xref: /freebsd/sys/kern/uipc_usrreq.c (revision 350ba9672a7f4f16e30534a603df577dfd083b3f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  * Copyright (c) 2022-2025 Gleb Smirnoff <glebius@FreeBSD.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * UNIX Domain (Local) Sockets
37  *
38  * This is an implementation of UNIX (local) domain sockets.  Each socket has
39  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
40  * may be connected to 0 or 1 other socket.  Datagram sockets may be
41  * connected to 0, 1, or many other sockets.  Sockets may be created and
42  * connected in pairs (socketpair(2)), or bound/connected to using the file
43  * system name space.  For most purposes, only the receive socket buffer is
44  * used, as sending on one socket delivers directly to the receive socket
45  * buffer of a second socket.
46  *
47  * The implementation is substantially complicated by the fact that
48  * "ancillary data", such as file descriptors or credentials, may be passed
49  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
50  * over other UNIX domain sockets requires the implementation of a simple
51  * garbage collector to find and tear down cycles of disconnected sockets.
52  *
53  * TODO:
54  *	RDM
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include "opt_ddb.h"
60 
61 #include <sys/param.h>
62 #include <sys/capsicum.h>
63 #include <sys/domain.h>
64 #include <sys/eventhandler.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/poll.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 MALLOC_DECLARE(M_FILECAPS);
105 
106 static struct domain localdomain;
107 
108 static uma_zone_t	unp_zone;
109 static unp_gen_t	unp_gencnt;	/* (l) */
110 static u_int		unp_count;	/* (l) Count of local sockets. */
111 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
112 static int		unp_rights;	/* (g) File descriptors in flight. */
113 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
114 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
115 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
116 static struct mtx_pool	*unp_vp_mtxpool;
117 
118 struct unp_defer {
119 	SLIST_ENTRY(unp_defer) ud_link;
120 	struct file *ud_fp;
121 };
122 static SLIST_HEAD(, unp_defer) unp_defers;
123 static int unp_defers_count;
124 
125 static const struct sockaddr	sun_noname = {
126 	.sa_len = sizeof(sun_noname),
127 	.sa_family = AF_LOCAL,
128 };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * SOCK_STREAM and SOCK_SEQPACKET unix(4) sockets fully bypass the send buffer,
147  * however the notion of send buffer still makes sense with them.  Its size is
148  * the amount of space that a send(2) syscall may copyin(9) before checking
149  * with the receive buffer of a peer.  Although not linked anywhere yet,
150  * pointed to by a stack variable, effectively it is a buffer that needs to be
151  * sized.
152  *
153  * SOCK_DGRAM sockets really use the sendspace as the maximum datagram size,
154  * and don't really want to reserve the sendspace.  Their recvspace should be
155  * large enough for at least one max-size datagram plus address.
156  */
157 #ifndef PIPSIZ
158 #define	PIPSIZ	8192
159 #endif
160 static u_long	unpst_sendspace = PIPSIZ;
161 static u_long	unpst_recvspace = PIPSIZ;
162 static u_long	unpdg_maxdgram = 8*1024;	/* support 8KB syslog msgs */
163 static u_long	unpdg_recvspace = 16*1024;
164 static u_long	unpsp_sendspace = PIPSIZ;
165 static u_long	unpsp_recvspace = PIPSIZ;
166 
167 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "Local domain");
169 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "SOCK_STREAM");
172 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
173     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "SOCK_DGRAM");
175 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
176     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
177     "SOCK_SEQPACKET");
178 
179 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
180 	   &unpst_sendspace, 0, "Default stream send space.");
181 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
182 	   &unpst_recvspace, 0, "Default stream receive space.");
183 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
184 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
185 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
186 	   &unpdg_recvspace, 0, "Default datagram receive space.");
187 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
188 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
189 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
190 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
191 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
192     "File descriptors in flight.");
193 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
194     &unp_defers_count, 0,
195     "File descriptors deferred to taskqueue for close.");
196 
197 /*
198  * Locking and synchronization:
199  *
200  * Several types of locks exist in the local domain socket implementation:
201  * - a global linkage lock
202  * - a global connection list lock
203  * - the mtxpool lock
204  * - per-unpcb mutexes
205  *
206  * The linkage lock protects the global socket lists, the generation number
207  * counter and garbage collector state.
208  *
209  * The connection list lock protects the list of referring sockets in a datagram
210  * socket PCB.  This lock is also overloaded to protect a global list of
211  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
212  * messages.  To avoid recursion, such references are released by a dedicated
213  * thread.
214  *
215  * The mtxpool lock protects the vnode from being modified while referenced.
216  * Lock ordering rules require that it be acquired before any PCB locks.
217  *
218  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
219  * unpcb.  This includes the unp_conn field, which either links two connected
220  * PCBs together (for connected socket types) or points at the destination
221  * socket (for connectionless socket types).  The operations of creating or
222  * destroying a connection therefore involve locking multiple PCBs.  To avoid
223  * lock order reversals, in some cases this involves dropping a PCB lock and
224  * using a reference counter to maintain liveness.
225  *
226  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
227  * allocated in pr_attach() and freed in pr_detach().  The validity of that
228  * pointer is an invariant, so no lock is required to dereference the so_pcb
229  * pointer if a valid socket reference is held by the caller.  In practice,
230  * this is always true during operations performed on a socket.  Each unpcb
231  * has a back-pointer to its socket, unp_socket, which will be stable under
232  * the same circumstances.
233  *
234  * This pointer may only be safely dereferenced as long as a valid reference
235  * to the unpcb is held.  Typically, this reference will be from the socket,
236  * or from another unpcb when the referring unpcb's lock is held (in order
237  * that the reference not be invalidated during use).  For example, to follow
238  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
239  * that detach is not run clearing unp_socket.
240  *
241  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
242  * protocols, bind() is a non-atomic operation, and connect() requires
243  * potential sleeping in the protocol, due to potentially waiting on local or
244  * distributed file systems.  We try to separate "lookup" operations, which
245  * may sleep, and the IPC operations themselves, which typically can occur
246  * with relative atomicity as locks can be held over the entire operation.
247  *
248  * Another tricky issue is simultaneous multi-threaded or multi-process
249  * access to a single UNIX domain socket.  These are handled by the flags
250  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
251  * binding, both of which involve dropping UNIX domain socket locks in order
252  * to perform namei() and other file system operations.
253  */
254 static struct rwlock	unp_link_rwlock;
255 static struct mtx	unp_defers_lock;
256 
257 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
258 					    "unp_link_rwlock")
259 
260 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
261 					    RA_LOCKED)
262 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
263 					    RA_UNLOCKED)
264 
265 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
266 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
267 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
268 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
269 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
270 					    RA_WLOCKED)
271 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
272 
273 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
274 					    "unp_defer", NULL, MTX_DEF)
275 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
276 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
277 
278 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
279 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
280 
281 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
282 					    "unp", "unp",	\
283 					    MTX_DUPOK|MTX_DEF)
284 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
285 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
286 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
287 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
288 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
289 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
290 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
291 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
292 
293 static int	uipc_connect2(struct socket *, struct socket *);
294 static int	uipc_ctloutput(struct socket *, struct sockopt *);
295 static int	unp_connect(struct socket *, struct sockaddr *,
296 		    struct thread *);
297 static int	unp_connectat(int, struct socket *, struct sockaddr *,
298 		    struct thread *, bool);
299 static void	unp_connect2(struct socket *, struct socket *, bool);
300 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
301 static void	unp_dispose(struct socket *so);
302 static void	unp_drop(struct unpcb *);
303 static void	unp_gc(__unused void *, int);
304 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
305 static void	unp_discard(struct file *);
306 static void	unp_freerights(struct filedescent **, int);
307 static int	unp_internalize(struct mbuf *, struct mchain *,
308 		    struct thread *);
309 static void	unp_internalize_fp(struct file *);
310 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
311 static int	unp_externalize_fp(struct file *);
312 static void	unp_addsockcred(struct thread *, struct mchain *, int);
313 static void	unp_process_defers(void * __unused, int);
314 
315 static void	uipc_wrknl_lock(void *);
316 static void	uipc_wrknl_unlock(void *);
317 static void	uipc_wrknl_assert_lock(void *, int);
318 
319 static void
unp_pcb_hold(struct unpcb * unp)320 unp_pcb_hold(struct unpcb *unp)
321 {
322 	u_int old __unused;
323 
324 	old = refcount_acquire(&unp->unp_refcount);
325 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
326 }
327 
328 static __result_use_check bool
unp_pcb_rele(struct unpcb * unp)329 unp_pcb_rele(struct unpcb *unp)
330 {
331 	bool ret;
332 
333 	UNP_PCB_LOCK_ASSERT(unp);
334 
335 	if ((ret = refcount_release(&unp->unp_refcount))) {
336 		UNP_PCB_UNLOCK(unp);
337 		UNP_PCB_LOCK_DESTROY(unp);
338 		uma_zfree(unp_zone, unp);
339 	}
340 	return (ret);
341 }
342 
343 static void
unp_pcb_rele_notlast(struct unpcb * unp)344 unp_pcb_rele_notlast(struct unpcb *unp)
345 {
346 	bool ret __unused;
347 
348 	ret = refcount_release(&unp->unp_refcount);
349 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
350 }
351 
352 static void
unp_pcb_lock_pair(struct unpcb * unp,struct unpcb * unp2)353 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
354 {
355 	UNP_PCB_UNLOCK_ASSERT(unp);
356 	UNP_PCB_UNLOCK_ASSERT(unp2);
357 
358 	if (unp == unp2) {
359 		UNP_PCB_LOCK(unp);
360 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
361 		UNP_PCB_LOCK(unp);
362 		UNP_PCB_LOCK(unp2);
363 	} else {
364 		UNP_PCB_LOCK(unp2);
365 		UNP_PCB_LOCK(unp);
366 	}
367 }
368 
369 static void
unp_pcb_unlock_pair(struct unpcb * unp,struct unpcb * unp2)370 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
371 {
372 	UNP_PCB_UNLOCK(unp);
373 	if (unp != unp2)
374 		UNP_PCB_UNLOCK(unp2);
375 }
376 
377 /*
378  * Try to lock the connected peer of an already locked socket.  In some cases
379  * this requires that we unlock the current socket.  The pairbusy counter is
380  * used to block concurrent connection attempts while the lock is dropped.  The
381  * caller must be careful to revalidate PCB state.
