1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 /*
38 * External virtual filesystem routines
39 */
40
41 #include "opt_ddb.h"
42 #include "opt_watchdog.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/asan.h>
47 #include <sys/bio.h>
48 #include <sys/buf.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/counter.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/inotify.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/stdarg.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/user.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87
88 #include <security/mac/mac_framework.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103
104 static void delmntque(struct vnode *vp);
105 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 int slpflag, int slptimeo);
107 static void syncer_shutdown(void *arg, int howto);
108 static int vtryrecycle(struct vnode *vp, bool isvnlru);
109 static void v_init_counters(struct vnode *);
110 static void vn_seqc_init(struct vnode *);
111 static void vn_seqc_write_end_free(struct vnode *vp);
112 static void vgonel(struct vnode *);
113 static bool vhold_recycle_free(struct vnode *);
114 static void vdropl_recycle(struct vnode *vp);
115 static void vdrop_recycle(struct vnode *vp);
116 static void vfs_knllock(void *arg);
117 static void vfs_knlunlock(void *arg);
118 static void vfs_knl_assert_lock(void *arg, int what);
119 static void destroy_vpollinfo(struct vpollinfo *vi);
120 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 daddr_t startlbn, daddr_t endlbn);
122 static void vnlru_recalc(void);
123
124 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
125 "vnode configuration and statistics");
126 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
127 "vnode configuration");
128 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129 "vnode statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131 "vnode recycling");
132
133 /*
134 * Number of vnodes in existence. Increased whenever getnewvnode()
135 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
136 */
137 static u_long __exclusive_cache_line numvnodes;
138
139 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
140 "Number of vnodes in existence (legacy)");
141 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
142 "Number of vnodes in existence");
143
144 static counter_u64_t vnodes_created;
145 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
146 "Number of vnodes created by getnewvnode (legacy)");
147 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
148 "Number of vnodes created by getnewvnode");
149
150 /*
151 * Conversion tables for conversion from vnode types to inode formats
152 * and back.
153 */
154 __enum_uint8(vtype) iftovt_tab[16] = {
155 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
156 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
157 };
158 int vttoif_tab[10] = {
159 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
160 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
161 };
162
163 /*
164 * List of allocates vnodes in the system.
165 */
166 static TAILQ_HEAD(freelst, vnode) vnode_list;
167 static struct vnode *vnode_list_free_marker;
168 static struct vnode *vnode_list_reclaim_marker;
169
170 /*
171 * "Free" vnode target. Free vnodes are rarely completely free, but are
172 * just ones that are cheap to recycle. Usually they are for files which
173 * have been stat'd but not read; these usually have inode and namecache
174 * data attached to them. This target is the preferred minimum size of a
175 * sub-cache consisting mostly of such files. The system balances the size
176 * of this sub-cache with its complement to try to prevent either from
177 * thrashing while the other is relatively inactive. The targets express
178 * a preference for the best balance.
179 *
180 * "Above" this target there are 2 further targets (watermarks) related
181 * to recyling of free vnodes. In the best-operating case, the cache is
182 * exactly full, the free list has size between vlowat and vhiwat above the
183 * free target, and recycling from it and normal use maintains this state.
184 * Sometimes the free list is below vlowat or even empty, but this state
185 * is even better for immediate use provided the cache is not full.
186 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
187 * ones) to reach one of these states. The watermarks are currently hard-
188 * coded as 4% and 9% of the available space higher. These and the default
189 * of 25% for wantfreevnodes are too large if the memory size is large.
190 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
191 * whenever vnlru_proc() becomes active.
192 */
193 static long wantfreevnodes;
194 static long __exclusive_cache_line freevnodes;
195 static long freevnodes_old;
196
197 static u_long recycles_count;
198 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
199 "Number of vnodes recycled to meet vnode cache targets (legacy)");
200 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
201 &recycles_count, 0,
202 "Number of vnodes recycled to meet vnode cache targets");
203
204 static u_long recycles_free_count;
205 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
206 &recycles_free_count, 0,
207 "Number of free vnodes recycled to meet vnode cache targets (legacy)");
208 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
209 &recycles_free_count, 0,
210 "Number of free vnodes recycled to meet vnode cache targets");
211
212 static counter_u64_t direct_recycles_free_count;
213 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
214 &direct_recycles_free_count,
215 "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
216
217 static counter_u64_t vnode_skipped_requeues;
218 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
219 "Number of times LRU requeue was skipped due to lock contention");
220
221 static __read_mostly bool vnode_can_skip_requeue;
222 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
223 &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
224
225 static u_long deferred_inact;
226 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
227 &deferred_inact, 0, "Number of times inactive processing was deferred");
228
229 /* To keep more than one thread at a time from running vfs_getnewfsid */
230 static struct mtx mntid_mtx;
231
232 /*
233 * Lock for any access to the following:
234 * vnode_list
235 * numvnodes
236 * freevnodes
237 */
238 static struct mtx __exclusive_cache_line vnode_list_mtx;
239
240 /* Publicly exported FS */
241 struct nfs_public nfs_pub;
242
243 static uma_zone_t buf_trie_zone;
244 static smr_t buf_trie_smr;
245
246 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
247 static uma_zone_t vnode_zone;
248 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
249
250 __read_frequently smr_t vfs_smr;
251
252 /*
253 * The workitem queue.
254 *
255 * It is useful to delay writes of file data and filesystem metadata
256 * for tens of seconds so that quickly created and deleted files need
257 * not waste disk bandwidth being created and removed. To realize this,
258 * we append vnodes to a "workitem" queue. When running with a soft
259 * updates implementation, most pending metadata dependencies should
260 * not wait for more than a few seconds. Thus, mounted on block devices
261 * are delayed only about a half the time that file data is delayed.
262 * Similarly, directory updates are more critical, so are only delayed
263 * about a third the time that file data is delayed. Thus, there are
264 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
265 * one each second (driven off the filesystem syncer process). The
266 * syncer_delayno variable indicates the next queue that is to be processed.
267 * Items that need to be processed soon are placed in this queue:
268 *
269 * syncer_workitem_pending[syncer_delayno]
270 *
271 * A delay of fifteen seconds is done by placing the request fifteen
272 * entries later in the queue:
273 *
274 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
275 *
276 */
277 static int syncer_delayno;
278 static long syncer_mask;
279 LIST_HEAD(synclist, bufobj);
280 static struct synclist *syncer_workitem_pending;
281 /*
282 * The sync_mtx protects:
283 * bo->bo_synclist
284 * sync_vnode_count
285 * syncer_delayno
286 * syncer_state
287 * syncer_workitem_pending
288 * syncer_worklist_len
289 * rushjob
290 */
291 static struct mtx sync_mtx;
292 static struct cv sync_wakeup;
293
294 #define SYNCER_MAXDELAY 32
295 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
296 static int syncdelay = 30; /* max time to delay syncing data */
297 static int filedelay = 30; /* time to delay syncing files */
298 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
299 "Time to delay syncing files (in seconds)");
300 static int dirdelay = 29; /* time to delay syncing directories */
301 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
302 "Time to delay syncing directories (in seconds)");
303 static int metadelay = 28; /* time to delay syncing metadata */
304 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
305 "Time to delay syncing metadata (in seconds)");
306 static int rushjob; /* number of slots to run ASAP */
307 static int stat_rush_requests; /* number of times I/O speeded up */
308 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
309 "Number of times I/O speeded up (rush requests)");
310
311 #define VDBATCH_SIZE 8
312 struct vdbatch {
313 u_int index;
314 struct mtx lock;
315 struct vnode *tab[VDBATCH_SIZE];
316 };
317 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
318
319 static void vdbatch_dequeue(struct vnode *vp);
320
321 /*
322 * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
323 * we probably don't want to pause for the whole second each time.
324 */
325 #define SYNCER_SHUTDOWN_SPEEDUP 32
326 static int sync_vnode_count;
327 static int syncer_worklist_len;
328 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
329 syncer_state;
330
331 /* Target for maximum number of vnodes. */
332 u_long desiredvnodes;
333 static u_long gapvnodes; /* gap between wanted and desired */
334 static u_long vhiwat; /* enough extras after expansion */
335 static u_long vlowat; /* minimal extras before expansion */
336 static bool vstir; /* nonzero to stir non-free vnodes */
337 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */
338
339 static u_long vnlru_read_freevnodes(void);
340
341 /*
342 * Note that no attempt is made to sanitize these parameters.
343 */
344 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)345 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
346 {
347 u_long val;
348 int error;
349
350 val = desiredvnodes;
351 error = sysctl_handle_long(oidp, &val, 0, req);
352 if (error != 0 || req->newptr == NULL)
353 return (error);
354
355 if (val == desiredvnodes)
356 return (0);
357 mtx_lock(&vnode_list_mtx);
358 desiredvnodes = val;
359 wantfreevnodes = desiredvnodes / 4;
360 vnlru_recalc();
361 mtx_unlock(&vnode_list_mtx);
362 /*
363 * XXX There is no protection against multiple threads changing
364 * desiredvnodes at the same time. Locking above only helps vnlru and
365 * getnewvnode.
366 */
367 vfs_hash_changesize(desiredvnodes);
368 cache_changesize(desiredvnodes);
369 return (0);
370 }
371
372 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
373 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
374 "LU", "Target for maximum number of vnodes (legacy)");
375 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
376 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377 "LU", "Target for maximum number of vnodes");
378
379 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)380 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
381 {
382 u_long rfreevnodes;
383
384 rfreevnodes = vnlru_read_freevnodes();
385 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
386 }
387
388 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
389 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
390 "LU", "Number of \"free\" vnodes (legacy)");
391 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
392 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393 "LU", "Number of \"free\" vnodes");
394
395 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)396 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
397 {
398 u_long val;
399 int error;
400
401 val = wantfreevnodes;
402 error = sysctl_handle_long(oidp, &val, 0, req);
403 if (error != 0 || req->newptr == NULL)
404 return (error);
405
406 if (val == wantfreevnodes)
407 return (0);
408 mtx_lock(&vnode_list_mtx);
409 wantfreevnodes = val;
410 vnlru_recalc();
411 mtx_unlock(&vnode_list_mtx);
412 return (0);
413 }
414
415 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
416 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
417 "LU", "Target for minimum number of \"free\" vnodes (legacy)");
418 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
419 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420 "LU", "Target for minimum number of \"free\" vnodes");
421
422 static int vnlru_nowhere;
423 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
424 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
425
426 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)427 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
428 {
429 struct vnode *vp;
430 struct nameidata nd;
431 char *buf;
432 unsigned long ndflags;
433 int error;
434
435 if (req->newptr == NULL)
436 return (EINVAL);
437 if (req->newlen >= PATH_MAX)
438 return (E2BIG);
439
440 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
441 error = SYSCTL_IN(req, buf, req->newlen);
442 if (error != 0)
443 goto out;
444
445 buf[req->newlen] = '\0';
446
447 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
448 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
449 if ((error = namei(&nd)) != 0)
450 goto out;
451 vp = nd.ni_vp;
452
453 if (VN_IS_DOOMED(vp)) {
454 /*
455 * This vnode is being recycled. Return != 0 to let the caller
456 * know that the sysctl had no effect. Return EAGAIN because a
457 * subsequent call will likely succeed (since namei will create
458 * a new vnode if necessary)
459 */
460 error = EAGAIN;
461 goto putvnode;
462 }
463
464 vgone(vp);
465 putvnode:
466 vput(vp);
467 NDFREE_PNBUF(&nd);
468 out:
469 free(buf, M_TEMP);
470 return (error);
471 }
472
473 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)474 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
475 {
476 struct thread *td = curthread;
477 struct vnode *vp;
478 struct file *fp;
479 int error;
480 int fd;
481
482 if (req->newptr == NULL)
483 return (EBADF);
484
485 error = sysctl_handle_int(oidp, &fd, 0, req);
486 if (error != 0)
487 return (error);
488 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
489 if (error != 0)
490 return (error);
491 vp = fp->f_vnode;
492
493 error = vn_lock(vp, LK_EXCLUSIVE);
494 if (error != 0)
495 goto drop;
496
497 vgone(vp);
498 VOP_UNLOCK(vp);
499 drop:
500 fdrop(fp, td);
501 return (error);
502 }
503
504 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
505 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
506 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
507 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
508 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509 sysctl_ftry_reclaim_vnode, "I",
510 "Try to reclaim a vnode by its file descriptor");
511
512 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
513 #define vnsz2log 8
514 #ifndef DEBUG_LOCKS
515 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
516 sizeof(struct vnode) < 1UL << (vnsz2log + 1),
517 "vnsz2log needs to be updated");
518 #endif
519
520 /*
521 * Support for the bufobj clean & dirty pctrie.
522 */
523 static void *
buf_trie_alloc(struct pctrie * ptree)524 buf_trie_alloc(struct pctrie *ptree)
525 {
526 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
527 }
528
529 static void
buf_trie_free(struct pctrie * ptree,void * node)530 buf_trie_free(struct pctrie *ptree, void *node)
531 {
532 uma_zfree_smr(buf_trie_zone, node);
533 }
534 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
535 buf_trie_smr);
536
537 /*
538 * Lookup the next element greater than or equal to lblkno, accounting for the
539 * fact that, for pctries, negative values are greater than nonnegative ones.
540 */
541 static struct buf *
buf_lookup_ge(struct bufv * bv,daddr_t lblkno)542 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
543 {
544 struct buf *bp;
545
546 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
547 if (bp == NULL && lblkno < 0)
548 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
549 if (bp != NULL && bp->b_lblkno < lblkno)
550 bp = NULL;
551 return (bp);
552 }
553
554 /*
555 * Insert bp, and find the next element smaller than bp, accounting for the fact
556 * that, for pctries, negative values are greater than nonnegative ones.
557 */
558 static int
buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)559 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
560 {
561 int error;
562
563 error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
564 if (error != EEXIST) {
565 if (*n == NULL && bp->b_lblkno >= 0)
566 *n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
567 if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
568 *n = NULL;
569 }
570 return (error);
571 }
572
573 /*
574 * Initialize the vnode management data structures.
575 *
576 * Reevaluate the following cap on the number of vnodes after the physical
577 * memory size exceeds 512GB. In the limit, as the physical memory size
578 * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
579 */
580 #ifndef MAXVNODES_MAX
581 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */
582 #endif
583
584 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
585
586 static struct vnode *
vn_alloc_marker(struct mount * mp)587 vn_alloc_marker(struct mount *mp)
588 {
589 struct vnode *vp;
590
591 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
592 vp->v_type = VMARKER;
593 vp->v_mount = mp;
594
595 return (vp);
596 }
597
598 static void
vn_free_marker(struct vnode * vp)599 vn_free_marker(struct vnode *vp)
600 {
601
602 MPASS(vp->v_type == VMARKER);
603 free(vp, M_VNODE_MARKER);
604 }
605
606 #ifdef KASAN
607 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)608 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
609 {
610 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
611 return (0);
612 }
613
614 static void
vnode_dtor(void * mem,int size,void * arg __unused)615 vnode_dtor(void *mem, int size, void *arg __unused)
616 {
617 size_t end1, end2, off1, off2;
618
619 _Static_assert(offsetof(struct vnode, v_vnodelist) <
620 offsetof(struct vnode, v_dbatchcpu),
621 "KASAN marks require updating");
622
623 off1 = offsetof(struct vnode, v_vnodelist);
624 off2 = offsetof(struct vnode, v_dbatchcpu);
625 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
626 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
627
628 /*
629 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
630 * after the vnode has been freed. Try to get some KASAN coverage by
631 * marking everything except those two fields as invalid. Because
632 * KASAN's tracking is not byte-granular, any preceding fields sharing
633 * the same 8-byte aligned word must also be marked valid.
634 */
635
636 /* Handle the area from the start until v_vnodelist... */
637 off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
638 kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
639
640 /* ... then the area between v_vnodelist and v_dbatchcpu ... */
641 off1 = roundup2(end1, KASAN_SHADOW_SCALE);
642 off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
643 if (off2 > off1)
644 kasan_mark((void *)((char *)mem + off1), off2 - off1,
645 off2 - off1, KASAN_UMA_FREED);
646
647 /* ... and finally the area from v_dbatchcpu to the end. */
648 off2 = roundup2(end2, KASAN_SHADOW_SCALE);
649 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
650 KASAN_UMA_FREED);
651 }
652 #endif /* KASAN */
653
654 /*
655 * Initialize a vnode as it first enters the zone.
656 */
657 static int
vnode_init(void * mem,int size,int flags)658 vnode_init(void *mem, int size, int flags)
659 {
660 struct vnode *vp;
661
662 vp = mem;
663 bzero(vp, size);
664 /*
665 * Setup locks.
666 */
667 vp->v_vnlock = &vp->v_lock;
668 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
669 /*
670 * By default, don't allow shared locks unless filesystems opt-in.
671 */
672 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
673 LK_NOSHARE | LK_IS_VNODE);
674 /*
675 * Initialize bufobj.
676 */
677 bufobj_init(&vp->v_bufobj, vp);
678 /*
679 * Initialize namecache.
680 */
681 cache_vnode_init(vp);
682 /*
683 * Initialize rangelocks.
684 */
685 rangelock_init(&vp->v_rl);
686
687 vp->v_dbatchcpu = NOCPU;
688
689 vp->v_state = VSTATE_DEAD;
690
691 /*
692 * Check vhold_recycle_free for an explanation.
693 */
694 vp->v_holdcnt = VHOLD_NO_SMR;
695 vp->v_type = VNON;
696 mtx_lock(&vnode_list_mtx);
697 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
698 mtx_unlock(&vnode_list_mtx);
699 return (0);
700 }
701
702 /*
703 * Free a vnode when it is cleared from the zone.
704 */
705 static void
vnode_fini(void * mem,int size)706 vnode_fini(void *mem, int size)
707 {
708 struct vnode *vp;
709 struct bufobj *bo;
710
711 vp = mem;
712 vdbatch_dequeue(vp);
713 mtx_lock(&vnode_list_mtx);
714 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
715 mtx_unlock(&vnode_list_mtx);
716 rangelock_destroy(&vp->v_rl);
717 lockdestroy(vp->v_vnlock);
718 mtx_destroy(&vp->v_interlock);
719 bo = &vp->v_bufobj;
720 rw_destroy(BO_LOCKPTR(bo));
721
722 kasan_mark(mem, size, size, 0);
723 }
724
725 /*
726 * Provide the size of NFS nclnode and NFS fh for calculation of the
727 * vnode memory consumption. The size is specified directly to
728 * eliminate dependency on NFS-private header.
729 *
730 * Other filesystems may use bigger or smaller (like UFS and ZFS)
731 * private inode data, but the NFS-based estimation is ample enough.
732 * Still, we care about differences in the size between 64- and 32-bit
733 * platforms.
734 *
735 * Namecache structure size is heuristically
736 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
737 */
738 #ifdef _LP64
739 #define NFS_NCLNODE_SZ (528 + 64)
740 #define NC_SZ 148
741 #else
742 #define NFS_NCLNODE_SZ (360 + 32)
743 #define NC_SZ 92
744 #endif
745
746 static void
vntblinit(void * dummy __unused)747 vntblinit(void *dummy __unused)
748 {
749 struct vdbatch *vd;
750 uma_ctor ctor;
751 uma_dtor dtor;
752 int cpu, physvnodes, virtvnodes;
753
754 /*
755 * 'desiredvnodes' is the minimum of a function of the physical memory
756 * size and another of the kernel heap size (UMA limit, a portion of the
757 * KVA).
758 *
759 * Currently, on 64-bit platforms, 'desiredvnodes' is set to
760 * 'virtvnodes' up to a physical memory cutoff of ~1722MB, after which
761 * 'physvnodes' applies instead. With the current automatic tuning for
762 * 'maxfiles' (32 files/MB), 'desiredvnodes' is always greater than it.
763 */
764 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 32 +
765 min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 32;
766 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
767 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
768 desiredvnodes = min(physvnodes, virtvnodes);
769 if (desiredvnodes > MAXVNODES_MAX) {
770 if (bootverbose)
771 printf("Reducing kern.maxvnodes %lu -> %lu\n",
772 desiredvnodes, MAXVNODES_MAX);
773 desiredvnodes = MAXVNODES_MAX;
774 }
775 wantfreevnodes = desiredvnodes / 4;
776 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
777 TAILQ_INIT(&vnode_list);
778 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
779 /*
780 * The lock is taken to appease WITNESS.
781 */
782 mtx_lock(&vnode_list_mtx);
783 vnlru_recalc();
784 mtx_unlock(&vnode_list_mtx);
785 vnode_list_free_marker = vn_alloc_marker(NULL);
786 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
787 vnode_list_reclaim_marker = vn_alloc_marker(NULL);
788 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
789
790 #ifdef KASAN
791 ctor = vnode_ctor;
792 dtor = vnode_dtor;
793 #else
794 ctor = NULL;
795 dtor = NULL;
796 #endif
797 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
798 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
799 uma_zone_set_smr(vnode_zone, vfs_smr);
800
801 /*
802 * Preallocate enough nodes to support one-per buf so that
803 * we can not fail an insert. reassignbuf() callers can not
804 * tolerate the insertion failure.
805 */
806 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
807 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
808 UMA_ZONE_NOFREE | UMA_ZONE_SMR);
809 buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
810 uma_prealloc(buf_trie_zone, nbuf);
811
812 vnodes_created = counter_u64_alloc(M_WAITOK);
813 direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
814 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
815
816 /*
817 * Initialize the filesystem syncer.
818 */
819 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
820 &syncer_mask);
821 syncer_maxdelay = syncer_mask + 1;
822 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
823 cv_init(&sync_wakeup, "syncer");
824
825 CPU_FOREACH(cpu) {
826 vd = DPCPU_ID_PTR((cpu), vd);
827 bzero(vd, sizeof(*vd));
828 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
829 }
830 }
831 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
832
833 /*
834 * Mark a mount point as busy. Used to synchronize access and to delay
835 * unmounting. Eventually, mountlist_mtx is not released on failure.
836 *
837 * vfs_busy() is a custom lock, it can block the caller.
838 * vfs_busy() only sleeps if the unmount is active on the mount point.
839 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
840 * vnode belonging to mp.
841 *
842 * Lookup uses vfs_busy() to traverse mount points.
843 * root fs var fs
844 * / vnode lock A / vnode lock (/var) D
845 * /var vnode lock B /log vnode lock(/var/log) E
846 * vfs_busy lock C vfs_busy lock F
847 *
848 * Within each file system, the lock order is C->A->B and F->D->E.
849 *
850 * When traversing across mounts, the system follows that lock order:
851 *
852 * C->A->B
853 * |
854 * +->F->D->E
855 *
856 * The lookup() process for namei("/var") illustrates the process:
857 * 1. VOP_LOOKUP() obtains B while A is held
858 * 2. vfs_busy() obtains a shared lock on F while A and B are held
859 * 3. vput() releases lock on B
860 * 4. vput() releases lock on A
861 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held
862 * 6. vfs_unbusy() releases shared lock on F
863 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
864 * Attempt to lock A (instead of vp_crossmp) while D is held would
865 * violate the global order, causing deadlocks.
866 *
867 * dounmount() locks B while F is drained. Note that for stacked
868 * filesystems, D and B in the example above may be the same lock,
869 * which introdues potential lock order reversal deadlock between
870 * dounmount() and step 5 above. These filesystems may avoid the LOR
871 * by setting VV_CROSSLOCK on the covered vnode so that lock B will
872 * remain held until after step 5.
873 */
874 int
vfs_busy(struct mount * mp,int flags)875 vfs_busy(struct mount *mp, int flags)
876 {
877 struct mount_pcpu *mpcpu;
878
879 MPASS((flags & ~MBF_MASK) == 0);
880 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
881
882 if (vfs_op_thread_enter(mp, mpcpu)) {
883 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
884 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
885 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
886 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
887 vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
888 vfs_op_thread_exit(mp, mpcpu);
889 if (flags & MBF_MNTLSTLOCK)
890 mtx_unlock(&mountlist_mtx);
891 return (0);
892 }
893
894 MNT_ILOCK(mp);
895 vfs_assert_mount_counters(mp);
896 MNT_REF(mp);
897 /*
898 * If mount point is currently being unmounted, sleep until the
899 * mount point fate is decided. If thread doing the unmounting fails,
900 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
901 * that this mount point has survived the unmount attempt and vfs_busy
902 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
903 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
904 * about to be really destroyed. vfs_busy needs to release its
905 * reference on the mount point in this case and return with ENOENT,
906 * telling the caller the mount it tried to busy is no longer valid.
907 */
908 while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
909 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
910 ("%s: non-empty upper mount list with pending unmount",
911 __func__));
912 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
913 MNT_REL(mp);
914 MNT_IUNLOCK(mp);
915 CTR1(KTR_VFS, "%s: failed busying before sleeping",
916 __func__);
917 return (ENOENT);
918 }
919 if (flags & MBF_MNTLSTLOCK)
920 mtx_unlock(&mountlist_mtx);
921 mp->mnt_kern_flag |= MNTK_MWAIT;
922 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
923 if (flags & MBF_MNTLSTLOCK)
924 mtx_lock(&mountlist_mtx);
925 MNT_ILOCK(mp);
926 }
927 if (flags & MBF_MNTLSTLOCK)
928 mtx_unlock(&mountlist_mtx);
929 mp->mnt_lockref++;
930 MNT_IUNLOCK(mp);
931 return (0);
932 }
933
934 /*
935 * Free a busy filesystem.
936 */
937 void
vfs_unbusy(struct mount * mp)938 vfs_unbusy(struct mount *mp)
939 {
940 struct mount_pcpu *mpcpu;
941 int c;
942
943 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
944
945 if (vfs_op_thread_enter(mp, mpcpu)) {
946 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
947 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
948 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
949 vfs_op_thread_exit(mp, mpcpu);
950 return;
951 }
952
953 MNT_ILOCK(mp);
954 vfs_assert_mount_counters(mp);
955 MNT_REL(mp);
956 c = --mp->mnt_lockref;
957 if (mp->mnt_vfs_ops == 0) {
958 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
959 MNT_IUNLOCK(mp);
960 return;
961 }
962 if (c < 0)
963 vfs_dump_mount_counters(mp);
964 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
965 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
966 CTR1(KTR_VFS, "%s: waking up waiters", __func__);
967 mp->mnt_kern_flag &= ~MNTK_DRAINING;
968 wakeup(&mp->mnt_lockref);
969 }
970 MNT_IUNLOCK(mp);
971 }
972
973 /*
974 * Lookup a mount point by filesystem identifier.
975 */
976 struct mount *
vfs_getvfs(fsid_t * fsid)977 vfs_getvfs(fsid_t *fsid)
978 {
979 struct mount *mp;
980
981 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
982 mtx_lock(&mountlist_mtx);
983 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
984 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
985 vfs_ref(mp);
986 mtx_unlock(&mountlist_mtx);
987 return (mp);
988 }
989 }
990 mtx_unlock(&mountlist_mtx);
991 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
992 return ((struct mount *) 0);
993 }
994
995 /*
996 * Lookup a mount point by filesystem identifier, busying it before
997 * returning.
998 *
999 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1000 * cache for popular filesystem identifiers. The cache is lockess, using
1001 * the fact that struct mount's are never freed. In worst case we may
1002 * get pointer to unmounted or even different filesystem, so we have to
1003 * check what we got, and go slow way if so.
1004 */
1005 struct mount *
vfs_busyfs(fsid_t * fsid)1006 vfs_busyfs(fsid_t *fsid)
1007 {
1008 #define FSID_CACHE_SIZE 256
1009 typedef struct mount * volatile vmp_t;
1010 static vmp_t cache[FSID_CACHE_SIZE];
1011 struct mount *mp;
1012 int error;
1013 uint32_t hash;
1014
1015 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1016 hash = fsid->val[0] ^ fsid->val[1];
1017 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1018 mp = cache[hash];
1019 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1020 goto slow;
1021 if (vfs_busy(mp, 0) != 0) {
1022 cache[hash] = NULL;
1023 goto slow;
1024 }
1025 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1026 return (mp);
1027 else
1028 vfs_unbusy(mp);
1029
1030 slow:
1031 mtx_lock(&mountlist_mtx);
1032 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1033 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1034 error = vfs_busy(mp, MBF_MNTLSTLOCK);
1035 if (error) {
1036 cache[hash] = NULL;
1037 mtx_unlock(&mountlist_mtx);
1038 return (NULL);
1039 }
1040 cache[hash] = mp;
1041 return (mp);
1042 }
1043 }
1044 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1045 mtx_unlock(&mountlist_mtx);
1046 return ((struct mount *) 0);
1047 }
1048
1049 /*
1050 * Check if a user can access privileged mount options.
