1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3 *
4 * Copyright 2007 Rusty Russell IBM Corporation
5 */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/kmsan.h>
15 #include <linux/spinlock.h>
16 #include <xen/xen.h>
17
18 #ifdef DEBUG
19 /* For development, we want to crash whenever the ring is screwed. */
20 #define BAD_RING(_vq, fmt, args...) \
21 do { \
22 dev_err(&(_vq)->vq.vdev->dev, \
23 "%s:"fmt, (_vq)->vq.name, ##args); \
24 BUG(); \
25 } while (0)
26 /* Caller is supposed to guarantee no reentry. */
27 #define START_USE(_vq) \
28 do { \
29 if ((_vq)->in_use) \
30 panic("%s:in_use = %i\n", \
31 (_vq)->vq.name, (_vq)->in_use); \
32 (_vq)->in_use = __LINE__; \
33 } while (0)
34 #define END_USE(_vq) \
35 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
36 #define LAST_ADD_TIME_UPDATE(_vq) \
37 do { \
38 ktime_t now = ktime_get(); \
39 \
40 /* No kick or get, with .1 second between? Warn. */ \
41 if ((_vq)->last_add_time_valid) \
42 WARN_ON(ktime_to_ms(ktime_sub(now, \
43 (_vq)->last_add_time)) > 100); \
44 (_vq)->last_add_time = now; \
45 (_vq)->last_add_time_valid = true; \
46 } while (0)
47 #define LAST_ADD_TIME_CHECK(_vq) \
48 do { \
49 if ((_vq)->last_add_time_valid) { \
50 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
51 (_vq)->last_add_time)) > 100); \
52 } \
53 } while (0)
54 #define LAST_ADD_TIME_INVALID(_vq) \
55 ((_vq)->last_add_time_valid = false)
56 #else
57 #define BAD_RING(_vq, fmt, args...) \
58 do { \
59 dev_err(&_vq->vq.vdev->dev, \
60 "%s:"fmt, (_vq)->vq.name, ##args); \
61 (_vq)->broken = true; \
62 } while (0)
63 #define START_USE(vq)
64 #define END_USE(vq)
65 #define LAST_ADD_TIME_UPDATE(vq)
66 #define LAST_ADD_TIME_CHECK(vq)
67 #define LAST_ADD_TIME_INVALID(vq)
68 #endif
69
70 struct vring_desc_state_split {
71 void *data; /* Data for callback. */
72 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */
73 };
74
75 struct vring_desc_state_packed {
76 void *data; /* Data for callback. */
77 struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
78 u16 num; /* Descriptor list length. */
79 u16 last; /* The last desc state in a list. */
80 };
81
82 struct vring_desc_extra {
83 dma_addr_t addr; /* Descriptor DMA addr. */
84 u32 len; /* Descriptor length. */
85 u16 flags; /* Descriptor flags. */
86 u16 next; /* The next desc state in a list. */
87 };
88
89 struct vring_virtqueue_split {
90 /* Actual memory layout for this queue. */
91 struct vring vring;
92
93 /* Last written value to avail->flags */
94 u16 avail_flags_shadow;
95
96 /*
97 * Last written value to avail->idx in
98 * guest byte order.
99 */
100 u16 avail_idx_shadow;
101
102 /* Per-descriptor state. */
103 struct vring_desc_state_split *desc_state;
104 struct vring_desc_extra *desc_extra;
105
106 /* DMA address and size information */
107 dma_addr_t queue_dma_addr;
108 size_t queue_size_in_bytes;
109
110 /*
111 * The parameters for creating vrings are reserved for creating new
112 * vring.
113 */
114 u32 vring_align;
115 bool may_reduce_num;
116 };
117
118 struct vring_virtqueue_packed {
119 /* Actual memory layout for this queue. */
120 struct {
121 unsigned int num;
122 struct vring_packed_desc *desc;
123 struct vring_packed_desc_event *driver;
124 struct vring_packed_desc_event *device;
125 } vring;
126
127 /* Driver ring wrap counter. */
128 bool avail_wrap_counter;
129
130 /* Avail used flags. */
131 u16 avail_used_flags;
132
133 /* Index of the next avail descriptor. */
134 u16 next_avail_idx;
135
136 /*
137 * Last written value to driver->flags in
138 * guest byte order.
139 */
140 u16 event_flags_shadow;
141
142 /* Per-descriptor state. */
143 struct vring_desc_state_packed *desc_state;
144 struct vring_desc_extra *desc_extra;
145
146 /* DMA address and size information */
147 dma_addr_t ring_dma_addr;
148 dma_addr_t driver_event_dma_addr;
149 dma_addr_t device_event_dma_addr;
150 size_t ring_size_in_bytes;
151 size_t event_size_in_bytes;
152 };
153
154 struct vring_virtqueue {
155 struct virtqueue vq;
156
157 /* Is this a packed ring? */
158 bool packed_ring;
159
160 /* Is DMA API used? */
161 bool use_dma_api;
162
163 /* Can we use weak barriers? */
164 bool weak_barriers;
165
166 /* Other side has made a mess, don't try any more. */
167 bool broken;
168
169 /* Host supports indirect buffers */
170 bool indirect;
171
172 /* Host publishes avail event idx */
173 bool event;
174
175 /* Do DMA mapping by driver */
176 bool premapped;
177
178 /* Do unmap or not for desc. Just when premapped is False and
179 * use_dma_api is true, this is true.
180 */
181 bool do_unmap;
182
183 /* Head of free buffer list. */
184 unsigned int free_head;
185 /* Number we've added since last sync. */
186 unsigned int num_added;
187
188 /* Last used index we've seen.
189 * for split ring, it just contains last used index
190 * for packed ring:
191 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index.
192 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter.
193 */
194 u16 last_used_idx;
195
196 /* Hint for event idx: already triggered no need to disable. */
197 bool event_triggered;
198
199 union {
200 /* Available for split ring */
201 struct vring_virtqueue_split split;
202
203 /* Available for packed ring */
204 struct vring_virtqueue_packed packed;
205 };
206
207 /* How to notify other side. FIXME: commonalize hcalls! */
208 bool (*notify)(struct virtqueue *vq);
209
210 /* DMA, allocation, and size information */
211 bool we_own_ring;
212
213 /* Device used for doing DMA */
214 struct device *dma_dev;
215
216 #ifdef DEBUG
217 /* They're supposed to lock for us. */
218 unsigned int in_use;
219
220 /* Figure out if their kicks are too delayed. */
221 bool last_add_time_valid;
222 ktime_t last_add_time;
223 #endif
224 };
225
226 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
227 struct vring_virtqueue_split *vring_split,
228 struct virtio_device *vdev,
229 bool weak_barriers,
230 bool context,
231 bool (*notify)(struct virtqueue *),
232 void (*callback)(struct virtqueue *),
233 const char *name,
234 struct device *dma_dev);
235 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num);
236 static void vring_free(struct virtqueue *_vq);
237
238 /*
239 * Helpers.
240 */
241
242 #define to_vvq(_vq) container_of_const(_vq, struct vring_virtqueue, vq)
243
virtqueue_use_indirect(const struct vring_virtqueue * vq,unsigned int total_sg)244 static bool virtqueue_use_indirect(const struct vring_virtqueue *vq,
245 unsigned int total_sg)
246 {
247 /*
248 * If the host supports indirect descriptor tables, and we have multiple
249 * buffers, then go indirect. FIXME: tune this threshold
250 */
251 return (vq->indirect && total_sg > 1 && vq->vq.num_free);
252 }
253
254 /*
255 * Modern virtio devices have feature bits to specify whether they need a
256 * quirk and bypass the IOMMU. If not there, just use the DMA API.
257 *
258 * If there, the interaction between virtio and DMA API is messy.
259 *
260 * On most systems with virtio, physical addresses match bus addresses,
261 * and it doesn't particularly matter whether we use the DMA API.
262 *
263 * On some systems, including Xen and any system with a physical device
264 * that speaks virtio behind a physical IOMMU, we must use the DMA API
265 * for virtio DMA to work at all.
266 *
267 * On other systems, including SPARC and PPC64, virtio-pci devices are
268 * enumerated as though they are behind an IOMMU, but the virtio host
269 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
270 * there or somehow map everything as the identity.
271 *
272 * For the time being, we preserve historic behavior and bypass the DMA
273 * API.
274 *
275 * TODO: install a per-device DMA ops structure that does the right thing
276 * taking into account all the above quirks, and use the DMA API
277 * unconditionally on data path.
278 */
279
vring_use_dma_api(const struct virtio_device * vdev)280 static bool vring_use_dma_api(const struct virtio_device *vdev)
281 {
282 if (!virtio_has_dma_quirk(vdev))
283 return true;
284
285 /* Otherwise, we are left to guess. */
286 /*
287 * In theory, it's possible to have a buggy QEMU-supposed
288 * emulated Q35 IOMMU and Xen enabled at the same time. On
289 * such a configuration, virtio has never worked and will
290 * not work without an even larger kludge. Instead, enable
291 * the DMA API if we're a Xen guest, which at least allows
292 * all of the sensible Xen configurations to work correctly.
293 */
294 if (xen_domain())
295 return true;
296
297 return false;
298 }
299
virtio_max_dma_size(const struct virtio_device * vdev)300 size_t virtio_max_dma_size(const struct virtio_device *vdev)
301 {
302 size_t max_segment_size = SIZE_MAX;
303
304 if (vring_use_dma_api(vdev))
305 max_segment_size = dma_max_mapping_size(vdev->dev.parent);
306
307 return max_segment_size;
308 }
309 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
310
vring_alloc_queue(struct virtio_device * vdev,size_t size,dma_addr_t * dma_handle,gfp_t flag,struct device * dma_dev)311 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
312 dma_addr_t *dma_handle, gfp_t flag,
313 struct device *dma_dev)
314 {
315 if (vring_use_dma_api(vdev)) {
316 return dma_alloc_coherent(dma_dev, size,
317 dma_handle, flag);
318 } else {
319 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
320
321 if (queue) {
322 phys_addr_t phys_addr = virt_to_phys(queue);
323 *dma_handle = (dma_addr_t)phys_addr;
324
325 /*
326 * Sanity check: make sure we dind't truncate
327 * the address. The only arches I can find that
328 * have 64-bit phys_addr_t but 32-bit dma_addr_t
329 * are certain non-highmem MIPS and x86
330 * configurations, but these configurations
331 * should never allocate physical pages above 32
332 * bits, so this is fine. Just in case, throw a
333 * warning and abort if we end up with an
334 * unrepresentable address.
335 */
336 if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
337 free_pages_exact(queue, PAGE_ALIGN(size));
338 return NULL;
339 }
340 }
341 return queue;
342 }
343 }
344
vring_free_queue(struct virtio_device * vdev,size_t size,void * queue,dma_addr_t dma_handle,struct device * dma_dev)345 static void vring_free_queue(struct virtio_device *vdev, size_t size,
346 void *queue, dma_addr_t dma_handle,
347 struct device *dma_dev)
348 {
349 if (vring_use_dma_api(vdev))
350 dma_free_coherent(dma_dev, size, queue, dma_handle);
351 else
352 free_pages_exact(queue, PAGE_ALIGN(size));
353 }
354
355 /*
356 * The DMA ops on various arches are rather gnarly right now, and
357 * making all of the arch DMA ops work on the vring device itself
358 * is a mess.
359 */
vring_dma_dev(const struct vring_virtqueue * vq)360 static struct device *vring_dma_dev(const struct vring_virtqueue *vq)
361 {
362 return vq->dma_dev;
363 }
364
365 /* Map one sg entry. */
vring_map_one_sg(const struct vring_virtqueue * vq,struct scatterlist * sg,enum dma_data_direction direction,dma_addr_t * addr)366 static int vring_map_one_sg(const struct vring_virtqueue *vq, struct scatterlist *sg,
367 enum dma_data_direction direction, dma_addr_t *addr)
368 {
369 if (vq->premapped) {
370 *addr = sg_dma_address(sg);
371 return 0;
372 }
373
374 if (!vq->use_dma_api) {
375 /*
376 * If DMA is not used, KMSAN doesn't know that the scatterlist
377 * is initialized by the hardware. Explicitly check/unpoison it
378 * depending on the direction.
379 */
380 kmsan_handle_dma(sg_page(sg), sg->offset, sg->length, direction);
381 *addr = (dma_addr_t)sg_phys(sg);
382 return 0;
383 }
384
385 /*
386 * We can't use dma_map_sg, because we don't use scatterlists in
387 * the way it expects (we don't guarantee that the scatterlist
388 * will exist for the lifetime of the mapping).
389 */
390 *addr = dma_map_page(vring_dma_dev(vq),
391 sg_page(sg), sg->offset, sg->length,
392 direction);
393
394 if (dma_mapping_error(vring_dma_dev(vq), *addr))
395 return -ENOMEM;
396
397 return 0;
398 }
399
vring_map_single(const struct vring_virtqueue * vq,void * cpu_addr,size_t size,enum dma_data_direction direction)400 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
401 void *cpu_addr, size_t size,
402 enum dma_data_direction direction)
403 {
404 if (!vq->use_dma_api)
405 return (dma_addr_t)virt_to_phys(cpu_addr);
406
407 return dma_map_single(vring_dma_dev(vq),
408 cpu_addr, size, direction);
409 }
410
vring_mapping_error(const struct vring_virtqueue * vq,dma_addr_t addr)411 static int vring_mapping_error(const struct vring_virtqueue *vq,
412 dma_addr_t addr)
413 {
414 if (!vq->use_dma_api)
415 return 0;
416
417 return dma_mapping_error(vring_dma_dev(vq), addr);
418 }
419
virtqueue_init(struct vring_virtqueue * vq,u32 num)420 static void virtqueue_init(struct vring_virtqueue *vq, u32 num)
421 {
422 vq->vq.num_free = num;
423
424 if (vq->packed_ring)
425 vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR);
426 else
427 vq->last_used_idx = 0;
428
429 vq->event_triggered = false;
430 vq->num_added = 0;
431
432 #ifdef DEBUG
433 vq->in_use = false;
434 vq->last_add_time_valid = false;
435 #endif
436 }
437
438
439 /*
440 * Split ring specific functions - *_split().