382  */
383 static struct unpcb *
unp_pcb_lock_peer(struct unpcb * unp)384 unp_pcb_lock_peer(struct unpcb *unp)
385 {
386 	struct unpcb *unp2;
387 
388 	UNP_PCB_LOCK_ASSERT(unp);
389 	unp2 = unp->unp_conn;
390 	if (unp2 == NULL)
391 		return (NULL);
392 	if (__predict_false(unp == unp2))
393 		return (unp);
394 
395 	UNP_PCB_UNLOCK_ASSERT(unp2);
396 
397 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
398 		return (unp2);
399 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
400 		UNP_PCB_LOCK(unp2);
401 		return (unp2);
402 	}
403 	unp->unp_pairbusy++;
404 	unp_pcb_hold(unp2);
405 	UNP_PCB_UNLOCK(unp);
406 
407 	UNP_PCB_LOCK(unp2);
408 	UNP_PCB_LOCK(unp);
409 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
410 	    ("%s: socket %p was reconnected", __func__, unp));
411 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
412 		unp->unp_flags &= ~UNP_WAITING;
413 		wakeup(unp);
414 	}
415 	if (unp_pcb_rele(unp2)) {
416 		/* unp2 is unlocked. */
417 		return (NULL);
418 	}
419 	if (unp->unp_conn == NULL) {
420 		UNP_PCB_UNLOCK(unp2);
421 		return (NULL);
422 	}
423 	return (unp2);
424 }
425 
426 /*
427  * Try to lock peer of our socket for purposes of sending data to it.
428  */
429 static int
uipc_lock_peer(struct socket * so,struct unpcb ** unp2)430 uipc_lock_peer(struct socket *so, struct unpcb **unp2)
431 {
432 	struct unpcb *unp;
433 	int error;
434 
435 	unp = sotounpcb(so);
436 	UNP_PCB_LOCK(unp);
437 	*unp2 = unp_pcb_lock_peer(unp);
438 	if (__predict_false(so->so_error != 0)) {
439 		error = so->so_error;
440 		so->so_error = 0;
441 		UNP_PCB_UNLOCK(unp);
442 		if (*unp2 != NULL)
443 			UNP_PCB_UNLOCK(*unp2);
444 		return (error);
445 	}
446 	if (__predict_false(*unp2 == NULL)) {
447 		/*
448 		 * Different error code for a previously connected socket and
449 		 * a never connected one.  The SS_ISDISCONNECTED is set in the
450 		 * unp_soisdisconnected() and is synchronized by the pcb lock.
451 		 */
452 		error = so->so_state & SS_ISDISCONNECTED ? EPIPE : ENOTCONN;
453 		UNP_PCB_UNLOCK(unp);
454 		return (error);
455 	}
456 	UNP_PCB_UNLOCK(unp);
457 
458 	return (0);
459 }
460 
461 static void
uipc_abort(struct socket * so)462 uipc_abort(struct socket *so)
463 {
464 	struct unpcb *unp, *unp2;
465 
466 	unp = sotounpcb(so);
467 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
468 	UNP_PCB_UNLOCK_ASSERT(unp);
469 
470 	UNP_PCB_LOCK(unp);
471 	unp2 = unp->unp_conn;
472 	if (unp2 != NULL) {
473 		unp_pcb_hold(unp2);
474 		UNP_PCB_UNLOCK(unp);
475 		unp_drop(unp2);
476 	} else
477 		UNP_PCB_UNLOCK(unp);
478 }
479 
480 static int
uipc_attach(struct socket * so,int proto,struct thread * td)481 uipc_attach(struct socket *so, int proto, struct thread *td)
482 {
483 	u_long sendspace, recvspace;
484 	struct unpcb *unp;
485 	int error;
486 	bool locked;
487 
488 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
489 	switch (so->so_type) {
490 	case SOCK_DGRAM:
491 		STAILQ_INIT(&so->so_rcv.uxdg_mb);
492 		STAILQ_INIT(&so->so_snd.uxdg_mb);
493 		TAILQ_INIT(&so->so_rcv.uxdg_conns);
494 		/*
495 		 * Since send buffer is either bypassed or is a part
496 		 * of one-to-many receive buffer, we assign both space
497 		 * limits to unpdg_recvspace.
498 		 */
499 		sendspace = recvspace = unpdg_recvspace;
500 		break;
501 
502 	case SOCK_STREAM:
503 		sendspace = unpst_sendspace;
504 		recvspace = unpst_recvspace;
505 		goto common;
506 
507 	case SOCK_SEQPACKET:
508 		sendspace = unpsp_sendspace;
509 		recvspace = unpsp_recvspace;
510 common:
511 		/*
512 		 * XXXGL: we need to initialize the mutex with MTX_DUPOK.
513 		 * Ideally, protocols that have PR_SOCKBUF should be
514 		 * responsible for mutex initialization officially, and then
515 		 * this uglyness with mtx_destroy(); mtx_init(); would go away.
516 		 */
517 		mtx_destroy(&so->so_rcv_mtx);
518 		mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF | MTX_DUPOK);
519 		knlist_init(&so->so_wrsel.si_note, so, uipc_wrknl_lock,
520 		    uipc_wrknl_unlock, uipc_wrknl_assert_lock);
521 		STAILQ_INIT(&so->so_rcv.uxst_mbq);
522 		break;
523 	default:
524 		panic("uipc_attach");
525 	}
526 	error = soreserve(so, sendspace, recvspace);
527 	if (error)
528 		return (error);
529 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
530 	if (unp == NULL)
531 		return (ENOBUFS);
532 	LIST_INIT(&unp->unp_refs);
533 	UNP_PCB_LOCK_INIT(unp);
534 	unp->unp_socket = so;
535 	so->so_pcb = unp;
536 	refcount_init(&unp->unp_refcount, 1);
537 	unp->unp_mode = ACCESSPERMS;
538 
539 	if ((locked = UNP_LINK_WOWNED()) == false)
540 		UNP_LINK_WLOCK();
541 
542 	unp->unp_gencnt = ++unp_gencnt;
543 	unp->unp_ino = ++unp_ino;
544 	unp_count++;
545 	switch (so->so_type) {
546 	case SOCK_STREAM:
547 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
548 		break;
549 
550 	case SOCK_DGRAM:
551 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
552 		break;
553 
554 	case SOCK_SEQPACKET:
555 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
556 		break;
557 
558 	default:
559 		panic("uipc_attach");
560 	}
561 
562 	if (locked == false)
563 		UNP_LINK_WUNLOCK();
564 
565 	return (0);
566 }
567 
568 static int
uipc_bindat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)569 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
570 {
571 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
572 	struct vattr vattr;
573 	int error, namelen;
574 	struct nameidata nd;
575 	struct unpcb *unp;
576 	struct vnode *vp;
577 	struct mount *mp;
578 	cap_rights_t rights;
579 	char *buf;
580 	mode_t mode;
581 
582 	if (nam->sa_family != AF_UNIX)
583 		return (EAFNOSUPPORT);
584 
585 	unp = sotounpcb(so);
586 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
587 
588 	if (soun->sun_len > sizeof(struct sockaddr_un))
589 		return (EINVAL);
590 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
591 	if (namelen <= 0)
592 		return (EINVAL);
593 
594 	/*
595 	 * We don't allow simultaneous bind() calls on a single UNIX domain
596 	 * socket, so flag in-progress operations, and return an error if an
597 	 * operation is already in progress.
598 	 *
599 	 * Historically, we have not allowed a socket to be rebound, so this
600 	 * also returns an error.  Not allowing re-binding simplifies the
601 	 * implementation and avoids a great many possible failure modes.
602 	 */
603 	UNP_PCB_LOCK(unp);
604 	if (unp->unp_vnode != NULL) {
605 		UNP_PCB_UNLOCK(unp);
606 		return (EINVAL);
607 	}
608 	if (unp->unp_flags & UNP_BINDING) {
609 		UNP_PCB_UNLOCK(unp);
610 		return (EALREADY);
611 	}
612 	unp->unp_flags |= UNP_BINDING;
613 	mode = unp->unp_mode & ~td->td_proc->p_pd->pd_cmask;
614 	UNP_PCB_UNLOCK(unp);
615 
616 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
617 	bcopy(soun->sun_path, buf, namelen);
618 	buf[namelen] = 0;
619 
620 restart:
621 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
622 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
623 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
624 	error = namei(&nd);
625 	if (error)
626 		goto error;
627 	vp = nd.ni_vp;
628 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
629 		NDFREE_PNBUF(&nd);
630 		if (nd.ni_dvp == vp)
631 			vrele(nd.ni_dvp);
632 		else
633 			vput(nd.ni_dvp);
634 		if (vp != NULL) {
635 			vrele(vp);
636 			error = EADDRINUSE;
637 			goto error;
638 		}
639 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
640 		if (error)
641 			goto error;
642 		goto restart;
643 	}
644 	VATTR_NULL(&vattr);
645 	vattr.va_type = VSOCK;
646 	vattr.va_mode = mode;
647 #ifdef MAC
648 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
649 	    &vattr);
650 #endif
651 	if (error == 0) {
652 		/*
653 		 * The prior lookup may have left LK_SHARED in cn_lkflags,
654 		 * and VOP_CREATE technically only requires the new vnode to
655 		 * be locked shared. Most filesystems will return the new vnode
656 		 * locked exclusive regardless, but we should explicitly
657 		 * specify that here since we require it and assert to that
658 		 * effect below.
