1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13 * Copyright (c) 2013, 2014 The FreeBSD Foundation
14 *
15 * Portions of this software were developed by Konstantin Belousov
16 * under sponsorship from the FreeBSD Foundation.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 */
42
43 #include <sys/cdefs.h>
44 #include "opt_hwpmc_hooks.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/disk.h>
49 #include <sys/fail.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/kdb.h>
53 #include <sys/ktr.h>
54 #include <sys/stat.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/limits.h>
58 #include <sys/lock.h>
59 #include <sys/mman.h>
60 #include <sys/mount.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/vnode.h>
64 #include <sys/dirent.h>
65 #include <sys/bio.h>
66 #include <sys/buf.h>
67 #include <sys/filio.h>
68 #include <sys/resourcevar.h>
69 #include <sys/rwlock.h>
70 #include <sys/prng.h>
71 #include <sys/sx.h>
72 #include <sys/sleepqueue.h>
73 #include <sys/sysctl.h>
74 #include <sys/ttycom.h>
75 #include <sys/conf.h>
76 #include <sys/syslog.h>
77 #include <sys/unistd.h>
78 #include <sys/user.h>
79 #include <sys/ktrace.h>
80
81 #include <security/audit/audit.h>
82 #include <security/mac/mac_framework.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_extern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vnode_pager.h>
92
93 #ifdef HWPMC_HOOKS
94 #include <sys/pmckern.h>
95 #endif
96
97 static fo_rdwr_t vn_read;
98 static fo_rdwr_t vn_write;
99 static fo_rdwr_t vn_io_fault;
100 static fo_truncate_t vn_truncate;
101 static fo_ioctl_t vn_ioctl;
102 static fo_poll_t vn_poll;
103 static fo_kqfilter_t vn_kqfilter;
104 static fo_close_t vn_closefile;
105 static fo_mmap_t vn_mmap;
106 static fo_fallocate_t vn_fallocate;
107 static fo_fspacectl_t vn_fspacectl;
108
109 const struct fileops vnops = {
110 .fo_read = vn_io_fault,
111 .fo_write = vn_io_fault,
112 .fo_truncate = vn_truncate,
113 .fo_ioctl = vn_ioctl,
114 .fo_poll = vn_poll,
115 .fo_kqfilter = vn_kqfilter,
116 .fo_stat = vn_statfile,
117 .fo_close = vn_closefile,
118 .fo_chmod = vn_chmod,
119 .fo_chown = vn_chown,
120 .fo_sendfile = vn_sendfile,
121 .fo_seek = vn_seek,
122 .fo_fill_kinfo = vn_fill_kinfo,
123 .fo_mmap = vn_mmap,
124 .fo_fallocate = vn_fallocate,
125 .fo_fspacectl = vn_fspacectl,
126 .fo_cmp = vn_cmp,
127 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
128 };
129
130 const u_int io_hold_cnt = 16;
131 static int vn_io_fault_enable = 1;
132 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
133 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
134 static int vn_io_fault_prefault = 0;
135 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
136 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
137 static int vn_io_pgcache_read_enable = 1;
138 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
139 &vn_io_pgcache_read_enable, 0,
140 "Enable copying from page cache for reads, avoiding fs");
141 static u_long vn_io_faults_cnt;
142 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
143 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
144
145 static int vfs_allow_read_dir = 0;
146 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
147 &vfs_allow_read_dir, 0,
148 "Enable read(2) of directory by root for filesystems that support it");
149
150 /*
151 * Returns true if vn_io_fault mode of handling the i/o request should
152 * be used.
153 */
154 static bool
do_vn_io_fault(struct vnode * vp,struct uio * uio)155 do_vn_io_fault(struct vnode *vp, struct uio *uio)
156 {
157 struct mount *mp;
158
159 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
160 (mp = vp->v_mount) != NULL &&
161 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
162 }
163
164 /*
165 * Structure used to pass arguments to vn_io_fault1(), to do either
166 * file- or vnode-based I/O calls.
167 */
168 struct vn_io_fault_args {
169 enum {
170 VN_IO_FAULT_FOP,
171 VN_IO_FAULT_VOP
172 } kind;
173 struct ucred *cred;
174 int flags;
175 union {
176 struct fop_args_tag {
177 struct file *fp;
178 fo_rdwr_t *doio;
179 } fop_args;
180 struct vop_args_tag {
181 struct vnode *vp;
182 } vop_args;
183 } args;
184 };
185
186 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
187 struct vn_io_fault_args *args, struct thread *td);
188
189 int
vn_open(struct nameidata * ndp,int * flagp,int cmode,struct file * fp)190 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
191 {
192 struct thread *td = curthread;
193
194 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
195 }
196
197 static uint64_t
open2nameif(int fmode,u_int vn_open_flags)198 open2nameif(int fmode, u_int vn_open_flags)
199 {
200 uint64_t res;
201
202 res = ISOPEN | LOCKLEAF;
203 if ((fmode & O_RESOLVE_BENEATH) != 0)
204 res |= RBENEATH;
205 if ((fmode & O_EMPTY_PATH) != 0)
206 res |= EMPTYPATH;
207 if ((fmode & FREAD) != 0)
208 res |= OPENREAD;
209 if ((fmode & FWRITE) != 0)
210 res |= OPENWRITE;
211 if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
212 res |= AUDITVNODE1;
213 if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
214 res |= NOCAPCHECK;
215 if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
216 res |= WANTIOCTLCAPS;
217 return (res);
218 }
219
220 /*
221 * Common code for vnode open operations via a name lookup.
222 * Lookup the vnode and invoke VOP_CREATE if needed.
223 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
224 *
225 * Note that this does NOT free nameidata for the successful case,
226 * due to the NDINIT being done elsewhere.
227 */
228 int
vn_open_cred(struct nameidata * ndp,int * flagp,int cmode,u_int vn_open_flags,struct ucred * cred,struct file * fp)229 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
230 struct ucred *cred, struct file *fp)
231 {
232 struct vnode *vp;
233 struct mount *mp;
234 struct vattr vat;
235 struct vattr *vap = &vat;
236 int fmode, error;
237 bool first_open;
238
239 restart:
240 first_open = false;
241 fmode = *flagp;
242 if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
243 O_EXCL | O_DIRECTORY) ||
244 (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
245 return (EINVAL);
246 else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
247 ndp->ni_cnd.cn_nameiop = CREATE;
248 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
249 /*
250 * Set NOCACHE to avoid flushing the cache when
251 * rolling in many files at once.
252 *
253 * Set NC_KEEPPOSENTRY to keep positive entries if they already
254 * exist despite NOCACHE.
255 */
256 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
257 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
258 ndp->ni_cnd.cn_flags |= FOLLOW;
259 if ((vn_open_flags & VN_OPEN_INVFS) == 0)
260 bwillwrite();
261 if ((error = namei(ndp)) != 0)
262 return (error);
263 if (ndp->ni_vp == NULL) {
264 VATTR_NULL(vap);
265 vap->va_type = VREG;
266 vap->va_mode = cmode;
267 if (fmode & O_EXCL)
268 vap->va_vaflags |= VA_EXCLUSIVE;
269 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
270 NDFREE_PNBUF(ndp);
271 vput(ndp->ni_dvp);
272 if ((error = vn_start_write(NULL, &mp,
273 V_XSLEEP | V_PCATCH)) != 0)
274 return (error);
275 NDREINIT(ndp);
276 goto restart;
277 }
278 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
279 ndp->ni_cnd.cn_flags |= MAKEENTRY;
280 #ifdef MAC
281 error = mac_vnode_check_create(cred, ndp->ni_dvp,
282 &ndp->ni_cnd, vap);
283 if (error == 0)
284 #endif
285 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
286 &ndp->ni_cnd, vap);
287 vp = ndp->ni_vp;
288 if (error == 0 && (fmode & O_EXCL) != 0 &&
289 (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
290 VI_LOCK(vp);
291 vp->v_iflag |= VI_FOPENING;
292 VI_UNLOCK(vp);
293 first_open = true;
294 }
295 VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
296 false);
297 vn_finished_write(mp);
298 if (error) {
299 NDFREE_PNBUF(ndp);
300 if (error == ERELOOKUP) {
301 NDREINIT(ndp);
302 goto restart;
303 }
304 return (error);
305 }
306 fmode &= ~O_TRUNC;
307 } else {
308 if (ndp->ni_dvp == ndp->ni_vp)
309 vrele(ndp->ni_dvp);
310 else
311 vput(ndp->ni_dvp);
312 ndp->ni_dvp = NULL;
313 vp = ndp->ni_vp;
314 if (fmode & O_EXCL) {
315 error = EEXIST;
316 goto bad;
317 }
318 if (vp->v_type == VDIR) {
319 error = EISDIR;
320 goto bad;
321 }
322 fmode &= ~O_CREAT;
323 }
324 } else {
325 ndp->ni_cnd.cn_nameiop = LOOKUP;
326 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
327 ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
328 FOLLOW;
329 if ((fmode & FWRITE) == 0)
330 ndp->ni_cnd.cn_flags |= LOCKSHARED;
331 if ((error = namei(ndp)) != 0)
332 return (error);
333 vp = ndp->ni_vp;
334 }
335 error = vn_open_vnode(vp, fmode, cred, curthread, fp);
336 if (first_open) {
337 VI_LOCK(vp);
338 vp->v_iflag &= ~VI_FOPENING;
339 wakeup(vp);
340 VI_UNLOCK(vp);
341 }
342 if (error)
343 goto bad;
344 *flagp = fmode;
345 return (0);
346 bad:
347 NDFREE_PNBUF(ndp);
348 vput(vp);
349 *flagp = fmode;
350 ndp->ni_vp = NULL;
351 return (error);
352 }
353
354 static int
vn_open_vnode_advlock(struct vnode * vp,int fmode,struct file * fp)355 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
356 {
357 struct flock lf;
358 int error, lock_flags, type;
359
360 ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
361 if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
362 return (0);
363 KASSERT(fp != NULL, ("open with flock requires fp"));
364 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
365 return (EOPNOTSUPP);
366
367 lock_flags = VOP_ISLOCKED(vp);
368 VOP_UNLOCK(vp);
369
370 lf.l_whence = SEEK_SET;
371 lf.l_start = 0;
372 lf.l_len = 0;
373 lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
374 type = F_FLOCK;
375 if ((fmode & FNONBLOCK) == 0)
376 type |= F_WAIT;
377 if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
378 type |= F_FIRSTOPEN;
379 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
380 if (error == 0)
381 fp->f_flag |= FHASLOCK;
382
383 vn_lock(vp, lock_flags | LK_RETRY);
384 return (error);
385 }
386
387 /*
388 * Common code for vnode open operations once a vnode is located.
389 * Check permissions, and call the VOP_OPEN routine.
390 */
391 int
vn_open_vnode(struct vnode * vp,int fmode,struct ucred * cred,struct thread * td,struct file * fp)392 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
393 struct thread *td, struct file *fp)
394 {
395 accmode_t accmode;
396 int error;
397
398 if (vp->v_type == VLNK) {
399 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
400 return (EMLINK);
401 }
402 if (vp->v_type != VDIR && fmode & O_DIRECTORY)
403 return (ENOTDIR);
404
405 accmode = 0;
406 if ((fmode & O_PATH) == 0) {
407 if (vp->v_type == VSOCK)
408 return (EOPNOTSUPP);
409 if ((fmode & (FWRITE | O_TRUNC)) != 0) {
410 if (vp->v_type == VDIR)
411 return (EISDIR);
412 accmode |= VWRITE;
413 }
414 if ((fmode & FREAD) != 0)
415 accmode |= VREAD;
416 if ((fmode & O_APPEND) && (fmode & FWRITE))
417 accmode |= VAPPEND;
418 #ifdef MAC
419 if ((fmode & O_CREAT) != 0)
420 accmode |= VCREAT;
421 #endif
422 }
423 if ((fmode & FEXEC) != 0)
424 accmode |= VEXEC;
425 #ifdef MAC
426 if ((fmode & O_VERIFY) != 0)
427 accmode |= VVERIFY;
428 error = mac_vnode_check_open(cred, vp, accmode);
429 if (error != 0)
430 return (error);
431
432 accmode &= ~(VCREAT | VVERIFY);
433 #endif
434 if ((fmode & O_CREAT) == 0 && accmode != 0) {
435 error = VOP_ACCESS(vp, accmode, cred, td);
436 if (error != 0)
437 return (error);
438 }
439 if ((fmode & O_PATH) != 0) {
440 if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
441 VOP_ACCESS(vp, VREAD, cred, td) == 0)
442 fp->f_flag |= FKQALLOWED;
443 return (0);
444 }
445
446 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
447 vn_lock(vp, LK_UPGRADE | LK_RETRY);
448 error = VOP_OPEN(vp, fmode, cred, td, fp);
449 if (error != 0)
450 return (error);
451
452 error = vn_open_vnode_advlock(vp, fmode, fp);
453 if (error == 0 && (fmode & FWRITE) != 0) {
454 error = VOP_ADD_WRITECOUNT(vp, 1);
455 if (error == 0) {
456 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
457 __func__, vp, vp->v_writecount);
458 }
459 }
460
461 /*
462 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
463 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
464 */
465 if (error != 0) {
466 if (fp != NULL) {
467 /*
468 * Arrange the call by having fdrop() to use
469 * vn_closefile(). This is to satisfy
470 * filesystems like devfs or tmpfs, which
471 * override fo_close().
472 */
473 fp->f_flag |= FOPENFAILED;
474 fp->f_vnode = vp;
475 if (fp->f_ops == &badfileops) {
476 fp->f_type = DTYPE_VNODE;
477 fp->f_ops = &vnops;
478 }
479 vref(vp);
480 } else {
481 /*
482 * If there is no fp, due to kernel-mode open,
483 * we can call VOP_CLOSE() now.
484 */
485 if ((vp->v_type == VFIFO ||
486 !MNT_EXTENDED_SHARED(vp->v_mount)) &&
487 VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
488 vn_lock(vp, LK_UPGRADE | LK_RETRY);
489 (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
490 cred, td);
491 }
492 }
493
494 ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
495 return (error);
496
497 }
498
499 /*
500 * Check for write permissions on the specified vnode.
501 * Prototype text segments cannot be written.
502 * It is racy.
503 */
504 int
vn_writechk(struct vnode * vp)505 vn_writechk(struct vnode *vp)
506 {
507
508 ASSERT_VOP_LOCKED(vp, "vn_writechk");
509 /*
510 * If there's shared text associated with
511 * the vnode, try to free it up once. If
512 * we fail, we can't allow writing.
513 */
514 if (VOP_IS_TEXT(vp))
515 return (ETXTBSY);
516
517 return (0);
518 }
519
520 /*
521 * Vnode close call
522 */
523 static int
vn_close1(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td,bool keep_ref)524 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
525 struct thread *td, bool keep_ref)
526 {
527 struct mount *mp;
528 int error, lock_flags;
529
530 lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
531 LK_SHARED : LK_EXCLUSIVE;
532
533 vn_start_write(vp, &mp, V_WAIT);
534 vn_lock(vp, lock_flags | LK_RETRY);
535 AUDIT_ARG_VNODE1(vp);
536 if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
537 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
538 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
539 __func__, vp, vp->v_writecount);
540 }
541 error = VOP_CLOSE(vp, flags, file_cred, td);
542 if (keep_ref)
543 VOP_UNLOCK(vp);
544 else
545 vput(vp);
546 vn_finished_write(mp);
547 return (error);
548 }
549
550 int
vn_close(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td)551 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
552 struct thread *td)
553 {
554
555 return (vn_close1(vp, flags, file_cred, td, false));
556 }
557
558 /*
559 * Heuristic to detect sequential operation.
560 */
561 static int
sequential_heuristic(struct uio * uio,struct file * fp)562 sequential_heuristic(struct uio *uio, struct file *fp)
563 {
564 enum uio_rw rw;
565
566 ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
567
568 rw = uio->uio_rw;
569 if (fp->f_flag & FRDAHEAD)
570 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
571
572 /*
573 * Offset 0 is handled specially. open() sets f_seqcount to 1 so
574 * that the first I/O is normally considered to be slightly
575 * sequential. Seeking to offset 0 doesn't change sequentiality
576 * unless previous seeks have reduced f_seqcount to 0, in which
577 * case offset 0 is not special.
578 */
579 if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
580 uio->uio_offset == fp->f_nextoff[rw]) {
581 /*
582 * f_seqcount is in units of fixed-size blocks so that it
583 * depends mainly on the amount of sequential I/O and not
584 * much on the number of sequential I/O's. The fixed size
585 * of 16384 is hard-coded here since it is (not quite) just
586 * a magic size that works well here. This size is more
587 * closely related to the best I/O size for real disks than
588 * to any block size used by software.
