xref: /freebsd/sys/dev/vge/if_vge.c (revision ddaf6524682b3ab9e50f7575db319814dbbd053a)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_var.h>
103 #include <net/if_media.h>
104 #include <net/if_types.h>
105 #include <net/if_vlan_var.h>
106 
107 #include <net/bpf.h>
108 
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 
120 MODULE_DEPEND(vge, pci, 1, 1, 1);
121 MODULE_DEPEND(vge, ether, 1, 1, 1);
122 MODULE_DEPEND(vge, miibus, 1, 1, 1);
123 
124 /* "device miibus" required.  See GENERIC if you get errors here. */
125 #include "miibus_if.h"
126 
127 #include <dev/vge/if_vgereg.h>
128 #include <dev/vge/if_vgevar.h>
129 
130 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
131 
132 /* Tunables */
133 static int msi_disable = 0;
134 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
135 
136 /*
137  * The SQE error counter of MIB seems to report bogus value.
138  * Vendor's workaround does not seem to work on PCIe based
139  * controllers. Disable it until we find better workaround.
140  */
141 #undef VGE_ENABLE_SQEERR
142 
143 /*
144  * Various supported device vendors/types and their names.
145  */
146 static struct vge_type vge_devs[] = {
147 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
148 		"VIA Networking Velocity Gigabit Ethernet" },
149 	{ 0, 0, NULL }
150 };
151 
152 static int	vge_attach(device_t);
153 static int	vge_detach(device_t);
154 static int	vge_probe(device_t);
155 static int	vge_resume(device_t);
156 static int	vge_shutdown(device_t);
157 static int	vge_suspend(device_t);
158 
159 static void	vge_cam_clear(struct vge_softc *);
160 static int	vge_cam_set(struct vge_softc *, uint8_t *);
161 static void	vge_clrwol(struct vge_softc *);
162 static void	vge_discard_rxbuf(struct vge_softc *, int);
163 static int	vge_dma_alloc(struct vge_softc *);
164 static void	vge_dma_free(struct vge_softc *);
165 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
166 #ifdef VGE_EEPROM
167 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
168 #endif
169 static int	vge_encap(struct vge_softc *, struct mbuf **);
170 #ifndef __NO_STRICT_ALIGNMENT
171 static __inline void
172 		vge_fixup_rx(struct mbuf *);
173 #endif
174 static void	vge_freebufs(struct vge_softc *);
175 static void	vge_ifmedia_sts(if_t, struct ifmediareq *);
176 static int	vge_ifmedia_upd(if_t);
177 static int	vge_ifmedia_upd_locked(struct vge_softc *);
178 static void	vge_init(void *);
179 static void	vge_init_locked(struct vge_softc *);
180 static void	vge_intr(void *);
181 static void	vge_intr_holdoff(struct vge_softc *);
182 static int	vge_ioctl(if_t, u_long, caddr_t);
183 static void	vge_link_statchg(void *);
184 static int	vge_miibus_readreg(device_t, int, int);
185 static int	vge_miibus_writereg(device_t, int, int, int);
186 static void	vge_miipoll_start(struct vge_softc *);
187 static void	vge_miipoll_stop(struct vge_softc *);
188 static int	vge_newbuf(struct vge_softc *, int);
189 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
190 static void	vge_reset(struct vge_softc *);
191 static int	vge_rx_list_init(struct vge_softc *);
192 static int	vge_rxeof(struct vge_softc *, int);
193 static void	vge_rxfilter(struct vge_softc *);
194 static void	vge_setmedia(struct vge_softc *);
195 static void	vge_setvlan(struct vge_softc *);
196 static void	vge_setwol(struct vge_softc *);
197 static void	vge_start(if_t);
198 static void	vge_start_locked(if_t);
199 static void	vge_stats_clear(struct vge_softc *);
200 static void	vge_stats_update(struct vge_softc *);
201 static void	vge_stop(struct vge_softc *);
202 static void	vge_sysctl_node(struct vge_softc *);
203 static int	vge_tx_list_init(struct vge_softc *);
204 static void	vge_txeof(struct vge_softc *);
205 static void	vge_watchdog(void *);
206 
207 static device_method_t vge_methods[] = {
208 	/* Device interface */
209 	DEVMETHOD(device_probe,		vge_probe),
210 	DEVMETHOD(device_attach,	vge_attach),
211 	DEVMETHOD(device_detach,	vge_detach),
212 	DEVMETHOD(device_suspend,	vge_suspend),
213 	DEVMETHOD(device_resume,	vge_resume),
214 	DEVMETHOD(device_shutdown,	vge_shutdown),
215 
216 	/* MII interface */
217 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
218 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
219 
220 	DEVMETHOD_END
221 };
222 
223 static driver_t vge_driver = {
224 	"vge",
225 	vge_methods,
226 	sizeof(struct vge_softc)
227 };
228 
229 DRIVER_MODULE(vge, pci, vge_driver, 0, 0);
230 DRIVER_MODULE(miibus, vge, miibus_driver, 0, 0);
231 
232 #ifdef VGE_EEPROM
233 /*
234  * Read a word of data stored in the EEPROM at address 'addr.'
235  */
236 static void
vge_eeprom_getword(struct vge_softc * sc,int addr,uint16_t * dest)237 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
238 {
239 	int i;
240 	uint16_t word = 0;
241 
242 	/*
243 	 * Enter EEPROM embedded programming mode. In order to
244 	 * access the EEPROM at all, we first have to set the
245 	 * EELOAD bit in the CHIPCFG2 register.
246 	 */
247 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
248 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
249 
250 	/* Select the address of the word we want to read */
251 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
252 
253 	/* Issue read command */
254 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
255 
256 	/* Wait for the done bit to be set. */
257 	for (i = 0; i < VGE_TIMEOUT; i++) {
258 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
259 			break;
260 	}
261 
262 	if (i == VGE_TIMEOUT) {
263 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
264 		*dest = 0;
265 		return;
266 	}
267 
268 	/* Read the result */
269 	word = CSR_READ_2(sc, VGE_EERDDAT);
270 
271 	/* Turn off EEPROM access mode. */
272 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
273 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
274 
275 	*dest = word;
276 }
277 #endif
278 
279 /*
280  * Read a sequence of words from the EEPROM.
281  */
282 static void
vge_read_eeprom(struct vge_softc * sc,caddr_t dest,int off,int cnt,int swap)283 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
284 {
285 	int i;
286 #ifdef VGE_EEPROM
287 	uint16_t word = 0, *ptr;
288 
289 	for (i = 0; i < cnt; i++) {
290 		vge_eeprom_getword(sc, off + i, &word);
291 		ptr = (uint16_t *)(dest + (i * 2));
292 		if (swap)
293 			*ptr = ntohs(word);
294 		else
295 			*ptr = word;
296 	}
297 #else
298 	for (i = 0; i < ETHER_ADDR_LEN; i++)
299 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
300 #endif
301 }
302 
303 static void
vge_miipoll_stop(struct vge_softc * sc)304 vge_miipoll_stop(struct vge_softc *sc)
305 {
306 	int i;
307 
308 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
309 
310 	for (i = 0; i < VGE_TIMEOUT; i++) {
311 		DELAY(1);
312 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
313 			break;
314 	}
315 
316 	if (i == VGE_TIMEOUT)
317 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
318 }
319 
320 static void
vge_miipoll_start(struct vge_softc * sc)321 vge_miipoll_start(struct vge_softc *sc)
322 {
323 	int i;
324 
325 	/* First, make sure we're idle. */
326 
327 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
328 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
329 
330 	for (i = 0; i < VGE_TIMEOUT; i++) {
331 		DELAY(1);
332 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
333 			break;
334 	}
335 
336 	if (i == VGE_TIMEOUT) {
337 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
338 		return;
339 	}
340 
341 	/* Now enable auto poll mode. */
342 
343 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
344 
345 	/* And make sure it started. */
346 
347 	for (i = 0; i < VGE_TIMEOUT; i++) {
348 		DELAY(1);
349 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
350 			break;
351 	}
352 
353 	if (i == VGE_TIMEOUT)
354 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
355 }
356 
357 static int
vge_miibus_readreg(device_t dev,int phy,int reg)358 vge_miibus_readreg(device_t dev, int phy, int reg)
359 {
360 	struct vge_softc *sc;
361 	int i;
362 	uint16_t rval = 0;
363 
364 	sc = device_get_softc(dev);
365 
366 	vge_miipoll_stop(sc);
367 
368 	/* Specify the register we want to read. */
369 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
370 
371 	/* Issue read command. */
372 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
373 
374 	/* Wait for the read command bit to self-clear. */
375 	for (i = 0; i < VGE_TIMEOUT; i++) {
376 		DELAY(1);
377 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
378 			break;
379 	}
380 
381 	if (i == VGE_TIMEOUT)
382 		device_printf(sc->vge_dev, "MII read timed out\n");
383 	else
384 		rval = CSR_READ_2(sc, VGE_MIIDATA);
385 
386 	vge_miipoll_start(sc);
387 
388 	return (rval);
389 }
390 
391 static int
vge_miibus_writereg(device_t dev,int phy,int reg,int data)392 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
393 {
394 	struct vge_softc *sc;
395 	int i, rval = 0;
396 
397 	sc = device_get_softc(dev);
398 
399 	vge_miipoll_stop(sc);
400 
401 	/* Specify the register we want to write. */
402 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
403 
404 	/* Specify the data we want to write. */
405 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
406 
407 	/* Issue write command. */
408 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
409 
410 	/* Wait for the write command bit to self-clear. */
411 	for (i = 0; i < VGE_TIMEOUT; i++) {
412 		DELAY(1);
413 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
414 			break;
415 	}
416 
417 	if (i == VGE_TIMEOUT) {
418 		device_printf(sc->vge_dev, "MII write timed out\n");
419 		rval = EIO;
420 	}
421 
422 	vge_miipoll_start(sc);
423 
424 	return (rval);
425 }
426 
427 static void
vge_cam_clear(struct vge_softc * sc)428 vge_cam_clear(struct vge_softc *sc)
429 {
430 	int i;
431 
432 	/*
433 	 * Turn off all the mask bits. This tells the chip
434 	 * that none of the entries in the CAM filter are valid.
435 	 * desired entries will be enabled as we fill the filter in.