659 		 */
660 		nd.ni_cnd.cn_lkflags = (nd.ni_cnd.cn_lkflags & ~LK_SHARED) |
661 		    LK_EXCLUSIVE;
662 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
663 	}
664 	NDFREE_PNBUF(&nd);
665 	if (error) {
666 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
667 		vn_finished_write(mp);
668 		if (error == ERELOOKUP)
669 			goto restart;
670 		goto error;
671 	}
672 	vp = nd.ni_vp;
673 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
674 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
675 
676 	UNP_PCB_LOCK(unp);
677 	VOP_UNP_BIND(vp, unp);
678 	unp->unp_vnode = vp;
679 	unp->unp_addr = soun;
680 	unp->unp_flags &= ~UNP_BINDING;
681 	UNP_PCB_UNLOCK(unp);
682 	vref(vp);
683 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
684 	vn_finished_write(mp);
685 	free(buf, M_TEMP);
686 	return (0);
687 
688 error:
689 	UNP_PCB_LOCK(unp);
690 	unp->unp_flags &= ~UNP_BINDING;
691 	UNP_PCB_UNLOCK(unp);
692 	free(buf, M_TEMP);
693 	return (error);
694 }
695 
696 static int
uipc_bind(struct socket * so,struct sockaddr * nam,struct thread * td)697 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
698 {
699 
700 	return (uipc_bindat(AT_FDCWD, so, nam, td));
701 }
702 
703 static int
uipc_connect(struct socket * so,struct sockaddr * nam,struct thread * td)704 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
705 {
706 	int error;
707 
708 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
709 	error = unp_connect(so, nam, td);
710 	return (error);
711 }
712 
713 static int
uipc_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)714 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
715     struct thread *td)
716 {
717 	int error;
718 
719 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
720 	error = unp_connectat(fd, so, nam, td, false);
721 	return (error);
722 }
723 
724 static void
uipc_close(struct socket * so)725 uipc_close(struct socket *so)
726 {
727 	struct unpcb *unp, *unp2;
728 	struct vnode *vp = NULL;
729 	struct mtx *vplock;
730 
731 	unp = sotounpcb(so);
732 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
733 
734 	vplock = NULL;
735 	if ((vp = unp->unp_vnode) != NULL) {
736 		vplock = mtx_pool_find(unp_vp_mtxpool, vp);
737 		mtx_lock(vplock);
738 	}
739 	UNP_PCB_LOCK(unp);
740 	if (vp && unp->unp_vnode == NULL) {
741 		mtx_unlock(vplock);
742 		vp = NULL;
743 	}
744 	if (vp != NULL) {
745 		VOP_UNP_DETACH(vp);
746 		unp->unp_vnode = NULL;
747 	}
748 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
749 		unp_disconnect(unp, unp2);
750 	else
751 		UNP_PCB_UNLOCK(unp);
752 	if (vp) {
753 		mtx_unlock(vplock);
754 		vrele(vp);
755 	}
756 }
757 
758 static int
uipc_chmod(struct socket * so,mode_t mode,struct ucred * cred __unused,struct thread * td __unused)759 uipc_chmod(struct socket *so, mode_t mode, struct ucred *cred __unused,
760     struct thread *td __unused)
761 {
762 	struct unpcb *unp;
763 	int error;
764 
765 	if ((mode & ~ACCESSPERMS) != 0)
766 		return (EINVAL);
767 
768 	error = 0;
769 	unp = sotounpcb(so);
770 	UNP_PCB_LOCK(unp);
771 	if (unp->unp_vnode != NULL || (unp->unp_flags & UNP_BINDING) != 0)
772 		error = EINVAL;
773 	else
774 		unp->unp_mode = mode;
775 	UNP_PCB_UNLOCK(unp);
776 	return (error);
777 }
778 
779 static int
uipc_connect2(struct socket * so1,struct socket * so2)780 uipc_connect2(struct socket *so1, struct socket *so2)
781 {
782 	struct unpcb *unp, *unp2;
783 
784 	if (so1->so_type != so2->so_type)
785 		return (EPROTOTYPE);
786 
787 	unp = so1->so_pcb;
788 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
789 	unp2 = so2->so_pcb;
790 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
791 	unp_pcb_lock_pair(unp, unp2);
792 	unp_connect2(so1, so2, false);
793 	unp_pcb_unlock_pair(unp, unp2);
794 
795 	return (0);
796 }
797 
798 static void
uipc_detach(struct socket * so)799 uipc_detach(struct socket *so)
800 {
801 	struct unpcb *unp, *unp2;
802 	struct mtx *vplock;
803 	struct vnode *vp;
804 	int local_unp_rights;
805 
806 	unp = sotounpcb(so);
807 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
808 
809 	vp = NULL;
810 	vplock = NULL;
811 
812 	if (!SOLISTENING(so))
813 		unp_dispose(so);
814 
815 	UNP_LINK_WLOCK();
816 	LIST_REMOVE(unp, unp_link);
817 	if (unp->unp_gcflag & UNPGC_DEAD)
818 		LIST_REMOVE(unp, unp_dead);
819 	unp->unp_gencnt = ++unp_gencnt;
820 	--unp_count;
821 	UNP_LINK_WUNLOCK();
822 
823 	UNP_PCB_UNLOCK_ASSERT(unp);
824  restart:
825 	if ((vp = unp->unp_vnode) != NULL) {
826 		vplock = mtx_pool_find(unp_vp_mtxpool, vp);
827 		mtx_lock(vplock);
828 	}
829 	UNP_PCB_LOCK(unp);
830 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
831 		if (vplock)
832 			mtx_unlock(vplock);
833 		UNP_PCB_UNLOCK(unp);
834 		goto restart;
835 	}
836 	if ((vp = unp->unp_vnode) != NULL) {
837 		VOP_UNP_DETACH(vp);
838 		unp->unp_vnode = NULL;
839 	}
840 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
841 		unp_disconnect(unp, unp2);
842 	else
843 		UNP_PCB_UNLOCK(unp);
844 
845 	UNP_REF_LIST_LOCK();
846 	while (!LIST_EMPTY(&unp->unp_refs)) {
847 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
848 
849 		unp_pcb_hold(ref);
850 		UNP_REF_LIST_UNLOCK();
851 
852 		MPASS(ref != unp);
853 		UNP_PCB_UNLOCK_ASSERT(ref);
854 		unp_drop(ref);
855 		UNP_REF_LIST_LOCK();
856 	}
857 	UNP_REF_LIST_UNLOCK();
858 
859 	UNP_PCB_LOCK(unp);
860 	local_unp_rights = unp_rights;
861 	unp->unp_socket->so_pcb = NULL;
862 	unp->unp_socket = NULL;
863 	free(unp->unp_addr, M_SONAME);
864 	unp->unp_addr = NULL;
865 	if (!unp_pcb_rele(unp))
866 		UNP_PCB_UNLOCK(unp);
867 	if (vp) {
868 		mtx_unlock(vplock);
869 		vrele(vp);
870 	}
871 	if (local_unp_rights)
872 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
873 
874 	switch (so->so_type) {
875 	case SOCK_STREAM:
876 	case SOCK_SEQPACKET:
877 		MPASS(SOLISTENING(so) || (STAILQ_EMPTY(&so->so_rcv.uxst_mbq) &&
878 		    so->so_rcv.uxst_peer == NULL));
879 		break;
880 	case SOCK_DGRAM:
881 		/*
882 		 * Everything should have been unlinked/freed by unp_dispose()
883 		 * and/or unp_disconnect().
884 		 */
885 		MPASS(so->so_rcv.uxdg_peeked == NULL);
886 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
887 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
888 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
889 	}
890 }
891 
892 static int
uipc_disconnect(struct socket * so)893 uipc_disconnect(struct socket *so)
894 {
895 	struct unpcb *unp, *unp2;
896 
897 	unp = sotounpcb(so);
898 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
899 
900 	UNP_PCB_LOCK(unp);
901 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
902 		unp_disconnect(unp, unp2);
903 	else
904 		UNP_PCB_UNLOCK(unp);
905 	return (0);
906 }
907 
908 static int
uipc_listen(struct socket * so,int backlog,struct thread * td)909 uipc_listen(struct socket *so, int backlog, struct thread *td)
910 {
911 	struct unpcb *unp;
912 	int error;
913 
914 	MPASS(so->so_type != SOCK_DGRAM);
915 
916 	/*
917 	 * Synchronize with concurrent connection attempts.
918 	 */
919 	error = 0;
920 	unp = sotounpcb(so);
921 	UNP_PCB_LOCK(unp);
922 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
923 		error = EINVAL;
924 	else if (unp->unp_vnode == NULL)
925 		error = EDESTADDRREQ;
926 	if (error != 0) {
927 		UNP_PCB_UNLOCK(unp);
928 		return (error);
929 	}
930 
931 	SOCK_LOCK(so);
932 	error = solisten_proto_check(so);
933 	if (error == 0) {
934 		cru2xt(td, &unp->unp_peercred);
935 		if (!SOLISTENING(so)) {
936 			(void)chgsbsize(so->so_cred->cr_uidinfo,
937 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
938 			(void)chgsbsize(so->so_cred->cr_uidinfo,
939 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
940 		}
941 		solisten_proto(so, backlog);
942 	}
943 	SOCK_UNLOCK(so);
944 	UNP_PCB_UNLOCK(unp);
945 	return (error);
946 }
947 
948 static int
uipc_peeraddr(struct socket * so,struct sockaddr * ret)949 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
950 {
951 	struct unpcb *unp, *unp2;
952 	const struct sockaddr *sa;
953 
954 	unp = sotounpcb(so);
955 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
956 
957 	UNP_PCB_LOCK(unp);
958 	unp2 = unp_pcb_lock_peer(unp);
959 	if (unp2 != NULL) {
960 		if (unp2->unp_addr != NULL)
961 			sa = (struct sockaddr *)unp2->unp_addr;
962 		else
963 			sa = &sun_noname;
964 		bcopy(sa, ret, sa->sa_len);
965 		unp_pcb_unlock_pair(unp, unp2);
966 	} else {
967 		UNP_PCB_UNLOCK(unp);
968 		sa = &sun_noname;
969 		bcopy(sa, ret, sa->sa_len);
970 	}
971 	return (0);
972 }
973 
974 /*
975  * pr_sosend() called with mbuf instead of uio is a kernel thread.  NFS,
976  * netgraph(4) and other subsystems can call into socket code.  The
977  * function will condition the mbuf so that it can be safely put onto socket
978  * buffer and calculate its char count and mbuf count.
979  *
980  * Note: we don't support receiving control data from a kernel thread.  Our
981  * pr_sosend methods have MPASS() to check that.  This may change.