441 */
442
vring_unmap_one_split_indirect(const struct vring_virtqueue * vq,const struct vring_desc * desc)443 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
444 const struct vring_desc *desc)
445 {
446 u16 flags;
447
448 if (!vq->do_unmap)
449 return;
450
451 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
452
453 dma_unmap_page(vring_dma_dev(vq),
454 virtio64_to_cpu(vq->vq.vdev, desc->addr),
455 virtio32_to_cpu(vq->vq.vdev, desc->len),
456 (flags & VRING_DESC_F_WRITE) ?
457 DMA_FROM_DEVICE : DMA_TO_DEVICE);
458 }
459
vring_unmap_one_split(const struct vring_virtqueue * vq,unsigned int i)460 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
461 unsigned int i)
462 {
463 struct vring_desc_extra *extra = vq->split.desc_extra;
464 u16 flags;
465
466 flags = extra[i].flags;
467
468 if (flags & VRING_DESC_F_INDIRECT) {
469 if (!vq->use_dma_api)
470 goto out;
471
472 dma_unmap_single(vring_dma_dev(vq),
473 extra[i].addr,
474 extra[i].len,
475 (flags & VRING_DESC_F_WRITE) ?
476 DMA_FROM_DEVICE : DMA_TO_DEVICE);
477 } else {
478 if (!vq->do_unmap)
479 goto out;
480
481 dma_unmap_page(vring_dma_dev(vq),
482 extra[i].addr,
483 extra[i].len,
484 (flags & VRING_DESC_F_WRITE) ?
485 DMA_FROM_DEVICE : DMA_TO_DEVICE);
486 }
487
488 out:
489 return extra[i].next;
490 }
491
alloc_indirect_split(struct virtqueue * _vq,unsigned int total_sg,gfp_t gfp)492 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
493 unsigned int total_sg,
494 gfp_t gfp)
495 {
496 struct vring_desc *desc;
497 unsigned int i;
498
499 /*
500 * We require lowmem mappings for the descriptors because
501 * otherwise virt_to_phys will give us bogus addresses in the
502 * virtqueue.
503 */
504 gfp &= ~__GFP_HIGHMEM;
505
506 desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
507 if (!desc)
508 return NULL;
509
510 for (i = 0; i < total_sg; i++)
511 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
512 return desc;
513 }
514
virtqueue_add_desc_split(struct virtqueue * vq,struct vring_desc * desc,unsigned int i,dma_addr_t addr,unsigned int len,u16 flags,bool indirect)515 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
516 struct vring_desc *desc,
517 unsigned int i,
518 dma_addr_t addr,
519 unsigned int len,
520 u16 flags,
521 bool indirect)
522 {
523 struct vring_virtqueue *vring = to_vvq(vq);
524 struct vring_desc_extra *extra = vring->split.desc_extra;
525 u16 next;
526
527 desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
528 desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
529 desc[i].len = cpu_to_virtio32(vq->vdev, len);
530
531 if (!indirect) {
532 next = extra[i].next;
533 desc[i].next = cpu_to_virtio16(vq->vdev, next);
534
535 extra[i].addr = addr;
536 extra[i].len = len;
537 extra[i].flags = flags;
538 } else
539 next = virtio16_to_cpu(vq->vdev, desc[i].next);
540
541 return next;
542 }
543
virtqueue_add_split(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,gfp_t gfp)544 static inline int virtqueue_add_split(struct virtqueue *_vq,
545 struct scatterlist *sgs[],
546 unsigned int total_sg,
547 unsigned int out_sgs,
548 unsigned int in_sgs,
549 void *data,
550 void *ctx,
551 gfp_t gfp)
552 {
553 struct vring_virtqueue *vq = to_vvq(_vq);
554 struct scatterlist *sg;
555 struct vring_desc *desc;
556 unsigned int i, n, avail, descs_used, prev, err_idx;
557 int head;
558 bool indirect;
559
560 START_USE(vq);
561
562 BUG_ON(data == NULL);
563 BUG_ON(ctx && vq->indirect);
564
565 if (unlikely(vq->broken)) {
566 END_USE(vq);
567 return -EIO;
568 }
569
570 LAST_ADD_TIME_UPDATE(vq);
571
572 BUG_ON(total_sg == 0);
573
574 head = vq->free_head;
575
576 if (virtqueue_use_indirect(vq, total_sg))
577 desc = alloc_indirect_split(_vq, total_sg, gfp);
578 else {
579 desc = NULL;
580 WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
581 }
582
583 if (desc) {
584 /* Use a single buffer which doesn't continue */
585 indirect = true;
586 /* Set up rest to use this indirect table. */
587 i = 0;
588 descs_used = 1;
589 } else {
590 indirect = false;
591 desc = vq->split.vring.desc;
592 i = head;
593 descs_used = total_sg;
594 }
595
596 if (unlikely(vq->vq.num_free < descs_used)) {
597 pr_debug("Can't add buf len %i - avail = %i\n",
598 descs_used, vq->vq.num_free);
599 /* FIXME: for historical reasons, we force a notify here if
600 * there are outgoing parts to the buffer. Presumably the
601 * host should service the ring ASAP. */
602 if (out_sgs)
603 vq->notify(&vq->vq);
604 if (indirect)
605 kfree(desc);
606 END_USE(vq);
607 return -ENOSPC;
608 }
609
610 for (n = 0; n < out_sgs; n++) {
611 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
612 dma_addr_t addr;
613
614 if (vring_map_one_sg(vq, sg, DMA_TO_DEVICE, &addr))
615 goto unmap_release;
616
617 prev = i;
618 /* Note that we trust indirect descriptor
619 * table since it use stream DMA mapping.
620 */
621 i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
622 VRING_DESC_F_NEXT,
623 indirect);
624 }
625 }
626 for (; n < (out_sgs + in_sgs); n++) {
627 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
628 dma_addr_t addr;
629
630 if (vring_map_one_sg(vq, sg, DMA_FROM_DEVICE, &addr))
631 goto unmap_release;
632
633 prev = i;
634 /* Note that we trust indirect descriptor
635 * table since it use stream DMA mapping.
636 */
637 i = virtqueue_add_desc_split(_vq, desc, i, addr,
638 sg->length,
639 VRING_DESC_F_NEXT |
640 VRING_DESC_F_WRITE,
641 indirect);
642 }
643 }
644 /* Last one doesn't continue. */
645 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
646 if (!indirect && vq->do_unmap)
647 vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
648 ~VRING_DESC_F_NEXT;
649
650 if (indirect) {
651 /* Now that the indirect table is filled in, map it. */
652 dma_addr_t addr = vring_map_single(
653 vq, desc, total_sg * sizeof(struct vring_desc),
654 DMA_TO_DEVICE);
655 if (vring_mapping_error(vq, addr)) {
656 if (vq->premapped)
657 goto free_indirect;
658
659 goto unmap_release;
660 }
661
662 virtqueue_add_desc_split(_vq, vq->split.vring.desc,
663 head, addr,
664 total_sg * sizeof(struct vring_desc),
665 VRING_DESC_F_INDIRECT,
666 false);
667 }
668
669 /* We're using some buffers from the free list. */
670 vq->vq.num_free -= descs_used;
671
672 /* Update free pointer */
673 if (indirect)
674 vq->free_head = vq->split.desc_extra[head].next;
675 else
676 vq->free_head = i;
677
678 /* Store token and indirect buffer state. */
679 vq->split.desc_state[head].data = data;
680 if (indirect)
681 vq->split.desc_state[head].indir_desc = desc;
682 else
683 vq->split.desc_state[head].indir_desc = ctx;
684
685 /* Put entry in available array (but don't update avail->idx until they
686 * do sync). */
687 avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
688 vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
689
690 /* Descriptors and available array need to be set before we expose the
691 * new available array entries. */
692 virtio_wmb(vq->weak_barriers);
693 vq->split.avail_idx_shadow++;
694 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
695 vq->split.avail_idx_shadow);
696 vq->num_added++;
697
698 pr_debug("Added buffer head %i to %p\n", head, vq);
699 END_USE(vq);
700
701 /* This is very unlikely, but theoretically possible. Kick
702 * just in case. */
703 if (unlikely(vq->num_added == (1 << 16) - 1))
704 virtqueue_kick(_vq);
705
706 return 0;
707
708 unmap_release:
709 err_idx = i;
710
711 if (indirect)
712 i = 0;
713 else
714 i = head;
715
716 for (n = 0; n < total_sg; n++) {
717 if (i == err_idx)
718 break;
719 if (indirect) {
720 vring_unmap_one_split_indirect(vq, &desc[i]);
721 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
722 } else
723 i = vring_unmap_one_split(vq, i);
724 }
725
726 free_indirect:
727 if (indirect)
728 kfree(desc);
729
730 END_USE(vq);
731 return -ENOMEM;
732 }
733
virtqueue_kick_prepare_split(struct virtqueue * _vq)734 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
735 {
736 struct vring_virtqueue *vq = to_vvq(_vq);
737 u16 new, old;
738 bool needs_kick;
739
740 START_USE(vq);
741 /* We need to expose available array entries before checking avail
742 * event. */
743 virtio_mb(vq->weak_barriers);
744
745 old = vq->split.avail_idx_shadow - vq->num_added;
746 new = vq->split.avail_idx_shadow;
747 vq->num_added = 0;
748
749 LAST_ADD_TIME_CHECK(vq);
750 LAST_ADD_TIME_INVALID(vq);
751
752 if (vq->event) {
753 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
754 vring_avail_event(&vq->split.vring)),
755 new, old);
756 } else {
757 needs_kick = !(vq->split.vring.used->flags &
758 cpu_to_virtio16(_vq->vdev,
759 VRING_USED_F_NO_NOTIFY));
760 }
761 END_USE(vq);
762 return needs_kick;
763 }
764
detach_buf_split(struct vring_virtqueue * vq,unsigned int head,void ** ctx)765 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
766 void **ctx)
767 {
768 unsigned int i, j;
769 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
770
771 /* Clear data ptr. */
772 vq->split.desc_state[head].data = NULL;
773
774 /* Put back on free list: unmap first-level descriptors and find end */
775 i = head;
776
777 while (vq->split.vring.desc[i].flags & nextflag) {
778 vring_unmap_one_split(vq, i);
779 i = vq->split.desc_extra[i].next;
780 vq->vq.num_free++;
781 }
782
783 vring_unmap_one_split(vq, i);
784 vq->split.desc_extra[i].next = vq->free_head;
785 vq->free_head = head;
786
787 /* Plus final descriptor */
788 vq->vq.num_free++;
789
790 if (vq->indirect) {
791 struct vring_desc *indir_desc =
792 vq->split.desc_state[head].indir_desc;
793 u32 len;
794
795 /* Free the indirect table, if any, now that it's unmapped. */
796 if (!indir_desc)
797 return;
798
799 len = vq->split.desc_extra[head].len;
800
801 BUG_ON(!(vq->split.desc_extra[head].flags &
802 VRING_DESC_F_INDIRECT));
803 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
804
805 if (vq->do_unmap) {
806 for (j = 0; j < len / sizeof(struct vring_desc); j++)
807 vring_unmap_one_split_indirect(vq, &indir_desc[j]);
808 }
809
810 kfree(indir_desc);
811 vq->split.desc_state[head].indir_desc = NULL;
812 } else if (ctx) {
813 *ctx = vq->split.desc_state[head].indir_desc;
814 }
815 }
816
more_used_split(const struct vring_virtqueue * vq)817 static bool more_used_split(const struct vring_virtqueue *vq)
818 {
819 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
820 vq->split.vring.used->idx);
821 }
822
virtqueue_get_buf_ctx_split(struct virtqueue * _vq,unsigned int * len,void ** ctx)823 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
824 unsigned int *len,
825 void **ctx)
826 {
827 struct vring_virtqueue *vq = to_vvq(_vq);
828 void *ret;
829 unsigned int i;
830 u16 last_used;
831
832 START_USE(vq);
833
834 if (unlikely(vq->broken)) {
835 END_USE(vq);
836 return NULL;
837 }
838
839 if (!more_used_split(vq)) {
840 pr_debug("No more buffers in queue\n");
841 END_USE(vq);
842 return NULL;
843 }
844
845 /* Only get used array entries after they have been exposed by host. */
846 virtio_rmb(vq->weak_barriers);
847
848 last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
849 i = virtio32_to_cpu(_vq->vdev,
850 vq->split.vring.used->ring[last_used].id);
851 *len = virtio32_to_cpu(_vq->vdev,
852 vq->split.vring.used->ring[last_used].len);
853
854 if (unlikely(i >= vq->split.vring.num)) {
855 BAD_RING(vq, "id %u out of range\n", i);
856 return NULL;
857 }
858 if (unlikely(!vq->split.desc_state[i].data)) {
859 BAD_RING(vq, "id %u is not a head!\n", i);
860 return NULL;
861 }
862
863 /* detach_buf_split clears data, so grab it now. */
864 ret = vq->split.desc_state[i].data;
865 detach_buf_split(vq, i, ctx);
866 vq->last_used_idx++;
867 /* If we expect an interrupt for the next entry, tell host
868 * by writing event index and flush out the write before
869 * the read in the next get_buf call. */
870 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
871 virtio_store_mb(vq->weak_barriers,
872 &vring_used_event(&vq->split.vring),
873 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
874
875 LAST_ADD_TIME_INVALID(vq);
876
877 END_USE(vq);
878 return ret;
879 }
880
virtqueue_disable_cb_split(struct virtqueue * _vq)881 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
882 {
883 struct vring_virtqueue *vq = to_vvq(_vq);
884
885 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
886 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
887
888 /*
889 * If device triggered an event already it won't trigger one again:
890 * no need to disable.