436 	 */
437 
438 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
439 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
440 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
441 	for (i = 0; i < 8; i++)
442 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
443 
444 	/* Clear the VLAN filter too. */
445 
446 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
447 	for (i = 0; i < 8; i++)
448 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
449 
450 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
451 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
452 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
453 
454 	sc->vge_camidx = 0;
455 }
456 
457 static int
vge_cam_set(struct vge_softc * sc,uint8_t * addr)458 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
459 {
460 	int i, error = 0;
461 
462 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
463 		return (ENOSPC);
464 
465 	/* Select the CAM data page. */
466 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
467 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
468 
469 	/* Set the filter entry we want to update and enable writing. */
470 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
471 
472 	/* Write the address to the CAM registers */
473 	for (i = 0; i < ETHER_ADDR_LEN; i++)
474 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
475 
476 	/* Issue a write command. */
477 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
478 
479 	/* Wake for it to clear. */
480 	for (i = 0; i < VGE_TIMEOUT; i++) {
481 		DELAY(1);
482 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
483 			break;
484 	}
485 
486 	if (i == VGE_TIMEOUT) {
487 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
488 		error = EIO;
489 		goto fail;
490 	}
491 
492 	/* Select the CAM mask page. */
493 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
494 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
495 
496 	/* Set the mask bit that enables this filter. */
497 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
498 	    1<<(sc->vge_camidx & 7));
499 
500 	sc->vge_camidx++;
501 
502 fail:
503 	/* Turn off access to CAM. */
504 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
505 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
506 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
507 
508 	return (error);
509 }
510 
511 static void
vge_setvlan(struct vge_softc * sc)512 vge_setvlan(struct vge_softc *sc)
513 {
514 	if_t ifp;
515 	uint8_t cfg;
516 
517 	VGE_LOCK_ASSERT(sc);
518 
519 	ifp = sc->vge_ifp;
520 	cfg = CSR_READ_1(sc, VGE_RXCFG);
521 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
522 		cfg |= VGE_VTAG_OPT2;
523 	else
524 		cfg &= ~VGE_VTAG_OPT2;
525 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
526 }
527 
528 static u_int
vge_set_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)529 vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
530 {
531 	struct vge_softc *sc = arg;
532 
533         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
534 		return (0);
535 
536 	(void )vge_cam_set(sc, LLADDR(sdl));
537 
538 	return (1);
539 }
540 
541 static u_int
vge_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)542 vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
543 {
544 	uint32_t h, *hashes = arg;
545 
546 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
547 	if (h < 32)
548 		hashes[0] |= (1 << h);
549 	else
550 		hashes[1] |= (1 << (h - 32));
551 
552 	return (1);
553 }
554 
555 /*
556  * Program the multicast filter. We use the 64-entry CAM filter
557  * for perfect filtering. If there's more than 64 multicast addresses,
558  * we use the hash filter instead.
559  */
560 static void
vge_rxfilter(struct vge_softc * sc)561 vge_rxfilter(struct vge_softc *sc)
562 {
563 	if_t ifp;
564 	uint32_t hashes[2];
565 	uint8_t rxcfg;
566 
567 	VGE_LOCK_ASSERT(sc);
568 
569 	/* First, zot all the multicast entries. */
570 	hashes[0] = 0;
571 	hashes[1] = 0;
572 
573 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
574 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
575 	    VGE_RXCTL_RX_PROMISC);
576 	/*
577 	 * Always allow VLAN oversized frames and frames for
578 	 * this host.
579 	 */
580 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
581 
582 	ifp = sc->vge_ifp;
583 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
584 		rxcfg |= VGE_RXCTL_RX_BCAST;
585 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
586 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
587 			rxcfg |= VGE_RXCTL_RX_PROMISC;
588 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
589 			hashes[0] = 0xFFFFFFFF;
590 			hashes[1] = 0xFFFFFFFF;
591 		}
592 		goto done;
593 	}
594 
595 	vge_cam_clear(sc);
596 
597 	/* Now program new ones */
598 	if_foreach_llmaddr(ifp, vge_set_maddr, sc);
599 
600 	/* If there were too many addresses, use the hash filter. */
601         if (sc->vge_camidx == VGE_CAM_MAXADDRS) {
602 		vge_cam_clear(sc);
603 		 if_foreach_llmaddr(ifp, vge_hash_maddr, hashes);
604 	}
605 
606 done:
607 	if (hashes[0] != 0 || hashes[1] != 0)
608 		rxcfg |= VGE_RXCTL_RX_MCAST;
609 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
610 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
611 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
612 }
613 
614 static void
vge_reset(struct vge_softc * sc)615 vge_reset(struct vge_softc *sc)
616 {
617 	int i;
618 
619 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
620 
621 	for (i = 0; i < VGE_TIMEOUT; i++) {
622 		DELAY(5);
623 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
624 			break;
625 	}
626 
627 	if (i == VGE_TIMEOUT) {
628 		device_printf(sc->vge_dev, "soft reset timed out\n");
629 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
630 		DELAY(2000);
631 	}
632 
633 	DELAY(5000);
634 }
635 
636 /*
637  * Probe for a VIA gigabit chip. Check the PCI vendor and device
638  * IDs against our list and return a device name if we find a match.
639  */
640 static int
vge_probe(device_t dev)641 vge_probe(device_t dev)
642 {
643 	struct vge_type	*t;
644 
645 	t = vge_devs;
646 
647 	while (t->vge_name != NULL) {
648 		if ((pci_get_vendor(dev) == t->vge_vid) &&
649 		    (pci_get_device(dev) == t->vge_did)) {
650 			device_set_desc(dev, t->vge_name);
651 			return (BUS_PROBE_DEFAULT);
652 		}
653 		t++;
654 	}
655 
656 	return (ENXIO);
657 }
658 
659 /*
660  * Map a single buffer address.
661  */
662 
663 struct vge_dmamap_arg {
664 	bus_addr_t	vge_busaddr;
665 };
666 
667 static void
vge_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)668 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
669 {
670 	struct vge_dmamap_arg *ctx;
671 
672 	if (error != 0)
673 		return;
674 
675 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
676 
677 	ctx = (struct vge_dmamap_arg *)arg;
678 	ctx->vge_busaddr = segs[0].ds_addr;
679 }
680 
681 static int
vge_dma_alloc(struct vge_softc * sc)682 vge_dma_alloc(struct vge_softc *sc)
683 {
684 	struct vge_dmamap_arg ctx;
685 	struct vge_txdesc *txd;
686 	struct vge_rxdesc *rxd;
687 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
688 	int error, i;
689 
690 	/*
691 	 * It seems old PCI controllers do not support DAC.  DAC
692 	 * configuration can be enabled by accessing VGE_CHIPCFG3
693 	 * register but honor EEPROM configuration instead of
694 	 * blindly overriding DAC configuration.  PCIe based
695 	 * controllers are supposed to support 64bit DMA so enable
696 	 * 64bit DMA on these controllers.
697 	 */
698 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
699 		lowaddr = BUS_SPACE_MAXADDR;
700 	else
701 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
702 
703 again:
704 	/* Create parent ring tag. */
705 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
706 	    1, 0,			/* algnmnt, boundary */
707 	    lowaddr,			/* lowaddr */
708 	    BUS_SPACE_MAXADDR,		/* highaddr */
709 	    NULL, NULL,			/* filter, filterarg */
710 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
711 	    0,				/* nsegments */
712 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
713 	    0,				/* flags */
714 	    NULL, NULL,			/* lockfunc, lockarg */
715 	    &sc->vge_cdata.vge_ring_tag);
716 	if (error != 0) {
717 		device_printf(sc->vge_dev,
718 		    "could not create parent DMA tag.\n");
719 		goto fail;
720 	}
721 
722 	/* Create tag for Tx ring. */
723 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
724 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
725 	    BUS_SPACE_MAXADDR,		/* lowaddr */
726 	    BUS_SPACE_MAXADDR,		/* highaddr */
727 	    NULL, NULL,			/* filter, filterarg */
728 	    VGE_TX_LIST_SZ,		/* maxsize */
729 	    1,				/* nsegments */
730 	    VGE_TX_LIST_SZ,		/* maxsegsize */
731 	    0,				/* flags */
732 	    NULL, NULL,			/* lockfunc, lockarg */
733 	    &sc->vge_cdata.vge_tx_ring_tag);
734 	if (error != 0) {
735 		device_printf(sc->vge_dev,
736 		    "could not allocate Tx ring DMA tag.\n");
737 		goto fail;
738 	}
739 
740 	/* Create tag for Rx ring. */
741 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
742 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
743 	    BUS_SPACE_MAXADDR,		/* lowaddr */
744 	    BUS_SPACE_MAXADDR,		/* highaddr */
745 	    NULL, NULL,			/* filter, filterarg */
746 	    VGE_RX_LIST_SZ,		/* maxsize */
747 	    1,				/* nsegments */
748 	    VGE_RX_LIST_SZ,		/* maxsegsize */
749 	    0,				/* flags */
750 	    NULL, NULL,			/* lockfunc, lockarg */
751 	    &sc->vge_cdata.vge_rx_ring_tag);
752 	if (error != 0) {
753 		device_printf(sc->vge_dev,
754 		    "could not allocate Rx ring DMA tag.\n");
755 		goto fail;
756 	}
757 
758 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
759 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
760 	    (void **)&sc->vge_rdata.vge_tx_ring,
761 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
762 	    &sc->vge_cdata.vge_tx_ring_map);
763 	if (error != 0) {
764 		device_printf(sc->vge_dev,
765 		    "could not allocate DMA'able memory for Tx ring.\n");
766 		goto fail;
767 	}
768 
769 	ctx.vge_busaddr = 0;
770 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
771 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
772 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
773 	if (error != 0 || ctx.vge_busaddr == 0) {
774 		device_printf(sc->vge_dev,
775 		    "could not load DMA'able memory for Tx ring.\n");
776 		goto fail;
777 	}
778 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
779 
780 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
781 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
782 	    (void **)&sc->vge_rdata.vge_rx_ring,
783 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
784 	    &sc->vge_cdata.vge_rx_ring_map);
785 	if (error != 0) {
786 		device_printf(sc->vge_dev,
787 		    "could not allocate DMA'able memory for Rx ring.\n");
788 		goto fail;
789 	}
790 
791 	ctx.vge_busaddr = 0;
792 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
793 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
794 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
795 	if (error != 0 || ctx.vge_busaddr == 0) {