982  */
983 static void
uipc_reset_kernel_mbuf(struct mbuf * m,struct mchain * mc)984 uipc_reset_kernel_mbuf(struct mbuf *m, struct mchain *mc)
985 {
986 
987 	M_ASSERTPKTHDR(m);
988 
989 	m_clrprotoflags(m);
990 	m_tag_delete_chain(m, NULL);
991 	m->m_pkthdr.rcvif = NULL;
992 	m->m_pkthdr.flowid = 0;
993 	m->m_pkthdr.csum_flags = 0;
994 	m->m_pkthdr.fibnum = 0;
995 	m->m_pkthdr.rsstype = 0;
996 
997 	mc_init_m(mc, m);
998 	MPASS(m->m_pkthdr.len == mc->mc_len);
999 }
1000 
1001 #ifdef SOCKBUF_DEBUG
1002 static inline void
uipc_stream_sbcheck(struct sockbuf * sb)1003 uipc_stream_sbcheck(struct sockbuf *sb)
1004 {
1005 	struct mbuf *d;
1006 	u_int dacc, dccc, dctl, dmbcnt;
1007 	bool notready = false;
1008 
1009 	dacc = dccc = dctl = dmbcnt = 0;
1010 	STAILQ_FOREACH(d, &sb->uxst_mbq, m_stailq) {
1011 		if (d == sb->uxst_fnrdy) {
1012 			MPASS(d->m_flags & M_NOTREADY);
1013 			notready = true;
1014 		}
1015 		if (d->m_type == MT_CONTROL)
1016 			dctl += d->m_len;
1017 		else if (d->m_type == MT_DATA) {
1018 			dccc +=  d->m_len;
1019 			if (!notready)
1020 				dacc += d->m_len;
1021 		} else
1022 			MPASS(0);
1023 		dmbcnt += MSIZE;
1024 		if (d->m_flags & M_EXT)
1025 			dmbcnt += d->m_ext.ext_size;
1026 		if (d->m_stailq.stqe_next == NULL)
1027 			MPASS(sb->uxst_mbq.stqh_last == &d->m_stailq.stqe_next);
1028 	}
1029 	MPASS(sb->uxst_fnrdy == NULL || notready);
1030 	MPASS(dacc == sb->sb_acc);
1031 	MPASS(dccc == sb->sb_ccc);
1032 	MPASS(dctl == sb->sb_ctl);
1033 	MPASS(dmbcnt == sb->sb_mbcnt);
1034 	(void)STAILQ_EMPTY(&sb->uxst_mbq);
1035 }
1036 #define	UIPC_STREAM_SBCHECK(sb)	uipc_stream_sbcheck(sb)
1037 #else
1038 #define	UIPC_STREAM_SBCHECK(sb)	do {} while (0)
1039 #endif
1040 
1041 /*
1042  * uipc_stream_sbspace() returns how much a writer can send, limited by char
1043  * count or mbuf memory use, whatever ends first.
1044  *
1045  * An obvious and legitimate reason for a socket having more data than allowed,
1046  * is lowering the limit with setsockopt(SO_RCVBUF) on already full buffer.
1047  * Also, sb_mbcnt may overcommit sb_mbmax in case if previous write observed
1048  * 'space < mbspace', but mchain allocated to hold 'space' bytes of data ended
1049  * up with 'mc_mlen > mbspace'.  A typical scenario would be a full buffer with
1050  * writer trying to push in a large write, and a slow reader, that reads just
1051  * a few bytes at a time.  In that case writer will keep creating new mbufs
1052  * with mc_split().  These mbufs will carry little chars, but will all point at
1053  * the same cluster, thus each adding cluster size to sb_mbcnt.  This means we
1054  * will count same cluster many times potentially underutilizing socket buffer.
1055  * We aren't optimizing towards ineffective readers.  Classic socket buffer had
1056  * the same "feature".
1057  */
1058 static inline u_int
uipc_stream_sbspace(struct sockbuf * sb)1059 uipc_stream_sbspace(struct sockbuf *sb)
1060 {
1061 	u_int space, mbspace;
1062 
1063 	if (__predict_true(sb->sb_hiwat >= sb->sb_ccc + sb->sb_ctl))
1064 		space = sb->sb_hiwat - sb->sb_ccc - sb->sb_ctl;
1065 	else
1066 		return (0);
1067 	if (__predict_true(sb->sb_mbmax >= sb->sb_mbcnt))
1068 		mbspace = sb->sb_mbmax - sb->sb_mbcnt;
1069 	else
1070 		return (0);
1071 
1072 	return (min(space, mbspace));
1073 }
1074 
1075 static int
uipc_sosend_stream_or_seqpacket(struct socket * so,struct sockaddr * addr,struct uio * uio0,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1076 uipc_sosend_stream_or_seqpacket(struct socket *so, struct sockaddr *addr,
1077     struct uio *uio0, struct mbuf *m, struct mbuf *c, int flags,
1078     struct thread *td)
1079 {
1080 	struct unpcb *unp2;
1081 	struct socket *so2;
1082 	struct sockbuf *sb;
1083 	struct uio *uio;
1084 	struct mchain mc, cmc;
1085 	size_t resid, sent;
1086 	bool nonblock, eor, aio;
1087 	int error;
1088 
1089 	MPASS((uio0 != NULL && m == NULL) || (m != NULL && uio0 == NULL));
1090 	MPASS(m == NULL || c == NULL);
1091 
1092 	if (__predict_false(flags & MSG_OOB))
1093 		return (EOPNOTSUPP);
1094 
1095 	nonblock = (so->so_state & SS_NBIO) ||
1096 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1097 	eor = flags & MSG_EOR;
1098 
1099 	mc = MCHAIN_INITIALIZER(&mc);
1100 	cmc = MCHAIN_INITIALIZER(&cmc);
1101 	sent = 0;
1102 	aio = false;
1103 
1104 	if (m == NULL) {
1105 		if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1106 			goto out;
1107 		/*
1108 		 * This function may read more data from the uio than it would
1109 		 * then place on socket.  That would leave uio inconsistent
1110 		 * upon return.  Normally uio is allocated on the stack of the
1111 		 * syscall thread and we don't care about leaving it consistent.
1112 		 * However, aio(9) will allocate a uio as part of job and will
1113 		 * use it to track progress.  We detect aio(9) checking the
1114 		 * SB_AIO_RUNNING flag.  It is safe to check it without lock
1115 		 * cause it is set and cleared in the same taskqueue thread.
1116 		 *
1117 		 * This check can also produce a false positive: there is
1118 		 * aio(9) job and also there is a syscall we are serving now.
1119 		 * No sane software does that, it would leave to a mess in
1120 		 * the socket buffer, as aio(9) doesn't grab the I/O sx(9).
1121 		 * But syzkaller can create this mess.  For such false positive
1122 		 * our goal is just don't panic or leak memory.
1123 		 */
1124 		if (__predict_false(so->so_snd.sb_flags & SB_AIO_RUNNING)) {
1125 			uio = cloneuio(uio0);
1126 			aio = true;
1127 		} else {
1128 			uio = uio0;
1129 			resid = uio->uio_resid;
1130 		}
1131 		/*
1132 		 * Optimization for a case when our send fits into the receive
1133 		 * buffer - do the copyin before taking any locks, sized to our
1134 		 * send buffer.  Later copyins will also take into account
1135 		 * space in the peer's receive buffer.
1136 		 */
1137 		error = mc_uiotomc(&mc, uio, so->so_snd.sb_hiwat, 0, M_WAITOK,
1138 		    eor ? M_EOR : 0);
1139 		if (__predict_false(error))
1140 			goto out2;
1141 	} else
1142 		uipc_reset_kernel_mbuf(m, &mc);
1143 
1144 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1145 	if (error)
1146 		goto out2;
1147 
1148 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
1149 		goto out3;
1150 
1151 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1152 		/*
1153 		 * Credentials are passed only once on SOCK_STREAM and
1154 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1155 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1156 		 */
1157 		unp_addsockcred(td, &cmc, unp2->unp_flags);
1158 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1159 	}
1160 
1161 	/*
1162 	 * Cycle through the data to send and available space in the peer's
1163 	 * receive buffer.  Put a reference on the peer socket, so that it
1164 	 * doesn't get freed while we sbwait().  If peer goes away, we will
1165 	 * observe the SBS_CANTRCVMORE and our sorele() will finalize peer's
1166 	 * socket destruction.
1167 	 */
1168 	so2 = unp2->unp_socket;
1169 	soref(so2);
1170 	UNP_PCB_UNLOCK(unp2);
1171 	sb = &so2->so_rcv;
1172 	while (mc.mc_len + cmc.mc_len > 0) {
1173 		struct mchain mcnext = MCHAIN_INITIALIZER(&mcnext);
1174 		u_int space;
1175 
1176 		SOCK_RECVBUF_LOCK(so2);
1177 restart:
1178 		UIPC_STREAM_SBCHECK(sb);
1179 		if (__predict_false(cmc.mc_len > sb->sb_hiwat)) {
1180 			SOCK_RECVBUF_UNLOCK(so2);
1181 			error = EMSGSIZE;
1182 			goto out4;
1183 		}
1184 		if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
1185 			SOCK_RECVBUF_UNLOCK(so2);
1186 			error = EPIPE;
1187 			goto out4;
1188 		}
1189 		/*
1190 		 * Wait on the peer socket receive buffer until we have enough
1191 		 * space to put at least control.  The data is a stream and can
1192 		 * be put partially, but control is really a datagram.
1193 		 */
1194 		space = uipc_stream_sbspace(sb);
1195 		if (space < sb->sb_lowat || space < cmc.mc_len) {
1196 			if (nonblock) {
1197 				if (aio)
1198 					sb->uxst_flags |= UXST_PEER_AIO;
1199 				SOCK_RECVBUF_UNLOCK(so2);
1200 				if (aio) {
1201 					SOCK_SENDBUF_LOCK(so);
1202 					so->so_snd.sb_ccc =
1203 					    so->so_snd.sb_hiwat - space;
1204 					SOCK_SENDBUF_UNLOCK(so);
1205 				}
1206 				error = EWOULDBLOCK;
1207 				goto out4;
1208 			}
1209 			if ((error = sbwait(so2, SO_RCV)) != 0) {
1210 				SOCK_RECVBUF_UNLOCK(so2);
1211 				goto out4;
1212 			} else
1213 				goto restart;
1214 		}
1215 		MPASS(space >= cmc.mc_len);
1216 		space -= cmc.mc_len;
1217 		if (space == 0) {
1218 			/* There is space only to send control. */
1219 			MPASS(!STAILQ_EMPTY(&cmc.mc_q));
1220 			mcnext = mc;
1221 			mc = MCHAIN_INITIALIZER(&mc);
1222 		} else if (space < mc.mc_len) {
1223 			/* Not enough space. */
1224 			if (__predict_false(mc_split(&mc, &mcnext, space,
1225 			    M_NOWAIT) == ENOMEM)) {
1226 				/*
1227 				 * If allocation failed use M_WAITOK and merge
1228 				 * the chain back.  Next time mc_split() will
1229 				 * easily split at the same place.  Only if we
1230 				 * race with setsockopt(SO_RCVBUF) shrinking
1231 				 * sb_hiwat can this happen more than once.