1051 */
1052 int
vfs_suser(struct mount * mp,struct thread * td)1053 vfs_suser(struct mount *mp, struct thread *td)
1054 {
1055 int error;
1056
1057 if (jailed(td->td_ucred)) {
1058 /*
1059 * If the jail of the calling thread lacks permission for
1060 * this type of file system, deny immediately.
1061 */
1062 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1063 return (EPERM);
1064
1065 /*
1066 * If the file system was mounted outside the jail of the
1067 * calling thread, deny immediately.
1068 */
1069 if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1070 return (EPERM);
1071 }
1072
1073 /*
1074 * If file system supports delegated administration, we don't check
1075 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1076 * by the file system itself.
1077 * If this is not the user that did original mount, we check for
1078 * the PRIV_VFS_MOUNT_OWNER privilege.
1079 */
1080 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1081 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1082 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1083 return (error);
1084 }
1085 return (0);
1086 }
1087
1088 /*
1089 * Get a new unique fsid. Try to make its val[0] unique, since this value
1090 * will be used to create fake device numbers for stat(). Also try (but
1091 * not so hard) make its val[0] unique mod 2^16, since some emulators only
1092 * support 16-bit device numbers. We end up with unique val[0]'s for the
1093 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1094 *
1095 * Keep in mind that several mounts may be running in parallel. Starting
1096 * the search one past where the previous search terminated is both a
1097 * micro-optimization and a defense against returning the same fsid to
1098 * different mounts.
1099 */
1100 void
vfs_getnewfsid(struct mount * mp)1101 vfs_getnewfsid(struct mount *mp)
1102 {
1103 static uint16_t mntid_base;
1104 struct mount *nmp;
1105 fsid_t tfsid;
1106 int mtype;
1107
1108 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1109 mtx_lock(&mntid_mtx);
1110 mtype = mp->mnt_vfc->vfc_typenum;
1111 tfsid.val[1] = mtype;
1112 mtype = (mtype & 0xFF) << 24;
1113 for (;;) {
1114 tfsid.val[0] = makedev(255,
1115 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1116 mntid_base++;
1117 if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1118 break;
1119 vfs_rel(nmp);
1120 }
1121 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1122 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1123 mtx_unlock(&mntid_mtx);
1124 }
1125
1126 /*
1127 * Knob to control the precision of file timestamps:
1128 *
1129 * 0 = seconds only; nanoseconds zeroed.
1130 * 1 = seconds and nanoseconds, accurate within 1/HZ.
1131 * 2 = seconds and nanoseconds, truncated to microseconds.
1132 * >=3 = seconds and nanoseconds, maximum precision.
1133 */
1134 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1135
1136 static int timestamp_precision = TSP_USEC;
1137 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1138 ×tamp_precision, 0, "File timestamp precision (0: seconds, "
1139 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1140 "3+: sec + ns (max. precision))");
1141
1142 /*
1143 * Get a current timestamp.
1144 */
1145 void
vfs_timestamp(struct timespec * tsp)1146 vfs_timestamp(struct timespec *tsp)
1147 {
1148 struct timeval tv;
1149
1150 switch (timestamp_precision) {
1151 case TSP_SEC:
1152 tsp->tv_sec = time_second;
1153 tsp->tv_nsec = 0;
1154 break;
1155 case TSP_HZ:
1156 getnanotime(tsp);
1157 break;
1158 case TSP_USEC:
1159 microtime(&tv);
1160 TIMEVAL_TO_TIMESPEC(&tv, tsp);
1161 break;
1162 case TSP_NSEC:
1163 default:
1164 nanotime(tsp);
1165 break;
1166 }
1167 }
1168
1169 /*
1170 * Set vnode attributes to VNOVAL
1171 */
1172 void
vattr_null(struct vattr * vap)1173 vattr_null(struct vattr *vap)
1174 {
1175
1176 vap->va_type = VNON;
1177 vap->va_size = VNOVAL;
1178 vap->va_bytes = VNOVAL;
1179 vap->va_mode = VNOVAL;
1180 vap->va_nlink = VNOVAL;
1181 vap->va_uid = VNOVAL;
1182 vap->va_gid = VNOVAL;
1183 vap->va_fsid = VNOVAL;
1184 vap->va_fileid = VNOVAL;
1185 vap->va_blocksize = VNOVAL;
1186 vap->va_rdev = VNOVAL;
1187 vap->va_atime.tv_sec = VNOVAL;
1188 vap->va_atime.tv_nsec = VNOVAL;
1189 vap->va_mtime.tv_sec = VNOVAL;
1190 vap->va_mtime.tv_nsec = VNOVAL;
1191 vap->va_ctime.tv_sec = VNOVAL;
1192 vap->va_ctime.tv_nsec = VNOVAL;
1193 vap->va_birthtime.tv_sec = VNOVAL;
1194 vap->va_birthtime.tv_nsec = VNOVAL;
1195 vap->va_flags = VNOVAL;
1196 vap->va_gen = VNOVAL;
1197 vap->va_vaflags = 0;
1198 vap->va_filerev = VNOVAL;
1199 vap->va_bsdflags = 0;
1200 }
1201
1202 /*
1203 * Try to reduce the total number of vnodes.
1204 *
1205 * This routine (and its user) are buggy in at least the following ways:
1206 * - all parameters were picked years ago when RAM sizes were significantly
1207 * smaller
1208 * - it can pick vnodes based on pages used by the vm object, but filesystems
1209 * like ZFS don't use it making the pick broken
1210 * - since ZFS has its own aging policy it gets partially combated by this one
1211 * - a dedicated method should be provided for filesystems to let them decide
1212 * whether the vnode should be recycled
1213 *
1214 * This routine is called when we have too many vnodes. It attempts
1215 * to free <count> vnodes and will potentially free vnodes that still
1216 * have VM backing store (VM backing store is typically the cause
1217 * of a vnode blowout so we want to do this). Therefore, this operation
1218 * is not considered cheap.
1219 *
1220 * A number of conditions may prevent a vnode from being reclaimed.
1221 * the buffer cache may have references on the vnode, a directory
1222 * vnode may still have references due to the namei cache representing
1223 * underlying files, or the vnode may be in active use. It is not
1224 * desirable to reuse such vnodes. These conditions may cause the
1225 * number of vnodes to reach some minimum value regardless of what
1226 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
1227 *
1228 * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1229 * entries if this argument is strue
1230 * @param trigger Only reclaim vnodes with fewer than this many resident
1231 * pages.
1232 * @param target How many vnodes to reclaim.
1233 * @return The number of vnodes that were reclaimed.
1234 */
1235 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1236 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1237 {
1238 struct vnode *vp, *mvp;
1239 struct mount *mp;
1240 struct vm_object *object;
1241 u_long done;
1242 bool retried;
1243
1244 mtx_assert(&vnode_list_mtx, MA_OWNED);
1245
1246 retried = false;
1247 done = 0;
1248
1249 mvp = vnode_list_reclaim_marker;
1250 restart:
1251 vp = mvp;
1252 while (done < target) {
1253 vp = TAILQ_NEXT(vp, v_vnodelist);
1254 if (__predict_false(vp == NULL))
1255 break;
1256
1257 if (__predict_false(vp->v_type == VMARKER))
1258 continue;
1259
1260 /*
1261 * If it's been deconstructed already, it's still
1262 * referenced, or it exceeds the trigger, skip it.
1263 * Also skip free vnodes. We are trying to make space
1264 * for more free vnodes, not reduce their count.
1265 */
1266 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1267 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1268 goto next_iter;
1269
1270 if (vp->v_type == VBAD || vp->v_type == VNON)
1271 goto next_iter;
1272
1273 object = atomic_load_ptr(&vp->v_object);
1274 if (object == NULL || object->resident_page_count > trigger) {
1275 goto next_iter;
1276 }
1277
1278 /*
1279 * Handle races against vnode allocation. Filesystems lock the
1280 * vnode some time after it gets returned from getnewvnode,
1281 * despite type and hold count being manipulated earlier.
1282 * Resorting to checking v_mount restores guarantees present
1283 * before the global list was reworked to contain all vnodes.
1284 */
1285 if (!VI_TRYLOCK(vp))
1286 goto next_iter;
1287 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1288 VI_UNLOCK(vp);
1289 goto next_iter;
1290 }
1291 if (vp->v_mount == NULL) {
1292 VI_UNLOCK(vp);
1293 goto next_iter;
1294 }
1295 vholdl(vp);
1296 VI_UNLOCK(vp);
1297 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1299 mtx_unlock(&vnode_list_mtx);
1300
1301 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1302 vdrop_recycle(vp);
1303 goto next_iter_unlocked;
1304 }
1305 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1306 vdrop_recycle(vp);
1307 vn_finished_write(mp);
1308 goto next_iter_unlocked;
1309 }
1310
1311 VI_LOCK(vp);
1312 if (vp->v_usecount > 0 ||
1313 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1314 (vp->v_object != NULL && vp->v_object->handle == vp &&
1315 vp->v_object->resident_page_count > trigger)) {
1316 VOP_UNLOCK(vp);
1317 vdropl_recycle(vp);
1318 vn_finished_write(mp);
1319 goto next_iter_unlocked;
1320 }
1321 recycles_count++;
1322 vgonel(vp);
1323 VOP_UNLOCK(vp);
1324 vdropl_recycle(vp);
1325 vn_finished_write(mp);
1326 done++;
1327 next_iter_unlocked:
1328 maybe_yield();
1329 mtx_lock(&vnode_list_mtx);
1330 goto restart;
1331 next_iter:
1332 MPASS(vp->v_type != VMARKER);
1333 if (!should_yield())
1334 continue;
1335 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1336 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1337 mtx_unlock(&vnode_list_mtx);
1338 kern_yield(PRI_USER);
1339 mtx_lock(&vnode_list_mtx);
1340 goto restart;
1341 }
1342 if (done == 0 && !retried) {
1343 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1344 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1345 retried = true;
1346 goto restart;
1347 }
1348 return (done);
1349 }
1350
1351 static int max_free_per_call = 10000;
1352 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1353 "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1354 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1355 &max_free_per_call, 0,
1356 "limit on vnode free requests per call to the vnlru_free routine");
1357
1358 /*
1359 * Attempt to recycle requested amount of free vnodes.
1360 */
1361 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1362 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1363 {
1364 struct vnode *vp;
1365 struct mount *mp;
1366 int ocount;
1367 bool retried;
1368
1369 mtx_assert(&vnode_list_mtx, MA_OWNED);
1370 if (count > max_free_per_call)
1371 count = max_free_per_call;
1372 if (count == 0) {
1373 mtx_unlock(&vnode_list_mtx);
1374 return (0);
1375 }
1376 ocount = count;
1377 retried = false;
1378 vp = mvp;
1379 for (;;) {
1380 vp = TAILQ_NEXT(vp, v_vnodelist);
1381 if (__predict_false(vp == NULL)) {
1382 /*
1383 * The free vnode marker can be past eligible vnodes:
1384 * 1. if vdbatch_process trylock failed
1385 * 2. if vtryrecycle failed
1386 *
1387 * If so, start the scan from scratch.
1388 */
1389 if (!retried && vnlru_read_freevnodes() > 0) {
1390 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1392 vp = mvp;
1393 retried = true;
1394 continue;
1395 }
1396
1397 /*
1398 * Give up
1399 */
1400 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1401 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1402 mtx_unlock(&vnode_list_mtx);
1403 break;
1404 }
1405 if (__predict_false(vp->v_type == VMARKER))
1406 continue;
1407 if (vp->v_holdcnt > 0)
1408 continue;
1409 /*
1410 * Don't recycle if our vnode is from different type
1411 * of mount point. Note that mp is type-safe, the
1412 * check does not reach unmapped address even if
1413 * vnode is reclaimed.
1414 */
1415 if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1416 mp->mnt_op != mnt_op) {
1417 continue;
1418 }
1419 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1420 continue;
1421 }
1422 if (!vhold_recycle_free(vp))
1423 continue;
1424 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1425 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1426 mtx_unlock(&vnode_list_mtx);
1427 /*
1428 * FIXME: ignores the return value, meaning it may be nothing
1429 * got recycled but it claims otherwise to the caller.
1430 *
1431 * Originally the value started being ignored in 2005 with
1432 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1433 *
1434 * Respecting the value can run into significant stalls if most
1435 * vnodes belong to one file system and it has writes
1436 * suspended. In presence of many threads and millions of
1437 * vnodes they keep contending on the vnode_list_mtx lock only
1438 * to find vnodes they can't recycle.
1439 *
1440 * The solution would be to pre-check if the vnode is likely to
1441 * be recycle-able, but it needs to happen with the
1442 * vnode_list_mtx lock held. This runs into a problem where
1443 * VOP_GETWRITEMOUNT (currently needed to find out about if
1444 * writes are frozen) can take locks which LOR against it.
1445 *
1446 * Check nullfs for one example (null_getwritemount).
1447 */
1448 vtryrecycle(vp, isvnlru);
1449 count--;
1450 if (count == 0) {
1451 break;
1452 }
1453 mtx_lock(&vnode_list_mtx);
1454 vp = mvp;
1455 }
1456 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1457 return (ocount - count);
1458 }
1459
1460 /*
1461 * XXX: returns without vnode_list_mtx locked!
1462 */
1463 static int
vnlru_free_locked_direct(int count)1464 vnlru_free_locked_direct(int count)
1465 {
1466 int ret;
1467
1468 mtx_assert(&vnode_list_mtx, MA_OWNED);
1469 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1470 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1471 return (ret);
1472 }
1473
1474 static int
vnlru_free_locked_vnlru(int count)1475 vnlru_free_locked_vnlru(int count)
1476 {
1477 int ret;
1478
1479 mtx_assert(&vnode_list_mtx, MA_OWNED);
1480 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1481 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1482 return (ret);
1483 }
1484
1485 static int
vnlru_free_vnlru(int count)1486 vnlru_free_vnlru(int count)
1487 {
1488
1489 mtx_lock(&vnode_list_mtx);
1490 return (vnlru_free_locked_vnlru(count));
1491 }
1492
1493 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1494 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1495 {
1496
1497 MPASS(mnt_op != NULL);
1498 MPASS(mvp != NULL);
1499 VNPASS(mvp->v_type == VMARKER, mvp);
1500 mtx_lock(&vnode_list_mtx);
1501 vnlru_free_impl(count, mnt_op, mvp, true);
1502 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1503 }
1504
1505 struct vnode *
vnlru_alloc_marker(void)1506 vnlru_alloc_marker(void)
1507 {
1508 struct vnode *mvp;
1509
1510 mvp = vn_alloc_marker(NULL);
1511 mtx_lock(&vnode_list_mtx);
1512 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1513 mtx_unlock(&vnode_list_mtx);
1514 return (mvp);
1515 }
1516
1517 void
vnlru_free_marker(struct vnode * mvp)1518 vnlru_free_marker(struct vnode *mvp)
1519 {
1520 mtx_lock(&vnode_list_mtx);
1521 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1522 mtx_unlock(&vnode_list_mtx);
1523 vn_free_marker(mvp);
1524 }
1525
1526 static void
vnlru_recalc(void)1527 vnlru_recalc(void)
1528 {
1529
1530 mtx_assert(&vnode_list_mtx, MA_OWNED);
1531 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1532 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1533 vlowat = vhiwat / 2;
1534 }
1535
1536 /*
1537 * Attempt to recycle vnodes in a context that is always safe to block.
1538 * Calling vlrurecycle() from the bowels of filesystem code has some
1539 * interesting deadlock problems.
1540 */
1541 static struct proc *vnlruproc;
1542 static int vnlruproc_sig;
1543 static u_long vnlruproc_kicks;
1544
1545 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1546 "Number of times vnlru awakened due to vnode shortage");
1547
1548 #define VNLRU_COUNT_SLOP 100
1549
1550 /*
1551 * The main freevnodes counter is only updated when a counter local to CPU
1552 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1553 * walked to compute a more accurate total.
1554 *
1555 * Note: the actual value at any given moment can still exceed slop, but it
1556 * should not be by significant margin in practice.
1557 */
1558 #define VNLRU_FREEVNODES_SLOP 126
1559
1560 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1561 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1562 {
1563
1564 atomic_add_long(&freevnodes, *lfreevnodes);
1565 *lfreevnodes = 0;
1566 critical_exit();
1567 }
1568
1569 static __inline void
vfs_freevnodes_inc(void)1570 vfs_freevnodes_inc(void)
1571 {
1572 int8_t *lfreevnodes;
1573
1574 critical_enter();
1575 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1576 (*lfreevnodes)++;
1577 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1578 vfs_freevnodes_rollup(lfreevnodes);
1579 else
1580 critical_exit();
1581 }
1582
1583 static __inline void
vfs_freevnodes_dec(void)1584 vfs_freevnodes_dec(void)
1585 {
1586 int8_t *lfreevnodes;
1587
1588 critical_enter();
1589 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1590 (*lfreevnodes)--;
1591 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1592 vfs_freevnodes_rollup(lfreevnodes);
1593 else
1594 critical_exit();
1595 }
1596
1597 static u_long
vnlru_read_freevnodes(void)1598 vnlru_read_freevnodes(void)
1599 {
1600 long slop, rfreevnodes, rfreevnodes_old;
1601 int cpu;
1602
1603 rfreevnodes = atomic_load_long(&freevnodes);
1604 rfreevnodes_old = atomic_load_long(&freevnodes_old);
1605
1606 if (rfreevnodes > rfreevnodes_old)
1607 slop = rfreevnodes - rfreevnodes_old;
1608 else
1609 slop = rfreevnodes_old - rfreevnodes;
1610 if (slop < VNLRU_FREEVNODES_SLOP)
1611 return (rfreevnodes >= 0 ? rfreevnodes : 0);
1612 CPU_FOREACH(cpu) {
1613 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1614 }
1615 atomic_store_long(&freevnodes_old, rfreevnodes);
1616 return (freevnodes_old >= 0 ? freevnodes_old : 0);
1617 }
1618
1619 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1620 vnlru_under(u_long rnumvnodes, u_long limit)
1621 {
1622 u_long rfreevnodes, space;
1623
1624 if (__predict_false(rnumvnodes > desiredvnodes))
1625 return (true);
1626
1627 space = desiredvnodes - rnumvnodes;
1628 if (space < limit) {
1629 rfreevnodes = vnlru_read_freevnodes();
1630 if (rfreevnodes > wantfreevnodes)
1631 space += rfreevnodes - wantfreevnodes;
1632 }
1633 return (space < limit);
1634 }
1635
1636 static void
vnlru_kick_locked(void)1637 vnlru_kick_locked(void)
1638 {
1639
1640 mtx_assert(&vnode_list_mtx, MA_OWNED);
1641 if (vnlruproc_sig == 0) {
1642 vnlruproc_sig = 1;
1643 vnlruproc_kicks++;
1644 wakeup(vnlruproc);
1645 }
1646 }
1647
1648 static void
vnlru_kick_cond(void)1649 vnlru_kick_cond(void)
1650 {
1651
1652 if (vnlru_read_freevnodes() > wantfreevnodes)
1653 return;
1654
1655 if (vnlruproc_sig)
1656 return;
1657 mtx_lock(&vnode_list_mtx);
1658 vnlru_kick_locked();
1659 mtx_unlock(&vnode_list_mtx);
1660 }
1661
1662 static void
vnlru_proc_sleep(void)1663 vnlru_proc_sleep(void)
1664 {
1665
1666 if (vnlruproc_sig) {
1667 vnlruproc_sig = 0;
1668 wakeup(&vnlruproc_sig);
1669 }
1670 msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1671 }
1672
1673 /*
1674 * A lighter version of the machinery below.
1675 *
1676 * Tries to reach goals only by recycling free vnodes and does not invoke
1677 * uma_reclaim(UMA_RECLAIM_DRAIN).
1678 *
1679 * This works around pathological behavior in vnlru in presence of tons of free
1680 * vnodes, but without having to rewrite the machinery at this time. Said
1681 * behavior boils down to continuously trying to reclaim all kinds of vnodes
1682 * (cycling through all levels of "force") when the count is transiently above
1683 * limit. This happens a lot when all vnodes are used up and vn_alloc
1684 * speculatively increments the counter.
1685 *
1686 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1687 * 1 million files in total and 20 find(1) processes stating them in parallel
1688 * (one per each tree).
1689 *
1690 * On a kernel with only stock machinery this needs anywhere between 60 and 120
1691 * seconds to execute (time varies *wildly* between runs). With the workaround
1692 * it consistently stays around 20 seconds [it got further down with later
1693 * changes].
1694 *
1695 * That is to say the entire thing needs a fundamental redesign (most notably
1696 * to accommodate faster recycling), the above only tries to get it ouf the way.
1697 *
1698 * Return values are:
1699 * -1 -- fallback to regular vnlru loop
1700 * 0 -- do nothing, go to sleep
1701 * >0 -- recycle this many vnodes
1702 */
1703 static long
vnlru_proc_light_pick(void)1704 vnlru_proc_light_pick(void)
1705 {
1706 u_long rnumvnodes, rfreevnodes;
1707
1708 if (vstir || vnlruproc_sig == 1)
1709 return (-1);
1710
1711 rnumvnodes = atomic_load_long(&numvnodes);
1712 rfreevnodes = vnlru_read_freevnodes();
1713
1714 /*
1715 * vnode limit might have changed and now we may be at a significant
1716 * excess. Bail if we can't sort it out with free vnodes.
1717 *
1718 * Due to atomic updates the count can legitimately go above
1719 * the limit for a short period, don't bother doing anything in
1720 * that case.
1721 */
1722 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1723 if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1724 rfreevnodes <= wantfreevnodes) {
1725 return (-1);
1726 }
1727
1728 return (rnumvnodes - desiredvnodes);
1729 }
1730
1731 /*
1732 * Don't try to reach wantfreevnodes target if there are too few vnodes
1733 * to begin with.
1734 */
1735 if (rnumvnodes < wantfreevnodes) {
1736 return (0);
1737 }
1738
1739 if (rfreevnodes < wantfreevnodes) {
1740 return (-1);
1741 }
1742
1743 return (0);
1744 }
1745
1746 static bool
vnlru_proc_light(void)1747 vnlru_proc_light(void)
1748 {
1749 long freecount;
1750
1751 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1752
1753 freecount = vnlru_proc_light_pick();
1754 if (freecount == -1)
1755 return (false);
1756
1757 if (freecount != 0) {
1758 vnlru_free_vnlru(freecount);
1759 }
1760
1761 mtx_lock(&vnode_list_mtx);
1762 vnlru_proc_sleep();
1763 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1764 return (true);
1765 }
1766
1767 static u_long uma_reclaim_calls;
1768 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1769 &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1770
1771 static void
vnlru_proc(void)1772 vnlru_proc(void)
1773 {
1774 u_long rnumvnodes, rfreevnodes, target;
1775 unsigned long onumvnodes;
1776 int done, force, trigger, usevnodes;
1777 bool reclaim_nc_src, want_reread;
1778
1779 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1780 SHUTDOWN_PRI_FIRST);
1781
1782 force = 0;
1783 want_reread = false;
1784 for (;;) {
1785 kproc_suspend_check(vnlruproc);
1786
1787 if (force == 0 && vnlru_proc_light())
1788 continue;
1789
1790 mtx_lock(&vnode_list_mtx);
1791 rnumvnodes = atomic_load_long(&numvnodes);
1792
1793 if (want_reread) {
1794 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1795 want_reread = false;
1796 }
1797
1798 /*
1799 * If numvnodes is too large (due to desiredvnodes being
1800 * adjusted using its sysctl, or emergency growth), first
1801 * try to reduce it by discarding free vnodes.
1802 */
1803 if (rnumvnodes > desiredvnodes + 10) {
1804 vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1805 mtx_lock(&vnode_list_mtx);
1806 rnumvnodes = atomic_load_long(&numvnodes);
1807 }
1808 /*
1809 * Sleep if the vnode cache is in a good state. This is
1810 * when it is not over-full and has space for about a 4%
1811 * or 9% expansion (by growing its size or inexcessively
1812 * reducing free vnode count). Otherwise, try to reclaim
1813 * space for a 10% expansion.
1814 */
1815 if (vstir && force == 0) {
1816 force = 1;
1817 vstir = false;
1818 }
1819 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1820 vnlru_proc_sleep();
1821 continue;
1822 }
1823 rfreevnodes = vnlru_read_freevnodes();
1824
1825 onumvnodes = rnumvnodes;
1826 /*
1827 * Calculate parameters for recycling. These are the same
1828 * throughout the loop to give some semblance of fairness.
1829 * The trigger point is to avoid recycling vnodes with lots
1830 * of resident pages. We aren't trying to free memory; we
1831 * are trying to recycle or at least free vnodes.
1832 */
1833 if (rnumvnodes <= desiredvnodes)
1834 usevnodes = rnumvnodes - rfreevnodes;
1835 else
1836 usevnodes = rnumvnodes;
1837 if (usevnodes <= 0)
1838 usevnodes = 1;
1839 /*
1840 * The trigger value is chosen to give a conservatively
1841 * large value to ensure that it alone doesn't prevent
1842 * making progress. The value can easily be so large that
1843 * it is effectively infinite in some congested and
1844 * misconfigured cases, and this is necessary. Normally
1845 * it is about 8 to 100 (pages), which is quite large.
1846 */
1847 trigger = vm_cnt.v_page_count * 2 / usevnodes;
1848 if (force < 2)
1849 trigger = vsmalltrigger;
1850 reclaim_nc_src = force >= 3;
1851 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1852 target = target / 10 + 1;
1853 done = vlrureclaim(reclaim_nc_src, trigger, target);
1854 mtx_unlock(&vnode_list_mtx);
1855 /*
1856 * Total number of vnodes can transiently go slightly above the
1857 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1858 * this happens.
1859 */
1860 if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1861 numvnodes <= desiredvnodes) {
1862 uma_reclaim_calls++;
1863 uma_reclaim(UMA_RECLAIM_DRAIN);
1864 }
1865 if (done == 0) {
1866 if (force == 0 || force == 1) {
1867 force = 2;
1868 continue;
1869 }
1870 if (force == 2) {
1871 force = 3;
1872 continue;
1873 }
1874 want_reread = true;
1875 force = 0;
1876 vnlru_nowhere++;
1877 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1878 } else {
1879 want_reread = true;
1880 kern_yield(PRI_USER);
1881 }
1882 }
1883 }
1884
1885 static struct kproc_desc vnlru_kp = {
1886 "vnlru",
1887 vnlru_proc,
1888 &vnlruproc
1889 };
1890 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1891 &vnlru_kp);
1892
1893 /*
1894 * Routines having to do with the management of the vnode table.
1895 */
1896
1897 /*
1898 * Try to recycle a freed vnode.
1899 */
1900 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1901 vtryrecycle(struct vnode *vp, bool isvnlru)
1902 {
1903 struct mount *vnmp;
1904
1905 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1906 VNPASS(vp->v_holdcnt > 0, vp);
1907 /*
1908 * This vnode may found and locked via some other list, if so we
1909 * can't recycle it yet.
1910 */
1911 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1912 CTR2(KTR_VFS,
1913 "%s: impossible to recycle, vp %p lock is already held",
1914 __func__, vp);
1915 vdrop_recycle(vp);
1916 return (EWOULDBLOCK);
1917 }
1918 /*
1919 * Don't recycle if its filesystem is being suspended.
1920 */
1921 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1922 VOP_UNLOCK(vp);
1923 CTR2(KTR_VFS,
1924 "%s: impossible to recycle, cannot start the write for %p",
1925 __func__, vp);
1926 vdrop_recycle(vp);
1927 return (EBUSY);
1928 }
1929 /*
1930 * If we got this far, we need to acquire the interlock and see if
1931 * anyone picked up this vnode from another list. If not, we will
1932 * mark it with DOOMED via vgonel() so that anyone who does find it
1933 * will skip over it.
1934 */
1935 VI_LOCK(vp);
1936 if (vp->v_usecount) {
1937 VOP_UNLOCK(vp);
1938 vdropl_recycle(vp);
1939 vn_finished_write(vnmp);
1940 CTR2(KTR_VFS,
1941 "%s: impossible to recycle, %p is already referenced",
1942 __func__, vp);
1943 return (EBUSY);
1944 }
1945 if (!VN_IS_DOOMED(vp)) {
1946 if (isvnlru)
1947 recycles_free_count++;
1948 else
1949 counter_u64_add(direct_recycles_free_count, 1);
1950 vgonel(vp);
1951 }
1952 VOP_UNLOCK(vp);
1953 vdropl_recycle(vp);
1954 vn_finished_write(vnmp);
1955 return (0);
1956 }
1957
1958 /*
1959 * Allocate a new vnode.