796 		device_printf(sc->vge_dev,
797 		    "could not load DMA'able memory for Rx ring.\n");
798 		goto fail;
799 	}
800 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
801 
802 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
803 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
804 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
805 	if ((VGE_ADDR_HI(tx_ring_end) !=
806 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
807 	    (VGE_ADDR_HI(rx_ring_end) !=
808 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
809 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
810 		device_printf(sc->vge_dev, "4GB boundary crossed, "
811 		    "switching to 32bit DMA address mode.\n");
812 		vge_dma_free(sc);
813 		/* Limit DMA address space to 32bit and try again. */
814 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
815 		goto again;
816 	}
817 
818 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
819 		lowaddr = VGE_BUF_DMA_MAXADDR;
820 	else
821 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
822 	/* Create parent buffer tag. */
823 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
824 	    1, 0,			/* algnmnt, boundary */
825 	    lowaddr,			/* lowaddr */
826 	    BUS_SPACE_MAXADDR,		/* highaddr */
827 	    NULL, NULL,			/* filter, filterarg */
828 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
829 	    0,				/* nsegments */
830 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
831 	    0,				/* flags */
832 	    NULL, NULL,			/* lockfunc, lockarg */
833 	    &sc->vge_cdata.vge_buffer_tag);
834 	if (error != 0) {
835 		device_printf(sc->vge_dev,
836 		    "could not create parent buffer DMA tag.\n");
837 		goto fail;
838 	}
839 
840 	/* Create tag for Tx buffers. */
841 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
842 	    1, 0,			/* algnmnt, boundary */
843 	    BUS_SPACE_MAXADDR,		/* lowaddr */
844 	    BUS_SPACE_MAXADDR,		/* highaddr */
845 	    NULL, NULL,			/* filter, filterarg */
846 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
847 	    VGE_MAXTXSEGS,		/* nsegments */
848 	    MCLBYTES,			/* maxsegsize */
849 	    0,				/* flags */
850 	    NULL, NULL,			/* lockfunc, lockarg */
851 	    &sc->vge_cdata.vge_tx_tag);
852 	if (error != 0) {
853 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
854 		goto fail;
855 	}
856 
857 	/* Create tag for Rx buffers. */
858 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
859 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
860 	    BUS_SPACE_MAXADDR,		/* lowaddr */
861 	    BUS_SPACE_MAXADDR,		/* highaddr */
862 	    NULL, NULL,			/* filter, filterarg */
863 	    MCLBYTES,			/* maxsize */
864 	    1,				/* nsegments */
865 	    MCLBYTES,			/* maxsegsize */
866 	    0,				/* flags */
867 	    NULL, NULL,			/* lockfunc, lockarg */
868 	    &sc->vge_cdata.vge_rx_tag);
869 	if (error != 0) {
870 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
871 		goto fail;
872 	}
873 
874 	/* Create DMA maps for Tx buffers. */
875 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
876 		txd = &sc->vge_cdata.vge_txdesc[i];
877 		txd->tx_m = NULL;
878 		txd->tx_dmamap = NULL;
879 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
880 		    &txd->tx_dmamap);
881 		if (error != 0) {
882 			device_printf(sc->vge_dev,
883 			    "could not create Tx dmamap.\n");
884 			goto fail;
885 		}
886 	}
887 	/* Create DMA maps for Rx buffers. */
888 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
889 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
890 		device_printf(sc->vge_dev,
891 		    "could not create spare Rx dmamap.\n");
892 		goto fail;
893 	}
894 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
895 		rxd = &sc->vge_cdata.vge_rxdesc[i];
896 		rxd->rx_m = NULL;
897 		rxd->rx_dmamap = NULL;
898 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
899 		    &rxd->rx_dmamap);
900 		if (error != 0) {
901 			device_printf(sc->vge_dev,
902 			    "could not create Rx dmamap.\n");
903 			goto fail;
904 		}
905 	}
906 
907 fail:
908 	return (error);
909 }
910 
911 static void
vge_dma_free(struct vge_softc * sc)912 vge_dma_free(struct vge_softc *sc)
913 {
914 	struct vge_txdesc *txd;
915 	struct vge_rxdesc *rxd;
916 	int i;
917 
918 	/* Tx ring. */
919 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
920 		if (sc->vge_rdata.vge_tx_ring_paddr)
921 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
922 			    sc->vge_cdata.vge_tx_ring_map);
923 		if (sc->vge_rdata.vge_tx_ring)
924 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
925 			    sc->vge_rdata.vge_tx_ring,
926 			    sc->vge_cdata.vge_tx_ring_map);
927 		sc->vge_rdata.vge_tx_ring = NULL;
928 		sc->vge_rdata.vge_tx_ring_paddr = 0;
929 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
930 		sc->vge_cdata.vge_tx_ring_tag = NULL;
931 	}
932 	/* Rx ring. */
933 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
934 		if (sc->vge_rdata.vge_rx_ring_paddr)
935 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
936 			    sc->vge_cdata.vge_rx_ring_map);
937 		if (sc->vge_rdata.vge_rx_ring)
938 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
939 			    sc->vge_rdata.vge_rx_ring,
940 			    sc->vge_cdata.vge_rx_ring_map);
941 		sc->vge_rdata.vge_rx_ring = NULL;
942 		sc->vge_rdata.vge_rx_ring_paddr = 0;
943 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
944 		sc->vge_cdata.vge_rx_ring_tag = NULL;
945 	}
946 	/* Tx buffers. */
947 	if (sc->vge_cdata.vge_tx_tag != NULL) {
948 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
949 			txd = &sc->vge_cdata.vge_txdesc[i];
950 			if (txd->tx_dmamap != NULL) {
951 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
952 				    txd->tx_dmamap);
953 				txd->tx_dmamap = NULL;
954 			}
955 		}
956 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
957 		sc->vge_cdata.vge_tx_tag = NULL;
958 	}
959 	/* Rx buffers. */
960 	if (sc->vge_cdata.vge_rx_tag != NULL) {
961 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
962 			rxd = &sc->vge_cdata.vge_rxdesc[i];
963 			if (rxd->rx_dmamap != NULL) {
964 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
965 				    rxd->rx_dmamap);
966 				rxd->rx_dmamap = NULL;
967 			}
968 		}
969 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
970 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
971 			    sc->vge_cdata.vge_rx_sparemap);
972 			sc->vge_cdata.vge_rx_sparemap = NULL;
973 		}
974 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
975 		sc->vge_cdata.vge_rx_tag = NULL;
976 	}
977 
978 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
979 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
980 		sc->vge_cdata.vge_buffer_tag = NULL;
981 	}
982 	if (sc->vge_cdata.vge_ring_tag != NULL) {
983 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
984 		sc->vge_cdata.vge_ring_tag = NULL;
985 	}
986 }
987 
988 /*
989  * Attach the interface. Allocate softc structures, do ifmedia
990  * setup and ethernet/BPF attach.
991  */
992 static int
vge_attach(device_t dev)993 vge_attach(device_t dev)
994 {
995 	u_char eaddr[ETHER_ADDR_LEN];
996 	struct vge_softc *sc;
997 	if_t ifp;
998 	int error = 0, cap, i, msic, rid;
999 
1000 	sc = device_get_softc(dev);
1001 	sc->vge_dev = dev;
1002 
1003 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1004 	    MTX_DEF);
1005 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1006 
1007 	/*
1008 	 * Map control/status registers.
1009 	 */
1010 	pci_enable_busmaster(dev);
1011 
1012 	rid = PCIR_BAR(1);
1013 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1014 	    RF_ACTIVE);
1015 
1016 	if (sc->vge_res == NULL) {
1017 		device_printf(dev, "couldn't map ports/memory\n");
1018 		error = ENXIO;
1019 		goto fail;
1020 	}
1021 
1022 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1023 		sc->vge_flags |= VGE_FLAG_PCIE;
1024 		sc->vge_expcap = cap;
1025 	} else
1026 		sc->vge_flags |= VGE_FLAG_JUMBO;
1027 	if (pci_has_pm(dev))
1028 		sc->vge_flags |= VGE_FLAG_PMCAP;
1029 	rid = 0;
1030 	msic = pci_msi_count(dev);
1031 	if (msi_disable == 0 && msic > 0) {
1032 		msic = 1;
1033 		if (pci_alloc_msi(dev, &msic) == 0) {
1034 			if (msic == 1) {
1035 				sc->vge_flags |= VGE_FLAG_MSI;
1036 				device_printf(dev, "Using %d MSI message\n",
1037 				    msic);
1038 				rid = 1;
1039 			} else
1040 				pci_release_msi(dev);
1041 		}
1042 	}
1043 
1044 	/* Allocate interrupt */
1045 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1046 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1047 	if (sc->vge_irq == NULL) {
1048 		device_printf(dev, "couldn't map interrupt\n");
1049 		error = ENXIO;
1050 		goto fail;
1051 	}
1052 
1053 	/* Reset the adapter. */
1054 	vge_reset(sc);
1055 	/* Reload EEPROM. */
1056 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1057 	for (i = 0; i < VGE_TIMEOUT; i++) {
1058 		DELAY(5);
1059 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1060 			break;
1061 	}
1062 	if (i == VGE_TIMEOUT)
1063 		device_printf(dev, "EEPROM reload timed out\n");
1064 	/*
1065 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1066 	 * MAC will receive magic packet which in turn confuses
1067 	 * controller.
1068 	 */
1069 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1070 
1071 	/*
1072 	 * Get station address from the EEPROM.
1073 	 */
1074 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1075 	/*
1076 	 * Save configured PHY address.
1077 	 * It seems the PHY address of PCIe controllers just
1078 	 * reflects media jump strapping status so we assume the
1079 	 * internal PHY address of PCIe controller is at 1.
1080 	 */
1081 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1082 		sc->vge_phyaddr = 1;
1083 	else
1084 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1085 		    VGE_MIICFG_PHYADDR;
1086 	/* Clear WOL and take hardware from powerdown. */
1087 	vge_clrwol(sc);
1088 	vge_sysctl_node(sc);
1089 	error = vge_dma_alloc(sc);
1090 	if (error)
1091 		goto fail;
1092 
1093 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1094 	vge_miipoll_start(sc);
1095 	/* Do MII setup */
1096 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1097 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1098 	    MIIF_DOPAUSE);
1099 	if (error != 0) {
1100 		device_printf(dev, "attaching PHYs failed\n");
1101 		goto fail;
1102 	}
1103 
1104 	if_setsoftc(ifp, sc);
1105 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1106 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1107 	if_setioctlfn(ifp, vge_ioctl);
1108 	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
1109 	if_setstartfn(ifp, vge_start);
1110 	if_sethwassist(ifp, VGE_CSUM_FEATURES);
1111 	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1112 	    IFCAP_VLAN_HWTAGGING, 0);
1113 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1114 		if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
1115 	if_setcapenable(ifp, if_getcapabilities(ifp));
1116 #ifdef DEVICE_POLLING
1117 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
1118 #endif
1119 	if_setinitfn(ifp, vge_init);
1120 	if_setsendqlen(ifp, VGE_TX_DESC_CNT - 1);
1121 	if_setsendqready(ifp);
1122 
1123 	/*
1124 	 * Call MI attach routine.