589 */
590 if (uio->uio_resid >= IO_SEQMAX * 16384)
591 fp->f_seqcount[rw] = IO_SEQMAX;
592 else {
593 fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
594 if (fp->f_seqcount[rw] > IO_SEQMAX)
595 fp->f_seqcount[rw] = IO_SEQMAX;
596 }
597 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
598 }
599
600 /* Not sequential. Quickly draw-down sequentiality. */
601 if (fp->f_seqcount[rw] > 1)
602 fp->f_seqcount[rw] = 1;
603 else
604 fp->f_seqcount[rw] = 0;
605 return (0);
606 }
607
608 /*
609 * Package up an I/O request on a vnode into a uio and do it.
610 */
611 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,void * base,int len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,ssize_t * aresid,struct thread * td)612 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
613 enum uio_seg segflg, int ioflg, struct ucred *active_cred,
614 struct ucred *file_cred, ssize_t *aresid, struct thread *td)
615 {
616 struct uio auio;
617 struct iovec aiov;
618 struct mount *mp;
619 struct ucred *cred;
620 void *rl_cookie;
621 struct vn_io_fault_args args;
622 int error, lock_flags;
623
624 if (offset < 0 && vp->v_type != VCHR)
625 return (EINVAL);
626 auio.uio_iov = &aiov;
627 auio.uio_iovcnt = 1;
628 aiov.iov_base = base;
629 aiov.iov_len = len;
630 auio.uio_resid = len;
631 auio.uio_offset = offset;
632 auio.uio_segflg = segflg;
633 auio.uio_rw = rw;
634 auio.uio_td = td;
635 error = 0;
636
637 if ((ioflg & IO_NODELOCKED) == 0) {
638 if ((ioflg & IO_RANGELOCKED) == 0) {
639 if (rw == UIO_READ) {
640 rl_cookie = vn_rangelock_rlock(vp, offset,
641 offset + len);
642 } else if ((ioflg & IO_APPEND) != 0) {
643 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
644 } else {
645 rl_cookie = vn_rangelock_wlock(vp, offset,
646 offset + len);
647 }
648 } else
649 rl_cookie = NULL;
650 mp = NULL;
651 if (rw == UIO_WRITE) {
652 if (vp->v_type != VCHR &&
653 (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
654 != 0)
655 goto out;
656 lock_flags = vn_lktype_write(mp, vp);
657 } else
658 lock_flags = LK_SHARED;
659 vn_lock(vp, lock_flags | LK_RETRY);
660 } else
661 rl_cookie = NULL;
662
663 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
664 #ifdef MAC
665 if ((ioflg & IO_NOMACCHECK) == 0) {
666 if (rw == UIO_READ)
667 error = mac_vnode_check_read(active_cred, file_cred,
668 vp);
669 else
670 error = mac_vnode_check_write(active_cred, file_cred,
671 vp);
672 }
673 #endif
674 if (error == 0) {
675 if (file_cred != NULL)
676 cred = file_cred;
677 else
678 cred = active_cred;
679 if (do_vn_io_fault(vp, &auio)) {
680 args.kind = VN_IO_FAULT_VOP;
681 args.cred = cred;
682 args.flags = ioflg;
683 args.args.vop_args.vp = vp;
684 error = vn_io_fault1(vp, &auio, &args, td);
685 } else if (rw == UIO_READ) {
686 error = VOP_READ(vp, &auio, ioflg, cred);
687 } else /* if (rw == UIO_WRITE) */ {
688 error = VOP_WRITE(vp, &auio, ioflg, cred);
689 }
690 }
691 if (aresid)
692 *aresid = auio.uio_resid;
693 else
694 if (auio.uio_resid && error == 0)
695 error = EIO;
696 if ((ioflg & IO_NODELOCKED) == 0) {
697 VOP_UNLOCK(vp);
698 if (mp != NULL)
699 vn_finished_write(mp);
700 }
701 out:
702 if (rl_cookie != NULL)
703 vn_rangelock_unlock(vp, rl_cookie);
704 return (error);
705 }
706
707 /*
708 * Package up an I/O request on a vnode into a uio and do it. The I/O
709 * request is split up into smaller chunks and we try to avoid saturating
710 * the buffer cache while potentially holding a vnode locked, so we
711 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield()
712 * to give other processes a chance to lock the vnode (either other processes
713 * core'ing the same binary, or unrelated processes scanning the directory).
714 */
715 int
vn_rdwr_inchunks(enum uio_rw rw,struct vnode * vp,void * base,size_t len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,size_t * aresid,struct thread * td)716 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
717 off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
718 struct ucred *file_cred, size_t *aresid, struct thread *td)
719 {
720 int error = 0;
721 ssize_t iaresid;
722
723 do {
724 int chunk;
725
726 /*
727 * Force `offset' to a multiple of MAXBSIZE except possibly
728 * for the first chunk, so that filesystems only need to
729 * write full blocks except possibly for the first and last
730 * chunks.
731 */
732 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
733
734 if (chunk > len)
735 chunk = len;
736 if (rw != UIO_READ && vp->v_type == VREG)
737 bwillwrite();
738 iaresid = 0;
739 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
740 ioflg, active_cred, file_cred, &iaresid, td);
741 len -= chunk; /* aresid calc already includes length */
742 if (error)
743 break;
744 offset += chunk;
745 base = (char *)base + chunk;
746 kern_yield(PRI_USER);
747 } while (len);
748 if (aresid)
749 *aresid = len + iaresid;
750 return (error);
751 }
752
753 #if OFF_MAX <= LONG_MAX
754 off_t
foffset_lock(struct file * fp,int flags)755 foffset_lock(struct file *fp, int flags)
756 {
757 volatile short *flagsp;
758 off_t res;
759 short state;
760
761 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
762
763 if ((flags & FOF_NOLOCK) != 0)
764 return (atomic_load_long(&fp->f_offset));
765
766 /*
767 * According to McKusick the vn lock was protecting f_offset here.
768 * It is now protected by the FOFFSET_LOCKED flag.
769 */
770 flagsp = &fp->f_vnread_flags;
771 if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
772 return (atomic_load_long(&fp->f_offset));
773
774 sleepq_lock(&fp->f_vnread_flags);
775 state = atomic_load_16(flagsp);
776 for (;;) {
777 if ((state & FOFFSET_LOCKED) == 0) {
778 if (!atomic_fcmpset_acq_16(flagsp, &state,
779 FOFFSET_LOCKED))
780 continue;
781 break;
782 }
783 if ((state & FOFFSET_LOCK_WAITING) == 0) {
784 if (!atomic_fcmpset_acq_16(flagsp, &state,
785 state | FOFFSET_LOCK_WAITING))
786 continue;
787 }
788 DROP_GIANT();
789 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
790 sleepq_wait(&fp->f_vnread_flags, PUSER -1);
791 PICKUP_GIANT();
792 sleepq_lock(&fp->f_vnread_flags);
793 state = atomic_load_16(flagsp);
794 }
795 res = atomic_load_long(&fp->f_offset);
796 sleepq_release(&fp->f_vnread_flags);
797 return (res);
798 }
799
800 void
foffset_unlock(struct file * fp,off_t val,int flags)801 foffset_unlock(struct file *fp, off_t val, int flags)
802 {
803 volatile short *flagsp;
804 short state;
805
806 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
807
808 if ((flags & FOF_NOUPDATE) == 0)
809 atomic_store_long(&fp->f_offset, val);
810 if ((flags & FOF_NEXTOFF_R) != 0)
811 fp->f_nextoff[UIO_READ] = val;
812 if ((flags & FOF_NEXTOFF_W) != 0)
813 fp->f_nextoff[UIO_WRITE] = val;
814
815 if ((flags & FOF_NOLOCK) != 0)
816 return;
817
818 flagsp = &fp->f_vnread_flags;
819 state = atomic_load_16(flagsp);
820 if ((state & FOFFSET_LOCK_WAITING) == 0 &&
821 atomic_cmpset_rel_16(flagsp, state, 0))
822 return;
823
824 sleepq_lock(&fp->f_vnread_flags);
825 MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
826 MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
827 fp->f_vnread_flags = 0;
828 sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
829 sleepq_release(&fp->f_vnread_flags);
830 }
831
832 static off_t
foffset_read(struct file * fp)833 foffset_read(struct file *fp)
834 {
835
836 return (atomic_load_long(&fp->f_offset));
837 }
838 #else
839 off_t
foffset_lock(struct file * fp,int flags)840 foffset_lock(struct file *fp, int flags)
841 {
842 struct mtx *mtxp;
843 off_t res;
844
845 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
846
847 mtxp = mtx_pool_find(mtxpool_sleep, fp);
848 mtx_lock(mtxp);
849 if ((flags & FOF_NOLOCK) == 0) {
850 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
851 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
852 msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
853 "vofflock", 0);
854 }
855 fp->f_vnread_flags |= FOFFSET_LOCKED;
856 }
857 res = fp->f_offset;
858 mtx_unlock(mtxp);
859 return (res);
860 }
861
862 void
foffset_unlock(struct file * fp,off_t val,int flags)863 foffset_unlock(struct file *fp, off_t val, int flags)
864 {
865 struct mtx *mtxp;
866
867 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
868
869 mtxp = mtx_pool_find(mtxpool_sleep, fp);
870 mtx_lock(mtxp);
871 if ((flags & FOF_NOUPDATE) == 0)
872 fp->f_offset = val;
873 if ((flags & FOF_NEXTOFF_R) != 0)
874 fp->f_nextoff[UIO_READ] = val;
875 if ((flags & FOF_NEXTOFF_W) != 0)
876 fp->f_nextoff[UIO_WRITE] = val;
877 if ((flags & FOF_NOLOCK) == 0) {
878 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
879 ("Lost FOFFSET_LOCKED"));
880 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
881 wakeup(&fp->f_vnread_flags);
882 fp->f_vnread_flags = 0;
883 }
884 mtx_unlock(mtxp);
885 }
886
887 static off_t
foffset_read(struct file * fp)888 foffset_read(struct file *fp)
889 {
890
891 return (foffset_lock(fp, FOF_NOLOCK));
892 }
893 #endif
894
895 void
foffset_lock_uio(struct file * fp,struct uio * uio,int flags)896 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
897 {
898
899 if ((flags & FOF_OFFSET) == 0)
900 uio->uio_offset = foffset_lock(fp, flags);
901 }
902
903 void
foffset_unlock_uio(struct file * fp,struct uio * uio,int flags)904 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
905 {
906
907 if ((flags & FOF_OFFSET) == 0)
908 foffset_unlock(fp, uio->uio_offset, flags);
909 }
910
911 static int
get_advice(struct file * fp,struct uio * uio)912 get_advice(struct file *fp, struct uio *uio)
913 {
914 struct mtx *mtxp;
915 int ret;
916
917 ret = POSIX_FADV_NORMAL;
918 if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
919 return (ret);
920
921 mtxp = mtx_pool_find(mtxpool_sleep, fp);
922 mtx_lock(mtxp);
923 if (fp->f_advice != NULL &&
924 uio->uio_offset >= fp->f_advice->fa_start &&
925 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
926 ret = fp->f_advice->fa_advice;
927 mtx_unlock(mtxp);
928 return (ret);
929 }
930
931 static int
get_write_ioflag(struct file * fp)932 get_write_ioflag(struct file *fp)
933 {
934 int ioflag;
935 struct mount *mp;
936 struct vnode *vp;
937
938 ioflag = 0;
939 vp = fp->f_vnode;
940 mp = atomic_load_ptr(&vp->v_mount);
941
942 if ((fp->f_flag & O_DIRECT) != 0)
943 ioflag |= IO_DIRECT;
944
945 if ((fp->f_flag & O_FSYNC) != 0 ||
946 (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
947 ioflag |= IO_SYNC;
948
949 /*
950 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
951 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
952 * fall back to full O_SYNC behavior.
953 */
954 if ((fp->f_flag & O_DSYNC) != 0)
955 ioflag |= IO_SYNC | IO_DATASYNC;
956
957 return (ioflag);
958 }
959
960 int
vn_read_from_obj(struct vnode * vp,struct uio * uio)961 vn_read_from_obj(struct vnode *vp, struct uio *uio)
962 {
963 vm_object_t obj;
964 vm_page_t ma[io_hold_cnt + 2];
965 off_t off, vsz;
966 ssize_t resid;
967 int error, i, j;
968
969 MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
970 obj = atomic_load_ptr(&vp->v_object);
971 if (obj == NULL)
972 return (EJUSTRETURN);
973
974 /*
975 * Depends on type stability of vm_objects.
976 */
977 vm_object_pip_add(obj, 1);
978 if ((obj->flags & OBJ_DEAD) != 0) {
979 /*
980 * Note that object might be already reused from the
981 * vnode, and the OBJ_DEAD flag cleared. This is fine,
982 * we recheck for DOOMED vnode state after all pages
983 * are busied, and retract then.
984 *
985 * But we check for OBJ_DEAD to ensure that we do not
986 * busy pages while vm_object_terminate_pages()
987 * processes the queue.
988 */
989 error = EJUSTRETURN;
990 goto out_pip;
991 }
992
993 resid = uio->uio_resid;
994 off = uio->uio_offset;
995 for (i = 0; resid > 0; i++) {
996 MPASS(i < io_hold_cnt + 2);
997 ma[i] = vm_page_grab_unlocked(obj, atop(off),
998 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
999 VM_ALLOC_NOWAIT);
1000 if (ma[i] == NULL)
1001 break;
1002
1003 /*
1004 * Skip invalid pages. Valid mask can be partial only
1005 * at EOF, and we clip later.
1006 */
1007 if (vm_page_none_valid(ma[i])) {
1008 vm_page_sunbusy(ma[i]);
1009 break;
1010 }
1011
1012 resid -= PAGE_SIZE;
1013 off += PAGE_SIZE;
1014 }
1015 if (i == 0) {
1016 error = EJUSTRETURN;
1017 goto out_pip;
1018 }
1019
1020 /*
1021 * Check VIRF_DOOMED after we busied our pages. Since
1022 * vgonel() terminates the vnode' vm_object, it cannot
1023 * process past pages busied by us.
1024 */
1025 if (VN_IS_DOOMED(vp)) {
1026 error = EJUSTRETURN;
1027 goto out;
1028 }
1029
1030 resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1031 if (resid > uio->uio_resid)
1032 resid = uio->uio_resid;
1033
1034 /*
1035 * Unlocked read of vnp_size is safe because truncation cannot
1036 * pass busied page. But we load vnp_size into a local
1037 * variable so that possible concurrent extension does not
1038 * break calculation.
1039 */
1040 #if defined(__powerpc__) && !defined(__powerpc64__)
1041 vsz = obj->un_pager.vnp.vnp_size;
1042 #else
1043 vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1044 #endif
1045 if (uio->uio_offset >= vsz) {
1046 error = EJUSTRETURN;
1047 goto out;
1048 }
1049 if (uio->uio_offset + resid > vsz)
1050 resid = vsz - uio->uio_offset;
1051
1052 error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1053
1054 out:
1055 for (j = 0; j < i; j++) {
1056 if (error == 0)
1057 vm_page_reference(ma[j]);
1058 vm_page_sunbusy(ma[j]);
1059 }
1060 out_pip:
1061 vm_object_pip_wakeup(obj);
1062 if (error != 0)
1063 return (error);
1064 return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1065 }
1066
1067 /*
1068 * File table vnode read routine.
1069 */
1070 static int
vn_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1071 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1072 struct thread *td)
1073 {
1074 struct vnode *vp;
1075 off_t orig_offset;
1076 int error, ioflag;
1077 int advice;
1078
1079 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1080 uio->uio_td, td));
1081 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1082 vp = fp->f_vnode;
1083 ioflag = 0;
1084 if (fp->f_flag & FNONBLOCK)
1085 ioflag |= IO_NDELAY;
1086 if (fp->f_flag & O_DIRECT)
1087 ioflag |= IO_DIRECT;
1088
1089 /*
1090 * Try to read from page cache. VIRF_DOOMED check is racy but
1091 * allows us to avoid unneeded work outright.