891 */
892 if (vq->event_triggered)
893 return;
894
895 if (vq->event)
896 /* TODO: this is a hack. Figure out a cleaner value to write. */
897 vring_used_event(&vq->split.vring) = 0x0;
898 else
899 vq->split.vring.avail->flags =
900 cpu_to_virtio16(_vq->vdev,
901 vq->split.avail_flags_shadow);
902 }
903 }
904
virtqueue_enable_cb_prepare_split(struct virtqueue * _vq)905 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
906 {
907 struct vring_virtqueue *vq = to_vvq(_vq);
908 u16 last_used_idx;
909
910 START_USE(vq);
911
912 /* We optimistically turn back on interrupts, then check if there was
913 * more to do. */
914 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
915 * either clear the flags bit or point the event index at the next
916 * entry. Always do both to keep code simple. */
917 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
918 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
919 if (!vq->event)
920 vq->split.vring.avail->flags =
921 cpu_to_virtio16(_vq->vdev,
922 vq->split.avail_flags_shadow);
923 }
924 vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
925 last_used_idx = vq->last_used_idx);
926 END_USE(vq);
927 return last_used_idx;
928 }
929
virtqueue_poll_split(struct virtqueue * _vq,unsigned int last_used_idx)930 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx)
931 {
932 struct vring_virtqueue *vq = to_vvq(_vq);
933
934 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
935 vq->split.vring.used->idx);
936 }
937
virtqueue_enable_cb_delayed_split(struct virtqueue * _vq)938 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
939 {
940 struct vring_virtqueue *vq = to_vvq(_vq);
941 u16 bufs;
942
943 START_USE(vq);
944
945 /* We optimistically turn back on interrupts, then check if there was
946 * more to do. */
947 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
948 * either clear the flags bit or point the event index at the next
949 * entry. Always update the event index to keep code simple. */
950 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
951 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
952 if (!vq->event)
953 vq->split.vring.avail->flags =
954 cpu_to_virtio16(_vq->vdev,
955 vq->split.avail_flags_shadow);
956 }
957 /* TODO: tune this threshold */
958 bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
959
960 virtio_store_mb(vq->weak_barriers,
961 &vring_used_event(&vq->split.vring),
962 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
963
964 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
965 - vq->last_used_idx) > bufs)) {
966 END_USE(vq);
967 return false;
968 }
969
970 END_USE(vq);
971 return true;
972 }
973
virtqueue_detach_unused_buf_split(struct virtqueue * _vq)974 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
975 {
976 struct vring_virtqueue *vq = to_vvq(_vq);
977 unsigned int i;
978 void *buf;
979
980 START_USE(vq);
981
982 for (i = 0; i < vq->split.vring.num; i++) {
983 if (!vq->split.desc_state[i].data)
984 continue;
985 /* detach_buf_split clears data, so grab it now. */
986 buf = vq->split.desc_state[i].data;
987 detach_buf_split(vq, i, NULL);
988 vq->split.avail_idx_shadow--;
989 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
990 vq->split.avail_idx_shadow);
991 END_USE(vq);
992 return buf;
993 }
994 /* That should have freed everything. */
995 BUG_ON(vq->vq.num_free != vq->split.vring.num);
996
997 END_USE(vq);
998 return NULL;
999 }
1000
virtqueue_vring_init_split(struct vring_virtqueue_split * vring_split,struct vring_virtqueue * vq)1001 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split,
1002 struct vring_virtqueue *vq)
1003 {
1004 struct virtio_device *vdev;
1005
1006 vdev = vq->vq.vdev;
1007
1008 vring_split->avail_flags_shadow = 0;
1009 vring_split->avail_idx_shadow = 0;
1010
1011 /* No callback? Tell other side not to bother us. */
1012 if (!vq->vq.callback) {
1013 vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
1014 if (!vq->event)
1015 vring_split->vring.avail->flags = cpu_to_virtio16(vdev,
1016 vring_split->avail_flags_shadow);
1017 }
1018 }
1019
virtqueue_reinit_split(struct vring_virtqueue * vq)1020 static void virtqueue_reinit_split(struct vring_virtqueue *vq)
1021 {
1022 int num;
1023
1024 num = vq->split.vring.num;
1025
1026 vq->split.vring.avail->flags = 0;
1027 vq->split.vring.avail->idx = 0;
1028
1029 /* reset avail event */
1030 vq->split.vring.avail->ring[num] = 0;
1031
1032 vq->split.vring.used->flags = 0;
1033 vq->split.vring.used->idx = 0;
1034
1035 /* reset used event */
1036 *(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0;
1037
1038 virtqueue_init(vq, num);
1039
1040 virtqueue_vring_init_split(&vq->split, vq);
1041 }
1042
virtqueue_vring_attach_split(struct vring_virtqueue * vq,struct vring_virtqueue_split * vring_split)1043 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq,
1044 struct vring_virtqueue_split *vring_split)
1045 {
1046 vq->split = *vring_split;
1047
1048 /* Put everything in free lists. */
1049 vq->free_head = 0;
1050 }
1051
vring_alloc_state_extra_split(struct vring_virtqueue_split * vring_split)1052 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split)
1053 {
1054 struct vring_desc_state_split *state;
1055 struct vring_desc_extra *extra;
1056 u32 num = vring_split->vring.num;
1057
1058 state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL);
1059 if (!state)
1060 goto err_state;
1061
1062 extra = vring_alloc_desc_extra(num);
1063 if (!extra)
1064 goto err_extra;
1065
1066 memset(state, 0, num * sizeof(struct vring_desc_state_split));
1067
1068 vring_split->desc_state = state;
1069 vring_split->desc_extra = extra;
1070 return 0;
1071
1072 err_extra:
1073 kfree(state);
1074 err_state:
1075 return -ENOMEM;
1076 }
1077
vring_free_split(struct vring_virtqueue_split * vring_split,struct virtio_device * vdev,struct device * dma_dev)1078 static void vring_free_split(struct vring_virtqueue_split *vring_split,
1079 struct virtio_device *vdev, struct device *dma_dev)
1080 {
1081 vring_free_queue(vdev, vring_split->queue_size_in_bytes,
1082 vring_split->vring.desc,
1083 vring_split->queue_dma_addr,
1084 dma_dev);
1085
1086 kfree(vring_split->desc_state);
1087 kfree(vring_split->desc_extra);
1088 }
1089
vring_alloc_queue_split(struct vring_virtqueue_split * vring_split,struct virtio_device * vdev,u32 num,unsigned int vring_align,bool may_reduce_num,struct device * dma_dev)1090 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split,
1091 struct virtio_device *vdev,
1092 u32 num,
1093 unsigned int vring_align,
1094 bool may_reduce_num,
1095 struct device *dma_dev)
1096 {
1097 void *queue = NULL;
1098 dma_addr_t dma_addr;
1099
1100 /* We assume num is a power of 2. */
1101 if (!is_power_of_2(num)) {
1102 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1103 return -EINVAL;
1104 }
1105
1106 /* TODO: allocate each queue chunk individually */
1107 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1108 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1109 &dma_addr,
1110 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1111 dma_dev);
1112 if (queue)
1113 break;
1114 if (!may_reduce_num)
1115 return -ENOMEM;
1116 }
1117
1118 if (!num)
1119 return -ENOMEM;
1120
1121 if (!queue) {
1122 /* Try to get a single page. You are my only hope! */
1123 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1124 &dma_addr, GFP_KERNEL | __GFP_ZERO,
1125 dma_dev);
1126 }
1127 if (!queue)
1128 return -ENOMEM;
1129
1130 vring_init(&vring_split->vring, num, queue, vring_align);
1131
1132 vring_split->queue_dma_addr = dma_addr;
1133 vring_split->queue_size_in_bytes = vring_size(num, vring_align);
1134
1135 vring_split->vring_align = vring_align;
1136 vring_split->may_reduce_num = may_reduce_num;
1137
1138 return 0;
1139 }
1140
vring_create_virtqueue_split(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name,struct device * dma_dev)1141 static struct virtqueue *vring_create_virtqueue_split(
1142 unsigned int index,
1143 unsigned int num,
1144 unsigned int vring_align,
1145 struct virtio_device *vdev,
1146 bool weak_barriers,
1147 bool may_reduce_num,
1148 bool context,
1149 bool (*notify)(struct virtqueue *),
1150 void (*callback)(struct virtqueue *),
1151 const char *name,
1152 struct device *dma_dev)
1153 {
1154 struct vring_virtqueue_split vring_split = {};
1155 struct virtqueue *vq;
1156 int err;
1157
1158 err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align,
1159 may_reduce_num, dma_dev);
1160 if (err)
1161 return NULL;
1162
1163 vq = __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
1164 context, notify, callback, name, dma_dev);
1165 if (!vq) {
1166 vring_free_split(&vring_split, vdev, dma_dev);
1167 return NULL;
1168 }
1169
1170 to_vvq(vq)->we_own_ring = true;
1171
1172 return vq;
1173 }
1174
virtqueue_resize_split(struct virtqueue * _vq,u32 num)1175 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num)
1176 {
1177 struct vring_virtqueue_split vring_split = {};
1178 struct vring_virtqueue *vq = to_vvq(_vq);
1179 struct virtio_device *vdev = _vq->vdev;
1180 int err;
1181
1182 err = vring_alloc_queue_split(&vring_split, vdev, num,
1183 vq->split.vring_align,
1184 vq->split.may_reduce_num,
1185 vring_dma_dev(vq));
1186 if (err)
1187 goto err;
1188
1189 err = vring_alloc_state_extra_split(&vring_split);
1190 if (err)
1191 goto err_state_extra;
1192
1193 vring_free(&vq->vq);
1194
1195 virtqueue_vring_init_split(&vring_split, vq);
1196
1197 virtqueue_init(vq, vring_split.vring.num);
1198 virtqueue_vring_attach_split(vq, &vring_split);
1199
1200 return 0;
1201
1202 err_state_extra:
1203 vring_free_split(&vring_split, vdev, vring_dma_dev(vq));
1204 err:
1205 virtqueue_reinit_split(vq);
1206 return -ENOMEM;
1207 }
1208
1209
1210 /*
1211 * Packed ring specific functions - *_packed().
1212 */
packed_used_wrap_counter(u16 last_used_idx)1213 static bool packed_used_wrap_counter(u16 last_used_idx)
1214 {
1215 return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1216 }
1217
packed_last_used(u16 last_used_idx)1218 static u16 packed_last_used(u16 last_used_idx)
1219 {
1220 return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1221 }
1222
vring_unmap_extra_packed(const struct vring_virtqueue * vq,const struct vring_desc_extra * extra)1223 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq,
1224 const struct vring_desc_extra *extra)
1225 {
1226 u16 flags;
1227
1228 flags = extra->flags;
1229
1230 if (flags & VRING_DESC_F_INDIRECT) {
1231 if (!vq->use_dma_api)
1232 return;
1233
1234 dma_unmap_single(vring_dma_dev(vq),
1235 extra->addr, extra->len,
1236 (flags & VRING_DESC_F_WRITE) ?
1237 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1238 } else {
1239 if (!vq->do_unmap)
1240 return;
1241
1242 dma_unmap_page(vring_dma_dev(vq),
1243 extra->addr, extra->len,
1244 (flags & VRING_DESC_F_WRITE) ?
1245 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1246 }
1247 }
1248
vring_unmap_desc_packed(const struct vring_virtqueue * vq,const struct vring_packed_desc * desc)1249 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1250 const struct vring_packed_desc *desc)
1251 {
1252 u16 flags;
1253
1254 if (!vq->do_unmap)
1255 return;
1256
1257 flags = le16_to_cpu(desc->flags);
1258
1259 dma_unmap_page(vring_dma_dev(vq),
1260 le64_to_cpu(desc->addr),
1261 le32_to_cpu(desc->len),
1262 (flags & VRING_DESC_F_WRITE) ?
1263 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1264 }
1265
alloc_indirect_packed(unsigned int total_sg,gfp_t gfp)1266 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1267 gfp_t gfp)
1268 {
1269 struct vring_packed_desc *desc;
1270
1271 /*
1272 * We require lowmem mappings for the descriptors because
1273 * otherwise virt_to_phys will give us bogus addresses in the
1274 * virtqueue.
1275 */
1276 gfp &= ~__GFP_HIGHMEM;
1277
1278 desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1279
1280 return desc;
1281 }
1282
virtqueue_add_indirect_packed(struct vring_virtqueue * vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,gfp_t gfp)1283 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1284 struct scatterlist *sgs[],
1285 unsigned int total_sg,
1286 unsigned int out_sgs,
1287 unsigned int in_sgs,
1288 void *data,
1289 gfp_t gfp)
1290 {
1291 struct vring_packed_desc *desc;
1292 struct scatterlist *sg;
1293 unsigned int i, n, err_idx;
1294 u16 head, id;
1295 dma_addr_t addr;
1296
1297 head = vq->packed.next_avail_idx;
1298 desc = alloc_indirect_packed(total_sg, gfp);
1299 if (!desc)
1300 return -ENOMEM;
1301
1302 if (unlikely(vq->vq.num_free < 1)) {
1303 pr_debug("Can't add buf len 1 - avail = 0\n");
1304 kfree(desc);
1305 END_USE(vq);
1306 return -ENOSPC;
1307 }
1308
1309 i = 0;
1310 id = vq->free_head;
1311 BUG_ON(id == vq->packed.vring.num);
1312
1313 for (n = 0; n < out_sgs + in_sgs; n++) {
1314 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1315 if (vring_map_one_sg(vq, sg, n < out_sgs ?