1125 	 */
1126 	ether_ifattach(ifp, eaddr);
1127 
1128 	/* Tell the upper layer(s) we support long frames. */
1129 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1130 
1131 	/* Hook interrupt last to avoid having to lock softc */
1132 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1133 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1134 
1135 	if (error) {
1136 		device_printf(dev, "couldn't set up irq\n");
1137 		ether_ifdetach(ifp);
1138 		goto fail;
1139 	}
1140 
1141 fail:
1142 	if (error)
1143 		vge_detach(dev);
1144 
1145 	return (error);
1146 }
1147 
1148 /*
1149  * Shutdown hardware and free up resources. This can be called any
1150  * time after the mutex has been initialized. It is called in both
1151  * the error case in attach and the normal detach case so it needs
1152  * to be careful about only freeing resources that have actually been
1153  * allocated.
1154  */
1155 static int
vge_detach(device_t dev)1156 vge_detach(device_t dev)
1157 {
1158 	struct vge_softc *sc;
1159 	if_t ifp;
1160 
1161 	sc = device_get_softc(dev);
1162 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1163 	ifp = sc->vge_ifp;
1164 
1165 #ifdef DEVICE_POLLING
1166 	if (if_getcapenable(ifp) & IFCAP_POLLING)
1167 		ether_poll_deregister(ifp);
1168 #endif
1169 
1170 	/* These should only be active if attach succeeded */
1171 	if (device_is_attached(dev)) {
1172 		ether_ifdetach(ifp);
1173 		VGE_LOCK(sc);
1174 		vge_stop(sc);
1175 		VGE_UNLOCK(sc);
1176 		callout_drain(&sc->vge_watchdog);
1177 	}
1178 	bus_generic_detach(dev);
1179 
1180 	if (sc->vge_intrhand)
1181 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1182 	if (sc->vge_irq)
1183 		bus_release_resource(dev, SYS_RES_IRQ,
1184 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1185 	if (sc->vge_flags & VGE_FLAG_MSI)
1186 		pci_release_msi(dev);
1187 	if (sc->vge_res)
1188 		bus_release_resource(dev, SYS_RES_MEMORY,
1189 		    PCIR_BAR(1), sc->vge_res);
1190 	if (ifp)
1191 		if_free(ifp);
1192 
1193 	vge_dma_free(sc);
1194 	mtx_destroy(&sc->vge_mtx);
1195 
1196 	return (0);
1197 }
1198 
1199 static void
vge_discard_rxbuf(struct vge_softc * sc,int prod)1200 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1201 {
1202 	struct vge_rxdesc *rxd;
1203 	int i;
1204 
1205 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1206 	rxd->rx_desc->vge_sts = 0;
1207 	rxd->rx_desc->vge_ctl = 0;
1208 
1209 	/*
1210 	 * Note: the manual fails to document the fact that for
1211 	 * proper operation, the driver needs to replentish the RX
1212 	 * DMA ring 4 descriptors at a time (rather than one at a
1213 	 * time, like most chips). We can allocate the new buffers
1214 	 * but we should not set the OWN bits until we're ready
1215 	 * to hand back 4 of them in one shot.
1216 	 */
1217 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1218 		for (i = VGE_RXCHUNK; i > 0; i--) {
1219 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1220 			rxd = rxd->rxd_prev;
1221 		}
1222 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1223 	}
1224 }
1225 
1226 static int
vge_newbuf(struct vge_softc * sc,int prod)1227 vge_newbuf(struct vge_softc *sc, int prod)
1228 {
1229 	struct vge_rxdesc *rxd;
1230 	struct mbuf *m;
1231 	bus_dma_segment_t segs[1];
1232 	bus_dmamap_t map;
1233 	int i, nsegs;
1234 
1235 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1236 	if (m == NULL)
1237 		return (ENOBUFS);
1238 	/*
1239 	 * This is part of an evil trick to deal with strict-alignment
1240 	 * architectures. The VIA chip requires RX buffers to be aligned
1241 	 * on 32-bit boundaries, but that will hose strict-alignment
1242 	 * architectures. To get around this, we leave some empty space
1243 	 * at the start of each buffer and for non-strict-alignment hosts,
1244 	 * we copy the buffer back two bytes to achieve word alignment.
1245 	 * This is slightly more efficient than allocating a new buffer,
1246 	 * copying the contents, and discarding the old buffer.
1247 	 */
1248 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1249 	m_adj(m, VGE_RX_BUF_ALIGN);
1250 
1251 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1252 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1253 		m_freem(m);
1254 		return (ENOBUFS);
1255 	}
1256 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1257 
1258 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1259 	if (rxd->rx_m != NULL) {
1260 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1261 		    BUS_DMASYNC_POSTREAD);
1262 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1263 	}
1264 	map = rxd->rx_dmamap;
1265 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1266 	sc->vge_cdata.vge_rx_sparemap = map;
1267 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1268 	    BUS_DMASYNC_PREREAD);
1269 	rxd->rx_m = m;
1270 
1271 	rxd->rx_desc->vge_sts = 0;
1272 	rxd->rx_desc->vge_ctl = 0;
1273 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1274 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1275 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1276 
1277 	/*
1278 	 * Note: the manual fails to document the fact that for
1279 	 * proper operation, the driver needs to replenish the RX
1280 	 * DMA ring 4 descriptors at a time (rather than one at a
1281 	 * time, like most chips). We can allocate the new buffers
1282 	 * but we should not set the OWN bits until we're ready
1283 	 * to hand back 4 of them in one shot.
1284 	 */
1285 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1286 		for (i = VGE_RXCHUNK; i > 0; i--) {
1287 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1288 			rxd = rxd->rxd_prev;
1289 		}
1290 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1291 	}
1292 
1293 	return (0);
1294 }
1295 
1296 static int
vge_tx_list_init(struct vge_softc * sc)1297 vge_tx_list_init(struct vge_softc *sc)
1298 {
1299 	struct vge_ring_data *rd;
1300 	struct vge_txdesc *txd;
1301 	int i;
1302 
1303 	VGE_LOCK_ASSERT(sc);
1304 
1305 	sc->vge_cdata.vge_tx_prodidx = 0;
1306 	sc->vge_cdata.vge_tx_considx = 0;
1307 	sc->vge_cdata.vge_tx_cnt = 0;
1308 
1309 	rd = &sc->vge_rdata;
1310 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1311 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1312 		txd = &sc->vge_cdata.vge_txdesc[i];
1313 		txd->tx_m = NULL;
1314 		txd->tx_desc = &rd->vge_tx_ring[i];
1315 	}
1316 
1317 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1318 	    sc->vge_cdata.vge_tx_ring_map,
1319 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1320 
1321 	return (0);
1322 }
1323 
1324 static int
vge_rx_list_init(struct vge_softc * sc)1325 vge_rx_list_init(struct vge_softc *sc)
1326 {
1327 	struct vge_ring_data *rd;
1328 	struct vge_rxdesc *rxd;
1329 	int i;
1330 
1331 	VGE_LOCK_ASSERT(sc);
1332 
1333 	sc->vge_cdata.vge_rx_prodidx = 0;
1334 	sc->vge_cdata.vge_head = NULL;
1335 	sc->vge_cdata.vge_tail = NULL;
1336 	sc->vge_cdata.vge_rx_commit = 0;
1337 
1338 	rd = &sc->vge_rdata;
1339 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1340 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1341 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1342 		rxd->rx_m = NULL;
1343 		rxd->rx_desc = &rd->vge_rx_ring[i];
1344 		if (i == 0)
1345 			rxd->rxd_prev =
1346 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1347 		else
1348 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1349 		if (vge_newbuf(sc, i) != 0)
1350 			return (ENOBUFS);
1351 	}
1352 
1353 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1354 	    sc->vge_cdata.vge_rx_ring_map,
1355 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1356 
1357 	sc->vge_cdata.vge_rx_commit = 0;
1358 
1359 	return (0);
1360 }
1361 
1362 static void
vge_freebufs(struct vge_softc * sc)1363 vge_freebufs(struct vge_softc *sc)
1364 {
1365 	struct vge_txdesc *txd;
1366 	struct vge_rxdesc *rxd;
1367 	if_t ifp;
1368 	int i;
1369 
1370 	VGE_LOCK_ASSERT(sc);
1371 
1372 	ifp = sc->vge_ifp;
1373 	/*
1374 	 * Free RX and TX mbufs still in the queues.
1375 	 */
1376 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1377 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1378 		if (rxd->rx_m != NULL) {
1379 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1380 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1381 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1382 			    rxd->rx_dmamap);
1383 			m_freem(rxd->rx_m);
1384 			rxd->rx_m = NULL;
1385 		}
1386 	}
1387 
1388 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1389 		txd = &sc->vge_cdata.vge_txdesc[i];
1390 		if (txd->tx_m != NULL) {
1391 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1392 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1393 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1394 			    txd->tx_dmamap);
1395 			m_freem(txd->tx_m);
1396 			txd->tx_m = NULL;
1397 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1398 		}
1399 	}
1400 }
1401 
1402 #ifndef	__NO_STRICT_ALIGNMENT
1403 static __inline void
vge_fixup_rx(struct mbuf * m)1404 vge_fixup_rx(struct mbuf *m)
1405 {
1406 	int i;
1407 	uint16_t *src, *dst;
1408 
1409 	src = mtod(m, uint16_t *);
1410 	dst = src - 1;
1411 
1412 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1413 		*dst++ = *src++;
1414 
1415 	m->m_data -= ETHER_ALIGN;
1416 }
1417 #endif
1418 
1419 /*
1420  * RX handler. We support the reception of jumbo frames that have
1421  * been fragmented across multiple 2K mbuf cluster buffers.
1422  */
1423 static int
vge_rxeof(struct vge_softc * sc,int count)1424 vge_rxeof(struct vge_softc *sc, int count)
1425 {
1426 	struct mbuf *m;
1427 	if_t ifp;
1428 	int prod, prog, total_len;
1429 	struct vge_rxdesc *rxd;
1430 	struct vge_rx_desc *cur_rx;
1431 	uint32_t rxstat, rxctl;
1432 
1433 	VGE_LOCK_ASSERT(sc);
1434 
1435 	ifp = sc->vge_ifp;
1436 
1437 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1438 	    sc->vge_cdata.vge_rx_ring_map,
1439 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1440 
1441 	prod = sc->vge_cdata.vge_rx_prodidx;
1442 	for (prog = 0; count > 0 &&
1443 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0;
1444 	    VGE_RX_DESC_INC(prod)) {
1445 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1446 		rxstat = le32toh(cur_rx->vge_sts);
1447 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1448 			break;
1449 		count--;
1450 		prog++;
1451 		rxctl = le32toh(cur_rx->vge_ctl);
1452 		total_len = VGE_RXBYTES(rxstat);
1453 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1454 		m = rxd->rx_m;
1455 
1456 		/*
1457 		 * If the 'start of frame' bit is set, this indicates
1458 		 * either the first fragment in a multi-fragment receive,
1459 		 * or an intermediate fragment. Either way, we want to
1460 		 * accumulate the buffers.