1092 */
1093 if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1094 (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1095 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1096 if (error == 0) {
1097 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1098 return (0);
1099 }
1100 if (error != EJUSTRETURN)
1101 return (error);
1102 }
1103
1104 advice = get_advice(fp, uio);
1105 vn_lock(vp, LK_SHARED | LK_RETRY);
1106
1107 switch (advice) {
1108 case POSIX_FADV_NORMAL:
1109 case POSIX_FADV_SEQUENTIAL:
1110 case POSIX_FADV_NOREUSE:
1111 ioflag |= sequential_heuristic(uio, fp);
1112 break;
1113 case POSIX_FADV_RANDOM:
1114 /* Disable read-ahead for random I/O. */
1115 break;
1116 }
1117 orig_offset = uio->uio_offset;
1118
1119 #ifdef MAC
1120 error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1121 if (error == 0)
1122 #endif
1123 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1124 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1125 VOP_UNLOCK(vp);
1126 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1127 orig_offset != uio->uio_offset)
1128 /*
1129 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1130 * for the backing file after a POSIX_FADV_NOREUSE
1131 * read(2).
1132 */
1133 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1134 POSIX_FADV_DONTNEED);
1135 return (error);
1136 }
1137
1138 /*
1139 * File table vnode write routine.
1140 */
1141 static int
vn_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1142 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1143 struct thread *td)
1144 {
1145 struct vnode *vp;
1146 struct mount *mp;
1147 off_t orig_offset;
1148 int error, ioflag;
1149 int advice;
1150 bool need_finished_write;
1151
1152 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1153 uio->uio_td, td));
1154 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1155 vp = fp->f_vnode;
1156 if (vp->v_type == VREG)
1157 bwillwrite();
1158 ioflag = IO_UNIT;
1159 if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1160 ioflag |= IO_APPEND;
1161 if ((fp->f_flag & FNONBLOCK) != 0)
1162 ioflag |= IO_NDELAY;
1163 ioflag |= get_write_ioflag(fp);
1164
1165 mp = NULL;
1166 need_finished_write = false;
1167 if (vp->v_type != VCHR) {
1168 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1169 if (error != 0)
1170 goto unlock;
1171 need_finished_write = true;
1172 }
1173
1174 advice = get_advice(fp, uio);
1175
1176 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1177 switch (advice) {
1178 case POSIX_FADV_NORMAL:
1179 case POSIX_FADV_SEQUENTIAL:
1180 case POSIX_FADV_NOREUSE:
1181 ioflag |= sequential_heuristic(uio, fp);
1182 break;
1183 case POSIX_FADV_RANDOM:
1184 /* XXX: Is this correct? */
1185 break;
1186 }
1187 orig_offset = uio->uio_offset;
1188
1189 #ifdef MAC
1190 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1191 if (error == 0)
1192 #endif
1193 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1194 fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1195 VOP_UNLOCK(vp);
1196 if (need_finished_write)
1197 vn_finished_write(mp);
1198 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1199 orig_offset != uio->uio_offset)
1200 /*
1201 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1202 * for the backing file after a POSIX_FADV_NOREUSE
1203 * write(2).
1204 */
1205 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1206 POSIX_FADV_DONTNEED);
1207 unlock:
1208 return (error);
1209 }
1210
1211 /*
1212 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1213 * prevent the following deadlock:
1214 *
1215 * Assume that the thread A reads from the vnode vp1 into userspace
1216 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is
1217 * currently not resident, then system ends up with the call chain
1218 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1219 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1220 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1221 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1222 * backed by the pages of vnode vp1, and some page in buf2 is not
1223 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1224 *
1225 * To prevent the lock order reversal and deadlock, vn_io_fault() does
1226 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1227 * Instead, it first tries to do the whole range i/o with pagefaults
1228 * disabled. If all pages in the i/o buffer are resident and mapped,
1229 * VOP will succeed (ignoring the genuine filesystem errors).
1230 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1231 * i/o in chunks, with all pages in the chunk prefaulted and held
1232 * using vm_fault_quick_hold_pages().
1233 *
1234 * Filesystems using this deadlock avoidance scheme should use the
1235 * array of the held pages from uio, saved in the curthread->td_ma,
1236 * instead of doing uiomove(). A helper function
1237 * vn_io_fault_uiomove() converts uiomove request into
1238 * uiomove_fromphys() over td_ma array.
1239 *
1240 * Since vnode locks do not cover the whole i/o anymore, rangelocks
1241 * make the current i/o request atomic with respect to other i/os and
1242 * truncations.
1243 */
1244
1245 /*
1246 * Decode vn_io_fault_args and perform the corresponding i/o.
1247 */
1248 static int
vn_io_fault_doio(struct vn_io_fault_args * args,struct uio * uio,struct thread * td)1249 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1250 struct thread *td)
1251 {
1252 int error, save;
1253
1254 error = 0;
1255 save = vm_fault_disable_pagefaults();
1256 switch (args->kind) {
1257 case VN_IO_FAULT_FOP:
1258 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1259 uio, args->cred, args->flags, td);
1260 break;
1261 case VN_IO_FAULT_VOP:
1262 switch (uio->uio_rw) {
1263 case UIO_READ:
1264 error = VOP_READ(args->args.vop_args.vp, uio,
1265 args->flags, args->cred);
1266 break;
1267 case UIO_WRITE:
1268 error = VOP_WRITE(args->args.vop_args.vp, uio,
1269 args->flags, args->cred);
1270 break;
1271 }
1272 break;
1273 default:
1274 panic("vn_io_fault_doio: unknown kind of io %d %d",
1275 args->kind, uio->uio_rw);
1276 }
1277 vm_fault_enable_pagefaults(save);
1278 return (error);
1279 }
1280
1281 static int
vn_io_fault_touch(char * base,const struct uio * uio)1282 vn_io_fault_touch(char *base, const struct uio *uio)
1283 {
1284 int r;
1285
1286 r = fubyte(base);
1287 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1288 return (EFAULT);
1289 return (0);
1290 }
1291
1292 static int
vn_io_fault_prefault_user(const struct uio * uio)1293 vn_io_fault_prefault_user(const struct uio *uio)
1294 {
1295 char *base;
1296 const struct iovec *iov;
1297 size_t len;
1298 ssize_t resid;
1299 int error, i;
1300
1301 KASSERT(uio->uio_segflg == UIO_USERSPACE,
1302 ("vn_io_fault_prefault userspace"));
1303
1304 error = i = 0;
1305 iov = uio->uio_iov;
1306 resid = uio->uio_resid;
1307 base = iov->iov_base;
1308 len = iov->iov_len;
1309 while (resid > 0) {
1310 error = vn_io_fault_touch(base, uio);
1311 if (error != 0)
1312 break;
1313 if (len < PAGE_SIZE) {
1314 if (len != 0) {
1315 error = vn_io_fault_touch(base + len - 1, uio);
1316 if (error != 0)
1317 break;
1318 resid -= len;
1319 }
1320 if (++i >= uio->uio_iovcnt)
1321 break;
1322 iov = uio->uio_iov + i;
1323 base = iov->iov_base;
1324 len = iov->iov_len;
1325 } else {
1326 len -= PAGE_SIZE;
1327 base += PAGE_SIZE;
1328 resid -= PAGE_SIZE;
1329 }
1330 }
1331 return (error);
1332 }
1333
1334 /*
1335 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1336 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1337 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1338 * into args and call vn_io_fault1() to handle faults during the user
1339 * mode buffer accesses.
1340 */
1341 static int
vn_io_fault1(struct vnode * vp,struct uio * uio,struct vn_io_fault_args * args,struct thread * td)1342 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1343 struct thread *td)
1344 {
1345 vm_page_t ma[io_hold_cnt + 2];
1346 struct uio *uio_clone, short_uio;
1347 struct iovec short_iovec[1];
1348 vm_page_t *prev_td_ma;
1349 vm_prot_t prot;
1350 vm_offset_t addr, end;
1351 size_t len, resid;
1352 ssize_t adv;
1353 int error, cnt, saveheld, prev_td_ma_cnt;
1354
1355 if (vn_io_fault_prefault) {
1356 error = vn_io_fault_prefault_user(uio);
1357 if (error != 0)
1358 return (error); /* Or ignore ? */
1359 }
1360
1361 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1362
1363 /*
1364 * The UFS follows IO_UNIT directive and replays back both
1365 * uio_offset and uio_resid if an error is encountered during the
1366 * operation. But, since the iovec may be already advanced,
1367 * uio is still in an inconsistent state.
1368 *
1369 * Cache a copy of the original uio, which is advanced to the redo
1370 * point using UIO_NOCOPY below.
1371 */
1372 uio_clone = cloneuio(uio);
1373 resid = uio->uio_resid;
1374
1375 short_uio.uio_segflg = UIO_USERSPACE;
1376 short_uio.uio_rw = uio->uio_rw;
1377 short_uio.uio_td = uio->uio_td;
1378
1379 error = vn_io_fault_doio(args, uio, td);
1380 if (error != EFAULT)
1381 goto out;
1382
1383 atomic_add_long(&vn_io_faults_cnt, 1);
1384 uio_clone->uio_segflg = UIO_NOCOPY;
1385 uiomove(NULL, resid - uio->uio_resid, uio_clone);
1386 uio_clone->uio_segflg = uio->uio_segflg;
1387
1388 saveheld = curthread_pflags_set(TDP_UIOHELD);
1389 prev_td_ma = td->td_ma;
1390 prev_td_ma_cnt = td->td_ma_cnt;
1391
1392 while (uio_clone->uio_resid != 0) {
1393 len = uio_clone->uio_iov->iov_len;
1394 if (len == 0) {
1395 KASSERT(uio_clone->uio_iovcnt >= 1,
1396 ("iovcnt underflow"));
1397 uio_clone->uio_iov++;
1398 uio_clone->uio_iovcnt--;
1399 continue;
1400 }
1401 if (len > ptoa(io_hold_cnt))
1402 len = ptoa(io_hold_cnt);
1403 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1404 end = round_page(addr + len);
1405 if (end < addr) {
1406 error = EFAULT;
1407 break;
1408 }
1409 /*
1410 * A perfectly misaligned address and length could cause
1411 * both the start and the end of the chunk to use partial
1412 * page. +2 accounts for such a situation.
1413 */
1414 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1415 addr, len, prot, ma, io_hold_cnt + 2);
1416 if (cnt == -1) {
1417 error = EFAULT;
1418 break;
1419 }
1420 short_uio.uio_iov = &short_iovec[0];
1421 short_iovec[0].iov_base = (void *)addr;
1422 short_uio.uio_iovcnt = 1;
1423 short_uio.uio_resid = short_iovec[0].iov_len = len;
1424 short_uio.uio_offset = uio_clone->uio_offset;
1425 td->td_ma = ma;
1426 td->td_ma_cnt = cnt;
1427
1428 error = vn_io_fault_doio(args, &short_uio, td);
1429 vm_page_unhold_pages(ma, cnt);
1430 adv = len - short_uio.uio_resid;
1431
1432 uio_clone->uio_iov->iov_base =
1433 (char *)uio_clone->uio_iov->iov_base + adv;
1434 uio_clone->uio_iov->iov_len -= adv;
1435 uio_clone->uio_resid -= adv;
1436 uio_clone->uio_offset += adv;
1437
1438 uio->uio_resid -= adv;
1439 uio->uio_offset += adv;
1440
1441 if (error != 0 || adv == 0)
1442 break;
1443 }
1444 td->td_ma = prev_td_ma;
1445 td->td_ma_cnt = prev_td_ma_cnt;
1446 curthread_pflags_restore(saveheld);
1447 out:
1448 freeuio(uio_clone);
1449 return (error);
1450 }
1451
1452 static int
vn_io_fault(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1453 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1454 int flags, struct thread *td)
1455 {
1456 fo_rdwr_t *doio;
1457 struct vnode *vp;
1458 void *rl_cookie;
1459 struct vn_io_fault_args args;
1460 int error;
1461 bool do_io_fault, do_rangelock;
1462
1463 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1464 vp = fp->f_vnode;
1465
1466 /*
1467 * The ability to read(2) on a directory has historically been
1468 * allowed for all users, but this can and has been the source of
1469 * at least one security issue in the past. As such, it is now hidden
1470 * away behind a sysctl for those that actually need it to use it, and
1471 * restricted to root when it's turned on to make it relatively safe to
1472 * leave on for longer sessions of need.
1473 */
1474 if (vp->v_type == VDIR) {
1475 KASSERT(uio->uio_rw == UIO_READ,
1476 ("illegal write attempted on a directory"));
1477 if (!vfs_allow_read_dir)
1478 return (EISDIR);
1479 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1480 return (EISDIR);
1481 }
1482
1483 do_io_fault = do_vn_io_fault(vp, uio);
1484 do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0;
1485 foffset_lock_uio(fp, uio, flags);
1486 if (do_rangelock) {
1487 if (uio->uio_rw == UIO_READ) {
1488 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1489 uio->uio_offset + uio->uio_resid);
1490 } else if ((fp->f_flag & O_APPEND) != 0 ||
1491 (flags & FOF_OFFSET) == 0) {
1492 /* For appenders, punt and lock the whole range. */
1493 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1494 } else {
1495 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1496 uio->uio_offset + uio->uio_resid);
1497 }
1498 }
1499 if (do_io_fault) {
1500 args.kind = VN_IO_FAULT_FOP;
1501 args.args.fop_args.fp = fp;
1502 args.args.fop_args.doio = doio;
1503 args.cred = active_cred;
1504 args.flags = flags | FOF_OFFSET;
1505 error = vn_io_fault1(vp, uio, &args, td);
1506 } else {
1507 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1508 }
1509 if (do_rangelock)
1510 vn_rangelock_unlock(vp, rl_cookie);
1511 foffset_unlock_uio(fp, uio, flags);
1512 return (error);
1513 }
1514
1515 /*
1516 * Helper function to perform the requested uiomove operation using
1517 * the held pages for io->uio_iov[0].iov_base buffer instead of
1518 * copyin/copyout. Access to the pages with uiomove_fromphys()
1519 * instead of iov_base prevents page faults that could occur due to
1520 * pmap_collect() invalidating the mapping created by
1521 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1522 * object cleanup revoking the write access from page mappings.
1523 *
1524 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1525 * instead of plain uiomove().
1526 */
1527 int
vn_io_fault_uiomove(char * data,int xfersize,struct uio * uio)1528 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1529 {
1530 struct uio transp_uio;
1531 struct iovec transp_iov[1];
1532 struct thread *td;
1533 size_t adv;
1534 int error, pgadv;
1535
1536 td = curthread;
1537 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1538 uio->uio_segflg != UIO_USERSPACE)
1539 return (uiomove(data, xfersize, uio));
1540
1541 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1542 transp_iov[0].iov_base = data;
1543 transp_uio.uio_iov = &transp_iov[0];
1544 transp_uio.uio_iovcnt = 1;
1545 if (xfersize > uio->uio_resid)
1546 xfersize = uio->uio_resid;
1547 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1548 transp_uio.uio_offset = 0;
1549 transp_uio.uio_segflg = UIO_SYSSPACE;
1550 /*
1551 * Since transp_iov points to data, and td_ma page array
1552 * corresponds to original uio->uio_iov, we need to invert the
1553 * direction of the i/o operation as passed to
1554 * uiomove_fromphys().
1555 */
1556 switch (uio->uio_rw) {
1557 case UIO_WRITE:
1558 transp_uio.uio_rw = UIO_READ;
1559 break;
1560 case UIO_READ:
1561 transp_uio.uio_rw = UIO_WRITE;
1562 break;
1563 }
1564 transp_uio.uio_td = uio->uio_td;
1565 error = uiomove_fromphys(td->td_ma,
1566 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1567 xfersize, &transp_uio);
1568 adv = xfersize - transp_uio.uio_resid;
1569 pgadv =
1570 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1571 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1572 td->td_ma += pgadv;
1573 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1574 pgadv));
1575 td->td_ma_cnt -= pgadv;
1576 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1577 uio->uio_iov->iov_len -= adv;
1578 uio->uio_resid -= adv;
1579 uio->uio_offset += adv;
1580 return (error);
1581 }
1582
1583 int
vn_io_fault_pgmove(vm_page_t ma[],vm_offset_t offset,int xfersize,struct uio * uio)1584 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1585 struct uio *uio)
1586 {
1587 struct thread *td;
1588 vm_offset_t iov_base;
1589 int cnt, pgadv;
1590
1591 td = curthread;
1592 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1593 uio->uio_segflg != UIO_USERSPACE)
1594 return (uiomove_fromphys(ma, offset, xfersize, uio));
1595
1596 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1597 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1598 iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1599 switch (uio->uio_rw) {
1600 case UIO_WRITE:
1601 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1602 offset, cnt);
1603 break;
1604 case UIO_READ:
1605 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1606 cnt);
1607 break;
1608 }
1609 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1610 td->td_ma += pgadv;
1611 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1612 pgadv));
1613 td->td_ma_cnt -= pgadv;
1614 uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1615 uio->uio_iov->iov_len -= cnt;
1616 uio->uio_resid -= cnt;
1617 uio->uio_offset += cnt;
1618 return (0);
1619 }
1620
1621 /*
1622 * File table truncate routine.