1960 *
1961 * The operation never returns an error. Returning an error was disabled
1962 * in r145385 (dated 2005) with the following comment:
1963 *
1964 * XXX Not all VFS_VGET/ffs_vget callers check returns.
1965 *
1966 * Given the age of this commit (almost 15 years at the time of writing this
1967 * comment) restoring the ability to fail requires a significant audit of
1968 * all codepaths.
1969 *
1970 * The routine can try to free a vnode or stall for up to 1 second waiting for
1971 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1972 */
1973 static u_long vn_alloc_cyclecount;
1974 static u_long vn_alloc_sleeps;
1975
1976 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1977 "Number of times vnode allocation blocked waiting on vnlru");
1978
1979 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1980 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1981 {
1982 u_long rfreevnodes;
1983
1984 if (bumped) {
1985 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1986 atomic_subtract_long(&numvnodes, 1);
1987 bumped = false;
1988 }
1989 }
1990
1991 mtx_lock(&vnode_list_mtx);
1992
1993 /*
1994 * Reload 'numvnodes', as since we acquired the lock, it may have
1995 * changed significantly if we waited, and 'rnumvnodes' above was only
1996 * actually passed if 'bumped' is true (else it is 0).
1997 */
1998 rnumvnodes = atomic_load_long(&numvnodes);
1999 if (rnumvnodes + !bumped < desiredvnodes) {
2000 vn_alloc_cyclecount = 0;
2001 mtx_unlock(&vnode_list_mtx);
2002 goto alloc;
2003 }
2004
2005 rfreevnodes = vnlru_read_freevnodes();
2006 if (vn_alloc_cyclecount++ >= rfreevnodes) {
2007 vn_alloc_cyclecount = 0;
2008 vstir = true;
2009 }
2010
2011 /*
2012 * Grow the vnode cache if it will not be above its target max after
2013 * growing. Otherwise, if there is at least one free vnode, try to
2014 * reclaim 1 item from it before growing the cache (possibly above its
2015 * target max if the reclamation failed or is delayed).
2016 */
2017 if (vnlru_free_locked_direct(1) > 0)
2018 goto alloc;
2019 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2020 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2021 /*
2022 * Wait for space for a new vnode.
2023 */
2024 if (bumped) {
2025 atomic_subtract_long(&numvnodes, 1);
2026 bumped = false;
2027 }
2028 mtx_lock(&vnode_list_mtx);
2029 vnlru_kick_locked();
2030 vn_alloc_sleeps++;
2031 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2032 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2033 vnlru_read_freevnodes() > 1)
2034 vnlru_free_locked_direct(1);
2035 else
2036 mtx_unlock(&vnode_list_mtx);
2037 }
2038 alloc:
2039 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2040 if (!bumped)
2041 atomic_add_long(&numvnodes, 1);
2042 vnlru_kick_cond();
2043 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2044 }
2045
2046 static struct vnode *
vn_alloc(struct mount * mp)2047 vn_alloc(struct mount *mp)
2048 {
2049 u_long rnumvnodes;
2050
2051 if (__predict_false(vn_alloc_cyclecount != 0))
2052 return (vn_alloc_hard(mp, 0, false));
2053 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2054 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2055 return (vn_alloc_hard(mp, rnumvnodes, true));
2056 }
2057
2058 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2059 }
2060
2061 static void
vn_free(struct vnode * vp)2062 vn_free(struct vnode *vp)
2063 {
2064
2065 atomic_subtract_long(&numvnodes, 1);
2066 uma_zfree_smr(vnode_zone, vp);
2067 }
2068
2069 /*
2070 * Allocate a new vnode.
2071 */
2072 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2073 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2074 struct vnode **vpp)
2075 {
2076 struct vnode *vp;
2077 struct thread *td;
2078 struct lock_object *lo;
2079
2080 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2081
2082 KASSERT(vops->registered,
2083 ("%s: not registered vector op %p\n", __func__, vops));
2084 cache_validate_vop_vector(mp, vops);
2085
2086 td = curthread;
2087 if (td->td_vp_reserved != NULL) {
2088 vp = td->td_vp_reserved;
2089 td->td_vp_reserved = NULL;
2090 } else {
2091 vp = vn_alloc(mp);
2092 }
2093 counter_u64_add(vnodes_created, 1);
2094
2095 vn_set_state(vp, VSTATE_UNINITIALIZED);
2096
2097 /*
2098 * Locks are given the generic name "vnode" when created.
2099 * Follow the historic practice of using the filesystem
2100 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2101 *
2102 * Locks live in a witness group keyed on their name. Thus,
2103 * when a lock is renamed, it must also move from the witness
2104 * group of its old name to the witness group of its new name.
2105 *
2106 * The change only needs to be made when the vnode moves
2107 * from one filesystem type to another. We ensure that each
2108 * filesystem use a single static name pointer for its tag so
2109 * that we can compare pointers rather than doing a strcmp().
2110 */
2111 lo = &vp->v_vnlock->lock_object;
2112 #ifdef WITNESS
2113 if (lo->lo_name != tag) {
2114 #endif
2115 lo->lo_name = tag;
2116 #ifdef WITNESS
2117 WITNESS_DESTROY(lo);
2118 WITNESS_INIT(lo, tag);
2119 }
2120 #endif
2121 /*
2122 * By default, don't allow shared locks unless filesystems opt-in.
2123 */
2124 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2125 /*
2126 * Finalize various vnode identity bits.
2127 */
2128 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2129 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2130 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2131 vp->v_type = VNON;
2132 vp->v_op = vops;
2133 vp->v_irflag = 0;
2134 v_init_counters(vp);
2135 vn_seqc_init(vp);
2136 vp->v_bufobj.bo_ops = &buf_ops_bio;
2137 #ifdef DIAGNOSTIC
2138 if (mp == NULL && vops != &dead_vnodeops)
2139 printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2140 #endif
2141 #ifdef MAC
2142 mac_vnode_init(vp);
2143 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2144 mac_vnode_associate_singlelabel(mp, vp);
2145 #endif
2146 if (mp != NULL) {
2147 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2148 }
2149
2150 /*
2151 * For the filesystems which do not use vfs_hash_insert(),
2152 * still initialize v_hash to have vfs_hash_index() useful.
2153 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2154 * its own hashing.
2155 */
2156 vp->v_hash = (uintptr_t)vp >> vnsz2log;
2157
2158 *vpp = vp;
2159 return (0);
2160 }
2161
2162 void
getnewvnode_reserve(void)2163 getnewvnode_reserve(void)
2164 {
2165 struct thread *td;
2166
2167 td = curthread;
2168 MPASS(td->td_vp_reserved == NULL);
2169 td->td_vp_reserved = vn_alloc(NULL);
2170 }
2171
2172 void
getnewvnode_drop_reserve(void)2173 getnewvnode_drop_reserve(void)
2174 {
2175 struct thread *td;
2176
2177 td = curthread;
2178 if (td->td_vp_reserved != NULL) {
2179 vn_free(td->td_vp_reserved);
2180 td->td_vp_reserved = NULL;
2181 }
2182 }
2183
2184 static void __noinline
freevnode(struct vnode * vp)2185 freevnode(struct vnode *vp)
2186 {
2187 struct bufobj *bo;
2188
2189 ASSERT_VOP_UNLOCKED(vp, __func__);
2190
2191 /*
2192 * The vnode has been marked for destruction, so free it.
2193 *
2194 * The vnode will be returned to the zone where it will
2195 * normally remain until it is needed for another vnode. We
2196 * need to cleanup (or verify that the cleanup has already
2197 * been done) any residual data left from its current use
2198 * so as not to contaminate the freshly allocated vnode.
2199 */
2200 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2201 /*
2202 * Paired with vgone.
2203 */
2204 vn_seqc_write_end_free(vp);
2205
2206 bo = &vp->v_bufobj;
2207 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2208 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2209 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2210 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2211 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2212 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2213 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2214 ("clean blk trie not empty"));
2215 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2216 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2217 ("dirty blk trie not empty"));
2218 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2219 ("Leaked inactivation"));
2220 VI_UNLOCK(vp);
2221 cache_assert_no_entries(vp);
2222
2223 #ifdef MAC
2224 mac_vnode_destroy(vp);
2225 #endif
2226 if (vp->v_pollinfo != NULL) {
2227 int error __diagused;
2228
2229 /*
2230 * Use LK_NOWAIT to shut up witness about the lock. We may get
2231 * here while having another vnode locked when trying to
2232 * satisfy a lookup and needing to recycle.
2233 */
2234 error = VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2235 VNASSERT(error == 0, vp,
2236 ("freevnode: cannot lock vp %p for pollinfo destroy", vp));
2237 destroy_vpollinfo(vp->v_pollinfo);
2238 VOP_UNLOCK(vp);
2239 vp->v_pollinfo = NULL;
2240 }
2241 vp->v_mountedhere = NULL;
2242 vp->v_unpcb = NULL;
2243 vp->v_rdev = NULL;
2244 vp->v_fifoinfo = NULL;
2245 vp->v_iflag = 0;
2246 vp->v_vflag = 0;
2247 bo->bo_flag = 0;
2248 vn_free(vp);
2249 }
2250
2251 /*
2252 * Delete from old mount point vnode list, if on one.
2253 */
2254 static void
delmntque(struct vnode * vp)2255 delmntque(struct vnode *vp)
2256 {
2257 struct mount *mp;
2258
2259 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2260
2261 mp = vp->v_mount;
2262 MNT_ILOCK(mp);
2263 VI_LOCK(vp);
2264 vp->v_mount = NULL;
2265 VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2266 ("bad mount point vnode list size"));
2267 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2268 mp->mnt_nvnodelistsize--;
2269 MNT_REL(mp);
2270 MNT_IUNLOCK(mp);
2271 /*
2272 * The caller expects the interlock to be still held.
2273 */
2274 ASSERT_VI_LOCKED(vp, __func__);
2275 }
2276
2277 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2278 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2279 {
2280
2281 KASSERT(vp->v_mount == NULL,
2282 ("insmntque: vnode already on per mount vnode list"));
2283 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2284 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2285 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2286 } else {
2287 KASSERT(!dtr,
2288 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2289 __func__));
2290 }
2291
2292 /*
2293 * We acquire the vnode interlock early to ensure that the
2294 * vnode cannot be recycled by another process releasing a
2295 * holdcnt on it before we get it on both the vnode list
2296 * and the active vnode list. The mount mutex protects only
2297 * manipulation of the vnode list and the vnode freelist
2298 * mutex protects only manipulation of the active vnode list.
2299 * Hence the need to hold the vnode interlock throughout.
2300 */
2301 MNT_ILOCK(mp);
2302 VI_LOCK(vp);
2303 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2304 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2305 mp->mnt_nvnodelistsize == 0)) &&
2306 (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2307 VI_UNLOCK(vp);
2308 MNT_IUNLOCK(mp);
2309 if (dtr) {
2310 vp->v_data = NULL;
2311 vp->v_op = &dead_vnodeops;
2312 vgone(vp);
2313 vput(vp);
2314 }
2315 return (EBUSY);
2316 }
2317 vp->v_mount = mp;
2318 MNT_REF(mp);
2319 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2320 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2321 ("neg mount point vnode list size"));
2322 mp->mnt_nvnodelistsize++;
2323 VI_UNLOCK(vp);
2324 MNT_IUNLOCK(mp);
2325 return (0);
2326 }
2327
2328 /*
2329 * Insert into list of vnodes for the new mount point, if available.
2330 * insmntque() reclaims the vnode on insertion failure, insmntque1()
2331 * leaves handling of the vnode to the caller.
2332 */
2333 int
insmntque(struct vnode * vp,struct mount * mp)2334 insmntque(struct vnode *vp, struct mount *mp)
2335 {
2336 return (insmntque1_int(vp, mp, true));
2337 }
2338
2339 int
insmntque1(struct vnode * vp,struct mount * mp)2340 insmntque1(struct vnode *vp, struct mount *mp)
2341 {
2342 return (insmntque1_int(vp, mp, false));
2343 }
2344
2345 /*
2346 * Flush out and invalidate all buffers associated with a bufobj
2347 * Called with the underlying object locked.
2348 */
2349 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2350 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2351 {
2352 int error;
2353
2354 BO_LOCK(bo);
2355 if (flags & V_SAVE) {
2356 error = bufobj_wwait(bo, slpflag, slptimeo);
2357 if (error) {
2358 BO_UNLOCK(bo);
2359 return (error);
2360 }
2361 if (bo->bo_dirty.bv_cnt > 0) {
2362 BO_UNLOCK(bo);
2363 do {
2364 error = BO_SYNC(bo, MNT_WAIT);
2365 } while (error == ERELOOKUP);
2366 if (error != 0)
2367 return (error);
2368 BO_LOCK(bo);
2369 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2370 BO_UNLOCK(bo);
2371 return (EBUSY);
2372 }
2373 }
2374 }
2375 /*
2376 * If you alter this loop please notice that interlock is dropped and
2377 * reacquired in flushbuflist. Special care is needed to ensure that
2378 * no race conditions occur from this.
2379 */
2380 do {
2381 error = flushbuflist(&bo->bo_clean,
2382 flags, bo, slpflag, slptimeo);
2383 if (error == 0 && !(flags & V_CLEANONLY))
2384 error = flushbuflist(&bo->bo_dirty,
2385 flags, bo, slpflag, slptimeo);
2386 if (error != 0 && error != EAGAIN) {
2387 BO_UNLOCK(bo);
2388 return (error);
2389 }
2390 } while (error != 0);
2391
2392 /*
2393 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
2394 * have write I/O in-progress but if there is a VM object then the
2395 * VM object can also have read-I/O in-progress.
2396 */
2397 do {
2398 bufobj_wwait(bo, 0, 0);
2399 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2400 BO_UNLOCK(bo);
2401 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2402 BO_LOCK(bo);
2403 }
2404 } while (bo->bo_numoutput > 0);
2405 BO_UNLOCK(bo);
2406
2407 /*
2408 * Destroy the copy in the VM cache, too.
2409 */
2410 if (bo->bo_object != NULL &&
2411 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2412 VM_OBJECT_WLOCK(bo->bo_object);
2413 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2414 OBJPR_CLEANONLY : 0);
2415 VM_OBJECT_WUNLOCK(bo->bo_object);
2416 }
2417
2418 #ifdef INVARIANTS
2419 BO_LOCK(bo);
2420 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2421 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2422 bo->bo_clean.bv_cnt > 0))
2423 panic("vinvalbuf: flush failed");
2424 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2425 bo->bo_dirty.bv_cnt > 0)
2426 panic("vinvalbuf: flush dirty failed");
2427 BO_UNLOCK(bo);
2428 #endif
2429 return (0);
2430 }
2431
2432 /*
2433 * Flush out and invalidate all buffers associated with a vnode.
2434 * Called with the underlying object locked.
2435 */
2436 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2437 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2438 {
2439
2440 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2441 ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2442 if (vp->v_object != NULL && vp->v_object->handle != vp)
2443 return (0);
2444 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2445 }
2446
2447 /*
2448 * Flush out buffers on the specified list.
2449 *
2450 */
2451 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2452 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2453 int slptimeo)
2454 {
2455 struct buf *bp, *nbp;
2456 int retval, error;
2457 daddr_t lblkno;
2458 b_xflags_t xflags;
2459
2460 ASSERT_BO_WLOCKED(bo);
2461
2462 retval = 0;
2463 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2464 /*
2465 * If we are flushing both V_NORMAL and V_ALT buffers then
2466 * do not skip any buffers. If we are flushing only V_NORMAL
2467 * buffers then skip buffers marked as BX_ALTDATA. If we are
2468 * flushing only V_ALT buffers then skip buffers not marked
2469 * as BX_ALTDATA.
2470 */
2471 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2472 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2473 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2474 continue;
2475 }
2476 if (nbp != NULL) {
2477 lblkno = nbp->b_lblkno;
2478 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2479 }
2480 retval = EAGAIN;
2481 error = BUF_TIMELOCK(bp,
2482 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2483 "flushbuf", slpflag, slptimeo);
2484 if (error) {
2485 BO_LOCK(bo);
2486 return (error != ENOLCK ? error : EAGAIN);
2487 }
2488 KASSERT(bp->b_bufobj == bo,
2489 ("bp %p wrong b_bufobj %p should be %p",
2490 bp, bp->b_bufobj, bo));
2491 /*
2492 * XXX Since there are no node locks for NFS, I
2493 * believe there is a slight chance that a delayed
2494 * write will occur while sleeping just above, so
2495 * check for it.
2496 */
2497 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2498 (flags & V_SAVE)) {
2499 bremfree(bp);
2500 bp->b_flags |= B_ASYNC;
2501 bwrite(bp);
2502 BO_LOCK(bo);
2503 return (EAGAIN); /* XXX: why not loop ? */
2504 }
2505 bremfree(bp);
2506 bp->b_flags |= (B_INVAL | B_RELBUF);
2507 bp->b_flags &= ~B_ASYNC;
2508 brelse(bp);
2509 BO_LOCK(bo);
2510 if (nbp == NULL)
2511 break;
2512 nbp = gbincore(bo, lblkno);
2513 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2514 != xflags)
2515 break; /* nbp invalid */
2516 }
2517 return (retval);
2518 }
2519
2520 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2521 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2522 {
2523 struct buf *bp;
2524 int error;
2525 daddr_t lblkno;
2526
2527 ASSERT_BO_LOCKED(bo);
2528
2529 for (lblkno = startn;;) {
2530 again:
2531 bp = buf_lookup_ge(bufv, lblkno);
2532 if (bp == NULL || bp->b_lblkno >= endn)
2533 break;
2534 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2535 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2536 if (error != 0) {
2537 BO_RLOCK(bo);
2538 if (error == ENOLCK)
2539 goto again;
2540 return (error);
2541 }
2542 KASSERT(bp->b_bufobj == bo,
2543 ("bp %p wrong b_bufobj %p should be %p",
2544 bp, bp->b_bufobj, bo));
2545 lblkno = bp->b_lblkno + 1;
2546 if ((bp->b_flags & B_MANAGED) == 0)
2547 bremfree(bp);
2548 bp->b_flags |= B_RELBUF;
2549 /*
2550 * In the VMIO case, use the B_NOREUSE flag to hint that the
2551 * pages backing each buffer in the range are unlikely to be
2552 * reused. Dirty buffers will have the hint applied once
2553 * they've been written.
2554 */
2555 if ((bp->b_flags & B_VMIO) != 0)
2556 bp->b_flags |= B_NOREUSE;
2557 brelse(bp);
2558 BO_RLOCK(bo);
2559 }
2560 return (0);
2561 }
2562
2563 /*
2564 * Truncate a file's buffer and pages to a specified length. This
2565 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2566 * sync activity.
2567 */
2568 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2569 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2570 {
2571 struct buf *bp, *nbp;
2572 struct bufobj *bo;
2573 daddr_t startlbn;
2574
2575 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2576 vp, blksize, (uintmax_t)length);
2577
2578 /*
2579 * Round up to the *next* lbn.
2580 */
2581 startlbn = howmany(length, blksize);
2582
2583 ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2584
2585 bo = &vp->v_bufobj;
2586 restart_unlocked:
2587 BO_LOCK(bo);
2588
2589 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2590 ;
2591
2592 if (length > 0) {
2593 /*
2594 * Write out vnode metadata, e.g. indirect blocks.
2595 */
2596 restartsync:
2597 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2598 if (bp->b_lblkno >= 0)
2599 continue;
2600 /*
2601 * Since we hold the vnode lock this should only
2602 * fail if we're racing with the buf daemon.
2603 */
2604 if (BUF_LOCK(bp,
2605 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2606 BO_LOCKPTR(bo)) == ENOLCK)
2607 goto restart_unlocked;
2608
2609 VNASSERT((bp->b_flags & B_DELWRI), vp,
2610 ("buf(%p) on dirty queue without DELWRI", bp));
2611
2612 bremfree(bp);
2613 bawrite(bp);
2614 BO_LOCK(bo);
2615 goto restartsync;
2616 }
2617 }
2618
2619 bufobj_wwait(bo, 0, 0);
2620 BO_UNLOCK(bo);
2621 vnode_pager_setsize(vp, length);
2622
2623 return (0);
2624 }
2625
2626 /*
2627 * Invalidate the cached pages of a file's buffer within the range of block
2628 * numbers [startlbn, endlbn).
2629 */
2630 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2631 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2632 int blksize)
2633 {
2634 struct bufobj *bo;
2635 off_t start, end;
2636
2637 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2638
2639 start = blksize * startlbn;
2640 end = blksize * endlbn;
2641
2642 bo = &vp->v_bufobj;
2643 BO_LOCK(bo);
2644 MPASS(blksize == bo->bo_bsize);
2645
2646 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2647 ;
2648
2649 BO_UNLOCK(bo);
2650 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2651 }
2652
2653 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2654 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2655 daddr_t startlbn, daddr_t endlbn)
2656 {
2657 struct bufv *bv;
2658 struct buf *bp, *nbp;
2659 uint8_t anyfreed;
2660 bool clean;
2661
2662 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2663 ASSERT_BO_LOCKED(bo);
2664
2665 anyfreed = 1;
2666 clean = true;
2667 do {
2668 bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2669 bp = buf_lookup_ge(bv, startlbn);
2670 if (bp == NULL)
2671 continue;
2672 TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2673 if (bp->b_lblkno >= endlbn)
2674 break;
2675 if (BUF_LOCK(bp,
2676 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2677 BO_LOCKPTR(bo)) == ENOLCK) {
2678 BO_LOCK(bo);
2679 return (EAGAIN);
2680 }
2681
2682 bremfree(bp);
2683 bp->b_flags |= B_INVAL | B_RELBUF;
2684 bp->b_flags &= ~B_ASYNC;
2685 brelse(bp);
2686 anyfreed = 2;
2687
2688 BO_LOCK(bo);
2689 if (nbp != NULL &&
2690 (((nbp->b_xflags &
2691 (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2692 nbp->b_vp != vp ||
2693 (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2694 return (EAGAIN);
2695 }
2696 } while (clean = !clean, anyfreed-- > 0);
2697 return (0);
2698 }
2699
2700 static void
buf_vlist_remove(struct buf * bp)2701 buf_vlist_remove(struct buf *bp)
2702 {
2703 struct bufv *bv;
2704 b_xflags_t flags;
2705
2706 flags = bp->b_xflags;
2707
2708 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2709 ASSERT_BO_WLOCKED(bp->b_bufobj);
2710 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2711 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2712 ("%s: buffer %p has invalid queue state", __func__, bp));
2713
2714 if ((flags & BX_VNDIRTY) != 0)
2715 bv = &bp->b_bufobj->bo_dirty;
2716 else
2717 bv = &bp->b_bufobj->bo_clean;
2718 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2719 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2720 bv->bv_cnt--;
2721 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2722 }
2723
2724 /*
2725 * Add the buffer to the sorted clean or dirty block list. Return zero on
2726 * success, EEXIST if a buffer with this identity already exists, or another
2727 * error on allocation failure.
2728 */
2729 static inline int
buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2730 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2731 {
2732 struct bufv *bv;
2733 struct buf *n;
2734 int error;
2735
2736 ASSERT_BO_WLOCKED(bo);
2737 KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2738 ("buf_vlist_add: bo %p does not allow bufs", bo));
2739 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2740 ("dead bo %p", bo));
2741 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2742 ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2743
2744 if (xflags & BX_VNDIRTY)
2745 bv = &bo->bo_dirty;
2746 else
2747 bv = &bo->bo_clean;
2748
2749 error = buf_insert_lookup_le(bv, bp, &n);
2750 if (n == NULL) {
2751 KASSERT(error != EEXIST,
2752 ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2753 bp));
2754 } else {
2755 KASSERT(n->b_lblkno <= bp->b_lblkno,
2756 ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2757 bp, n));
2758 KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2759 ("buf_vlist_add: inconsistent result for existing buf: "
2760 "error %d bp %p n %p", error, bp, n));
2761 }
2762 if (error != 0)
2763 return (error);
2764
2765 /* Keep the list ordered. */
2766 if (n == NULL) {
2767 KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2768 bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2769 ("buf_vlist_add: queue order: "
2770 "%p should be before first %p",
2771 bp, TAILQ_FIRST(&bv->bv_hd)));
2772 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2773 } else {
2774 KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2775 bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2776 ("buf_vlist_add: queue order: "
2777 "%p should be before next %p",
2778 bp, TAILQ_NEXT(n, b_bobufs)));
2779 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2780 }
2781
2782 bv->bv_cnt++;
2783 return (0);
2784 }
2785
2786 /*
2787 * Add the buffer to the sorted clean or dirty block list.
2788 *
2789 * NOTE: xflags is passed as a constant, optimizing this inline function!
2790 */
2791 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2792 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2793 {
2794 int error;
2795
2796 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2797 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2798 bp->b_xflags |= xflags;
2799 error = buf_vlist_find_or_add(bp, bo, xflags);
2800 if (error)
2801 panic("buf_vlist_add: error=%d", error);
2802 }
2803
2804 /*
2805 * Look up a buffer using the buffer tries.
2806 */
2807 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2808 gbincore(struct bufobj *bo, daddr_t lblkno)
2809 {
2810 struct buf *bp;
2811
2812 ASSERT_BO_LOCKED(bo);
2813 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2814 if (bp != NULL)
2815 return (bp);
2816 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2817 }
2818
2819 /*
2820 * Look up a buf using the buffer tries, without the bufobj lock. This relies
2821 * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2822 * stability of the result. Like other lockless lookups, the found buf may
2823 * already be invalid by the time this function returns.
2824 */
2825 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2826 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2827 {
2828 struct buf *bp;
2829
2830 ASSERT_BO_UNLOCKED(bo);
2831 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2832 if (bp != NULL)
2833 return (bp);
2834 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2835 }
2836
2837 /*
2838 * Associate a buffer with a vnode.
2839 */
2840 int
bgetvp(struct vnode * vp,struct buf * bp)2841 bgetvp(struct vnode *vp, struct buf *bp)
2842 {
2843 struct bufobj *bo;
2844 int error;
2845
2846 bo = &vp->v_bufobj;
2847 ASSERT_BO_UNLOCKED(bo);
2848 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2849
2850 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2851 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2852 ("bgetvp: bp already attached! %p", bp));
2853
2854 /*
2855 * Add the buf to the vnode's clean list unless we lost a race and find
2856 * an existing buf in either dirty or clean.
2857 */
2858 bp->b_vp = vp;
2859 bp->b_bufobj = bo;
2860 bp->b_xflags |= BX_VNCLEAN;
2861 error = EEXIST;
2862 BO_LOCK(bo);
2863 if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2864 error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2865 BO_UNLOCK(bo);
2866 if (__predict_true(error == 0)) {
2867 vhold(vp);
2868 return (0);
2869 }
2870 if (error != EEXIST)
2871 panic("bgetvp: buf_vlist_add error: %d", error);
2872 bp->b_vp = NULL;
2873 bp->b_bufobj = NULL;
2874 bp->b_xflags &= ~BX_VNCLEAN;
2875 return (error);
2876 }
2877
2878 /*
2879 * Disassociate a buffer from a vnode.
2880 */
2881 void
brelvp(struct buf * bp)2882 brelvp(struct buf *bp)
2883 {
2884 struct bufobj *bo;
2885 struct vnode *vp;
2886
2887 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2888 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2889
2890 /*
2891 * Delete from old vnode list, if on one.
2892 */
2893 vp = bp->b_vp; /* XXX */
2894 bo = bp->b_bufobj;
2895 BO_LOCK(bo);
2896 buf_vlist_remove(bp);
2897 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2898 bo->bo_flag &= ~BO_ONWORKLST;
2899 mtx_lock(&sync_mtx);
2900 LIST_REMOVE(bo, bo_synclist);
2901 syncer_worklist_len--;
2902 mtx_unlock(&sync_mtx);
2903 }
2904 bp->b_vp = NULL;
2905 bp->b_bufobj = NULL;
2906 BO_UNLOCK(bo);
2907 vdrop(vp);
2908 }
2909
2910 /*
2911 * Add an item to the syncer work queue.