1461 		 */
1462 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1463 			if (vge_newbuf(sc, prod) != 0) {
1464 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1465 				VGE_CHAIN_RESET(sc);
1466 				vge_discard_rxbuf(sc, prod);
1467 				continue;
1468 			}
1469 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1470 			if (sc->vge_cdata.vge_head == NULL) {
1471 				sc->vge_cdata.vge_head = m;
1472 				sc->vge_cdata.vge_tail = m;
1473 			} else {
1474 				m->m_flags &= ~M_PKTHDR;
1475 				sc->vge_cdata.vge_tail->m_next = m;
1476 				sc->vge_cdata.vge_tail = m;
1477 			}
1478 			continue;
1479 		}
1480 
1481 		/*
1482 		 * Bad/error frames will have the RXOK bit cleared.
1483 		 * However, there's one error case we want to allow:
1484 		 * if a VLAN tagged frame arrives and the chip can't
1485 		 * match it against the CAM filter, it considers this
1486 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1487 		 * We don't want to drop the frame though: our VLAN
1488 		 * filtering is done in software.
1489 		 * We also want to receive bad-checksummed frames and
1490 		 * and frames with bad-length.
1491 		 */
1492 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1493 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1494 		    VGE_RDSTS_CSUMERR)) == 0) {
1495 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1496 			/*
1497 			 * If this is part of a multi-fragment packet,
1498 			 * discard all the pieces.
1499 			 */
1500 			VGE_CHAIN_RESET(sc);
1501 			vge_discard_rxbuf(sc, prod);
1502 			continue;
1503 		}
1504 
1505 		if (vge_newbuf(sc, prod) != 0) {
1506 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1507 			VGE_CHAIN_RESET(sc);
1508 			vge_discard_rxbuf(sc, prod);
1509 			continue;
1510 		}
1511 
1512 		/* Chain received mbufs. */
1513 		if (sc->vge_cdata.vge_head != NULL) {
1514 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1515 			/*
1516 			 * Special case: if there's 4 bytes or less
1517 			 * in this buffer, the mbuf can be discarded:
1518 			 * the last 4 bytes is the CRC, which we don't
1519 			 * care about anyway.
1520 			 */
1521 			if (m->m_len <= ETHER_CRC_LEN) {
1522 				sc->vge_cdata.vge_tail->m_len -=
1523 				    (ETHER_CRC_LEN - m->m_len);
1524 				m_freem(m);
1525 			} else {
1526 				m->m_len -= ETHER_CRC_LEN;
1527 				m->m_flags &= ~M_PKTHDR;
1528 				sc->vge_cdata.vge_tail->m_next = m;
1529 			}
1530 			m = sc->vge_cdata.vge_head;
1531 			m->m_flags |= M_PKTHDR;
1532 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1533 		} else {
1534 			m->m_flags |= M_PKTHDR;
1535 			m->m_pkthdr.len = m->m_len =
1536 			    (total_len - ETHER_CRC_LEN);
1537 		}
1538 
1539 #ifndef	__NO_STRICT_ALIGNMENT
1540 		vge_fixup_rx(m);
1541 #endif
1542 		m->m_pkthdr.rcvif = ifp;
1543 
1544 		/* Do RX checksumming if enabled */
1545 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1546 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1547 			/* Check IP header checksum */
1548 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1549 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1550 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1551 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1552 
1553 			/* Check TCP/UDP checksum */
1554 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1555 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1556 				m->m_pkthdr.csum_flags |=
1557 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1558 				m->m_pkthdr.csum_data = 0xffff;
1559 			}
1560 		}
1561 
1562 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1563 			/*
1564 			 * The 32-bit rxctl register is stored in little-endian.
1565 			 * However, the 16-bit vlan tag is stored in big-endian,
1566 			 * so we have to byte swap it.
1567 			 */
1568 			m->m_pkthdr.ether_vtag =
1569 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1570 			m->m_flags |= M_VLANTAG;
1571 		}
1572 
1573 		VGE_UNLOCK(sc);
1574 		if_input(ifp, m);
1575 		VGE_LOCK(sc);
1576 		sc->vge_cdata.vge_head = NULL;
1577 		sc->vge_cdata.vge_tail = NULL;
1578 	}
1579 
1580 	if (prog > 0) {
1581 		sc->vge_cdata.vge_rx_prodidx = prod;
1582 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1583 		    sc->vge_cdata.vge_rx_ring_map,
1584 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1585 		/* Update residue counter. */
1586 		if (sc->vge_cdata.vge_rx_commit != 0) {
1587 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1588 			    sc->vge_cdata.vge_rx_commit);
1589 			sc->vge_cdata.vge_rx_commit = 0;
1590 		}
1591 	}
1592 	return (prog);
1593 }
1594 
1595 static void
vge_txeof(struct vge_softc * sc)1596 vge_txeof(struct vge_softc *sc)
1597 {
1598 	if_t ifp;
1599 	struct vge_tx_desc *cur_tx;
1600 	struct vge_txdesc *txd;
1601 	uint32_t txstat;
1602 	int cons, prod;
1603 
1604 	VGE_LOCK_ASSERT(sc);
1605 
1606 	ifp = sc->vge_ifp;
1607 
1608 	if (sc->vge_cdata.vge_tx_cnt == 0)
1609 		return;
1610 
1611 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1612 	    sc->vge_cdata.vge_tx_ring_map,
1613 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1614 
1615 	/*
1616 	 * Go through our tx list and free mbufs for those
1617 	 * frames that have been transmitted.
1618 	 */
1619 	cons = sc->vge_cdata.vge_tx_considx;
1620 	prod = sc->vge_cdata.vge_tx_prodidx;
1621 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1622 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1623 		txstat = le32toh(cur_tx->vge_sts);
1624 		if ((txstat & VGE_TDSTS_OWN) != 0)
1625 			break;
1626 		sc->vge_cdata.vge_tx_cnt--;
1627 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1628 
1629 		txd = &sc->vge_cdata.vge_txdesc[cons];
1630 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1631 		    BUS_DMASYNC_POSTWRITE);
1632 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1633 
1634 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1635 		    __func__));
1636 		m_freem(txd->tx_m);
1637 		txd->tx_m = NULL;
1638 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1639 	}
1640 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1641 	    sc->vge_cdata.vge_tx_ring_map,
1642 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1643 	sc->vge_cdata.vge_tx_considx = cons;
1644 	if (sc->vge_cdata.vge_tx_cnt == 0)
1645 		sc->vge_timer = 0;
1646 }
1647 
1648 static void
vge_link_statchg(void * xsc)1649 vge_link_statchg(void *xsc)
1650 {
1651 	struct vge_softc *sc;
1652 	if_t ifp;
1653 	uint8_t physts;
1654 
1655 	sc = xsc;
1656 	ifp = sc->vge_ifp;
1657 	VGE_LOCK_ASSERT(sc);
1658 
1659 	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1660 	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1661 		if ((physts & VGE_PHYSTS_LINK) == 0) {
1662 			sc->vge_flags &= ~VGE_FLAG_LINK;
1663 			if_link_state_change(sc->vge_ifp,
1664 			    LINK_STATE_DOWN);
1665 		} else {
1666 			sc->vge_flags |= VGE_FLAG_LINK;
1667 			if_link_state_change(sc->vge_ifp,
1668 			    LINK_STATE_UP);
1669 			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1670 			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1671 			if ((physts & VGE_PHYSTS_FDX) != 0) {
1672 				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1673 					CSR_WRITE_1(sc, VGE_CRS2,
1674 					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1675 				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1676 					CSR_WRITE_1(sc, VGE_CRS2,
1677 					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1678 			}
1679 			if (!if_sendq_empty(ifp))
1680 				vge_start_locked(ifp);
1681 		}
1682 	}
1683 	/*
1684 	 * Restart MII auto-polling because link state change interrupt
1685 	 * will disable it.
1686 	 */
1687 	vge_miipoll_start(sc);
1688 }
1689 
1690 #ifdef DEVICE_POLLING
1691 static int
vge_poll(if_t ifp,enum poll_cmd cmd,int count)1692 vge_poll (if_t ifp, enum poll_cmd cmd, int count)
1693 {
1694 	struct vge_softc *sc = if_getsoftc(ifp);
1695 	int rx_npkts = 0;
1696 
1697 	VGE_LOCK(sc);
1698 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
1699 		goto done;
1700 
1701 	rx_npkts = vge_rxeof(sc, count);
1702 	vge_txeof(sc);
1703 
1704 	if (!if_sendq_empty(ifp))
1705 		vge_start_locked(ifp);
1706 
1707 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1708 		uint32_t       status;
1709 		status = CSR_READ_4(sc, VGE_ISR);
1710 		if (status == 0xFFFFFFFF)
1711 			goto done;
1712 		if (status)
1713 			CSR_WRITE_4(sc, VGE_ISR, status);
1714 
1715 		/*
1716 		 * XXX check behaviour on receiver stalls.