1232 				 */
1233 				SOCK_RECVBUF_UNLOCK(so2);
1234 				(void)mc_split(&mc, &mcnext, space, M_WAITOK);
1235 				mc_concat(&mc, &mcnext);
1236 				SOCK_RECVBUF_LOCK(so2);
1237 				goto restart;
1238 			}
1239 			MPASS(mc.mc_len == space);
1240 		}
1241 		if (!STAILQ_EMPTY(&cmc.mc_q)) {
1242 			STAILQ_CONCAT(&sb->uxst_mbq, &cmc.mc_q);
1243 			sb->sb_ctl += cmc.mc_len;
1244 			sb->sb_mbcnt += cmc.mc_mlen;
1245 			cmc.mc_len = 0;
1246 		}
1247 		sent += mc.mc_len;
1248 		if (sb->uxst_fnrdy == NULL)
1249 			sb->sb_acc += mc.mc_len;
1250 		sb->sb_ccc += mc.mc_len;
1251 		sb->sb_mbcnt += mc.mc_mlen;
1252 		STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
1253 		UIPC_STREAM_SBCHECK(sb);
1254 		space = uipc_stream_sbspace(sb);
1255 		sorwakeup_locked(so2);
1256 		if (!STAILQ_EMPTY(&mcnext.mc_q)) {
1257 			/*
1258 			 * Such assignment is unsafe in general, but it is
1259 			 * safe with !STAILQ_EMPTY(&mcnext.mc_q).  In C++ we
1260 			 * could reload = for STAILQs :)
1261 			 */
1262 			mc = mcnext;
1263 		} else if (uio != NULL && uio->uio_resid > 0) {
1264 			/*
1265 			 * Copyin sum of peer's receive buffer space and our
1266 			 * sb_hiwat, which is our virtual send buffer size.
1267 			 * See comment above unpst_sendspace declaration.
1268 			 * We are reading sb_hiwat locklessly, cause a) we
1269 			 * don't care about an application that does send(2)
1270 			 * and setsockopt(2) racing internally, and for an
1271 			 * application that does this in sequence we will see
1272 			 * the correct value cause sbsetopt() uses buffer lock
1273 			 * and we also have already acquired it at least once.
1274 			 */
1275 			error = mc_uiotomc(&mc, uio, space +
1276 			    atomic_load_int(&so->so_snd.sb_hiwat), 0, M_WAITOK,
1277 			    eor ? M_EOR : 0);
1278 			if (__predict_false(error))
1279 				goto out4;
1280 		} else
1281 			mc = MCHAIN_INITIALIZER(&mc);
1282 	}
1283 
1284 	MPASS(STAILQ_EMPTY(&mc.mc_q));
1285 
1286 	td->td_ru.ru_msgsnd++;
1287 out4:
1288 	sorele(so2);
1289 out3:
1290 	SOCK_IO_SEND_UNLOCK(so);
1291 out2:
1292 	if (aio) {
1293 		freeuio(uio);
1294 		uioadvance(uio0, sent);
1295 	} else if (uio != NULL)
1296 		uio->uio_resid = resid - sent;
1297 	if (!mc_empty(&cmc))
1298 		unp_scan(mc_first(&cmc), unp_freerights);
1299 out:
1300 	mc_freem(&mc);
1301 	mc_freem(&cmc);
1302 
1303 	return (error);
1304 }
1305 
1306 /*
1307  * Wakeup a writer, used by recv(2) and shutdown(2).
1308  *
1309  * @param so	Points to a connected stream socket with receive buffer locked
1310  *
1311  * In a blocking mode peer is sleeping on our receive buffer, and we need just
1312  * wakeup(9) on it.  But to wake up various event engines, we need to reach
1313  * over to peer's selinfo.  This can be safely done as the socket buffer
1314  * receive lock is protecting us from the peer going away.
1315  */
1316 static void
uipc_wakeup_writer(struct socket * so)1317 uipc_wakeup_writer(struct socket *so)
1318 {
1319 	struct sockbuf *sb = &so->so_rcv;
1320 	struct selinfo *sel;
1321 
1322 	SOCK_RECVBUF_LOCK_ASSERT(so);
1323 	MPASS(sb->uxst_peer != NULL);
1324 
1325 	sel = &sb->uxst_peer->so_wrsel;
1326 
1327 	if (sb->uxst_flags & UXST_PEER_SEL) {
1328 		selwakeuppri(sel, PSOCK);
1329 		/*
1330 		 * XXXGL: sowakeup() does SEL_WAITING() without locks.
1331 		 */
1332 		if (!SEL_WAITING(sel))
1333 			sb->uxst_flags &= ~UXST_PEER_SEL;
1334 	}
1335 	if (sb->sb_flags & SB_WAIT) {
1336 		sb->sb_flags &= ~SB_WAIT;
1337 		wakeup(&sb->sb_acc);
1338 	}
1339 	KNOTE_LOCKED(&sel->si_note, 0);
1340 	SOCK_RECVBUF_UNLOCK(so);
1341 }
1342 
1343 static void
uipc_cantrcvmore(struct socket * so)1344 uipc_cantrcvmore(struct socket *so)
1345 {
1346 
1347 	SOCK_RECVBUF_LOCK(so);
1348 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
1349 	selwakeuppri(&so->so_rdsel, PSOCK);
1350 	KNOTE_LOCKED(&so->so_rdsel.si_note, 0);
1351 	if (so->so_rcv.uxst_peer != NULL)
1352 		uipc_wakeup_writer(so);
1353 	else
1354 		SOCK_RECVBUF_UNLOCK(so);
1355 }
1356 
1357 static int
uipc_soreceive_stream_or_seqpacket(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)1358 uipc_soreceive_stream_or_seqpacket(struct socket *so, struct sockaddr **psa,
1359     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1360 {
1361 	struct sockbuf *sb = &so->so_rcv;
1362 	struct mbuf *control, *m, *first, *last, *next;
1363 	u_int ctl, space, datalen, mbcnt, lastlen;
1364 	int error, flags;
1365 	bool nonblock, waitall, peek;
1366 
1367 	MPASS(mp0 == NULL);
1368 
1369 	if (psa != NULL)
1370 		*psa = NULL;
1371 	if (controlp != NULL)
1372 		*controlp = NULL;
1373 
1374 	flags = flagsp != NULL ? *flagsp : 0;
1375 	nonblock = (so->so_state & SS_NBIO) ||
1376 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1377 	peek = flags & MSG_PEEK;
1378 	waitall = (flags & MSG_WAITALL) && !peek;
1379 
1380 	/*
1381 	 * This check may fail only on a socket that never went through
1382 	 * connect(2).  We can check this locklessly, cause: a) for a new born
1383 	 * socket we don't care about applications that may race internally
1384 	 * between connect(2) and recv(2), and b) for a dying socket if we
1385 	 * miss update by unp_sosidisconnected(), we would still get the check
1386 	 * correct.  For dying socket we would observe SBS_CANTRCVMORE later.
1387 	 */
1388 	if (__predict_false((atomic_load_short(&so->so_state) &
1389 	    (SS_ISCONNECTED|SS_ISDISCONNECTED)) == 0))
1390 		return (ENOTCONN);
1391 
1392 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1393 	if (__predict_false(error))
1394 		return (error);
1395 
1396 restart:
1397 	SOCK_RECVBUF_LOCK(so);
1398 	UIPC_STREAM_SBCHECK(sb);
1399 	while (sb->sb_acc < sb->sb_lowat &&
1400 	    (sb->sb_ctl == 0 || controlp == NULL)) {
1401 		if (so->so_error) {
1402 			error = so->so_error;
1403 			if (!peek)
1404 				so->so_error = 0;
1405 			SOCK_RECVBUF_UNLOCK(so);
1406 			SOCK_IO_RECV_UNLOCK(so);
1407 			return (error);
1408 		}
1409 		if (sb->sb_state & SBS_CANTRCVMORE) {
1410 			SOCK_RECVBUF_UNLOCK(so);
1411 			SOCK_IO_RECV_UNLOCK(so);
1412 			return (0);
1413 		}
1414 		if (nonblock) {
1415 			SOCK_RECVBUF_UNLOCK(so);
1416 			SOCK_IO_RECV_UNLOCK(so);
1417 			return (EWOULDBLOCK);
1418 		}
1419 		error = sbwait(so, SO_RCV);
1420 		if (error) {
1421 			SOCK_RECVBUF_UNLOCK(so);
1422 			SOCK_IO_RECV_UNLOCK(so);
1423 			return (error);
1424 		}
1425 	}
1426 
1427 	MPASS(STAILQ_FIRST(&sb->uxst_mbq));
1428 	MPASS(sb->sb_acc > 0 || sb->sb_ctl > 0);
1429 
1430 	mbcnt = 0;
1431 	ctl = 0;
1432 	first = STAILQ_FIRST(&sb->uxst_mbq);
1433 	if (first->m_type == MT_CONTROL) {
1434 		control = first;
1435 		STAILQ_FOREACH_FROM(first, &sb->uxst_mbq, m_stailq) {
1436 			if (first->m_type != MT_CONTROL)
1437 				break;
1438 			ctl += first->m_len;
1439 			mbcnt += MSIZE;
1440 			if (first->m_flags & M_EXT)
1441 				mbcnt += first->m_ext.ext_size;
1442 		}
1443 	} else
1444 		control = NULL;
1445 
1446 	/*
1447 	 * Find split point for the next copyout.  On exit from the loop:
1448 	 * last == NULL - socket to be flushed
1449 	 * last != NULL
1450 	 *   lastlen > last->m_len - uio to be filled, last to be adjusted
1451 	 *   lastlen == 0          - MT_CONTROL, M_EOR or M_NOTREADY encountered
1452 	 */
1453 	space = uio->uio_resid;
1454 	datalen = 0;
1455 	for (m = first, last = sb->uxst_fnrdy, lastlen = 0;
1456 	     m != sb->uxst_fnrdy;
1457 	     m = STAILQ_NEXT(m, m_stailq)) {
1458 		if (m->m_type != MT_DATA) {
1459 			last = m;
1460 			lastlen = 0;
1461 			break;
1462 		}
1463 		if (space >= m->m_len) {
1464 			space -= m->m_len;
1465 			datalen += m->m_len;
1466 			mbcnt += MSIZE;
1467 			if (m->m_flags & M_EXT)
1468 				mbcnt += m->m_ext.ext_size;
1469 			if (m->m_flags & M_EOR) {
1470 				last = STAILQ_NEXT(m, m_stailq);
1471 				lastlen = 0;
1472 				flags |= MSG_EOR;
1473 				break;
1474 			}
1475 		} else {
1476 			datalen += space;
1477 			last = m;
1478 			lastlen = space;
1479 			break;
1480 		}
1481 	}
1482 
1483 	UIPC_STREAM_SBCHECK(sb);
1484 	if (!peek) {
1485 		if (last == NULL)
1486 			STAILQ_INIT(&sb->uxst_mbq);
1487 		else {
1488 			STAILQ_FIRST(&sb->uxst_mbq) = last;
1489 			MPASS(last->m_len > lastlen);
1490 			last->m_len -= lastlen;
1491 			last->m_data += lastlen;
1492 		}
1493 		MPASS(sb->sb_acc >= datalen);
1494 		sb->sb_acc -= datalen;
1495 		sb->sb_ccc -= datalen;
1496 		MPASS(sb->sb_ctl >= ctl);
1497 		sb->sb_ctl -= ctl;
1498 		MPASS(sb->sb_mbcnt >= mbcnt);
1499 		sb->sb_mbcnt -= mbcnt;
1500 		UIPC_STREAM_SBCHECK(sb);
1501 		if (__predict_true(sb->uxst_peer != NULL)) {
1502 			struct unpcb *unp2;
1503 			bool aio;
1504 
1505 			if ((aio = sb->uxst_flags & UXST_PEER_AIO))
1506 				sb->uxst_flags &= ~UXST_PEER_AIO;
1507 
1508 			uipc_wakeup_writer(so);
1509 			/*
1510 			 * XXXGL: need to go through uipc_lock_peer() after
1511 			 * the receive buffer lock dropped, it was protecting
1512 			 * us from unp_soisdisconnected().  The aio workarounds
1513 			 * should be refactored to the aio(4) side.