2912 */
2913 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2914 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2915 {
2916 int slot;
2917
2918 ASSERT_BO_WLOCKED(bo);
2919
2920 mtx_lock(&sync_mtx);
2921 if (bo->bo_flag & BO_ONWORKLST)
2922 LIST_REMOVE(bo, bo_synclist);
2923 else {
2924 bo->bo_flag |= BO_ONWORKLST;
2925 syncer_worklist_len++;
2926 }
2927
2928 if (delay > syncer_maxdelay - 2)
2929 delay = syncer_maxdelay - 2;
2930 slot = (syncer_delayno + delay) & syncer_mask;
2931
2932 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2933 mtx_unlock(&sync_mtx);
2934 }
2935
2936 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2937 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2938 {
2939 int error, len;
2940
2941 mtx_lock(&sync_mtx);
2942 len = syncer_worklist_len - sync_vnode_count;
2943 mtx_unlock(&sync_mtx);
2944 error = SYSCTL_OUT(req, &len, sizeof(len));
2945 return (error);
2946 }
2947
2948 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2949 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2950 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2951
2952 static struct proc *updateproc;
2953 static void sched_sync(void);
2954 static struct kproc_desc up_kp = {
2955 "syncer",
2956 sched_sync,
2957 &updateproc
2958 };
2959 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2960
2961 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2962 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2963 {
2964 struct vnode *vp;
2965 struct mount *mp;
2966
2967 *bo = LIST_FIRST(slp);
2968 if (*bo == NULL)
2969 return (0);
2970 vp = bo2vnode(*bo);
2971 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2972 return (1);
2973 /*
2974 * We use vhold in case the vnode does not
2975 * successfully sync. vhold prevents the vnode from
2976 * going away when we unlock the sync_mtx so that
2977 * we can acquire the vnode interlock.
2978 */
2979 vholdl(vp);
2980 mtx_unlock(&sync_mtx);
2981 VI_UNLOCK(vp);
2982 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2983 vdrop(vp);
2984 mtx_lock(&sync_mtx);
2985 return (*bo == LIST_FIRST(slp));
2986 }
2987 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2988 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2989 ("suspended mp syncing vp %p", vp));
2990 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2991 (void) VOP_FSYNC(vp, MNT_LAZY, td);
2992 VOP_UNLOCK(vp);
2993 vn_finished_write(mp);
2994 BO_LOCK(*bo);
2995 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2996 /*
2997 * Put us back on the worklist. The worklist
2998 * routine will remove us from our current
2999 * position and then add us back in at a later
3000 * position.
3001 */
3002 vn_syncer_add_to_worklist(*bo, syncdelay);
3003 }
3004 BO_UNLOCK(*bo);
3005 vdrop(vp);
3006 mtx_lock(&sync_mtx);
3007 return (0);
3008 }
3009
3010 static int first_printf = 1;
3011
3012 /*
3013 * System filesystem synchronizer daemon.
3014 */
3015 static void
sched_sync(void)3016 sched_sync(void)
3017 {
3018 struct synclist *next, *slp;
3019 struct bufobj *bo;
3020 long starttime;
3021 struct thread *td = curthread;
3022 int last_work_seen;
3023 int net_worklist_len;
3024 int syncer_final_iter;
3025 int error;
3026
3027 last_work_seen = 0;
3028 syncer_final_iter = 0;
3029 syncer_state = SYNCER_RUNNING;
3030 starttime = time_uptime;
3031 td->td_pflags |= TDP_NORUNNINGBUF;
3032
3033 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3034 SHUTDOWN_PRI_LAST);
3035
3036 mtx_lock(&sync_mtx);
3037 for (;;) {
3038 if (syncer_state == SYNCER_FINAL_DELAY &&
3039 syncer_final_iter == 0) {
3040 mtx_unlock(&sync_mtx);
3041 kproc_suspend_check(td->td_proc);
3042 mtx_lock(&sync_mtx);
3043 }
3044 net_worklist_len = syncer_worklist_len - sync_vnode_count;
3045 if (syncer_state != SYNCER_RUNNING &&
3046 starttime != time_uptime) {
3047 if (first_printf) {
3048 printf("\nSyncing disks, vnodes remaining... ");
3049 first_printf = 0;
3050 }
3051 printf("%d ", net_worklist_len);
3052 }
3053 starttime = time_uptime;
3054
3055 /*
3056 * Push files whose dirty time has expired. Be careful
3057 * of interrupt race on slp queue.
3058 *
3059 * Skip over empty worklist slots when shutting down.
3060 */
3061 do {
3062 slp = &syncer_workitem_pending[syncer_delayno];
3063 syncer_delayno += 1;
3064 if (syncer_delayno == syncer_maxdelay)
3065 syncer_delayno = 0;
3066 next = &syncer_workitem_pending[syncer_delayno];
3067 /*
3068 * If the worklist has wrapped since the
3069 * it was emptied of all but syncer vnodes,
3070 * switch to the FINAL_DELAY state and run
3071 * for one more second.
3072 */
3073 if (syncer_state == SYNCER_SHUTTING_DOWN &&
3074 net_worklist_len == 0 &&
3075 last_work_seen == syncer_delayno) {
3076 syncer_state = SYNCER_FINAL_DELAY;
3077 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3078 }
3079 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3080 syncer_worklist_len > 0);
3081
3082 /*
3083 * Keep track of the last time there was anything
3084 * on the worklist other than syncer vnodes.
3085 * Return to the SHUTTING_DOWN state if any
3086 * new work appears.
3087 */
3088 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3089 last_work_seen = syncer_delayno;
3090 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3091 syncer_state = SYNCER_SHUTTING_DOWN;
3092 while (!LIST_EMPTY(slp)) {
3093 error = sync_vnode(slp, &bo, td);
3094 if (error == 1) {
3095 LIST_REMOVE(bo, bo_synclist);
3096 LIST_INSERT_HEAD(next, bo, bo_synclist);
3097 continue;
3098 }
3099
3100 if (first_printf == 0) {
3101 /*
3102 * Drop the sync mutex, because some watchdog
3103 * drivers need to sleep while patting
3104 */
3105 mtx_unlock(&sync_mtx);
3106 wdog_kern_pat(WD_LASTVAL);
3107 mtx_lock(&sync_mtx);
3108 }
3109 }
3110 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3111 syncer_final_iter--;
3112 /*
3113 * The variable rushjob allows the kernel to speed up the
3114 * processing of the filesystem syncer process. A rushjob
3115 * value of N tells the filesystem syncer to process the next
3116 * N seconds worth of work on its queue ASAP. Currently rushjob
3117 * is used by the soft update code to speed up the filesystem
3118 * syncer process when the incore state is getting so far
3119 * ahead of the disk that the kernel memory pool is being
3120 * threatened with exhaustion.
3121 */
3122 if (rushjob > 0) {
3123 rushjob -= 1;
3124 continue;
3125 }
3126 /*
3127 * Just sleep for a short period of time between
3128 * iterations when shutting down to allow some I/O
3129 * to happen.
3130 *
3131 * If it has taken us less than a second to process the
3132 * current work, then wait. Otherwise start right over
3133 * again. We can still lose time if any single round
3134 * takes more than two seconds, but it does not really
3135 * matter as we are just trying to generally pace the
3136 * filesystem activity.
3137 */
3138 if (syncer_state != SYNCER_RUNNING ||
3139 time_uptime == starttime) {
3140 thread_lock(td);
3141 sched_prio(td, PPAUSE);
3142 thread_unlock(td);
3143 }
3144 if (syncer_state != SYNCER_RUNNING)
3145 cv_timedwait(&sync_wakeup, &sync_mtx,
3146 hz / SYNCER_SHUTDOWN_SPEEDUP);
3147 else if (time_uptime == starttime)
3148 cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3149 }
3150 }
3151
3152 /*
3153 * Request the syncer daemon to speed up its work.
3154 * We never push it to speed up more than half of its
3155 * normal turn time, otherwise it could take over the cpu.
3156 */
3157 int
speedup_syncer(void)3158 speedup_syncer(void)
3159 {
3160 int ret = 0;
3161
3162 mtx_lock(&sync_mtx);
3163 if (rushjob < syncdelay / 2) {
3164 rushjob += 1;
3165 stat_rush_requests += 1;
3166 ret = 1;
3167 }
3168 mtx_unlock(&sync_mtx);
3169 cv_broadcast(&sync_wakeup);
3170 return (ret);
3171 }
3172
3173 /*
3174 * Tell the syncer to speed up its work and run though its work
3175 * list several times, then tell it to shut down.
3176 */
3177 static void
syncer_shutdown(void * arg,int howto)3178 syncer_shutdown(void *arg, int howto)
3179 {
3180
3181 if (howto & RB_NOSYNC)
3182 return;
3183 mtx_lock(&sync_mtx);
3184 syncer_state = SYNCER_SHUTTING_DOWN;
3185 rushjob = 0;
3186 mtx_unlock(&sync_mtx);
3187 cv_broadcast(&sync_wakeup);
3188 kproc_shutdown(arg, howto);
3189 }
3190
3191 void
syncer_suspend(void)3192 syncer_suspend(void)
3193 {
3194
3195 syncer_shutdown(updateproc, 0);
3196 }
3197
3198 void
syncer_resume(void)3199 syncer_resume(void)
3200 {
3201
3202 mtx_lock(&sync_mtx);
3203 first_printf = 1;
3204 syncer_state = SYNCER_RUNNING;
3205 mtx_unlock(&sync_mtx);
3206 cv_broadcast(&sync_wakeup);
3207 kproc_resume(updateproc);
3208 }
3209
3210 /*
3211 * Move the buffer between the clean and dirty lists of its vnode.
3212 */
3213 void
reassignbuf(struct buf * bp)3214 reassignbuf(struct buf *bp)
3215 {
3216 struct vnode *vp;
3217 struct bufobj *bo;
3218 int delay;
3219 #ifdef INVARIANTS
3220 struct bufv *bv;
3221 #endif
3222
3223 vp = bp->b_vp;
3224 bo = bp->b_bufobj;
3225
3226 KASSERT((bp->b_flags & B_PAGING) == 0,
3227 ("%s: cannot reassign paging buffer %p", __func__, bp));
3228
3229 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3230 bp, bp->b_vp, bp->b_flags);
3231
3232 BO_LOCK(bo);
3233 if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3234 /*
3235 * Coordinate with getblk's unlocked lookup. Make
3236 * BO_NONSTERILE visible before the first reassignbuf produces
3237 * any side effect. This could be outside the bo lock if we
3238 * used a separate atomic flag field.
3239 */
3240 bo->bo_flag |= BO_NONSTERILE;
3241 atomic_thread_fence_rel();
3242 }
3243 buf_vlist_remove(bp);
3244
3245 /*
3246 * If dirty, put on list of dirty buffers; otherwise insert onto list
3247 * of clean buffers.
3248 */
3249 if (bp->b_flags & B_DELWRI) {
3250 if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3251 switch (vp->v_type) {
3252 case VDIR:
3253 delay = dirdelay;
3254 break;
3255 case VCHR:
3256 delay = metadelay;
3257 break;
3258 default:
3259 delay = filedelay;
3260 }
3261 vn_syncer_add_to_worklist(bo, delay);
3262 }
3263 buf_vlist_add(bp, bo, BX_VNDIRTY);
3264 } else {
3265 buf_vlist_add(bp, bo, BX_VNCLEAN);
3266
3267 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3268 mtx_lock(&sync_mtx);
3269 LIST_REMOVE(bo, bo_synclist);
3270 syncer_worklist_len--;
3271 mtx_unlock(&sync_mtx);
3272 bo->bo_flag &= ~BO_ONWORKLST;
3273 }
3274 }
3275 #ifdef INVARIANTS
3276 bv = &bo->bo_clean;
3277 bp = TAILQ_FIRST(&bv->bv_hd);
3278 KASSERT(bp == NULL || bp->b_bufobj == bo,
3279 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3280 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3281 KASSERT(bp == NULL || bp->b_bufobj == bo,
3282 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3283 bv = &bo->bo_dirty;
3284 bp = TAILQ_FIRST(&bv->bv_hd);
3285 KASSERT(bp == NULL || bp->b_bufobj == bo,
3286 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3287 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3288 KASSERT(bp == NULL || bp->b_bufobj == bo,
3289 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3290 #endif
3291 BO_UNLOCK(bo);
3292 }
3293
3294 static void
v_init_counters(struct vnode * vp)3295 v_init_counters(struct vnode *vp)
3296 {
3297
3298 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3299 vp, ("%s called for an initialized vnode", __FUNCTION__));
3300 ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3301
3302 refcount_init(&vp->v_holdcnt, 1);
3303 refcount_init(&vp->v_usecount, 1);
3304 }
3305
3306 /*
3307 * Get a usecount on a vnode.
3308 *
3309 * vget and vget_finish may fail to lock the vnode if they lose a race against
3310 * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3311 *
3312 * Consumers which don't guarantee liveness of the vnode can use SMR to
3313 * try to get a reference. Note this operation can fail since the vnode
3314 * may be awaiting getting freed by the time they get to it.
3315 */
3316 enum vgetstate
vget_prep_smr(struct vnode * vp)3317 vget_prep_smr(struct vnode *vp)
3318 {
3319 enum vgetstate vs;
3320
3321 VFS_SMR_ASSERT_ENTERED();
3322
3323 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3324 vs = VGET_USECOUNT;
3325 } else {
3326 if (vhold_smr(vp))
3327 vs = VGET_HOLDCNT;
3328 else
3329 vs = VGET_NONE;
3330 }
3331 return (vs);
3332 }
3333
3334 enum vgetstate
vget_prep(struct vnode * vp)3335 vget_prep(struct vnode *vp)
3336 {
3337 enum vgetstate vs;
3338
3339 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3340 vs = VGET_USECOUNT;
3341 } else {
3342 vhold(vp);
3343 vs = VGET_HOLDCNT;
3344 }
3345 return (vs);
3346 }
3347
3348 void
vget_abort(struct vnode * vp,enum vgetstate vs)3349 vget_abort(struct vnode *vp, enum vgetstate vs)
3350 {
3351
3352 switch (vs) {
3353 case VGET_USECOUNT:
3354 vrele(vp);
3355 break;
3356 case VGET_HOLDCNT:
3357 vdrop(vp);
3358 break;
3359 default:
3360 __assert_unreachable();
3361 }
3362 }
3363
3364 int
vget(struct vnode * vp,int flags)3365 vget(struct vnode *vp, int flags)
3366 {
3367 enum vgetstate vs;
3368
3369 vs = vget_prep(vp);
3370 return (vget_finish(vp, flags, vs));
3371 }
3372
3373 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3374 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3375 {
3376 int error;
3377
3378 if ((flags & LK_INTERLOCK) != 0)
3379 ASSERT_VI_LOCKED(vp, __func__);
3380 else
3381 ASSERT_VI_UNLOCKED(vp, __func__);
3382 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3383 VNPASS(vp->v_holdcnt > 0, vp);
3384 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3385
3386 error = vn_lock(vp, flags);
3387 if (__predict_false(error != 0)) {
3388 vget_abort(vp, vs);
3389 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3390 vp);
3391 return (error);
3392 }
3393
3394 vget_finish_ref(vp, vs);
3395 return (0);
3396 }
3397
3398 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3399 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3400 {
3401 int old;
3402
3403 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3404 VNPASS(vp->v_holdcnt > 0, vp);
3405 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3406
3407 if (vs == VGET_USECOUNT)
3408 return;
3409
3410 /*
3411 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3412 * the vnode around. Otherwise someone else lended their hold count and
3413 * we have to drop ours.
3414 */
3415 old = atomic_fetchadd_int(&vp->v_usecount, 1);
3416 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3417 if (old != 0) {
3418 #ifdef INVARIANTS
3419 old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3420 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3421 #else
3422 refcount_release(&vp->v_holdcnt);
3423 #endif
3424 }
3425 }
3426
3427 void
vref(struct vnode * vp)3428 vref(struct vnode *vp)
3429 {
3430 enum vgetstate vs;
3431
3432 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3433 vs = vget_prep(vp);
3434 vget_finish_ref(vp, vs);
3435 }
3436
3437 void
vrefact(struct vnode * vp)3438 vrefact(struct vnode *vp)
3439 {
3440 int old __diagused;
3441
3442 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3443 old = refcount_acquire(&vp->v_usecount);
3444 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3445 }
3446
3447 void
vlazy(struct vnode * vp)3448 vlazy(struct vnode *vp)
3449 {
3450 struct mount *mp;
3451
3452 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3453
3454 if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3455 return;
3456 /*
3457 * We may get here for inactive routines after the vnode got doomed.
3458 */
3459 if (VN_IS_DOOMED(vp))
3460 return;
3461 mp = vp->v_mount;
3462 mtx_lock(&mp->mnt_listmtx);
3463 if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3464 vp->v_mflag |= VMP_LAZYLIST;
3465 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3466 mp->mnt_lazyvnodelistsize++;
3467 }
3468 mtx_unlock(&mp->mnt_listmtx);
3469 }
3470
3471 static void
vunlazy(struct vnode * vp)3472 vunlazy(struct vnode *vp)
3473 {
3474 struct mount *mp;
3475
3476 ASSERT_VI_LOCKED(vp, __func__);
3477 VNPASS(!VN_IS_DOOMED(vp), vp);
3478
3479 mp = vp->v_mount;
3480 mtx_lock(&mp->mnt_listmtx);
3481 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3482 /*
3483 * Don't remove the vnode from the lazy list if another thread
3484 * has increased the hold count. It may have re-enqueued the
3485 * vnode to the lazy list and is now responsible for its
3486 * removal.
3487 */
3488 if (vp->v_holdcnt == 0) {
3489 vp->v_mflag &= ~VMP_LAZYLIST;
3490 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3491 mp->mnt_lazyvnodelistsize--;
3492 }
3493 mtx_unlock(&mp->mnt_listmtx);
3494 }
3495
3496 /*
3497 * This routine is only meant to be called from vgonel prior to dooming
3498 * the vnode.
3499 */
3500 static void
vunlazy_gone(struct vnode * vp)3501 vunlazy_gone(struct vnode *vp)
3502 {
3503 struct mount *mp;
3504
3505 ASSERT_VOP_ELOCKED(vp, __func__);
3506 ASSERT_VI_LOCKED(vp, __func__);
3507 VNPASS(!VN_IS_DOOMED(vp), vp);
3508
3509 if (vp->v_mflag & VMP_LAZYLIST) {
3510 mp = vp->v_mount;
3511 mtx_lock(&mp->mnt_listmtx);
3512 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3513 vp->v_mflag &= ~VMP_LAZYLIST;
3514 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3515 mp->mnt_lazyvnodelistsize--;
3516 mtx_unlock(&mp->mnt_listmtx);
3517 }
3518 }
3519
3520 static void
vdefer_inactive(struct vnode * vp)3521 vdefer_inactive(struct vnode *vp)
3522 {
3523
3524 ASSERT_VI_LOCKED(vp, __func__);
3525 VNPASS(vp->v_holdcnt > 0, vp);
3526 if (VN_IS_DOOMED(vp)) {
3527 vdropl(vp);
3528 return;
3529 }
3530 if (vp->v_iflag & VI_DEFINACT) {
3531 VNPASS(vp->v_holdcnt > 1, vp);
3532 vdropl(vp);
3533 return;
3534 }
3535 if (vp->v_usecount > 0) {
3536 vp->v_iflag &= ~VI_OWEINACT;
3537 vdropl(vp);
3538 return;
3539 }
3540 vlazy(vp);
3541 vp->v_iflag |= VI_DEFINACT;
3542 VI_UNLOCK(vp);
3543 atomic_add_long(&deferred_inact, 1);
3544 }
3545
3546 static void
vdefer_inactive_unlocked(struct vnode * vp)3547 vdefer_inactive_unlocked(struct vnode *vp)
3548 {
3549
3550 VI_LOCK(vp);
3551 if ((vp->v_iflag & VI_OWEINACT) == 0) {
3552 vdropl(vp);
3553 return;
3554 }
3555 vdefer_inactive(vp);
3556 }
3557
3558 enum vput_op { VRELE, VPUT, VUNREF };
3559
3560 /*
3561 * Handle ->v_usecount transitioning to 0.
3562 *
3563 * By releasing the last usecount we take ownership of the hold count which
3564 * provides liveness of the vnode, meaning we have to vdrop.
3565 *
3566 * For all vnodes we may need to perform inactive processing. It requires an
3567 * exclusive lock on the vnode, while it is legal to call here with only a
3568 * shared lock (or no locks). If locking the vnode in an expected manner fails,
3569 * inactive processing gets deferred to the syncer.
3570 */
3571 static void
vput_final(struct vnode * vp,enum vput_op func)3572 vput_final(struct vnode *vp, enum vput_op func)
3573 {
3574 int error;
3575 bool want_unlock;
3576
3577 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3578 VNPASS(vp->v_holdcnt > 0, vp);
3579
3580 VI_LOCK(vp);
3581
3582 /*
3583 * By the time we got here someone else might have transitioned
3584 * the count back to > 0.
3585 */
3586 if (vp->v_usecount > 0)
3587 goto out;
3588
3589 /*
3590 * If the vnode is doomed vgone already performed inactive processing
3591 * (if needed).
3592 */
3593 if (VN_IS_DOOMED(vp))
3594 goto out;
3595
3596 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3597 goto out;
3598
3599 if (vp->v_iflag & VI_DOINGINACT)
3600 goto out;
3601
3602 /*
3603 * Locking operations here will drop the interlock and possibly the
3604 * vnode lock, opening a window where the vnode can get doomed all the
3605 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3606 * perform inactive.
3607 */
3608 vp->v_iflag |= VI_OWEINACT;
3609 want_unlock = false;
3610 error = 0;
3611 switch (func) {
3612 case VRELE:
3613 switch (VOP_ISLOCKED(vp)) {
3614 case LK_EXCLUSIVE:
3615 break;
3616 case LK_EXCLOTHER:
3617 case 0:
3618 want_unlock = true;
3619 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3620 VI_LOCK(vp);
3621 break;
3622 default:
3623 /*
3624 * The lock has at least one sharer, but we have no way
3625 * to conclude whether this is us. Play it safe and
3626 * defer processing.
3627 */
3628 error = EAGAIN;
3629 break;
3630 }
3631 break;
3632 case VPUT:
3633 want_unlock = true;
3634 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3635 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3636 LK_NOWAIT);
3637 VI_LOCK(vp);
3638 }
3639 break;
3640 case VUNREF:
3641 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3642 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3643 VI_LOCK(vp);
3644 }
3645 break;
3646 }
3647 if (error == 0) {
3648 if (func == VUNREF) {
3649 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3650 ("recursive vunref"));
3651 vp->v_vflag |= VV_UNREF;
3652 }
3653 for (;;) {
3654 error = vinactive(vp);
3655 if (want_unlock)
3656 VOP_UNLOCK(vp);
3657 if (error != ERELOOKUP || !want_unlock)
3658 break;
3659 VOP_LOCK(vp, LK_EXCLUSIVE);
3660 }
3661 if (func == VUNREF)
3662 vp->v_vflag &= ~VV_UNREF;
3663 vdropl(vp);
3664 } else {
3665 vdefer_inactive(vp);
3666 }
3667 return;
3668 out:
3669 if (func == VPUT)
3670 VOP_UNLOCK(vp);
3671 vdropl(vp);
3672 }
3673
3674 /*
3675 * Decrement ->v_usecount for a vnode.
3676 *
3677 * Releasing the last use count requires additional processing, see vput_final
3678 * above for details.
3679 *
3680 * Comment above each variant denotes lock state on entry and exit.
3681 */
3682
3683 /*
3684 * in: any
3685 * out: same as passed in
3686 */
3687 void
vrele(struct vnode * vp)3688 vrele(struct vnode *vp)
3689 {
3690
3691 ASSERT_VI_UNLOCKED(vp, __func__);
3692 if (!refcount_release(&vp->v_usecount))
3693 return;
3694 vput_final(vp, VRELE);
3695 }
3696
3697 /*
3698 * in: locked
3699 * out: unlocked
3700 */
3701 void
vput(struct vnode * vp)3702 vput(struct vnode *vp)
3703 {
3704
3705 ASSERT_VOP_LOCKED(vp, __func__);
3706 ASSERT_VI_UNLOCKED(vp, __func__);
3707 if (!refcount_release(&vp->v_usecount)) {
3708 VOP_UNLOCK(vp);
3709 return;
3710 }
3711 vput_final(vp, VPUT);
3712 }
3713
3714 /*
3715 * in: locked
3716 * out: locked
3717 */
3718 void
vunref(struct vnode * vp)3719 vunref(struct vnode *vp)
3720 {
3721
3722 ASSERT_VOP_LOCKED(vp, __func__);
3723 ASSERT_VI_UNLOCKED(vp, __func__);
3724 if (!refcount_release(&vp->v_usecount))
3725 return;
3726 vput_final(vp, VUNREF);
3727 }
3728
3729 void
vhold(struct vnode * vp)3730 vhold(struct vnode *vp)
3731 {
3732 int old;
3733
3734 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3735 old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3736 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3737 ("%s: wrong hold count %d", __func__, old));
3738 if (old == 0)
3739 vfs_freevnodes_dec();
3740 }
3741
3742 void
vholdnz(struct vnode * vp)3743 vholdnz(struct vnode *vp)
3744 {
3745
3746 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3747 #ifdef INVARIANTS
3748 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3749 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3750 ("%s: wrong hold count %d", __func__, old));
3751 #else
3752 atomic_add_int(&vp->v_holdcnt, 1);
3753 #endif
3754 }
3755
3756 /*
3757 * Grab a hold count unless the vnode is freed.
3758 *
3759 * Only use this routine if vfs smr is the only protection you have against
3760 * freeing the vnode.
3761 *
3762 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3763 * is not set. After the flag is set the vnode becomes immutable to anyone but
3764 * the thread which managed to set the flag.
3765 *
3766 * It may be tempting to replace the loop with:
3767 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3768 * if (count & VHOLD_NO_SMR) {
3769 * backpedal and error out;
3770 * }
3771 *
3772 * However, while this is more performant, it hinders debugging by eliminating
3773 * the previously mentioned invariant.
3774 */
3775 bool
vhold_smr(struct vnode * vp)3776 vhold_smr(struct vnode *vp)
3777 {
3778 int count;
3779
3780 VFS_SMR_ASSERT_ENTERED();
3781
3782 count = atomic_load_int(&vp->v_holdcnt);
3783 for (;;) {
3784 if (count & VHOLD_NO_SMR) {
3785 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3786 ("non-zero hold count with flags %d\n", count));
3787 return (false);
3788 }
3789 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3790 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3791 if (count == 0)
3792 vfs_freevnodes_dec();
3793 return (true);
3794 }
3795 }
3796 }
3797
3798 /*
3799 * Hold a free vnode for recycling.
3800 *
3801 * Note: vnode_init references this comment.
3802 *
3803 * Attempts to recycle only need the global vnode list lock and have no use for
3804 * SMR.
3805 *
3806 * However, vnodes get inserted into the global list before they get fully
3807 * initialized and stay there until UMA decides to free the memory. This in
3808 * particular means the target can be found before it becomes usable and after
3809 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3810 * VHOLD_NO_SMR.
3811 *
3812 * Note: the vnode may gain more references after we transition the count 0->1.
3813 */
3814 static bool
vhold_recycle_free(struct vnode * vp)3815 vhold_recycle_free(struct vnode *vp)
3816 {
3817 int count;
3818
3819 mtx_assert(&vnode_list_mtx, MA_OWNED);
3820
3821 count = atomic_load_int(&vp->v_holdcnt);
3822 for (;;) {
3823 if (count & VHOLD_NO_SMR) {
3824 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3825 ("non-zero hold count with flags %d\n", count));
3826 return (false);
3827 }
3828 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3829 if (count > 0) {
3830 return (false);
3831 }
3832 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3833 vfs_freevnodes_dec();
3834 return (true);
3835 }
3836 }
3837 }
3838
3839 static void __noinline
vdbatch_process(struct vdbatch * vd)3840 vdbatch_process(struct vdbatch *vd)
3841 {
3842 struct vnode *vp;
3843 int i;
3844
3845 mtx_assert(&vd->lock, MA_OWNED);
3846 MPASS(curthread->td_pinned > 0);
3847 MPASS(vd->index == VDBATCH_SIZE);
3848
3849 /*
3850 * Attempt to requeue the passed batch, but give up easily.