1717 		 */
1718 
1719 		if (status & VGE_ISR_TXDMA_STALL ||
1720 		    status & VGE_ISR_RXDMA_STALL) {
1721 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1722 			vge_init_locked(sc);
1723 		}
1724 
1725 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1726 			vge_rxeof(sc, count);
1727 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1728 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1729 		}
1730 	}
1731 done:
1732 	VGE_UNLOCK(sc);
1733 	return (rx_npkts);
1734 }
1735 #endif /* DEVICE_POLLING */
1736 
1737 static void
vge_intr(void * arg)1738 vge_intr(void *arg)
1739 {
1740 	struct vge_softc *sc;
1741 	if_t ifp;
1742 	uint32_t status;
1743 
1744 	sc = arg;
1745 	VGE_LOCK(sc);
1746 
1747 	ifp = sc->vge_ifp;
1748 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1749 	    (if_getflags(ifp) & IFF_UP) == 0) {
1750 		VGE_UNLOCK(sc);
1751 		return;
1752 	}
1753 
1754 #ifdef DEVICE_POLLING
1755 	if  (if_getcapenable(ifp) & IFCAP_POLLING) {
1756 		status = CSR_READ_4(sc, VGE_ISR);
1757 		CSR_WRITE_4(sc, VGE_ISR, status);
1758 		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1759 			vge_link_statchg(sc);
1760 		VGE_UNLOCK(sc);
1761 		return;
1762 	}
1763 #endif
1764 
1765 	/* Disable interrupts */
1766 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1767 	status = CSR_READ_4(sc, VGE_ISR);
1768 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1769 	/* If the card has gone away the read returns 0xffff. */
1770 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1771 		goto done;
1772 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1773 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1774 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1775 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1776 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1777 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1778 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1779 		}
1780 
1781 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1782 			vge_txeof(sc);
1783 
1784 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1785 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1786 			vge_init_locked(sc);
1787 		}
1788 
1789 		if (status & VGE_ISR_LINKSTS)
1790 			vge_link_statchg(sc);
1791 	}
1792 done:
1793 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1794 		/* Re-enable interrupts */
1795 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1796 
1797 		if (!if_sendq_empty(ifp))
1798 			vge_start_locked(ifp);
1799 	}
1800 	VGE_UNLOCK(sc);
1801 }
1802 
1803 static int
vge_encap(struct vge_softc * sc,struct mbuf ** m_head)1804 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1805 {
1806 	struct vge_txdesc *txd;
1807 	struct vge_tx_frag *frag;
1808 	struct mbuf *m;
1809 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1810 	int error, i, nsegs, padlen;
1811 	uint32_t cflags;
1812 
1813 	VGE_LOCK_ASSERT(sc);
1814 
1815 	M_ASSERTPKTHDR((*m_head));
1816 
1817 	/* Argh. This chip does not autopad short frames. */
1818 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1819 		m = *m_head;
1820 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1821 		if (M_WRITABLE(m) == 0) {
1822 			/* Get a writable copy. */
1823 			m = m_dup(*m_head, M_NOWAIT);
1824 			m_freem(*m_head);
1825 			if (m == NULL) {
1826 				*m_head = NULL;
1827 				return (ENOBUFS);
1828 			}
1829 			*m_head = m;
1830 		}
1831 		if (M_TRAILINGSPACE(m) < padlen) {
1832 			m = m_defrag(m, M_NOWAIT);
1833 			if (m == NULL) {
1834 				m_freem(*m_head);
1835 				*m_head = NULL;
1836 				return (ENOBUFS);
1837 			}
1838 		}
1839 		/*
1840 		 * Manually pad short frames, and zero the pad space
1841 		 * to avoid leaking data.
1842 		 */
1843 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1844 		m->m_pkthdr.len += padlen;
1845 		m->m_len = m->m_pkthdr.len;
1846 		*m_head = m;
1847 	}
1848 
1849 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1850 
1851 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1852 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1853 	if (error == EFBIG) {
1854 		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1855 		if (m == NULL) {
1856 			m_freem(*m_head);
1857 			*m_head = NULL;
1858 			return (ENOMEM);
1859 		}
1860 		*m_head = m;
1861 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1862 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1863 		if (error != 0) {
1864 			m_freem(*m_head);
1865 			*m_head = NULL;
1866 			return (error);
1867 		}
1868 	} else if (error != 0)
1869 		return (error);
1870 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1871 	    BUS_DMASYNC_PREWRITE);
1872 
1873 	m = *m_head;
1874 	cflags = 0;
1875 
1876 	/* Configure checksum offload. */
1877 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1878 		cflags |= VGE_TDCTL_IPCSUM;
1879 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1880 		cflags |= VGE_TDCTL_TCPCSUM;
1881 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1882 		cflags |= VGE_TDCTL_UDPCSUM;
1883 
1884 	/* Configure VLAN. */
1885 	if ((m->m_flags & M_VLANTAG) != 0)
1886 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1887 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1888 	/*
1889 	 * XXX
1890 	 * Velocity family seems to support TSO but no information
1891 	 * for MSS configuration is available. Also the number of
1892 	 * fragments supported by a descriptor is too small to hold
1893 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1894 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1895 	 * longer chain of buffers but no additional information is
1896 	 * available.
1897 	 *
1898 	 * When telling the chip how many segments there are, we
1899 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1900 	 * know why. This also means we can't use the last fragment
1901 	 * field of Tx descriptor.
1902 	 */
1903 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1904 	    VGE_TD_LS_NORM);
1905 	for (i = 0; i < nsegs; i++) {
1906 		frag = &txd->tx_desc->vge_frag[i];
1907 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1908 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1909 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1910 	}
1911 
1912 	sc->vge_cdata.vge_tx_cnt++;
1913 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1914 
1915 	/*
1916 	 * Finally request interrupt and give the first descriptor
1917 	 * ownership to hardware.
1918 	 */
1919 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1920 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1921 	txd->tx_m = m;
1922 
1923 	return (0);
1924 }
1925 
1926 /*
1927  * Main transmit routine.
1928  */
1929 
1930 static void
vge_start(if_t ifp)1931 vge_start(if_t ifp)
1932 {
1933 	struct vge_softc *sc;
1934 
1935 	sc = if_getsoftc(ifp);
1936 	VGE_LOCK(sc);
1937 	vge_start_locked(ifp);
1938 	VGE_UNLOCK(sc);
1939 }
1940 
1941 static void
vge_start_locked(if_t ifp)1942 vge_start_locked(if_t ifp)
1943 {
1944 	struct vge_softc *sc;
1945 	struct vge_txdesc *txd;
1946 	struct mbuf *m_head;
1947 	int enq, idx;
1948 
1949 	sc = if_getsoftc(ifp);
1950 
1951 	VGE_LOCK_ASSERT(sc);
1952 
1953 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1954 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1955 	    IFF_DRV_RUNNING)
1956 		return;
1957 
1958 	idx = sc->vge_cdata.vge_tx_prodidx;
1959 	VGE_TX_DESC_DEC(idx);
1960 	for (enq = 0; !if_sendq_empty(ifp) &&
1961 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1962 		m_head = if_dequeue(ifp);
1963 		if (m_head == NULL)
1964 			break;
1965 		/*
1966 		 * Pack the data into the transmit ring. If we
1967 		 * don't have room, set the OACTIVE flag and wait
1968 		 * for the NIC to drain the ring.
1969 		 */
1970 		if (vge_encap(sc, &m_head)) {
1971 			if (m_head == NULL)
1972 				break;
1973 			if_sendq_prepend(ifp, m_head);
1974 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1975 			break;
1976 		}
1977 
1978 		txd = &sc->vge_cdata.vge_txdesc[idx];
1979 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1980 		VGE_TX_DESC_INC(idx);
1981 
1982 		enq++;
1983 		/*
1984 		 * If there's a BPF listener, bounce a copy of this frame
1985 		 * to him.
1986 		 */
1987 		ETHER_BPF_MTAP(ifp, m_head);
1988 	}
1989 
1990 	if (enq > 0) {
1991 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1992 		    sc->vge_cdata.vge_tx_ring_map,
1993 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1994 		/* Issue a transmit command. */
1995 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1996 		/*
1997 		 * Set a timeout in case the chip goes out to lunch.
1998 		 */
1999 		sc->vge_timer = 5;
2000 	}
2001 }
2002 
2003 static void
vge_init(void * xsc)2004 vge_init(void *xsc)
2005 {
2006 	struct vge_softc *sc = xsc;
2007 
2008 	VGE_LOCK(sc);
2009 	vge_init_locked(sc);
2010 	VGE_UNLOCK(sc);
2011 }
2012 
2013 static void
vge_init_locked(struct vge_softc * sc)2014 vge_init_locked(struct vge_softc *sc)
2015 {
2016 	if_t ifp = sc->vge_ifp;
2017 	int error, i;
2018 
2019 	VGE_LOCK_ASSERT(sc);
2020 
2021 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2022 		return;
2023 
2024 	/*
2025 	 * Cancel pending I/O and free all RX/TX buffers.
2026 	 */
2027 	vge_stop(sc);
2028 	vge_reset(sc);
2029 	vge_miipoll_start(sc);
2030 
2031 	/*
2032 	 * Initialize the RX and TX descriptors and mbufs.
2033 	 */
2034 
2035 	error = vge_rx_list_init(sc);
2036 	if (error != 0) {
2037                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2038                 return;
2039 	}
2040 	vge_tx_list_init(sc);
2041 	/* Clear MAC statistics. */
2042 	vge_stats_clear(sc);
2043 	/* Set our station address */
2044 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2045 		CSR_WRITE_1(sc, VGE_PAR0 + i, if_getlladdr(sc->vge_ifp)[i]);
2046 
2047 	/*
2048 	 * Set receive FIFO threshold. Also allow transmission and
2049 	 * reception of VLAN tagged frames.
2050 	 */
2051 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2052 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2053 
2054 	/* Set DMA burst length */
2055 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2056 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2057 
2058 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2059 
2060 	/* Set collision backoff algorithm */
2061 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2062 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2063 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2064 
2065 	/* Disable LPSEL field in priority resolution */
2066 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2067 
2068 	/*
2069 	 * Load the addresses of the DMA queues into the chip.
2070 	 * Note that we only use one transmit queue.
2071 	 */
2072 
2073 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2074 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2075 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2076 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2077 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2078 
2079 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2080 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2081 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2082 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2083 
2084 	/* Configure interrupt moderation. */
2085 	vge_intr_holdoff(sc);
2086 
2087 	/* Enable and wake up the RX descriptor queue */
2088 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2089 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2090 
2091 	/* Enable the TX descriptor queue */
2092 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2093 
2094 	/* Init the cam filter. */
2095 	vge_cam_clear(sc);
2096 
2097 	/* Set up receiver filter. */
2098 	vge_rxfilter(sc);
2099 	vge_setvlan(sc);
2100 
2101 	/* Initialize pause timer. */
2102 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2103 	/*
2104 	 * Initialize flow control parameters.
2105 	 *  TX XON high threshold : 48
2106 	 *  TX pause low threshold : 24
2107 	 *  Disable hald-duplex flow control
2108 	 */
2109 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2110 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2111 
2112 	/* Enable jumbo frame reception (if desired) */
2113 
2114 	/* Start the MAC. */
2115 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2116 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2117 	CSR_WRITE_1(sc, VGE_CRS0,
2118 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2119 
2120 #ifdef DEVICE_POLLING
2121 	/*
2122 	 * Disable interrupts except link state change if we are polling.
2123 	 */
2124 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
2125 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2126 	} else	/* otherwise ... */
2127 #endif
2128 	{
2129 	/*
2130 	 * Enable interrupts.
2131 	 */
2132 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2133 	}
2134 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2135 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2136 
2137 	sc->vge_flags &= ~VGE_FLAG_LINK;
2138 	vge_ifmedia_upd_locked(sc);
2139 
2140 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2141 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2142 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2143 }
2144 
2145 /*
2146  * Set media options.
