmp, false);
8995 return true;
8996 }
8997
8998 /// See if we can lower a memchr call into an optimized form. If so, return
8999 /// true and lower it. Otherwise return false, and it will be lowered like a
9000 /// normal call.
9001 /// The caller already checked that \p I calls the appropriate LibFunc with a
9002 /// correct prototype.
visitMemChrCall(const CallInst & I)9003 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9004 const Value *Src = I.getArgOperand(0);
9005 const Value *Char = I.getArgOperand(1);
9006 const Value *Length = I.getArgOperand(2);
9007
9008 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9009 std::pair<SDValue, SDValue> Res =
9010 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9011 getValue(Src), getValue(Char), getValue(Length),
9012 MachinePointerInfo(Src));
9013 if (Res.first.getNode()) {
9014 setValue(&I, Res.first);
9015 PendingLoads.push_back(Res.second);
9016 return true;
9017 }
9018
9019 return false;
9020 }
9021
9022 /// See if we can lower a mempcpy call into an optimized form. If so, return
9023 /// true and lower it. Otherwise return false, and it will be lowered like a
9024 /// normal call.
9025 /// The caller already checked that \p I calls the appropriate LibFunc with a
9026 /// correct prototype.
visitMemPCpyCall(const CallInst & I)9027 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9028 SDValue Dst = getValue(I.getArgOperand(0));
9029 SDValue Src = getValue(I.getArgOperand(1));
9030 SDValue Size = getValue(I.getArgOperand(2));
9031
9032 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9033 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9034 // DAG::getMemcpy needs Alignment to be defined.
9035 Align Alignment = std::min(DstAlign, SrcAlign);
9036
9037 SDLoc sdl = getCurSDLoc();
9038
9039 // In the mempcpy context we need to pass in a false value for isTailCall
9040 // because the return pointer needs to be adjusted by the size of
9041 // the copied memory.
9042 SDValue Root = getMemoryRoot();
9043 SDValue MC = DAG.getMemcpy(
9044 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9045 std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9046 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9047 assert(MC.getNode() != nullptr &&
9048 "** memcpy should not be lowered as TailCall in mempcpy context **");
9049 DAG.setRoot(MC);
9050
9051 // Check if Size needs to be truncated or extended.
9052 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9053
9054 // Adjust return pointer to point just past the last dst byte.
9055 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
9056 Dst, Size);
9057 setValue(&I, DstPlusSize);
9058 return true;
9059 }
9060
9061 /// See if we can lower a strcpy call into an optimized form. If so, return
9062 /// true and lower it, otherwise return false and it will be lowered like a
9063 /// normal call.
9064 /// The caller already checked that \p I calls the appropriate LibFunc with a
9065 /// correct prototype.
visitStrCpyCall(const CallInst & I,bool isStpcpy)9066 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9067 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9068
9069 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9070 std::pair<SDValue, SDValue> Res =
9071 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
9072 getValue(Arg0), getValue(Arg1),
9073 MachinePointerInfo(Arg0),
9074 MachinePointerInfo(Arg1), isStpcpy);
9075 if (Res.first.getNode()) {
9076 setValue(&I, Res.first);
9077 DAG.setRoot(Res.second);
9078 return true;
9079 }
9080
9081 return false;
9082 }
9083
9084 /// See if we can lower a strcmp call into an optimized form. If so, return
9085 /// true and lower it, otherwise return false and it will be lowered like a
9086 /// normal call.
9087 /// The caller already checked that \p I calls the appropriate LibFunc with a
9088 /// correct prototype.
visitStrCmpCall(const CallInst & I)9089 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9090 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9091
9092 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9093 std::pair<SDValue, SDValue> Res =
9094 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9095 getValue(Arg0), getValue(Arg1),
9096 MachinePointerInfo(Arg0),
9097 MachinePointerInfo(Arg1));
9098 if (Res.first.getNode()) {
9099 processIntegerCallValue(I, Res.first, true);
9100 PendingLoads.push_back(Res.second);
9101 return true;
9102 }
9103
9104 return false;
9105 }
9106
9107 /// See if we can lower a strlen call into an optimized form. If so, return
9108 /// true and lower it, otherwise return false and it will be lowered like a
9109 /// normal call.
9110 /// The caller already checked that \p I calls the appropriate LibFunc with a
9111 /// correct prototype.
visitStrLenCall(const CallInst & I)9112 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9113 const Value *Arg0 = I.getArgOperand(0);
9114
9115 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9116 std::pair<SDValue, SDValue> Res =
9117 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9118 getValue(Arg0), MachinePointerInfo(Arg0));
9119 if (Res.first.getNode()) {
9120 processIntegerCallValue(I, Res.first, false);
9121 PendingLoads.push_back(Res.second);
9122 return true;
9123 }
9124
9125 return false;
9126 }
9127
9128 /// See if we can lower a strnlen call into an optimized form. If so, return
9129 /// true and lower it, otherwise return false and it will be lowered like a
9130 /// normal call.
9131 /// The caller already checked that \p I calls the appropriate LibFunc with a
9132 /// correct prototype.
visitStrNLenCall(const CallInst & I)9133 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9134 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9135
9136 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9137 std::pair<SDValue, SDValue> Res =
9138 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9139 getValue(Arg0), getValue(Arg1),
9140 MachinePointerInfo(Arg0));
9141 if (Res.first.getNode()) {
9142 processIntegerCallValue(I, Res.first, false);
9143 PendingLoads.push_back(Res.second);
9144 return true;
9145 }
9146
9147 return false;
9148 }
9149
9150 /// See if we can lower a unary floating-point operation into an SDNode with
9151 /// the specified Opcode. If so, return true and lower it, otherwise return
9152 /// false and it will be lowered like a normal call.
9153 /// The caller already checked that \p I calls the appropriate LibFunc with a
9154 /// correct prototype.
visitUnaryFloatCall(const CallInst & I,unsigned Opcode)9155 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9156 unsigned Opcode) {
9157 // We already checked this call's prototype; verify it doesn't modify errno.
9158 if (!I.onlyReadsMemory())
9159 return false;
9160
9161 SDNodeFlags Flags;
9162 Flags.copyFMF(cast<FPMathOperator>(I));
9163
9164 SDValue Tmp = getValue(I.getArgOperand(0));
9165 setValue(&I,
9166 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9167 return true;
9168 }
9169
9170 /// See if we can lower a binary floating-point operation into an SDNode with
9171 /// the specified Opcode. If so, return true and lower it. Otherwise return
9172 /// false, and it will be lowered like a normal call.
9173 /// The caller already checked that \p I calls the appropriate LibFunc with a
9174 /// correct prototype.
visitBinaryFloatCall(const CallInst & I,unsigned Opcode)9175 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9176 unsigned Opcode) {
9177 // We already checked this call's prototype; verify it doesn't modify errno.
9178 if (!I.onlyReadsMemory())
9179 return false;
9180
9181 SDNodeFlags Flags;
9182 Flags.copyFMF(cast<FPMathOperator>(I));
9183
9184 SDValue Tmp0 = getValue(I.getArgOperand(0));
9185 SDValue Tmp1 = getValue(I.getArgOperand(1));
9186 EVT VT = Tmp0.getValueType();
9187 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9188 return true;
9189 }
9190
visitCall(const CallInst & I)9191 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9192 // Handle inline assembly differently.
9193 if (I.isInlineAsm()) {
9194 visitInlineAsm(I);
9195 return;
9196 }
9197
9198 diagnoseDontCall(I);
9199
9200 if (Function *F = I.getCalledFunction()) {
9201 if (F->isDeclaration()) {
9202 // Is this an LLVM intrinsic or a target-specific intrinsic?
9203 unsigned IID = F->getIntrinsicID();
9204 if (!IID)
9205 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9206 IID = II->getIntrinsicID(F);
9207
9208 if (IID) {
9209 visitIntrinsicCall(I, IID);
9210 return;
9211 }
9212 }
9213
9214 // Check for well-known libc/libm calls. If the function is internal, it
9215 // can't be a library call. Don't do the check if marked as nobuiltin for
9216 // some reason or the call site requires strict floating point semantics.
9217 LibFunc Func;
9218 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9219 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9220 LibInfo->hasOptimizedCodeGen(Func)) {
9221 switch (Func) {
9222 default: break;
9223 case LibFunc_bcmp:
9224 if (visitMemCmpBCmpCall(I))
9225 return;
9226 break;
9227 case LibFunc_copysign:
9228 case LibFunc_copysignf:
9229 case LibFunc_copysignl:
9230 // We already checked this call's prototype; verify it doesn't modify
9231 // errno.
9232 if (I.onlyReadsMemory()) {
9233 SDValue LHS = getValue(I.getArgOperand(0));
9234 SDValue RHS = getValue(I.getArgOperand(1));
9235 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9236 LHS.getValueType(), LHS, RHS));
9237 return;
9238 }
9239 break;
9240 case LibFunc_fabs:
9241 case LibFunc_fabsf:
9242 case LibFunc_fabsl:
9243 if (visitUnaryFloatCall(I, ISD::FABS))
9244 return;
9245 break;
9246 case LibFunc_fmin:
9247 case LibFunc_fminf:
9248 case LibFunc_fminl:
9249 if (visitBinaryFloatCall(I, ISD::FMINNUM))
9250 return;
9251 break;
9252 case LibFunc_fmax:
9253 case LibFunc_fmaxf:
9254 case LibFunc_fmaxl:
9255 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9256 return;
9257 break;
9258 case LibFunc_sin:
9259 case LibFunc_sinf:
9260 case LibFunc_sinl:
9261 if (visitUnaryFloatCall(I, ISD::FSIN))
9262 return;
9263 break;
9264 case LibFunc_cos:
9265 case LibFunc_cosf:
9266 case LibFunc_cosl:
9267 if (visitUnaryFloatCall(I, ISD::FCOS))
9268 return;
9269 break;
9270 case LibFunc_tan:
9271 case LibFunc_tanf:
9272 case LibFunc_tanl:
9273 if (visitUnaryFloatCall(I, ISD::FTAN))
9274 return;
9275 break;
9276 case LibFunc_asin:
9277 case LibFunc_asinf:
9278 case LibFunc_asinl:
9279 if (visitUnaryFloatCall(I, ISD::FASIN))
9280 return;
9281 break;
9282 case LibFunc_acos:
9283 case LibFunc_acosf:
9284 case LibFunc_acosl:
9285 if (visitUnaryFloatCall(I, ISD::FACOS))
9286 return;
9287 break;
9288 case LibFunc_atan:
9289 case LibFunc_atanf:
9290 case LibFunc_atanl:
9291 if (visitUnaryFloatCall(I, ISD::FATAN))
9292 return;
9293 break;
9294 case LibFunc_sinh:
9295 case LibFunc_sinhf:
9296 case LibFunc_sinhl:
9297 if (visitUnaryFloatCall(I, ISD::FSINH))
9298 return;
9299 break;
9300 case LibFunc_cosh:
9301 case LibFunc_coshf:
9302 case LibFunc_coshl:
9303 if (visitUnaryFloatCall(I, ISD::FCOSH))
9304 return;
9305 break;
9306 case LibFunc_tanh:
9307 case LibFunc_tanhf:
9308 case LibFunc_tanhl:
9309 if (visitUnaryFloatCall(I, ISD::FTANH))
9310 return;
9311 break;
9312 case LibFunc_sqrt:
9313 case LibFunc_sqrtf:
9314 case LibFunc_sqrtl:
9315 case LibFunc_sqrt_finite:
9316 case LibFunc_sqrtf_finite:
9317 case LibFunc_sqrtl_finite:
9318 if (visitUnaryFloatCall(I, ISD::FSQRT))
9319 return;
9320 break;
9321 case LibFunc_floor:
9322 case LibFunc_floorf:
9323 case LibFunc_floorl:
9324 if (visitUnaryFloatCall(I, ISD::FFLOOR))
9325 return;
9326 break;
9327 case LibFunc_nearbyint:
9328 case LibFunc_nearbyintf:
9329 case LibFunc_nearbyintl:
9330 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9331 return;
9332 break;
9333 case LibFunc_ceil:
9334 case LibFunc_ceilf:
9335 case LibFunc_ceill:
9336 if (visitUnaryFloatCall(I, ISD::FCEIL))
9337 return;
9338 break;
9339 case LibFunc_rint:
9340 case LibFunc_rintf:
9341 case LibFunc_rintl:
9342 if (visitUnaryFloatCall(I, ISD::FRINT))
9343 return;
9344 break;
9345 case LibFunc_round:
9346 case LibFunc_roundf:
9347 case LibFunc_roundl:
9348 if (visitUnaryFloatCall(I, ISD::FROUND))
9349 return;
9350 break;
9351 case LibFunc_trunc:
9352 case LibFunc_truncf:
9353 case LibFunc_truncl:
9354 if (visitUnaryFloatCall(I, ISD::FTRUNC))
9355 return;
9356 break;
9357 case LibFunc_log2:
9358 case LibFunc_log2f:
9359 case LibFunc_log2l:
9360 if (visitUnaryFloatCall(I, ISD::FLOG2))
9361 return;
9362 break;
9363 case LibFunc_exp2:
9364 case LibFunc_exp2f:
9365 case LibFunc_exp2l:
9366 if (visitUnaryFloatCall(I, ISD::FEXP2))
9367 return;
9368 break;
9369 case LibFunc_exp10:
9370 case LibFunc_exp10f:
9371 case LibFunc_exp10l:
9372 if (visitUnaryFloatCall(I, ISD::FEXP10))
9373 return;
9374 break;
9375 case LibFunc_ldexp:
9376 case LibFunc_ldexpf:
9377 case LibFunc_ldexpl:
9378 if (visitBinaryFloatCall(I, ISD::FLDEXP))
9379 return;
9380 break;
9381 case LibFunc_memcmp:
9382 if (visitMemCmpBCmpCall(I))
9383 return;
9384 break;
9385 case LibFunc_mempcpy:
9386 if (visitMemPCpyCall(I))
9387 return;
9388 break;
9389 case LibFunc_memchr:
9390 if (visitMemChrCall(I))
9391 return;
9392 break;
9393 case LibFunc_strcpy:
9394 if (visitStrCpyCall(I, false))
9395 return;
9396 break;
9397 case LibFunc_stpcpy:
9398 if (visitStrCpyCall(I, true))
9399 return;
9400 break;
9401 case LibFunc_strcmp:
9402 if (visitStrCmpCall(I))
9403 return;
9404 break;
9405 case LibFunc_strlen:
9406 if (visitStrLenCall(I))
9407 return;
9408 break;
9409 case LibFunc_strnlen:
9410 if (visitStrNLenCall(I))
9411 return;
9412 break;
9413 }
9414 }
9415 }
9416
9417 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9418 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9419 return;
9420 }
9421
9422 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9423 // have to do anything here to lower funclet bundles.
9424 // CFGuardTarget bundles are lowered in LowerCallTo.
9425 assert(!I.hasOperandBundlesOtherThan(
9426 {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9427 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9428 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9429 LLVMContext::OB_convergencectrl}) &&
9430 "Cannot lower calls with arbitrary operand bundles!");
9431
9432 SDValue Callee = getValue(I.getCalledOperand());
9433
9434 if (I.hasDeoptState())
9435 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9436 else
9437 // Check if we can potentially perform a tail call. More detailed checking
9438 // is be done within LowerCallTo, after more information about the call is
9439 // known.
9440 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9441 }
9442
LowerCallSiteWithPtrAuthBundle(const CallBase & CB,const BasicBlock * EHPadBB)9443 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9444 const CallBase &CB, const BasicBlock *EHPadBB) {
9445 auto PAB = CB.getOperandBundle("ptrauth");
9446 const Value *CalleeV = CB.getCalledOperand();
9447
9448 // Gather the call ptrauth data from the operand bundle:
9449 // [ i32 <key>, i64 <discriminator> ]
9450 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9451 const Value *Discriminator = PAB->Inputs[1];
9452
9453 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9454 assert(Discriminator->getType()->isIntegerTy(64) &&
9455 "Invalid ptrauth discriminator");
9456
9457 // Look through ptrauth constants to find the raw callee.