1316 DMA_TO_DEVICE : DMA_FROM_DEVICE, &addr))
1317 goto unmap_release;
1318
1319 desc[i].flags = cpu_to_le16(n < out_sgs ?
1320 0 : VRING_DESC_F_WRITE);
1321 desc[i].addr = cpu_to_le64(addr);
1322 desc[i].len = cpu_to_le32(sg->length);
1323 i++;
1324 }
1325 }
1326
1327 /* Now that the indirect table is filled in, map it. */
1328 addr = vring_map_single(vq, desc,
1329 total_sg * sizeof(struct vring_packed_desc),
1330 DMA_TO_DEVICE);
1331 if (vring_mapping_error(vq, addr)) {
1332 if (vq->premapped)
1333 goto free_desc;
1334
1335 goto unmap_release;
1336 }
1337
1338 vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1339 vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1340 sizeof(struct vring_packed_desc));
1341 vq->packed.vring.desc[head].id = cpu_to_le16(id);
1342
1343 if (vq->use_dma_api) {
1344 vq->packed.desc_extra[id].addr = addr;
1345 vq->packed.desc_extra[id].len = total_sg *
1346 sizeof(struct vring_packed_desc);
1347 vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1348 vq->packed.avail_used_flags;
1349 }
1350
1351 /*
1352 * A driver MUST NOT make the first descriptor in the list
1353 * available before all subsequent descriptors comprising
1354 * the list are made available.
1355 */
1356 virtio_wmb(vq->weak_barriers);
1357 vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1358 vq->packed.avail_used_flags);
1359
1360 /* We're using some buffers from the free list. */
1361 vq->vq.num_free -= 1;
1362
1363 /* Update free pointer */
1364 n = head + 1;
1365 if (n >= vq->packed.vring.num) {
1366 n = 0;
1367 vq->packed.avail_wrap_counter ^= 1;
1368 vq->packed.avail_used_flags ^=
1369 1 << VRING_PACKED_DESC_F_AVAIL |
1370 1 << VRING_PACKED_DESC_F_USED;
1371 }
1372 vq->packed.next_avail_idx = n;
1373 vq->free_head = vq->packed.desc_extra[id].next;
1374
1375 /* Store token and indirect buffer state. */
1376 vq->packed.desc_state[id].num = 1;
1377 vq->packed.desc_state[id].data = data;
1378 vq->packed.desc_state[id].indir_desc = desc;
1379 vq->packed.desc_state[id].last = id;
1380
1381 vq->num_added += 1;
1382
1383 pr_debug("Added buffer head %i to %p\n", head, vq);
1384 END_USE(vq);
1385
1386 return 0;
1387
1388 unmap_release:
1389 err_idx = i;
1390
1391 for (i = 0; i < err_idx; i++)
1392 vring_unmap_desc_packed(vq, &desc[i]);
1393
1394 free_desc:
1395 kfree(desc);
1396
1397 END_USE(vq);
1398 return -ENOMEM;
1399 }
1400
virtqueue_add_packed(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,gfp_t gfp)1401 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1402 struct scatterlist *sgs[],
1403 unsigned int total_sg,
1404 unsigned int out_sgs,
1405 unsigned int in_sgs,
1406 void *data,
1407 void *ctx,
1408 gfp_t gfp)
1409 {
1410 struct vring_virtqueue *vq = to_vvq(_vq);
1411 struct vring_packed_desc *desc;
1412 struct scatterlist *sg;
1413 unsigned int i, n, c, descs_used, err_idx;
1414 __le16 head_flags, flags;
1415 u16 head, id, prev, curr, avail_used_flags;
1416 int err;
1417
1418 START_USE(vq);
1419
1420 BUG_ON(data == NULL);
1421 BUG_ON(ctx && vq->indirect);
1422
1423 if (unlikely(vq->broken)) {
1424 END_USE(vq);
1425 return -EIO;
1426 }
1427
1428 LAST_ADD_TIME_UPDATE(vq);
1429
1430 BUG_ON(total_sg == 0);
1431
1432 if (virtqueue_use_indirect(vq, total_sg)) {
1433 err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1434 in_sgs, data, gfp);
1435 if (err != -ENOMEM) {
1436 END_USE(vq);
1437 return err;
1438 }
1439
1440 /* fall back on direct */
1441 }
1442
1443 head = vq->packed.next_avail_idx;
1444 avail_used_flags = vq->packed.avail_used_flags;
1445
1446 WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1447
1448 desc = vq->packed.vring.desc;
1449 i = head;
1450 descs_used = total_sg;
1451
1452 if (unlikely(vq->vq.num_free < descs_used)) {
1453 pr_debug("Can't add buf len %i - avail = %i\n",
1454 descs_used, vq->vq.num_free);
1455 END_USE(vq);
1456 return -ENOSPC;
1457 }
1458
1459 id = vq->free_head;
1460 BUG_ON(id == vq->packed.vring.num);
1461
1462 curr = id;
1463 c = 0;
1464 for (n = 0; n < out_sgs + in_sgs; n++) {
1465 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1466 dma_addr_t addr;
1467
1468 if (vring_map_one_sg(vq, sg, n < out_sgs ?
1469 DMA_TO_DEVICE : DMA_FROM_DEVICE, &addr))
1470 goto unmap_release;
1471
1472 flags = cpu_to_le16(vq->packed.avail_used_flags |
1473 (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1474 (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1475 if (i == head)
1476 head_flags = flags;
1477 else
1478 desc[i].flags = flags;
1479
1480 desc[i].addr = cpu_to_le64(addr);
1481 desc[i].len = cpu_to_le32(sg->length);
1482 desc[i].id = cpu_to_le16(id);
1483
1484 if (unlikely(vq->use_dma_api)) {
1485 vq->packed.desc_extra[curr].addr = addr;
1486 vq->packed.desc_extra[curr].len = sg->length;
1487 vq->packed.desc_extra[curr].flags =
1488 le16_to_cpu(flags);
1489 }
1490 prev = curr;
1491 curr = vq->packed.desc_extra[curr].next;
1492
1493 if ((unlikely(++i >= vq->packed.vring.num))) {
1494 i = 0;
1495 vq->packed.avail_used_flags ^=
1496 1 << VRING_PACKED_DESC_F_AVAIL |
1497 1 << VRING_PACKED_DESC_F_USED;
1498 }
1499 }
1500 }
1501
1502 if (i <= head)
1503 vq->packed.avail_wrap_counter ^= 1;
1504
1505 /* We're using some buffers from the free list. */
1506 vq->vq.num_free -= descs_used;
1507
1508 /* Update free pointer */
1509 vq->packed.next_avail_idx = i;
1510 vq->free_head = curr;
1511
1512 /* Store token. */
1513 vq->packed.desc_state[id].num = descs_used;
1514 vq->packed.desc_state[id].data = data;
1515 vq->packed.desc_state[id].indir_desc = ctx;
1516 vq->packed.desc_state[id].last = prev;
1517
1518 /*
1519 * A driver MUST NOT make the first descriptor in the list
1520 * available before all subsequent descriptors comprising
1521 * the list are made available.
1522 */
1523 virtio_wmb(vq->weak_barriers);
1524 vq->packed.vring.desc[head].flags = head_flags;
1525 vq->num_added += descs_used;
1526
1527 pr_debug("Added buffer head %i to %p\n", head, vq);
1528 END_USE(vq);
1529
1530 return 0;
1531
1532 unmap_release:
1533 err_idx = i;
1534 i = head;
1535 curr = vq->free_head;
1536
1537 vq->packed.avail_used_flags = avail_used_flags;
1538
1539 for (n = 0; n < total_sg; n++) {
1540 if (i == err_idx)
1541 break;
1542 vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]);
1543 curr = vq->packed.desc_extra[curr].next;
1544 i++;
1545 if (i >= vq->packed.vring.num)
1546 i = 0;
1547 }
1548
1549 END_USE(vq);
1550 return -EIO;
1551 }
1552
virtqueue_kick_prepare_packed(struct virtqueue * _vq)1553 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1554 {
1555 struct vring_virtqueue *vq = to_vvq(_vq);
1556 u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1557 bool needs_kick;
1558 union {
1559 struct {
1560 __le16 off_wrap;
1561 __le16 flags;
1562 };
1563 u32 u32;
1564 } snapshot;
1565
1566 START_USE(vq);
1567
1568 /*
1569 * We need to expose the new flags value before checking notification
1570 * suppressions.
1571 */
1572 virtio_mb(vq->weak_barriers);
1573
1574 old = vq->packed.next_avail_idx - vq->num_added;
1575 new = vq->packed.next_avail_idx;
1576 vq->num_added = 0;
1577
1578 snapshot.u32 = *(u32 *)vq->packed.vring.device;
1579 flags = le16_to_cpu(snapshot.flags);
1580
1581 LAST_ADD_TIME_CHECK(vq);
1582 LAST_ADD_TIME_INVALID(vq);
1583
1584 if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1585 needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1586 goto out;
1587 }
1588
1589 off_wrap = le16_to_cpu(snapshot.off_wrap);
1590
1591 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1592 event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1593 if (wrap_counter != vq->packed.avail_wrap_counter)
1594 event_idx -= vq->packed.vring.num;
1595
1596 needs_kick = vring_need_event(event_idx, new, old);
1597 out:
1598 END_USE(vq);
1599 return needs_kick;
1600 }
1601
detach_buf_packed(struct vring_virtqueue * vq,unsigned int id,void ** ctx)1602 static void detach_buf_packed(struct vring_virtqueue *vq,
1603 unsigned int id, void **ctx)
1604 {
1605 struct vring_desc_state_packed *state = NULL;
1606 struct vring_packed_desc *desc;
1607 unsigned int i, curr;
1608
1609 state = &vq->packed.desc_state[id];
1610
1611 /* Clear data ptr. */
1612 state->data = NULL;
1613
1614 vq->packed.desc_extra[state->last].next = vq->free_head;
1615 vq->free_head = id;
1616 vq->vq.num_free += state->num;
1617
1618 if (unlikely(vq->use_dma_api)) {
1619 curr = id;
1620 for (i = 0; i < state->num; i++) {
1621 vring_unmap_extra_packed(vq,
1622 &vq->packed.desc_extra[curr]);
1623 curr = vq->packed.desc_extra[curr].next;
1624 }
1625 }
1626
1627 if (vq->indirect) {
1628 u32 len;
1629
1630 /* Free the indirect table, if any, now that it's unmapped. */
1631 desc = state->indir_desc;
1632 if (!desc)
1633 return;
1634
1635 if (vq->do_unmap) {
1636 len = vq->packed.desc_extra[id].len;
1637 for (i = 0; i < len / sizeof(struct vring_packed_desc);
1638 i++)
1639 vring_unmap_desc_packed(vq, &desc[i]);
1640 }
1641 kfree(desc);
1642 state->indir_desc = NULL;
1643 } else if (ctx) {
1644 *ctx = state->indir_desc;
1645 }
1646 }
1647
is_used_desc_packed(const struct vring_virtqueue * vq,u16 idx,bool used_wrap_counter)1648 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1649 u16 idx, bool used_wrap_counter)
1650 {
1651 bool avail, used;
1652 u16 flags;
1653
1654 flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1655 avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1656 used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1657
1658 return avail == used && used == used_wrap_counter;
1659 }
1660
more_used_packed(const struct vring_virtqueue * vq)1661 static bool more_used_packed(const struct vring_virtqueue *vq)
1662 {
1663 u16 last_used;
1664 u16 last_used_idx;
1665 bool used_wrap_counter;
1666
1667 last_used_idx = READ_ONCE(vq->last_used_idx);
1668 last_used = packed_last_used(last_used_idx);
1669 used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1670 return is_used_desc_packed(vq, last_used, used_wrap_counter);
1671 }
1672
virtqueue_get_buf_ctx_packed(struct virtqueue * _vq,unsigned int * len,void ** ctx)1673 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1674 unsigned int *len,
1675 void **ctx)
1676 {
1677 struct vring_virtqueue *vq = to_vvq(_vq);
1678 u16 last_used, id, last_used_idx;
1679 bool used_wrap_counter;
1680 void *ret;
1681
1682 START_USE(vq);
1683
1684 if (unlikely(vq->broken)) {
1685 END_USE(vq);
1686 return NULL;
1687 }
1688
1689 if (!more_used_packed(vq)) {
1690 pr_debug("No more buffers in queue\n");
1691 END_USE(vq);
1692 return NULL;
1693 }
1694
1695 /* Only get used elements after they have been exposed by host. */
1696 virtio_rmb(vq->weak_barriers);
1697
1698 last_used_idx = READ_ONCE(vq->last_used_idx);
1699 used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1700 last_used = packed_last_used(last_used_idx);
1701 id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1702 *len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1703
1704 if (unlikely(id >= vq->packed.vring.num)) {
1705 BAD_RING(vq, "id %u out of range\n", id);
1706 return NULL;
1707 }
1708 if (unlikely(!vq->packed.desc_state[id].data)) {
1709 BAD_RING(vq, "id %u is not a head!\n", id);
1710 return NULL;
1711 }
1712
1713 /* detach_buf_packed clears data, so grab it now. */
1714 ret = vq->packed.desc_state[id].data;
1715 detach_buf_packed(vq, id, ctx);
1716
1717 last_used += vq->packed.desc_state[id].num;
1718 if (unlikely(last_used >= vq->packed.vring.num)) {
1719 last_used -= vq->packed.vring.num;
1720 used_wrap_counter ^= 1;
1721 }
1722
1723 last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1724 WRITE_ONCE(vq->last_used_idx, last_used);
1725
1726 /*
1727 * If we expect an interrupt for the next entry, tell host
1728 * by writing event index and flush out the write before
1729 * the read in the next get_buf call.