1514 			 */
1515 			if (aio && uipc_lock_peer(so, &unp2) == 0) {
1516 				struct socket *so2 = unp2->unp_socket;
1517 
1518 				SOCK_SENDBUF_LOCK(so2);
1519 				so2->so_snd.sb_ccc -= datalen;
1520 				sowakeup_aio(so2, SO_SND);
1521 				SOCK_SENDBUF_UNLOCK(so2);
1522 				UNP_PCB_UNLOCK(unp2);
1523 			}
1524 		} else
1525 			SOCK_RECVBUF_UNLOCK(so);
1526 	} else
1527 		SOCK_RECVBUF_UNLOCK(so);
1528 
1529 	while (control != NULL && control->m_type == MT_CONTROL) {
1530 		if (!peek) {
1531 			/*
1532 			 * unp_externalize() failure must abort entire read(2).
1533 			 * Such failure should also free the problematic
1534 			 * control, but link back the remaining data to the head
1535 			 * of the buffer, so that socket is not left in a state
1536 			 * where it can't progress forward with reading.
1537 			 * Probability of such a failure is really low, so it
1538 			 * is fine that we need to perform pretty complex
1539 			 * operation here to reconstruct the buffer.
1540 			 */
1541 			error = unp_externalize(control, controlp, flags);
1542 			control = m_free(control);
1543 			if (__predict_false(error && control != NULL)) {
1544 				struct mchain cmc;
1545 
1546 				mc_init_m(&cmc, control);
1547 
1548 				SOCK_RECVBUF_LOCK(so);
1549 				MPASS(!(sb->sb_state & SBS_CANTRCVMORE));
1550 
1551 				if (__predict_false(cmc.mc_len + sb->sb_ccc +
1552 				    sb->sb_ctl > sb->sb_hiwat)) {
1553 					/*
1554 					 * Too bad, while unp_externalize() was
1555 					 * failing, the other side had filled
1556 					 * the buffer and we can't prepend data
1557 					 * back. Losing data!
1558 					 */
1559 					SOCK_RECVBUF_UNLOCK(so);
1560 					SOCK_IO_RECV_UNLOCK(so);
1561 					unp_scan(mc_first(&cmc),
1562 					    unp_freerights);
1563 					mc_freem(&cmc);
1564 					return (error);
1565 				}
1566 
1567 				UIPC_STREAM_SBCHECK(sb);
1568 				/* XXXGL: STAILQ_PREPEND */
1569 				STAILQ_CONCAT(&cmc.mc_q, &sb->uxst_mbq);
1570 				STAILQ_SWAP(&cmc.mc_q, &sb->uxst_mbq, mbuf);
1571 
1572 				sb->sb_ctl = sb->sb_acc = sb->sb_ccc =
1573 				    sb->sb_mbcnt = 0;
1574 				STAILQ_FOREACH(m, &sb->uxst_mbq, m_stailq) {
1575 					if (m->m_type == MT_DATA) {
1576 						sb->sb_acc += m->m_len;
1577 						sb->sb_ccc += m->m_len;
1578 					} else {
1579 						sb->sb_ctl += m->m_len;
1580 					}
1581 					sb->sb_mbcnt += MSIZE;
1582 					if (m->m_flags & M_EXT)
1583 						sb->sb_mbcnt +=
1584 						    m->m_ext.ext_size;
1585 				}
1586 				UIPC_STREAM_SBCHECK(sb);
1587 				SOCK_RECVBUF_UNLOCK(so);
1588 				SOCK_IO_RECV_UNLOCK(so);
1589 				return (error);
1590 			}
1591 			if (controlp != NULL) {
1592 				while (*controlp != NULL)
1593 					controlp = &(*controlp)->m_next;
1594 			}
1595 		} else {
1596 			/*
1597 			 * XXXGL
1598 			 *
1599 			 * In MSG_PEEK case control is not externalized.  This
1600 			 * means we are leaking some kernel pointers to the
1601 			 * userland.  They are useless to a law-abiding
1602 			 * application, but may be useful to a malware.  This
1603 			 * is what the historical implementation in the
1604 			 * soreceive_generic() did. To be improved?
1605 			 */
1606 			if (controlp != NULL) {
1607 				*controlp = m_copym(control, 0, control->m_len,
1608 				    M_WAITOK);
1609 				controlp = &(*controlp)->m_next;
1610 			}
1611 			control = STAILQ_NEXT(control, m_stailq);
1612 		}
1613 	}
1614 
1615 	for (m = first; m != last; m = next) {
1616 		next = STAILQ_NEXT(m, m_stailq);
1617 		error = uiomove(mtod(m, char *), m->m_len, uio);
1618 		if (__predict_false(error)) {
1619 			SOCK_IO_RECV_UNLOCK(so);
1620 			if (!peek)
1621 				for (; m != last; m = next) {
1622 					next = STAILQ_NEXT(m, m_stailq);
1623 					m_free(m);
1624 				}
1625 			return (error);
1626 		}
1627 		if (!peek)
1628 			m_free(m);
1629 	}
1630 	if (last != NULL && lastlen > 0) {
1631 		if (!peek) {
1632 			MPASS(!(m->m_flags & M_PKTHDR));
1633 			MPASS(last->m_data - M_START(last) >= lastlen);
1634 			error = uiomove(mtod(last, char *) - lastlen,
1635 			    lastlen, uio);
1636 		} else
1637 			error = uiomove(mtod(last, char *), lastlen, uio);
1638 		if (__predict_false(error)) {
1639 			SOCK_IO_RECV_UNLOCK(so);
1640 			return (error);
1641 		}
1642 	}
1643 	if (waitall && !(flags & MSG_EOR) && uio->uio_resid > 0)
1644 		goto restart;
1645 	SOCK_IO_RECV_UNLOCK(so);
1646 
1647 	if (flagsp != NULL)
1648 		*flagsp |= flags;
1649 
1650 	uio->uio_td->td_ru.ru_msgrcv++;
1651 
1652 	return (0);
1653 }
1654 
1655 static int
uipc_sopoll_stream_or_seqpacket(struct socket * so,int events,struct thread * td)1656 uipc_sopoll_stream_or_seqpacket(struct socket *so, int events,
1657     struct thread *td)
1658 {
1659 	struct unpcb *unp = sotounpcb(so);
1660 	int revents;
1661 
1662 	UNP_PCB_LOCK(unp);
1663 	if (SOLISTENING(so)) {
1664 		/* The above check is safe, since conversion to listening uses
1665 		 * both protocol and socket lock.
1666 		 */
1667 		SOCK_LOCK(so);
1668 		if (!(events & (POLLIN | POLLRDNORM)))
1669 			revents = 0;
1670 		else if (!TAILQ_EMPTY(&so->sol_comp))
1671 			revents = events & (POLLIN | POLLRDNORM);
1672 		else if (so->so_error)
1673 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
1674 		else {
1675 			selrecord(td, &so->so_rdsel);
1676 			revents = 0;
1677 		}
1678 		SOCK_UNLOCK(so);
1679 	} else {
1680 		if (so->so_state & SS_ISDISCONNECTED)
1681 			revents = POLLHUP;
1682 		else
1683 			revents = 0;
1684 		if (events & (POLLIN | POLLRDNORM | POLLRDHUP)) {
1685 			SOCK_RECVBUF_LOCK(so);
1686 			if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat ||
1687 			    so->so_error || so->so_rerror)
1688 				revents |= events & (POLLIN | POLLRDNORM);
1689 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1690 				revents |= events &
1691 				    (POLLIN | POLLRDNORM | POLLRDHUP);
1692 			if (!(revents & (POLLIN | POLLRDNORM | POLLRDHUP))) {
1693 				selrecord(td, &so->so_rdsel);
1694 				so->so_rcv.sb_flags |= SB_SEL;
1695 			}
1696 			SOCK_RECVBUF_UNLOCK(so);
1697 		}
1698 		if (events & (POLLOUT | POLLWRNORM)) {
1699 			struct socket *so2 = so->so_rcv.uxst_peer;
1700 
1701 			if (so2 != NULL) {
1702 				struct sockbuf *sb = &so2->so_rcv;
1703 
1704 				SOCK_RECVBUF_LOCK(so2);
1705 				if (uipc_stream_sbspace(sb) >= sb->sb_lowat)
1706 					revents |= events &
1707 					    (POLLOUT | POLLWRNORM);
1708 				if (sb->sb_state & SBS_CANTRCVMORE)
1709 					revents |= POLLHUP;
1710 				if (!(revents & (POLLOUT | POLLWRNORM))) {
1711 					so2->so_rcv.uxst_flags |= UXST_PEER_SEL;
1712 					selrecord(td, &so->so_wrsel);
1713 				}
1714 				SOCK_RECVBUF_UNLOCK(so2);
1715 			} else
1716 				selrecord(td, &so->so_wrsel);
1717 		}
1718 	}
1719 	UNP_PCB_UNLOCK(unp);
1720 	return (revents);
1721 }
1722 
1723 static void
uipc_wrknl_lock(void * arg)1724 uipc_wrknl_lock(void *arg)
1725 {
1726 	struct socket *so = arg;
1727 	struct unpcb *unp = sotounpcb(so);
1728 
1729 retry:
1730 	if (SOLISTENING(so)) {
1731 		SOLISTEN_LOCK(so);
1732 	} else {
1733 		UNP_PCB_LOCK(unp);
1734 		if (__predict_false(SOLISTENING(so))) {
1735 			UNP_PCB_UNLOCK(unp);
1736 			goto retry;
1737 		}
1738 		if (so->so_rcv.uxst_peer != NULL)
1739 			SOCK_RECVBUF_LOCK(so->so_rcv.uxst_peer);
1740 	}
1741 }
1742 
1743 static void
uipc_wrknl_unlock(void * arg)1744 uipc_wrknl_unlock(void *arg)
1745 {
1746 	struct socket *so = arg;
1747 	struct unpcb *unp = sotounpcb(so);
1748 
1749 	if (SOLISTENING(so))
1750 		SOLISTEN_UNLOCK(so);
1751 	else {
1752 		if (so->so_rcv.uxst_peer != NULL)
1753 			SOCK_RECVBUF_UNLOCK(so->so_rcv.uxst_peer);
1754 		UNP_PCB_UNLOCK(unp);
1755 	}
1756 }
1757 
1758 static void
uipc_wrknl_assert_lock(void * arg,int what)1759 uipc_wrknl_assert_lock(void *arg, int what)
1760 {
1761 	struct socket *so = arg;
1762 
1763 	if (SOLISTENING(so)) {
1764 		if (what == LA_LOCKED)
1765 			SOLISTEN_LOCK_ASSERT(so);
1766 		else
1767 			SOLISTEN_UNLOCK_ASSERT(so);
1768 	} else {
1769 		/*
1770 		 * The pr_soreceive method will put a note without owning the
1771 		 * unp lock, so we can't assert it here.  But we can safely
1772 		 * dereference uxst_peer pointer, since receive buffer lock
1773 		 * is assumed to be held here.