9458 // Do a direct unauthenticated call if we found it and everything matches.
9459 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9460 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9461 DAG.getDataLayout()))
9462 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9463 CB.isMustTailCall(), EHPadBB);
9464
9465 // Functions should never be ptrauth-called directly.
9466 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9467
9468 // Otherwise, do an authenticated indirect call.
9469 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9470 getValue(Discriminator)};
9471
9472 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9473 EHPadBB, &PAI);
9474 }
9475
9476 namespace {
9477
9478 /// AsmOperandInfo - This contains information for each constraint that we are
9479 /// lowering.
9480 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9481 public:
9482 /// CallOperand - If this is the result output operand or a clobber
9483 /// this is null, otherwise it is the incoming operand to the CallInst.
9484 /// This gets modified as the asm is processed.
9485 SDValue CallOperand;
9486
9487 /// AssignedRegs - If this is a register or register class operand, this
9488 /// contains the set of register corresponding to the operand.
9489 RegsForValue AssignedRegs;
9490
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)9491 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9492 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9493 }
9494
9495 /// Whether or not this operand accesses memory
hasMemory(const TargetLowering & TLI) const9496 bool hasMemory(const TargetLowering &TLI) const {
9497 // Indirect operand accesses access memory.
9498 if (isIndirect)
9499 return true;
9500
9501 for (const auto &Code : Codes)
9502 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9503 return true;
9504
9505 return false;
9506 }
9507 };
9508
9509
9510 } // end anonymous namespace
9511
9512 /// Make sure that the output operand \p OpInfo and its corresponding input
9513 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9514 /// out).
patchMatchingInput(const SDISelAsmOperandInfo & OpInfo,SDISelAsmOperandInfo & MatchingOpInfo,SelectionDAG & DAG)9515 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9516 SDISelAsmOperandInfo &MatchingOpInfo,
9517 SelectionDAG &DAG) {
9518 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9519 return;
9520
9521 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9522 const auto &TLI = DAG.getTargetLoweringInfo();
9523
9524 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9525 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9526 OpInfo.ConstraintVT);
9527 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9528 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9529 MatchingOpInfo.ConstraintVT);
9530 if ((OpInfo.ConstraintVT.isInteger() !=
9531 MatchingOpInfo.ConstraintVT.isInteger()) ||
9532 (MatchRC.second != InputRC.second)) {
9533 // FIXME: error out in a more elegant fashion
9534 report_fatal_error("Unsupported asm: input constraint"
9535 " with a matching output constraint of"
9536 " incompatible type!");
9537 }
9538 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9539 }
9540
9541 /// Get a direct memory input to behave well as an indirect operand.
9542 /// This may introduce stores, hence the need for a \p Chain.
9543 /// \return The (possibly updated) chain.
getAddressForMemoryInput(SDValue Chain,const SDLoc & Location,SDISelAsmOperandInfo & OpInfo,SelectionDAG & DAG)9544 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9545 SDISelAsmOperandInfo &OpInfo,
9546 SelectionDAG &DAG) {
9547 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9548
9549 // If we don't have an indirect input, put it in the constpool if we can,
9550 // otherwise spill it to a stack slot.
9551 // TODO: This isn't quite right. We need to handle these according to
9552 // the addressing mode that the constraint wants. Also, this may take
9553 // an additional register for the computation and we don't want that
9554 // either.
9555
9556 // If the operand is a float, integer, or vector constant, spill to a
9557 // constant pool entry to get its address.
9558 const Value *OpVal = OpInfo.CallOperandVal;
9559 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9560 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9561 OpInfo.CallOperand = DAG.getConstantPool(
9562 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9563 return Chain;
9564 }
9565
9566 // Otherwise, create a stack slot and emit a store to it before the asm.
9567 Type *Ty = OpVal->getType();
9568 auto &DL = DAG.getDataLayout();
9569 TypeSize TySize = DL.getTypeAllocSize(Ty);
9570 MachineFunction &MF = DAG.getMachineFunction();
9571 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
9572 int StackID = 0;
9573 if (TySize.isScalable())
9574 StackID = TFI->getStackIDForScalableVectors();
9575 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9576 DL.getPrefTypeAlign(Ty), false,
9577 nullptr, StackID);
9578 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9579 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9580 MachinePointerInfo::getFixedStack(MF, SSFI),
9581 TLI.getMemValueType(DL, Ty));
9582 OpInfo.CallOperand = StackSlot;
9583
9584 return Chain;
9585 }
9586
9587 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9588 /// specified operand. We prefer to assign virtual registers, to allow the
9589 /// register allocator to handle the assignment process. However, if the asm
9590 /// uses features that we can't model on machineinstrs, we have SDISel do the
9591 /// allocation. This produces generally horrible, but correct, code.
9592 ///
9593 /// OpInfo describes the operand
9594 /// RefOpInfo describes the matching operand if any, the operand otherwise
9595 static std::optional<unsigned>
getRegistersForValue(SelectionDAG & DAG,const SDLoc & DL,SDISelAsmOperandInfo & OpInfo,SDISelAsmOperandInfo & RefOpInfo)9596 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9597 SDISelAsmOperandInfo &OpInfo,
9598 SDISelAsmOperandInfo &RefOpInfo) {
9599 LLVMContext &Context = *DAG.getContext();
9600 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9601
9602 MachineFunction &MF = DAG.getMachineFunction();
9603 SmallVector<unsigned, 4> Regs;
9604 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9605
9606 // No work to do for memory/address operands.
9607 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9608 OpInfo.ConstraintType == TargetLowering::C_Address)
9609 return std::nullopt;
9610
9611 // If this is a constraint for a single physreg, or a constraint for a
9612 // register class, find it.
9613 unsigned AssignedReg;
9614 const TargetRegisterClass *RC;
9615 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9616 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9617 // RC is unset only on failure. Return immediately.
9618 if (!RC)
9619 return std::nullopt;
9620
9621 // Get the actual register value type. This is important, because the user
9622 // may have asked for (e.g.) the AX register in i32 type. We need to
9623 // remember that AX is actually i16 to get the right extension.
9624 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9625
9626 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9627 // If this is an FP operand in an integer register (or visa versa), or more
9628 // generally if the operand value disagrees with the register class we plan
9629 // to stick it in, fix the operand type.
9630 //
9631 // If this is an input value, the bitcast to the new type is done now.
9632 // Bitcast for output value is done at the end of visitInlineAsm().
9633 if ((OpInfo.Type == InlineAsm::isOutput ||
9634 OpInfo.Type == InlineAsm::isInput) &&
9635 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9636 // Try to convert to the first EVT that the reg class contains. If the
9637 // types are identical size, use a bitcast to convert (e.g. two differing
9638 // vector types). Note: output bitcast is done at the end of
9639 // visitInlineAsm().
9640 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9641 // Exclude indirect inputs while they are unsupported because the code
9642 // to perform the load is missing and thus OpInfo.CallOperand still
9643 // refers to the input address rather than the pointed-to value.
9644 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9645 OpInfo.CallOperand =
9646 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9647 OpInfo.ConstraintVT = RegVT;
9648 // If the operand is an FP value and we want it in integer registers,
9649 // use the corresponding integer type. This turns an f64 value into
9650 // i64, which can be passed with two i32 values on a 32-bit machine.
9651 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9652 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9653 if (OpInfo.Type == InlineAsm::isInput)
9654 OpInfo.CallOperand =
9655 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9656 OpInfo.ConstraintVT = VT;
9657 }
9658 }
9659 }
9660
9661 // No need to allocate a matching input constraint since the constraint it's
9662 // matching to has already been allocated.
9663 if (OpInfo.isMatchingInputConstraint())
9664 return std::nullopt;
9665
9666 EVT ValueVT = OpInfo.ConstraintVT;
9667 if (OpInfo.ConstraintVT == MVT::Other)
9668 ValueVT = RegVT;
9669
9670 // Initialize NumRegs.
9671 unsigned NumRegs = 1;
9672 if (OpInfo.ConstraintVT != MVT::Other)
9673 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9674
9675 // If this is a constraint for a specific physical register, like {r17},
9676 // assign it now.
9677
9678 // If this associated to a specific register, initialize iterator to correct
9679 // place. If virtual, make sure we have enough registers
9680
9681 // Initialize iterator if necessary
9682 TargetRegisterClass::iterator I = RC->begin();
9683 MachineRegisterInfo &RegInfo = MF.getRegInfo();
9684
9685 // Do not check for single registers.
9686 if (AssignedReg) {
9687 I = std::find(I, RC->end(), AssignedReg);
9688 if (I == RC->end()) {
9689 // RC does not contain the selected register, which indicates a
9690 // mismatch between the register and the required type/bitwidth.
9691 return {AssignedReg};
9692 }
9693 }
9694
9695 for (; NumRegs; --NumRegs, ++I) {
9696 assert(I != RC->end() && "Ran out of registers to allocate!");
9697 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9698 Regs.push_back(R);
9699 }
9700
9701 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9702 return std::nullopt;
9703 }
9704
9705 static unsigned
findMatchingInlineAsmOperand(unsigned OperandNo,const std::vector<SDValue> & AsmNodeOperands)9706 findMatchingInlineAsmOperand(unsigned OperandNo,
9707 const std::vector<SDValue> &AsmNodeOperands) {
9708 // Scan until we find the definition we already emitted of this operand.
9709 unsigned CurOp = InlineAsm::Op_FirstOperand;
9710 for (; OperandNo; --OperandNo) {
9711 // Advance to the next operand.
9712 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9713 const InlineAsm::Flag F(OpFlag);
9714 assert(
9715 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9716 "Skipped past definitions?");
9717 CurOp += F.getNumOperandRegisters() + 1;
9718 }
9719 return CurOp;
9720 }
9721
9722 namespace {
9723
9724 class ExtraFlags {
9725 unsigned Flags = 0;
9726
9727 public:
ExtraFlags(const CallBase & Call)9728 explicit ExtraFlags(const CallBase &Call) {
9729 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9730 if (IA->hasSideEffects())
9731 Flags |= InlineAsm::Extra_HasSideEffects;
9732 if (IA->isAlignStack())
9733 Flags |= InlineAsm::Extra_IsAlignStack;
9734 if (Call.isConvergent())
9735 Flags |= InlineAsm::Extra_IsConvergent;
9736 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9737 }
9738
update(const TargetLowering::AsmOperandInfo & OpInfo)9739 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9740 // Ideally, we would only check against memory constraints. However, the
9741 // meaning of an Other constraint can be target-specific and we can't easily
9742 // reason about it. Therefore, be conservative and set MayLoad/MayStore
9743 // for Other constraints as well.
9744 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9745 OpInfo.ConstraintType == TargetLowering::C_Other) {
9746 if (OpInfo.Type == InlineAsm::isInput)
9747 Flags |= InlineAsm::Extra_MayLoad;
9748 else if (OpInfo.Type == InlineAsm::isOutput)
9749 Flags |= InlineAsm::Extra_MayStore;
9750 else if (OpInfo.Type == InlineAsm::isClobber)
9751 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9752 }
9753 }
9754
get() const9755 unsigned get() const { return Flags; }
9756 };
9757
9758 } // end anonymous namespace
9759
isFunction(SDValue Op)9760 static bool isFunction(SDValue Op) {
9761 if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9762 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9763 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9764
9765 // In normal "call dllimport func" instruction (non-inlineasm) it force
9766 // indirect access by specifing call opcode. And usually specially print
9767 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9768 // not do in this way now. (In fact, this is similar with "Data Access"
9769 // action). So here we ignore dllimport function.
9770 if (Fn && !Fn->hasDLLImportStorageClass())
9771 return true;
9772 }
9773 }
9774 return false;
9775 }
9776
9777 /// visitInlineAsm - Handle a call to an InlineAsm object.
visitInlineAsm(const CallBase & Call,const BasicBlock * EHPadBB)9778 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9779 const BasicBlock *EHPadBB) {
9780 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9781
9782 /// ConstraintOperands - Information about all of the constraints.
9783 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9784
9785 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9786 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9787 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9788
9789 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9790 // AsmDialect, MayLoad, MayStore).
9791 bool HasSideEffect = IA->hasSideEffects();
9792 ExtraFlags ExtraInfo(Call);
9793
9794 for (auto &T : TargetConstraints) {
9795 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9796 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9797
9798 if (OpInfo.CallOperandVal)
9799 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9800
9801 if (!HasSideEffect)
9802 HasSideEffect = OpInfo.hasMemory(TLI);
9803
9804 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9805 // FIXME: Could we compute this on OpInfo rather than T?
9806
9807 // Compute the constraint code and ConstraintType to use.
9808 TLI.ComputeConstraintToUse(T, SDValue());
9809
9810 if (T.ConstraintType == TargetLowering::C_Immediate &&
9811 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9812 // We've delayed emitting a diagnostic like the "n" constraint because
9813 // inlining could cause an integer showing up.
9814 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9815 "' expects an integer constant "
9816 "expression");
9817
9818 ExtraInfo.update(T);
9819 }
9820
9821 // We won't need to flush pending loads if this asm doesn't touch
9822 // memory and is nonvolatile.
9823 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9824
9825 bool EmitEHLabels = isa<InvokeInst>(Call);
9826 if (EmitEHLabels) {
9827 assert(EHPadBB && "InvokeInst must have an EHPadBB");
9828 }
9829 bool IsCallBr = isa<CallBrInst>(Call);
9830
9831 if (IsCallBr || EmitEHLabels) {
9832 // If this is a callbr or invoke we need to flush pending exports since
9833 // inlineasm_br and invoke are terminators.
9834 // We need to do this before nodes are glued to the inlineasm_br node.
9835 Chain = getControlRoot();
9836 }
9837
9838 MCSymbol *BeginLabel = nullptr;
9839 if (EmitEHLabels) {
9840 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9841 }
9842
9843 int OpNo = -1;
9844 SmallVector<StringRef> AsmStrs;
9845 IA->collectAsmStrs(AsmStrs);
9846
9847 // Second pass over the constraints: compute which constraint option to use.
9848 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9849 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9850 OpNo++;
9851
9852 // If this is an output operand with a matching input operand, look up the
9853 // matching input. If their types mismatch, e.g. one is an integer, the
9854 // other is floating point, or their sizes are different, flag it as an
9855 // error.
9856 if (OpInfo.hasMatchingInput()) {
9857 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9858 patchMatchingInput(OpInfo, Input, DAG);
9859 }
9860
9861 // Compute the constraint code and ConstraintType to use.
9862 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9863
9864 if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9865 OpInfo.Type == InlineAsm::isClobber) ||
9866 OpInfo.ConstraintType == TargetLowering::C_Address)
9867 continue;
9868
9869 // In Linux PIC model, there are 4 cases about value/label addressing:
9870 //
9871 // 1: Function call or Label jmp inside the module.
9872 // 2: Data access (such as global variable, static variable) inside module.
9873 // 3: Function call or Label jmp outside the module.
9874 // 4: Data access (such as global variable) outside the module.
9875 //
9876 // Due to current llvm inline asm architecture designed to not "recognize"
9877 // the asm code, there are quite troubles for us to treat mem addressing
9878 // differently for same value/adress used in different instuctions.
9879 // For example, in pic model, call a func may in plt way or direclty
9880 // pc-related, but lea/mov a function adress may use got.
9881 //
9882 // Here we try to "recognize" function call for the case 1 and case 3 in
9883 // inline asm. And try to adjust the constraint for them.
9884 //
9885 // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9886 // label, so here we don't handle jmp function label now, but we need to
9887 // enhance it (especilly in PIC model) if we meet meaningful requirements.
9888 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9889 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9890 TM.getCodeModel() != CodeModel::Large) {
9891 OpInfo.isIndirect = false;
9892 OpInfo.ConstraintType = TargetLowering::C_Address;
9893 }
9894
9895 // If this is a memory input, and if the operand is not indirect, do what we
9896 // need to provide an address for the memory input.
9897 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9898 !OpInfo.isIndirect) {
9899 assert((OpInfo.isMultipleAlternative ||
9900 (OpInfo.Type == InlineAsm::isInput)) &&
9901 "Can only indirectify direct input operands!");
9902
9903 // Memory operands really want the address of the value.