3851 *
3852 * Despite batching the mechanism is prone to transient *significant*
3853 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3854 * if multiple CPUs get here (one real-world example is highly parallel
3855 * do-nothing make , which will stat *tons* of vnodes). Since it is
3856 * quasi-LRU (read: not that great even if fully honoured) provide an
3857 * option to just dodge the problem. Parties which don't like it are
3858 * welcome to implement something better.
3859 */
3860 if (vnode_can_skip_requeue) {
3861 if (!mtx_trylock(&vnode_list_mtx)) {
3862 counter_u64_add(vnode_skipped_requeues, 1);
3863 critical_enter();
3864 for (i = 0; i < VDBATCH_SIZE; i++) {
3865 vp = vd->tab[i];
3866 vd->tab[i] = NULL;
3867 MPASS(vp->v_dbatchcpu != NOCPU);
3868 vp->v_dbatchcpu = NOCPU;
3869 }
3870 vd->index = 0;
3871 critical_exit();
3872 return;
3873
3874 }
3875 /* fallthrough to locked processing */
3876 } else {
3877 mtx_lock(&vnode_list_mtx);
3878 }
3879
3880 mtx_assert(&vnode_list_mtx, MA_OWNED);
3881 critical_enter();
3882 for (i = 0; i < VDBATCH_SIZE; i++) {
3883 vp = vd->tab[i];
3884 vd->tab[i] = NULL;
3885 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3886 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3887 MPASS(vp->v_dbatchcpu != NOCPU);
3888 vp->v_dbatchcpu = NOCPU;
3889 }
3890 mtx_unlock(&vnode_list_mtx);
3891 vd->index = 0;
3892 critical_exit();
3893 }
3894
3895 static void
vdbatch_enqueue(struct vnode * vp)3896 vdbatch_enqueue(struct vnode *vp)
3897 {
3898 struct vdbatch *vd;
3899
3900 ASSERT_VI_LOCKED(vp, __func__);
3901 VNPASS(!VN_IS_DOOMED(vp), vp);
3902
3903 if (vp->v_dbatchcpu != NOCPU) {
3904 VI_UNLOCK(vp);
3905 return;
3906 }
3907
3908 sched_pin();
3909 vd = DPCPU_PTR(vd);
3910 mtx_lock(&vd->lock);
3911 MPASS(vd->index < VDBATCH_SIZE);
3912 MPASS(vd->tab[vd->index] == NULL);
3913 /*
3914 * A hack: we depend on being pinned so that we know what to put in
3915 * ->v_dbatchcpu.
3916 */
3917 vp->v_dbatchcpu = curcpu;
3918 vd->tab[vd->index] = vp;
3919 vd->index++;
3920 VI_UNLOCK(vp);
3921 if (vd->index == VDBATCH_SIZE)
3922 vdbatch_process(vd);
3923 mtx_unlock(&vd->lock);
3924 sched_unpin();
3925 }
3926
3927 /*
3928 * This routine must only be called for vnodes which are about to be
3929 * deallocated. Supporting dequeue for arbitrary vndoes would require
3930 * validating that the locked batch matches.
3931 */
3932 static void
vdbatch_dequeue(struct vnode * vp)3933 vdbatch_dequeue(struct vnode *vp)
3934 {
3935 struct vdbatch *vd;
3936 int i;
3937 short cpu;
3938
3939 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3940
3941 cpu = vp->v_dbatchcpu;
3942 if (cpu == NOCPU)
3943 return;
3944
3945 vd = DPCPU_ID_PTR(cpu, vd);
3946 mtx_lock(&vd->lock);
3947 for (i = 0; i < vd->index; i++) {
3948 if (vd->tab[i] != vp)
3949 continue;
3950 vp->v_dbatchcpu = NOCPU;
3951 vd->index--;
3952 vd->tab[i] = vd->tab[vd->index];
3953 vd->tab[vd->index] = NULL;
3954 break;
3955 }
3956 mtx_unlock(&vd->lock);
3957 /*
3958 * Either we dequeued the vnode above or the target CPU beat us to it.
3959 */
3960 MPASS(vp->v_dbatchcpu == NOCPU);
3961 }
3962
3963 /*
3964 * Drop the hold count of the vnode.
3965 *
3966 * It will only get freed if this is the last hold *and* it has been vgone'd.
3967 *
3968 * Because the vnode vm object keeps a hold reference on the vnode if
3969 * there is at least one resident non-cached page, the vnode cannot
3970 * leave the active list without the page cleanup done.
3971 */
3972 static void __noinline
vdropl_final(struct vnode * vp)3973 vdropl_final(struct vnode *vp)
3974 {
3975
3976 ASSERT_VI_LOCKED(vp, __func__);
3977 VNPASS(VN_IS_DOOMED(vp), vp);
3978 /*
3979 * Set the VHOLD_NO_SMR flag.
3980 *
3981 * We may be racing against vhold_smr. If they win we can just pretend
3982 * we never got this far, they will vdrop later.
3983 */
3984 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3985 vfs_freevnodes_inc();
3986 VI_UNLOCK(vp);
3987 /*
3988 * We lost the aforementioned race. Any subsequent access is
3989 * invalid as they might have managed to vdropl on their own.
3990 */
3991 return;
3992 }
3993 /*
3994 * Don't bump freevnodes as this one is going away.
3995 */
3996 freevnode(vp);
3997 }
3998
3999 void
vdrop(struct vnode * vp)4000 vdrop(struct vnode *vp)
4001 {
4002
4003 ASSERT_VI_UNLOCKED(vp, __func__);
4004 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4005 if (refcount_release_if_not_last(&vp->v_holdcnt))
4006 return;
4007 VI_LOCK(vp);
4008 vdropl(vp);
4009 }
4010
4011 static __always_inline void
vdropl_impl(struct vnode * vp,bool enqueue)4012 vdropl_impl(struct vnode *vp, bool enqueue)
4013 {
4014
4015 ASSERT_VI_LOCKED(vp, __func__);
4016 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4017 if (!refcount_release(&vp->v_holdcnt)) {
4018 VI_UNLOCK(vp);
4019 return;
4020 }
4021 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4022 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4023 if (VN_IS_DOOMED(vp)) {
4024 vdropl_final(vp);
4025 return;
4026 }
4027
4028 vfs_freevnodes_inc();
4029 if (vp->v_mflag & VMP_LAZYLIST) {
4030 vunlazy(vp);
4031 }
4032
4033 if (!enqueue) {
4034 VI_UNLOCK(vp);
4035 return;
4036 }
4037
4038 /*
4039 * Also unlocks the interlock. We can't assert on it as we
4040 * released our hold and by now the vnode might have been
4041 * freed.
4042 */
4043 vdbatch_enqueue(vp);
4044 }
4045
4046 void
vdropl(struct vnode * vp)4047 vdropl(struct vnode *vp)
4048 {
4049
4050 vdropl_impl(vp, true);
4051 }
4052
4053 /*
4054 * vdrop a vnode when recycling
4055 *
4056 * This is a special case routine only to be used when recycling, differs from
4057 * regular vdrop by not requeieing the vnode on LRU.
4058 *
4059 * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4060 * e.g., frozen writes on the filesystem), filling the batch and causing it to
4061 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4062 * loop which can last for as long as writes are frozen.
4063 */
4064 static void
vdropl_recycle(struct vnode * vp)4065 vdropl_recycle(struct vnode *vp)
4066 {
4067
4068 vdropl_impl(vp, false);
4069 }
4070
4071 static void
vdrop_recycle(struct vnode * vp)4072 vdrop_recycle(struct vnode *vp)
4073 {
4074
4075 VI_LOCK(vp);
4076 vdropl_recycle(vp);
4077 }
4078
4079 /*
4080 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4081 * flags. DOINGINACT prevents us from recursing in calls to vinactive.
4082 */
4083 static int
vinactivef(struct vnode * vp)4084 vinactivef(struct vnode *vp)
4085 {
4086 int error;
4087
4088 ASSERT_VOP_ELOCKED(vp, "vinactive");
4089 ASSERT_VI_LOCKED(vp, "vinactive");
4090 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4091 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4092 vp->v_iflag |= VI_DOINGINACT;
4093 vp->v_iflag &= ~VI_OWEINACT;
4094 VI_UNLOCK(vp);
4095
4096 /*
4097 * Before moving off the active list, we must be sure that any
4098 * modified pages are converted into the vnode's dirty
4099 * buffers, since these will no longer be checked once the
4100 * vnode is on the inactive list.
4101 *
4102 * The write-out of the dirty pages is asynchronous. At the
4103 * point that VOP_INACTIVE() is called, there could still be
4104 * pending I/O and dirty pages in the object.
4105 */
4106 if ((vp->v_vflag & VV_NOSYNC) == 0)
4107 vnode_pager_clean_async(vp);
4108
4109 error = VOP_INACTIVE(vp);
4110 VI_LOCK(vp);
4111 VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4112 vp->v_iflag &= ~VI_DOINGINACT;
4113 return (error);
4114 }
4115
4116 int
vinactive(struct vnode * vp)4117 vinactive(struct vnode *vp)
4118 {
4119
4120 ASSERT_VOP_ELOCKED(vp, "vinactive");
4121 ASSERT_VI_LOCKED(vp, "vinactive");
4122 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4123
4124 if ((vp->v_iflag & VI_OWEINACT) == 0)
4125 return (0);
4126 if (vp->v_iflag & VI_DOINGINACT)
4127 return (0);
4128 if (vp->v_usecount > 0) {
4129 vp->v_iflag &= ~VI_OWEINACT;
4130 return (0);
4131 }
4132 return (vinactivef(vp));
4133 }
4134
4135 /*
4136 * Remove any vnodes in the vnode table belonging to mount point mp.
4137 *
4138 * If FORCECLOSE is not specified, there should not be any active ones,
4139 * return error if any are found (nb: this is a user error, not a
4140 * system error). If FORCECLOSE is specified, detach any active vnodes
4141 * that are found.
4142 *
4143 * If WRITECLOSE is set, only flush out regular file vnodes open for
4144 * writing.
4145 *
4146 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4147 *
4148 * `rootrefs' specifies the base reference count for the root vnode
4149 * of this filesystem. The root vnode is considered busy if its
4150 * v_usecount exceeds this value. On a successful return, vflush(, td)
4151 * will call vrele() on the root vnode exactly rootrefs times.
4152 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4153 * be zero.
4154 */
4155 #ifdef DIAGNOSTIC
4156 static int busyprt = 0; /* print out busy vnodes */
4157 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4158 #endif
4159
4160 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4161 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4162 {
4163 struct vnode *vp, *mvp, *rootvp = NULL;
4164 struct vattr vattr;
4165 int busy = 0, error;
4166
4167 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4168 rootrefs, flags);
4169 if (rootrefs > 0) {
4170 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4171 ("vflush: bad args"));
4172 /*
4173 * Get the filesystem root vnode. We can vput() it
4174 * immediately, since with rootrefs > 0, it won't go away.
4175 */
4176 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4177 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4178 __func__, error);
4179 return (error);
4180 }
4181 vput(rootvp);
4182 }
4183 loop:
4184 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4185 vholdl(vp);
4186 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4187 if (error) {
4188 vdrop(vp);
4189 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4190 goto loop;
4191 }
4192 /*
4193 * Skip over a vnodes marked VV_SYSTEM.
4194 */
4195 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4196 VOP_UNLOCK(vp);
4197 vdrop(vp);
4198 continue;
4199 }
4200 /*
4201 * If WRITECLOSE is set, flush out unlinked but still open
4202 * files (even if open only for reading) and regular file
4203 * vnodes open for writing.
4204 */
4205 if (flags & WRITECLOSE) {
4206 vnode_pager_clean_async(vp);
4207 do {
4208 error = VOP_FSYNC(vp, MNT_WAIT, td);
4209 } while (error == ERELOOKUP);
4210 if (error != 0) {
4211 VOP_UNLOCK(vp);
4212 vdrop(vp);
4213 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4214 return (error);
4215 }
4216 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4217 VI_LOCK(vp);
4218
4219 if ((vp->v_type == VNON ||
4220 (error == 0 && vattr.va_nlink > 0)) &&
4221 (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4222 VOP_UNLOCK(vp);
4223 vdropl(vp);
4224 continue;
4225 }
4226 } else
4227 VI_LOCK(vp);
4228 /*
4229 * With v_usecount == 0, all we need to do is clear out the
4230 * vnode data structures and we are done.
4231 *
4232 * If FORCECLOSE is set, forcibly close the vnode.
4233 */
4234 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4235 vgonel(vp);
4236 } else {
4237 busy++;
4238 #ifdef DIAGNOSTIC
4239 if (busyprt)
4240 vn_printf(vp, "vflush: busy vnode ");
4241 #endif
4242 }
4243 VOP_UNLOCK(vp);
4244 vdropl(vp);
4245 }
4246 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4247 /*
4248 * If just the root vnode is busy, and if its refcount
4249 * is equal to `rootrefs', then go ahead and kill it.
4250 */
4251 VI_LOCK(rootvp);
4252 KASSERT(busy > 0, ("vflush: not busy"));
4253 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4254 ("vflush: usecount %d < rootrefs %d",
4255 rootvp->v_usecount, rootrefs));
4256 if (busy == 1 && rootvp->v_usecount == rootrefs) {
4257 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4258 vgone(rootvp);
4259 VOP_UNLOCK(rootvp);
4260 busy = 0;
4261 } else
4262 VI_UNLOCK(rootvp);
4263 }
4264 if (busy) {
4265 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4266 busy);
4267 return (EBUSY);
4268 }
4269 for (; rootrefs > 0; rootrefs--)
4270 vrele(rootvp);
4271 return (0);
4272 }
4273
4274 /*
4275 * Recycle an unused vnode.
4276 */
4277 int
vrecycle(struct vnode * vp)4278 vrecycle(struct vnode *vp)
4279 {
4280 int recycled;
4281
4282 VI_LOCK(vp);
4283 recycled = vrecyclel(vp);
4284 VI_UNLOCK(vp);
4285 return (recycled);
4286 }
4287
4288 /*
4289 * vrecycle, with the vp interlock held.
4290 */
4291 int
vrecyclel(struct vnode * vp)4292 vrecyclel(struct vnode *vp)
4293 {
4294 int recycled;
4295
4296 ASSERT_VOP_ELOCKED(vp, __func__);
4297 ASSERT_VI_LOCKED(vp, __func__);
4298 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4299 recycled = 0;
4300 if (vp->v_usecount == 0) {
4301 recycled = 1;
4302 vgonel(vp);
4303 }
4304 return (recycled);
4305 }
4306
4307 /*
4308 * Eliminate all activity associated with a vnode
4309 * in preparation for reuse.
4310 */
4311 void
vgone(struct vnode * vp)4312 vgone(struct vnode *vp)
4313 {
4314 VI_LOCK(vp);
4315 vgonel(vp);
4316 VI_UNLOCK(vp);
4317 }
4318
4319 /*
4320 * Notify upper mounts about reclaimed or unlinked vnode.
4321 */
4322 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4323 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4324 {
4325 struct mount *mp;
4326 struct mount_upper_node *ump;
4327
4328 mp = atomic_load_ptr(&vp->v_mount);
4329 if (mp == NULL)
4330 return;
4331 if (TAILQ_EMPTY(&mp->mnt_notify))
4332 return;
4333
4334 MNT_ILOCK(mp);
4335 mp->mnt_upper_pending++;
4336 KASSERT(mp->mnt_upper_pending > 0,
4337 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4338 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4339 MNT_IUNLOCK(mp);
4340 switch (event) {
4341 case VFS_NOTIFY_UPPER_RECLAIM:
4342 VFS_RECLAIM_LOWERVP(ump->mp, vp);
4343 break;
4344 case VFS_NOTIFY_UPPER_UNLINK:
4345 VFS_UNLINK_LOWERVP(ump->mp, vp);
4346 break;
4347 }
4348 MNT_ILOCK(mp);
4349 }
4350 mp->mnt_upper_pending--;
4351 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4352 mp->mnt_upper_pending == 0) {
4353 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4354 wakeup(&mp->mnt_uppers);
4355 }
4356 MNT_IUNLOCK(mp);
4357 }
4358
4359 /*
4360 * vgone, with the vp interlock held.
4361 */
4362 static void
vgonel(struct vnode * vp)4363 vgonel(struct vnode *vp)
4364 {
4365 struct thread *td;
4366 struct mount *mp;
4367 vm_object_t object;
4368 bool active, doinginact, oweinact;
4369
4370 ASSERT_VOP_ELOCKED(vp, "vgonel");
4371 ASSERT_VI_LOCKED(vp, "vgonel");
4372 VNASSERT(vp->v_holdcnt, vp,
4373 ("vgonel: vp %p has no reference.", vp));
4374 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4375 td = curthread;
4376
4377 /*
4378 * Don't vgonel if we're already doomed.
4379 */
4380 if (VN_IS_DOOMED(vp)) {
4381 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4382 vn_get_state(vp) == VSTATE_DEAD, vp);
4383 return;
4384 }
4385 /*
4386 * Paired with freevnode.
4387 */
4388 vn_seqc_write_begin_locked(vp);
4389 vunlazy_gone(vp);
4390 vn_irflag_set_locked(vp, VIRF_DOOMED);
4391 vn_set_state(vp, VSTATE_DESTROYING);
4392
4393 /*
4394 * Check to see if the vnode is in use. If so, we have to
4395 * call VOP_CLOSE() and VOP_INACTIVE().
4396 *
4397 * It could be that VOP_INACTIVE() requested reclamation, in
4398 * which case we should avoid recursion, so check
4399 * VI_DOINGINACT. This is not precise but good enough.
4400 */
4401 active = vp->v_usecount > 0;
4402 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4403 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4404
4405 /*
4406 * If we need to do inactive VI_OWEINACT will be set.
4407 */
4408 if (vp->v_iflag & VI_DEFINACT) {
4409 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4410 vp->v_iflag &= ~VI_DEFINACT;
4411 vdropl(vp);
4412 } else {
4413 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4414 VI_UNLOCK(vp);
4415 }
4416 cache_purge_vgone(vp);
4417 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4418
4419 /*
4420 * If purging an active vnode, it must be closed and
4421 * deactivated before being reclaimed.
4422 */
4423 if (active)
4424 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4425 if (!doinginact) {
4426 do {
4427 if (oweinact || active) {
4428 VI_LOCK(vp);
4429 vinactivef(vp);
4430 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4431 VI_UNLOCK(vp);
4432 }
4433 } while (oweinact);
4434 }
4435 if (vp->v_type == VSOCK)
4436 vfs_unp_reclaim(vp);
4437
4438 /*
4439 * Clean out any buffers associated with the vnode.
4440 * If the flush fails, just toss the buffers.
4441 */
4442 mp = NULL;
4443 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4444 (void) vn_start_secondary_write(vp, &mp, V_WAIT);
4445 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4446 while (vinvalbuf(vp, 0, 0, 0) != 0)
4447 ;
4448 }
4449
4450 BO_LOCK(&vp->v_bufobj);
4451 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4452 vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4453 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4454 vp->v_bufobj.bo_clean.bv_cnt == 0,
4455 ("vp %p bufobj not invalidated", vp));
4456
4457 /*
4458 * For VMIO bufobj, BO_DEAD is set later, or in
4459 * vm_object_terminate() after the object's page queue is
4460 * flushed.
4461 */
4462 object = vp->v_bufobj.bo_object;
4463 if (object == NULL)
4464 vp->v_bufobj.bo_flag |= BO_DEAD;
4465 BO_UNLOCK(&vp->v_bufobj);
4466
4467 /*
4468 * Handle the VM part. Tmpfs handles v_object on its own (the
4469 * OBJT_VNODE check). Nullfs or other bypassing filesystems
4470 * should not touch the object borrowed from the lower vnode
4471 * (the handle check).
4472 */
4473 if (object != NULL && object->type == OBJT_VNODE &&
4474 object->handle == vp)
4475 vnode_destroy_vobject(vp);
4476
4477 /*
4478 * Reclaim the vnode.
4479 */
4480 if (VOP_RECLAIM(vp))
4481 panic("vgone: cannot reclaim");
4482 if (mp != NULL)
4483 vn_finished_secondary_write(mp);
4484 VNASSERT(vp->v_object == NULL, vp,
4485 ("vop_reclaim left v_object vp=%p", vp));
4486 /*
4487 * Clear the advisory locks and wake up waiting threads.
4488 */
4489 if (vp->v_lockf != NULL) {
4490 (void)VOP_ADVLOCKPURGE(vp);
4491 vp->v_lockf = NULL;
4492 }
4493 /*
4494 * Delete from old mount point vnode list.
4495 */
4496 if (vp->v_mount == NULL) {
4497 VI_LOCK(vp);
4498 } else {
4499 delmntque(vp);
4500 ASSERT_VI_LOCKED(vp, "vgonel 2");
4501 }
4502 /*
4503 * Done with purge, reset to the standard lock and invalidate
4504 * the vnode.
4505 *
4506 * FIXME: this is buggy for vnode ops with custom locking primitives.
4507 *
4508 * vget used to be gated with a special flag serializing it against vgone,
4509 * which got lost in the process of SMP-ifying the VFS layer.
4510 *
4511 * Suppose a custom locking routine references ->v_data.
4512 *
4513 * Since now it is possible to start executing it as vgone is
4514 * progressing, this very well may crash as ->v_data gets invalidated
4515 * and memory used to back it is freed.
4516 */
4517 vp->v_vnlock = &vp->v_lock;
4518 vp->v_op = &dead_vnodeops;
4519 vp->v_type = VBAD;
4520 vn_set_state(vp, VSTATE_DEAD);
4521 }
4522
4523 /*
4524 * Print out a description of a vnode.
4525 */
4526 static const char *const vtypename[] = {
4527 [VNON] = "VNON",
4528 [VREG] = "VREG",
4529 [VDIR] = "VDIR",
4530 [VBLK] = "VBLK",
4531 [VCHR] = "VCHR",
4532 [VLNK] = "VLNK",
4533 [VSOCK] = "VSOCK",
4534 [VFIFO] = "VFIFO",
4535 [VBAD] = "VBAD",
4536 [VMARKER] = "VMARKER",
4537 };
4538 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4539 "vnode type name not added to vtypename");
4540
4541 static const char *const vstatename[] = {
4542 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4543 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4544 [VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4545 [VSTATE_DEAD] = "VSTATE_DEAD",
4546 };
4547 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4548 "vnode state name not added to vstatename");
4549
4550 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4551 "new hold count flag not added to vn_printf");
4552
4553 void
vn_printf(struct vnode * vp,const char * fmt,...)4554 vn_printf(struct vnode *vp, const char *fmt, ...)
4555 {
4556 va_list ap;
4557 char buf[256], buf2[16];
4558 u_long flags;
4559 u_int holdcnt;
4560 short irflag;
4561
4562 va_start(ap, fmt);
4563 vprintf(fmt, ap);
4564 va_end(ap);
4565 printf("%p: ", (void *)vp);
4566 printf("type %s state %s op %p\n", vtypename[vp->v_type],
4567 vstatename[vp->v_state], vp->v_op);
4568 holdcnt = atomic_load_int(&vp->v_holdcnt);
4569 printf(" usecount %d, writecount %d, refcount %d seqc users %d",
4570 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4571 vp->v_seqc_users);
4572 switch (vp->v_type) {
4573 case VDIR:
4574 printf(" mountedhere %p\n", vp->v_mountedhere);
4575 break;
4576 case VCHR:
4577 printf(" rdev %p\n", vp->v_rdev);
4578 break;
4579 case VSOCK:
4580 printf(" socket %p\n", vp->v_unpcb);
4581 break;
4582 case VFIFO:
4583 printf(" fifoinfo %p\n", vp->v_fifoinfo);
4584 break;
4585 default:
4586 printf("\n");
4587 break;
4588 }
4589 buf[0] = '\0';
4590 buf[1] = '\0';
4591 if (holdcnt & VHOLD_NO_SMR)
4592 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4593 printf(" hold count flags (%s)\n", buf + 1);
4594
4595 buf[0] = '\0';
4596 buf[1] = '\0';
4597 irflag = vn_irflag_read(vp);
4598 if (irflag & VIRF_DOOMED)
4599 strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4600 if (irflag & VIRF_PGREAD)
4601 strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4602 if (irflag & VIRF_MOUNTPOINT)
4603 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4604 if (irflag & VIRF_TEXT_REF)
4605 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4606 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4607 if (flags != 0) {
4608 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4609 strlcat(buf, buf2, sizeof(buf));
4610 }
4611 if (vp->v_vflag & VV_ROOT)
4612 strlcat(buf, "|VV_ROOT", sizeof(buf));
4613 if (vp->v_vflag & VV_ISTTY)
4614 strlcat(buf, "|VV_ISTTY", sizeof(buf));
4615 if (vp->v_vflag & VV_NOSYNC)
4616 strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4617 if (vp->v_vflag & VV_ETERNALDEV)
4618 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4619 if (vp->v_vflag & VV_CACHEDLABEL)
4620 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4621 if (vp->v_vflag & VV_VMSIZEVNLOCK)
4622 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4623 if (vp->v_vflag & VV_COPYONWRITE)
4624 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4625 if (vp->v_vflag & VV_SYSTEM)
4626 strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4627 if (vp->v_vflag & VV_PROCDEP)
4628 strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4629 if (vp->v_vflag & VV_DELETED)
4630 strlcat(buf, "|VV_DELETED", sizeof(buf));
4631 if (vp->v_vflag & VV_MD)
4632 strlcat(buf, "|VV_MD", sizeof(buf));
4633 if (vp->v_vflag & VV_FORCEINSMQ)
4634 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4635 if (vp->v_vflag & VV_READLINK)
4636 strlcat(buf, "|VV_READLINK", sizeof(buf));
4637 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4638 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4639 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4640 if (flags != 0) {
4641 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4642 strlcat(buf, buf2, sizeof(buf));
4643 }
4644 if (vp->v_iflag & VI_MOUNT)
4645 strlcat(buf, "|VI_MOUNT", sizeof(buf));
4646 if (vp->v_iflag & VI_DOINGINACT)
4647 strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4648 if (vp->v_iflag & VI_OWEINACT)
4649 strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4650 if (vp->v_iflag & VI_DEFINACT)
4651 strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4652 if (vp->v_iflag & VI_FOPENING)
4653 strlcat(buf, "|VI_FOPENING", sizeof(buf));
4654 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4655 VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4656 if (flags != 0) {
4657 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4658 strlcat(buf, buf2, sizeof(buf));
4659 }
4660 if (vp->v_mflag & VMP_LAZYLIST)
4661 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4662 flags = vp->v_mflag & ~(VMP_LAZYLIST);
4663 if (flags != 0) {
4664 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4665 strlcat(buf, buf2, sizeof(buf));
4666 }
4667 printf(" flags (%s)", buf + 1);
4668 if (mtx_owned(VI_MTX(vp)))
4669 printf(" VI_LOCKed");
4670 printf("\n");
4671 if (vp->v_object != NULL)
4672 printf(" v_object %p ref %d pages %d "
4673 "cleanbuf %d dirtybuf %d\n",
4674 vp->v_object, vp->v_object->ref_count,
4675 vp->v_object->resident_page_count,
4676 vp->v_bufobj.bo_clean.bv_cnt,
4677 vp->v_bufobj.bo_dirty.bv_cnt);
4678 printf(" ");
4679 lockmgr_printinfo(vp->v_vnlock);
4680 if (vp->v_data != NULL)
4681 VOP_PRINT(vp);
4682 }
4683
4684 #ifdef DDB
4685 /*
4686 * List all of the locked vnodes in the system.
4687 * Called when debugging the kernel.
4688 */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4689 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4690 {
4691 struct mount *mp;
4692 struct vnode *vp;
4693
4694 /*
4695 * Note: because this is DDB, we can't obey the locking semantics
4696 * for these structures, which means we could catch an inconsistent
4697 * state and dereference a nasty pointer. Not much to be done
4698 * about that.
4699 */
4700 db_printf("Locked vnodes\n");
4701 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4702 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4703 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4704 vn_printf(vp, "vnode ");
4705 }
4706 }
4707 }
4708
4709 /*
4710 * Show details about the given vnode.
4711 */
DB_SHOW_COMMAND(vnode,db_show_vnode)4712 DB_SHOW_COMMAND(vnode, db_show_vnode)
4713 {
4714 struct vnode *vp;
4715
4716 if (!have_addr)
4717 return;
4718 vp = (struct vnode *)addr;
4719 vn_printf(vp, "vnode ");
4720 }
4721
4722 /*
4723 * Show details about the given mount point.