1774 		 */
1775 		if (what == LA_LOCKED && so->so_rcv.uxst_peer != NULL)
1776 			SOCK_RECVBUF_LOCK_ASSERT(so->so_rcv.uxst_peer);
1777 	}
1778 }
1779 
1780 static void
uipc_filt_sowdetach(struct knote * kn)1781 uipc_filt_sowdetach(struct knote *kn)
1782 {
1783 	struct socket *so = kn->kn_fp->f_data;
1784 
1785 	uipc_wrknl_lock(so);
1786 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
1787 	uipc_wrknl_unlock(so);
1788 }
1789 
1790 static int
uipc_filt_sowrite(struct knote * kn,long hint)1791 uipc_filt_sowrite(struct knote *kn, long hint)
1792 {
1793 	struct socket *so = kn->kn_fp->f_data, *so2;
1794 	struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1795 
1796 	if (SOLISTENING(so))
1797 		return (0);
1798 
1799 	if (unp2 == NULL) {
1800 		if (so->so_state & SS_ISDISCONNECTED) {
1801 			kn->kn_flags |= EV_EOF;
1802 			kn->kn_fflags = so->so_error;
1803 			return (1);
1804 		} else
1805 			return (0);
1806 	}
1807 
1808 	so2 = unp2->unp_socket;
1809 	SOCK_RECVBUF_LOCK_ASSERT(so2);
1810 	kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1811 
1812 	if (so2->so_rcv.sb_state & SBS_CANTRCVMORE) {
1813 		/*
1814 		 * XXXGL: maybe kn->kn_flags |= EV_EOF ?
1815 		 */
1816 		return (1);
1817 	} else if (kn->kn_sfflags & NOTE_LOWAT)
1818 		return (kn->kn_data >= kn->kn_sdata);
1819 	else
1820 		return (kn->kn_data >= so2->so_rcv.sb_lowat);
1821 }
1822 
1823 static int
uipc_filt_soempty(struct knote * kn,long hint)1824 uipc_filt_soempty(struct knote *kn, long hint)
1825 {
1826 	struct socket *so = kn->kn_fp->f_data, *so2;
1827 	struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1828 
1829 	if (SOLISTENING(so) || unp2 == NULL)
1830 		return (1);
1831 
1832 	so2 = unp2->unp_socket;
1833 	SOCK_RECVBUF_LOCK_ASSERT(so2);
1834 	kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1835 
1836 	return (kn->kn_data == 0 ? 1 : 0);
1837 }
1838 
1839 static const struct filterops uipc_write_filtops = {
1840 	.f_isfd = 1,
1841 	.f_detach = uipc_filt_sowdetach,
1842 	.f_event = uipc_filt_sowrite,
1843 };
1844 static const struct filterops uipc_empty_filtops = {
1845 	.f_isfd = 1,
1846 	.f_detach = uipc_filt_sowdetach,
1847 	.f_event = uipc_filt_soempty,
1848 };
1849 
1850 static int
uipc_kqfilter_stream_or_seqpacket(struct socket * so,struct knote * kn)1851 uipc_kqfilter_stream_or_seqpacket(struct socket *so, struct knote *kn)
1852 {
1853 	struct unpcb *unp = sotounpcb(so);
1854 	struct knlist *knl;
1855 
1856 	switch (kn->kn_filter) {
1857 	case EVFILT_READ:
1858 		return (sokqfilter_generic(so, kn));
1859 	case EVFILT_WRITE:
1860 		kn->kn_fop = &uipc_write_filtops;
1861 		break;
1862 	case EVFILT_EMPTY:
1863 		kn->kn_fop = &uipc_empty_filtops;
1864 		break;
1865 	default:
1866 		return (EINVAL);
1867 	}
1868 
1869 	knl = &so->so_wrsel.si_note;
1870 	UNP_PCB_LOCK(unp);
1871 	if (SOLISTENING(so)) {
1872 		SOLISTEN_LOCK(so);
1873 		knlist_add(knl, kn, 1);
1874 		SOLISTEN_UNLOCK(so);
1875 	} else {
1876 		struct socket *so2 = so->so_rcv.uxst_peer;
1877 
1878 		if (so2 != NULL)
1879 			SOCK_RECVBUF_LOCK(so2);
1880 		knlist_add(knl, kn, 1);
1881 		if (so2 != NULL)
1882 			SOCK_RECVBUF_UNLOCK(so2);
1883 	}
1884 	UNP_PCB_UNLOCK(unp);
1885 	return (0);
1886 }
1887 
1888 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1889 static inline bool
uipc_dgram_sbspace(struct sockbuf * sb,u_int cc,u_int mbcnt)1890 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1891 {
1892 	u_int bleft, mleft;
1893 
1894 	/*
1895 	 * Negative space may happen if send(2) is followed by
1896 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1897 	 */
1898 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1899 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1900 		return (false);
1901 
1902 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1903 		return (false);
1904 
1905 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1906 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1907 
1908 	return (bleft >= cc && mleft >= mbcnt);
1909 }
1910 
1911 /*
1912  * PF_UNIX/SOCK_DGRAM send
1913  *
1914  * Allocate a record consisting of 3 mbufs in the sequence of
1915  * from -> control -> data and append it to the socket buffer.
1916  *
1917  * The first mbuf carries sender's name and is a pkthdr that stores
1918  * overall length of datagram, its memory consumption and control length.
1919  */
1920 #define	ctllen	PH_loc.thirtytwo[1]
1921 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1922     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1923 static int
uipc_sosend_dgram(struct socket * so,struct sockaddr * addr,struct uio * uio,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1924 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1925     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1926 {
1927 	struct unpcb *unp, *unp2;
1928 	const struct sockaddr *from;
1929 	struct socket *so2;
1930 	struct sockbuf *sb;
1931 	struct mchain cmc = MCHAIN_INITIALIZER(&cmc);
1932 	struct mbuf *f;
1933 	u_int cc, ctl, mbcnt;
1934 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1935 	int error;
1936 
1937 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1938 
1939 	error = 0;
1940 	f = NULL;
1941 
1942 	if (__predict_false(flags & MSG_OOB)) {
1943 		error = EOPNOTSUPP;
1944 		goto out;
1945 	}
1946 	if (m == NULL) {
1947 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1948 			error = EMSGSIZE;
1949 			goto out;
1950 		}
1951 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1952 		if (__predict_false(m == NULL)) {
1953 			error = EFAULT;
1954 			goto out;
1955 		}
1956 		f = m_gethdr(M_WAITOK, MT_SONAME);
1957 		cc = m->m_pkthdr.len;
1958 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1959 		if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1960 			goto out;
1961 	} else {
1962 		struct mchain mc;
1963 
1964 		uipc_reset_kernel_mbuf(m, &mc);
1965 		cc = mc.mc_len;
1966 		mbcnt = mc.mc_mlen;
1967 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1968 			error = EMSGSIZE;
1969 			goto out;
1970 		}
1971 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1972 			error = ENOBUFS;
1973 			goto out;
1974 		}
1975 	}
1976 
1977 	unp = sotounpcb(so);
1978 	MPASS(unp);
1979 
1980 	/*
1981 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1982 	 * and avoid this lock, which is not only extraneous, but also being
1983 	 * released, thus still leaving possibility for a race.  We can easily
1984 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1985 	 * is more difficult to invent something to handle so_error.
1986 	 */
1987 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1988 	if (error)
1989 		goto out2;
1990 	SOCK_SENDBUF_LOCK(so);
1991 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1992 		SOCK_SENDBUF_UNLOCK(so);
1993 		error = EPIPE;
1994 		goto out3;
1995 	}
1996 	if (so->so_error != 0) {
1997 		error = so->so_error;
1998 		so->so_error = 0;
1999 		SOCK_SENDBUF_UNLOCK(so);
2000 		goto out3;
2001 	}
2002 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
2003 		SOCK_SENDBUF_UNLOCK(so);
2004 		error = EDESTADDRREQ;
2005 		goto out3;
2006 	}
2007 	SOCK_SENDBUF_UNLOCK(so);
2008 
2009 	if (addr != NULL) {
2010 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
2011 			goto out3;
2012 		UNP_PCB_LOCK_ASSERT(unp);
2013 		unp2 = unp->unp_conn;
2014 		UNP_PCB_LOCK_ASSERT(unp2);
2015 	} else {
2016 		UNP_PCB_LOCK(unp);
2017 		unp2 = unp_pcb_lock_peer(unp);
2018 		if (unp2 == NULL) {
2019 			UNP_PCB_UNLOCK(unp);
2020 			error = ENOTCONN;
2021 			goto out3;
2022 		}
2023 	}
2024 
2025 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
2026 		unp_addsockcred(td, &cmc, unp2->unp_flags);
2027 	if (unp->unp_addr != NULL)
2028 		from = (struct sockaddr *)unp->unp_addr;
2029 	else
2030 		from = &sun_noname;
2031 	f->m_len = from->sa_len;
2032 	MPASS(from->sa_len <= MLEN);
2033 	bcopy(from, mtod(f, void *), from->sa_len);
2034 
2035 	/*
2036 	 * Concatenate mbufs: from -> control -> data.
2037 	 * Save overall cc and mbcnt in "from" mbuf.