9904 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9905
9906 // There is no longer a Value* corresponding to this operand.
9907 OpInfo.CallOperandVal = nullptr;
9908
9909 // It is now an indirect operand.
9910 OpInfo.isIndirect = true;
9911 }
9912
9913 }
9914
9915 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9916 std::vector<SDValue> AsmNodeOperands;
9917 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
9918 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9919 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9920
9921 // If we have a !srcloc metadata node associated with it, we want to attach
9922 // this to the ultimately generated inline asm machineinstr. To do this, we
9923 // pass in the third operand as this (potentially null) inline asm MDNode.
9924 const MDNode *SrcLoc = Call.getMetadata("srcloc");
9925 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9926
9927 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9928 // bits as operand 3.
9929 AsmNodeOperands.push_back(DAG.getTargetConstant(
9930 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9931
9932 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9933 // this, assign virtual and physical registers for inputs and otput.
9934 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9935 // Assign Registers.
9936 SDISelAsmOperandInfo &RefOpInfo =
9937 OpInfo.isMatchingInputConstraint()
9938 ? ConstraintOperands[OpInfo.getMatchedOperand()]
9939 : OpInfo;
9940 const auto RegError =
9941 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9942 if (RegError) {
9943 const MachineFunction &MF = DAG.getMachineFunction();
9944 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9945 const char *RegName = TRI.getName(*RegError);
9946 emitInlineAsmError(Call, "register '" + Twine(RegName) +
9947 "' allocated for constraint '" +
9948 Twine(OpInfo.ConstraintCode) +
9949 "' does not match required type");
9950 return;
9951 }
9952
9953 auto DetectWriteToReservedRegister = [&]() {
9954 const MachineFunction &MF = DAG.getMachineFunction();
9955 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9956 for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9957 if (Register::isPhysicalRegister(Reg) &&
9958 TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9959 const char *RegName = TRI.getName(Reg);
9960 emitInlineAsmError(Call, "write to reserved register '" +
9961 Twine(RegName) + "'");
9962 return true;
9963 }
9964 }
9965 return false;
9966 };
9967 assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9968 (OpInfo.Type == InlineAsm::isInput &&
9969 !OpInfo.isMatchingInputConstraint())) &&
9970 "Only address as input operand is allowed.");
9971
9972 switch (OpInfo.Type) {
9973 case InlineAsm::isOutput:
9974 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9975 const InlineAsm::ConstraintCode ConstraintID =
9976 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9977 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9978 "Failed to convert memory constraint code to constraint id.");
9979
9980 // Add information to the INLINEASM node to know about this output.
9981 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9982 OpFlags.setMemConstraint(ConstraintID);
9983 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9984 MVT::i32));
9985 AsmNodeOperands.push_back(OpInfo.CallOperand);
9986 } else {
9987 // Otherwise, this outputs to a register (directly for C_Register /
9988 // C_RegisterClass, and a target-defined fashion for
9989 // C_Immediate/C_Other). Find a register that we can use.
9990 if (OpInfo.AssignedRegs.Regs.empty()) {
9991 emitInlineAsmError(
9992 Call, "couldn't allocate output register for constraint '" +
9993 Twine(OpInfo.ConstraintCode) + "'");
9994 return;
9995 }
9996
9997 if (DetectWriteToReservedRegister())
9998 return;
9999
10000 // Add information to the INLINEASM node to know that this register is
10001 // set.
10002 OpInfo.AssignedRegs.AddInlineAsmOperands(
10003 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10004 : InlineAsm::Kind::RegDef,
10005 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10006 }
10007 break;
10008
10009 case InlineAsm::isInput:
10010 case InlineAsm::isLabel: {
10011 SDValue InOperandVal = OpInfo.CallOperand;
10012
10013 if (OpInfo.isMatchingInputConstraint()) {
10014 // If this is required to match an output register we have already set,
10015 // just use its register.
10016 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10017 AsmNodeOperands);
10018 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10019 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10020 if (OpInfo.isIndirect) {
10021 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10022 emitInlineAsmError(Call, "inline asm not supported yet: "
10023 "don't know how to handle tied "
10024 "indirect register inputs");
10025 return;
10026 }
10027
10028 SmallVector<unsigned, 4> Regs;
10029 MachineFunction &MF = DAG.getMachineFunction();
10030 MachineRegisterInfo &MRI = MF.getRegInfo();
10031 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10032 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10033 Register TiedReg = R->getReg();
10034 MVT RegVT = R->getSimpleValueType(0);
10035 const TargetRegisterClass *RC =
10036 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg)
10037 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10038 : TRI.getMinimalPhysRegClass(TiedReg);
10039 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10040 Regs.push_back(MRI.createVirtualRegister(RC));
10041
10042 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10043
10044 SDLoc dl = getCurSDLoc();
10045 // Use the produced MatchedRegs object to
10046 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10047 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10048 OpInfo.getMatchedOperand(), dl, DAG,
10049 AsmNodeOperands);
10050 break;
10051 }
10052
10053 assert(Flag.isMemKind() && "Unknown matching constraint!");
10054 assert(Flag.getNumOperandRegisters() == 1 &&
10055 "Unexpected number of operands");
10056 // Add information to the INLINEASM node to know about this input.
10057 // See InlineAsm.h isUseOperandTiedToDef.
10058 Flag.clearMemConstraint();
10059 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10060 AsmNodeOperands.push_back(DAG.getTargetConstant(
10061 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10062 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10063 break;
10064 }
10065
10066 // Treat indirect 'X' constraint as memory.
10067 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10068 OpInfo.isIndirect)
10069 OpInfo.ConstraintType = TargetLowering::C_Memory;
10070
10071 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10072 OpInfo.ConstraintType == TargetLowering::C_Other) {
10073 std::vector<SDValue> Ops;
10074 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10075 Ops, DAG);
10076 if (Ops.empty()) {
10077 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10078 if (isa<ConstantSDNode>(InOperandVal)) {
10079 emitInlineAsmError(Call, "value out of range for constraint '" +
10080 Twine(OpInfo.ConstraintCode) + "'");
10081 return;
10082 }
10083
10084 emitInlineAsmError(Call,
10085 "invalid operand for inline asm constraint '" +
10086 Twine(OpInfo.ConstraintCode) + "'");
10087 return;
10088 }
10089
10090 // Add information to the INLINEASM node to know about this input.
10091 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10092 AsmNodeOperands.push_back(DAG.getTargetConstant(
10093 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10094 llvm::append_range(AsmNodeOperands, Ops);
10095 break;
10096 }
10097
10098 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10099 assert((OpInfo.isIndirect ||
10100 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10101 "Operand must be indirect to be a mem!");
10102 assert(InOperandVal.getValueType() ==
10103 TLI.getPointerTy(DAG.getDataLayout()) &&
10104 "Memory operands expect pointer values");
10105
10106 const InlineAsm::ConstraintCode ConstraintID =
10107 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10108 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10109 "Failed to convert memory constraint code to constraint id.");
10110
10111 // Add information to the INLINEASM node to know about this input.
10112 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10113 ResOpType.setMemConstraint(ConstraintID);
10114 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10115 getCurSDLoc(),
10116 MVT::i32));
10117 AsmNodeOperands.push_back(InOperandVal);
10118 break;
10119 }
10120
10121 if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10122 const InlineAsm::ConstraintCode ConstraintID =
10123 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10124 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10125 "Failed to convert memory constraint code to constraint id.");
10126
10127 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10128
10129 SDValue AsmOp = InOperandVal;
10130 if (isFunction(InOperandVal)) {
10131 auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10132 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10133 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10134 InOperandVal.getValueType(),
10135 GA->getOffset());
10136 }
10137
10138 // Add information to the INLINEASM node to know about this input.
10139 ResOpType.setMemConstraint(ConstraintID);
10140
10141 AsmNodeOperands.push_back(
10142 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10143
10144 AsmNodeOperands.push_back(AsmOp);
10145 break;
10146 }
10147
10148 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10149 OpInfo.ConstraintType != TargetLowering::C_Register) {
10150 emitInlineAsmError(Call, "unknown asm constraint '" +
10151 Twine(OpInfo.ConstraintCode) + "'");
10152 return;
10153 }
10154
10155 // TODO: Support this.
10156 if (OpInfo.isIndirect) {
10157 emitInlineAsmError(
10158 Call, "Don't know how to handle indirect register inputs yet "
10159 "for constraint '" +
10160 Twine(OpInfo.ConstraintCode) + "'");
10161 return;
10162 }
10163
10164 // Copy the input into the appropriate registers.
10165 if (OpInfo.AssignedRegs.Regs.empty()) {
10166 emitInlineAsmError(Call,
10167 "couldn't allocate input reg for constraint '" +
10168 Twine(OpInfo.ConstraintCode) + "'");
10169 return;
10170 }
10171
10172 if (DetectWriteToReservedRegister())
10173 return;
10174
10175 SDLoc dl = getCurSDLoc();
10176
10177 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10178 &Call);
10179
10180 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10181 0, dl, DAG, AsmNodeOperands);
10182 break;
10183 }
10184 case InlineAsm::isClobber:
10185 // Add the clobbered value to the operand list, so that the register
10186 // allocator is aware that the physreg got clobbered.
10187 if (!OpInfo.AssignedRegs.Regs.empty())
10188 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10189 false, 0, getCurSDLoc(), DAG,
10190 AsmNodeOperands);
10191 break;
10192 }
10193 }
10194
10195 // Finish up input operands. Set the input chain and add the flag last.
10196 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10197 if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10198
10199 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10200 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10201 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10202 Glue = Chain.getValue(1);
10203
10204 // Do additional work to generate outputs.
10205
10206 SmallVector<EVT, 1> ResultVTs;
10207 SmallVector<SDValue, 1> ResultValues;
10208 SmallVector<SDValue, 8> OutChains;
10209
10210 llvm::Type *CallResultType = Call.getType();
10211 ArrayRef<Type *> ResultTypes;
10212 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10213 ResultTypes = StructResult->elements();
10214 else if (!CallResultType->isVoidTy())
10215 ResultTypes = ArrayRef(CallResultType);
10216
10217 auto CurResultType = ResultTypes.begin();
10218 auto handleRegAssign = [&](SDValue V) {
10219 assert(CurResultType != ResultTypes.end() && "Unexpected value");
10220 assert((*CurResultType)->isSized() && "Unexpected unsized type");
10221 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10222 ++CurResultType;
10223 // If the type of the inline asm call site return value is different but has
10224 // same size as the type of the asm output bitcast it. One example of this
10225 // is for vectors with different width / number of elements. This can
10226 // happen for register classes that can contain multiple different value
10227 // types. The preg or vreg allocated may not have the same VT as was
10228 // expected.
10229 //
10230 // This can also happen for a return value that disagrees with the register
10231 // class it is put in, eg. a double in a general-purpose register on a
10232 // 32-bit machine.
10233 if (ResultVT != V.getValueType() &&
10234 ResultVT.getSizeInBits() == V.getValueSizeInBits())
10235 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10236 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10237 V.getValueType().isInteger()) {
10238 // If a result value was tied to an input value, the computed result
10239 // may have a wider width than the expected result. Extract the
10240 // relevant portion.
10241 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10242 }
10243 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10244 ResultVTs.push_back(ResultVT);
10245 ResultValues.push_back(V);
10246 };
10247
10248 // Deal with output operands.
10249 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10250 if (OpInfo.Type == InlineAsm::isOutput) {
10251 SDValue Val;
10252 // Skip trivial output operands.
10253 if (OpInfo.AssignedRegs.Regs.empty())
10254 continue;
10255
10256 switch (OpInfo.ConstraintType) {
10257 case TargetLowering::C_Register:
10258 case TargetLowering::C_RegisterClass:
10259 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10260 Chain, &Glue, &Call);
10261 break;
10262 case TargetLowering::C_Immediate:
10263 case TargetLowering::C_Other:
10264 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10265 OpInfo, DAG);
10266 break;
10267 case TargetLowering::C_Memory:
10268 break; // Already handled.
10269 case TargetLowering::C_Address:
10270 break; // Silence warning.
10271 case TargetLowering::C_Unknown:
10272 assert(false && "Unexpected unknown constraint");
10273 }
10274
10275 // Indirect output manifest as stores. Record output chains.
10276 if (OpInfo.isIndirect) {
10277 const Value *Ptr = OpInfo.CallOperandVal;
10278 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10279 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10280 MachinePointerInfo(Ptr));
10281 OutChains.push_back(Store);
10282 } else {
10283 // generate CopyFromRegs to associated registers.
10284 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10285 if (Val.getOpcode() == ISD::MERGE_VALUES) {
10286 for (const SDValue &V : Val->op_values())
10287 handleRegAssign(V);
10288 } else
10289 handleRegAssign(Val);
10290 }
10291 }
10292 }
10293
10294 // Set results.
10295 if (!ResultValues.empty()) {
10296 assert(CurResultType == ResultTypes.end() &&
10297 "Mismatch in number of ResultTypes");
10298 assert(ResultValues.size() == ResultTypes.size() &&
10299 "Mismatch in number of output operands in asm result");
10300
10301 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10302 DAG.getVTList(ResultVTs), ResultValues);
10303 setValue(&Call, V);
10304 }
10305
10306 // Collect store chains.
10307 if (!OutChains.empty())
10308 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10309
10310 if (EmitEHLabels) {
10311 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10312 }
10313
10314 // Only Update Root if inline assembly has a memory effect.
10315 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10316 EmitEHLabels)
10317 DAG.setRoot(Chain);
10318 }
10319
emitInlineAsmError(const CallBase & Call,const Twine & Message)10320 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10321 const Twine &Message) {
10322 LLVMContext &Ctx = *DAG.getContext();
10323 Ctx.emitError(&Call, Message);
10324
10325 // Make sure we leave the DAG in a valid state
10326 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10327 SmallVector<EVT, 1> ValueVTs;
10328 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10329
10330 if (ValueVTs.empty())
10331 return;
10332
10333 SmallVector<SDValue, 1> Ops;
10334 for (const EVT &VT : ValueVTs)
10335 Ops.push_back(DAG.getUNDEF(VT));
10336
10337 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10338 }
10339
visitVAStart(const CallInst & I)10340 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10341 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10342 MVT::Other, getRoot(),
10343 getValue(I.getArgOperand(0)),
10344 DAG.getSrcValue(I.getArgOperand(0))));
10345 }
10346
visitVAArg(const VAArgInst & I)10347 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10348 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10349 const DataLayout &DL = DAG.getDataLayout();
10350 SDValue V = DAG.getVAArg(
10351 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10352 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10353 DL.getABITypeAlign(I.getType()).value());
10354 DAG.setRoot(V.getValue(1));
10355
10356 if (I.getType()->isPointerTy())
10357 V = DAG.getPtrExtOrTrunc(
10358 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10359 setValue(&I, V);
10360 }
10361
visitVAEnd(const CallInst & I)10362 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10363 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10364 MVT::Other, getRoot(),
10365 getValue(I.getArgOperand(0)),
10366 DAG.getSrcValue(I.getArgOperand(0))));
10367 }
10368
visitVACopy(const CallInst & I)10369 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10370 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10371 MVT::Other, getRoot(),
10372 getValue(I.getArgOperand(0)),
10373 getValue(I.getArgOperand(1)),
10374 DAG.getSrcValue(I.getArgOperand(0)),
10375 DAG.getSrcValue(I.getArgOperand(1))));
10376 }
10377
lowerRangeToAssertZExt(SelectionDAG & DAG,const Instruction & I,SDValue Op)10378 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10379 const Instruction &I,
10380 SDValue Op) {
10381 std::optional<ConstantRange> CR = getRange(I);
10382
10383 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10384 return Op;
10385
10386 APInt Lo = CR->getUnsignedMin();
10387 if (!Lo.isMinValue())
10388 return Op;
10389
10390 APInt Hi = CR->getUnsignedMax();
10391 unsigned Bits = std::max(Hi.getActiveBits(),
10392 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10393
10394 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10395
10396 SDLoc SL = getCurSDLoc();
10397
10398 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10399 DAG.getValueType(SmallVT));
10400 unsigned NumVals = Op.getNode()->getNumValues();
10401 if (NumVals == 1)
10402 return ZExt;
10403
10404 SmallVector<SDValue, 4> Ops;
10405
10406 Ops.push_back(ZExt);
10407 for (unsigned I = 1; I != NumVals; ++I)
10408 Ops.push_back(Op.getValue(I));
10409
10410 return DAG.getMergeValues(Ops, SL);
10411 }
10412
10413 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10414 /// the call being lowered.