1730 */
1731 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1732 virtio_store_mb(vq->weak_barriers,
1733 &vq->packed.vring.driver->off_wrap,
1734 cpu_to_le16(vq->last_used_idx));
1735
1736 LAST_ADD_TIME_INVALID(vq);
1737
1738 END_USE(vq);
1739 return ret;
1740 }
1741
virtqueue_disable_cb_packed(struct virtqueue * _vq)1742 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1743 {
1744 struct vring_virtqueue *vq = to_vvq(_vq);
1745
1746 if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1747 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1748
1749 /*
1750 * If device triggered an event already it won't trigger one again:
1751 * no need to disable.
1752 */
1753 if (vq->event_triggered)
1754 return;
1755
1756 vq->packed.vring.driver->flags =
1757 cpu_to_le16(vq->packed.event_flags_shadow);
1758 }
1759 }
1760
virtqueue_enable_cb_prepare_packed(struct virtqueue * _vq)1761 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1762 {
1763 struct vring_virtqueue *vq = to_vvq(_vq);
1764
1765 START_USE(vq);
1766
1767 /*
1768 * We optimistically turn back on interrupts, then check if there was
1769 * more to do.
1770 */
1771
1772 if (vq->event) {
1773 vq->packed.vring.driver->off_wrap =
1774 cpu_to_le16(vq->last_used_idx);
1775 /*
1776 * We need to update event offset and event wrap
1777 * counter first before updating event flags.
1778 */
1779 virtio_wmb(vq->weak_barriers);
1780 }
1781
1782 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1783 vq->packed.event_flags_shadow = vq->event ?
1784 VRING_PACKED_EVENT_FLAG_DESC :
1785 VRING_PACKED_EVENT_FLAG_ENABLE;
1786 vq->packed.vring.driver->flags =
1787 cpu_to_le16(vq->packed.event_flags_shadow);
1788 }
1789
1790 END_USE(vq);
1791 return vq->last_used_idx;
1792 }
1793
virtqueue_poll_packed(struct virtqueue * _vq,u16 off_wrap)1794 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1795 {
1796 struct vring_virtqueue *vq = to_vvq(_vq);
1797 bool wrap_counter;
1798 u16 used_idx;
1799
1800 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1801 used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1802
1803 return is_used_desc_packed(vq, used_idx, wrap_counter);
1804 }
1805
virtqueue_enable_cb_delayed_packed(struct virtqueue * _vq)1806 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1807 {
1808 struct vring_virtqueue *vq = to_vvq(_vq);
1809 u16 used_idx, wrap_counter, last_used_idx;
1810 u16 bufs;
1811
1812 START_USE(vq);
1813
1814 /*
1815 * We optimistically turn back on interrupts, then check if there was
1816 * more to do.
1817 */
1818
1819 if (vq->event) {
1820 /* TODO: tune this threshold */
1821 bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1822 last_used_idx = READ_ONCE(vq->last_used_idx);
1823 wrap_counter = packed_used_wrap_counter(last_used_idx);
1824
1825 used_idx = packed_last_used(last_used_idx) + bufs;
1826 if (used_idx >= vq->packed.vring.num) {
1827 used_idx -= vq->packed.vring.num;
1828 wrap_counter ^= 1;
1829 }
1830
1831 vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1832 (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1833
1834 /*
1835 * We need to update event offset and event wrap
1836 * counter first before updating event flags.
1837 */
1838 virtio_wmb(vq->weak_barriers);
1839 }
1840
1841 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1842 vq->packed.event_flags_shadow = vq->event ?
1843 VRING_PACKED_EVENT_FLAG_DESC :
1844 VRING_PACKED_EVENT_FLAG_ENABLE;
1845 vq->packed.vring.driver->flags =
1846 cpu_to_le16(vq->packed.event_flags_shadow);
1847 }
1848
1849 /*
1850 * We need to update event suppression structure first
1851 * before re-checking for more used buffers.
1852 */
1853 virtio_mb(vq->weak_barriers);
1854
1855 last_used_idx = READ_ONCE(vq->last_used_idx);
1856 wrap_counter = packed_used_wrap_counter(last_used_idx);
1857 used_idx = packed_last_used(last_used_idx);
1858 if (is_used_desc_packed(vq, used_idx, wrap_counter)) {
1859 END_USE(vq);
1860 return false;
1861 }
1862
1863 END_USE(vq);
1864 return true;
1865 }
1866
virtqueue_detach_unused_buf_packed(struct virtqueue * _vq)1867 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1868 {
1869 struct vring_virtqueue *vq = to_vvq(_vq);
1870 unsigned int i;
1871 void *buf;
1872
1873 START_USE(vq);
1874
1875 for (i = 0; i < vq->packed.vring.num; i++) {
1876 if (!vq->packed.desc_state[i].data)
1877 continue;
1878 /* detach_buf clears data, so grab it now. */
1879 buf = vq->packed.desc_state[i].data;
1880 detach_buf_packed(vq, i, NULL);
1881 END_USE(vq);
1882 return buf;
1883 }
1884 /* That should have freed everything. */
1885 BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1886
1887 END_USE(vq);
1888 return NULL;
1889 }
1890
vring_alloc_desc_extra(unsigned int num)1891 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num)
1892 {
1893 struct vring_desc_extra *desc_extra;
1894 unsigned int i;
1895
1896 desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1897 GFP_KERNEL);
1898 if (!desc_extra)
1899 return NULL;
1900
1901 memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1902
1903 for (i = 0; i < num - 1; i++)
1904 desc_extra[i].next = i + 1;
1905
1906 return desc_extra;
1907 }
1908
vring_free_packed(struct vring_virtqueue_packed * vring_packed,struct virtio_device * vdev,struct device * dma_dev)1909 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed,
1910 struct virtio_device *vdev,
1911 struct device *dma_dev)
1912 {
1913 if (vring_packed->vring.desc)
1914 vring_free_queue(vdev, vring_packed->ring_size_in_bytes,
1915 vring_packed->vring.desc,
1916 vring_packed->ring_dma_addr,
1917 dma_dev);
1918
1919 if (vring_packed->vring.driver)
1920 vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1921 vring_packed->vring.driver,
1922 vring_packed->driver_event_dma_addr,
1923 dma_dev);
1924
1925 if (vring_packed->vring.device)
1926 vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1927 vring_packed->vring.device,
1928 vring_packed->device_event_dma_addr,
1929 dma_dev);
1930
1931 kfree(vring_packed->desc_state);
1932 kfree(vring_packed->desc_extra);
1933 }
1934
vring_alloc_queue_packed(struct vring_virtqueue_packed * vring_packed,struct virtio_device * vdev,u32 num,struct device * dma_dev)1935 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed,
1936 struct virtio_device *vdev,
1937 u32 num, struct device *dma_dev)
1938 {
1939 struct vring_packed_desc *ring;
1940 struct vring_packed_desc_event *driver, *device;
1941 dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1942 size_t ring_size_in_bytes, event_size_in_bytes;
1943
1944 ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1945
1946 ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1947 &ring_dma_addr,
1948 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1949 dma_dev);
1950 if (!ring)
1951 goto err;
1952
1953 vring_packed->vring.desc = ring;
1954 vring_packed->ring_dma_addr = ring_dma_addr;
1955 vring_packed->ring_size_in_bytes = ring_size_in_bytes;
1956
1957 event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1958
1959 driver = vring_alloc_queue(vdev, event_size_in_bytes,
1960 &driver_event_dma_addr,
1961 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1962 dma_dev);
1963 if (!driver)
1964 goto err;
1965
1966 vring_packed->vring.driver = driver;
1967 vring_packed->event_size_in_bytes = event_size_in_bytes;
1968 vring_packed->driver_event_dma_addr = driver_event_dma_addr;
1969
1970 device = vring_alloc_queue(vdev, event_size_in_bytes,
1971 &device_event_dma_addr,
1972 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1973 dma_dev);
1974 if (!device)
1975 goto err;
1976
1977 vring_packed->vring.device = device;
1978 vring_packed->device_event_dma_addr = device_event_dma_addr;
1979
1980 vring_packed->vring.num = num;
1981
1982 return 0;
1983
1984 err:
1985 vring_free_packed(vring_packed, vdev, dma_dev);
1986 return -ENOMEM;
1987 }
1988
vring_alloc_state_extra_packed(struct vring_virtqueue_packed * vring_packed)1989 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed)
1990 {
1991 struct vring_desc_state_packed *state;
1992 struct vring_desc_extra *extra;
1993 u32 num = vring_packed->vring.num;
1994
1995 state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL);
1996 if (!state)
1997 goto err_desc_state;
1998
1999 memset(state, 0, num * sizeof(struct vring_desc_state_packed));
2000
2001 extra = vring_alloc_desc_extra(num);
2002 if (!extra)
2003 goto err_desc_extra;
2004
2005 vring_packed->desc_state = state;
2006 vring_packed->desc_extra = extra;
2007
2008 return 0;
2009
2010 err_desc_extra:
2011 kfree(state);
2012 err_desc_state:
2013 return -ENOMEM;
2014 }
2015
virtqueue_vring_init_packed(struct vring_virtqueue_packed * vring_packed,bool callback)2016 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed,
2017 bool callback)
2018 {
2019 vring_packed->next_avail_idx = 0;
2020 vring_packed->avail_wrap_counter = 1;
2021 vring_packed->event_flags_shadow = 0;
2022 vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
2023
2024 /* No callback? Tell other side not to bother us. */
2025 if (!callback) {
2026 vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
2027 vring_packed->vring.driver->flags =
2028 cpu_to_le16(vring_packed->event_flags_shadow);
2029 }
2030 }
2031
virtqueue_vring_attach_packed(struct vring_virtqueue * vq,struct vring_virtqueue_packed * vring_packed)2032 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq,
2033 struct vring_virtqueue_packed *vring_packed)
2034 {
2035 vq->packed = *vring_packed;
2036
2037 /* Put everything in free lists. */
2038 vq->free_head = 0;
2039 }
2040
virtqueue_reinit_packed(struct vring_virtqueue * vq)2041 static void virtqueue_reinit_packed(struct vring_virtqueue *vq)
2042 {
2043 memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes);
2044 memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes);
2045
2046 /* we need to reset the desc.flags. For more, see is_used_desc_packed() */
2047 memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes);
2048
2049 virtqueue_init(vq, vq->packed.vring.num);
2050 virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback);
2051 }
2052
vring_create_virtqueue_packed(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name,struct device * dma_dev)2053 static struct virtqueue *vring_create_virtqueue_packed(
2054 unsigned int index,
2055 unsigned int num,
2056 unsigned int vring_align,
2057 struct virtio_device *vdev,
2058 bool weak_barriers,
2059 bool may_reduce_num,
2060 bool context,
2061 bool (*notify)(struct virtqueue *),
2062 void (*callback)(struct virtqueue *),
2063 const char *name,
2064 struct device *dma_dev)
2065 {
2066 struct vring_virtqueue_packed vring_packed = {};
2067 struct vring_virtqueue *vq;
2068 int err;
2069
2070 if (vring_alloc_queue_packed(&vring_packed, vdev, num, dma_dev))
2071 goto err_ring;
2072
2073 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2074 if (!vq)
2075 goto err_vq;
2076
2077 vq->vq.callback = callback;
2078 vq->vq.vdev = vdev;
2079 vq->vq.name = name;
2080 vq->vq.index = index;
2081 vq->vq.reset = false;
2082 vq->we_own_ring = true;
2083 vq->notify = notify;
2084 vq->weak_barriers = weak_barriers;
2085 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2086 vq->broken = true;
2087 #else
2088 vq->broken = false;
2089 #endif
2090 vq->packed_ring = true;
2091 vq->dma_dev = dma_dev;
2092 vq->use_dma_api = vring_use_dma_api(vdev);
2093 vq->premapped = false;
2094 vq->do_unmap = vq->use_dma_api;
2095
2096 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2097 !context;
2098 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2099
2100 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2101 vq->weak_barriers = false;
2102
2103 err = vring_alloc_state_extra_packed(&vring_packed);
2104 if (err)
2105 goto err_state_extra;
2106
2107 virtqueue_vring_init_packed(&vring_packed, !!callback);
2108
2109 virtqueue_init(vq, num);
2110 virtqueue_vring_attach_packed(vq, &vring_packed);
2111
2112 spin_lock(&vdev->vqs_list_lock);
2113 list_add_tail(&vq->vq.list, &vdev->vqs);
2114 spin_unlock(&vdev->vqs_list_lock);
2115 return &vq->vq;
2116
2117 err_state_extra:
2118 kfree(vq);
2119 err_vq:
2120 vring_free_packed(&vring_packed, vdev, dma_dev);
2121 err_ring:
2122 return NULL;
2123 }
2124
virtqueue_resize_packed(struct virtqueue * _vq,u32 num)2125 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num)
2126 {
2127 struct vring_virtqueue_packed vring_packed = {};
2128 struct vring_virtqueue *vq = to_vvq(_vq);
2129 struct virtio_device *vdev = _vq->vdev;
2130 int err;
2131
2132 if (vring_alloc_queue_packed(&vring_packed, vdev, num, vring_dma_dev(vq)))
2133 goto err_ring;
2134
2135 err = vring_alloc_state_extra_packed(&vring_packed);
2136 if (err)
2137 goto err_state_extra;
2138
2139 vring_free(&vq->vq);
2140
2141 virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback);
2142
2143 virtqueue_init(vq, vring_packed.vring.num);
2144 virtqueue_vring_attach_packed(vq, &vring_packed);
2145
2146 return 0;
2147
2148 err_state_extra:
2149 vring_free_packed(&vring_packed, vdev, vring_dma_dev(vq));
2150 err_ring:
2151 virtqueue_reinit_packed(vq);
2152 return -ENOMEM;
2153 }
2154
virtqueue_disable_and_recycle(struct virtqueue * _vq,void (* recycle)(struct virtqueue * vq,void * buf))2155 static int virtqueue_disable_and_recycle(struct virtqueue *_vq,
2156 void (*recycle)(struct virtqueue *vq, void *buf))
2157 {
2158 struct vring_virtqueue *vq = to_vvq(_vq);
2159 struct virtio_device *vdev = vq->vq.vdev;
2160 void *buf;
2161 int err;
2162
2163 if (!vq->we_own_ring)
2164 return -EPERM;
2165
2166 if (!vdev->config->disable_vq_and_reset)
2167 return -ENOENT;
2168
2169 if (!vdev->config->enable_vq_after_reset)
2170 return -ENOENT;
2171
2172 err = vdev->config->disable_vq_and_reset(_vq);
2173 if (err)
2174 return err;
2175
2176 while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL)
2177 recycle(_vq, buf);
2178
2179 return 0;
2180 }
2181
virtqueue_enable_after_reset(struct virtqueue * _vq)2182 static int virtqueue_enable_after_reset(struct virtqueue *_vq)
2183 {
2184 struct vring_virtqueue *vq = to_vvq(_vq);
2185 struct virtio_device *vdev = vq->vq.vdev;
2186
2187 if (vdev->config->enable_vq_after_reset(_vq))
2188 return -EBUSY;
2189
2190 return 0;
2191 }
2192
2193 /*
2194 * Generic functions and exported symbols.