2147  */
2148 static int
vge_ifmedia_upd(if_t ifp)2149 vge_ifmedia_upd(if_t ifp)
2150 {
2151 	struct vge_softc *sc;
2152 	int error;
2153 
2154 	sc = if_getsoftc(ifp);
2155 	VGE_LOCK(sc);
2156 	error = vge_ifmedia_upd_locked(sc);
2157 	VGE_UNLOCK(sc);
2158 
2159 	return (error);
2160 }
2161 
2162 static int
vge_ifmedia_upd_locked(struct vge_softc * sc)2163 vge_ifmedia_upd_locked(struct vge_softc *sc)
2164 {
2165 	struct mii_data *mii;
2166 	struct mii_softc *miisc;
2167 	int error;
2168 
2169 	mii = device_get_softc(sc->vge_miibus);
2170 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2171 		PHY_RESET(miisc);
2172 	vge_setmedia(sc);
2173 	error = mii_mediachg(mii);
2174 
2175 	return (error);
2176 }
2177 
2178 /*
2179  * Report current media status.
2180  */
2181 static void
vge_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)2182 vge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2183 {
2184 	struct vge_softc *sc;
2185 	struct mii_data *mii;
2186 
2187 	sc = if_getsoftc(ifp);
2188 	mii = device_get_softc(sc->vge_miibus);
2189 
2190 	VGE_LOCK(sc);
2191 	if ((if_getflags(ifp) & IFF_UP) == 0) {
2192 		VGE_UNLOCK(sc);
2193 		return;
2194 	}
2195 	mii_pollstat(mii);
2196 	ifmr->ifm_active = mii->mii_media_active;
2197 	ifmr->ifm_status = mii->mii_media_status;
2198 	VGE_UNLOCK(sc);
2199 }
2200 
2201 static void
vge_setmedia(struct vge_softc * sc)2202 vge_setmedia(struct vge_softc *sc)
2203 {
2204 	struct mii_data *mii;
2205 	struct ifmedia_entry *ife;
2206 
2207 	mii = device_get_softc(sc->vge_miibus);
2208 	ife = mii->mii_media.ifm_cur;
2209 
2210 	/*
2211 	 * If the user manually selects a media mode, we need to turn
2212 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2213 	 * user happens to choose a full duplex mode, we also need to
2214 	 * set the 'force full duplex' bit. This applies only to
2215 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2216 	 * mode is disabled, and in 1000baseT mode, full duplex is
2217 	 * always implied, so we turn on the forced mode bit but leave
2218 	 * the FDX bit cleared.
2219 	 */
2220 
2221 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2222 	case IFM_AUTO:
2223 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2224 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2225 		break;
2226 	case IFM_1000_T:
2227 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2228 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2229 		break;
2230 	case IFM_100_TX:
2231 	case IFM_10_T:
2232 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2233 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2234 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2235 		} else {
2236 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2237 		}
2238 		break;
2239 	default:
2240 		device_printf(sc->vge_dev, "unknown media type: %x\n",
2241 		    IFM_SUBTYPE(ife->ifm_media));
2242 		break;
2243 	}
2244 }
2245 
2246 static int
vge_ioctl(if_t ifp,u_long command,caddr_t data)2247 vge_ioctl(if_t ifp, u_long command, caddr_t data)
2248 {
2249 	struct vge_softc *sc = if_getsoftc(ifp);
2250 	struct ifreq *ifr = (struct ifreq *) data;
2251 	struct mii_data *mii;
2252 	int error = 0, mask;
2253 
2254 	switch (command) {
2255 	case SIOCSIFMTU:
2256 		VGE_LOCK(sc);
2257 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2258 			error = EINVAL;
2259 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
2260 			if (ifr->ifr_mtu > ETHERMTU &&
2261 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2262 				error = EINVAL;
2263 			else
2264 				if_setmtu(ifp, ifr->ifr_mtu);
2265 		}
2266 		VGE_UNLOCK(sc);
2267 		break;
2268 	case SIOCSIFFLAGS:
2269 		VGE_LOCK(sc);
2270 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2271 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2272 			    ((if_getflags(ifp) ^ sc->vge_if_flags) &
2273 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2274 				vge_rxfilter(sc);
2275 			else
2276 				vge_init_locked(sc);
2277 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2278 			vge_stop(sc);
2279 		sc->vge_if_flags = if_getflags(ifp);
2280 		VGE_UNLOCK(sc);
2281 		break;
2282 	case SIOCADDMULTI:
2283 	case SIOCDELMULTI:
2284 		VGE_LOCK(sc);
2285 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2286 			vge_rxfilter(sc);
2287 		VGE_UNLOCK(sc);
2288 		break;
2289 	case SIOCGIFMEDIA:
2290 	case SIOCSIFMEDIA:
2291 		mii = device_get_softc(sc->vge_miibus);
2292 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2293 		break;
2294 	case SIOCSIFCAP:
2295 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2296 #ifdef DEVICE_POLLING
2297 		if (mask & IFCAP_POLLING) {
2298 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2299 				error = ether_poll_register(vge_poll, ifp);
2300 				if (error)
2301 					return (error);
2302 				VGE_LOCK(sc);
2303 					/* Disable interrupts */
2304 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2305 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2306 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2307 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2308 				VGE_UNLOCK(sc);
2309 			} else {
2310 				error = ether_poll_deregister(ifp);
2311 				/* Enable interrupts. */
2312 				VGE_LOCK(sc);
2313 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2314 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2315 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2316 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2317 				VGE_UNLOCK(sc);
2318 			}
2319 		}
2320 #endif /* DEVICE_POLLING */
2321 		VGE_LOCK(sc);
2322 		if ((mask & IFCAP_TXCSUM) != 0 &&
2323 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2324 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2325 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2326 				if_sethwassistbits(ifp, VGE_CSUM_FEATURES, 0);
2327 			else
2328 				if_sethwassistbits(ifp, 0, VGE_CSUM_FEATURES);
2329 		}
2330 		if ((mask & IFCAP_RXCSUM) != 0 &&
2331 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
2332 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2333 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2334 		    (if_getcapabilities(ifp) & IFCAP_WOL_UCAST) != 0)
2335 			if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2336 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2337 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
2338 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2339 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2340 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2341 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2342 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2343 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2344 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2345 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2346 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2347 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2348 			vge_setvlan(sc);
2349 		}
2350 		VGE_UNLOCK(sc);
2351 		VLAN_CAPABILITIES(ifp);
2352 		break;
2353 	default:
2354 		error = ether_ioctl(ifp, command, data);
2355 		break;
2356 	}
2357 
2358 	return (error);
2359 }
2360 
2361 static void
vge_watchdog(void * arg)2362 vge_watchdog(void *arg)
2363 {
2364 	struct vge_softc *sc;
2365 	if_t ifp;
2366 
2367 	sc = arg;
2368 	VGE_LOCK_ASSERT(sc);
2369 	vge_stats_update(sc);
2370 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2371 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2372 		return;
2373 
2374 	ifp = sc->vge_ifp;
2375 	if_printf(ifp, "watchdog timeout\n");
2376 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2377 
2378 	vge_txeof(sc);
2379 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2380 
2381 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2382 	vge_init_locked(sc);
2383 }
2384 
2385 /*
2386  * Stop the adapter and free any mbufs allocated to the
2387  * RX and TX lists.
2388  */
2389 static void
vge_stop(struct vge_softc * sc)2390 vge_stop(struct vge_softc *sc)
2391 {
2392 	if_t ifp;
2393 
2394 	VGE_LOCK_ASSERT(sc);
2395 	ifp = sc->vge_ifp;
2396 	sc->vge_timer = 0;
2397 	callout_stop(&sc->vge_watchdog);
2398 
2399 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2400 
2401 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2402 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2403 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2404 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2405 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2406 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2407 
2408 	vge_stats_update(sc);
2409 	VGE_CHAIN_RESET(sc);
2410 	vge_txeof(sc);
2411 	vge_freebufs(sc);
2412 }
2413 
2414 /*
2415  * Device suspend routine.  Stop the interface and save some PCI
2416  * settings in case the BIOS doesn't restore them properly on
2417  * resume.
2418  */
2419 static int
vge_suspend(device_t dev)2420 vge_suspend(device_t dev)
2421 {
2422 	struct vge_softc *sc;
2423 
2424 	sc = device_get_softc(dev);
2425 
2426 	VGE_LOCK(sc);
2427 	vge_stop(sc);
2428 	vge_setwol(sc);
2429 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2430 	VGE_UNLOCK(sc);
2431 
2432 	return (0);
2433 }
2434 
2435 /*
2436  * Device resume routine.  Restore some PCI settings in case the BIOS
2437  * doesn't, re-enable busmastering, and restart the interface if
2438  * appropriate.
2439  */
2440 static int
vge_resume(device_t dev)2441 vge_resume(device_t dev)
2442 {
2443 	struct vge_softc *sc;
2444 	if_t ifp;
2445 
2446 	sc = device_get_softc(dev);
2447 	VGE_LOCK(sc);
2448 	vge_clrwol(sc);
2449 	/* Restart MII auto-polling. */
2450 	vge_miipoll_start(sc);
2451 	ifp = sc->vge_ifp;
2452 	/* Reinitialize interface if necessary. */
2453 	if ((if_getflags(ifp) & IFF_UP) != 0) {
2454 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2455 		vge_init_locked(sc);
2456 	}
2457 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2458 	VGE_UNLOCK(sc);
2459 
2460 	return (0);
2461 }
2462 
2463 /*
2464  * Stop all chip I/O so that the kernel's probe routines don't
2465  * get confused by errant DMAs when rebooting.