10415 ///
10416 /// This is a helper for lowering intrinsics that follow a target calling
10417 /// convention or require stack pointer adjustment. Only a subset of the
10418 /// intrinsic's operands need to participate in the calling convention.
populateCallLoweringInfo(TargetLowering::CallLoweringInfo & CLI,const CallBase * Call,unsigned ArgIdx,unsigned NumArgs,SDValue Callee,Type * ReturnTy,AttributeSet RetAttrs,bool IsPatchPoint)10419 void SelectionDAGBuilder::populateCallLoweringInfo(
10420 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10421 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10422 AttributeSet RetAttrs, bool IsPatchPoint) {
10423 TargetLowering::ArgListTy Args;
10424 Args.reserve(NumArgs);
10425
10426 // Populate the argument list.
10427 // Attributes for args start at offset 1, after the return attribute.
10428 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10429 ArgI != ArgE; ++ArgI) {
10430 const Value *V = Call->getOperand(ArgI);
10431
10432 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10433
10434 TargetLowering::ArgListEntry Entry;
10435 Entry.Node = getValue(V);
10436 Entry.Ty = V->getType();
10437 Entry.setAttributes(Call, ArgI);
10438 Args.push_back(Entry);
10439 }
10440
10441 CLI.setDebugLoc(getCurSDLoc())
10442 .setChain(getRoot())
10443 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10444 RetAttrs)
10445 .setDiscardResult(Call->use_empty())
10446 .setIsPatchPoint(IsPatchPoint)
10447 .setIsPreallocated(
10448 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10449 }
10450
10451 /// Add a stack map intrinsic call's live variable operands to a stackmap
10452 /// or patchpoint target node's operand list.
10453 ///
10454 /// Constants are converted to TargetConstants purely as an optimization to
10455 /// avoid constant materialization and register allocation.
10456 ///
10457 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10458 /// generate addess computation nodes, and so FinalizeISel can convert the
10459 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10460 /// address materialization and register allocation, but may also be required
10461 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10462 /// alloca in the entry block, then the runtime may assume that the alloca's
10463 /// StackMap location can be read immediately after compilation and that the
10464 /// location is valid at any point during execution (this is similar to the
10465 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10466 /// only available in a register, then the runtime would need to trap when
10467 /// execution reaches the StackMap in order to read the alloca's location.
addStackMapLiveVars(const CallBase & Call,unsigned StartIdx,const SDLoc & DL,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)10468 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10469 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10470 SelectionDAGBuilder &Builder) {
10471 SelectionDAG &DAG = Builder.DAG;
10472 for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10473 SDValue Op = Builder.getValue(Call.getArgOperand(I));
10474
10475 // Things on the stack are pointer-typed, meaning that they are already
10476 // legal and can be emitted directly to target nodes.
10477 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10478 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10479 } else {
10480 // Otherwise emit a target independent node to be legalised.
10481 Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10482 }
10483 }
10484 }
10485
10486 /// Lower llvm.experimental.stackmap.
visitStackmap(const CallInst & CI)10487 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10488 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10489 // [live variables...])
10490
10491 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10492
10493 SDValue Chain, InGlue, Callee;
10494 SmallVector<SDValue, 32> Ops;
10495
10496 SDLoc DL = getCurSDLoc();
10497 Callee = getValue(CI.getCalledOperand());
10498
10499 // The stackmap intrinsic only records the live variables (the arguments
10500 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10501 // intrinsic, this won't be lowered to a function call. This means we don't
10502 // have to worry about calling conventions and target specific lowering code.
10503 // Instead we perform the call lowering right here.
10504 //
10505 // chain, flag = CALLSEQ_START(chain, 0, 0)
10506 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10507 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10508 //
10509 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10510 InGlue = Chain.getValue(1);
10511
10512 // Add the STACKMAP operands, starting with DAG house-keeping.
10513 Ops.push_back(Chain);
10514 Ops.push_back(InGlue);
10515
10516 // Add the <id>, <numShadowBytes> operands.
10517 //
10518 // These do not require legalisation, and can be emitted directly to target
10519 // constant nodes.
10520 SDValue ID = getValue(CI.getArgOperand(0));
10521 assert(ID.getValueType() == MVT::i64);
10522 SDValue IDConst =
10523 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10524 Ops.push_back(IDConst);
10525
10526 SDValue Shad = getValue(CI.getArgOperand(1));
10527 assert(Shad.getValueType() == MVT::i32);
10528 SDValue ShadConst =
10529 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10530 Ops.push_back(ShadConst);
10531
10532 // Add the live variables.
10533 addStackMapLiveVars(CI, 2, DL, Ops, *this);
10534
10535 // Create the STACKMAP node.
10536 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10537 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10538 InGlue = Chain.getValue(1);
10539
10540 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10541
10542 // Stackmaps don't generate values, so nothing goes into the NodeMap.
10543
10544 // Set the root to the target-lowered call chain.
10545 DAG.setRoot(Chain);
10546
10547 // Inform the Frame Information that we have a stackmap in this function.
10548 FuncInfo.MF->getFrameInfo().setHasStackMap();
10549 }
10550
10551 /// Lower llvm.experimental.patchpoint directly to its target opcode.
visitPatchpoint(const CallBase & CB,const BasicBlock * EHPadBB)10552 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10553 const BasicBlock *EHPadBB) {
10554 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10555 // i32 <numBytes>,
10556 // i8* <target>,
10557 // i32 <numArgs>,
10558 // [Args...],
10559 // [live variables...])
10560
10561 CallingConv::ID CC = CB.getCallingConv();
10562 bool IsAnyRegCC = CC == CallingConv::AnyReg;
10563 bool HasDef = !CB.getType()->isVoidTy();
10564 SDLoc dl = getCurSDLoc();
10565 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10566
10567 // Handle immediate and symbolic callees.
10568 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10569 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10570 /*isTarget=*/true);
10571 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10572 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10573 SDLoc(SymbolicCallee),
10574 SymbolicCallee->getValueType(0));
10575
10576 // Get the real number of arguments participating in the call <numArgs>
10577 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10578 unsigned NumArgs = NArgVal->getAsZExtVal();
10579
10580 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10581 // Intrinsics include all meta-operands up to but not including CC.
10582 unsigned NumMetaOpers = PatchPointOpers::CCPos;
10583 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10584 "Not enough arguments provided to the patchpoint intrinsic");
10585
10586 // For AnyRegCC the arguments are lowered later on manually.
10587 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10588 Type *ReturnTy =
10589 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10590
10591 TargetLowering::CallLoweringInfo CLI(DAG);
10592 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10593 ReturnTy, CB.getAttributes().getRetAttrs(), true);
10594 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10595
10596 SDNode *CallEnd = Result.second.getNode();
10597 if (CallEnd->getOpcode() == ISD::EH_LABEL)
10598 CallEnd = CallEnd->getOperand(0).getNode();
10599 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10600 CallEnd = CallEnd->getOperand(0).getNode();
10601
10602 /// Get a call instruction from the call sequence chain.
10603 /// Tail calls are not allowed.
10604 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10605 "Expected a callseq node.");
10606 SDNode *Call = CallEnd->getOperand(0).getNode();
10607 bool HasGlue = Call->getGluedNode();
10608
10609 // Replace the target specific call node with the patchable intrinsic.
10610 SmallVector<SDValue, 8> Ops;
10611
10612 // Push the chain.
10613 Ops.push_back(*(Call->op_begin()));
10614
10615 // Optionally, push the glue (if any).
10616 if (HasGlue)
10617 Ops.push_back(*(Call->op_end() - 1));
10618
10619 // Push the register mask info.
10620 if (HasGlue)
10621 Ops.push_back(*(Call->op_end() - 2));
10622 else
10623 Ops.push_back(*(Call->op_end() - 1));
10624
10625 // Add the <id> and <numBytes> constants.
10626 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10627 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10628 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10629 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10630
10631 // Add the callee.
10632 Ops.push_back(Callee);
10633
10634 // Adjust <numArgs> to account for any arguments that have been passed on the
10635 // stack instead.
10636 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10637 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10638 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10639 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10640
10641 // Add the calling convention
10642 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10643
10644 // Add the arguments we omitted previously. The register allocator should
10645 // place these in any free register.
10646 if (IsAnyRegCC)
10647 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10648 Ops.push_back(getValue(CB.getArgOperand(i)));
10649
10650 // Push the arguments from the call instruction.
10651 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10652 Ops.append(Call->op_begin() + 2, e);
10653
10654 // Push live variables for the stack map.
10655 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10656
10657 SDVTList NodeTys;
10658 if (IsAnyRegCC && HasDef) {
10659 // Create the return types based on the intrinsic definition
10660 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10661 SmallVector<EVT, 3> ValueVTs;
10662 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10663 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10664
10665 // There is always a chain and a glue type at the end
10666 ValueVTs.push_back(MVT::Other);
10667 ValueVTs.push_back(MVT::Glue);
10668 NodeTys = DAG.getVTList(ValueVTs);
10669 } else
10670 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10671
10672 // Replace the target specific call node with a PATCHPOINT node.
10673 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10674
10675 // Update the NodeMap.
10676 if (HasDef) {
10677 if (IsAnyRegCC)
10678 setValue(&CB, SDValue(PPV.getNode(), 0));
10679 else
10680 setValue(&CB, Result.first);
10681 }
10682
10683 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10684 // call sequence. Furthermore the location of the chain and glue can change
10685 // when the AnyReg calling convention is used and the intrinsic returns a
10686 // value.
10687 if (IsAnyRegCC && HasDef) {
10688 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10689 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10690 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10691 } else
10692 DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10693 DAG.DeleteNode(Call);
10694
10695 // Inform the Frame Information that we have a patchpoint in this function.
10696 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10697 }
10698
visitVectorReduce(const CallInst & I,unsigned Intrinsic)10699 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10700 unsigned Intrinsic) {
10701 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10702 SDValue Op1 = getValue(I.getArgOperand(0));
10703 SDValue Op2;
10704 if (I.arg_size() > 1)
10705 Op2 = getValue(I.getArgOperand(1));
10706 SDLoc dl = getCurSDLoc();
10707 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10708 SDValue Res;
10709 SDNodeFlags SDFlags;
10710 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10711 SDFlags.copyFMF(*FPMO);
10712
10713 switch (Intrinsic) {
10714 case Intrinsic::vector_reduce_fadd:
10715 if (SDFlags.hasAllowReassociation())
10716 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10717 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10718 SDFlags);
10719 else
10720 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10721 break;
10722 case Intrinsic::vector_reduce_fmul:
10723 if (SDFlags.hasAllowReassociation())
10724 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10725 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10726 SDFlags);
10727 else
10728 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10729 break;
10730 case Intrinsic::vector_reduce_add:
10731 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10732 break;
10733 case Intrinsic::vector_reduce_mul:
10734 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10735 break;
10736 case Intrinsic::vector_reduce_and:
10737 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10738 break;
10739 case Intrinsic::vector_reduce_or:
10740 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10741 break;
10742 case Intrinsic::vector_reduce_xor:
10743 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10744 break;
10745 case Intrinsic::vector_reduce_smax:
10746 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10747 break;
10748 case Intrinsic::vector_reduce_smin:
10749 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10750 break;
10751 case Intrinsic::vector_reduce_umax:
10752 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10753 break;
10754 case Intrinsic::vector_reduce_umin:
10755 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10756 break;
10757 case Intrinsic::vector_reduce_fmax:
10758 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10759 break;
10760 case Intrinsic::vector_reduce_fmin:
10761 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10762 break;
10763 case Intrinsic::vector_reduce_fmaximum:
10764 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10765 break;
10766 case Intrinsic::vector_reduce_fminimum:
10767 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10768 break;
10769 default:
10770 llvm_unreachable("Unhandled vector reduce intrinsic");
10771 }
10772 setValue(&I, Res);
10773 }
10774
10775 /// Returns an AttributeList representing the attributes applied to the return
10776 /// value of the given call.
getReturnAttrs(TargetLowering::CallLoweringInfo & CLI)10777 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10778 SmallVector<Attribute::AttrKind, 2> Attrs;
10779 if (CLI.RetSExt)
10780 Attrs.push_back(Attribute::SExt);
10781 if (CLI.RetZExt)
10782 Attrs.push_back(Attribute::ZExt);
10783 if (CLI.IsInReg)
10784 Attrs.push_back(Attribute::InReg);
10785
10786 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10787 Attrs);
10788 }
10789
10790 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10791 /// implementation, which just calls LowerCall.
10792 /// FIXME: When all targets are
10793 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10794 std::pair<SDValue, SDValue>
LowerCallTo(TargetLowering::CallLoweringInfo & CLI) const10795 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10796 // Handle the incoming return values from the call.
10797 CLI.Ins.clear();
10798 Type *OrigRetTy = CLI.RetTy;
10799 SmallVector<EVT, 4> RetTys;
10800 SmallVector<TypeSize, 4> Offsets;
10801 auto &DL = CLI.DAG.getDataLayout();
10802 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10803
10804 if (CLI.IsPostTypeLegalization) {
10805 // If we are lowering a libcall after legalization, split the return type.
10806 SmallVector<EVT, 4> OldRetTys;
10807 SmallVector<TypeSize, 4> OldOffsets;
10808 RetTys.swap(OldRetTys);
10809 Offsets.swap(OldOffsets);
10810
10811 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10812 EVT RetVT = OldRetTys[i];
10813 uint64_t Offset = OldOffsets[i];
10814 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10815 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10816 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10817 RetTys.append(NumRegs, RegisterVT);
10818 for (unsigned j = 0; j != NumRegs; ++j)
10819 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10820 }
10821 }
10822
10823 SmallVector<ISD::OutputArg, 4> Outs;
10824 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10825
10826 bool CanLowerReturn =
10827 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10828 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10829
10830 SDValue DemoteStackSlot;
10831 int DemoteStackIdx = -100;
10832 if (!CanLowerReturn) {
10833 // FIXME: equivalent assert?
10834 // assert(!CS.hasInAllocaArgument() &&
10835 // "sret demotion is incompatible with inalloca");
10836 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10837 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10838 MachineFunction &MF = CLI.DAG.getMachineFunction();
10839 DemoteStackIdx =
10840 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10841 Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10842 DL.getAllocaAddrSpace());
10843
10844 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10845 ArgListEntry Entry;
10846 Entry.Node = DemoteStackSlot;
10847 Entry.Ty = StackSlotPtrType;
10848 Entry.IsSExt = false;
10849 Entry.IsZExt = false;
10850 Entry.IsInReg = false;
10851 Entry.IsSRet = true;
10852 Entry.IsNest = false;
10853 Entry.IsByVal = false;
10854 Entry.IsByRef = false;
10855 Entry.IsReturned = false;
10856 Entry.IsSwiftSelf = false;
10857 Entry.IsSwiftAsync = false;
10858 Entry.IsSwiftError = false;
10859 Entry.IsCFGuardTarget = false;
10860 Entry.Alignment = Alignment;
10861 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10862 CLI.NumFixedArgs += 1;
10863 CLI.getArgs()[0].IndirectType = CLI.RetTy;
10864 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10865
10866 // sret demotion isn't compatible with tail-calls, since the sret argument
10867 // points into the callers stack frame.