2195 */
2196
virtqueue_add(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,gfp_t gfp)2197 static inline int virtqueue_add(struct virtqueue *_vq,
2198 struct scatterlist *sgs[],
2199 unsigned int total_sg,
2200 unsigned int out_sgs,
2201 unsigned int in_sgs,
2202 void *data,
2203 void *ctx,
2204 gfp_t gfp)
2205 {
2206 struct vring_virtqueue *vq = to_vvq(_vq);
2207
2208 return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
2209 out_sgs, in_sgs, data, ctx, gfp) :
2210 virtqueue_add_split(_vq, sgs, total_sg,
2211 out_sgs, in_sgs, data, ctx, gfp);
2212 }
2213
2214 /**
2215 * virtqueue_add_sgs - expose buffers to other end
2216 * @_vq: the struct virtqueue we're talking about.
2217 * @sgs: array of terminated scatterlists.
2218 * @out_sgs: the number of scatterlists readable by other side
2219 * @in_sgs: the number of scatterlists which are writable (after readable ones)
2220 * @data: the token identifying the buffer.
2221 * @gfp: how to do memory allocations (if necessary).
2222 *
2223 * Caller must ensure we don't call this with other virtqueue operations
2224 * at the same time (except where noted).
2225 *
2226 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2227 */
virtqueue_add_sgs(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int out_sgs,unsigned int in_sgs,void * data,gfp_t gfp)2228 int virtqueue_add_sgs(struct virtqueue *_vq,
2229 struct scatterlist *sgs[],
2230 unsigned int out_sgs,
2231 unsigned int in_sgs,
2232 void *data,
2233 gfp_t gfp)
2234 {
2235 unsigned int i, total_sg = 0;
2236
2237 /* Count them first. */
2238 for (i = 0; i < out_sgs + in_sgs; i++) {
2239 struct scatterlist *sg;
2240
2241 for (sg = sgs[i]; sg; sg = sg_next(sg))
2242 total_sg++;
2243 }
2244 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
2245 data, NULL, gfp);
2246 }
2247 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
2248
2249 /**
2250 * virtqueue_add_outbuf - expose output buffers to other end
2251 * @vq: the struct virtqueue we're talking about.
2252 * @sg: scatterlist (must be well-formed and terminated!)
2253 * @num: the number of entries in @sg readable by other side
2254 * @data: the token identifying the buffer.
2255 * @gfp: how to do memory allocations (if necessary).
2256 *
2257 * Caller must ensure we don't call this with other virtqueue operations
2258 * at the same time (except where noted).
2259 *
2260 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2261 */
virtqueue_add_outbuf(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,gfp_t gfp)2262 int virtqueue_add_outbuf(struct virtqueue *vq,
2263 struct scatterlist *sg, unsigned int num,
2264 void *data,
2265 gfp_t gfp)
2266 {
2267 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
2268 }
2269 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
2270
2271 /**
2272 * virtqueue_add_inbuf - expose input buffers to other end
2273 * @vq: the struct virtqueue we're talking about.
2274 * @sg: scatterlist (must be well-formed and terminated!)
2275 * @num: the number of entries in @sg writable by other side
2276 * @data: the token identifying the buffer.
2277 * @gfp: how to do memory allocations (if necessary).
2278 *
2279 * Caller must ensure we don't call this with other virtqueue operations
2280 * at the same time (except where noted).
2281 *
2282 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2283 */
virtqueue_add_inbuf(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,gfp_t gfp)2284 int virtqueue_add_inbuf(struct virtqueue *vq,
2285 struct scatterlist *sg, unsigned int num,
2286 void *data,
2287 gfp_t gfp)
2288 {
2289 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
2290 }
2291 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
2292
2293 /**
2294 * virtqueue_add_inbuf_ctx - expose input buffers to other end
2295 * @vq: the struct virtqueue we're talking about.
2296 * @sg: scatterlist (must be well-formed and terminated!)
2297 * @num: the number of entries in @sg writable by other side
2298 * @data: the token identifying the buffer.
2299 * @ctx: extra context for the token
2300 * @gfp: how to do memory allocations (if necessary).
2301 *
2302 * Caller must ensure we don't call this with other virtqueue operations
2303 * at the same time (except where noted).
2304 *
2305 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2306 */
virtqueue_add_inbuf_ctx(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,void * ctx,gfp_t gfp)2307 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
2308 struct scatterlist *sg, unsigned int num,
2309 void *data,
2310 void *ctx,
2311 gfp_t gfp)
2312 {
2313 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
2314 }
2315 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
2316
2317 /**
2318 * virtqueue_dma_dev - get the dma dev
2319 * @_vq: the struct virtqueue we're talking about.
2320 *
2321 * Returns the dma dev. That can been used for dma api.
2322 */
virtqueue_dma_dev(struct virtqueue * _vq)2323 struct device *virtqueue_dma_dev(struct virtqueue *_vq)
2324 {
2325 struct vring_virtqueue *vq = to_vvq(_vq);
2326
2327 if (vq->use_dma_api)
2328 return vring_dma_dev(vq);
2329 else
2330 return NULL;
2331 }
2332 EXPORT_SYMBOL_GPL(virtqueue_dma_dev);
2333
2334 /**
2335 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
2336 * @_vq: the struct virtqueue
2337 *
2338 * Instead of virtqueue_kick(), you can do:
2339 * if (virtqueue_kick_prepare(vq))
2340 * virtqueue_notify(vq);
2341 *
2342 * This is sometimes useful because the virtqueue_kick_prepare() needs
2343 * to be serialized, but the actual virtqueue_notify() call does not.
2344 */
virtqueue_kick_prepare(struct virtqueue * _vq)2345 bool virtqueue_kick_prepare(struct virtqueue *_vq)
2346 {
2347 struct vring_virtqueue *vq = to_vvq(_vq);
2348
2349 return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
2350 virtqueue_kick_prepare_split(_vq);
2351 }
2352 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
2353
2354 /**
2355 * virtqueue_notify - second half of split virtqueue_kick call.
2356 * @_vq: the struct virtqueue
2357 *
2358 * This does not need to be serialized.
2359 *
2360 * Returns false if host notify failed or queue is broken, otherwise true.
2361 */
virtqueue_notify(struct virtqueue * _vq)2362 bool virtqueue_notify(struct virtqueue *_vq)
2363 {
2364 struct vring_virtqueue *vq = to_vvq(_vq);
2365
2366 if (unlikely(vq->broken))
2367 return false;
2368
2369 /* Prod other side to tell it about changes. */
2370 if (!vq->notify(_vq)) {
2371 vq->broken = true;
2372 return false;
2373 }
2374 return true;
2375 }
2376 EXPORT_SYMBOL_GPL(virtqueue_notify);
2377
2378 /**
2379 * virtqueue_kick - update after add_buf
2380 * @vq: the struct virtqueue
2381 *
2382 * After one or more virtqueue_add_* calls, invoke this to kick
2383 * the other side.
2384 *
2385 * Caller must ensure we don't call this with other virtqueue
2386 * operations at the same time (except where noted).
2387 *
2388 * Returns false if kick failed, otherwise true.
2389 */
virtqueue_kick(struct virtqueue * vq)2390 bool virtqueue_kick(struct virtqueue *vq)
2391 {
2392 if (virtqueue_kick_prepare(vq))
2393 return virtqueue_notify(vq);
2394 return true;
2395 }
2396 EXPORT_SYMBOL_GPL(virtqueue_kick);
2397
2398 /**
2399 * virtqueue_get_buf_ctx - get the next used buffer
2400 * @_vq: the struct virtqueue we're talking about.
2401 * @len: the length written into the buffer
2402 * @ctx: extra context for the token
2403 *
2404 * If the device wrote data into the buffer, @len will be set to the
2405 * amount written. This means you don't need to clear the buffer
2406 * beforehand to ensure there's no data leakage in the case of short
2407 * writes.
2408 *
2409 * Caller must ensure we don't call this with other virtqueue
2410 * operations at the same time (except where noted).
2411 *
2412 * Returns NULL if there are no used buffers, or the "data" token
2413 * handed to virtqueue_add_*().
2414 */
virtqueue_get_buf_ctx(struct virtqueue * _vq,unsigned int * len,void ** ctx)2415 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
2416 void **ctx)
2417 {
2418 struct vring_virtqueue *vq = to_vvq(_vq);
2419
2420 return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2421 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2422 }
2423 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2424
virtqueue_get_buf(struct virtqueue * _vq,unsigned int * len)2425 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2426 {
2427 return virtqueue_get_buf_ctx(_vq, len, NULL);
2428 }
2429 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2430 /**
2431 * virtqueue_disable_cb - disable callbacks
2432 * @_vq: the struct virtqueue we're talking about.
2433 *
2434 * Note that this is not necessarily synchronous, hence unreliable and only
2435 * useful as an optimization.
2436 *
2437 * Unlike other operations, this need not be serialized.
2438 */
virtqueue_disable_cb(struct virtqueue * _vq)2439 void virtqueue_disable_cb(struct virtqueue *_vq)
2440 {
2441 struct vring_virtqueue *vq = to_vvq(_vq);
2442
2443 if (vq->packed_ring)
2444 virtqueue_disable_cb_packed(_vq);
2445 else
2446 virtqueue_disable_cb_split(_vq);
2447 }
2448 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2449
2450 /**
2451 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2452 * @_vq: the struct virtqueue we're talking about.
2453 *
2454 * This re-enables callbacks; it returns current queue state
2455 * in an opaque unsigned value. This value should be later tested by
2456 * virtqueue_poll, to detect a possible race between the driver checking for
2457 * more work, and enabling callbacks.
2458 *
2459 * Caller must ensure we don't call this with other virtqueue
2460 * operations at the same time (except where noted).
2461 */
virtqueue_enable_cb_prepare(struct virtqueue * _vq)2462 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2463 {
2464 struct vring_virtqueue *vq = to_vvq(_vq);
2465
2466 if (vq->event_triggered)
2467 vq->event_triggered = false;
2468
2469 return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2470 virtqueue_enable_cb_prepare_split(_vq);
2471 }
2472 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2473
2474 /**
2475 * virtqueue_poll - query pending used buffers
2476 * @_vq: the struct virtqueue we're talking about.
2477 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2478 *
2479 * Returns "true" if there are pending used buffers in the queue.
2480 *
2481 * This does not need to be serialized.
2482 */
virtqueue_poll(struct virtqueue * _vq,unsigned int last_used_idx)2483 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx)
2484 {
2485 struct vring_virtqueue *vq = to_vvq(_vq);
2486
2487 if (unlikely(vq->broken))
2488 return false;
2489
2490 virtio_mb(vq->weak_barriers);
2491 return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2492 virtqueue_poll_split(_vq, last_used_idx);
2493 }
2494 EXPORT_SYMBOL_GPL(virtqueue_poll);
2495
2496 /**
2497 * virtqueue_enable_cb - restart callbacks after disable_cb.
2498 * @_vq: the struct virtqueue we're talking about.
2499 *
2500 * This re-enables callbacks; it returns "false" if there are pending
2501 * buffers in the queue, to detect a possible race between the driver
2502 * checking for more work, and enabling callbacks.
2503 *
2504 * Caller must ensure we don't call this with other virtqueue
2505 * operations at the same time (except where noted).
2506 */
virtqueue_enable_cb(struct virtqueue * _vq)2507 bool virtqueue_enable_cb(struct virtqueue *_vq)
2508 {
2509 unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq);
2510
2511 return !virtqueue_poll(_vq, last_used_idx);
2512 }
2513 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2514
2515 /**
2516 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2517 * @_vq: the struct virtqueue we're talking about.
2518 *
2519 * This re-enables callbacks but hints to the other side to delay
2520 * interrupts until most of the available buffers have been processed;
2521 * it returns "false" if there are many pending buffers in the queue,
2522 * to detect a possible race between the driver checking for more work,
2523 * and enabling callbacks.