4724 */
DB_SHOW_COMMAND(mount,db_show_mount)4725 DB_SHOW_COMMAND(mount, db_show_mount)
4726 {
4727 struct mount *mp;
4728 struct vfsopt *opt;
4729 struct statfs *sp;
4730 struct vnode *vp;
4731 char buf[512];
4732 uint64_t mflags;
4733 u_int flags;
4734
4735 if (!have_addr) {
4736 /* No address given, print short info about all mount points. */
4737 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4738 db_printf("%p %s on %s (%s)\n", mp,
4739 mp->mnt_stat.f_mntfromname,
4740 mp->mnt_stat.f_mntonname,
4741 mp->mnt_stat.f_fstypename);
4742 if (db_pager_quit)
4743 break;
4744 }
4745 db_printf("\nMore info: show mount <addr>\n");
4746 return;
4747 }
4748
4749 mp = (struct mount *)addr;
4750 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4751 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4752
4753 buf[0] = '\0';
4754 mflags = mp->mnt_flag;
4755 #define MNT_FLAG(flag) do { \
4756 if (mflags & (flag)) { \
4757 if (buf[0] != '\0') \
4758 strlcat(buf, ", ", sizeof(buf)); \
4759 strlcat(buf, (#flag) + 4, sizeof(buf)); \
4760 mflags &= ~(flag); \
4761 } \
4762 } while (0)
4763 MNT_FLAG(MNT_RDONLY);
4764 MNT_FLAG(MNT_SYNCHRONOUS);
4765 MNT_FLAG(MNT_NOEXEC);
4766 MNT_FLAG(MNT_NOSUID);
4767 MNT_FLAG(MNT_NFS4ACLS);
4768 MNT_FLAG(MNT_UNION);
4769 MNT_FLAG(MNT_ASYNC);
4770 MNT_FLAG(MNT_SUIDDIR);
4771 MNT_FLAG(MNT_SOFTDEP);
4772 MNT_FLAG(MNT_NOSYMFOLLOW);
4773 MNT_FLAG(MNT_GJOURNAL);
4774 MNT_FLAG(MNT_MULTILABEL);
4775 MNT_FLAG(MNT_ACLS);
4776 MNT_FLAG(MNT_NOATIME);
4777 MNT_FLAG(MNT_NOCLUSTERR);
4778 MNT_FLAG(MNT_NOCLUSTERW);
4779 MNT_FLAG(MNT_SUJ);
4780 MNT_FLAG(MNT_EXRDONLY);
4781 MNT_FLAG(MNT_EXPORTED);
4782 MNT_FLAG(MNT_DEFEXPORTED);
4783 MNT_FLAG(MNT_EXPORTANON);
4784 MNT_FLAG(MNT_EXKERB);
4785 MNT_FLAG(MNT_EXPUBLIC);
4786 MNT_FLAG(MNT_LOCAL);
4787 MNT_FLAG(MNT_QUOTA);
4788 MNT_FLAG(MNT_ROOTFS);
4789 MNT_FLAG(MNT_USER);
4790 MNT_FLAG(MNT_IGNORE);
4791 MNT_FLAG(MNT_UPDATE);
4792 MNT_FLAG(MNT_DELEXPORT);
4793 MNT_FLAG(MNT_RELOAD);
4794 MNT_FLAG(MNT_FORCE);
4795 MNT_FLAG(MNT_SNAPSHOT);
4796 MNT_FLAG(MNT_BYFSID);
4797 MNT_FLAG(MNT_NAMEDATTR);
4798 #undef MNT_FLAG
4799 if (mflags != 0) {
4800 if (buf[0] != '\0')
4801 strlcat(buf, ", ", sizeof(buf));
4802 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4803 "0x%016jx", mflags);
4804 }
4805 db_printf(" mnt_flag = %s\n", buf);
4806
4807 buf[0] = '\0';
4808 flags = mp->mnt_kern_flag;
4809 #define MNT_KERN_FLAG(flag) do { \
4810 if (flags & (flag)) { \
4811 if (buf[0] != '\0') \
4812 strlcat(buf, ", ", sizeof(buf)); \
4813 strlcat(buf, (#flag) + 5, sizeof(buf)); \
4814 flags &= ~(flag); \
4815 } \
4816 } while (0)
4817 MNT_KERN_FLAG(MNTK_UNMOUNTF);
4818 MNT_KERN_FLAG(MNTK_ASYNC);
4819 MNT_KERN_FLAG(MNTK_SOFTDEP);
4820 MNT_KERN_FLAG(MNTK_NOMSYNC);
4821 MNT_KERN_FLAG(MNTK_DRAINING);
4822 MNT_KERN_FLAG(MNTK_REFEXPIRE);
4823 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4824 MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4825 MNT_KERN_FLAG(MNTK_NO_IOPF);
4826 MNT_KERN_FLAG(MNTK_RECURSE);
4827 MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4828 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4829 MNT_KERN_FLAG(MNTK_USES_BCACHE);
4830 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4831 MNT_KERN_FLAG(MNTK_FPLOOKUP);
4832 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4833 MNT_KERN_FLAG(MNTK_NOASYNC);
4834 MNT_KERN_FLAG(MNTK_UNMOUNT);
4835 MNT_KERN_FLAG(MNTK_MWAIT);
4836 MNT_KERN_FLAG(MNTK_SUSPEND);
4837 MNT_KERN_FLAG(MNTK_SUSPEND2);
4838 MNT_KERN_FLAG(MNTK_SUSPENDED);
4839 MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4840 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4841 #undef MNT_KERN_FLAG
4842 if (flags != 0) {
4843 if (buf[0] != '\0')
4844 strlcat(buf, ", ", sizeof(buf));
4845 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4846 "0x%08x", flags);
4847 }
4848 db_printf(" mnt_kern_flag = %s\n", buf);
4849
4850 db_printf(" mnt_opt = ");
4851 opt = TAILQ_FIRST(mp->mnt_opt);
4852 if (opt != NULL) {
4853 db_printf("%s", opt->name);
4854 opt = TAILQ_NEXT(opt, link);
4855 while (opt != NULL) {
4856 db_printf(", %s", opt->name);
4857 opt = TAILQ_NEXT(opt, link);
4858 }
4859 }
4860 db_printf("\n");
4861
4862 sp = &mp->mnt_stat;
4863 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
4864 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4865 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4866 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4867 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4868 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4869 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4870 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4871 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4872 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4873 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4874 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4875
4876 db_printf(" mnt_cred = { uid=%u ruid=%u",
4877 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4878 if (jailed(mp->mnt_cred))
4879 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4880 db_printf(" }\n");
4881 db_printf(" mnt_ref = %d (with %d in the struct)\n",
4882 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4883 db_printf(" mnt_gen = %d\n", mp->mnt_gen);
4884 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4885 db_printf(" mnt_lazyvnodelistsize = %d\n",
4886 mp->mnt_lazyvnodelistsize);
4887 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n",
4888 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4889 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4890 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
4891 db_printf(" mnt_lockref = %d (with %d in the struct)\n",
4892 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4893 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4894 db_printf(" mnt_secondary_accwrites = %d\n",
4895 mp->mnt_secondary_accwrites);
4896 db_printf(" mnt_gjprovider = %s\n",
4897 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4898 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4899
4900 db_printf("\n\nList of active vnodes\n");
4901 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4902 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4903 vn_printf(vp, "vnode ");
4904 if (db_pager_quit)
4905 break;
4906 }
4907 }
4908 db_printf("\n\nList of inactive vnodes\n");
4909 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4910 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4911 vn_printf(vp, "vnode ");
4912 if (db_pager_quit)
4913 break;
4914 }
4915 }
4916 }
4917 #endif /* DDB */
4918
4919 /*
4920 * Fill in a struct xvfsconf based on a struct vfsconf.
4921 */
4922 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4923 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4924 {
4925 struct xvfsconf xvfsp;
4926
4927 bzero(&xvfsp, sizeof(xvfsp));
4928 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4929 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4930 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4931 xvfsp.vfc_flags = vfsp->vfc_flags;
4932 /*
4933 * These are unused in userland, we keep them
4934 * to not break binary compatibility.
4935 */
4936 xvfsp.vfc_vfsops = NULL;
4937 xvfsp.vfc_next = NULL;
4938 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4939 }
4940
4941 #ifdef COMPAT_FREEBSD32
4942 struct xvfsconf32 {
4943 uint32_t vfc_vfsops;
4944 char vfc_name[MFSNAMELEN];
4945 int32_t vfc_typenum;
4946 int32_t vfc_refcount;
4947 int32_t vfc_flags;
4948 uint32_t vfc_next;
4949 };
4950
4951 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4952 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4953 {
4954 struct xvfsconf32 xvfsp;
4955
4956 bzero(&xvfsp, sizeof(xvfsp));
4957 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4958 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4959 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4960 xvfsp.vfc_flags = vfsp->vfc_flags;
4961 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4962 }
4963 #endif
4964
4965 /*
4966 * Top level filesystem related information gathering.
4967 */
4968 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4969 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4970 {
4971 struct vfsconf *vfsp;
4972 int error;
4973
4974 error = 0;
4975 vfsconf_slock();
4976 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4977 #ifdef COMPAT_FREEBSD32
4978 if (req->flags & SCTL_MASK32)
4979 error = vfsconf2x32(req, vfsp);
4980 else
4981 #endif
4982 error = vfsconf2x(req, vfsp);
4983 if (error)
4984 break;
4985 }
4986 vfsconf_sunlock();
4987 return (error);
4988 }
4989
4990 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4991 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4992 "S,xvfsconf", "List of all configured filesystems");
4993
4994 #ifndef BURN_BRIDGES
4995 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4996
4997 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4998 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4999 {
5000 int *name = (int *)arg1 - 1; /* XXX */
5001 u_int namelen = arg2 + 1; /* XXX */
5002 struct vfsconf *vfsp;
5003
5004 log(LOG_WARNING, "userland calling deprecated sysctl, "
5005 "please rebuild world\n");
5006
5007 #if 1 || defined(COMPAT_PRELITE2)
5008 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
5009 if (namelen == 1)
5010 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
5011 #endif
5012
5013 switch (name[1]) {
5014 case VFS_MAXTYPENUM:
5015 if (namelen != 2)
5016 return (ENOTDIR);
5017 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
5018 case VFS_CONF:
5019 if (namelen != 3)
5020 return (ENOTDIR); /* overloaded */
5021 vfsconf_slock();
5022 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5023 if (vfsp->vfc_typenum == name[2])
5024 break;
5025 }
5026 vfsconf_sunlock();
5027 if (vfsp == NULL)
5028 return (EOPNOTSUPP);
5029 #ifdef COMPAT_FREEBSD32
5030 if (req->flags & SCTL_MASK32)
5031 return (vfsconf2x32(req, vfsp));
5032 else
5033 #endif
5034 return (vfsconf2x(req, vfsp));
5035 }
5036 return (EOPNOTSUPP);
5037 }
5038
5039 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5040 CTLFLAG_MPSAFE, vfs_sysctl,
5041 "Generic filesystem");
5042
5043 #if 1 || defined(COMPAT_PRELITE2)
5044
5045 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5046 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5047 {
5048 int error;
5049 struct vfsconf *vfsp;
5050 struct ovfsconf ovfs;
5051
5052 vfsconf_slock();
5053 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5054 bzero(&ovfs, sizeof(ovfs));
5055 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
5056 strcpy(ovfs.vfc_name, vfsp->vfc_name);
5057 ovfs.vfc_index = vfsp->vfc_typenum;
5058 ovfs.vfc_refcount = vfsp->vfc_refcount;
5059 ovfs.vfc_flags = vfsp->vfc_flags;
5060 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5061 if (error != 0) {
5062 vfsconf_sunlock();
5063 return (error);
5064 }
5065 }
5066 vfsconf_sunlock();
5067 return (0);
5068 }
5069
5070 #endif /* 1 || COMPAT_PRELITE2 */
5071 #endif /* !BURN_BRIDGES */
5072
5073 static void
unmount_or_warn(struct mount * mp)5074 unmount_or_warn(struct mount *mp)
5075 {
5076 int error;
5077
5078 error = dounmount(mp, MNT_FORCE, curthread);
5079 if (error != 0) {
5080 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5081 if (error == EBUSY)
5082 printf("BUSY)\n");
5083 else
5084 printf("%d)\n", error);
5085 }
5086 }
5087
5088 /*
5089 * Unmount all filesystems. The list is traversed in reverse order
5090 * of mounting to avoid dependencies.
5091 */
5092 void
vfs_unmountall(void)5093 vfs_unmountall(void)
5094 {
5095 struct mount *mp, *tmp;
5096
5097 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5098
5099 /*
5100 * Since this only runs when rebooting, it is not interlocked.
5101 */
5102 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5103 vfs_ref(mp);
5104
5105 /*
5106 * Forcibly unmounting "/dev" before "/" would prevent clean
5107 * unmount of the latter.
5108 */
5109 if (mp == rootdevmp)
5110 continue;
5111
5112 unmount_or_warn(mp);
5113 }
5114
5115 if (rootdevmp != NULL)
5116 unmount_or_warn(rootdevmp);
5117 }
5118
5119 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5120 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5121 {
5122
5123 ASSERT_VI_LOCKED(vp, __func__);
5124 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5125 if ((vp->v_iflag & VI_OWEINACT) == 0) {
5126 vdropl(vp);
5127 return;
5128 }
5129 if (vn_lock(vp, lkflags) == 0) {
5130 VI_LOCK(vp);
5131 vinactive(vp);
5132 VOP_UNLOCK(vp);
5133 vdropl(vp);
5134 return;
5135 }
5136 vdefer_inactive_unlocked(vp);
5137 }
5138
5139 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5140 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5141 {
5142
5143 return (vp->v_iflag & VI_DEFINACT);
5144 }
5145
5146 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5147 vfs_periodic_inactive(struct mount *mp, int flags)
5148 {
5149 struct vnode *vp, *mvp;
5150 int lkflags;
5151
5152 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5153 if (flags != MNT_WAIT)
5154 lkflags |= LK_NOWAIT;
5155
5156 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5157 if ((vp->v_iflag & VI_DEFINACT) == 0) {
5158 VI_UNLOCK(vp);
5159 continue;
5160 }
5161 vp->v_iflag &= ~VI_DEFINACT;
5162 vfs_deferred_inactive(vp, lkflags);
5163 }
5164 }
5165
5166 static inline bool
vfs_want_msync(struct vnode * vp)5167 vfs_want_msync(struct vnode *vp)
5168 {
5169 struct vm_object *obj;
5170
5171 /*
5172 * This test may be performed without any locks held.
5173 * We rely on vm_object's type stability.
5174 */
5175 if (vp->v_vflag & VV_NOSYNC)
5176 return (false);
5177 obj = vp->v_object;
5178 return (obj != NULL && vm_object_mightbedirty(obj));
5179 }
5180
5181 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5182 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5183 {
5184
5185 if (vp->v_vflag & VV_NOSYNC)
5186 return (false);
5187 if (vp->v_iflag & VI_DEFINACT)
5188 return (true);
5189 return (vfs_want_msync(vp));
5190 }
5191
5192 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5193 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5194 {
5195 struct vnode *vp, *mvp;
5196 int lkflags;
5197 bool seen_defer;
5198
5199 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5200 if (flags != MNT_WAIT)
5201 lkflags |= LK_NOWAIT;
5202
5203 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5204 seen_defer = false;
5205 if (vp->v_iflag & VI_DEFINACT) {
5206 vp->v_iflag &= ~VI_DEFINACT;
5207 seen_defer = true;
5208 }
5209 if (!vfs_want_msync(vp)) {
5210 if (seen_defer)
5211 vfs_deferred_inactive(vp, lkflags);
5212 else
5213 VI_UNLOCK(vp);
5214 continue;
5215 }
5216 if (vget(vp, lkflags) == 0) {
5217 if ((vp->v_vflag & VV_NOSYNC) == 0) {
5218 if (flags == MNT_WAIT)
5219 vnode_pager_clean_sync(vp);
5220 else
5221 vnode_pager_clean_async(vp);
5222 }
5223 vput(vp);
5224 if (seen_defer)
5225 vdrop(vp);
5226 } else {
5227 if (seen_defer)
5228 vdefer_inactive_unlocked(vp);
5229 }
5230 }
5231 }
5232
5233 void
vfs_periodic(struct mount * mp,int flags)5234 vfs_periodic(struct mount *mp, int flags)
5235 {
5236
5237 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5238
5239 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5240 vfs_periodic_inactive(mp, flags);
5241 else
5242 vfs_periodic_msync_inactive(mp, flags);
5243 }
5244
5245 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5246 destroy_vpollinfo_free(struct vpollinfo *vi)
5247 {
5248
5249 knlist_destroy(&vi->vpi_selinfo.si_note);
5250 mtx_destroy(&vi->vpi_lock);
5251 free(vi, M_VNODEPOLL);
5252 }
5253
5254 static void
destroy_vpollinfo(struct vpollinfo * vi)5255 destroy_vpollinfo(struct vpollinfo *vi)
5256 {
5257 KASSERT(TAILQ_EMPTY(&vi->vpi_inotify),
5258 ("%s: pollinfo %p has lingering watches", __func__, vi));
5259 knlist_clear(&vi->vpi_selinfo.si_note, 1);
5260 seldrain(&vi->vpi_selinfo);
5261 destroy_vpollinfo_free(vi);
5262 }
5263
5264 /*
5265 * Initialize per-vnode helper structure to hold poll-related state.
5266 */
5267 void
v_addpollinfo(struct vnode * vp)5268 v_addpollinfo(struct vnode *vp)
5269 {
5270 struct vpollinfo *vi;
5271
5272 if (atomic_load_ptr(&vp->v_pollinfo) != NULL)
5273 return;
5274 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5275 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5276 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5277 vfs_knlunlock, vfs_knl_assert_lock);
5278 TAILQ_INIT(&vi->vpi_inotify);
5279 VI_LOCK(vp);
5280 if (vp->v_pollinfo != NULL) {
5281 VI_UNLOCK(vp);
5282 destroy_vpollinfo_free(vi);
5283 return;
5284 }
5285 vp->v_pollinfo = vi;
5286 VI_UNLOCK(vp);
5287 }
5288
5289 /*
5290 * Record a process's interest in events which might happen to
5291 * a vnode. Because poll uses the historic select-style interface
5292 * internally, this routine serves as both the ``check for any
5293 * pending events'' and the ``record my interest in future events''
5294 * functions. (These are done together, while the lock is held,
5295 * to avoid race conditions.)
5296 */
5297 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5298 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5299 {
5300
5301 v_addpollinfo(vp);
5302 mtx_lock(&vp->v_pollinfo->vpi_lock);
5303 if (vp->v_pollinfo->vpi_revents & events) {
5304 /*
5305 * This leaves events we are not interested
5306 * in available for the other process which
5307 * which presumably had requested them
5308 * (otherwise they would never have been
5309 * recorded).
5310 */
5311 events &= vp->v_pollinfo->vpi_revents;
5312 vp->v_pollinfo->vpi_revents &= ~events;
5313
5314 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5315 return (events);
5316 }
5317 vp->v_pollinfo->vpi_events |= events;
5318 selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5319 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5320 return (0);
5321 }
5322
5323 /*
5324 * Routine to create and manage a filesystem syncer vnode.
5325 */
5326 #define sync_close ((int (*)(struct vop_close_args *))nullop)
5327 static int sync_fsync(struct vop_fsync_args *);
5328 static int sync_inactive(struct vop_inactive_args *);
5329 static int sync_reclaim(struct vop_reclaim_args *);
5330
5331 static struct vop_vector sync_vnodeops = {
5332 .vop_bypass = VOP_EOPNOTSUPP,
5333 .vop_close = sync_close,
5334 .vop_fsync = sync_fsync,
5335 .vop_getwritemount = vop_stdgetwritemount,
5336 .vop_inactive = sync_inactive,
5337 .vop_need_inactive = vop_stdneed_inactive,
5338 .vop_reclaim = sync_reclaim,
5339 .vop_lock1 = vop_stdlock,
5340 .vop_unlock = vop_stdunlock,
5341 .vop_islocked = vop_stdislocked,
5342 .vop_fplookup_vexec = VOP_EAGAIN,
5343 .vop_fplookup_symlink = VOP_EAGAIN,
5344 };
5345 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5346
5347 /*
5348 * Create a new filesystem syncer vnode for the specified mount point.
5349 */
5350 void
vfs_allocate_syncvnode(struct mount * mp)5351 vfs_allocate_syncvnode(struct mount *mp)
5352 {
5353 struct vnode *vp;
5354 struct bufobj *bo;
5355 static long start, incr, next;
5356 int error;
5357
5358 /* Allocate a new vnode */
5359 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5360 if (error != 0)
5361 panic("vfs_allocate_syncvnode: getnewvnode() failed");
5362 vp->v_type = VNON;
5363 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5364 vp->v_vflag |= VV_FORCEINSMQ;
5365 error = insmntque1(vp, mp);
5366 if (error != 0)
5367 panic("vfs_allocate_syncvnode: insmntque() failed");
5368 vp->v_vflag &= ~VV_FORCEINSMQ;
5369 vn_set_state(vp, VSTATE_CONSTRUCTED);
5370 VOP_UNLOCK(vp);
5371 /*
5372 * Place the vnode onto the syncer worklist. We attempt to
5373 * scatter them about on the list so that they will go off
5374 * at evenly distributed times even if all the filesystems
5375 * are mounted at once.
5376 */
5377 next += incr;
5378 if (next == 0 || next > syncer_maxdelay) {
5379 start /= 2;
5380 incr /= 2;
5381 if (start == 0) {
5382 start = syncer_maxdelay / 2;
5383 incr = syncer_maxdelay;
5384 }
5385 next = start;
5386 }
5387 bo = &vp->v_bufobj;
5388 BO_LOCK(bo);
5389 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5390 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5391 mtx_lock(&sync_mtx);
5392 sync_vnode_count++;
5393 if (mp->mnt_syncer == NULL) {
5394 mp->mnt_syncer = vp;
5395 vp = NULL;
5396 }
5397 mtx_unlock(&sync_mtx);
5398 BO_UNLOCK(bo);
5399 if (vp != NULL) {
5400 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5401 vgone(vp);
5402 vput(vp);
5403 }
5404 }
5405
5406 void
vfs_deallocate_syncvnode(struct mount * mp)5407 vfs_deallocate_syncvnode(struct mount *mp)
5408 {
5409 struct vnode *vp;
5410
5411 mtx_lock(&sync_mtx);
5412 vp = mp->mnt_syncer;
5413 if (vp != NULL)
5414 mp->mnt_syncer = NULL;
5415 mtx_unlock(&sync_mtx);
5416 if (vp != NULL)
5417 vrele(vp);
5418 }
5419
5420 /*
5421 * Do a lazy sync of the filesystem.
5422 */
5423 static int
sync_fsync(struct vop_fsync_args * ap)5424 sync_fsync(struct vop_fsync_args *ap)
5425 {
5426 struct vnode *syncvp = ap->a_vp;
5427 struct mount *mp = syncvp->v_mount;
5428 int error, save;
5429 struct bufobj *bo;
5430
5431 /*
5432 * We only need to do something if this is a lazy evaluation.
5433 */
5434 if (ap->a_waitfor != MNT_LAZY)
5435 return (0);
5436
5437 /*
5438 * Move ourselves to the back of the sync list.
5439 */
5440 bo = &syncvp->v_bufobj;
5441 BO_LOCK(bo);
5442 vn_syncer_add_to_worklist(bo, syncdelay);
5443 BO_UNLOCK(bo);
5444
5445 /*
5446 * Walk the list of vnodes pushing all that are dirty and
5447 * not already on the sync list.
5448 */
5449 if (vfs_busy(mp, MBF_NOWAIT) != 0)
5450 return (0);
5451 VOP_UNLOCK(syncvp);
5452 save = curthread_pflags_set(TDP_SYNCIO);
5453 /*
5454 * The filesystem at hand may be idle with free vnodes stored in the
5455 * batch. Return them instead of letting them stay there indefinitely.
5456 */
5457 vfs_periodic(mp, MNT_NOWAIT);
5458 error = VFS_SYNC(mp, MNT_LAZY);
5459 curthread_pflags_restore(save);
5460 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5461 vfs_unbusy(mp);
5462 return (error);
5463 }
5464
5465 /*
5466 * The syncer vnode is no referenced.
5467 */
5468 static int
sync_inactive(struct vop_inactive_args * ap)5469 sync_inactive(struct vop_inactive_args *ap)
5470 {
5471
5472 vgone(ap->a_vp);
5473 return (0);
5474 }
5475
5476 /*
5477 * The syncer vnode is no longer needed and is being decommissioned.
5478 *
5479 * Modifications to the worklist must be protected by sync_mtx.
5480 */
5481 static int
sync_reclaim(struct vop_reclaim_args * ap)5482 sync_reclaim(struct vop_reclaim_args *ap)
5483 {
5484 struct vnode *vp = ap->a_vp;
5485 struct bufobj *bo;
5486
5487 bo = &vp->v_bufobj;
5488 BO_LOCK(bo);
5489 mtx_lock(&sync_mtx);
5490 if (vp->v_mount->mnt_syncer == vp)
5491 vp->v_mount->mnt_syncer = NULL;
5492 if (bo->bo_flag & BO_ONWORKLST) {
5493 LIST_REMOVE(bo, bo_synclist);
5494 syncer_worklist_len--;
5495 sync_vnode_count--;
5496 bo->bo_flag &= ~BO_ONWORKLST;
5497 }
5498 mtx_unlock(&sync_mtx);
5499 BO_UNLOCK(bo);
5500
5501 return (0);
5502 }
5503
5504 int
vn_need_pageq_flush(struct vnode * vp)5505 vn_need_pageq_flush(struct vnode *vp)
5506 {
5507 struct vm_object *obj;
5508
5509 obj = vp->v_object;
5510 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5511 vm_object_mightbedirty(obj));
5512 }
5513
5514 /*
5515 * Check if vnode represents a disk device
5516 */
5517 bool
vn_isdisk_error(struct vnode * vp,int * errp)5518 vn_isdisk_error(struct vnode *vp, int *errp)
5519 {
5520 int error;
5521
5522 if (vp->v_type != VCHR) {
5523 error = ENOTBLK;
5524 goto out;
5525 }
5526 error = 0;
5527 dev_lock();
5528 if (vp->v_rdev == NULL)
5529 error = ENXIO;
5530 else if (vp->v_rdev->si_devsw == NULL)
5531 error = ENXIO;
5532 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5533 error = ENOTBLK;
5534 dev_unlock();
5535 out:
5536 *errp = error;
5537 return (error == 0);
5538 }
5539
5540 bool
vn_isdisk(struct vnode * vp)5541 vn_isdisk(struct vnode *vp)
5542 {
5543 int error;
5544
5545 return (vn_isdisk_error(vp, &error));
5546 }
5547
5548 /*
5549 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5550 * the comment above cache_fplookup for details.
5551 */
5552 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5553 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5554 {
5555 int error;
5556
5557 VFS_SMR_ASSERT_ENTERED();
5558
5559 /* Check the owner. */
5560 if (cred->cr_uid == file_uid) {
5561 if (file_mode & S_IXUSR)
5562 return (0);
5563 goto out_error;
5564 }
5565
5566 /* Otherwise, check the groups (first match) */
5567 if (groupmember(file_gid, cred)) {
5568 if (file_mode & S_IXGRP)
5569 return (0);
5570 goto out_error;
5571 }
5572
5573 /* Otherwise, check everyone else. */
5574 if (file_mode & S_IXOTH)
5575 return (0);
5576 out_error:
5577 /*
5578 * Permission check failed, but it is possible denial will get overwritten
5579 * (e.g., when root is traversing through a 700 directory owned by someone
5580 * else).
5581 *
5582 * vaccess() calls priv_check_cred which in turn can descent into MAC
5583 * modules overriding this result. It's quite unclear what semantics
5584 * are allowed for them to operate, thus for safety we don't call them
5585 * from within the SMR section. This also means if any such modules
5586 * are present, we have to let the regular lookup decide.
5587 */
5588 error = priv_check_cred_vfs_lookup_nomac(cred);
5589 switch (error) {
5590 case 0:
5591 return (0);
5592 case EAGAIN:
5593 /*
5594 * MAC modules present.
5595 */
5596 return (EAGAIN);
5597 case EPERM:
5598 return (EACCES);
5599 default:
5600 return (error);
5601 }
5602 }
5603
5604 /*
5605 * Common filesystem object access control check routine. Accepts a
5606 * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5607 * Returns 0 on success, or an errno on failure.