10868 CLI.IsTailCall = false;
10869 } else {
10870 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10871 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10872 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10873 ISD::ArgFlagsTy Flags;
10874 if (NeedsRegBlock) {
10875 Flags.setInConsecutiveRegs();
10876 if (I == RetTys.size() - 1)
10877 Flags.setInConsecutiveRegsLast();
10878 }
10879 EVT VT = RetTys[I];
10880 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10881 CLI.CallConv, VT);
10882 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10883 CLI.CallConv, VT);
10884 for (unsigned i = 0; i != NumRegs; ++i) {
10885 ISD::InputArg MyFlags;
10886 MyFlags.Flags = Flags;
10887 MyFlags.VT = RegisterVT;
10888 MyFlags.ArgVT = VT;
10889 MyFlags.Used = CLI.IsReturnValueUsed;
10890 if (CLI.RetTy->isPointerTy()) {
10891 MyFlags.Flags.setPointer();
10892 MyFlags.Flags.setPointerAddrSpace(
10893 cast<PointerType>(CLI.RetTy)->getAddressSpace());
10894 }
10895 if (CLI.RetSExt)
10896 MyFlags.Flags.setSExt();
10897 if (CLI.RetZExt)
10898 MyFlags.Flags.setZExt();
10899 if (CLI.IsInReg)
10900 MyFlags.Flags.setInReg();
10901 CLI.Ins.push_back(MyFlags);
10902 }
10903 }
10904 }
10905
10906 // We push in swifterror return as the last element of CLI.Ins.
10907 ArgListTy &Args = CLI.getArgs();
10908 if (supportSwiftError()) {
10909 for (const ArgListEntry &Arg : Args) {
10910 if (Arg.IsSwiftError) {
10911 ISD::InputArg MyFlags;
10912 MyFlags.VT = getPointerTy(DL);
10913 MyFlags.ArgVT = EVT(getPointerTy(DL));
10914 MyFlags.Flags.setSwiftError();
10915 CLI.Ins.push_back(MyFlags);
10916 }
10917 }
10918 }
10919
10920 // Handle all of the outgoing arguments.
10921 CLI.Outs.clear();
10922 CLI.OutVals.clear();
10923 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10924 SmallVector<EVT, 4> ValueVTs;
10925 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10926 // FIXME: Split arguments if CLI.IsPostTypeLegalization
10927 Type *FinalType = Args[i].Ty;
10928 if (Args[i].IsByVal)
10929 FinalType = Args[i].IndirectType;
10930 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10931 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10932 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10933 ++Value) {
10934 EVT VT = ValueVTs[Value];
10935 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10936 SDValue Op = SDValue(Args[i].Node.getNode(),
10937 Args[i].Node.getResNo() + Value);
10938 ISD::ArgFlagsTy Flags;
10939
10940 // Certain targets (such as MIPS), may have a different ABI alignment
10941 // for a type depending on the context. Give the target a chance to
10942 // specify the alignment it wants.
10943 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10944 Flags.setOrigAlign(OriginalAlignment);
10945
10946 if (Args[i].Ty->isPointerTy()) {
10947 Flags.setPointer();
10948 Flags.setPointerAddrSpace(
10949 cast<PointerType>(Args[i].Ty)->getAddressSpace());
10950 }
10951 if (Args[i].IsZExt)
10952 Flags.setZExt();
10953 if (Args[i].IsSExt)
10954 Flags.setSExt();
10955 if (Args[i].IsInReg) {
10956 // If we are using vectorcall calling convention, a structure that is
10957 // passed InReg - is surely an HVA
10958 if (CLI.CallConv == CallingConv::X86_VectorCall &&
10959 isa<StructType>(FinalType)) {
10960 // The first value of a structure is marked
10961 if (0 == Value)
10962 Flags.setHvaStart();
10963 Flags.setHva();
10964 }
10965 // Set InReg Flag
10966 Flags.setInReg();
10967 }
10968 if (Args[i].IsSRet)
10969 Flags.setSRet();
10970 if (Args[i].IsSwiftSelf)
10971 Flags.setSwiftSelf();
10972 if (Args[i].IsSwiftAsync)
10973 Flags.setSwiftAsync();
10974 if (Args[i].IsSwiftError)
10975 Flags.setSwiftError();
10976 if (Args[i].IsCFGuardTarget)
10977 Flags.setCFGuardTarget();
10978 if (Args[i].IsByVal)
10979 Flags.setByVal();
10980 if (Args[i].IsByRef)
10981 Flags.setByRef();
10982 if (Args[i].IsPreallocated) {
10983 Flags.setPreallocated();
10984 // Set the byval flag for CCAssignFn callbacks that don't know about
10985 // preallocated. This way we can know how many bytes we should've
10986 // allocated and how many bytes a callee cleanup function will pop. If
10987 // we port preallocated to more targets, we'll have to add custom
10988 // preallocated handling in the various CC lowering callbacks.
10989 Flags.setByVal();
10990 }
10991 if (Args[i].IsInAlloca) {
10992 Flags.setInAlloca();
10993 // Set the byval flag for CCAssignFn callbacks that don't know about
10994 // inalloca. This way we can know how many bytes we should've allocated
10995 // and how many bytes a callee cleanup function will pop. If we port
10996 // inalloca to more targets, we'll have to add custom inalloca handling
10997 // in the various CC lowering callbacks.
10998 Flags.setByVal();
10999 }
11000 Align MemAlign;
11001 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11002 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11003 Flags.setByValSize(FrameSize);
11004
11005 // info is not there but there are cases it cannot get right.
11006 if (auto MA = Args[i].Alignment)
11007 MemAlign = *MA;
11008 else
11009 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
11010 } else if (auto MA = Args[i].Alignment) {
11011 MemAlign = *MA;
11012 } else {
11013 MemAlign = OriginalAlignment;
11014 }
11015 Flags.setMemAlign(MemAlign);
11016 if (Args[i].IsNest)
11017 Flags.setNest();
11018 if (NeedsRegBlock)
11019 Flags.setInConsecutiveRegs();
11020
11021 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11022 CLI.CallConv, VT);
11023 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11024 CLI.CallConv, VT);
11025 SmallVector<SDValue, 4> Parts(NumParts);
11026 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11027
11028 if (Args[i].IsSExt)
11029 ExtendKind = ISD::SIGN_EXTEND;
11030 else if (Args[i].IsZExt)
11031 ExtendKind = ISD::ZERO_EXTEND;
11032
11033 // Conservatively only handle 'returned' on non-vectors that can be lowered,
11034 // for now.
11035 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11036 CanLowerReturn) {
11037 assert((CLI.RetTy == Args[i].Ty ||
11038 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11039 CLI.RetTy->getPointerAddressSpace() ==
11040 Args[i].Ty->getPointerAddressSpace())) &&
11041 RetTys.size() == NumValues && "unexpected use of 'returned'");
11042 // Before passing 'returned' to the target lowering code, ensure that
11043 // either the register MVT and the actual EVT are the same size or that
11044 // the return value and argument are extended in the same way; in these
11045 // cases it's safe to pass the argument register value unchanged as the
11046 // return register value (although it's at the target's option whether
11047 // to do so)
11048 // TODO: allow code generation to take advantage of partially preserved
11049 // registers rather than clobbering the entire register when the
11050 // parameter extension method is not compatible with the return
11051 // extension method
11052 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11053 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11054 CLI.RetZExt == Args[i].IsZExt))
11055 Flags.setReturned();
11056 }
11057
11058 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11059 CLI.CallConv, ExtendKind);
11060
11061 for (unsigned j = 0; j != NumParts; ++j) {
11062 // if it isn't first piece, alignment must be 1
11063 // For scalable vectors the scalable part is currently handled
11064 // by individual targets, so we just use the known minimum size here.
11065 ISD::OutputArg MyFlags(
11066 Flags, Parts[j].getValueType().getSimpleVT(), VT,
11067 i < CLI.NumFixedArgs, i,
11068 j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11069 if (NumParts > 1 && j == 0)
11070 MyFlags.Flags.setSplit();
11071 else if (j != 0) {
11072 MyFlags.Flags.setOrigAlign(Align(1));
11073 if (j == NumParts - 1)
11074 MyFlags.Flags.setSplitEnd();
11075 }
11076
11077 CLI.Outs.push_back(MyFlags);
11078 CLI.OutVals.push_back(Parts[j]);
11079 }
11080
11081 if (NeedsRegBlock && Value == NumValues - 1)
11082 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11083 }
11084 }
11085
11086 SmallVector<SDValue, 4> InVals;
11087 CLI.Chain = LowerCall(CLI, InVals);
11088
11089 // Update CLI.InVals to use outside of this function.
11090 CLI.InVals = InVals;
11091
11092 // Verify that the target's LowerCall behaved as expected.
11093 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11094 "LowerCall didn't return a valid chain!");
11095 assert((!CLI.IsTailCall || InVals.empty()) &&
11096 "LowerCall emitted a return value for a tail call!");
11097 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11098 "LowerCall didn't emit the correct number of values!");
11099
11100 // For a tail call, the return value is merely live-out and there aren't
11101 // any nodes in the DAG representing it. Return a special value to
11102 // indicate that a tail call has been emitted and no more Instructions
11103 // should be processed in the current block.
11104 if (CLI.IsTailCall) {
11105 CLI.DAG.setRoot(CLI.Chain);
11106 return std::make_pair(SDValue(), SDValue());
11107 }
11108
11109 #ifndef NDEBUG
11110 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11111 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11112 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11113 "LowerCall emitted a value with the wrong type!");
11114 }
11115 #endif
11116
11117 SmallVector<SDValue, 4> ReturnValues;
11118 if (!CanLowerReturn) {
11119 // The instruction result is the result of loading from the
11120 // hidden sret parameter.
11121 SmallVector<EVT, 1> PVTs;
11122 Type *PtrRetTy =
11123 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
11124
11125 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
11126 assert(PVTs.size() == 1 && "Pointers should fit in one register");
11127 EVT PtrVT = PVTs[0];
11128
11129 unsigned NumValues = RetTys.size();
11130 ReturnValues.resize(NumValues);
11131 SmallVector<SDValue, 4> Chains(NumValues);
11132
11133 // An aggregate return value cannot wrap around the address space, so
11134 // offsets to its parts don't wrap either.
11135 SDNodeFlags Flags;
11136 Flags.setNoUnsignedWrap(true);
11137
11138 MachineFunction &MF = CLI.DAG.getMachineFunction();
11139 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11140 for (unsigned i = 0; i < NumValues; ++i) {
11141 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
11142 CLI.DAG.getConstant(Offsets[i], CLI.DL,
11143 PtrVT), Flags);
11144 SDValue L = CLI.DAG.getLoad(
11145 RetTys[i], CLI.DL, CLI.Chain, Add,
11146 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
11147 DemoteStackIdx, Offsets[i]),
11148 HiddenSRetAlign);
11149 ReturnValues[i] = L;
11150 Chains[i] = L.getValue(1);
11151 }
11152
11153 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11154 } else {
11155 // Collect the legal value parts into potentially illegal values
11156 // that correspond to the original function's return values.
11157 std::optional<ISD::NodeType> AssertOp;
11158 if (CLI.RetSExt)
11159 AssertOp = ISD::AssertSext;
11160 else if (CLI.RetZExt)
11161 AssertOp = ISD::AssertZext;
11162 unsigned CurReg = 0;
11163 for (EVT VT : RetTys) {
11164 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11165 CLI.CallConv, VT);
11166 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11167 CLI.CallConv, VT);
11168
11169 ReturnValues.push_back(getCopyFromParts(
11170 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11171 CLI.Chain, CLI.CallConv, AssertOp));
11172 CurReg += NumRegs;
11173 }
11174
11175 // For a function returning void, there is no return value. We can't create
11176 // such a node, so we just return a null return value in that case. In
11177 // that case, nothing will actually look at the value.
11178 if (ReturnValues.empty())
11179 return std::make_pair(SDValue(), CLI.Chain);
11180 }
11181
11182 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11183 CLI.DAG.getVTList(RetTys), ReturnValues);
11184 return std::make_pair(Res, CLI.Chain);
11185 }
11186
11187 /// Places new result values for the node in Results (their number
11188 /// and types must exactly match those of the original return values of
11189 /// the node), or leaves Results empty, which indicates that the node is not
11190 /// to be custom lowered after all.
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const11191 void TargetLowering::LowerOperationWrapper(SDNode *N,
11192 SmallVectorImpl<SDValue> &Results,
11193 SelectionDAG &DAG) const {
11194 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11195
11196 if (!Res.getNode())
11197 return;
11198
11199 // If the original node has one result, take the return value from
11200 // LowerOperation as is. It might not be result number 0.
11201 if (N->getNumValues() == 1) {
11202 Results.push_back(Res);
11203 return;
11204 }
11205
11206 // If the original node has multiple results, then the return node should
11207 // have the same number of results.
11208 assert((N->getNumValues() == Res->getNumValues()) &&
11209 "Lowering returned the wrong number of results!");
11210
11211 // Places new result values base on N result number.
11212 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11213 Results.push_back(Res.getValue(I));
11214 }
11215
LowerOperation(SDValue Op,SelectionDAG & DAG) const11216 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11217 llvm_unreachable("LowerOperation not implemented for this target!");
11218 }
11219
CopyValueToVirtualRegister(const Value * V,unsigned Reg,ISD::NodeType ExtendType)11220 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11221 unsigned Reg,
11222 ISD::NodeType ExtendType) {
11223 SDValue Op = getNonRegisterValue(V);
11224 assert((Op.getOpcode() != ISD::CopyFromReg ||
11225 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11226 "Copy from a reg to the same reg!");
11227 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11228
11229 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11230 // If this is an InlineAsm we have to match the registers required, not the
11231 // notional registers required by the type.
11232
11233 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11234 std::nullopt); // This is not an ABI copy.
11235 SDValue Chain = DAG.getEntryNode();
11236
11237 if (ExtendType == ISD::ANY_EXTEND) {
11238 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11239 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11240 ExtendType = PreferredExtendIt->second;
11241 }
11242 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11243 PendingExports.push_back(Chain);
11244 }
11245
11246 #include "llvm/CodeGen/SelectionDAGISel.h"
11247
11248 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11249 /// entry block, return true. This includes arguments used by switches, since
11250 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A,bool FastISel)11251 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11252 // With FastISel active, we may be splitting blocks, so force creation
11253 // of virtual registers for all non-dead arguments.
11254 if (FastISel)
11255 return A->use_empty();
11256
11257 const BasicBlock &Entry = A->getParent()->front();
11258 for (const User *U : A->users())
11259 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11260 return false; // Use not in entry block.
11261
11262 return true;
11263 }
11264
11265 using ArgCopyElisionMapTy =
11266 DenseMap<const Argument *,
11267 std::pair<const AllocaInst *, const StoreInst *>>;
11268
11269 /// Scan the entry block of the function in FuncInfo for arguments that look
11270 /// like copies into a local alloca. Record any copied arguments in
11271 /// ArgCopyElisionCandidates.
11272 static void
findArgumentCopyElisionCandidates(const DataLayout & DL,FunctionLoweringInfo * FuncInfo,ArgCopyElisionMapTy & ArgCopyElisionCandidates)11273 findArgumentCopyElisionCandidates(const DataLayout &DL,
11274 FunctionLoweringInfo *FuncInfo,
11275 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11276 // Record the state of every static alloca used in the entry block. Argument
11277 // allocas are all used in the entry block, so we need approximately as many
11278 // entries as we have arguments.
11279 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11280 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11281 unsigned NumArgs = FuncInfo->Fn->arg_size();
11282 StaticAllocas.reserve(NumArgs * 2);
11283
11284 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11285 if (!V)
11286 return nullptr;
11287 V = V->stripPointerCasts();
11288 const auto *AI = dyn_cast<AllocaInst>(V);
11289 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11290 return nullptr;
11291 auto Iter = StaticAllocas.insert({AI, Unknown});
11292 return &Iter.first->second;
11293 };
11294
11295 // Look for stores of arguments to static allocas. Look through bitcasts and
11296 // GEPs to handle type coercions, as long as the alloca is fully initialized
11297 // by the store. Any non-store use of an alloca escapes it and any subsequent
11298 // unanalyzed store might write it.
11299 // FIXME: Handle structs initialized with multiple stores.
11300 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11301 // Look for stores, and handle non-store uses conservatively.