2524 *
2525 * Caller must ensure we don't call this with other virtqueue
2526 * operations at the same time (except where noted).
2527 */
virtqueue_enable_cb_delayed(struct virtqueue * _vq)2528 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2529 {
2530 struct vring_virtqueue *vq = to_vvq(_vq);
2531
2532 if (vq->event_triggered)
2533 vq->event_triggered = false;
2534
2535 return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2536 virtqueue_enable_cb_delayed_split(_vq);
2537 }
2538 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2539
2540 /**
2541 * virtqueue_detach_unused_buf - detach first unused buffer
2542 * @_vq: the struct virtqueue we're talking about.
2543 *
2544 * Returns NULL or the "data" token handed to virtqueue_add_*().
2545 * This is not valid on an active queue; it is useful for device
2546 * shutdown or the reset queue.
2547 */
virtqueue_detach_unused_buf(struct virtqueue * _vq)2548 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2549 {
2550 struct vring_virtqueue *vq = to_vvq(_vq);
2551
2552 return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2553 virtqueue_detach_unused_buf_split(_vq);
2554 }
2555 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2556
more_used(const struct vring_virtqueue * vq)2557 static inline bool more_used(const struct vring_virtqueue *vq)
2558 {
2559 return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2560 }
2561
2562 /**
2563 * vring_interrupt - notify a virtqueue on an interrupt
2564 * @irq: the IRQ number (ignored)
2565 * @_vq: the struct virtqueue to notify
2566 *
2567 * Calls the callback function of @_vq to process the virtqueue
2568 * notification.
2569 */
vring_interrupt(int irq,void * _vq)2570 irqreturn_t vring_interrupt(int irq, void *_vq)
2571 {
2572 struct vring_virtqueue *vq = to_vvq(_vq);
2573
2574 if (!more_used(vq)) {
2575 pr_debug("virtqueue interrupt with no work for %p\n", vq);
2576 return IRQ_NONE;
2577 }
2578
2579 if (unlikely(vq->broken)) {
2580 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2581 dev_warn_once(&vq->vq.vdev->dev,
2582 "virtio vring IRQ raised before DRIVER_OK");
2583 return IRQ_NONE;
2584 #else
2585 return IRQ_HANDLED;
2586 #endif
2587 }
2588
2589 /* Just a hint for performance: so it's ok that this can be racy! */
2590 if (vq->event)
2591 data_race(vq->event_triggered = true);
2592
2593 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2594 if (vq->vq.callback)
2595 vq->vq.callback(&vq->vq);
2596
2597 return IRQ_HANDLED;
2598 }
2599 EXPORT_SYMBOL_GPL(vring_interrupt);
2600
2601 /* Only available for split ring */
__vring_new_virtqueue(unsigned int index,struct vring_virtqueue_split * vring_split,struct virtio_device * vdev,bool weak_barriers,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name,struct device * dma_dev)2602 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
2603 struct vring_virtqueue_split *vring_split,
2604 struct virtio_device *vdev,
2605 bool weak_barriers,
2606 bool context,
2607 bool (*notify)(struct virtqueue *),
2608 void (*callback)(struct virtqueue *),
2609 const char *name,
2610 struct device *dma_dev)
2611 {
2612 struct vring_virtqueue *vq;
2613 int err;
2614
2615 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2616 return NULL;
2617
2618 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2619 if (!vq)
2620 return NULL;
2621
2622 vq->packed_ring = false;
2623 vq->vq.callback = callback;
2624 vq->vq.vdev = vdev;
2625 vq->vq.name = name;
2626 vq->vq.index = index;
2627 vq->vq.reset = false;
2628 vq->we_own_ring = false;
2629 vq->notify = notify;
2630 vq->weak_barriers = weak_barriers;
2631 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2632 vq->broken = true;
2633 #else
2634 vq->broken = false;
2635 #endif
2636 vq->dma_dev = dma_dev;
2637 vq->use_dma_api = vring_use_dma_api(vdev);
2638 vq->premapped = false;
2639 vq->do_unmap = vq->use_dma_api;
2640
2641 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2642 !context;
2643 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2644
2645 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2646 vq->weak_barriers = false;
2647
2648 err = vring_alloc_state_extra_split(vring_split);
2649 if (err) {
2650 kfree(vq);
2651 return NULL;
2652 }
2653
2654 virtqueue_vring_init_split(vring_split, vq);
2655
2656 virtqueue_init(vq, vring_split->vring.num);
2657 virtqueue_vring_attach_split(vq, vring_split);
2658
2659 spin_lock(&vdev->vqs_list_lock);
2660 list_add_tail(&vq->vq.list, &vdev->vqs);
2661 spin_unlock(&vdev->vqs_list_lock);
2662 return &vq->vq;
2663 }
2664
vring_create_virtqueue(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name)2665 struct virtqueue *vring_create_virtqueue(
2666 unsigned int index,
2667 unsigned int num,
2668 unsigned int vring_align,
2669 struct virtio_device *vdev,
2670 bool weak_barriers,
2671 bool may_reduce_num,
2672 bool context,
2673 bool (*notify)(struct virtqueue *),
2674 void (*callback)(struct virtqueue *),
2675 const char *name)
2676 {
2677
2678 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2679 return vring_create_virtqueue_packed(index, num, vring_align,
2680 vdev, weak_barriers, may_reduce_num,
2681 context, notify, callback, name, vdev->dev.parent);
2682
2683 return vring_create_virtqueue_split(index, num, vring_align,
2684 vdev, weak_barriers, may_reduce_num,
2685 context, notify, callback, name, vdev->dev.parent);
2686 }
2687 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2688
vring_create_virtqueue_dma(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name,struct device * dma_dev)2689 struct virtqueue *vring_create_virtqueue_dma(
2690 unsigned int index,
2691 unsigned int num,
2692 unsigned int vring_align,
2693 struct virtio_device *vdev,
2694 bool weak_barriers,
2695 bool may_reduce_num,
2696 bool context,
2697 bool (*notify)(struct virtqueue *),
2698 void (*callback)(struct virtqueue *),
2699 const char *name,
2700 struct device *dma_dev)
2701 {
2702
2703 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2704 return vring_create_virtqueue_packed(index, num, vring_align,
2705 vdev, weak_barriers, may_reduce_num,
2706 context, notify, callback, name, dma_dev);
2707
2708 return vring_create_virtqueue_split(index, num, vring_align,
2709 vdev, weak_barriers, may_reduce_num,
2710 context, notify, callback, name, dma_dev);
2711 }
2712 EXPORT_SYMBOL_GPL(vring_create_virtqueue_dma);
2713
2714 /**
2715 * virtqueue_resize - resize the vring of vq
2716 * @_vq: the struct virtqueue we're talking about.
2717 * @num: new ring num
2718 * @recycle: callback to recycle unused buffers
2719 *
2720 * When it is really necessary to create a new vring, it will set the current vq
2721 * into the reset state. Then call the passed callback to recycle the buffer
2722 * that is no longer used. Only after the new vring is successfully created, the
2723 * old vring will be released.
2724 *
2725 * Caller must ensure we don't call this with other virtqueue operations
2726 * at the same time (except where noted).
2727 *
2728 * Returns zero or a negative error.
2729 * 0: success.
2730 * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size.
2731 * vq can still work normally
2732 * -EBUSY: Failed to sync with device, vq may not work properly
2733 * -ENOENT: Transport or device not supported
2734 * -E2BIG/-EINVAL: num error
2735 * -EPERM: Operation not permitted
2736 *
2737 */
virtqueue_resize(struct virtqueue * _vq,u32 num,void (* recycle)(struct virtqueue * vq,void * buf))2738 int virtqueue_resize(struct virtqueue *_vq, u32 num,
2739 void (*recycle)(struct virtqueue *vq, void *buf))
2740 {
2741 struct vring_virtqueue *vq = to_vvq(_vq);
2742 int err;
2743
2744 if (num > vq->vq.num_max)
2745 return -E2BIG;
2746
2747 if (!num)
2748 return -EINVAL;
2749
2750 if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num)
2751 return 0;
2752
2753 err = virtqueue_disable_and_recycle(_vq, recycle);
2754 if (err)
2755 return err;
2756
2757 if (vq->packed_ring)
2758 err = virtqueue_resize_packed(_vq, num);
2759 else
2760 err = virtqueue_resize_split(_vq, num);
2761
2762 return virtqueue_enable_after_reset(_vq);
2763 }
2764 EXPORT_SYMBOL_GPL(virtqueue_resize);
2765
2766 /**
2767 * virtqueue_set_dma_premapped - set the vring premapped mode
2768 * @_vq: the struct virtqueue we're talking about.
2769 *
2770 * Enable the premapped mode of the vq.
2771 *
2772 * The vring in premapped mode does not do dma internally, so the driver must
2773 * do dma mapping in advance. The driver must pass the dma_address through
2774 * dma_address of scatterlist. When the driver got a used buffer from
2775 * the vring, it has to unmap the dma address.
2776 *
2777 * This function must be called immediately after creating the vq, or after vq
2778 * reset, and before adding any buffers to it.
2779 *
2780 * Caller must ensure we don't call this with other virtqueue operations
2781 * at the same time (except where noted).
2782 *
2783 * Returns zero or a negative error.
2784 * 0: success.
2785 * -EINVAL: too late to enable premapped mode, the vq already contains buffers.
2786 */
virtqueue_set_dma_premapped(struct virtqueue * _vq)2787 int virtqueue_set_dma_premapped(struct virtqueue *_vq)
2788 {
2789 struct vring_virtqueue *vq = to_vvq(_vq);
2790 u32 num;
2791
2792 START_USE(vq);
2793
2794 num = vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2795
2796 if (num != vq->vq.num_free) {
2797 END_USE(vq);
2798 return -EINVAL;
2799 }
2800
2801 vq->premapped = true;
2802 vq->do_unmap = false;
2803
2804 END_USE(vq);
2805
2806 return 0;
2807 }
2808 EXPORT_SYMBOL_GPL(virtqueue_set_dma_premapped);
2809
2810 /**
2811 * virtqueue_reset - detach and recycle all unused buffers
2812 * @_vq: the struct virtqueue we're talking about.
2813 * @recycle: callback to recycle unused buffers
2814 *
2815 * Caller must ensure we don't call this with other virtqueue operations
2816 * at the same time (except where noted).
2817 *
2818 * Returns zero or a negative error.
2819 * 0: success.
2820 * -EBUSY: Failed to sync with device, vq may not work properly
2821 * -ENOENT: Transport or device not supported
2822 * -EPERM: Operation not permitted
2823 */
virtqueue_reset(struct virtqueue * _vq,void (* recycle)(struct virtqueue * vq,void * buf))2824 int virtqueue_reset(struct virtqueue *_vq,
2825 void (*recycle)(struct virtqueue *vq, void *buf))
2826 {
2827 struct vring_virtqueue *vq = to_vvq(_vq);
2828 int err;
2829
2830 err = virtqueue_disable_and_recycle(_vq, recycle);
2831 if (err)
2832 return err;
2833
2834 if (vq->packed_ring)
2835 virtqueue_reinit_packed(vq);
2836 else
2837 virtqueue_reinit_split(vq);
2838
2839 return virtqueue_enable_after_reset(_vq);
2840 }
2841 EXPORT_SYMBOL_GPL(virtqueue_reset);
2842
2843 /* Only available for split ring */
vring_new_virtqueue(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool context,void * pages,bool (* notify)(struct virtqueue * vq),void (* callback)(struct virtqueue * vq),const char * name)2844 struct virtqueue *vring_new_virtqueue(unsigned int index,
2845 unsigned int num,
2846 unsigned int vring_align,
2847 struct virtio_device *vdev,
2848 bool weak_barriers,
2849 bool context,
2850 void *pages,
2851 bool (*notify)(struct virtqueue *vq),
2852 void (*callback)(struct virtqueue *vq),
2853 const char *name)
2854 {
2855 struct vring_virtqueue_split vring_split = {};
2856
2857 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2858 return NULL;
2859
2860 vring_init(&vring_split.vring, num, pages, vring_align);
2861 return __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
2862 context, notify, callback, name,
2863 vdev->dev.parent);
2864 }
2865 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2866
vring_free(struct virtqueue * _vq)2867 static void vring_free(struct virtqueue *_vq)
2868 {
2869 struct vring_virtqueue *vq = to_vvq(_vq);
2870
2871 if (vq->we_own_ring) {
2872 if (vq->packed_ring) {
2873 vring_free_queue(vq->vq.vdev,
2874 vq->packed.ring_size_in_bytes,
2875 vq->packed.vring.desc,
2876 vq->packed.ring_dma_addr,
2877 vring_dma_dev(vq));
2878
2879 vring_free_queue(vq->vq.vdev,
2880 vq->packed.event_size_in_bytes,
2881 vq->packed.vring.driver,
2882 vq->packed.driver_event_dma_addr,
2883 vring_dma_dev(vq));
2884
2885 vring_free_queue(vq->vq.vdev,
2886 vq->packed.event_size_in_bytes,
2887 vq->packed.vring.device,
2888 vq->packed.device_event_dma_addr,
2889 vring_dma_dev(vq));
2890
2891 kfree(vq->packed.desc_state);
2892 kfree(vq->packed.desc_extra);
2893 } else {
2894 vring_free_queue(vq->vq.vdev,
2895 vq->split.queue_size_in_bytes,
2896 vq->split.vring.desc,
2897 vq->split.queue_dma_addr,
2898 vring_dma_dev(vq));
2899 }
2900 }
2901 if (!vq->packed_ring) {
2902 kfree(vq->split.desc_state);
2903 kfree(vq->split.desc_extra);
2904 }
2905 }
2906
vring_del_virtqueue(struct virtqueue * _vq)2907 void vring_del_virtqueue(struct virtqueue *_vq)
2908 {
2909 struct vring_virtqueue *vq = to_vvq(_vq);
2910
2911 spin_lock(&vq->vq.vdev->vqs_list_lock);
2912 list_del(&_vq->list);
2913 spin_unlock(&vq->vq.vdev->vqs_list_lock);
2914
2915 vring_free(_vq);
2916
2917 kfree(vq);
2918 }
2919 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2920
vring_notification_data(struct virtqueue * _vq)2921 u32 vring_notification_data(struct virtqueue *_vq)
2922 {
2923 struct vring_virtqueue *vq = to_vvq(_vq);
2924 u16 next;
2925
2926 if (vq->packed_ring)
2927 next = (vq->packed.next_avail_idx &
2928 ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR))) |
2929 vq->packed.avail_wrap_counter <<
2930 VRING_PACKED_EVENT_F_WRAP_CTR;
2931 else
2932 next = vq->split.avail_idx_shadow;
2933
2934 return next << 16 | _vq->index;
2935 }
2936 EXPORT_SYMBOL_GPL(vring_notification_data);
2937
2938 /* Manipulates transport-specific feature bits. */
vring_transport_features(struct virtio_device * vdev)2939 void vring_transport_features(struct virtio_device *vdev)
2940 {
2941 unsigned int i;
2942
2943 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2944 switch (i) {
2945 case VIRTIO_RING_F_INDIRECT_DESC:
2946 break;
2947 case VIRTIO_RING_F_EVENT_IDX:
2948 break;
2949 case VIRTIO_F_VERSION_1:
2950 break;
2951 case VIRTIO_F_ACCESS_PLATFORM:
2952 break;
2953 case VIRTIO_F_RING_PACKED:
2954 break;
2955 case VIRTIO_F_ORDER_PLATFORM:
2956 break;
2957 case VIRTIO_F_NOTIFICATION_DATA:
2958 break;
2959 default:
2960 /* We don't understand this bit. */
2961 __virtio_clear_bit(vdev, i);
2962 }
2963 }
2964 }
2965 EXPORT_SYMBOL_GPL(vring_transport_features);
2966
2967 /**
2968 * virtqueue_get_vring_size - return the size of the virtqueue's vring
2969 * @_vq: the struct virtqueue containing the vring of interest.