2466  */
2467 static int
vge_shutdown(device_t dev)2468 vge_shutdown(device_t dev)
2469 {
2470 
2471 	return (vge_suspend(dev));
2472 }
2473 
2474 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2475 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2476 
2477 static void
vge_sysctl_node(struct vge_softc * sc)2478 vge_sysctl_node(struct vge_softc *sc)
2479 {
2480 	struct sysctl_ctx_list *ctx;
2481 	struct sysctl_oid_list *child, *parent;
2482 	struct sysctl_oid *tree;
2483 	struct vge_hw_stats *stats;
2484 
2485 	stats = &sc->vge_stats;
2486 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2487 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2488 
2489 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2490 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2491 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2492 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2493 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2494 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2495 
2496 	/* Pull in device tunables. */
2497 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2498 	resource_int_value(device_get_name(sc->vge_dev),
2499 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2500 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2501 	resource_int_value(device_get_name(sc->vge_dev),
2502 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2503 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2504 	resource_int_value(device_get_name(sc->vge_dev),
2505 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2506 
2507 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2508 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics");
2509 	parent = SYSCTL_CHILDREN(tree);
2510 
2511 	/* Rx statistics. */
2512 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2513 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
2514 	child = SYSCTL_CHILDREN(tree);
2515 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2516 	    &stats->rx_frames, "frames");
2517 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2518 	    &stats->rx_good_frames, "Good frames");
2519 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2520 	    &stats->rx_fifo_oflows, "FIFO overflows");
2521 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2522 	    &stats->rx_runts, "Too short frames");
2523 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2524 	    &stats->rx_runts_errs, "Too short frames with errors");
2525 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2526 	    &stats->rx_pkts_64, "64 bytes frames");
2527 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2528 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2529 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2530 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2531 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2532 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2533 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2534 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2535 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2536 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2537 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2538 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2539 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2540 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2541 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2542 	    &stats->rx_jumbos, "Jumbo frames");
2543 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2544 	    &stats->rx_crcerrs, "CRC errors");
2545 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2546 	    &stats->rx_pause_frames, "Pause frames");
2547 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2548 	    &stats->rx_alignerrs, "Alignment errors");
2549 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2550 	    &stats->rx_nobufs, "Frames with no buffer event");
2551 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2552 	    &stats->rx_symerrs, "Frames with symbol errors");
2553 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2554 	    &stats->rx_lenerrs, "Frames with length mismatched");
2555 
2556 	/* Tx statistics. */
2557 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2558 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
2559 	child = SYSCTL_CHILDREN(tree);
2560 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2561 	    &stats->tx_good_frames, "Good frames");
2562 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2563 	    &stats->tx_pkts_64, "64 bytes frames");
2564 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2565 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2566 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2567 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2568 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2569 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2570 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2571 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2572 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2573 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2574 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2575 	    &stats->tx_jumbos, "Jumbo frames");
2576 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2577 	    &stats->tx_colls, "Collisions");
2578 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2579 	    &stats->tx_latecolls, "Late collisions");
2580 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2581 	    &stats->tx_pause, "Pause frames");
2582 #ifdef VGE_ENABLE_SQEERR
2583 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2584 	    &stats->tx_sqeerrs, "SQE errors");
2585 #endif
2586 	/* Clear MAC statistics. */
2587 	vge_stats_clear(sc);
2588 }
2589 
2590 #undef	VGE_SYSCTL_STAT_ADD32
2591 
2592 static void
vge_stats_clear(struct vge_softc * sc)2593 vge_stats_clear(struct vge_softc *sc)
2594 {
2595 	int i;
2596 
2597 	CSR_WRITE_1(sc, VGE_MIBCSR,
2598 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2599 	CSR_WRITE_1(sc, VGE_MIBCSR,
2600 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2601 	for (i = VGE_TIMEOUT; i > 0; i--) {
2602 		DELAY(1);
2603 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2604 			break;
2605 	}
2606 	if (i == 0)
2607 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2608 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2609 	    ~VGE_MIBCSR_FREEZE);
2610 }
2611 
2612 static void
vge_stats_update(struct vge_softc * sc)2613 vge_stats_update(struct vge_softc *sc)
2614 {
2615 	struct vge_hw_stats *stats;
2616 	if_t ifp;
2617 	uint32_t mib[VGE_MIB_CNT], val;
2618 	int i;
2619 
2620 	VGE_LOCK_ASSERT(sc);
2621 
2622 	stats = &sc->vge_stats;
2623 	ifp = sc->vge_ifp;
2624 
2625 	CSR_WRITE_1(sc, VGE_MIBCSR,
2626 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2627 	for (i = VGE_TIMEOUT; i > 0; i--) {
2628 		DELAY(1);
2629 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2630 			break;
2631 	}
2632 	if (i == 0) {
2633 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2634 		vge_stats_clear(sc);
2635 		return;
2636 	}
2637 
2638 	bzero(mib, sizeof(mib));
2639 reset_idx:
2640 	/* Set MIB read index to 0. */
2641 	CSR_WRITE_1(sc, VGE_MIBCSR,
2642 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2643 	for (i = 0; i < VGE_MIB_CNT; i++) {
2644 		val = CSR_READ_4(sc, VGE_MIBDATA);
2645 		if (i != VGE_MIB_DATA_IDX(val)) {
2646 			/* Reading interrupted. */
2647 			goto reset_idx;
2648 		}
2649 		mib[i] = val & VGE_MIB_DATA_MASK;
2650 	}
2651 
2652 	/* Rx stats. */
2653 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2654 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2655 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2656 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2657 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2658 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2659 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2660 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2661 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2662 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2663 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2664 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2665 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2666 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2667 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2668 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2669 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2670 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2671 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2672 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2673 
2674 	/* Tx stats. */
2675 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2676 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2677 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2678 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2679 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2680 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2681 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2682 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2683 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2684 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2685 #ifdef VGE_ENABLE_SQEERR
2686 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2687 #endif
2688 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2689 
2690 	/* Update counters in ifnet. */
2691 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2692 
2693 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2694 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2695 
2696 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2697 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2698 
2699 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2700 
2701 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2702 	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2703 	    mib[VGE_MIB_RX_RUNTS] +
2704 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2705 	    mib[VGE_MIB_RX_CRCERRS] +
2706 	    mib[VGE_MIB_RX_ALIGNERRS] +
2707 	    mib[VGE_MIB_RX_NOBUFS] +
2708 	    mib[VGE_MIB_RX_SYMERRS] +
2709 	    mib[VGE_MIB_RX_LENERRS]);
2710 }
2711 
2712 static void
vge_intr_holdoff(struct vge_softc * sc)2713 vge_intr_holdoff(struct vge_softc *sc)
2714 {
2715 	uint8_t intctl;
2716 
2717 	VGE_LOCK_ASSERT(sc);
2718 
2719 	/*
2720 	 * Set Tx interrupt supression threshold.
2721 	 * It's possible to use single-shot timer in VGE_CRS1 register
2722 	 * in Tx path such that driver can remove most of Tx completion
2723 	 * interrupts. However this requires additional access to
2724 	 * VGE_CRS1 register to reload the timer in addintion to
2725 	 * activating Tx kick command. Another downside is we don't know
2726 	 * what single-shot timer value should be used in advance so
2727 	 * reclaiming transmitted mbufs could be delayed a lot which in
2728 	 * turn slows down Tx operation.
2729 	 */
2730 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2731 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2732 
2733 	/* Set Rx interrupt suppresion threshold. */
2734 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2735 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2736 
2737 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2738 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2739 	intctl |= VGE_INTCTL_HC_RELOAD;
2740 	if (sc->vge_tx_coal_pkt <= 0)
2741 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2742 	else
2743 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2744 	if (sc->vge_rx_coal_pkt <= 0)
2745 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2746 	else
2747 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2748 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2749 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2750 	if (sc->vge_int_holdoff > 0) {
2751 		/* Set interrupt holdoff timer. */
2752 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2753 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2754 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2755 		/* Enable holdoff timer. */
2756 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2757 	}
2758 }
2759 
2760 static void
vge_setlinkspeed(struct vge_softc * sc)2761 vge_setlinkspeed(struct vge_softc *sc)
2762 {
2763 	struct mii_data *mii;
2764 	int aneg, i;
2765 
2766 	VGE_LOCK_ASSERT(sc);
2767 
2768 	mii = device_get_softc(sc->vge_miibus);
2769 	mii_pollstat(mii);
2770 	aneg = 0;
2771 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2772 	    (IFM_ACTIVE | IFM_AVALID)) {
2773 		switch IFM_SUBTYPE(mii->mii_media_active) {
2774 		case IFM_10_T:
2775 		case IFM_100_TX:
2776 			return;
2777 		case IFM_1000_T:
2778 			aneg++;
2779 		default:
2780 			break;
2781 		}
2782 	}
2783 	/* Clear forced MAC speed/duplex configuration. */
2784 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2785 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2786 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2787 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2788 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2789 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2790 	    BMCR_AUTOEN | BMCR_STARTNEG);
2791 	DELAY(1000);
2792 	if (aneg != 0) {
2793 		/* Poll link state until vge(4) get a 10/100 link. */
2794 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2795 			mii_pollstat(mii);
2796 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2797 			    == (IFM_ACTIVE | IFM_AVALID)) {
2798 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2799 				case IFM_10_T:
2800 				case IFM_100_TX:
2801 					return;
2802 				default:
2803 					break;
2804 				}
2805 			}
2806 			VGE_UNLOCK(sc);
2807 			pause("vgelnk", hz);
2808 			VGE_LOCK(sc);
2809 		}
2810 		if (i == MII_ANEGTICKS_GIGE)
2811 			device_printf(sc->vge_dev, "establishing link failed, "
2812 			    "WOL may not work!");
2813 	}
2814 	/*
2815 	 * No link, force MAC to have 100Mbps, full-duplex link.
2816 	 * This is the last resort and may/may not work.
2817 	 */
2818 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2819 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2820 }
2821 
2822 static void
vge_setwol(struct vge_softc * sc)2823 vge_setwol(struct vge_softc *sc)
2824 {
2825 	if_t ifp;
2826 	uint8_t val;
2827 
2828 	VGE_LOCK_ASSERT(sc);
2829 
2830 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2831 		/* No PME capability, PHY power down. */
2832 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2833 		    BMCR_PDOWN);
2834 		vge_miipoll_stop(sc);
2835 		return;
2836 	}
2837 
2838 	ifp = sc->vge_ifp;
2839 
2840 	/* Clear WOL on pattern match. */
2841 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2842 	/* Disable WOL on magic/unicast packet. */
2843 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2844 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2845 	    VGE_WOLCFG_PMEOVR);
2846 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
2847 		vge_setlinkspeed(sc);
2848 		val = 0;
2849 		if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2850 			val |= VGE_WOLCR1_UCAST;
2851 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2852 			val |= VGE_WOLCR1_MAGIC;
2853 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2854 		val = 0;
2855 		if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
2856 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2857 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2858 		/* Disable MII auto-polling. */
2859 		vge_miipoll_stop(sc);
2860 	}
2861 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2862 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2863 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2864 
2865 	/* Clear WOL status on pattern match. */
2866 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2867 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2868 
2869 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2870 	val |= VGE_STICKHW_SWPTAG;
2871 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2872 	/* Put hardware into sleep. */
2873 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2874 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2875 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2876 	/* Request PME if WOL is requested. */
2877 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2878 		pci_enable_pme(sc->vge_dev);
2879 }
2880 
2881 static void
vge_clrwol(struct vge_softc * sc)2882 vge_clrwol(struct vge_softc *sc)
2883 {
2884 	uint8_t val;
2885 
2886 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2887 	val &= ~VGE_STICKHW_SWPTAG;
2888 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2889 	/* Disable WOL and clear power state indicator. */
2890 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2891 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2892 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2893 
2894 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2895 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2896 
2897 	/* Clear WOL on pattern match. */
2898 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2899 	/* Disable WOL on magic/unicast packet. */
2900 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2901 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2902 	    VGE_WOLCFG_PMEOVR);
2903 	/* Clear WOL status on pattern match. */
2904 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2905 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2906 }
2907