1623 */
1624 static int
vn_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1625 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1626 struct thread *td)
1627 {
1628 struct mount *mp;
1629 struct vnode *vp;
1630 void *rl_cookie;
1631 int error;
1632
1633 vp = fp->f_vnode;
1634
1635 retry:
1636 /*
1637 * Lock the whole range for truncation. Otherwise split i/o
1638 * might happen partly before and partly after the truncation.
1639 */
1640 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1641 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1642 if (error)
1643 goto out1;
1644 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1645 AUDIT_ARG_VNODE1(vp);
1646 if (vp->v_type == VDIR) {
1647 error = EISDIR;
1648 goto out;
1649 }
1650 #ifdef MAC
1651 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1652 if (error)
1653 goto out;
1654 #endif
1655 error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1656 fp->f_cred);
1657 out:
1658 VOP_UNLOCK(vp);
1659 vn_finished_write(mp);
1660 out1:
1661 vn_rangelock_unlock(vp, rl_cookie);
1662 if (error == ERELOOKUP)
1663 goto retry;
1664 return (error);
1665 }
1666
1667 /*
1668 * Truncate a file that is already locked.
1669 */
1670 int
vn_truncate_locked(struct vnode * vp,off_t length,bool sync,struct ucred * cred)1671 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1672 struct ucred *cred)
1673 {
1674 struct vattr vattr;
1675 int error;
1676
1677 error = VOP_ADD_WRITECOUNT(vp, 1);
1678 if (error == 0) {
1679 VATTR_NULL(&vattr);
1680 vattr.va_size = length;
1681 if (sync)
1682 vattr.va_vaflags |= VA_SYNC;
1683 error = VOP_SETATTR(vp, &vattr, cred);
1684 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1685 }
1686 return (error);
1687 }
1688
1689 /*
1690 * File table vnode stat routine.
1691 */
1692 int
vn_statfile(struct file * fp,struct stat * sb,struct ucred * active_cred)1693 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1694 {
1695 struct vnode *vp = fp->f_vnode;
1696 int error;
1697
1698 vn_lock(vp, LK_SHARED | LK_RETRY);
1699 error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1700 VOP_UNLOCK(vp);
1701
1702 return (error);
1703 }
1704
1705 /*
1706 * File table vnode ioctl routine.
1707 */
1708 static int
vn_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)1709 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1710 struct thread *td)
1711 {
1712 struct vnode *vp;
1713 struct fiobmap2_arg *bmarg;
1714 off_t size;
1715 int error;
1716
1717 vp = fp->f_vnode;
1718 switch (vp->v_type) {
1719 case VDIR:
1720 case VREG:
1721 switch (com) {
1722 case FIONREAD:
1723 error = vn_getsize(vp, &size, active_cred);
1724 if (error == 0)
1725 *(int *)data = size - fp->f_offset;
1726 return (error);
1727 case FIOBMAP2:
1728 bmarg = (struct fiobmap2_arg *)data;
1729 vn_lock(vp, LK_SHARED | LK_RETRY);
1730 #ifdef MAC
1731 error = mac_vnode_check_read(active_cred, fp->f_cred,
1732 vp);
1733 if (error == 0)
1734 #endif
1735 error = VOP_BMAP(vp, bmarg->bn, NULL,
1736 &bmarg->bn, &bmarg->runp, &bmarg->runb);
1737 VOP_UNLOCK(vp);
1738 return (error);
1739 case FIONBIO:
1740 case FIOASYNC:
1741 return (0);
1742 default:
1743 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1744 active_cred, td));
1745 }
1746 break;
1747 case VCHR:
1748 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1749 active_cred, td));
1750 default:
1751 return (ENOTTY);
1752 }
1753 }
1754
1755 /*
1756 * File table vnode poll routine.
1757 */
1758 static int
vn_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1759 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1760 struct thread *td)
1761 {
1762 struct vnode *vp;
1763 int error;
1764
1765 vp = fp->f_vnode;
1766 #if defined(MAC) || defined(AUDIT)
1767 if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1768 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1769 AUDIT_ARG_VNODE1(vp);
1770 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1771 VOP_UNLOCK(vp);
1772 if (error != 0)
1773 return (error);
1774 }
1775 #endif
1776 error = VOP_POLL(vp, events, fp->f_cred, td);
1777 return (error);
1778 }
1779
1780 /*
1781 * Acquire the requested lock and then check for validity. LK_RETRY
1782 * permits vn_lock to return doomed vnodes.
1783 */
1784 static int __noinline
_vn_lock_fallback(struct vnode * vp,int flags,const char * file,int line,int error)1785 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1786 int error)
1787 {
1788
1789 KASSERT((flags & LK_RETRY) == 0 || error == 0,
1790 ("vn_lock: error %d incompatible with flags %#x", error, flags));
1791
1792 if (error == 0)
1793 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1794
1795 if ((flags & LK_RETRY) == 0) {
1796 if (error == 0) {
1797 VOP_UNLOCK(vp);
1798 error = ENOENT;
1799 }
1800 return (error);
1801 }
1802
1803 /*
1804 * LK_RETRY case.
1805 *
1806 * Nothing to do if we got the lock.
1807 */
1808 if (error == 0)
1809 return (0);
1810
1811 /*
1812 * Interlock was dropped by the call in _vn_lock.
1813 */
1814 flags &= ~LK_INTERLOCK;
1815 do {
1816 error = VOP_LOCK1(vp, flags, file, line);
1817 } while (error != 0);
1818 return (0);
1819 }
1820
1821 int
_vn_lock(struct vnode * vp,int flags,const char * file,int line)1822 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1823 {
1824 int error;
1825
1826 VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1827 ("vn_lock: no locktype (%d passed)", flags));
1828 VNPASS(vp->v_holdcnt > 0, vp);
1829 error = VOP_LOCK1(vp, flags, file, line);
1830 if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1831 return (_vn_lock_fallback(vp, flags, file, line, error));
1832 return (0);
1833 }
1834
1835 /*
1836 * File table vnode close routine.
1837 */
1838 static int
vn_closefile(struct file * fp,struct thread * td)1839 vn_closefile(struct file *fp, struct thread *td)
1840 {
1841 struct vnode *vp;
1842 struct flock lf;
1843 int error;
1844 bool ref;
1845
1846 vp = fp->f_vnode;
1847 fp->f_ops = &badfileops;
1848 ref = (fp->f_flag & FHASLOCK) != 0;
1849
1850 error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1851
1852 if (__predict_false(ref)) {
1853 lf.l_whence = SEEK_SET;
1854 lf.l_start = 0;
1855 lf.l_len = 0;
1856 lf.l_type = F_UNLCK;
1857 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1858 vrele(vp);
1859 }
1860 return (error);
1861 }
1862
1863 /*
1864 * Preparing to start a filesystem write operation. If the operation is
1865 * permitted, then we bump the count of operations in progress and
1866 * proceed. If a suspend request is in progress, we wait until the
1867 * suspension is over, and then proceed.
1868 */
1869 static int
vn_start_write_refed(struct mount * mp,int flags,bool mplocked)1870 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1871 {
1872 struct mount_pcpu *mpcpu;
1873 int error, mflags;
1874
1875 if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1876 vfs_op_thread_enter(mp, mpcpu)) {
1877 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1878 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1879 vfs_op_thread_exit(mp, mpcpu);
1880 return (0);
1881 }
1882
1883 if (mplocked)
1884 mtx_assert(MNT_MTX(mp), MA_OWNED);
1885 else
1886 MNT_ILOCK(mp);
1887
1888 error = 0;
1889
1890 /*
1891 * Check on status of suspension.
1892 */
1893 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1894 mp->mnt_susp_owner != curthread) {
1895 mflags = 0;
1896 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
1897 if (flags & V_PCATCH)
1898 mflags |= PCATCH;
1899 }
1900 mflags |= (PUSER - 1);
1901 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1902 if ((flags & V_NOWAIT) != 0) {
1903 error = EWOULDBLOCK;
1904 goto unlock;
1905 }
1906 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1907 "suspfs", 0);
1908 if (error != 0)
1909 goto unlock;
1910 }
1911 }
1912 if ((flags & V_XSLEEP) != 0)
1913 goto unlock;
1914 mp->mnt_writeopcount++;
1915 unlock:
1916 if (error != 0 || (flags & V_XSLEEP) != 0)
1917 MNT_REL(mp);
1918 MNT_IUNLOCK(mp);
1919 return (error);
1920 }
1921
1922 int
vn_start_write(struct vnode * vp,struct mount ** mpp,int flags)1923 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1924 {
1925 struct mount *mp;
1926 int error;
1927
1928 KASSERT((flags & ~V_VALID_FLAGS) == 0,
1929 ("%s: invalid flags passed %d\n", __func__, flags));
1930
1931 error = 0;
1932 /*
1933 * If a vnode is provided, get and return the mount point that
1934 * to which it will write.
1935 */
1936 if (vp != NULL) {
1937 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1938 *mpp = NULL;
1939 if (error != EOPNOTSUPP)
1940 return (error);
1941 return (0);
1942 }
1943 }
1944 if ((mp = *mpp) == NULL)
1945 return (0);
1946
1947 /*
1948 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1949 * a vfs_ref().
1950 * As long as a vnode is not provided we need to acquire a
1951 * refcount for the provided mountpoint too, in order to
1952 * emulate a vfs_ref().
1953 */
1954 if (vp == NULL)
1955 vfs_ref(mp);
1956
1957 error = vn_start_write_refed(mp, flags, false);
1958 if (error != 0 && (flags & V_NOWAIT) == 0)
1959 *mpp = NULL;
1960 return (error);
1961 }
1962
1963 /*
1964 * Secondary suspension. Used by operations such as vop_inactive
1965 * routines that are needed by the higher level functions. These
1966 * are allowed to proceed until all the higher level functions have
1967 * completed (indicated by mnt_writeopcount dropping to zero). At that
1968 * time, these operations are halted until the suspension is over.
1969 */
1970 int
vn_start_secondary_write(struct vnode * vp,struct mount ** mpp,int flags)1971 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1972 {
1973 struct mount *mp;
1974 int error, mflags;
1975
1976 KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
1977 ("%s: invalid flags passed %d\n", __func__, flags));
1978
1979 retry:
1980 if (vp != NULL) {
1981 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1982 *mpp = NULL;
1983 if (error != EOPNOTSUPP)
1984 return (error);
1985 return (0);
1986 }
1987 }
1988 /*
1989 * If we are not suspended or have not yet reached suspended
1990 * mode, then let the operation proceed.
1991 */
1992 if ((mp = *mpp) == NULL)
1993 return (0);
1994
1995 /*
1996 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1997 * a vfs_ref().
1998 * As long as a vnode is not provided we need to acquire a
1999 * refcount for the provided mountpoint too, in order to
2000 * emulate a vfs_ref().
2001 */
2002 MNT_ILOCK(mp);
2003 if (vp == NULL)
2004 MNT_REF(mp);
2005 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
2006 mp->mnt_secondary_writes++;
2007 mp->mnt_secondary_accwrites++;
2008 MNT_IUNLOCK(mp);
2009 return (0);
2010 }
2011 if ((flags & V_NOWAIT) != 0) {
2012 MNT_REL(mp);
2013 MNT_IUNLOCK(mp);
2014 *mpp = NULL;
2015 return (EWOULDBLOCK);
2016 }
2017 /*
2018 * Wait for the suspension to finish.
2019 */
2020 mflags = 0;
2021 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2022 if ((flags & V_PCATCH) != 0)
2023 mflags |= PCATCH;
2024 }
2025 mflags |= (PUSER - 1) | PDROP;
2026 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
2027 vfs_rel(mp);
2028 if (error == 0)
2029 goto retry;
2030 *mpp = NULL;
2031 return (error);
2032 }
2033
2034 /*
2035 * Filesystem write operation has completed. If we are suspending and this
2036 * operation is the last one, notify the suspender that the suspension is
2037 * now in effect.
2038 */
2039 void
vn_finished_write(struct mount * mp)2040 vn_finished_write(struct mount *mp)
2041 {
2042 struct mount_pcpu *mpcpu;
2043 int c;
2044
2045 if (mp == NULL)
2046 return;
2047
2048 if (vfs_op_thread_enter(mp, mpcpu)) {
2049 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2050 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2051 vfs_op_thread_exit(mp, mpcpu);
2052 return;
2053 }
2054
2055 MNT_ILOCK(mp);
2056 vfs_assert_mount_counters(mp);
2057 MNT_REL(mp);
2058 c = --mp->mnt_writeopcount;
2059 if (mp->mnt_vfs_ops == 0) {
2060 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2061 MNT_IUNLOCK(mp);
2062 return;
2063 }
2064 if (c < 0)
2065 vfs_dump_mount_counters(mp);
2066 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2067 wakeup(&mp->mnt_writeopcount);
2068 MNT_IUNLOCK(mp);
2069 }
2070
2071 /*
2072 * Filesystem secondary write operation has completed. If we are
2073 * suspending and this operation is the last one, notify the suspender
2074 * that the suspension is now in effect.
2075 */
2076 void
vn_finished_secondary_write(struct mount * mp)2077 vn_finished_secondary_write(struct mount *mp)
2078 {
2079 if (mp == NULL)
2080 return;
2081 MNT_ILOCK(mp);
2082 MNT_REL(mp);
2083 mp->mnt_secondary_writes--;
2084 if (mp->mnt_secondary_writes < 0)
2085 panic("vn_finished_secondary_write: neg cnt");
2086 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2087 mp->mnt_secondary_writes <= 0)
2088 wakeup(&mp->mnt_secondary_writes);
2089 MNT_IUNLOCK(mp);
2090 }
2091
2092 /*
2093 * Request a filesystem to suspend write operations.
2094 */
2095 int
vfs_write_suspend(struct mount * mp,int flags)2096 vfs_write_suspend(struct mount *mp, int flags)
2097 {
2098 int error;
2099
2100 vfs_op_enter(mp);
2101
2102 MNT_ILOCK(mp);
2103 vfs_assert_mount_counters(mp);
2104 if (mp->mnt_susp_owner == curthread) {
2105 vfs_op_exit_locked(mp);
2106 MNT_IUNLOCK(mp);
2107 return (EALREADY);
2108 }
2109 while (mp->mnt_kern_flag & MNTK_SUSPEND)
2110 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2111
2112 /*
2113 * Unmount holds a write reference on the mount point. If we
2114 * own busy reference and drain for writers, we deadlock with
2115 * the reference draining in the unmount path. Callers of
2116 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2117 * vfs_busy() reference is owned and caller is not in the
2118 * unmount context.
2119 */
2120 if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2121 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2122 vfs_op_exit_locked(mp);
2123 MNT_IUNLOCK(mp);
2124 return (EBUSY);
2125 }
2126
2127 mp->mnt_kern_flag |= MNTK_SUSPEND;
2128 mp->mnt_susp_owner = curthread;
2129 if (mp->mnt_writeopcount > 0)
2130 (void) msleep(&mp->mnt_writeopcount,
2131 MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2132 else
2133 MNT_IUNLOCK(mp);
2134 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2135 vfs_write_resume(mp, 0);
2136 /* vfs_write_resume does vfs_op_exit() for us */
2137 }
2138 return (error);
2139 }
2140
2141 /*
2142 * Request a filesystem to resume write operations.
2143 */
2144 void
vfs_write_resume(struct mount * mp,int flags)2145 vfs_write_resume(struct mount *mp, int flags)
2146 {
2147
2148 MNT_ILOCK(mp);
2149 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2150 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2151 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2152 MNTK_SUSPENDED);
2153 mp->mnt_susp_owner = NULL;
2154 wakeup(&mp->mnt_writeopcount);
2155 wakeup(&mp->mnt_flag);
2156 curthread->td_pflags &= ~TDP_IGNSUSP;
2157 if ((flags & VR_START_WRITE) != 0) {
2158 MNT_REF(mp);
2159 mp->mnt_writeopcount++;
2160 }
2161 MNT_IUNLOCK(mp);
2162 if ((flags & VR_NO_SUSPCLR) == 0)
2163 VFS_SUSP_CLEAN(mp);
2164 vfs_op_exit(mp);
2165 } else if ((flags & VR_START_WRITE) != 0) {
2166 MNT_REF(mp);
2167 vn_start_write_refed(mp, 0, true);
2168 } else {
2169 MNT_IUNLOCK(mp);
2170 }
2171 }
2172
2173 /*
2174 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2175 * methods.