2970 *
2971 * Returns the size of the vring. This is mainly used for boasting to
2972 * userspace. Unlike other operations, this need not be serialized.
2973 */
virtqueue_get_vring_size(const struct virtqueue * _vq)2974 unsigned int virtqueue_get_vring_size(const struct virtqueue *_vq)
2975 {
2976
2977 const struct vring_virtqueue *vq = to_vvq(_vq);
2978
2979 return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2980 }
2981 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2982
2983 /*
2984 * This function should only be called by the core, not directly by the driver.
2985 */
__virtqueue_break(struct virtqueue * _vq)2986 void __virtqueue_break(struct virtqueue *_vq)
2987 {
2988 struct vring_virtqueue *vq = to_vvq(_vq);
2989
2990 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2991 WRITE_ONCE(vq->broken, true);
2992 }
2993 EXPORT_SYMBOL_GPL(__virtqueue_break);
2994
2995 /*
2996 * This function should only be called by the core, not directly by the driver.
2997 */
__virtqueue_unbreak(struct virtqueue * _vq)2998 void __virtqueue_unbreak(struct virtqueue *_vq)
2999 {
3000 struct vring_virtqueue *vq = to_vvq(_vq);
3001
3002 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3003 WRITE_ONCE(vq->broken, false);
3004 }
3005 EXPORT_SYMBOL_GPL(__virtqueue_unbreak);
3006
virtqueue_is_broken(const struct virtqueue * _vq)3007 bool virtqueue_is_broken(const struct virtqueue *_vq)
3008 {
3009 const struct vring_virtqueue *vq = to_vvq(_vq);
3010
3011 return READ_ONCE(vq->broken);
3012 }
3013 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
3014
3015 /*
3016 * This should prevent the device from being used, allowing drivers to
3017 * recover. You may need to grab appropriate locks to flush.
3018 */
virtio_break_device(struct virtio_device * dev)3019 void virtio_break_device(struct virtio_device *dev)
3020 {
3021 struct virtqueue *_vq;
3022
3023 spin_lock(&dev->vqs_list_lock);
3024 list_for_each_entry(_vq, &dev->vqs, list) {
3025 struct vring_virtqueue *vq = to_vvq(_vq);
3026
3027 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3028 WRITE_ONCE(vq->broken, true);
3029 }
3030 spin_unlock(&dev->vqs_list_lock);
3031 }
3032 EXPORT_SYMBOL_GPL(virtio_break_device);
3033
3034 /*
3035 * This should allow the device to be used by the driver. You may
3036 * need to grab appropriate locks to flush the write to
3037 * vq->broken. This should only be used in some specific case e.g
3038 * (probing and restoring). This function should only be called by the
3039 * core, not directly by the driver.
3040 */
__virtio_unbreak_device(struct virtio_device * dev)3041 void __virtio_unbreak_device(struct virtio_device *dev)
3042 {
3043 struct virtqueue *_vq;
3044
3045 spin_lock(&dev->vqs_list_lock);
3046 list_for_each_entry(_vq, &dev->vqs, list) {
3047 struct vring_virtqueue *vq = to_vvq(_vq);
3048
3049 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3050 WRITE_ONCE(vq->broken, false);
3051 }
3052 spin_unlock(&dev->vqs_list_lock);
3053 }
3054 EXPORT_SYMBOL_GPL(__virtio_unbreak_device);
3055
virtqueue_get_desc_addr(const struct virtqueue * _vq)3056 dma_addr_t virtqueue_get_desc_addr(const struct virtqueue *_vq)
3057 {
3058 const struct vring_virtqueue *vq = to_vvq(_vq);
3059
3060 BUG_ON(!vq->we_own_ring);
3061
3062 if (vq->packed_ring)
3063 return vq->packed.ring_dma_addr;
3064
3065 return vq->split.queue_dma_addr;
3066 }
3067 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
3068
virtqueue_get_avail_addr(const struct virtqueue * _vq)3069 dma_addr_t virtqueue_get_avail_addr(const struct virtqueue *_vq)
3070 {
3071 const struct vring_virtqueue *vq = to_vvq(_vq);
3072
3073 BUG_ON(!vq->we_own_ring);
3074
3075 if (vq->packed_ring)
3076 return vq->packed.driver_event_dma_addr;
3077
3078 return vq->split.queue_dma_addr +
3079 ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
3080 }
3081 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
3082
virtqueue_get_used_addr(const struct virtqueue * _vq)3083 dma_addr_t virtqueue_get_used_addr(const struct virtqueue *_vq)
3084 {
3085 const struct vring_virtqueue *vq = to_vvq(_vq);
3086
3087 BUG_ON(!vq->we_own_ring);
3088
3089 if (vq->packed_ring)
3090 return vq->packed.device_event_dma_addr;
3091
3092 return vq->split.queue_dma_addr +
3093 ((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
3094 }
3095 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
3096
3097 /* Only available for split ring */
virtqueue_get_vring(const struct virtqueue * vq)3098 const struct vring *virtqueue_get_vring(const struct virtqueue *vq)
3099 {
3100 return &to_vvq(vq)->split.vring;
3101 }
3102 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
3103
3104 /**
3105 * virtqueue_dma_map_single_attrs - map DMA for _vq
3106 * @_vq: the struct virtqueue we're talking about.
3107 * @ptr: the pointer of the buffer to do dma
3108 * @size: the size of the buffer to do dma
3109 * @dir: DMA direction
3110 * @attrs: DMA Attrs
3111 *
3112 * The caller calls this to do dma mapping in advance. The DMA address can be
3113 * passed to this _vq when it is in pre-mapped mode.
3114 *
3115 * return DMA address. Caller should check that by virtqueue_dma_mapping_error().
3116 */
virtqueue_dma_map_single_attrs(struct virtqueue * _vq,void * ptr,size_t size,enum dma_data_direction dir,unsigned long attrs)3117 dma_addr_t virtqueue_dma_map_single_attrs(struct virtqueue *_vq, void *ptr,
3118 size_t size,
3119 enum dma_data_direction dir,
3120 unsigned long attrs)
3121 {
3122 struct vring_virtqueue *vq = to_vvq(_vq);
3123
3124 if (!vq->use_dma_api) {
3125 kmsan_handle_dma(virt_to_page(ptr), offset_in_page(ptr), size, dir);
3126 return (dma_addr_t)virt_to_phys(ptr);
3127 }
3128
3129 return dma_map_single_attrs(vring_dma_dev(vq), ptr, size, dir, attrs);
3130 }
3131 EXPORT_SYMBOL_GPL(virtqueue_dma_map_single_attrs);
3132
3133 /**
3134 * virtqueue_dma_unmap_single_attrs - unmap DMA for _vq
3135 * @_vq: the struct virtqueue we're talking about.
3136 * @addr: the dma address to unmap
3137 * @size: the size of the buffer
3138 * @dir: DMA direction
3139 * @attrs: DMA Attrs
3140 *
3141 * Unmap the address that is mapped by the virtqueue_dma_map_* APIs.
3142 *
3143 */
virtqueue_dma_unmap_single_attrs(struct virtqueue * _vq,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)3144 void virtqueue_dma_unmap_single_attrs(struct virtqueue *_vq, dma_addr_t addr,
3145 size_t size, enum dma_data_direction dir,
3146 unsigned long attrs)
3147 {
3148 struct vring_virtqueue *vq = to_vvq(_vq);
3149
3150 if (!vq->use_dma_api)
3151 return;
3152
3153 dma_unmap_single_attrs(vring_dma_dev(vq), addr, size, dir, attrs);
3154 }
3155 EXPORT_SYMBOL_GPL(virtqueue_dma_unmap_single_attrs);
3156
3157 /**
3158 * virtqueue_dma_mapping_error - check dma address
3159 * @_vq: the struct virtqueue we're talking about.
3160 * @addr: DMA address
3161 *
3162 * Returns 0 means dma valid. Other means invalid dma address.
3163 */
virtqueue_dma_mapping_error(struct virtqueue * _vq,dma_addr_t addr)3164 int virtqueue_dma_mapping_error(struct virtqueue *_vq, dma_addr_t addr)
3165 {
3166 struct vring_virtqueue *vq = to_vvq(_vq);
3167
3168 if (!vq->use_dma_api)
3169 return 0;
3170
3171 return dma_mapping_error(vring_dma_dev(vq), addr);
3172 }
3173 EXPORT_SYMBOL_GPL(virtqueue_dma_mapping_error);
3174
3175 /**
3176 * virtqueue_dma_need_sync - check a dma address needs sync
3177 * @_vq: the struct virtqueue we're talking about.
3178 * @addr: DMA address
3179 *
3180 * Check if the dma address mapped by the virtqueue_dma_map_* APIs needs to be
3181 * synchronized
3182 *
3183 * return bool
3184 */
virtqueue_dma_need_sync(struct virtqueue * _vq,dma_addr_t addr)3185 bool virtqueue_dma_need_sync(struct virtqueue *_vq, dma_addr_t addr)
3186 {
3187 struct vring_virtqueue *vq = to_vvq(_vq);
3188
3189 if (!vq->use_dma_api)
3190 return false;
3191
3192 return dma_need_sync(vring_dma_dev(vq), addr);
3193 }
3194 EXPORT_SYMBOL_GPL(virtqueue_dma_need_sync);
3195
3196 /**
3197 * virtqueue_dma_sync_single_range_for_cpu - dma sync for cpu
3198 * @_vq: the struct virtqueue we're talking about.
3199 * @addr: DMA address
3200 * @offset: DMA address offset
3201 * @size: buf size for sync
3202 * @dir: DMA direction
3203 *
3204 * Before calling this function, use virtqueue_dma_need_sync() to confirm that
3205 * the DMA address really needs to be synchronized
3206 *
3207 */
virtqueue_dma_sync_single_range_for_cpu(struct virtqueue * _vq,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)3208 void virtqueue_dma_sync_single_range_for_cpu(struct virtqueue *_vq,
3209 dma_addr_t addr,
3210 unsigned long offset, size_t size,
3211 enum dma_data_direction dir)
3212 {
3213 struct vring_virtqueue *vq = to_vvq(_vq);
3214 struct device *dev = vring_dma_dev(vq);
3215
3216 if (!vq->use_dma_api)
3217 return;
3218
3219 dma_sync_single_range_for_cpu(dev, addr, offset, size, dir);
3220 }
3221 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_cpu);
3222
3223 /**
3224 * virtqueue_dma_sync_single_range_for_device - dma sync for device
3225 * @_vq: the struct virtqueue we're talking about.
3226 * @addr: DMA address
3227 * @offset: DMA address offset
3228 * @size: buf size for sync
3229 * @dir: DMA direction
3230 *
3231 * Before calling this function, use virtqueue_dma_need_sync() to confirm that
3232 * the DMA address really needs to be synchronized
3233 */
virtqueue_dma_sync_single_range_for_device(struct virtqueue * _vq,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)3234 void virtqueue_dma_sync_single_range_for_device(struct virtqueue *_vq,
3235 dma_addr_t addr,
3236 unsigned long offset, size_t size,
3237 enum dma_data_direction dir)
3238 {
3239 struct vring_virtqueue *vq = to_vvq(_vq);
3240 struct device *dev = vring_dma_dev(vq);
3241
3242 if (!vq->use_dma_api)
3243 return;
3244
3245 dma_sync_single_range_for_device(dev, addr, offset, size, dir);
3246 }
3247 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_device);
3248
3249 MODULE_DESCRIPTION("Virtio ring implementation");
3250 MODULE_LICENSE("GPL");
3251