11302 const auto *SI = dyn_cast<StoreInst>(&I);
11303 if (!SI) {
11304 // We will look through cast uses, so ignore them completely.
11305 if (I.isCast())
11306 continue;
11307 // Ignore debug info and pseudo op intrinsics, they don't escape or store
11308 // to allocas.
11309 if (I.isDebugOrPseudoInst())
11310 continue;
11311 // This is an unknown instruction. Assume it escapes or writes to all
11312 // static alloca operands.
11313 for (const Use &U : I.operands()) {
11314 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11315 *Info = StaticAllocaInfo::Clobbered;
11316 }
11317 continue;
11318 }
11319
11320 // If the stored value is a static alloca, mark it as escaped.
11321 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11322 *Info = StaticAllocaInfo::Clobbered;
11323
11324 // Check if the destination is a static alloca.
11325 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11326 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11327 if (!Info)
11328 continue;
11329 const AllocaInst *AI = cast<AllocaInst>(Dst);
11330
11331 // Skip allocas that have been initialized or clobbered.
11332 if (*Info != StaticAllocaInfo::Unknown)
11333 continue;
11334
11335 // Check if the stored value is an argument, and that this store fully
11336 // initializes the alloca.
11337 // If the argument type has padding bits we can't directly forward a pointer
11338 // as the upper bits may contain garbage.
11339 // Don't elide copies from the same argument twice.
11340 const Value *Val = SI->getValueOperand()->stripPointerCasts();
11341 const auto *Arg = dyn_cast<Argument>(Val);
11342 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11343 Arg->getType()->isEmptyTy() ||
11344 DL.getTypeStoreSize(Arg->getType()) !=
11345 DL.getTypeAllocSize(AI->getAllocatedType()) ||
11346 !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11347 ArgCopyElisionCandidates.count(Arg)) {
11348 *Info = StaticAllocaInfo::Clobbered;
11349 continue;
11350 }
11351
11352 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11353 << '\n');
11354
11355 // Mark this alloca and store for argument copy elision.
11356 *Info = StaticAllocaInfo::Elidable;
11357 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11358
11359 // Stop scanning if we've seen all arguments. This will happen early in -O0
11360 // builds, which is useful, because -O0 builds have large entry blocks and
11361 // many allocas.
11362 if (ArgCopyElisionCandidates.size() == NumArgs)
11363 break;
11364 }
11365 }
11366
11367 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11368 /// ArgVal is a load from a suitable fixed stack object.
tryToElideArgumentCopy(FunctionLoweringInfo & FuncInfo,SmallVectorImpl<SDValue> & Chains,DenseMap<int,int> & ArgCopyElisionFrameIndexMap,SmallPtrSetImpl<const Instruction * > & ElidedArgCopyInstrs,ArgCopyElisionMapTy & ArgCopyElisionCandidates,const Argument & Arg,ArrayRef<SDValue> ArgVals,bool & ArgHasUses)11369 static void tryToElideArgumentCopy(
11370 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11371 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11372 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11373 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11374 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11375 // Check if this is a load from a fixed stack object.
11376 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11377 if (!LNode)
11378 return;
11379 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11380 if (!FINode)
11381 return;
11382
11383 // Check that the fixed stack object is the right size and alignment.
11384 // Look at the alignment that the user wrote on the alloca instead of looking
11385 // at the stack object.
11386 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11387 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11388 const AllocaInst *AI = ArgCopyIter->second.first;
11389 int FixedIndex = FINode->getIndex();
11390 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11391 int OldIndex = AllocaIndex;
11392 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11393 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11394 LLVM_DEBUG(
11395 dbgs() << " argument copy elision failed due to bad fixed stack "
11396 "object size\n");
11397 return;
11398 }
11399 Align RequiredAlignment = AI->getAlign();
11400 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11401 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
11402 "greater than stack argument alignment ("
11403 << DebugStr(RequiredAlignment) << " vs "
11404 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11405 return;
11406 }
11407
11408 // Perform the elision. Delete the old stack object and replace its only use
11409 // in the variable info map. Mark the stack object as mutable and aliased.
11410 LLVM_DEBUG({
11411 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11412 << " Replacing frame index " << OldIndex << " with " << FixedIndex
11413 << '\n';
11414 });
11415 MFI.RemoveStackObject(OldIndex);
11416 MFI.setIsImmutableObjectIndex(FixedIndex, false);
11417 MFI.setIsAliasedObjectIndex(FixedIndex, true);
11418 AllocaIndex = FixedIndex;
11419 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11420 for (SDValue ArgVal : ArgVals)
11421 Chains.push_back(ArgVal.getValue(1));
11422
11423 // Avoid emitting code for the store implementing the copy.
11424 const StoreInst *SI = ArgCopyIter->second.second;
11425 ElidedArgCopyInstrs.insert(SI);
11426
11427 // Check for uses of the argument again so that we can avoid exporting ArgVal
11428 // if it is't used by anything other than the store.
11429 for (const Value *U : Arg.users()) {
11430 if (U != SI) {
11431 ArgHasUses = true;
11432 break;
11433 }
11434 }
11435 }
11436
LowerArguments(const Function & F)11437 void SelectionDAGISel::LowerArguments(const Function &F) {
11438 SelectionDAG &DAG = SDB->DAG;
11439 SDLoc dl = SDB->getCurSDLoc();
11440 const DataLayout &DL = DAG.getDataLayout();
11441 SmallVector<ISD::InputArg, 16> Ins;
11442
11443 // In Naked functions we aren't going to save any registers.
11444 if (F.hasFnAttribute(Attribute::Naked))
11445 return;
11446
11447 if (!FuncInfo->CanLowerReturn) {
11448 // Put in an sret pointer parameter before all the other parameters.
11449 SmallVector<EVT, 1> ValueVTs;
11450 ComputeValueVTs(*TLI, DAG.getDataLayout(),
11451 PointerType::get(F.getContext(),
11452 DAG.getDataLayout().getAllocaAddrSpace()),
11453 ValueVTs);
11454
11455 // NOTE: Assuming that a pointer will never break down to more than one VT
11456 // or one register.
11457 ISD::ArgFlagsTy Flags;
11458 Flags.setSRet();
11459 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11460 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11461 ISD::InputArg::NoArgIndex, 0);
11462 Ins.push_back(RetArg);
11463 }
11464
11465 // Look for stores of arguments to static allocas. Mark such arguments with a
11466 // flag to ask the target to give us the memory location of that argument if
11467 // available.
11468 ArgCopyElisionMapTy ArgCopyElisionCandidates;
11469 findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11470 ArgCopyElisionCandidates);
11471
11472 // Set up the incoming argument description vector.
11473 for (const Argument &Arg : F.args()) {
11474 unsigned ArgNo = Arg.getArgNo();
11475 SmallVector<EVT, 4> ValueVTs;
11476 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11477 bool isArgValueUsed = !Arg.use_empty();
11478 unsigned PartBase = 0;
11479 Type *FinalType = Arg.getType();
11480 if (Arg.hasAttribute(Attribute::ByVal))
11481 FinalType = Arg.getParamByValType();
11482 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11483 FinalType, F.getCallingConv(), F.isVarArg(), DL);
11484 for (unsigned Value = 0, NumValues = ValueVTs.size();
11485 Value != NumValues; ++Value) {
11486 EVT VT = ValueVTs[Value];
11487 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11488 ISD::ArgFlagsTy Flags;
11489
11490
11491 if (Arg.getType()->isPointerTy()) {
11492 Flags.setPointer();
11493 Flags.setPointerAddrSpace(
11494 cast<PointerType>(Arg.getType())->getAddressSpace());
11495 }
11496 if (Arg.hasAttribute(Attribute::ZExt))
11497 Flags.setZExt();
11498 if (Arg.hasAttribute(Attribute::SExt))
11499 Flags.setSExt();
11500 if (Arg.hasAttribute(Attribute::InReg)) {
11501 // If we are using vectorcall calling convention, a structure that is
11502 // passed InReg - is surely an HVA
11503 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11504 isa<StructType>(Arg.getType())) {
11505 // The first value of a structure is marked
11506 if (0 == Value)
11507 Flags.setHvaStart();
11508 Flags.setHva();
11509 }
11510 // Set InReg Flag
11511 Flags.setInReg();
11512 }
11513 if (Arg.hasAttribute(Attribute::StructRet))
11514 Flags.setSRet();
11515 if (Arg.hasAttribute(Attribute::SwiftSelf))
11516 Flags.setSwiftSelf();
11517 if (Arg.hasAttribute(Attribute::SwiftAsync))
11518 Flags.setSwiftAsync();
11519 if (Arg.hasAttribute(Attribute::SwiftError))
11520 Flags.setSwiftError();
11521 if (Arg.hasAttribute(Attribute::ByVal))
11522 Flags.setByVal();
11523 if (Arg.hasAttribute(Attribute::ByRef))
11524 Flags.setByRef();
11525 if (Arg.hasAttribute(Attribute::InAlloca)) {
11526 Flags.setInAlloca();
11527 // Set the byval flag for CCAssignFn callbacks that don't know about
11528 // inalloca. This way we can know how many bytes we should've allocated
11529 // and how many bytes a callee cleanup function will pop. If we port
11530 // inalloca to more targets, we'll have to add custom inalloca handling
11531 // in the various CC lowering callbacks.
11532 Flags.setByVal();
11533 }
11534 if (Arg.hasAttribute(Attribute::Preallocated)) {
11535 Flags.setPreallocated();
11536 // Set the byval flag for CCAssignFn callbacks that don't know about
11537 // preallocated. This way we can know how many bytes we should've
11538 // allocated and how many bytes a callee cleanup function will pop. If
11539 // we port preallocated to more targets, we'll have to add custom
11540 // preallocated handling in the various CC lowering callbacks.
11541 Flags.setByVal();
11542 }
11543
11544 // Certain targets (such as MIPS), may have a different ABI alignment
11545 // for a type depending on the context. Give the target a chance to
11546 // specify the alignment it wants.
11547 const Align OriginalAlignment(
11548 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11549 Flags.setOrigAlign(OriginalAlignment);
11550
11551 Align MemAlign;
11552 Type *ArgMemTy = nullptr;
11553 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11554 Flags.isByRef()) {
11555 if (!ArgMemTy)
11556 ArgMemTy = Arg.getPointeeInMemoryValueType();
11557
11558 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11559
11560 // For in-memory arguments, size and alignment should be passed from FE.
11561 // BE will guess if this info is not there but there are cases it cannot
11562 // get right.
11563 if (auto ParamAlign = Arg.getParamStackAlign())
11564 MemAlign = *ParamAlign;
11565 else if ((ParamAlign = Arg.getParamAlign()))
11566 MemAlign = *ParamAlign;
11567 else
11568 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11569 if (Flags.isByRef())
11570 Flags.setByRefSize(MemSize);
11571 else
11572 Flags.setByValSize(MemSize);
11573 } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11574 MemAlign = *ParamAlign;
11575 } else {
11576 MemAlign = OriginalAlignment;
11577 }
11578 Flags.setMemAlign(MemAlign);
11579
11580 if (Arg.hasAttribute(Attribute::Nest))
11581 Flags.setNest();
11582 if (NeedsRegBlock)
11583 Flags.setInConsecutiveRegs();
11584 if (ArgCopyElisionCandidates.count(&Arg))
11585 Flags.setCopyElisionCandidate();
11586 if (Arg.hasAttribute(Attribute::Returned))
11587 Flags.setReturned();
11588
11589 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11590 *CurDAG->getContext(), F.getCallingConv(), VT);
11591 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11592 *CurDAG->getContext(), F.getCallingConv(), VT);
11593 for (unsigned i = 0; i != NumRegs; ++i) {
11594 // For scalable vectors, use the minimum size; individual targets
11595 // are responsible for handling scalable vector arguments and
11596 // return values.
11597 ISD::InputArg MyFlags(
11598 Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11599 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11600 if (NumRegs > 1 && i == 0)
11601 MyFlags.Flags.setSplit();
11602 // if it isn't first piece, alignment must be 1
11603 else if (i > 0) {
11604 MyFlags.Flags.setOrigAlign(Align(1));
11605 if (i == NumRegs - 1)
11606 MyFlags.Flags.setSplitEnd();
11607 }
11608 Ins.push_back(MyFlags);
11609 }
11610 if (NeedsRegBlock && Value == NumValues - 1)
11611 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11612 PartBase += VT.getStoreSize().getKnownMinValue();
11613 }
11614 }
11615
11616 // Call the target to set up the argument values.
11617 SmallVector<SDValue, 8> InVals;
11618 SDValue NewRoot = TLI->LowerFormalArguments(
11619 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11620
11621 // Verify that the target's LowerFormalArguments behaved as expected.
11622 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11623 "LowerFormalArguments didn't return a valid chain!");
11624 assert(InVals.size() == Ins.size() &&
11625 "LowerFormalArguments didn't emit the correct number of values!");
11626 LLVM_DEBUG({
11627 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11628 assert(InVals[i].getNode() &&
11629 "LowerFormalArguments emitted a null value!");
11630 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11631 "LowerFormalArguments emitted a value with the wrong type!");
11632 }
11633 });
11634
11635 // Update the DAG with the new chain value resulting from argument lowering.
11636 DAG.setRoot(NewRoot);
11637
11638 // Set up the argument values.
11639 unsigned i = 0;
11640 if (!FuncInfo->CanLowerReturn) {
11641 // Create a virtual register for the sret pointer, and put in a copy
11642 // from the sret argument into it.
11643 SmallVector<EVT, 1> ValueVTs;
11644 ComputeValueVTs(*TLI, DAG.getDataLayout(),
11645 PointerType::get(F.getContext(),
11646 DAG.getDataLayout().getAllocaAddrSpace()),
11647 ValueVTs);
11648 MVT VT = ValueVTs[0].getSimpleVT();
11649 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11650 std::optional<ISD::NodeType> AssertOp;
11651 SDValue ArgValue =
11652 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11653 F.getCallingConv(), AssertOp);
11654
11655 MachineFunction& MF = SDB->DAG.getMachineFunction();
11656 MachineRegisterInfo& RegInfo = MF.getRegInfo();
11657 Register SRetReg =
11658 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11659 FuncInfo->DemoteRegister = SRetReg;
11660 NewRoot =
11661 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11662 DAG.setRoot(NewRoot);
11663
11664 // i indexes lowered arguments. Bump it past the hidden sret argument.
11665 ++i;
11666 }
11667
11668 SmallVector<SDValue, 4> Chains;
11669 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11670 for (const Argument &Arg : F.args()) {
11671 SmallVector<SDValue, 4> ArgValues;
11672 SmallVector<EVT, 4> ValueVTs;
11673 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11674 unsigned NumValues = ValueVTs.size();
11675 if (NumValues == 0)
11676 continue;
11677
11678 bool ArgHasUses = !Arg.use_empty();
11679
11680 // Elide the copying store if the target loaded this argument from a
11681 // suitable fixed stack object.
11682 if (Ins[i].Flags.isCopyElisionCandidate()) {
11683 unsigned NumParts = 0;
11684 for (EVT VT : ValueVTs)
11685 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11686 F.getCallingConv(), VT);
11687
11688 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11689 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11690 ArrayRef(&InVals[i], NumParts), ArgHasUses);
11691 }
11692
11693 // If this argument is unused then remember its value. It is used to generate
11694 // debugging information.
11695 bool isSwiftErrorArg =
11696 TLI->supportSwiftError() &&
11697 Arg.hasAttribute(Attribute::SwiftError);
11698 if (!ArgHasUses && !isSwiftErrorArg) {
11699 SDB->setUnusedArgValue(&Arg, InVals[i]);
11700
11701 // Also remember any frame index for use in FastISel.
11702 if (FrameIndexSDNode *FI =
11703 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11704 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11705 }
11706
11707 for (unsigned Val = 0; Val != NumValues; ++Val) {
11708 EVT VT = ValueVTs[Val];
11709 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11710 F.getCallingConv(), VT);
11711 unsigned NumParts = TLI->getNumRegistersForCallingConv(
11712 *CurDAG->getContext(), F.getCallingConv(), VT);
11713
11714 // Even an apparent 'unused' swifterror argument needs to be returned. So
11715 // we do generate a copy for it that can be used on return from the
11716 // function.