5608 */
5609 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5610 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5611 accmode_t accmode, struct ucred *cred)
5612 {
5613 accmode_t dac_granted;
5614 accmode_t priv_granted;
5615
5616 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5617 ("invalid bit in accmode"));
5618 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5619 ("VAPPEND without VWRITE"));
5620
5621 /*
5622 * Look for a normal, non-privileged way to access the file/directory
5623 * as requested. If it exists, go with that.
5624 */
5625
5626 dac_granted = 0;
5627
5628 /* Check the owner. */
5629 if (cred->cr_uid == file_uid) {
5630 dac_granted |= VADMIN;
5631 if (file_mode & S_IXUSR)
5632 dac_granted |= VEXEC;
5633 if (file_mode & S_IRUSR)
5634 dac_granted |= VREAD;
5635 if (file_mode & S_IWUSR)
5636 dac_granted |= (VWRITE | VAPPEND);
5637
5638 if ((accmode & dac_granted) == accmode)
5639 return (0);
5640
5641 goto privcheck;
5642 }
5643
5644 /* Otherwise, check the groups (first match) */
5645 if (groupmember(file_gid, cred)) {
5646 if (file_mode & S_IXGRP)
5647 dac_granted |= VEXEC;
5648 if (file_mode & S_IRGRP)
5649 dac_granted |= VREAD;
5650 if (file_mode & S_IWGRP)
5651 dac_granted |= (VWRITE | VAPPEND);
5652
5653 if ((accmode & dac_granted) == accmode)
5654 return (0);
5655
5656 goto privcheck;
5657 }
5658
5659 /* Otherwise, check everyone else. */
5660 if (file_mode & S_IXOTH)
5661 dac_granted |= VEXEC;
5662 if (file_mode & S_IROTH)
5663 dac_granted |= VREAD;
5664 if (file_mode & S_IWOTH)
5665 dac_granted |= (VWRITE | VAPPEND);
5666 if ((accmode & dac_granted) == accmode)
5667 return (0);
5668
5669 privcheck:
5670 /*
5671 * Build a privilege mask to determine if the set of privileges
5672 * satisfies the requirements when combined with the granted mask
5673 * from above. For each privilege, if the privilege is required,
5674 * bitwise or the request type onto the priv_granted mask.
5675 */
5676 priv_granted = 0;
5677
5678 if (type == VDIR) {
5679 /*
5680 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5681 * requests, instead of PRIV_VFS_EXEC.
5682 */
5683 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5684 !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5685 priv_granted |= VEXEC;
5686 } else {
5687 /*
5688 * Ensure that at least one execute bit is on. Otherwise,
5689 * a privileged user will always succeed, and we don't want
5690 * this to happen unless the file really is executable.
5691 */
5692 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5693 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5694 !priv_check_cred(cred, PRIV_VFS_EXEC))
5695 priv_granted |= VEXEC;
5696 }
5697
5698 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5699 !priv_check_cred(cred, PRIV_VFS_READ))
5700 priv_granted |= VREAD;
5701
5702 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5703 !priv_check_cred(cred, PRIV_VFS_WRITE))
5704 priv_granted |= (VWRITE | VAPPEND);
5705
5706 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5707 !priv_check_cred(cred, PRIV_VFS_ADMIN))
5708 priv_granted |= VADMIN;
5709
5710 if ((accmode & (priv_granted | dac_granted)) == accmode) {
5711 return (0);
5712 }
5713
5714 return ((accmode & VADMIN) ? EPERM : EACCES);
5715 }
5716
5717 /*
5718 * Credential check based on process requesting service, and per-attribute
5719 * permissions.
5720 */
5721 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5722 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5723 struct thread *td, accmode_t accmode)
5724 {
5725
5726 /*
5727 * Kernel-invoked always succeeds.
5728 */
5729 if (cred == NOCRED)
5730 return (0);
5731
5732 /*
5733 * Do not allow privileged processes in jail to directly manipulate
5734 * system attributes.
5735 */
5736 switch (attrnamespace) {
5737 case EXTATTR_NAMESPACE_SYSTEM:
5738 /* Potentially should be: return (EPERM); */
5739 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5740 case EXTATTR_NAMESPACE_USER:
5741 return (VOP_ACCESS(vp, accmode, cred, td));
5742 default:
5743 return (EPERM);
5744 }
5745 }
5746
5747 #ifdef INVARIANTS
5748 void
assert_vi_locked(struct vnode * vp,const char * str)5749 assert_vi_locked(struct vnode *vp, const char *str)
5750 {
5751 VNASSERT(mtx_owned(VI_MTX(vp)), vp,
5752 ("%s: vnode interlock is not locked but should be", str));
5753 }
5754
5755 void
assert_vi_unlocked(struct vnode * vp,const char * str)5756 assert_vi_unlocked(struct vnode *vp, const char *str)
5757 {
5758 VNASSERT(!mtx_owned(VI_MTX(vp)), vp,
5759 ("%s: vnode interlock is locked but should not be", str));
5760 }
5761
5762 void
assert_vop_locked(struct vnode * vp,const char * str)5763 assert_vop_locked(struct vnode *vp, const char *str)
5764 {
5765 bool locked;
5766
5767 if (KERNEL_PANICKED() || vp == NULL)
5768 return;
5769
5770 #ifdef WITNESS
5771 locked = !((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5772 witness_is_owned(&vp->v_vnlock->lock_object) == -1);
5773 #else
5774 int state = VOP_ISLOCKED(vp);
5775 locked = state != 0 && state != LK_EXCLOTHER;
5776 #endif
5777 VNASSERT(locked, vp, ("%s: vnode is not locked but should be", str));
5778 }
5779
5780 void
assert_vop_unlocked(struct vnode * vp,const char * str)5781 assert_vop_unlocked(struct vnode *vp, const char *str)
5782 {
5783 bool locked;
5784
5785 if (KERNEL_PANICKED() || vp == NULL)
5786 return;
5787
5788 #ifdef WITNESS
5789 locked = (vp->v_irflag & VIRF_CROSSMP) == 0 &&
5790 witness_is_owned(&vp->v_vnlock->lock_object) == 1;
5791 #else
5792 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5793 #endif
5794 VNASSERT(!locked, vp, ("%s: vnode is locked but should not be", str));
5795 }
5796
5797 void
assert_vop_elocked(struct vnode * vp,const char * str)5798 assert_vop_elocked(struct vnode *vp, const char *str)
5799 {
5800 bool locked;
5801
5802 if (KERNEL_PANICKED() || vp == NULL)
5803 return;
5804
5805 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5806 VNASSERT(locked, vp,
5807 ("%s: vnode is not exclusive locked but should be", str));
5808 }
5809 #endif /* INVARIANTS */
5810
5811 void
vop_rename_fail(struct vop_rename_args * ap)5812 vop_rename_fail(struct vop_rename_args *ap)
5813 {
5814
5815 if (ap->a_tvp != NULL)
5816 vput(ap->a_tvp);
5817 if (ap->a_tdvp == ap->a_tvp)
5818 vrele(ap->a_tdvp);
5819 else
5820 vput(ap->a_tdvp);
5821 vrele(ap->a_fdvp);
5822 vrele(ap->a_fvp);
5823 }
5824
5825 void
vop_rename_pre(void * ap)5826 vop_rename_pre(void *ap)
5827 {
5828 struct vop_rename_args *a = ap;
5829
5830 #ifdef INVARIANTS
5831 struct mount *tmp;
5832
5833 if (a->a_tvp)
5834 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5835 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5836 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5837 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5838
5839 /* Check the source (from). */
5840 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5841 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5842 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5843 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5844 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5845
5846 /* Check the target. */
5847 if (a->a_tvp)
5848 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5849 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5850
5851 tmp = NULL;
5852 VOP_GETWRITEMOUNT(a->a_tdvp, &tmp);
5853 lockmgr_assert(&tmp->mnt_renamelock, KA_XLOCKED);
5854 vfs_rel(tmp);
5855 #endif
5856 /*
5857 * It may be tempting to add vn_seqc_write_begin/end calls here and
5858 * in vop_rename_post but that's not going to work out since some
5859 * filesystems relookup vnodes mid-rename. This is probably a bug.
5860 *
5861 * For now filesystems are expected to do the relevant calls after they
5862 * decide what vnodes to operate on.
5863 */
5864 if (a->a_tdvp != a->a_fdvp)
5865 vhold(a->a_fdvp);
5866 if (a->a_tvp != a->a_fvp)
5867 vhold(a->a_fvp);
5868 vhold(a->a_tdvp);
5869 if (a->a_tvp)
5870 vhold(a->a_tvp);
5871 }
5872
5873 #ifdef INVARIANTS
5874 void
vop_fplookup_vexec_debugpre(void * ap __unused)5875 vop_fplookup_vexec_debugpre(void *ap __unused)
5876 {
5877
5878 VFS_SMR_ASSERT_ENTERED();
5879 }
5880
5881 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5882 vop_fplookup_vexec_debugpost(void *ap, int rc)
5883 {
5884 struct vop_fplookup_vexec_args *a;
5885 struct vnode *vp;
5886
5887 a = ap;
5888 vp = a->a_vp;
5889
5890 VFS_SMR_ASSERT_ENTERED();
5891 if (rc == EOPNOTSUPP)
5892 VNPASS(VN_IS_DOOMED(vp), vp);
5893 }
5894
5895 void
vop_fplookup_symlink_debugpre(void * ap __unused)5896 vop_fplookup_symlink_debugpre(void *ap __unused)
5897 {
5898
5899 VFS_SMR_ASSERT_ENTERED();
5900 }
5901
5902 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5903 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5904 {
5905
5906 VFS_SMR_ASSERT_ENTERED();
5907 }
5908
5909 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5910 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5911 {
5912 struct mount *mp;
5913
5914 if (vp->v_type == VCHR)
5915 ;
5916 /*
5917 * The shared vs. exclusive locking policy for fsync()
5918 * is actually determined by vp's write mount as indicated
5919 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5920 * may not be the same as vp->v_mount. However, if the
5921 * underlying filesystem which really handles the fsync()
5922 * supports shared locking, the stacked filesystem must also
5923 * be prepared for its VOP_FSYNC() operation to be called
5924 * with only a shared lock. On the other hand, if the
5925 * stacked filesystem claims support for shared write
5926 * locking but the underlying filesystem does not, and the
5927 * caller incorrectly uses a shared lock, this condition
5928 * should still be caught when the stacked filesystem
5929 * invokes VOP_FSYNC() on the underlying filesystem.
5930 */
5931 else {
5932 mp = NULL;
5933 VOP_GETWRITEMOUNT(vp, &mp);
5934 if (vn_lktype_write(mp, vp) == LK_SHARED)
5935 ASSERT_VOP_LOCKED(vp, name);
5936 else
5937 ASSERT_VOP_ELOCKED(vp, name);
5938 if (mp != NULL)
5939 vfs_rel(mp);
5940 }
5941 }
5942
5943 void
vop_fsync_debugpre(void * a)5944 vop_fsync_debugpre(void *a)
5945 {
5946 struct vop_fsync_args *ap;
5947
5948 ap = a;
5949 vop_fsync_debugprepost(ap->a_vp, "fsync");
5950 }
5951
5952 void
vop_fsync_debugpost(void * a,int rc __unused)5953 vop_fsync_debugpost(void *a, int rc __unused)
5954 {
5955 struct vop_fsync_args *ap;
5956
5957 ap = a;
5958 vop_fsync_debugprepost(ap->a_vp, "fsync");
5959 }
5960
5961 void
vop_fdatasync_debugpre(void * a)5962 vop_fdatasync_debugpre(void *a)
5963 {
5964 struct vop_fdatasync_args *ap;
5965
5966 ap = a;
5967 vop_fsync_debugprepost(ap->a_vp, "fsync");
5968 }
5969
5970 void
vop_fdatasync_debugpost(void * a,int rc __unused)5971 vop_fdatasync_debugpost(void *a, int rc __unused)
5972 {
5973 struct vop_fdatasync_args *ap;
5974
5975 ap = a;
5976 vop_fsync_debugprepost(ap->a_vp, "fsync");
5977 }
5978
5979 void
vop_strategy_debugpre(void * ap)5980 vop_strategy_debugpre(void *ap)
5981 {
5982 struct vop_strategy_args *a;
5983 struct buf *bp;
5984
5985 a = ap;
5986 bp = a->a_bp;
5987
5988 /*
5989 * Cluster ops lock their component buffers but not the IO container.
5990 */
5991 if ((bp->b_flags & B_CLUSTER) != 0)
5992 return;
5993
5994 BUF_ASSERT_LOCKED(bp);
5995 }
5996
5997 void
vop_lock_debugpre(void * ap)5998 vop_lock_debugpre(void *ap)
5999 {
6000 struct vop_lock1_args *a = ap;
6001
6002 if ((a->a_flags & LK_INTERLOCK) == 0)
6003 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6004 else
6005 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6006 }
6007
6008 void
vop_lock_debugpost(void * ap,int rc)6009 vop_lock_debugpost(void *ap, int rc)
6010 {
6011 struct vop_lock1_args *a = ap;
6012
6013 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6014 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6015 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6016 }
6017
6018 void
vop_unlock_debugpre(void * ap)6019 vop_unlock_debugpre(void *ap)
6020 {
6021 struct vop_unlock_args *a = ap;
6022 struct vnode *vp = a->a_vp;
6023
6024 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6025 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6026 }
6027
6028 void
vop_need_inactive_debugpre(void * ap)6029 vop_need_inactive_debugpre(void *ap)
6030 {
6031 struct vop_need_inactive_args *a = ap;
6032
6033 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6034 }
6035
6036 void
vop_need_inactive_debugpost(void * ap,int rc)6037 vop_need_inactive_debugpost(void *ap, int rc)
6038 {
6039 struct vop_need_inactive_args *a = ap;
6040
6041 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6042 }
6043 #endif /* INVARIANTS */
6044
6045 void
vop_allocate_post(void * ap,int rc)6046 vop_allocate_post(void *ap, int rc)
6047 {
6048 struct vop_allocate_args *a;
6049
6050 a = ap;
6051 if (rc == 0)
6052 INOTIFY(a->a_vp, IN_MODIFY);
6053 }
6054
6055 void
vop_copy_file_range_post(void * ap,int rc)6056 vop_copy_file_range_post(void *ap, int rc)
6057 {
6058 struct vop_copy_file_range_args *a;
6059
6060 a = ap;
6061 if (rc == 0) {
6062 INOTIFY(a->a_invp, IN_ACCESS);
6063 INOTIFY(a->a_outvp, IN_MODIFY);
6064 }
6065 }
6066
6067 void
vop_create_pre(void * ap)6068 vop_create_pre(void *ap)
6069 {
6070 struct vop_create_args *a;
6071 struct vnode *dvp;
6072
6073 a = ap;
6074 dvp = a->a_dvp;
6075 vn_seqc_write_begin(dvp);
6076 }
6077
6078 void
vop_create_post(void * ap,int rc)6079 vop_create_post(void *ap, int rc)
6080 {
6081 struct vop_create_args *a;
6082 struct vnode *dvp;
6083
6084 a = ap;
6085 dvp = a->a_dvp;
6086 vn_seqc_write_end(dvp);
6087 if (!rc) {
6088 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6089 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6090 }
6091 }
6092
6093 void
vop_deallocate_post(void * ap,int rc)6094 vop_deallocate_post(void *ap, int rc)
6095 {
6096 struct vop_deallocate_args *a;
6097
6098 a = ap;
6099 if (rc == 0)
6100 INOTIFY(a->a_vp, IN_MODIFY);
6101 }
6102
6103 void
vop_whiteout_pre(void * ap)6104 vop_whiteout_pre(void *ap)
6105 {
6106 struct vop_whiteout_args *a;
6107 struct vnode *dvp;
6108
6109 a = ap;
6110 dvp = a->a_dvp;
6111 vn_seqc_write_begin(dvp);
6112 }
6113
6114 void
vop_whiteout_post(void * ap,int rc)6115 vop_whiteout_post(void *ap, int rc)
6116 {
6117 struct vop_whiteout_args *a;
6118 struct vnode *dvp;
6119
6120 a = ap;
6121 dvp = a->a_dvp;
6122 vn_seqc_write_end(dvp);
6123 }
6124
6125 void
vop_deleteextattr_pre(void * ap)6126 vop_deleteextattr_pre(void *ap)
6127 {
6128 struct vop_deleteextattr_args *a;
6129 struct vnode *vp;
6130
6131 a = ap;
6132 vp = a->a_vp;
6133 vn_seqc_write_begin(vp);
6134 }
6135
6136 void
vop_deleteextattr_post(void * ap,int rc)6137 vop_deleteextattr_post(void *ap, int rc)
6138 {
6139 struct vop_deleteextattr_args *a;
6140 struct vnode *vp;
6141
6142 a = ap;
6143 vp = a->a_vp;
6144 vn_seqc_write_end(vp);
6145 if (!rc) {
6146 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6147 INOTIFY(vp, IN_ATTRIB);
6148 }
6149 }
6150
6151 void
vop_link_pre(void * ap)6152 vop_link_pre(void *ap)
6153 {
6154 struct vop_link_args *a;
6155 struct vnode *vp, *tdvp;
6156
6157 a = ap;
6158 vp = a->a_vp;
6159 tdvp = a->a_tdvp;
6160 vn_seqc_write_begin(vp);
6161 vn_seqc_write_begin(tdvp);
6162 }
6163
6164 void
vop_link_post(void * ap,int rc)6165 vop_link_post(void *ap, int rc)
6166 {
6167 struct vop_link_args *a;
6168 struct vnode *vp, *tdvp;
6169
6170 a = ap;
6171 vp = a->a_vp;
6172 tdvp = a->a_tdvp;
6173 vn_seqc_write_end(vp);
6174 vn_seqc_write_end(tdvp);
6175 if (!rc) {
6176 VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6177 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6178 INOTIFY_NAME(vp, tdvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6179 INOTIFY_NAME(vp, tdvp, a->a_cnp, IN_CREATE);
6180 }
6181 }
6182
6183 void
vop_mkdir_pre(void * ap)6184 vop_mkdir_pre(void *ap)
6185 {
6186 struct vop_mkdir_args *a;
6187 struct vnode *dvp;
6188
6189 a = ap;
6190 dvp = a->a_dvp;
6191 vn_seqc_write_begin(dvp);
6192 }
6193
6194 void
vop_mkdir_post(void * ap,int rc)6195 vop_mkdir_post(void *ap, int rc)
6196 {
6197 struct vop_mkdir_args *a;
6198 struct vnode *dvp;
6199
6200 a = ap;
6201 dvp = a->a_dvp;
6202 vn_seqc_write_end(dvp);
6203 if (!rc) {
6204 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6205 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6206 }
6207 }
6208
6209 #ifdef INVARIANTS
6210 void
vop_mkdir_debugpost(void * ap,int rc)6211 vop_mkdir_debugpost(void *ap, int rc)
6212 {
6213 struct vop_mkdir_args *a;
6214
6215 a = ap;
6216 if (!rc)
6217 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6218 }
6219 #endif
6220
6221 void
vop_mknod_pre(void * ap)6222 vop_mknod_pre(void *ap)
6223 {
6224 struct vop_mknod_args *a;
6225 struct vnode *dvp;
6226
6227 a = ap;
6228 dvp = a->a_dvp;
6229 vn_seqc_write_begin(dvp);
6230 }
6231
6232 void
vop_mknod_post(void * ap,int rc)6233 vop_mknod_post(void *ap, int rc)
6234 {
6235 struct vop_mknod_args *a;
6236 struct vnode *dvp;
6237
6238 a = ap;
6239 dvp = a->a_dvp;
6240 vn_seqc_write_end(dvp);
6241 if (!rc) {
6242 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6243 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6244 }
6245 }
6246
6247 void
vop_reclaim_post(void * ap,int rc)6248 vop_reclaim_post(void *ap, int rc)
6249 {
6250 struct vop_reclaim_args *a;
6251 struct vnode *vp;
6252
6253 a = ap;
6254 vp = a->a_vp;
6255 ASSERT_VOP_IN_SEQC(vp);
6256 if (!rc) {
6257 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6258 INOTIFY_REVOKE(vp);
6259 }
6260 }
6261
6262 void
vop_remove_pre(void * ap)6263 vop_remove_pre(void *ap)
6264 {
6265 struct vop_remove_args *a;
6266 struct vnode *dvp, *vp;
6267
6268 a = ap;
6269 dvp = a->a_dvp;
6270 vp = a->a_vp;
6271 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6272 vn_seqc_write_begin(dvp);
6273 vn_seqc_write_begin(vp);
6274 }
6275
6276 void
vop_remove_post(void * ap,int rc)6277 vop_remove_post(void *ap, int rc)
6278 {
6279 struct vop_remove_args *a;
6280 struct vnode *dvp, *vp;
6281
6282 a = ap;
6283 dvp = a->a_dvp;
6284 vp = a->a_vp;
6285 vn_seqc_write_end(dvp);
6286 vn_seqc_write_end(vp);
6287 if (!rc) {
6288 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6289 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6290 INOTIFY_NAME(vp, dvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6291 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6292 }
6293 }
6294
6295 void
vop_rename_post(void * ap,int rc)6296 vop_rename_post(void *ap, int rc)
6297 {
6298 struct vop_rename_args *a = ap;
6299 long hint;
6300
6301 if (!rc) {
6302 hint = NOTE_WRITE;
6303 if (a->a_fdvp == a->a_tdvp) {
6304 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6305 hint |= NOTE_LINK;
6306 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6307 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6308 } else {
6309 hint |= NOTE_EXTEND;
6310 if (a->a_fvp->v_type == VDIR)
6311 hint |= NOTE_LINK;
6312 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6313
6314 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6315 a->a_tvp->v_type == VDIR)
6316 hint &= ~NOTE_LINK;
6317 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6318 }
6319
6320 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6321 if (a->a_tvp)
6322 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6323 INOTIFY_MOVE(a->a_fvp, a->a_fdvp, a->a_fcnp, a->a_tvp,
6324 a->a_tdvp, a->a_tcnp);
6325 }
6326 if (a->a_tdvp != a->a_fdvp)
6327 vdrop(a->a_fdvp);
6328 if (a->a_tvp != a->a_fvp)
6329 vdrop(a->a_fvp);
6330 vdrop(a->a_tdvp);
6331 if (a->a_tvp)
6332 vdrop(a->a_tvp);
6333 }
6334
6335 void
vop_rmdir_pre(void * ap)6336 vop_rmdir_pre(void *ap)
6337 {
6338 struct vop_rmdir_args *a;
6339 struct vnode *dvp, *vp;
6340
6341 a = ap;
6342 dvp = a->a_dvp;
6343 vp = a->a_vp;
6344 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6345 vn_seqc_write_begin(dvp);
6346 vn_seqc_write_begin(vp);
6347 }
6348
6349 void
vop_rmdir_post(void * ap,int rc)6350 vop_rmdir_post(void *ap, int rc)
6351 {
6352 struct vop_rmdir_args *a;
6353 struct vnode *dvp, *vp;
6354
6355 a = ap;
6356 dvp = a->a_dvp;
6357 vp = a->a_vp;
6358 vn_seqc_write_end(dvp);
6359 vn_seqc_write_end(vp);
6360 if (!rc) {
6361 vp->v_vflag |= VV_UNLINKED;
6362 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6363 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6364 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6365 }
6366 }
6367
6368 void
vop_setattr_pre(void * ap)6369 vop_setattr_pre(void *ap)
6370 {
6371 struct vop_setattr_args *a;
6372 struct vnode *vp;
6373
6374 a = ap;
6375 vp = a->a_vp;
6376 vn_seqc_write_begin(vp);
6377 }
6378
6379 void
vop_setattr_post(void * ap,int rc)6380 vop_setattr_post(void *ap, int rc)
6381 {
6382 struct vop_setattr_args *a;
6383 struct vnode *vp;
6384
6385 a = ap;
6386 vp = a->a_vp;
6387 vn_seqc_write_end(vp);
6388 if (!rc) {
6389 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6390 INOTIFY(vp, IN_ATTRIB);
6391 }
6392 }
6393
6394 void
vop_setacl_pre(void * ap)6395 vop_setacl_pre(void *ap)
6396 {
6397 struct vop_setacl_args *a;
6398 struct vnode *vp;
6399
6400 a = ap;
6401 vp = a->a_vp;
6402 vn_seqc_write_begin(vp);
6403 }
6404
6405 void
vop_setacl_post(void * ap,int rc __unused)6406 vop_setacl_post(void *ap, int rc __unused)
6407 {
6408 struct vop_setacl_args *a;
6409 struct vnode *vp;
6410
6411 a = ap;
6412 vp = a->a_vp;
6413 vn_seqc_write_end(vp);
6414 }
6415
6416 void
vop_setextattr_pre(void * ap)6417 vop_setextattr_pre(void *ap)
6418 {
6419 struct vop_setextattr_args *a;
6420 struct vnode *vp;
6421
6422 a = ap;
6423 vp = a->a_vp;
6424 vn_seqc_write_begin(vp);
6425 }
6426
6427 void
vop_setextattr_post(void * ap,int rc)6428 vop_setextattr_post(void *ap, int rc)
6429 {
6430 struct vop_setextattr_args *a;
6431 struct vnode *vp;
6432
6433 a = ap;
6434 vp = a->a_vp;
6435 vn_seqc_write_end(vp);
6436 if (!rc) {
6437 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6438 INOTIFY(vp, IN_ATTRIB);
6439 }
6440 }
6441
6442 void
vop_symlink_pre(void * ap)6443 vop_symlink_pre(void *ap)
6444 {
6445 struct vop_symlink_args *a;
6446 struct vnode *dvp;
6447
6448 a = ap;
6449 dvp = a->a_dvp;
6450 vn_seqc_write_begin(dvp);
6451 }
6452
6453 void
vop_symlink_post(void * ap,int rc)6454 vop_symlink_post(void *ap, int rc)
6455 {
6456 struct vop_symlink_args *a;
6457 struct vnode *dvp;
6458
6459 a = ap;
6460 dvp = a->a_dvp;
6461 vn_seqc_write_end(dvp);
6462 if (!rc) {
6463 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6464 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6465 }
6466 }
6467
6468 void
vop_open_post(void * ap,int rc)6469 vop_open_post(void *ap, int rc)
6470 {
6471 struct vop_open_args *a = ap;
6472
6473 if (!rc) {
6474 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6475 INOTIFY(a->a_vp, IN_OPEN);
6476 }
6477 }
6478
6479 void
vop_close_post(void * ap,int rc)6480 vop_close_post(void *ap, int rc)
6481 {
6482 struct vop_close_args *a = ap;
6483
6484 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6485 !VN_IS_DOOMED(a->a_vp))) {
6486 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6487 NOTE_CLOSE_WRITE : NOTE_CLOSE);
6488 INOTIFY(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6489 IN_CLOSE_WRITE : IN_CLOSE_NOWRITE);
6490 }
6491 }
6492
6493 void
vop_read_post(void * ap,int rc)6494 vop_read_post(void *ap, int rc)
6495 {
6496 struct vop_read_args *a = ap;
6497
6498 if (!rc) {
6499 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6500 INOTIFY(a->a_vp, IN_ACCESS);
6501 }
6502 }
6503
6504 void
vop_read_pgcache_post(void * ap,int rc)6505 vop_read_pgcache_post(void *ap, int rc)
6506 {
6507 struct vop_read_pgcache_args *a = ap;
6508
6509 if (!rc)
6510 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6511 }
6512
6513 static struct knlist fs_knlist;
6514
6515 static void
vfs_event_init(void * arg)6516 vfs_event_init(void *arg)
6517 {
6518 knlist_init_mtx(&fs_knlist, NULL);
6519 }
6520 /* XXX - correct order? */
6521 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6522
6523 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6524 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6525 {
6526
6527 KNOTE_UNLOCKED(&fs_knlist, event);
6528 }
6529
6530 static int filt_fsattach(struct knote *kn);
6531 static void filt_fsdetach(struct knote *kn);
6532 static int filt_fsevent(struct knote *kn, long hint);
6533
6534 const struct filterops fs_filtops = {
6535 .f_isfd = 0,
6536 .f_attach = filt_fsattach,
6537 .f_detach = filt_fsdetach,
6538 .f_event = filt_fsevent,
6539 };
6540
6541 static int
filt_fsattach(struct knote * kn)6542 filt_fsattach(struct knote *kn)
6543 {
6544
6545 kn->kn_flags |= EV_CLEAR;
6546 knlist_add(&fs_knlist, kn, 0);
6547 return (0);
6548 }
6549
6550 static void
filt_fsdetach(struct knote * kn)6551 filt_fsdetach(struct knote *kn)
6552 {
6553
6554 knlist_remove(&fs_knlist, kn, 0);
6555 }
6556
6557 static int
filt_fsevent(struct knote * kn,long hint)6558 filt_fsevent(struct knote *kn, long hint)
6559 {
6560
6561 kn->kn_fflags |= kn->kn_sfflags & hint;
6562
6563 return (kn->kn_fflags != 0);
6564 }
6565
6566 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6567 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6568 {
6569 struct vfsidctl vc;
6570 int error;
6571 struct mount *mp;
6572
6573 if (req->newptr == NULL)
6574 return (EINVAL);
6575 error = SYSCTL_IN(req, &vc, sizeof(vc));
6576 if (error)
6577 return (error);
6578 if (vc.vc_vers != VFS_CTL_VERS1)
6579 return (EINVAL);
6580 mp = vfs_getvfs(&vc.vc_fsid);
6581 if (mp == NULL)
6582 return (ENOENT);
6583 /* ensure that a specific sysctl goes to the right filesystem. */
6584 if (strcmp(vc.vc_fstypename, "*") != 0 &&
6585 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6586 vfs_rel(mp);
6587 return (EINVAL);
6588 }
6589 VCTLTOREQ(&vc, req);
6590 error = VFS_SYSCTL(mp, vc.vc_op, req);
6591 vfs_rel(mp);
6592 return (error);
6593 }
6594
6595 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6596 NULL, 0, sysctl_vfs_ctl, "",
6597 "Sysctl by fsid");
6598
6599 /*
6600 * Function to initialize a va_filerev field sensibly.