2176 */
2177 int
vfs_write_suspend_umnt(struct mount * mp)2178 vfs_write_suspend_umnt(struct mount *mp)
2179 {
2180 int error;
2181
2182 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2183 ("vfs_write_suspend_umnt: recursed"));
2184
2185 /* dounmount() already called vn_start_write(). */
2186 for (;;) {
2187 vn_finished_write(mp);
2188 error = vfs_write_suspend(mp, 0);
2189 if (error != 0) {
2190 vn_start_write(NULL, &mp, V_WAIT);
2191 return (error);
2192 }
2193 MNT_ILOCK(mp);
2194 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2195 break;
2196 MNT_IUNLOCK(mp);
2197 vn_start_write(NULL, &mp, V_WAIT);
2198 }
2199 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2200 wakeup(&mp->mnt_flag);
2201 MNT_IUNLOCK(mp);
2202 curthread->td_pflags |= TDP_IGNSUSP;
2203 return (0);
2204 }
2205
2206 /*
2207 * Implement kqueues for files by translating it to vnode operation.
2208 */
2209 static int
vn_kqfilter(struct file * fp,struct knote * kn)2210 vn_kqfilter(struct file *fp, struct knote *kn)
2211 {
2212
2213 return (VOP_KQFILTER(fp->f_vnode, kn));
2214 }
2215
2216 int
vn_kqfilter_opath(struct file * fp,struct knote * kn)2217 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2218 {
2219 if ((fp->f_flag & FKQALLOWED) == 0)
2220 return (EBADF);
2221 return (vn_kqfilter(fp, kn));
2222 }
2223
2224 /*
2225 * Simplified in-kernel wrapper calls for extended attribute access.
2226 * Both calls pass in a NULL credential, authorizing as "kernel" access.
2227 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2228 */
2229 int
vn_extattr_get(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int * buflen,char * buf,struct thread * td)2230 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2231 const char *attrname, int *buflen, char *buf, struct thread *td)
2232 {
2233 struct uio auio;
2234 struct iovec iov;
2235 int error;
2236
2237 iov.iov_len = *buflen;
2238 iov.iov_base = buf;
2239
2240 auio.uio_iov = &iov;
2241 auio.uio_iovcnt = 1;
2242 auio.uio_rw = UIO_READ;
2243 auio.uio_segflg = UIO_SYSSPACE;
2244 auio.uio_td = td;
2245 auio.uio_offset = 0;
2246 auio.uio_resid = *buflen;
2247
2248 if ((ioflg & IO_NODELOCKED) == 0)
2249 vn_lock(vp, LK_SHARED | LK_RETRY);
2250
2251 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2252
2253 /* authorize attribute retrieval as kernel */
2254 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2255 td);
2256
2257 if ((ioflg & IO_NODELOCKED) == 0)
2258 VOP_UNLOCK(vp);
2259
2260 if (error == 0) {
2261 *buflen = *buflen - auio.uio_resid;
2262 }
2263
2264 return (error);
2265 }
2266
2267 /*
2268 * XXX failure mode if partially written?
2269 */
2270 int
vn_extattr_set(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int buflen,char * buf,struct thread * td)2271 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2272 const char *attrname, int buflen, char *buf, struct thread *td)
2273 {
2274 struct uio auio;
2275 struct iovec iov;
2276 struct mount *mp;
2277 int error;
2278
2279 iov.iov_len = buflen;
2280 iov.iov_base = buf;
2281
2282 auio.uio_iov = &iov;
2283 auio.uio_iovcnt = 1;
2284 auio.uio_rw = UIO_WRITE;
2285 auio.uio_segflg = UIO_SYSSPACE;
2286 auio.uio_td = td;
2287 auio.uio_offset = 0;
2288 auio.uio_resid = buflen;
2289
2290 if ((ioflg & IO_NODELOCKED) == 0) {
2291 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2292 return (error);
2293 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2294 }
2295
2296 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2297
2298 /* authorize attribute setting as kernel */
2299 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2300
2301 if ((ioflg & IO_NODELOCKED) == 0) {
2302 vn_finished_write(mp);
2303 VOP_UNLOCK(vp);
2304 }
2305
2306 return (error);
2307 }
2308
2309 int
vn_extattr_rm(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,struct thread * td)2310 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2311 const char *attrname, struct thread *td)
2312 {
2313 struct mount *mp;
2314 int error;
2315
2316 if ((ioflg & IO_NODELOCKED) == 0) {
2317 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2318 return (error);
2319 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2320 }
2321
2322 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2323
2324 /* authorize attribute removal as kernel */
2325 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2326 if (error == EOPNOTSUPP)
2327 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2328 NULL, td);
2329
2330 if ((ioflg & IO_NODELOCKED) == 0) {
2331 vn_finished_write(mp);
2332 VOP_UNLOCK(vp);
2333 }
2334
2335 return (error);
2336 }
2337
2338 static int
vn_get_ino_alloc_vget(struct mount * mp,void * arg,int lkflags,struct vnode ** rvp)2339 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2340 struct vnode **rvp)
2341 {
2342
2343 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2344 }
2345
2346 int
vn_vget_ino(struct vnode * vp,ino_t ino,int lkflags,struct vnode ** rvp)2347 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2348 {
2349
2350 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2351 lkflags, rvp));
2352 }
2353
2354 int
vn_vget_ino_gen(struct vnode * vp,vn_get_ino_t alloc,void * alloc_arg,int lkflags,struct vnode ** rvp)2355 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2356 int lkflags, struct vnode **rvp)
2357 {
2358 struct mount *mp;
2359 int ltype, error;
2360
2361 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2362 mp = vp->v_mount;
2363 ltype = VOP_ISLOCKED(vp);
2364 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2365 ("vn_vget_ino: vp not locked"));
2366 error = vfs_busy(mp, MBF_NOWAIT);
2367 if (error != 0) {
2368 vfs_ref(mp);
2369 VOP_UNLOCK(vp);
2370 error = vfs_busy(mp, 0);
2371 vn_lock(vp, ltype | LK_RETRY);
2372 vfs_rel(mp);
2373 if (error != 0)
2374 return (ENOENT);
2375 if (VN_IS_DOOMED(vp)) {
2376 vfs_unbusy(mp);
2377 return (ENOENT);
2378 }
2379 }
2380 VOP_UNLOCK(vp);
2381 error = alloc(mp, alloc_arg, lkflags, rvp);
2382 vfs_unbusy(mp);
2383 if (error != 0 || *rvp != vp)
2384 vn_lock(vp, ltype | LK_RETRY);
2385 if (VN_IS_DOOMED(vp)) {
2386 if (error == 0) {
2387 if (*rvp == vp)
2388 vunref(vp);
2389 else
2390 vput(*rvp);
2391 }
2392 error = ENOENT;
2393 }
2394 return (error);
2395 }
2396
2397 static void
vn_send_sigxfsz(struct proc * p)2398 vn_send_sigxfsz(struct proc *p)
2399 {
2400 PROC_LOCK(p);
2401 kern_psignal(p, SIGXFSZ);
2402 PROC_UNLOCK(p);
2403 }
2404
2405 int
vn_rlimit_trunc(u_quad_t size,struct thread * td)2406 vn_rlimit_trunc(u_quad_t size, struct thread *td)
2407 {
2408 if (size <= lim_cur(td, RLIMIT_FSIZE))
2409 return (0);
2410 vn_send_sigxfsz(td->td_proc);
2411 return (EFBIG);
2412 }
2413
2414 static int
vn_rlimit_fsizex1(const struct vnode * vp,struct uio * uio,off_t maxfsz,bool adj,struct thread * td)2415 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2416 bool adj, struct thread *td)
2417 {
2418 off_t lim;
2419 bool ktr_write;
2420
2421 if (vp->v_type != VREG)
2422 return (0);
2423
2424 /*
2425 * Handle file system maximum file size.
2426 */
2427 if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
2428 if (!adj || uio->uio_offset >= maxfsz)
2429 return (EFBIG);
2430 uio->uio_resid = maxfsz - uio->uio_offset;
2431 }
2432
2433 /*
2434 * This is kernel write (e.g. vnode_pager) or accounting
2435 * write, ignore limit.
2436 */
2437 if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
2438 return (0);
2439
2440 /*
2441 * Calculate file size limit.
2442 */
2443 ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2444 lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
2445 lim_cur(td, RLIMIT_FSIZE);
2446
2447 /*
2448 * Is the limit reached?
2449 */
2450 if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2451 return (0);
2452
2453 /*
2454 * Prepared filesystems can handle writes truncated to the
2455 * file size limit.
2456 */
2457 if (adj && (uoff_t)uio->uio_offset < lim) {
2458 uio->uio_resid = lim - (uoff_t)uio->uio_offset;
2459 return (0);
2460 }
2461
2462 if (!ktr_write || ktr_filesize_limit_signal)
2463 vn_send_sigxfsz(td->td_proc);
2464 return (EFBIG);
2465 }
2466
2467 /*
2468 * Helper for VOP_WRITE() implementations, the common code to
2469 * handle maximum supported file size on the filesystem, and
2470 * RLIMIT_FSIZE, except for special writes from accounting subsystem
2471 * and ktrace.
2472 *
2473 * For maximum file size (maxfsz argument):
2474 * - return EFBIG if uio_offset is beyond it
2475 * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
2476 *
2477 * For RLIMIT_FSIZE:
2478 * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
2479 * - otherwise, clamp uio_resid if write would extend file beyond limit.
2480 *
2481 * If clamping occured, the adjustment for uio_resid is stored in
2482 * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
2483 * from the VOP.
2484 */
2485 int
vn_rlimit_fsizex(const struct vnode * vp,struct uio * uio,off_t maxfsz,ssize_t * resid_adj,struct thread * td)2486 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2487 ssize_t *resid_adj, struct thread *td)
2488 {
2489 ssize_t resid_orig;
2490 int error;
2491 bool adj;
2492
2493 resid_orig = uio->uio_resid;
2494 adj = resid_adj != NULL;
2495 error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
2496 if (adj)
2497 *resid_adj = resid_orig - uio->uio_resid;
2498 return (error);
2499 }
2500
2501 void
vn_rlimit_fsizex_res(struct uio * uio,ssize_t resid_adj)2502 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
2503 {
2504 uio->uio_resid += resid_adj;
2505 }
2506
2507 int
vn_rlimit_fsize(const struct vnode * vp,const struct uio * uio,struct thread * td)2508 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2509 struct thread *td)
2510 {
2511 return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
2512 td));
2513 }
2514
2515 int
vn_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)2516 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2517 struct thread *td)
2518 {
2519 struct vnode *vp;
2520
2521 vp = fp->f_vnode;
2522 #ifdef AUDIT
2523 vn_lock(vp, LK_SHARED | LK_RETRY);
2524 AUDIT_ARG_VNODE1(vp);
2525 VOP_UNLOCK(vp);
2526 #endif
2527 return (setfmode(td, active_cred, vp, mode));
2528 }
2529
2530 int
vn_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)2531 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2532 struct thread *td)
2533 {
2534 struct vnode *vp;
2535
2536 vp = fp->f_vnode;
2537 #ifdef AUDIT
2538 vn_lock(vp, LK_SHARED | LK_RETRY);
2539 AUDIT_ARG_VNODE1(vp);
2540 VOP_UNLOCK(vp);
2541 #endif
2542 return (setfown(td, active_cred, vp, uid, gid));
2543 }
2544
2545 /*
2546 * Remove pages in the range ["start", "end") from the vnode's VM object. If
2547 * "end" is 0, then the range extends to the end of the object.
2548 */
2549 void
vn_pages_remove(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2550 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2551 {
2552 vm_object_t object;
2553
2554 if ((object = vp->v_object) == NULL)
2555 return;
2556 VM_OBJECT_WLOCK(object);
2557 vm_object_page_remove(object, start, end, 0);
2558 VM_OBJECT_WUNLOCK(object);
2559 }
2560
2561 /*
2562 * Like vn_pages_remove(), but skips invalid pages, which by definition are not
2563 * mapped into any process' address space. Filesystems may use this in
2564 * preference to vn_pages_remove() to avoid blocking on pages busied in
2565 * preparation for a VOP_GETPAGES.
2566 */
2567 void
vn_pages_remove_valid(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2568 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2569 {
2570 vm_object_t object;
2571
2572 if ((object = vp->v_object) == NULL)
2573 return;
2574 VM_OBJECT_WLOCK(object);
2575 vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
2576 VM_OBJECT_WUNLOCK(object);
2577 }
2578
2579 int
vn_bmap_seekhole_locked(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2580 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2581 struct ucred *cred)
2582 {
2583 off_t size;
2584 daddr_t bn, bnp;
2585 uint64_t bsize;
2586 off_t noff;
2587 int error;
2588
2589 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2590 ("%s: Wrong command %lu", __func__, cmd));
2591 ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
2592
2593 if (vp->v_type != VREG) {
2594 error = ENOTTY;
2595 goto out;
2596 }
2597 error = vn_getsize_locked(vp, &size, cred);
2598 if (error != 0)
2599 goto out;
2600 noff = *off;
2601 if (noff < 0 || noff >= size) {
2602 error = ENXIO;
2603 goto out;
2604 }
2605
2606 /* See the comment in ufs_bmap_seekdata(). */
2607 vnode_pager_clean_sync(vp);
2608
2609 bsize = vp->v_mount->mnt_stat.f_iosize;
2610 for (bn = noff / bsize; noff < size; bn++, noff += bsize -
2611 noff % bsize) {
2612 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2613 if (error == EOPNOTSUPP) {
2614 error = ENOTTY;
2615 goto out;
2616 }
2617 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2618 (bnp != -1 && cmd == FIOSEEKDATA)) {
2619 noff = bn * bsize;
2620 if (noff < *off)
2621 noff = *off;
2622 goto out;
2623 }
2624 }
2625 if (noff > size)
2626 noff = size;
2627 /* noff == size. There is an implicit hole at the end of file. */
2628 if (cmd == FIOSEEKDATA)
2629 error = ENXIO;
2630 out:
2631 if (error == 0)
2632 *off = noff;
2633 return (error);
2634 }
2635
2636 int
vn_bmap_seekhole(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2637 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2638 {
2639 int error;
2640
2641 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2642 ("%s: Wrong command %lu", __func__, cmd));
2643
2644 if (vn_lock(vp, LK_EXCLUSIVE) != 0)
2645 return (EBADF);
2646 error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2647 VOP_UNLOCK(vp);
2648 return (error);
2649 }
2650
2651 int
vn_seek(struct file * fp,off_t offset,int whence,struct thread * td)2652 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2653 {
2654 struct ucred *cred;
2655 struct vnode *vp;
2656 off_t foffset, fsize, size;
2657 int error, noneg;
2658
2659 cred = td->td_ucred;
2660 vp = fp->f_vnode;
2661 noneg = (vp->v_type != VCHR);
2662 /*
2663 * Try to dodge locking for common case of querying the offset.
2664 */
2665 if (whence == L_INCR && offset == 0) {
2666 foffset = foffset_read(fp);
2667 if (__predict_false(foffset < 0 && noneg)) {
2668 return (EOVERFLOW);
2669 }
2670 td->td_uretoff.tdu_off = foffset;
2671 return (0);
2672 }
2673 foffset = foffset_lock(fp, 0);
2674 error = 0;
2675 switch (whence) {
2676 case L_INCR:
2677 if (noneg &&
2678 (foffset < 0 ||
2679 (offset > 0 && foffset > OFF_MAX - offset))) {
2680 error = EOVERFLOW;
2681 break;
2682 }
2683 offset += foffset;
2684 break;
2685 case L_XTND:
2686 error = vn_getsize(vp, &fsize, cred);
2687 if (error != 0)
2688 break;
2689
2690 /*
2691 * If the file references a disk device, then fetch
2692 * the media size and use that to determine the ending
2693 * offset.
2694 */
2695 if (fsize == 0 && vp->v_type == VCHR &&
2696 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2697 fsize = size;
2698 if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
2699 error = EOVERFLOW;
2700 break;
2701 }
2702 offset += fsize;
2703 break;
2704 case L_SET:
2705 break;
2706 case SEEK_DATA:
2707 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2708 if (error == ENOTTY)
2709 error = EINVAL;
2710 break;
2711 case SEEK_HOLE:
2712 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2713 if (error == ENOTTY)
2714 error = EINVAL;
2715 break;
2716 default:
2717 error = EINVAL;
2718 }
2719 if (error == 0 && noneg && offset < 0)
2720 error = EINVAL;
2721 if (error != 0)
2722 goto drop;
2723 VFS_KNOTE_UNLOCKED(vp, 0);
2724 td->td_uretoff.tdu_off = offset;
2725 drop:
2726 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2727 return (error);
2728 }
2729
2730 int
vn_utimes_perm(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2731 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2732 struct thread *td)
2733 {
2734 int error;
2735
2736 /*
2737 * Grant permission if the caller is the owner of the file, or
2738 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2739 * on the file. If the time pointer is null, then write
2740 * permission on the file is also sufficient.