11717 if (ArgHasUses || isSwiftErrorArg) {
11718 std::optional<ISD::NodeType> AssertOp;
11719 if (Arg.hasAttribute(Attribute::SExt))
11720 AssertOp = ISD::AssertSext;
11721 else if (Arg.hasAttribute(Attribute::ZExt))
11722 AssertOp = ISD::AssertZext;
11723
11724 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11725 PartVT, VT, nullptr, NewRoot,
11726 F.getCallingConv(), AssertOp));
11727 }
11728
11729 i += NumParts;
11730 }
11731
11732 // We don't need to do anything else for unused arguments.
11733 if (ArgValues.empty())
11734 continue;
11735
11736 // Note down frame index.
11737 if (FrameIndexSDNode *FI =
11738 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11739 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11740
11741 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11742 SDB->getCurSDLoc());
11743
11744 SDB->setValue(&Arg, Res);
11745 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11746 // We want to associate the argument with the frame index, among
11747 // involved operands, that correspond to the lowest address. The
11748 // getCopyFromParts function, called earlier, is swapping the order of
11749 // the operands to BUILD_PAIR depending on endianness. The result of
11750 // that swapping is that the least significant bits of the argument will
11751 // be in the first operand of the BUILD_PAIR node, and the most
11752 // significant bits will be in the second operand.
11753 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11754 if (LoadSDNode *LNode =
11755 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11756 if (FrameIndexSDNode *FI =
11757 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11758 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11759 }
11760
11761 // Analyses past this point are naive and don't expect an assertion.
11762 if (Res.getOpcode() == ISD::AssertZext)
11763 Res = Res.getOperand(0);
11764
11765 // Update the SwiftErrorVRegDefMap.
11766 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11767 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11768 if (Register::isVirtualRegister(Reg))
11769 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11770 Reg);
11771 }
11772
11773 // If this argument is live outside of the entry block, insert a copy from
11774 // wherever we got it to the vreg that other BB's will reference it as.
11775 if (Res.getOpcode() == ISD::CopyFromReg) {
11776 // If we can, though, try to skip creating an unnecessary vreg.
11777 // FIXME: This isn't very clean... it would be nice to make this more
11778 // general.
11779 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11780 if (Register::isVirtualRegister(Reg)) {
11781 FuncInfo->ValueMap[&Arg] = Reg;
11782 continue;
11783 }
11784 }
11785 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11786 FuncInfo->InitializeRegForValue(&Arg);
11787 SDB->CopyToExportRegsIfNeeded(&Arg);
11788 }
11789 }
11790
11791 if (!Chains.empty()) {
11792 Chains.push_back(NewRoot);
11793 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11794 }
11795
11796 DAG.setRoot(NewRoot);
11797
11798 assert(i == InVals.size() && "Argument register count mismatch!");
11799
11800 // If any argument copy elisions occurred and we have debug info, update the
11801 // stale frame indices used in the dbg.declare variable info table.
11802 if (!ArgCopyElisionFrameIndexMap.empty()) {
11803 for (MachineFunction::VariableDbgInfo &VI :
11804 MF->getInStackSlotVariableDbgInfo()) {
11805 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11806 if (I != ArgCopyElisionFrameIndexMap.end())
11807 VI.updateStackSlot(I->second);
11808 }
11809 }
11810
11811 // Finally, if the target has anything special to do, allow it to do so.
11812 emitFunctionEntryCode();
11813 }
11814
11815 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
11816 /// ensure constants are generated when needed. Remember the virtual registers
11817 /// that need to be added to the Machine PHI nodes as input. We cannot just
11818 /// directly add them, because expansion might result in multiple MBB's for one
11819 /// BB. As such, the start of the BB might correspond to a different MBB than
11820 /// the end.
11821 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)11822 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11823 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11824
11825 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11826
11827 // Check PHI nodes in successors that expect a value to be available from this
11828 // block.
11829 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11830 if (!isa<PHINode>(SuccBB->begin())) continue;
11831 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11832
11833 // If this terminator has multiple identical successors (common for
11834 // switches), only handle each succ once.
11835 if (!SuccsHandled.insert(SuccMBB).second)
11836 continue;
11837
11838 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11839
11840 // At this point we know that there is a 1-1 correspondence between LLVM PHI
11841 // nodes and Machine PHI nodes, but the incoming operands have not been
11842 // emitted yet.
11843 for (const PHINode &PN : SuccBB->phis()) {
11844 // Ignore dead phi's.
11845 if (PN.use_empty())
11846 continue;
11847
11848 // Skip empty types
11849 if (PN.getType()->isEmptyTy())
11850 continue;
11851
11852 unsigned Reg;
11853 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11854
11855 if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11856 unsigned &RegOut = ConstantsOut[C];
11857 if (RegOut == 0) {
11858 RegOut = FuncInfo.CreateRegs(C);
11859 // We need to zero/sign extend ConstantInt phi operands to match
11860 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11861 ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11862 if (auto *CI = dyn_cast<ConstantInt>(C))
11863 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11864 : ISD::ZERO_EXTEND;
11865 CopyValueToVirtualRegister(C, RegOut, ExtendType);
11866 }
11867 Reg = RegOut;
11868 } else {
11869 DenseMap<const Value *, Register>::iterator I =
11870 FuncInfo.ValueMap.find(PHIOp);
11871 if (I != FuncInfo.ValueMap.end())
11872 Reg = I->second;
11873 else {
11874 assert(isa<AllocaInst>(PHIOp) &&
11875 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11876 "Didn't codegen value into a register!??");
11877 Reg = FuncInfo.CreateRegs(PHIOp);
11878 CopyValueToVirtualRegister(PHIOp, Reg);
11879 }
11880 }
11881
11882 // Remember that this register needs to added to the machine PHI node as
11883 // the input for this MBB.
11884 SmallVector<EVT, 4> ValueVTs;
11885 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11886 for (EVT VT : ValueVTs) {
11887 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11888 for (unsigned i = 0; i != NumRegisters; ++i)
11889 FuncInfo.PHINodesToUpdate.push_back(
11890 std::make_pair(&*MBBI++, Reg + i));
11891 Reg += NumRegisters;
11892 }
11893 }
11894 }
11895
11896 ConstantsOut.clear();
11897 }
11898
NextBlock(MachineBasicBlock * MBB)11899 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11900 MachineFunction::iterator I(MBB);
11901 if (++I == FuncInfo.MF->end())
11902 return nullptr;
11903 return &*I;
11904 }
11905
11906 /// During lowering new call nodes can be created (such as memset, etc.).
11907 /// Those will become new roots of the current DAG, but complications arise
11908 /// when they are tail calls. In such cases, the call lowering will update
11909 /// the root, but the builder still needs to know that a tail call has been
11910 /// lowered in order to avoid generating an additional return.
updateDAGForMaybeTailCall(SDValue MaybeTC)11911 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11912 // If the node is null, we do have a tail call.
11913 if (MaybeTC.getNode() != nullptr)
11914 DAG.setRoot(MaybeTC);
11915 else
11916 HasTailCall = true;
11917 }
11918
lowerWorkItem(SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB)11919 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11920 MachineBasicBlock *SwitchMBB,
11921 MachineBasicBlock *DefaultMBB) {
11922 MachineFunction *CurMF = FuncInfo.MF;
11923 MachineBasicBlock *NextMBB = nullptr;
11924 MachineFunction::iterator BBI(W.MBB);
11925 if (++BBI != FuncInfo.MF->end())
11926 NextMBB = &*BBI;
11927
11928 unsigned Size = W.LastCluster - W.FirstCluster + 1;
11929
11930 BranchProbabilityInfo *BPI = FuncInfo.BPI;
11931
11932 if (Size == 2 && W.MBB == SwitchMBB) {
11933 // If any two of the cases has the same destination, and if one value
11934 // is the same as the other, but has one bit unset that the other has set,
11935 // use bit manipulation to do two compares at once. For example:
11936 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11937 // TODO: This could be extended to merge any 2 cases in switches with 3
11938 // cases.
11939 // TODO: Handle cases where W.CaseBB != SwitchBB.
11940 CaseCluster &Small = *W.FirstCluster;
11941 CaseCluster &Big = *W.LastCluster;
11942
11943 if (Small.Low == Small.High && Big.Low == Big.High &&
11944 Small.MBB == Big.MBB) {
11945 const APInt &SmallValue = Small.Low->getValue();
11946 const APInt &BigValue = Big.Low->getValue();
11947
11948 // Check that there is only one bit different.
11949 APInt CommonBit = BigValue ^ SmallValue;
11950 if (CommonBit.isPowerOf2()) {
11951 SDValue CondLHS = getValue(Cond);
11952 EVT VT = CondLHS.getValueType();
11953 SDLoc DL = getCurSDLoc();
11954
11955 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11956 DAG.getConstant(CommonBit, DL, VT));
11957 SDValue Cond = DAG.getSetCC(
11958 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11959 ISD::SETEQ);
11960
11961 // Update successor info.
11962 // Both Small and Big will jump to Small.BB, so we sum up the
11963 // probabilities.
11964 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11965 if (BPI)
11966 addSuccessorWithProb(
11967 SwitchMBB, DefaultMBB,
11968 // The default destination is the first successor in IR.
11969 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11970 else
11971 addSuccessorWithProb(SwitchMBB, DefaultMBB);
11972
11973 // Insert the true branch.
11974 SDValue BrCond =
11975 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11976 DAG.getBasicBlock(Small.MBB));
11977 // Insert the false branch.
11978 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11979 DAG.getBasicBlock(DefaultMBB));
11980
11981 DAG.setRoot(BrCond);
11982 return;
11983 }
11984 }
11985 }
11986
11987 if (TM.getOptLevel() != CodeGenOptLevel::None) {
11988 // Here, we order cases by probability so the most likely case will be
11989 // checked first. However, two clusters can have the same probability in
11990 // which case their relative ordering is non-deterministic. So we use Low
11991 // as a tie-breaker as clusters are guaranteed to never overlap.
11992 llvm::sort(W.FirstCluster, W.LastCluster + 1,
11993 [](const CaseCluster &a, const CaseCluster &b) {
11994 return a.Prob != b.Prob ?
11995 a.Prob > b.Prob :
11996 a.Low->getValue().slt(b.Low->getValue());
11997 });
11998
11999 // Rearrange the case blocks so that the last one falls through if possible
12000 // without changing the order of probabilities.
12001 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12002 --I;
12003 if (I->Prob > W.LastCluster->Prob)
12004 break;
12005 if (I->Kind == CC_Range && I->MBB == NextMBB) {
12006 std::swap(*I, *W.LastCluster);
12007 break;
12008 }
12009 }
12010 }
12011
12012 // Compute total probability.
12013 BranchProbability DefaultProb = W.DefaultProb;
12014 BranchProbability UnhandledProbs = DefaultProb;
12015 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12016 UnhandledProbs += I->Prob;
12017
12018 MachineBasicBlock *CurMBB = W.MBB;
12019 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12020 bool FallthroughUnreachable = false;
12021 MachineBasicBlock *Fallthrough;
12022 if (I == W.LastCluster) {
12023 // For the last cluster, fall through to the default destination.
12024 Fallthrough = DefaultMBB;
12025 FallthroughUnreachable = isa<UnreachableInst>(
12026 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12027 } else {
12028 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12029 CurMF->insert(BBI, Fallthrough);
12030 // Put Cond in a virtual register to make it available from the new blocks.
12031 ExportFromCurrentBlock(Cond);
12032 }
12033 UnhandledProbs -= I->Prob;
12034
12035 switch (I->Kind) {
12036 case CC_JumpTable: {
12037 // FIXME: Optimize away range check based on pivot comparisons.
12038 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12039 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12040
12041 // The jump block hasn't been inserted yet; insert it here.
12042 MachineBasicBlock *JumpMBB = JT->MBB;
12043 CurMF->insert(BBI, JumpMBB);
12044
12045 auto JumpProb = I->Prob;
12046 auto FallthroughProb = UnhandledProbs;
12047
12048 // If the default statement is a target of the jump table, we evenly
12049 // distribute the default probability to successors of CurMBB. Also
12050 // update the probability on the edge from JumpMBB to Fallthrough.
12051 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12052 SE = JumpMBB->succ_end();
12053 SI != SE; ++SI) {
12054 if (*SI == DefaultMBB) {
12055 JumpProb += DefaultProb / 2;
12056 FallthroughProb -= DefaultProb / 2;
12057 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12058 JumpMBB->normalizeSuccProbs();
12059 break;
12060 }
12061 }
12062
12063 // If the default clause is unreachable, propagate that knowledge into
12064 // JTH->FallthroughUnreachable which will use it to suppress the range
12065 // check.
12066 //
12067 // However, don't do this if we're doing branch target enforcement,
12068 // because a table branch _without_ a range check can be a tempting JOP
12069 // gadget - out-of-bounds inputs that are impossible in correct
12070 // execution become possible again if an attacker can influence the
12071 // control flow. So if an attacker doesn't already have a BTI bypass
12072 // available, we don't want them to be able to get one out of this
12073 // table branch.
12074 if (FallthroughUnreachable) {
12075 Function &CurFunc = CurMF->getFunction();
12076 if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12077 JTH->FallthroughUnreachable = true;
12078 }
12079
12080 if (!JTH->FallthroughUnreachable)
12081 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12082 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12083 CurMBB->normalizeSuccProbs();
12084
12085 // The jump table header will be inserted in our current block, do the
12086 // range check, and fall through to our fallthrough block.
12087 JTH->HeaderBB = CurMBB;
12088 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12089
12090 // If we're in the right place, emit the jump table header right now.
12091 if (CurMBB == SwitchMBB) {
12092 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12093 JTH->Emitted = true;
12094 }
12095 break;
12096 }
12097 case CC_BitTests: {
12098 // FIXME: Optimize away range check based on pivot comparisons.
12099 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12100
12101 // The bit test blocks haven't been inserted yet; insert them here.
12102 for (BitTestCase &BTC : BTB->Cases)
12103 CurMF->insert(BBI, BTC.ThisBB);
12104
12105 // Fill in fields of the BitTestBlock.
12106 BTB->Parent = CurMBB;
12107 BTB->Default = Fallthrough;
12108
12109 BTB->DefaultProb = UnhandledProbs;
12110 // If the cases in bit test don't form a contiguous range, we evenly
12111 // distribute the probability on the edge to Fallthrough to two
12112 // successors of CurMBB.
12113 if (!BTB->ContiguousRange) {
12114 BTB->Prob += DefaultProb / 2;
12115 BTB->DefaultProb -= DefaultProb / 2;
12116 }
12117
12118 if (FallthroughUnreachable)
12119 BTB->FallthroughUnreachable = true;
12120
12121 // If we're in the right place, emit the bit test header right now.
12122 if (CurMBB == SwitchMBB) {
12123 visitBitTestHeader(*BTB, SwitchMBB);
12124 BTB->Emitted = true;
12125 }
12126 break;
12127 }
12128 case CC_Range: {
12129 const Value *RHS, *LHS, *MHS;
12130 ISD::CondCode CC;
12131 if (I->Low == I->High) {
12132 // Check Cond == I->Low.
12133 CC = ISD::SETEQ;
12134 LHS = Cond;
12135 RHS=I->Low;
12136 MHS = nullptr;
12137 } else {
12138 // Check I->Low <= Cond <= I->High.
12139 CC = ISD::SETLE;
12140 LHS = I->Low;
12141 MHS = Cond;
12142 RHS = I->High;
12143 }
12144
12145 // If Fallthrough is unreachable, fold away the comparison.
12146 if (FallthroughUnreachable)
12147 CC = ISD::SETTRUE;
12148
12149 // The false probability is the sum of all unhandled cases.