6601 * XXX: Wouldn't a random number make a lot more sense ??
6602 */
6603 u_quad_t
init_va_filerev(void)6604 init_va_filerev(void)
6605 {
6606 struct bintime bt;
6607
6608 getbinuptime(&bt);
6609 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6610 }
6611
6612 static int filt_vfsread(struct knote *kn, long hint);
6613 static int filt_vfswrite(struct knote *kn, long hint);
6614 static int filt_vfsvnode(struct knote *kn, long hint);
6615 static void filt_vfsdetach(struct knote *kn);
6616 static int filt_vfsdump(struct proc *p, struct knote *kn,
6617 struct kinfo_knote *kin);
6618
6619 static const struct filterops vfsread_filtops = {
6620 .f_isfd = 1,
6621 .f_detach = filt_vfsdetach,
6622 .f_event = filt_vfsread,
6623 .f_userdump = filt_vfsdump,
6624 };
6625 static const struct filterops vfswrite_filtops = {
6626 .f_isfd = 1,
6627 .f_detach = filt_vfsdetach,
6628 .f_event = filt_vfswrite,
6629 .f_userdump = filt_vfsdump,
6630 };
6631 static const struct filterops vfsvnode_filtops = {
6632 .f_isfd = 1,
6633 .f_detach = filt_vfsdetach,
6634 .f_event = filt_vfsvnode,
6635 .f_userdump = filt_vfsdump,
6636 };
6637
6638 static void
vfs_knllock(void * arg)6639 vfs_knllock(void *arg)
6640 {
6641 struct vnode *vp = arg;
6642
6643 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6644 }
6645
6646 static void
vfs_knlunlock(void * arg)6647 vfs_knlunlock(void *arg)
6648 {
6649 struct vnode *vp = arg;
6650
6651 VOP_UNLOCK(vp);
6652 }
6653
6654 static void
vfs_knl_assert_lock(void * arg,int what)6655 vfs_knl_assert_lock(void *arg, int what)
6656 {
6657 #ifdef INVARIANTS
6658 struct vnode *vp = arg;
6659
6660 if (what == LA_LOCKED)
6661 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6662 else
6663 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6664 #endif
6665 }
6666
6667 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6668 vfs_kqfilter(struct vop_kqfilter_args *ap)
6669 {
6670 struct vnode *vp = ap->a_vp;
6671 struct knote *kn = ap->a_kn;
6672 struct knlist *knl;
6673
6674 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6675 kn->kn_filter != EVFILT_WRITE),
6676 ("READ/WRITE filter on a FIFO leaked through"));
6677 switch (kn->kn_filter) {
6678 case EVFILT_READ:
6679 kn->kn_fop = &vfsread_filtops;
6680 break;
6681 case EVFILT_WRITE:
6682 kn->kn_fop = &vfswrite_filtops;
6683 break;
6684 case EVFILT_VNODE:
6685 kn->kn_fop = &vfsvnode_filtops;
6686 break;
6687 default:
6688 return (EINVAL);
6689 }
6690
6691 kn->kn_hook = (caddr_t)vp;
6692
6693 v_addpollinfo(vp);
6694 if (vp->v_pollinfo == NULL)
6695 return (ENOMEM);
6696 knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6697 vhold(vp);
6698 knlist_add(knl, kn, 0);
6699
6700 return (0);
6701 }
6702
6703 /*
6704 * Detach knote from vnode
6705 */
6706 static void
filt_vfsdetach(struct knote * kn)6707 filt_vfsdetach(struct knote *kn)
6708 {
6709 struct vnode *vp = (struct vnode *)kn->kn_hook;
6710
6711 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6712 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6713 vdrop(vp);
6714 }
6715
6716 /*ARGSUSED*/
6717 static int
filt_vfsread(struct knote * kn,long hint)6718 filt_vfsread(struct knote *kn, long hint)
6719 {
6720 struct vnode *vp = (struct vnode *)kn->kn_hook;
6721 off_t size;
6722 int res;
6723
6724 /*
6725 * filesystem is gone, so set the EOF flag and schedule
6726 * the knote for deletion.
6727 */
6728 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6729 VI_LOCK(vp);
6730 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6731 VI_UNLOCK(vp);
6732 return (1);
6733 }
6734
6735 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6736 return (0);
6737
6738 VI_LOCK(vp);
6739 kn->kn_data = size - kn->kn_fp->f_offset;
6740 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6741 VI_UNLOCK(vp);
6742 return (res);
6743 }
6744
6745 /*ARGSUSED*/
6746 static int
filt_vfswrite(struct knote * kn,long hint)6747 filt_vfswrite(struct knote *kn, long hint)
6748 {
6749 struct vnode *vp = (struct vnode *)kn->kn_hook;
6750
6751 VI_LOCK(vp);
6752
6753 /*
6754 * filesystem is gone, so set the EOF flag and schedule
6755 * the knote for deletion.
6756 */
6757 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6758 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6759
6760 kn->kn_data = 0;
6761 VI_UNLOCK(vp);
6762 return (1);
6763 }
6764
6765 static int
filt_vfsvnode(struct knote * kn,long hint)6766 filt_vfsvnode(struct knote *kn, long hint)
6767 {
6768 struct vnode *vp = (struct vnode *)kn->kn_hook;
6769 int res;
6770
6771 VI_LOCK(vp);
6772 if (kn->kn_sfflags & hint)
6773 kn->kn_fflags |= hint;
6774 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6775 kn->kn_flags |= EV_EOF;
6776 VI_UNLOCK(vp);
6777 return (1);
6778 }
6779 res = (kn->kn_fflags != 0);
6780 VI_UNLOCK(vp);
6781 return (res);
6782 }
6783
6784 static int
filt_vfsdump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)6785 filt_vfsdump(struct proc *p, struct knote *kn, struct kinfo_knote *kin)
6786 {
6787 struct vattr va;
6788 struct vnode *vp;
6789 char *fullpath, *freepath;
6790 int error;
6791
6792 kin->knt_extdata = KNOTE_EXTDATA_VNODE;
6793
6794 vp = kn->kn_fp->f_vnode;
6795 kin->knt_vnode.knt_vnode_type = vntype_to_kinfo(vp->v_type);
6796
6797 va.va_fsid = VNOVAL;
6798 vn_lock(vp, LK_SHARED | LK_RETRY);
6799 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
6800 VOP_UNLOCK(vp);
6801 if (error != 0)
6802 return (error);
6803 kin->knt_vnode.knt_vnode_fsid = va.va_fsid;
6804 kin->knt_vnode.knt_vnode_fileid = va.va_fileid;
6805
6806 freepath = NULL;
6807 fullpath = "-";
6808 error = vn_fullpath(vp, &fullpath, &freepath);
6809 if (error == 0) {
6810 strlcpy(kin->knt_vnode.knt_vnode_fullpath, fullpath,
6811 sizeof(kin->knt_vnode.knt_vnode_fullpath));
6812 }
6813 if (freepath != NULL)
6814 free(freepath, M_TEMP);
6815
6816 return (0);
6817 }
6818
6819 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6820 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6821 {
6822 int error;
6823
6824 if (dp->d_reclen > ap->a_uio->uio_resid)
6825 return (ENAMETOOLONG);
6826 error = uiomove(dp, dp->d_reclen, ap->a_uio);
6827 if (error) {
6828 if (ap->a_ncookies != NULL) {
6829 if (ap->a_cookies != NULL)
6830 free(ap->a_cookies, M_TEMP);
6831 ap->a_cookies = NULL;
6832 *ap->a_ncookies = 0;
6833 }
6834 return (error);
6835 }
6836 if (ap->a_ncookies == NULL)
6837 return (0);
6838
6839 KASSERT(ap->a_cookies,
6840 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6841
6842 *ap->a_cookies = realloc(*ap->a_cookies,
6843 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6844 (*ap->a_cookies)[*ap->a_ncookies] = off;
6845 *ap->a_ncookies += 1;
6846 return (0);
6847 }
6848
6849 /*
6850 * The purpose of this routine is to remove granularity from accmode_t,
6851 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6852 * VADMIN and VAPPEND.
6853 *
6854 * If it returns 0, the caller is supposed to continue with the usual
6855 * access checks using 'accmode' as modified by this routine. If it
6856 * returns nonzero value, the caller is supposed to return that value
6857 * as errno.
6858 *
6859 * Note that after this routine runs, accmode may be zero.
6860 */
6861 int
vfs_unixify_accmode(accmode_t * accmode)6862 vfs_unixify_accmode(accmode_t *accmode)
6863 {
6864 /*
6865 * There is no way to specify explicit "deny" rule using
6866 * file mode or POSIX.1e ACLs.
6867 */
6868 if (*accmode & VEXPLICIT_DENY) {
6869 *accmode = 0;
6870 return (0);
6871 }
6872
6873 /*
6874 * None of these can be translated into usual access bits.
6875 * Also, the common case for NFSv4 ACLs is to not contain
6876 * either of these bits. Caller should check for VWRITE
6877 * on the containing directory instead.
6878 */
6879 if (*accmode & (VDELETE_CHILD | VDELETE))
6880 return (EPERM);
6881
6882 if (*accmode & VADMIN_PERMS) {
6883 *accmode &= ~VADMIN_PERMS;
6884 *accmode |= VADMIN;
6885 }
6886
6887 /*
6888 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6889 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6890 */
6891 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6892
6893 return (0);
6894 }
6895
6896 /*
6897 * Clear out a doomed vnode (if any) and replace it with a new one as long
6898 * as the fs is not being unmounted. Return the root vnode to the caller.
6899 */
6900 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6901 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6902 {
6903 struct vnode *vp;
6904 int error;
6905
6906 restart:
6907 if (mp->mnt_rootvnode != NULL) {
6908 MNT_ILOCK(mp);
6909 vp = mp->mnt_rootvnode;
6910 if (vp != NULL) {
6911 if (!VN_IS_DOOMED(vp)) {
6912 vrefact(vp);
6913 MNT_IUNLOCK(mp);
6914 error = vn_lock(vp, flags);
6915 if (error == 0) {
6916 *vpp = vp;
6917 return (0);
6918 }
6919 vrele(vp);
6920 goto restart;
6921 }
6922 /*
6923 * Clear the old one.
6924 */
6925 mp->mnt_rootvnode = NULL;
6926 }
6927 MNT_IUNLOCK(mp);
6928 if (vp != NULL) {
6929 vfs_op_barrier_wait(mp);
6930 vrele(vp);
6931 }
6932 }
6933 error = VFS_CACHEDROOT(mp, flags, vpp);
6934 if (error != 0)
6935 return (error);
6936 if (mp->mnt_vfs_ops == 0) {
6937 MNT_ILOCK(mp);
6938 if (mp->mnt_vfs_ops != 0) {
6939 MNT_IUNLOCK(mp);
6940 return (0);
6941 }
6942 if (mp->mnt_rootvnode == NULL) {
6943 vrefact(*vpp);
6944 mp->mnt_rootvnode = *vpp;
6945 } else {
6946 if (mp->mnt_rootvnode != *vpp) {
6947 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6948 panic("%s: mismatch between vnode returned "
6949 " by VFS_CACHEDROOT and the one cached "
6950 " (%p != %p)",
6951 __func__, *vpp, mp->mnt_rootvnode);
6952 }
6953 }
6954 }
6955 MNT_IUNLOCK(mp);
6956 }
6957 return (0);
6958 }
6959
6960 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6961 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6962 {
6963 struct mount_pcpu *mpcpu;
6964 struct vnode *vp;
6965 int error;
6966
6967 if (!vfs_op_thread_enter(mp, mpcpu))
6968 return (vfs_cache_root_fallback(mp, flags, vpp));
6969 vp = atomic_load_ptr(&mp->mnt_rootvnode);
6970 if (vp == NULL || VN_IS_DOOMED(vp)) {
6971 vfs_op_thread_exit(mp, mpcpu);
6972 return (vfs_cache_root_fallback(mp, flags, vpp));
6973 }
6974 vrefact(vp);
6975 vfs_op_thread_exit(mp, mpcpu);
6976 error = vn_lock(vp, flags);
6977 if (error != 0) {
6978 vrele(vp);
6979 return (vfs_cache_root_fallback(mp, flags, vpp));
6980 }
6981 *vpp = vp;
6982 return (0);
6983 }
6984
6985 struct vnode *
vfs_cache_root_clear(struct mount * mp)6986 vfs_cache_root_clear(struct mount *mp)
6987 {
6988 struct vnode *vp;
6989
6990 /*
6991 * ops > 0 guarantees there is nobody who can see this vnode
6992 */
6993 MPASS(mp->mnt_vfs_ops > 0);
6994 vp = mp->mnt_rootvnode;
6995 if (vp != NULL)
6996 vn_seqc_write_begin(vp);
6997 mp->mnt_rootvnode = NULL;
6998 return (vp);
6999 }
7000
7001 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)7002 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
7003 {
7004
7005 MPASS(mp->mnt_vfs_ops > 0);
7006 vrefact(vp);
7007 mp->mnt_rootvnode = vp;
7008 }
7009
7010 /*
7011 * These are helper functions for filesystems to traverse all
7012 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
7013 *
7014 * This interface replaces MNT_VNODE_FOREACH.
7015 */
7016
7017 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)7018 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
7019 {
7020 struct vnode *vp;
7021
7022 maybe_yield();
7023 MNT_ILOCK(mp);
7024 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7025 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
7026 vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
7027 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7028 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7029 continue;
7030 VI_LOCK(vp);
7031 if (VN_IS_DOOMED(vp)) {
7032 VI_UNLOCK(vp);
7033 continue;
7034 }
7035 break;
7036 }
7037 if (vp == NULL) {
7038 __mnt_vnode_markerfree_all(mvp, mp);
7039 /* MNT_IUNLOCK(mp); -- done in above function */
7040 mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
7041 return (NULL);
7042 }
7043 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7044 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7045 MNT_IUNLOCK(mp);
7046 return (vp);
7047 }
7048
7049 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)7050 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
7051 {
7052 struct vnode *vp;
7053
7054 *mvp = vn_alloc_marker(mp);
7055 MNT_ILOCK(mp);
7056 MNT_REF(mp);
7057
7058 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
7059 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7060 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7061 continue;
7062 VI_LOCK(vp);
7063 if (VN_IS_DOOMED(vp)) {
7064 VI_UNLOCK(vp);
7065 continue;
7066 }
7067 break;
7068 }
7069 if (vp == NULL) {
7070 MNT_REL(mp);
7071 MNT_IUNLOCK(mp);
7072 vn_free_marker(*mvp);
7073 *mvp = NULL;
7074 return (NULL);
7075 }
7076 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7077 MNT_IUNLOCK(mp);
7078 return (vp);
7079 }
7080
7081 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)7082 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
7083 {
7084
7085 if (*mvp == NULL) {
7086 MNT_IUNLOCK(mp);
7087 return;
7088 }
7089
7090 mtx_assert(MNT_MTX(mp), MA_OWNED);
7091
7092 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7093 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7094 MNT_REL(mp);
7095 MNT_IUNLOCK(mp);
7096 vn_free_marker(*mvp);
7097 *mvp = NULL;
7098 }
7099
7100 /*
7101 * These are helper functions for filesystems to traverse their
7102 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7103 */
7104 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7105 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7106 {
7107
7108 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7109
7110 MNT_ILOCK(mp);
7111 MNT_REL(mp);
7112 MNT_IUNLOCK(mp);
7113 vn_free_marker(*mvp);
7114 *mvp = NULL;
7115 }
7116
7117 /*
7118 * Relock the mp mount vnode list lock with the vp vnode interlock in the
7119 * conventional lock order during mnt_vnode_next_lazy iteration.
7120 *
7121 * On entry, the mount vnode list lock is held and the vnode interlock is not.
7122 * The list lock is dropped and reacquired. On success, both locks are held.
7123 * On failure, the mount vnode list lock is held but the vnode interlock is
7124 * not, and the procedure may have yielded.
7125 */
7126 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7127 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7128 struct vnode *vp)
7129 {
7130
7131 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7132 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7133 ("%s: bad marker", __func__));
7134 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7135 ("%s: inappropriate vnode", __func__));
7136 ASSERT_VI_UNLOCKED(vp, __func__);
7137 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7138
7139 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7140 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7141
7142 /*
7143 * Note we may be racing against vdrop which transitioned the hold
7144 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7145 * if we are the only user after we get the interlock we will just
7146 * vdrop.
7147 */
7148 vhold(vp);
7149 mtx_unlock(&mp->mnt_listmtx);
7150 VI_LOCK(vp);
7151 if (VN_IS_DOOMED(vp)) {
7152 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7153 goto out_lost;
7154 }
7155 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7156 /*
7157 * There is nothing to do if we are the last user.
7158 */
7159 if (!refcount_release_if_not_last(&vp->v_holdcnt))
7160 goto out_lost;
7161 mtx_lock(&mp->mnt_listmtx);
7162 return (true);
7163 out_lost:
7164 vdropl(vp);
7165 maybe_yield();
7166 mtx_lock(&mp->mnt_listmtx);
7167 return (false);
7168 }
7169
7170 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7171 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7172 void *cbarg)
7173 {
7174 struct vnode *vp;
7175
7176 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7177 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7178 restart:
7179 vp = TAILQ_NEXT(*mvp, v_lazylist);
7180 while (vp != NULL) {
7181 if (vp->v_type == VMARKER) {
7182 vp = TAILQ_NEXT(vp, v_lazylist);
7183 continue;
7184 }
7185 /*
7186 * See if we want to process the vnode. Note we may encounter a
7187 * long string of vnodes we don't care about and hog the list
7188 * as a result. Check for it and requeue the marker.
7189 */
7190 VNPASS(!VN_IS_DOOMED(vp), vp);
7191 if (!cb(vp, cbarg)) {
7192 if (!should_yield()) {
7193 vp = TAILQ_NEXT(vp, v_lazylist);
7194 continue;
7195 }
7196 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7197 v_lazylist);
7198 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7199 v_lazylist);
7200 mtx_unlock(&mp->mnt_listmtx);
7201 kern_yield(PRI_USER);
7202 mtx_lock(&mp->mnt_listmtx);
7203 goto restart;
7204 }
7205 /*
7206 * Try-lock because this is the wrong lock order.
7207 */
7208 if (!VI_TRYLOCK(vp) &&
7209 !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7210 goto restart;
7211 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7212 KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7213 ("alien vnode on the lazy list %p %p", vp, mp));
7214 VNPASS(vp->v_mount == mp, vp);
7215 VNPASS(!VN_IS_DOOMED(vp), vp);
7216 break;
7217 }
7218 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7219
7220 /* Check if we are done */
7221 if (vp == NULL) {
7222 mtx_unlock(&mp->mnt_listmtx);
7223 mnt_vnode_markerfree_lazy(mvp, mp);
7224 return (NULL);
7225 }
7226 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7227 mtx_unlock(&mp->mnt_listmtx);
7228 ASSERT_VI_LOCKED(vp, "lazy iter");
7229 return (vp);
7230 }
7231
7232 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7233 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7234 void *cbarg)
7235 {
7236
7237 maybe_yield();
7238 mtx_lock(&mp->mnt_listmtx);
7239 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7240 }
7241
7242 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7243 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7244 void *cbarg)
7245 {
7246 struct vnode *vp;
7247
7248 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7249 return (NULL);
7250
7251 *mvp = vn_alloc_marker(mp);
7252 MNT_ILOCK(mp);
7253 MNT_REF(mp);
7254 MNT_IUNLOCK(mp);
7255
7256 mtx_lock(&mp->mnt_listmtx);
7257 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7258 if (vp == NULL) {
7259 mtx_unlock(&mp->mnt_listmtx);
7260 mnt_vnode_markerfree_lazy(mvp, mp);
7261 return (NULL);
7262 }
7263 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7264 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7265 }
7266
7267 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7268 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7269 {
7270
7271 if (*mvp == NULL)
7272 return;
7273
7274 mtx_lock(&mp->mnt_listmtx);
7275 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7276 mtx_unlock(&mp->mnt_listmtx);
7277 mnt_vnode_markerfree_lazy(mvp, mp);
7278 }
7279
7280 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7281 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7282 {
7283
7284 if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7285 cnp->cn_flags &= ~NOEXECCHECK;
7286 return (0);
7287 }
7288
7289 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7290 }
7291
7292 /*
7293 * Do not use this variant unless you have means other than the hold count
7294 * to prevent the vnode from getting freed.
7295 */
7296 void
vn_seqc_write_begin_locked(struct vnode * vp)7297 vn_seqc_write_begin_locked(struct vnode *vp)
7298 {
7299
7300 ASSERT_VI_LOCKED(vp, __func__);
7301 VNPASS(vp->v_holdcnt > 0, vp);
7302 VNPASS(vp->v_seqc_users >= 0, vp);
7303 vp->v_seqc_users++;
7304 if (vp->v_seqc_users == 1)
7305 seqc_sleepable_write_begin(&vp->v_seqc);
7306 }
7307
7308 void
vn_seqc_write_begin(struct vnode * vp)7309 vn_seqc_write_begin(struct vnode *vp)
7310 {
7311
7312 VI_LOCK(vp);
7313 vn_seqc_write_begin_locked(vp);
7314 VI_UNLOCK(vp);
7315 }
7316
7317 void
vn_seqc_write_end_locked(struct vnode * vp)7318 vn_seqc_write_end_locked(struct vnode *vp)
7319 {
7320
7321 ASSERT_VI_LOCKED(vp, __func__);
7322 VNPASS(vp->v_seqc_users > 0, vp);
7323 vp->v_seqc_users--;
7324 if (vp->v_seqc_users == 0)
7325 seqc_sleepable_write_end(&vp->v_seqc);
7326 }
7327
7328 void
vn_seqc_write_end(struct vnode * vp)7329 vn_seqc_write_end(struct vnode *vp)
7330 {
7331
7332 VI_LOCK(vp);
7333 vn_seqc_write_end_locked(vp);
7334 VI_UNLOCK(vp);
7335 }
7336
7337 /*
7338 * Special case handling for allocating and freeing vnodes.
7339 *
7340 * The counter remains unchanged on free so that a doomed vnode will
7341 * keep testing as in modify as long as it is accessible with SMR.
7342 */
7343 static void
vn_seqc_init(struct vnode * vp)7344 vn_seqc_init(struct vnode *vp)
7345 {
7346
7347 vp->v_seqc = 0;
7348 vp->v_seqc_users = 0;
7349 }
7350
7351 static void
vn_seqc_write_end_free(struct vnode * vp)7352 vn_seqc_write_end_free(struct vnode *vp)
7353 {
7354
7355 VNPASS(seqc_in_modify(vp->v_seqc), vp);
7356 VNPASS(vp->v_seqc_users == 1, vp);
7357 }
7358
7359 void
vn_irflag_set_locked(struct vnode * vp,short toset)7360 vn_irflag_set_locked(struct vnode *vp, short toset)
7361 {
7362 short flags;
7363
7364 ASSERT_VI_LOCKED(vp, __func__);
7365 flags = vn_irflag_read(vp);
7366 VNASSERT((flags & toset) == 0, vp,
7367 ("%s: some of the passed flags already set (have %d, passed %d)\n",
7368 __func__, flags, toset));
7369 atomic_store_short(&vp->v_irflag, flags | toset);
7370 }
7371
7372 void
vn_irflag_set(struct vnode * vp,short toset)7373 vn_irflag_set(struct vnode *vp, short toset)
7374 {
7375
7376 VI_LOCK(vp);
7377 vn_irflag_set_locked(vp, toset);
7378 VI_UNLOCK(vp);
7379 }
7380
7381 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7382 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7383 {
7384 short flags;
7385
7386 ASSERT_VI_LOCKED(vp, __func__);
7387 flags = vn_irflag_read(vp);
7388 atomic_store_short(&vp->v_irflag, flags | toset);
7389 }
7390
7391 void
vn_irflag_set_cond(struct vnode * vp,short toset)7392 vn_irflag_set_cond(struct vnode *vp, short toset)
7393 {
7394
7395 VI_LOCK(vp);
7396 vn_irflag_set_cond_locked(vp, toset);
7397 VI_UNLOCK(vp);
7398 }
7399
7400 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7401 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7402 {
7403 short flags;
7404
7405 ASSERT_VI_LOCKED(vp, __func__);
7406 flags = vn_irflag_read(vp);
7407 VNASSERT((flags & tounset) == tounset, vp,
7408 ("%s: some of the passed flags not set (have %d, passed %d)\n",
7409 __func__, flags, tounset));
7410 atomic_store_short(&vp->v_irflag, flags & ~tounset);
7411 }
7412
7413 void
vn_irflag_unset(struct vnode * vp,short tounset)7414 vn_irflag_unset(struct vnode *vp, short tounset)
7415 {
7416
7417 VI_LOCK(vp);
7418 vn_irflag_unset_locked(vp, tounset);
7419 VI_UNLOCK(vp);
7420 }
7421
7422 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7423 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7424 {
7425 struct vattr vattr;
7426 int error;
7427
7428 ASSERT_VOP_LOCKED(vp, __func__);
7429 error = VOP_GETATTR(vp, &vattr, cred);
7430 if (__predict_true(error == 0)) {
7431 if (vattr.va_size <= OFF_MAX)
7432 *size = vattr.va_size;
7433 else
7434 error = EFBIG;
7435 }
7436 return (error);
7437 }
7438
7439 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7440 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7441 {
7442 int error;
7443
7444 VOP_LOCK(vp, LK_SHARED);
7445 error = vn_getsize_locked(vp, size, cred);
7446 VOP_UNLOCK(vp);
7447 return (error);
7448 }
7449
7450 #ifdef INVARIANTS
7451 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7452 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7453 {
7454
7455 switch (vp->v_state) {
7456 case VSTATE_UNINITIALIZED:
7457 switch (state) {
7458 case VSTATE_CONSTRUCTED:
7459 case VSTATE_DESTROYING:
7460 return;
7461 default:
7462 break;
7463 }
7464 break;
7465 case VSTATE_CONSTRUCTED:
7466 ASSERT_VOP_ELOCKED(vp, __func__);
7467 switch (state) {
7468 case VSTATE_DESTROYING:
7469 return;
7470 default:
7471 break;
7472 }
7473 break;
7474 case VSTATE_DESTROYING:
7475 ASSERT_VOP_ELOCKED(vp, __func__);
7476 switch (state) {
7477 case VSTATE_DEAD:
7478 return;
7479 default:
7480 break;
7481 }
7482 break;
7483 case VSTATE_DEAD:
7484 switch (state) {
7485 case VSTATE_UNINITIALIZED:
7486 return;
7487 default:
7488 break;
7489 }
7490 break;
7491 }
7492
7493 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7494 panic("invalid state transition %d -> %d\n", vp->v_state, state);
7495 }
7496 #endif
7497