2741 *
2742 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2743 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2744 * will be allowed to set the times [..] to the current
2745 * server time.
2746 */
2747 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2748 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2749 error = VOP_ACCESS(vp, VWRITE, cred, td);
2750 return (error);
2751 }
2752
2753 int
vn_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2754 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2755 {
2756 struct vnode *vp;
2757 int error;
2758
2759 if (fp->f_type == DTYPE_FIFO)
2760 kif->kf_type = KF_TYPE_FIFO;
2761 else
2762 kif->kf_type = KF_TYPE_VNODE;
2763 vp = fp->f_vnode;
2764 vref(vp);
2765 FILEDESC_SUNLOCK(fdp);
2766 error = vn_fill_kinfo_vnode(vp, kif);
2767 vrele(vp);
2768 FILEDESC_SLOCK(fdp);
2769 return (error);
2770 }
2771
2772 static inline void
vn_fill_junk(struct kinfo_file * kif)2773 vn_fill_junk(struct kinfo_file *kif)
2774 {
2775 size_t len, olen;
2776
2777 /*
2778 * Simulate vn_fullpath returning changing values for a given
2779 * vp during e.g. coredump.
2780 */
2781 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2782 olen = strlen(kif->kf_path);
2783 if (len < olen)
2784 strcpy(&kif->kf_path[len - 1], "$");
2785 else
2786 for (; olen < len; olen++)
2787 strcpy(&kif->kf_path[olen], "A");
2788 }
2789
2790 int
vn_fill_kinfo_vnode(struct vnode * vp,struct kinfo_file * kif)2791 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2792 {
2793 struct vattr va;
2794 char *fullpath, *freepath;
2795 int error;
2796
2797 kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2798 freepath = NULL;
2799 fullpath = "-";
2800 error = vn_fullpath(vp, &fullpath, &freepath);
2801 if (error == 0) {
2802 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2803 }
2804 if (freepath != NULL)
2805 free(freepath, M_TEMP);
2806
2807 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2808 vn_fill_junk(kif);
2809 );
2810
2811 /*
2812 * Retrieve vnode attributes.
2813 */
2814 va.va_fsid = VNOVAL;
2815 va.va_rdev = NODEV;
2816 vn_lock(vp, LK_SHARED | LK_RETRY);
2817 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2818 VOP_UNLOCK(vp);
2819 if (error != 0)
2820 return (error);
2821 if (va.va_fsid != VNOVAL)
2822 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2823 else
2824 kif->kf_un.kf_file.kf_file_fsid =
2825 vp->v_mount->mnt_stat.f_fsid.val[0];
2826 kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2827 kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2828 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2829 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2830 kif->kf_un.kf_file.kf_file_size = va.va_size;
2831 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2832 kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2833 kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2834 kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
2835 return (0);
2836 }
2837
2838 int
vn_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)2839 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2840 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2841 struct thread *td)
2842 {
2843 #ifdef HWPMC_HOOKS
2844 struct pmckern_map_in pkm;
2845 #endif
2846 struct mount *mp;
2847 struct vnode *vp;
2848 vm_object_t object;
2849 vm_prot_t maxprot;
2850 boolean_t writecounted;
2851 int error;
2852
2853 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2854 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2855 /*
2856 * POSIX shared-memory objects are defined to have
2857 * kernel persistence, and are not defined to support
2858 * read(2)/write(2) -- or even open(2). Thus, we can
2859 * use MAP_ASYNC to trade on-disk coherence for speed.
2860 * The shm_open(3) library routine turns on the FPOSIXSHM
2861 * flag to request this behavior.
2862 */
2863 if ((fp->f_flag & FPOSIXSHM) != 0)
2864 flags |= MAP_NOSYNC;
2865 #endif
2866 vp = fp->f_vnode;
2867
2868 /*
2869 * Ensure that file and memory protections are
2870 * compatible. Note that we only worry about
2871 * writability if mapping is shared; in this case,
2872 * current and max prot are dictated by the open file.
2873 * XXX use the vnode instead? Problem is: what
2874 * credentials do we use for determination? What if
2875 * proc does a setuid?
2876 */
2877 mp = vp->v_mount;
2878 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2879 maxprot = VM_PROT_NONE;
2880 if ((prot & VM_PROT_EXECUTE) != 0)
2881 return (EACCES);
2882 } else
2883 maxprot = VM_PROT_EXECUTE;
2884 if ((fp->f_flag & FREAD) != 0)
2885 maxprot |= VM_PROT_READ;
2886 else if ((prot & VM_PROT_READ) != 0)
2887 return (EACCES);
2888
2889 /*
2890 * If we are sharing potential changes via MAP_SHARED and we
2891 * are trying to get write permission although we opened it
2892 * without asking for it, bail out.
2893 */
2894 if ((flags & MAP_SHARED) != 0) {
2895 if ((fp->f_flag & FWRITE) != 0)
2896 maxprot |= VM_PROT_WRITE;
2897 else if ((prot & VM_PROT_WRITE) != 0)
2898 return (EACCES);
2899 } else {
2900 maxprot |= VM_PROT_WRITE;
2901 cap_maxprot |= VM_PROT_WRITE;
2902 }
2903 maxprot &= cap_maxprot;
2904
2905 /*
2906 * For regular files and shared memory, POSIX requires that
2907 * the value of foff be a legitimate offset within the data
2908 * object. In particular, negative offsets are invalid.
2909 * Blocking negative offsets and overflows here avoids
2910 * possible wraparound or user-level access into reserved
2911 * ranges of the data object later. In contrast, POSIX does
2912 * not dictate how offsets are used by device drivers, so in
2913 * the case of a device mapping a negative offset is passed
2914 * on.
2915 */
2916 if (
2917 #ifdef _LP64
2918 size > OFF_MAX ||
2919 #endif
2920 foff > OFF_MAX - size)
2921 return (EINVAL);
2922
2923 writecounted = FALSE;
2924 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2925 &foff, &object, &writecounted);
2926 if (error != 0)
2927 return (error);
2928 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2929 foff, writecounted, td);
2930 if (error != 0) {
2931 /*
2932 * If this mapping was accounted for in the vnode's
2933 * writecount, then undo that now.
2934 */
2935 if (writecounted)
2936 vm_pager_release_writecount(object, 0, size);
2937 vm_object_deallocate(object);
2938 }
2939 #ifdef HWPMC_HOOKS
2940 /* Inform hwpmc(4) if an executable is being mapped. */
2941 if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2942 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2943 pkm.pm_file = vp;
2944 pkm.pm_address = (uintptr_t) *addr;
2945 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2946 }
2947 }
2948 #endif
2949 return (error);
2950 }
2951
2952 void
vn_fsid(struct vnode * vp,struct vattr * va)2953 vn_fsid(struct vnode *vp, struct vattr *va)
2954 {
2955 fsid_t *f;
2956
2957 f = &vp->v_mount->mnt_stat.f_fsid;
2958 va->va_fsid = (uint32_t)f->val[1];
2959 va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2960 va->va_fsid += (uint32_t)f->val[0];
2961 }
2962
2963 int
vn_fsync_buf(struct vnode * vp,int waitfor)2964 vn_fsync_buf(struct vnode *vp, int waitfor)
2965 {
2966 struct buf *bp, *nbp;
2967 struct bufobj *bo;
2968 struct mount *mp;
2969 int error, maxretry;
2970
2971 error = 0;
2972 maxretry = 10000; /* large, arbitrarily chosen */
2973 mp = NULL;
2974 if (vp->v_type == VCHR) {
2975 VI_LOCK(vp);
2976 mp = vp->v_rdev->si_mountpt;
2977 VI_UNLOCK(vp);
2978 }
2979 bo = &vp->v_bufobj;
2980 BO_LOCK(bo);
2981 loop1:
2982 /*
2983 * MARK/SCAN initialization to avoid infinite loops.
2984 */
2985 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2986 bp->b_vflags &= ~BV_SCANNED;
2987 bp->b_error = 0;
2988 }
2989
2990 /*
2991 * Flush all dirty buffers associated with a vnode.
2992 */
2993 loop2:
2994 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2995 if ((bp->b_vflags & BV_SCANNED) != 0)
2996 continue;
2997 bp->b_vflags |= BV_SCANNED;
2998 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2999 if (waitfor != MNT_WAIT)
3000 continue;
3001 if (BUF_LOCK(bp,
3002 LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
3003 BO_LOCKPTR(bo)) != 0) {
3004 BO_LOCK(bo);
3005 goto loop1;
3006 }
3007 BO_LOCK(bo);
3008 }
3009 BO_UNLOCK(bo);
3010 KASSERT(bp->b_bufobj == bo,
3011 ("bp %p wrong b_bufobj %p should be %p",
3012 bp, bp->b_bufobj, bo));
3013 if ((bp->b_flags & B_DELWRI) == 0)
3014 panic("fsync: not dirty");
3015 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
3016 vfs_bio_awrite(bp);
3017 } else {
3018 bremfree(bp);
3019 bawrite(bp);
3020 }
3021 if (maxretry < 1000)
3022 pause("dirty", hz < 1000 ? 1 : hz / 1000);
3023 BO_LOCK(bo);
3024 goto loop2;
3025 }
3026
3027 /*
3028 * If synchronous the caller expects us to completely resolve all
3029 * dirty buffers in the system. Wait for in-progress I/O to
3030 * complete (which could include background bitmap writes), then
3031 * retry if dirty blocks still exist.
3032 */
3033 if (waitfor == MNT_WAIT) {
3034 bufobj_wwait(bo, 0, 0);
3035 if (bo->bo_dirty.bv_cnt > 0) {
3036 /*
3037 * If we are unable to write any of these buffers
3038 * then we fail now rather than trying endlessly
3039 * to write them out.
3040 */
3041 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
3042 if ((error = bp->b_error) != 0)
3043 break;
3044 if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
3045 (error == 0 && --maxretry >= 0))
3046 goto loop1;
3047 if (error == 0)
3048 error = EAGAIN;
3049 }
3050 }
3051 BO_UNLOCK(bo);
3052 if (error != 0)
3053 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
3054
3055 return (error);
3056 }
3057
3058 /*
3059 * Copies a byte range from invp to outvp. Calls VOP_COPY_FILE_RANGE()
3060 * or vn_generic_copy_file_range() after rangelocking the byte ranges,
3061 * to do the actual copy.
3062 * vn_generic_copy_file_range() is factored out, so it can be called
3063 * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
3064 * different file systems.
3065 */
3066 int
vn_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3067 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
3068 off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
3069 struct ucred *outcred, struct thread *fsize_td)
3070 {
3071 struct mount *inmp, *outmp;
3072 struct vnode *invpl, *outvpl;
3073 int error;
3074 size_t len;
3075 uint64_t uval;
3076
3077 invpl = outvpl = NULL;
3078 len = *lenp;
3079 *lenp = 0; /* For error returns. */
3080 error = 0;
3081
3082 /* Do some sanity checks on the arguments. */
3083 if (invp->v_type == VDIR || outvp->v_type == VDIR)
3084 error = EISDIR;
3085 else if (*inoffp < 0 || *outoffp < 0 ||
3086 invp->v_type != VREG || outvp->v_type != VREG)
3087 error = EINVAL;
3088 if (error != 0)
3089 goto out;
3090
3091 /* Ensure offset + len does not wrap around. */
3092 uval = *inoffp;
3093 uval += len;
3094 if (uval > INT64_MAX)
3095 len = INT64_MAX - *inoffp;
3096 uval = *outoffp;
3097 uval += len;
3098 if (uval > INT64_MAX)
3099 len = INT64_MAX - *outoffp;
3100 if (len == 0)
3101 goto out;
3102
3103 error = VOP_GETLOWVNODE(invp, &invpl, FREAD);
3104 if (error != 0)
3105 goto out;
3106 error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE);
3107 if (error != 0)
3108 goto out1;
3109
3110 inmp = invpl->v_mount;
3111 outmp = outvpl->v_mount;
3112 if (inmp == NULL || outmp == NULL)
3113 goto out2;
3114
3115 for (;;) {
3116 error = vfs_busy(inmp, 0);
3117 if (error != 0)
3118 goto out2;
3119 if (inmp == outmp)
3120 break;
3121 error = vfs_busy(outmp, MBF_NOWAIT);
3122 if (error != 0) {
3123 vfs_unbusy(inmp);
3124 error = vfs_busy(outmp, 0);
3125 if (error == 0) {
3126 vfs_unbusy(outmp);
3127 continue;
3128 }
3129 goto out2;
3130 }
3131 break;
3132 }
3133
3134 /*
3135 * If the two vnodes are for the same file system type, call
3136 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
3137 * which can handle copies across multiple file system types.
3138 */
3139 *lenp = len;
3140 if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc)
3141 error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp,
3142 lenp, flags, incred, outcred, fsize_td);
3143 else
3144 error = ENOSYS;
3145 if (error == ENOSYS)
3146 error = vn_generic_copy_file_range(invpl, inoffp, outvpl,
3147 outoffp, lenp, flags, incred, outcred, fsize_td);
3148 vfs_unbusy(outmp);
3149 if (inmp != outmp)
3150 vfs_unbusy(inmp);
3151 out2:
3152 if (outvpl != NULL)
3153 vrele(outvpl);
3154 out1:
3155 if (invpl != NULL)
3156 vrele(invpl);
3157 out:
3158 return (error);
3159 }
3160
3161 /*
3162 * Test len bytes of data starting at dat for all bytes == 0.
3163 * Return true if all bytes are zero, false otherwise.
3164 * Expects dat to be well aligned.
3165 */
3166 static bool
mem_iszero(void * dat,int len)3167 mem_iszero(void *dat, int len)
3168 {
3169 int i;
3170 const u_int *p;
3171 const char *cp;
3172
3173 for (p = dat; len > 0; len -= sizeof(*p), p++) {
3174 if (len >= sizeof(*p)) {
3175 if (*p != 0)
3176 return (false);
3177 } else {
3178 cp = (const char *)p;
3179 for (i = 0; i < len; i++, cp++)
3180 if (*cp != '\0')
3181 return (false);
3182 }
3183 }
3184 return (true);
3185 }
3186
3187 /*
3188 * Look for a hole in the output file and, if found, adjust *outoffp
3189 * and *xferp to skip past the hole.
3190 * *xferp is the entire hole length to be written and xfer2 is how many bytes
3191 * to be written as 0's upon return.
3192 */
3193 static off_t
vn_skip_hole(struct vnode * outvp,off_t xfer2,off_t * outoffp,off_t * xferp,off_t * dataoffp,off_t * holeoffp,struct ucred * cred)3194 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3195 off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3196 {
3197 int error;
3198 off_t delta;
3199
3200 if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3201 *dataoffp = *outoffp;
3202 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3203 curthread);
3204 if (error == 0) {
3205 *holeoffp = *dataoffp;
3206 error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3207 curthread);
3208 }
3209 if (error != 0 || *holeoffp == *dataoffp) {
3210 /*
3211 * Since outvp is unlocked, it may be possible for
3212 * another thread to do a truncate(), lseek(), write()
3213 * creating a hole at startoff between the above
3214 * VOP_IOCTL() calls, if the other thread does not do
3215 * rangelocking.
3216 * If that happens, *holeoffp == *dataoffp and finding
3217 * the hole has failed, so disable vn_skip_hole().
3218 */
3219 *holeoffp = -1; /* Disable use of vn_skip_hole(). */
3220 return (xfer2);
3221 }
3222 KASSERT(*dataoffp >= *outoffp,
3223 ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3224 (intmax_t)*dataoffp, (intmax_t)*outoffp));
3225 KASSERT(*holeoffp > *dataoffp,
3226 ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3227 (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3228 }
3229
3230 /*
3231 * If there is a hole before the data starts, advance *outoffp and
3232 * *xferp past the hole.
3233 */
3234 if (*dataoffp > *outoffp) {
3235 delta = *dataoffp - *outoffp;
3236 if (delta >= *xferp) {
3237 /* Entire *xferp is a hole. */
3238 *outoffp += *xferp;
3239 *xferp = 0;
3240 return (0);
3241 }
3242 *xferp -= delta;
3243 *outoffp += delta;
3244 xfer2 = MIN(xfer2, *xferp);
3245 }
3246
3247 /*
3248 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3249 * that the write ends at the start of the hole.
3250 * *holeoffp should always be greater than *outoffp, but for the
3251 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3252 * value.
3253 */
3254 if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3255 xfer2 = *holeoffp - *outoffp;
3256 return (xfer2);
3257 }
3258
3259 /*
3260 * Write an xfer sized chunk to outvp in blksize blocks from dat.