12150 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12151 getCurSDLoc(), I->Prob, UnhandledProbs);
12152
12153 if (CurMBB == SwitchMBB)
12154 visitSwitchCase(CB, SwitchMBB);
12155 else
12156 SL->SwitchCases.push_back(CB);
12157
12158 break;
12159 }
12160 }
12161 CurMBB = Fallthrough;
12162 }
12163 }
12164
splitWorkItem(SwitchWorkList & WorkList,const SwitchWorkListItem & W,Value * Cond,MachineBasicBlock * SwitchMBB)12165 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12166 const SwitchWorkListItem &W,
12167 Value *Cond,
12168 MachineBasicBlock *SwitchMBB) {
12169 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12170 "Clusters not sorted?");
12171 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12172
12173 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12174 SL->computeSplitWorkItemInfo(W);
12175
12176 // Use the first element on the right as pivot since we will make less-than
12177 // comparisons against it.
12178 CaseClusterIt PivotCluster = FirstRight;
12179 assert(PivotCluster > W.FirstCluster);
12180 assert(PivotCluster <= W.LastCluster);
12181
12182 CaseClusterIt FirstLeft = W.FirstCluster;
12183 CaseClusterIt LastRight = W.LastCluster;
12184
12185 const ConstantInt *Pivot = PivotCluster->Low;
12186
12187 // New blocks will be inserted immediately after the current one.
12188 MachineFunction::iterator BBI(W.MBB);
12189 ++BBI;
12190
12191 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12192 // we can branch to its destination directly if it's squeezed exactly in
12193 // between the known lower bound and Pivot - 1.
12194 MachineBasicBlock *LeftMBB;
12195 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12196 FirstLeft->Low == W.GE &&
12197 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12198 LeftMBB = FirstLeft->MBB;
12199 } else {
12200 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12201 FuncInfo.MF->insert(BBI, LeftMBB);
12202 WorkList.push_back(
12203 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12204 // Put Cond in a virtual register to make it available from the new blocks.
12205 ExportFromCurrentBlock(Cond);
12206 }
12207
12208 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12209 // single cluster, RHS.Low == Pivot, and we can branch to its destination
12210 // directly if RHS.High equals the current upper bound.
12211 MachineBasicBlock *RightMBB;
12212 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12213 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12214 RightMBB = FirstRight->MBB;
12215 } else {
12216 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12217 FuncInfo.MF->insert(BBI, RightMBB);
12218 WorkList.push_back(
12219 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12220 // Put Cond in a virtual register to make it available from the new blocks.
12221 ExportFromCurrentBlock(Cond);
12222 }
12223
12224 // Create the CaseBlock record that will be used to lower the branch.
12225 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12226 getCurSDLoc(), LeftProb, RightProb);
12227
12228 if (W.MBB == SwitchMBB)
12229 visitSwitchCase(CB, SwitchMBB);
12230 else
12231 SL->SwitchCases.push_back(CB);
12232 }
12233
12234 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12235 // from the swith statement.
scaleCaseProbality(BranchProbability CaseProb,BranchProbability PeeledCaseProb)12236 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12237 BranchProbability PeeledCaseProb) {
12238 if (PeeledCaseProb == BranchProbability::getOne())
12239 return BranchProbability::getZero();
12240 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12241
12242 uint32_t Numerator = CaseProb.getNumerator();
12243 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12244 return BranchProbability(Numerator, std::max(Numerator, Denominator));
12245 }
12246
12247 // Try to peel the top probability case if it exceeds the threshold.
12248 // Return current MachineBasicBlock for the switch statement if the peeling
12249 // does not occur.
12250 // If the peeling is performed, return the newly created MachineBasicBlock
12251 // for the peeled switch statement. Also update Clusters to remove the peeled
12252 // case. PeeledCaseProb is the BranchProbability for the peeled case.
peelDominantCaseCluster(const SwitchInst & SI,CaseClusterVector & Clusters,BranchProbability & PeeledCaseProb)12253 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12254 const SwitchInst &SI, CaseClusterVector &Clusters,
12255 BranchProbability &PeeledCaseProb) {
12256 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12257 // Don't perform if there is only one cluster or optimizing for size.
12258 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12259 TM.getOptLevel() == CodeGenOptLevel::None ||
12260 SwitchMBB->getParent()->getFunction().hasMinSize())
12261 return SwitchMBB;
12262
12263 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12264 unsigned PeeledCaseIndex = 0;
12265 bool SwitchPeeled = false;
12266 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12267 CaseCluster &CC = Clusters[Index];
12268 if (CC.Prob < TopCaseProb)
12269 continue;
12270 TopCaseProb = CC.Prob;
12271 PeeledCaseIndex = Index;
12272 SwitchPeeled = true;
12273 }
12274 if (!SwitchPeeled)
12275 return SwitchMBB;
12276
12277 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12278 << TopCaseProb << "\n");
12279
12280 // Record the MBB for the peeled switch statement.
12281 MachineFunction::iterator BBI(SwitchMBB);
12282 ++BBI;
12283 MachineBasicBlock *PeeledSwitchMBB =
12284 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12285 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12286
12287 ExportFromCurrentBlock(SI.getCondition());
12288 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12289 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12290 nullptr, nullptr, TopCaseProb.getCompl()};
12291 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12292
12293 Clusters.erase(PeeledCaseIt);
12294 for (CaseCluster &CC : Clusters) {
12295 LLVM_DEBUG(
12296 dbgs() << "Scale the probablity for one cluster, before scaling: "
12297 << CC.Prob << "\n");
12298 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12299 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12300 }
12301 PeeledCaseProb = TopCaseProb;
12302 return PeeledSwitchMBB;
12303 }
12304
visitSwitch(const SwitchInst & SI)12305 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12306 // Extract cases from the switch.
12307 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12308 CaseClusterVector Clusters;
12309 Clusters.reserve(SI.getNumCases());
12310 for (auto I : SI.cases()) {
12311 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12312 const ConstantInt *CaseVal = I.getCaseValue();
12313 BranchProbability Prob =
12314 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12315 : BranchProbability(1, SI.getNumCases() + 1);
12316 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12317 }
12318
12319 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12320
12321 // Cluster adjacent cases with the same destination. We do this at all
12322 // optimization levels because it's cheap to do and will make codegen faster
12323 // if there are many clusters.
12324 sortAndRangeify(Clusters);
12325
12326 // The branch probablity of the peeled case.
12327 BranchProbability PeeledCaseProb = BranchProbability::getZero();
12328 MachineBasicBlock *PeeledSwitchMBB =
12329 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12330
12331 // If there is only the default destination, jump there directly.
12332 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12333 if (Clusters.empty()) {
12334 assert(PeeledSwitchMBB == SwitchMBB);
12335 SwitchMBB->addSuccessor(DefaultMBB);
12336 if (DefaultMBB != NextBlock(SwitchMBB)) {
12337 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12338 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12339 }
12340 return;
12341 }
12342
12343 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12344 DAG.getBFI());
12345 SL->findBitTestClusters(Clusters, &SI);
12346
12347 LLVM_DEBUG({
12348 dbgs() << "Case clusters: ";
12349 for (const CaseCluster &C : Clusters) {
12350 if (C.Kind == CC_JumpTable)
12351 dbgs() << "JT:";
12352 if (C.Kind == CC_BitTests)
12353 dbgs() << "BT:";
12354
12355 C.Low->getValue().print(dbgs(), true);
12356 if (C.Low != C.High) {
12357 dbgs() << '-';
12358 C.High->getValue().print(dbgs(), true);
12359 }
12360 dbgs() << ' ';
12361 }
12362 dbgs() << '\n';
12363 });
12364
12365 assert(!Clusters.empty());
12366 SwitchWorkList WorkList;
12367 CaseClusterIt First = Clusters.begin();
12368 CaseClusterIt Last = Clusters.end() - 1;
12369 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12370 // Scale the branchprobability for DefaultMBB if the peel occurs and
12371 // DefaultMBB is not replaced.
12372 if (PeeledCaseProb != BranchProbability::getZero() &&
12373 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12374 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12375 WorkList.push_back(
12376 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12377
12378 while (!WorkList.empty()) {
12379 SwitchWorkListItem W = WorkList.pop_back_val();
12380 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12381
12382 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12383 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12384 // For optimized builds, lower large range as a balanced binary tree.
12385 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12386 continue;
12387 }
12388
12389 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12390 }
12391 }
12392
visitStepVector(const CallInst & I)12393 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12394 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12395 auto DL = getCurSDLoc();
12396 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12397 setValue(&I, DAG.getStepVector(DL, ResultVT));
12398 }
12399
visitVectorReverse(const CallInst & I)12400 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12401 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12402 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12403
12404 SDLoc DL = getCurSDLoc();
12405 SDValue V = getValue(I.getOperand(0));
12406 assert(VT == V.getValueType() && "Malformed vector.reverse!");
12407
12408 if (VT.isScalableVector()) {
12409 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12410 return;
12411 }
12412
12413 // Use VECTOR_SHUFFLE for the fixed-length vector
12414 // to maintain existing behavior.
12415 SmallVector<int, 8> Mask;
12416 unsigned NumElts = VT.getVectorMinNumElements();
12417 for (unsigned i = 0; i != NumElts; ++i)
12418 Mask.push_back(NumElts - 1 - i);
12419
12420 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12421 }
12422
visitVectorDeinterleave(const CallInst & I)12423 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12424 auto DL = getCurSDLoc();
12425 SDValue InVec = getValue(I.getOperand(0));
12426 EVT OutVT =
12427 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12428
12429 unsigned OutNumElts = OutVT.getVectorMinNumElements();
12430
12431 // ISD Node needs the input vectors split into two equal parts
12432 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12433 DAG.getVectorIdxConstant(0, DL));
12434 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12435 DAG.getVectorIdxConstant(OutNumElts, DL));
12436
12437 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12438 // legalisation and combines.
12439 if (OutVT.isFixedLengthVector()) {
12440 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12441 createStrideMask(0, 2, OutNumElts));
12442 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12443 createStrideMask(1, 2, OutNumElts));
12444 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12445 setValue(&I, Res);
12446 return;
12447 }
12448
12449 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12450 DAG.getVTList(OutVT, OutVT), Lo, Hi);
12451 setValue(&I, Res);
12452 }
12453
visitVectorInterleave(const CallInst & I)12454 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12455 auto DL = getCurSDLoc();
12456 EVT InVT = getValue(I.getOperand(0)).getValueType();
12457 SDValue InVec0 = getValue(I.getOperand(0));
12458 SDValue InVec1 = getValue(I.getOperand(1));
12459 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12460 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12461
12462 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12463 // legalisation and combines.
12464 if (OutVT.isFixedLengthVector()) {
12465 unsigned NumElts = InVT.getVectorMinNumElements();
12466 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12467 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12468 createInterleaveMask(NumElts, 2)));
12469 return;
12470 }
12471
12472 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12473 DAG.getVTList(InVT, InVT), InVec0, InVec1);
12474 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12475 Res.getValue(1));
12476 setValue(&I, Res);
12477 }
12478
visitFreeze(const FreezeInst & I)12479 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12480 SmallVector<EVT, 4> ValueVTs;
12481 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12482 ValueVTs);
12483 unsigned NumValues = ValueVTs.size();
12484 if (NumValues == 0) return;
12485
12486 SmallVector<SDValue, 4> Values(NumValues);
12487 SDValue Op = getValue(I.getOperand(0));
12488
12489 for (unsigned i = 0; i != NumValues; ++i)
12490 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12491 SDValue(Op.getNode(), Op.getResNo() + i));
12492
12493 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12494 DAG.getVTList(ValueVTs), Values));
12495 }
12496
visitVectorSplice(const CallInst & I)12497 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12498 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12499 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12500
12501 SDLoc DL = getCurSDLoc();
12502 SDValue V1 = getValue(I.getOperand(0));
12503 SDValue V2 = getValue(I.getOperand(1));
12504 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12505
12506 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12507 if (VT.isScalableVector()) {
12508 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12509 DAG.getVectorIdxConstant(Imm, DL)));
12510 return;
12511 }
12512
12513 unsigned NumElts = VT.getVectorNumElements();
12514
12515 uint64_t Idx = (NumElts + Imm) % NumElts;
12516
12517 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12518 SmallVector<int, 8> Mask;
12519 for (unsigned i = 0; i < NumElts; ++i)
12520 Mask.push_back(Idx + i);
12521 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12522 }
12523
12524 // Consider the following MIR after SelectionDAG, which produces output in
12525 // phyregs in the first case or virtregs in the second case.
12526 //
12527 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12528 // %5:gr32 = COPY $ebx
12529 // %6:gr32 = COPY $edx
12530 // %1:gr32 = COPY %6:gr32
12531 // %0:gr32 = COPY %5:gr32
12532 //
12533 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12534 // %1:gr32 = COPY %6:gr32
12535 // %0:gr32 = COPY %5:gr32
12536 //
12537 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12538 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12539 //
12540 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12541 // to a single virtreg (such as %0). The remaining outputs monotonically
12542 // increase in virtreg number from there. If a callbr has no outputs, then it
12543 // should not have a corresponding callbr landingpad; in fact, the callbr
12544 // landingpad would not even be able to refer to such a callbr.
FollowCopyChain(MachineRegisterInfo & MRI,Register Reg)12545 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12546 MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12547 // There is definitely at least one copy.
12548 assert(MI->getOpcode() == TargetOpcode::COPY &&
12549 "start of copy chain MUST be COPY");
12550 Reg = MI->getOperand(1).getReg();
12551 MI = MRI.def_begin(Reg)->getParent();
12552 // There may be an optional second copy.
12553 if (MI->getOpcode() == TargetOpcode::COPY) {
12554 assert(Reg.isVirtual() && "expected COPY of virtual register");
12555 Reg = MI->getOperand(1).getReg();
12556 assert(Reg.isPhysical() && "expected COPY of physical register");
12557 MI = MRI.def_begin(Reg)->getParent();
12558 }
12559 // The start of the chain must be an INLINEASM_BR.
12560 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12561 "end of copy chain MUST be INLINEASM_BR");
12562 return Reg;
12563 }
12564
12565 // We must do this walk rather than the simpler
12566 // setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12567 // otherwise we will end up with copies of virtregs only valid along direct
12568 // edges.
visitCallBrLandingPad(const CallInst & I)12569 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12570 SmallVector<EVT, 8> ResultVTs;
12571 SmallVector<SDValue, 8> ResultValues;
12572 const auto *CBR =
12573 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12574
12575 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12576 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12577 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12578
12579 unsigned InitialDef = FuncInfo.ValueMap[CBR];
12580 SDValue Chain = DAG.getRoot();
12581
12582 // Re-parse the asm constraints string.
12583 TargetLowering::AsmOperandInfoVector TargetConstraints =
12584 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12585 for (auto &T : TargetConstraints) {
12586 SDISelAsmOperandInfo OpInfo(T);
12587 if (OpInfo.Type != InlineAsm::isOutput)
12588 continue;
12589
12590 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12591 // individual constraint.
12592 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12593
12594 switch (OpInfo.ConstraintType) {
12595 case TargetLowering::C_Register:
12596 case TargetLowering::C_RegisterClass: {
12597 // Fill in OpInfo.AssignedRegs.Regs.
12598 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12599
12600 // getRegistersForValue may produce 1 to many registers based on whether
12601 // the OpInfo.ConstraintVT is legal on the target or not.
12602 for (unsigned &Reg : OpInfo.AssignedRegs.Regs) {
12603 Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12604 if (Register::isPhysicalRegister(OriginalDef))
12605 FuncInfo.MBB->addLiveIn(OriginalDef);
12606 // Update the assigned registers to use the original defs.
12607 Reg = OriginalDef;
12608 }
12609
12610 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12611 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12612 ResultValues.push_back(V);
12613 ResultVTs.push_back(OpInfo.ConstraintVT);
12614 break;
12615 }
12616 case TargetLowering::C_Other: {
12617 SDValue Flag;
12618 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12619 OpInfo, DAG);
12620 ++InitialDef;
12621 ResultValues.push_back(V);
12622 ResultVTs.push_back(OpInfo.ConstraintVT);
12623 break;
12624 }
12625 default:
12626 break;
12627 }
12628 }
12629 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12630 DAG.getVTList(ResultVTs), ResultValues);
12631 setValue(&I, V);
12632 }
12633