3261 * dat is a maximum of blksize in length and can be written repeatedly in
3262 * the chunk.
3263 * If growfile == true, just grow the file via vn_truncate_locked() instead
3264 * of doing actual writes.
3265 * If checkhole == true, a hole is being punched, so skip over any hole
3266 * already in the output file.
3267 */
3268 static int
vn_write_outvp(struct vnode * outvp,char * dat,off_t outoff,off_t xfer,u_long blksize,bool growfile,bool checkhole,struct ucred * cred)3269 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3270 u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3271 {
3272 struct mount *mp;
3273 off_t dataoff, holeoff, xfer2;
3274 int error;
3275
3276 /*
3277 * Loop around doing writes of blksize until write has been completed.
3278 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3279 * done for each iteration, since the xfer argument can be very
3280 * large if there is a large hole to punch in the output file.
3281 */
3282 error = 0;
3283 holeoff = 0;
3284 do {
3285 xfer2 = MIN(xfer, blksize);
3286 if (checkhole) {
3287 /*
3288 * Punching a hole. Skip writing if there is
3289 * already a hole in the output file.
3290 */
3291 xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3292 &dataoff, &holeoff, cred);
3293 if (xfer == 0)
3294 break;
3295 if (holeoff < 0)
3296 checkhole = false;
3297 KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3298 (intmax_t)xfer2));
3299 }
3300 bwillwrite();
3301 mp = NULL;
3302 error = vn_start_write(outvp, &mp, V_WAIT);
3303 if (error != 0)
3304 break;
3305 if (growfile) {
3306 error = vn_lock(outvp, LK_EXCLUSIVE);
3307 if (error == 0) {
3308 error = vn_truncate_locked(outvp, outoff + xfer,
3309 false, cred);
3310 VOP_UNLOCK(outvp);
3311 }
3312 } else {
3313 error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3314 if (error == 0) {
3315 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3316 outoff, UIO_SYSSPACE, IO_NODELOCKED,
3317 curthread->td_ucred, cred, NULL, curthread);
3318 outoff += xfer2;
3319 xfer -= xfer2;
3320 VOP_UNLOCK(outvp);
3321 }
3322 }
3323 if (mp != NULL)
3324 vn_finished_write(mp);
3325 } while (!growfile && xfer > 0 && error == 0);
3326 return (error);
3327 }
3328
3329 /*
3330 * Copy a byte range of one file to another. This function can handle the
3331 * case where invp and outvp are on different file systems.
3332 * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3333 * is no better file system specific way to do it.
3334 */
3335 int
vn_generic_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3336 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3337 struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3338 struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3339 {
3340 struct vattr inva;
3341 struct mount *mp;
3342 off_t startoff, endoff, xfer, xfer2;
3343 u_long blksize;
3344 int error, interrupted;
3345 bool cantseek, readzeros, eof, first, lastblock, holetoeof, sparse;
3346 ssize_t aresid, r = 0;
3347 size_t copylen, len, savlen;
3348 off_t outsize;
3349 char *dat;
3350 long holein, holeout;
3351 struct timespec curts, endts;
3352
3353 holein = holeout = 0;
3354 savlen = len = *lenp;
3355 error = 0;
3356 interrupted = 0;
3357 dat = NULL;
3358
3359 error = vn_lock(invp, LK_SHARED);
3360 if (error != 0)
3361 goto out;
3362 if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3363 holein = 0;
3364 error = VOP_GETATTR(invp, &inva, incred);
3365 if (error == 0 && inva.va_size > OFF_MAX)
3366 error = EFBIG;
3367 VOP_UNLOCK(invp);
3368 if (error != 0)
3369 goto out;
3370
3371 /*
3372 * Use va_bytes >= va_size as a hint that the file does not have
3373 * sufficient holes to justify the overhead of doing FIOSEEKHOLE.
3374 * This hint does not work well for file systems doing compression
3375 * and may fail when allocations for extended attributes increases
3376 * the value of va_bytes to >= va_size.
3377 */
3378 sparse = true;
3379 if (holein != 0 && inva.va_bytes >= inva.va_size) {
3380 holein = 0;
3381 sparse = false;
3382 }
3383
3384 mp = NULL;
3385 error = vn_start_write(outvp, &mp, V_WAIT);
3386 if (error == 0)
3387 error = vn_lock(outvp, LK_EXCLUSIVE);
3388 if (error == 0) {
3389 /*
3390 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
3391 * now that outvp is locked.
3392 */
3393 if (fsize_td != NULL) {
3394 struct uio io;
3395
3396 io.uio_offset = *outoffp;
3397 io.uio_resid = len;
3398 error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
3399 len = savlen = io.uio_resid;
3400 /*
3401 * No need to call vn_rlimit_fsizex_res before return,
3402 * since the uio is local.
3403 */
3404 }
3405 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3406 holeout = 0;
3407 /*
3408 * Holes that are past EOF do not need to be written as a block
3409 * of zero bytes. So, truncate the output file as far as
3410 * possible and then use size to decide if writing 0
3411 * bytes is necessary in the loop below.
3412 */
3413 if (error == 0)
3414 error = vn_getsize_locked(outvp, &outsize, outcred);
3415 if (error == 0 && outsize > *outoffp &&
3416 *outoffp <= OFF_MAX - len && outsize <= *outoffp + len &&
3417 *inoffp < inva.va_size &&
3418 *outoffp <= OFF_MAX - (inva.va_size - *inoffp) &&
3419 outsize <= *outoffp + (inva.va_size - *inoffp)) {
3420 #ifdef MAC
3421 error = mac_vnode_check_write(curthread->td_ucred,
3422 outcred, outvp);
3423 if (error == 0)
3424 #endif
3425 error = vn_truncate_locked(outvp, *outoffp,
3426 false, outcred);
3427 if (error == 0)
3428 outsize = *outoffp;
3429 }
3430 VOP_UNLOCK(outvp);
3431 }
3432 if (mp != NULL)
3433 vn_finished_write(mp);
3434 if (error != 0)
3435 goto out;
3436
3437 if (sparse && holein == 0 && holeout > 0) {
3438 /*
3439 * For this special case, the input data will be scanned
3440 * for blocks of all 0 bytes. For these blocks, the
3441 * write can be skipped for the output file to create
3442 * an unallocated region.
3443 * Therefore, use the appropriate size for the output file.
3444 */
3445 blksize = holeout;
3446 if (blksize <= 512) {
3447 /*
3448 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
3449 * of 512, although it actually only creates
3450 * unallocated regions for blocks >= f_iosize.
3451 */
3452 blksize = outvp->v_mount->mnt_stat.f_iosize;
3453 }
3454 } else {
3455 /*
3456 * Use the larger of the two f_iosize values. If they are
3457 * not the same size, one will normally be an exact multiple of
3458 * the other, since they are both likely to be a power of 2.
3459 */
3460 blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3461 outvp->v_mount->mnt_stat.f_iosize);
3462 }
3463
3464 /* Clip to sane limits. */
3465 if (blksize < 4096)
3466 blksize = 4096;
3467 else if (blksize > maxphys)
3468 blksize = maxphys;
3469 dat = malloc(blksize, M_TEMP, M_WAITOK);
3470
3471 /*
3472 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3473 * to find holes. Otherwise, just scan the read block for all 0s
3474 * in the inner loop where the data copying is done.
3475 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3476 * support holes on the server, but do not support FIOSEEKHOLE.
3477 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3478 * that this function should return after 1second with a partial
3479 * completion.
3480 */
3481 if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3482 getnanouptime(&endts);
3483 endts.tv_sec++;
3484 } else
3485 timespecclear(&endts);
3486 first = true;
3487 holetoeof = eof = false;
3488 while (len > 0 && error == 0 && !eof && interrupted == 0) {
3489 endoff = 0; /* To shut up compilers. */
3490 cantseek = true;
3491 startoff = *inoffp;
3492 copylen = len;
3493
3494 /*
3495 * Find the next data area. If there is just a hole to EOF,
3496 * FIOSEEKDATA should fail with ENXIO.
3497 * (I do not know if any file system will report a hole to
3498 * EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3499 * will fail for those file systems.)
3500 *
3501 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3502 * the code just falls through to the inner copy loop.
3503 */
3504 error = EINVAL;
3505 if (holein > 0) {
3506 error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3507 incred, curthread);
3508 if (error == ENXIO) {
3509 startoff = endoff = inva.va_size;
3510 eof = holetoeof = true;
3511 error = 0;
3512 }
3513 }
3514 if (error == 0 && !holetoeof) {
3515 endoff = startoff;
3516 error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3517 incred, curthread);
3518 /*
3519 * Since invp is unlocked, it may be possible for
3520 * another thread to do a truncate(), lseek(), write()
3521 * creating a hole at startoff between the above
3522 * VOP_IOCTL() calls, if the other thread does not do
3523 * rangelocking.
3524 * If that happens, startoff == endoff and finding
3525 * the hole has failed, so set an error.
3526 */
3527 if (error == 0 && startoff == endoff)
3528 error = EINVAL; /* Any error. Reset to 0. */
3529 }
3530 if (error == 0) {
3531 if (startoff > *inoffp) {
3532 /* Found hole before data block. */
3533 xfer = MIN(startoff - *inoffp, len);
3534 if (*outoffp < outsize) {
3535 /* Must write 0s to punch hole. */
3536 xfer2 = MIN(outsize - *outoffp,
3537 xfer);
3538 memset(dat, 0, MIN(xfer2, blksize));
3539 error = vn_write_outvp(outvp, dat,
3540 *outoffp, xfer2, blksize, false,
3541 holeout > 0, outcred);
3542 }
3543
3544 if (error == 0 && *outoffp + xfer >
3545 outsize && (xfer == len || holetoeof)) {
3546 /* Grow output file (hole at end). */
3547 error = vn_write_outvp(outvp, dat,
3548 *outoffp, xfer, blksize, true,
3549 false, outcred);
3550 }
3551 if (error == 0) {
3552 *inoffp += xfer;
3553 *outoffp += xfer;
3554 len -= xfer;
3555 if (len < savlen) {
3556 interrupted = sig_intr();
3557 if (timespecisset(&endts) &&
3558 interrupted == 0) {
3559 getnanouptime(&curts);
3560 if (timespeccmp(&curts,
3561 &endts, >=))
3562 interrupted =
3563 EINTR;
3564 }
3565 }
3566 }
3567 }
3568 copylen = MIN(len, endoff - startoff);
3569 cantseek = false;
3570 } else {
3571 cantseek = true;
3572 if (!sparse)
3573 cantseek = false;
3574 startoff = *inoffp;
3575 copylen = len;
3576 error = 0;
3577 }
3578
3579 xfer = blksize;
3580 if (cantseek) {
3581 /*
3582 * Set first xfer to end at a block boundary, so that
3583 * holes are more likely detected in the loop below via
3584 * the for all bytes 0 method.
3585 */
3586 xfer -= (*inoffp % blksize);
3587 }
3588
3589 /*
3590 * Loop copying the data block. If this was our first attempt
3591 * to copy anything, allow a zero-length block so that the VOPs
3592 * get a chance to update metadata, specifically the atime.
3593 */
3594 while (error == 0 && ((copylen > 0 && !eof) || first) &&
3595 interrupted == 0) {
3596 if (copylen < xfer)
3597 xfer = copylen;
3598 first = false;
3599 error = vn_lock(invp, LK_SHARED);
3600 if (error != 0)
3601 goto out;
3602 error = vn_rdwr(UIO_READ, invp, dat, xfer,
3603 startoff, UIO_SYSSPACE, IO_NODELOCKED,
3604 curthread->td_ucred, incred, &aresid,
3605 curthread);
3606 VOP_UNLOCK(invp);
3607 lastblock = false;
3608 if (error == 0 && (xfer == 0 || aresid > 0)) {
3609 /* Stop the copy at EOF on the input file. */
3610 xfer -= aresid;
3611 eof = true;
3612 lastblock = true;
3613 }
3614 if (error == 0) {
3615 /*
3616 * Skip the write for holes past the initial EOF
3617 * of the output file, unless this is the last
3618 * write of the output file at EOF.
3619 */
3620 readzeros = cantseek ? mem_iszero(dat, xfer) :
3621 false;
3622 if (xfer == len)
3623 lastblock = true;
3624 if (!cantseek || *outoffp < outsize ||
3625 lastblock || !readzeros)
3626 error = vn_write_outvp(outvp, dat,
3627 *outoffp, xfer, blksize,
3628 readzeros && lastblock &&
3629 *outoffp >= outsize, false,
3630 outcred);
3631 if (error == 0) {
3632 *inoffp += xfer;
3633 startoff += xfer;
3634 *outoffp += xfer;
3635 copylen -= xfer;
3636 len -= xfer;
3637 if (len < savlen) {
3638 interrupted = sig_intr();
3639 if (timespecisset(&endts) &&
3640 interrupted == 0) {
3641 getnanouptime(&curts);
3642 if (timespeccmp(&curts,
3643 &endts, >=))
3644 interrupted =
3645 EINTR;
3646 }
3647 }
3648 }
3649 }
3650 xfer = blksize;
3651 }
3652 }
3653 out:
3654 *lenp = savlen - len;
3655 free(dat, M_TEMP);
3656 return (error);
3657 }
3658
3659 static int
vn_fallocate(struct file * fp,off_t offset,off_t len,struct thread * td)3660 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3661 {
3662 struct mount *mp;
3663 struct vnode *vp;
3664 off_t olen, ooffset;
3665 int error;
3666 #ifdef AUDIT
3667 int audited_vnode1 = 0;
3668 #endif
3669
3670 vp = fp->f_vnode;
3671 if (vp->v_type != VREG)
3672 return (ENODEV);
3673
3674 /* Allocating blocks may take a long time, so iterate. */
3675 for (;;) {
3676 olen = len;
3677 ooffset = offset;
3678
3679 bwillwrite();
3680 mp = NULL;
3681 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
3682 if (error != 0)
3683 break;
3684 error = vn_lock(vp, LK_EXCLUSIVE);
3685 if (error != 0) {
3686 vn_finished_write(mp);
3687 break;
3688 }
3689 #ifdef AUDIT
3690 if (!audited_vnode1) {
3691 AUDIT_ARG_VNODE1(vp);
3692 audited_vnode1 = 1;
3693 }
3694 #endif
3695 #ifdef MAC
3696 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3697 if (error == 0)
3698 #endif
3699 error = VOP_ALLOCATE(vp, &offset, &len, 0,
3700 td->td_ucred);
3701 VOP_UNLOCK(vp);
3702 vn_finished_write(mp);
3703
3704 if (olen + ooffset != offset + len) {
3705 panic("offset + len changed from %jx/%jx to %jx/%jx",
3706 ooffset, olen, offset, len);
3707 }
3708 if (error != 0 || len == 0)
3709 break;
3710 KASSERT(olen > len, ("Iteration did not make progress?"));
3711 maybe_yield();
3712 }
3713
3714 return (error);
3715 }
3716
3717 static int
vn_deallocate_impl(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * cred,struct ucred * active_cred,struct ucred * file_cred)3718 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3719 int ioflag, struct ucred *cred, struct ucred *active_cred,
3720 struct ucred *file_cred)
3721 {
3722 struct mount *mp;
3723 void *rl_cookie;
3724 off_t off, len;
3725 int error;
3726 #ifdef AUDIT
3727 bool audited_vnode1 = false;
3728 #endif
3729
3730 rl_cookie = NULL;
3731 error = 0;
3732 mp = NULL;
3733 off = *offset;
3734 len = *length;
3735
3736 if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3737 rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3738 while (len > 0 && error == 0) {
3739 /*
3740 * Try to deallocate the longest range in one pass.
3741 * In case a pass takes too long to be executed, it returns
3742 * partial result. The residue will be proceeded in the next
3743 * pass.
3744 */
3745
3746 if ((ioflag & IO_NODELOCKED) == 0) {
3747 bwillwrite();
3748 if ((error = vn_start_write(vp, &mp,
3749 V_WAIT | V_PCATCH)) != 0)
3750 goto out;
3751 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3752 }
3753 #ifdef AUDIT
3754 if (!audited_vnode1) {
3755 AUDIT_ARG_VNODE1(vp);
3756 audited_vnode1 = true;
3757 }
3758 #endif
3759
3760 #ifdef MAC
3761 if ((ioflag & IO_NOMACCHECK) == 0)
3762 error = mac_vnode_check_write(active_cred, file_cred,
3763 vp);
3764 #endif
3765 if (error == 0)
3766 error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3767 cred);
3768
3769 if ((ioflag & IO_NODELOCKED) == 0) {
3770 VOP_UNLOCK(vp);
3771 if (mp != NULL) {
3772 vn_finished_write(mp);
3773 mp = NULL;
3774 }
3775 }
3776 if (error == 0 && len != 0)
3777 maybe_yield();
3778 }
3779 out:
3780 if (rl_cookie != NULL)
3781 vn_rangelock_unlock(vp, rl_cookie);
3782 *offset = off;
3783 *length = len;
3784 return (error);
3785 }
3786
3787 /*
3788 * This function is supposed to be used in the situations where the deallocation
3789 * is not triggered by a user request.
3790 */
3791 int
vn_deallocate(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * active_cred,struct ucred * file_cred)3792 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3793 int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3794 {
3795 struct ucred *cred;
3796
3797 if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3798 flags != 0)
3799 return (EINVAL);
3800 if (vp->v_type != VREG)
3801 return (ENODEV);
3802
3803 cred = file_cred != NOCRED ? file_cred : active_cred;
3804 return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3805 active_cred, file_cred));
3806 }
3807
3808 static int
vn_fspacectl(struct file * fp,int cmd,off_t * offset,off_t * length,int flags,struct ucred * active_cred,struct thread * td)3809 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3810 struct ucred *active_cred, struct thread *td)
3811 {
3812 int error;
3813 struct vnode *vp;
3814 int ioflag;
3815
3816 KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
3817 KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
3818 ("vn_fspacectl: non-zero flags"));
3819 KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
3820 ("vn_fspacectl: offset/length overflow or underflow"));
3821 vp = fp->f_vnode;
3822
3823 if (vp->v_type != VREG)
3824 return (ENODEV);
3825
3826 ioflag = get_write_ioflag(fp);
3827
3828 switch (cmd) {
3829 case SPACECTL_DEALLOC:
3830 error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3831 active_cred, active_cred, fp->f_cred);
3832 break;
3833 default:
3834 panic("vn_fspacectl: unknown cmd %d", cmd);
3835 }
3836
3837 return (error);
3838 }
3839
3840 /*
3841 * Keep this assert as long as sizeof(struct dirent) is used as the maximum
3842 * entry size.
3843 */
3844 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent),
3845 "'struct dirent' size must be a multiple of its alignment "
3846 "(see _GENERIC_DIRLEN())");
3847
3848 /*
3849 * Returns successive directory entries through some caller's provided buffer.
3850 *
3851 * This function automatically refills the provided buffer with calls to
3852 * VOP_READDIR() (after MAC permission checks).
3853 *
3854 * 'td' is used for credentials and passed to uiomove(). 'dirbuf' is the
3855 * caller's buffer to fill and 'dirbuflen' its allocated size. 'dirbuf' must
3856 * be properly aligned to access 'struct dirent' structures and 'dirbuflen'
3857 * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning
3858 * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always
3859 * be returned if this requirement is not verified). '*dpp' points to the
3860 * current directory entry in the buffer and '*len' contains the remaining
3861 * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry).
3862 *
3863 * At first call (or when restarting the read), '*len' must have been set to 0,
3864 * '*off' to 0 (or any valid start offset) and '*eofflag' to 0. There are no
3865 * more entries as soon as '*len' is 0 after a call that returned 0. Calling
3866 * again this function after such a condition is considered an error and EINVAL
3867 * will be returned. Other possible error codes are those of VOP_READDIR(),
3868 * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL
3869 * (bad call). All errors are unrecoverable, i.e., the state ('*len', '*off'
3870 * and '*eofflag') must be re-initialized before a subsequent call. On error
3871 * or at end of directory, '*dpp' is reset to NULL.
3872 *
3873 * '*len', '*off' and '*eofflag' are internal state the caller should not
3874 * tamper with except as explained above. '*off' is the next directory offset
3875 * to read from to refill the buffer. '*eofflag' is set to 0 or 1 by the last
3876 * internal call to VOP_READDIR() that returned without error, indicating
3877 * whether it reached the end of the directory, and to 2 by this function after
3878 * all entries have been read.
3879 */
3880 int
vn_dir_next_dirent(struct vnode * vp,struct thread * td,char * dirbuf,size_t dirbuflen,struct dirent ** dpp,size_t * len,off_t * off,int * eofflag)3881 vn_dir_next_dirent(struct vnode *vp, struct thread *td,
3882 char *dirbuf, size_t dirbuflen,
3883 struct dirent **dpp, size_t *len, off_t *off, int *eofflag)
3884 {
3885 struct dirent *dp = NULL;
3886 int reclen;
3887 int error;
3888 struct uio uio;
3889 struct iovec iov;
3890
3891 ASSERT_VOP_LOCKED(vp, "vnode not locked");
3892 VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory"));
3893 MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen,
3894 "Address space overflow");
3895
3896 if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) {
3897 /* Don't take any chances in this case */
3898 error = EINVAL;
3899 goto out;
3900 }
3901
3902 if (*len != 0) {
3903 dp = *dpp;
3904
3905 /*
3906 * The caller continued to call us after an error (we set dp to
3907 * NULL in a previous iteration). Bail out right now.
3908 */
3909 if (__predict_false(dp == NULL))
3910 return (EINVAL);
3911
3912 MPASS(*len <= dirbuflen);
3913 MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp &&
3914 (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen,
3915 "Filled range not inside buffer");
3916
3917 reclen = dp->d_reclen;
3918 if (reclen >= *len) {
3919 /* End of buffer reached */
3920 *len = 0;
3921 } else {
3922 dp = (struct dirent *)((char *)dp + reclen);
3923 *len -= reclen;
3924 }
3925 }
3926
3927 if (*len == 0) {
3928 dp = NULL;
3929
3930 /* Have to refill. */
3931 switch (*eofflag) {
3932 case 0:
3933 break;
3934
3935 case 1:
3936 /* Nothing more to read. */
3937 *eofflag = 2; /* Remember the caller reached EOF. */
3938 goto success;
3939
3940 default:
3941 /* The caller didn't test for EOF. */
3942 error = EINVAL;
3943 goto out;
3944 }
3945
3946 iov.iov_base = dirbuf;
3947 iov.iov_len = dirbuflen;
3948
3949 uio.uio_iov = &iov;
3950 uio.uio_iovcnt = 1;
3951 uio.uio_offset = *off;
3952 uio.uio_resid = dirbuflen;
3953 uio.uio_segflg = UIO_SYSSPACE;
3954 uio.uio_rw = UIO_READ;
3955 uio.uio_td = td;
3956
3957 #ifdef MAC
3958 error = mac_vnode_check_readdir(td->td_ucred, vp);
3959 if (error == 0)
3960 #endif
3961 error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag,
3962 NULL, NULL);
3963 if (error != 0)
3964 goto out;
3965
3966 *len = dirbuflen - uio.uio_resid;
3967 *off = uio.uio_offset;
3968
3969 if (*len == 0) {
3970 /* Sanity check on INVARIANTS. */
3971 MPASS(*eofflag != 0);
3972 *eofflag = 1;
3973 goto success;
3974 }
3975
3976 /*
3977 * Normalize the flag returned by VOP_READDIR(), since we use 2
3978 * as a sentinel value.
3979 */
3980 if (*eofflag != 0)
3981 *eofflag = 1;
3982
3983 dp = (struct dirent *)dirbuf;
3984 }
3985
3986 if (__predict_false(*len < GENERIC_MINDIRSIZ ||
3987 dp->d_reclen < GENERIC_MINDIRSIZ)) {
3988 error = EINTEGRITY;
3989 dp = NULL;
3990 goto out;
3991 }
3992
3993 success:
3994 error = 0;
3995 out:
3996 *dpp = dp;
3997 return (error);
3998 }
3999
4000 /*
4001 * Checks whether a directory is empty or not.
4002 *
4003 * If the directory is empty, returns 0, and if it is not, ENOTEMPTY. Other
4004 * values are genuine errors preventing the check.
4005 */
4006 int
vn_dir_check_empty(struct vnode * vp)4007 vn_dir_check_empty(struct vnode *vp)
4008 {
4009 struct thread *const td = curthread;
4010 char *dirbuf;
4011 size_t dirbuflen, len;
4012 off_t off;
4013 int eofflag, error;
4014 struct dirent *dp;
4015 struct vattr va;
4016
4017 ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
4018 VNPASS(vp->v_type == VDIR, vp);
4019
4020 error = VOP_GETATTR(vp, &va, td->td_ucred);
4021 if (error != 0)
4022 return (error);
4023
4024 dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
4025 if (dirbuflen < va.va_blocksize)
4026 dirbuflen = va.va_blocksize;
4027 dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
4028
4029 len = 0;
4030 off = 0;
4031 eofflag = 0;
4032
4033 for (;;) {
4034 error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen,
4035 &dp, &len, &off, &eofflag);
4036 if (error != 0)
4037 goto end;
4038
4039 if (len == 0) {
4040 /* EOF */
4041 error = 0;
4042 goto end;
4043 }
4044
4045 /*
4046 * Skip whiteouts. Unionfs operates on filesystems only and
4047 * not on hierarchies, so these whiteouts would be shadowed on
4048 * the system hierarchy but not for a union using the
4049 * filesystem of their directories as the upper layer.
4050 * Additionally, unionfs currently transparently exposes
4051 * union-specific metadata of its upper layer, meaning that
4052 * whiteouts can be seen through the union view in empty
4053 * directories. Taking into account these whiteouts would then
4054 * prevent mounting another filesystem on such effectively
4055 * empty directories.
4056 */
4057 if (dp->d_type == DT_WHT)
4058 continue;
4059
4060 /*
4061 * Any file in the directory which is not '.' or '..' indicates
4062 * the directory is not empty.
4063 */
4064 switch (dp->d_namlen) {
4065 case 2:
4066 if (dp->d_name[1] != '.') {
4067 /* Can't be '..' (nor '.') */
4068 error = ENOTEMPTY;
4069 goto end;
4070 }
4071 /* FALLTHROUGH */
4072 case 1:
4073 if (dp->d_name[0] != '.') {
4074 /* Can't be '..' nor '.' */
4075 error = ENOTEMPTY;
4076 goto end;
4077 }
4078 break;
4079
4080 default:
4081 error = ENOTEMPTY;
4082 goto end;
4083 }
4084 }
4085
4086 end:
4087 free(dirbuf, M_TEMP);
4088 return (error);
4089 }
4090
4091
4092 static u_long vn_lock_pair_pause_cnt;
4093 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
4094 &vn_lock_pair_pause_cnt, 0,
4095 "Count of vn_lock_pair deadlocks");
4096
4097 u_int vn_lock_pair_pause_max;
4098 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
4099 &vn_lock_pair_pause_max, 0,
4100 "Max ticks for vn_lock_pair deadlock avoidance sleep");
4101
4102 static void
vn_lock_pair_pause(const char * wmesg)4103 vn_lock_pair_pause(const char *wmesg)
4104 {
4105 atomic_add_long(&vn_lock_pair_pause_cnt, 1);
4106 pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
4107 }
4108
4109 /*
4110 * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order
4111 * reversal. vp1_locked indicates whether vp1 is locked; if not, vp1
4112 * must be unlocked. Same for vp2 and vp2_locked. One of the vnodes
4113 * can be NULL.
4114 *
4115 * The function returns with both vnodes exclusively or shared locked,
4116 * according to corresponding lkflags, and guarantees that it does not
4117 * create lock order reversal with other threads during its execution.
4118 * Both vnodes could be unlocked temporary (and reclaimed).
4119 *
4120 * If requesting shared locking, locked vnode lock must not be recursed.
4121 *
4122 * Only one of LK_SHARED and LK_EXCLUSIVE must be specified.
4123 * LK_NODDLKTREAT can be optionally passed.
4124 *
4125 * If vp1 == vp2, only one, most exclusive, lock is obtained on it.
4126 */
4127 void
vn_lock_pair(struct vnode * vp1,bool vp1_locked,int lkflags1,struct vnode * vp2,bool vp2_locked,int lkflags2)4128 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
4129 struct vnode *vp2, bool vp2_locked, int lkflags2)
4130 {
4131 int error, locked1;
4132
4133 MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) ||
4134 (vp1 == NULL && lkflags1 == 0));
4135 MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4136 MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) ||
4137 (vp2 == NULL && lkflags2 == 0));
4138 MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4139
4140 if (vp1 == NULL && vp2 == NULL)
4141 return;
4142
4143 if (vp1 == vp2) {
4144 MPASS(vp1_locked == vp2_locked);
4145
4146 /* Select the most exclusive mode for lock. */
4147 if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK))
4148 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4149
4150 if (vp1_locked) {
4151 ASSERT_VOP_LOCKED(vp1, "vp1");
4152
4153 /* No need to relock if any lock is exclusive. */
4154 if ((vp1->v_vnlock->lock_object.lo_flags &
4155 LK_NOSHARE) != 0)
4156 return;
4157
4158 locked1 = VOP_ISLOCKED(vp1);
4159 if (((lkflags1 & LK_SHARED) != 0 &&
4160 locked1 != LK_EXCLUSIVE) ||
4161 ((lkflags1 & LK_EXCLUSIVE) != 0 &&
4162 locked1 == LK_EXCLUSIVE))
4163 return;
4164 VOP_UNLOCK(vp1);
4165 }
4166
4167 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4168 vn_lock(vp1, lkflags1 | LK_RETRY);
4169 return;
4170 }
4171
4172 if (vp1 != NULL) {
4173 if ((lkflags1 & LK_SHARED) != 0 &&
4174 (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4175 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4176 if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
4177 ASSERT_VOP_LOCKED(vp1, "vp1");
4178 if ((lkflags1 & LK_EXCLUSIVE) != 0) {
4179 VOP_UNLOCK(vp1);
4180 ASSERT_VOP_UNLOCKED(vp1,
4181 "vp1 shared recursed");
4182 vp1_locked = false;
4183 }
4184 } else if (!vp1_locked)
4185 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4186 } else {
4187 vp1_locked = true;
4188 }
4189
4190 if (vp2 != NULL) {
4191 if ((lkflags2 & LK_SHARED) != 0 &&
4192 (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4193 lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE;
4194 if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
4195 ASSERT_VOP_LOCKED(vp2, "vp2");
4196 if ((lkflags2 & LK_EXCLUSIVE) != 0) {
4197 VOP_UNLOCK(vp2);
4198 ASSERT_VOP_UNLOCKED(vp2,
4199 "vp2 shared recursed");
4200 vp2_locked = false;
4201 }
4202 } else if (!vp2_locked)
4203 ASSERT_VOP_UNLOCKED(vp2, "vp2");
4204 } else {
4205 vp2_locked = true;
4206 }
4207
4208 if (!vp1_locked && !vp2_locked) {
4209 vn_lock(vp1, lkflags1 | LK_RETRY);
4210 vp1_locked = true;
4211 }
4212
4213 while (!vp1_locked || !vp2_locked) {
4214 if (vp1_locked && vp2 != NULL) {
4215 if (vp1 != NULL) {
4216 error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
4217 __FILE__, __LINE__);
4218 if (error == 0)
4219 break;
4220 VOP_UNLOCK(vp1);
4221 vp1_locked = false;
4222 vn_lock_pair_pause("vlp1");
4223 }
4224 vn_lock(vp2, lkflags2 | LK_RETRY);
4225 vp2_locked = true;
4226 }
4227 if (vp2_locked && vp1 != NULL) {
4228 if (vp2 != NULL) {
4229 error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
4230 __FILE__, __LINE__);
4231 if (error == 0)
4232 break;
4233 VOP_UNLOCK(vp2);
4234 vp2_locked = false;
4235 vn_lock_pair_pause("vlp2");
4236 }
4237 vn_lock(vp1, lkflags1 | LK_RETRY);
4238 vp1_locked = true;
4239 }
4240 }
4241 if (vp1 != NULL) {
4242 if (lkflags1 == LK_EXCLUSIVE)
4243 ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
4244 else
4245 ASSERT_VOP_LOCKED(vp1, "vp1 ret");
4246 }
4247 if (vp2 != NULL) {
4248 if (lkflags2 == LK_EXCLUSIVE)
4249 ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
4250 else
4251 ASSERT_VOP_LOCKED(vp2, "vp2 ret");
4252 }
4253 }
4254
4255 int
vn_lktype_write(struct mount * mp,struct vnode * vp)4256 vn_lktype_write(struct mount *mp, struct vnode *vp)
4257 {
4258 if (MNT_SHARED_WRITES(mp) ||
4259 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
4260 return (LK_SHARED);
4261 return (LK_EXCLUSIVE);
4262 }
4263
4264 int
vn_cmp(struct file * fp1,struct file * fp2,struct thread * td)4265 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td)
4266 {
4267 if (fp2->f_type != DTYPE_VNODE)
4268 return (3);
4269 return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode));
4270 }
4271