2038 	 */
2039 	if (!STAILQ_EMPTY(&cmc.mc_q)) {
2040 		f->m_next = mc_first(&cmc);
2041 		mc_last(&cmc)->m_next = m;
2042 		/* XXXGL: This is dirty as well as rollback after ENOBUFS. */
2043 		STAILQ_INIT(&cmc.mc_q);
2044 	} else
2045 		f->m_next = m;
2046 	m = NULL;
2047 	ctl = f->m_len + cmc.mc_len;
2048 	mbcnt += cmc.mc_mlen;
2049 #ifdef INVARIANTS
2050 	dcc = dctl = dmbcnt = 0;
2051 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
2052 		if (mb->m_type == MT_DATA)
2053 			dcc += mb->m_len;
2054 		else
2055 			dctl += mb->m_len;
2056 		dmbcnt += MSIZE;
2057 		if (mb->m_flags & M_EXT)
2058 			dmbcnt += mb->m_ext.ext_size;
2059 	}
2060 	MPASS(dcc == cc);
2061 	MPASS(dctl == ctl);
2062 	MPASS(dmbcnt == mbcnt);
2063 #endif
2064 	f->m_pkthdr.len = cc + ctl;
2065 	f->m_pkthdr.memlen = mbcnt;
2066 	f->m_pkthdr.ctllen = ctl;
2067 
2068 	/*
2069 	 * Destination socket buffer selection.
2070 	 *
2071 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
2072 	 * destination address is supplied, create a temporary connection for
2073 	 * the run time of the function (see call to unp_connectat() above and
2074 	 * to unp_disconnect() below).  We distinguish them by condition of
2075 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
2076 	 * that condition, since, again, through the run time of this code we
2077 	 * are always connected.  For such "unconnected" sends, the destination
2078 	 * buffer would be the receive buffer of destination socket so2.
2079 	 *
2080 	 * For connected sends, data lands on the send buffer of the sender's
2081 	 * socket "so".  Then, if we just added the very first datagram
2082 	 * on this send buffer, we need to add the send buffer on to the
2083 	 * receiving socket's buffer list.  We put ourselves on top of the
2084 	 * list.  Such logic gives infrequent senders priority over frequent
2085 	 * senders.
2086 	 *
2087 	 * Note on byte count management. As long as event methods kevent(2),
2088 	 * select(2) are not protocol specific (yet), we need to maintain
2089 	 * meaningful values on the receive buffer.  So, the receive buffer
2090 	 * would accumulate counters from all connected buffers potentially
2091 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
2092 	 */
2093 	so2 = unp2->unp_socket;
2094 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
2095 	SOCK_RECVBUF_LOCK(so2);
2096 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
2097 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
2098 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
2099 			    uxdg_clist);
2100 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
2101 		sb->uxdg_cc += cc + ctl;
2102 		sb->uxdg_ctl += ctl;
2103 		sb->uxdg_mbcnt += mbcnt;
2104 		so2->so_rcv.sb_acc += cc + ctl;
2105 		so2->so_rcv.sb_ccc += cc + ctl;
2106 		so2->so_rcv.sb_ctl += ctl;
2107 		so2->so_rcv.sb_mbcnt += mbcnt;
2108 		sorwakeup_locked(so2);
2109 		f = NULL;
2110 	} else {
2111 		soroverflow_locked(so2);
2112 		error = ENOBUFS;
2113 		if (f->m_next->m_type == MT_CONTROL) {
2114 			STAILQ_FIRST(&cmc.mc_q) = f->m_next;
2115 			f->m_next = NULL;
2116 		}
2117 	}
2118 
2119 	if (addr != NULL)
2120 		unp_disconnect(unp, unp2);
2121 	else
2122 		unp_pcb_unlock_pair(unp, unp2);
2123 
2124 	td->td_ru.ru_msgsnd++;
2125 
2126 out3:
2127 	SOCK_IO_SEND_UNLOCK(so);
2128 out2:
2129 	if (!mc_empty(&cmc))
2130 		unp_scan(mc_first(&cmc), unp_freerights);
2131 out:
2132 	if (f)
2133 		m_freem(f);
2134 	mc_freem(&cmc);
2135 	if (m)
2136 		m_freem(m);
2137 
2138 	return (error);
2139 }
2140 
2141 /*
2142  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
2143  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
2144  * and needs to be linked onto uxdg_peeked of receive socket buffer.
2145  */
2146 static int
uipc_peek_dgram(struct socket * so,struct mbuf * m,struct sockaddr ** psa,struct uio * uio,struct mbuf ** controlp,int * flagsp)2147 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
2148     struct uio *uio, struct mbuf **controlp, int *flagsp)
2149 {
2150 	ssize_t len = 0;
2151 	int error;
2152 
2153 	so->so_rcv.uxdg_peeked = m;
2154 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
2155 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
2156 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
2157 	SOCK_RECVBUF_UNLOCK(so);
2158 
2159 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2160 	if (psa != NULL)
2161 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2162 
2163 	m = m->m_next;
2164 	KASSERT(m, ("%s: no data or control after soname", __func__));
2165 
2166 	/*
2167 	 * With MSG_PEEK the control isn't executed, just copied.
2168 	 */
2169 	while (m != NULL && m->m_type == MT_CONTROL) {
2170 		if (controlp != NULL) {
2171 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
2172 			controlp = &(*controlp)->m_next;
2173 		}
2174 		m = m->m_next;
2175 	}
2176 	KASSERT(m == NULL || m->m_type == MT_DATA,
2177 	    ("%s: not MT_DATA mbuf %p", __func__, m));
2178 	while (m != NULL && uio->uio_resid > 0) {
2179 		len = uio->uio_resid;
2180 		if (len > m->m_len)
2181 			len = m->m_len;
2182 		error = uiomove(mtod(m, char *), (int)len, uio);
2183 		if (error) {
2184 			SOCK_IO_RECV_UNLOCK(so);
2185 			return (error);
2186 		}
2187 		if (len == m->m_len)
2188 			m = m->m_next;
2189 	}
2190 	SOCK_IO_RECV_UNLOCK(so);
2191 
2192 	if (flagsp != NULL) {
2193 		if (m != NULL) {
2194 			if (*flagsp & MSG_TRUNC) {
2195 				/* Report real length of the packet */
2196 				uio->uio_resid -= m_length(m, NULL) - len;
2197 			}
2198 			*flagsp |= MSG_TRUNC;
2199 		} else
2200 			*flagsp &= ~MSG_TRUNC;
2201 	}
2202 
2203 	return (0);
2204 }
2205 
2206 /*
2207  * PF_UNIX/SOCK_DGRAM receive
2208  */
2209 static int
uipc_soreceive_dgram(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)2210 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2211     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2212 {
2213 	struct sockbuf *sb = NULL;
2214 	struct mbuf *m;
2215 	int flags, error;
2216 	ssize_t len = 0;
2217 	bool nonblock;
2218 
2219 	MPASS(mp0 == NULL);
2220 
2221 	if (psa != NULL)
2222 		*psa = NULL;
2223 	if (controlp != NULL)
2224 		*controlp = NULL;
2225 
2226 	flags = flagsp != NULL ? *flagsp : 0;
2227 	nonblock = (so->so_state & SS_NBIO) ||
2228 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
2229 
2230 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2231 	if (__predict_false(error))
2232 		return (error);
2233 
2234 	/*
2235 	 * Loop blocking while waiting for a datagram.  Prioritize connected
2236 	 * peers over unconnected sends.  Set sb to selected socket buffer
2237 	 * containing an mbuf on exit from the wait loop.  A datagram that
2238 	 * had already been peeked at has top priority.
2239 	 */
2240 	SOCK_RECVBUF_LOCK(so);
2241 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
2242 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
2243 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
2244 		if (so->so_error) {
2245 			error = so->so_error;
2246 			if (!(flags & MSG_PEEK))
2247 				so->so_error = 0;
2248 			SOCK_RECVBUF_UNLOCK(so);
2249 			SOCK_IO_RECV_UNLOCK(so);
2250 			return (error);
2251 		}
2252 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2253 		    uio->uio_resid == 0) {
2254 			SOCK_RECVBUF_UNLOCK(so);
2255 			SOCK_IO_RECV_UNLOCK(so);
2256 			return (0);
2257 		}
2258 		if (nonblock) {
2259 			SOCK_RECVBUF_UNLOCK(so);
2260 			SOCK_IO_RECV_UNLOCK(so);
2261 			return (EWOULDBLOCK);
2262 		}
2263 		error = sbwait(so, SO_RCV);
2264 		if (error) {
2265 			SOCK_RECVBUF_UNLOCK(so);
2266 			SOCK_IO_RECV_UNLOCK(so);
2267 			return (error);
2268 		}
2269 	}
2270 
2271 	if (sb == NULL)
2272 		sb = &so->so_rcv;
2273 	else if (m == NULL)
2274 		m = STAILQ_FIRST(&sb->uxdg_mb);
2275 	else
2276 		MPASS(m == so->so_rcv.uxdg_peeked);
2277 
2278 	MPASS(sb->uxdg_cc > 0);
2279 	M_ASSERTPKTHDR(m);
2280 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2281 
2282 	if (uio->uio_td)
2283 		uio->uio_td->td_ru.ru_msgrcv++;
2284 
2285 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
2286 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
2287 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
2288 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
2289 	} else
2290 		so->so_rcv.uxdg_peeked = NULL;
2291 
2292 	sb->uxdg_cc -= m->m_pkthdr.len;
2293 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
2294 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
2295 
2296 	if (__predict_false(flags & MSG_PEEK))
2297 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
2298 
2299 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
2300 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
2301 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
2302 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
2303 	SOCK_RECVBUF_UNLOCK(so);
2304 
2305 	if (psa != NULL)
2306 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2307 	m = m_free(m);
2308 	KASSERT(m, ("%s: no data or control after soname", __func__));
2309 
2310 	/*
2311 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2312 	 * queue.
2313 	 *
2314 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2315 	 * in the first mbuf chain on the socket buffer.  We call into the
2316 	 * unp_externalize() to perform externalization (or freeing if
2317 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
2318 	 * without MT_DATA mbufs.
2319 	 */
2320 	while (m != NULL && m->m_type == MT_CONTROL) {
2321 		error = unp_externalize(m, controlp, flags);
2322 		m = m_free(m);
2323 		if (error != 0) {
2324 			SOCK_IO_RECV_UNLOCK(so);
2325 			unp_scan(m, unp_freerights);
2326 			m_freem(m);
2327 			return (error);
2328 		}
2329 		if (controlp != NULL) {
2330 			while (*controlp != NULL)
2331 				controlp = &(*controlp)->m_next;
2332 		}
2333 	}
2334 	KASSERT(m == NULL || m->m_type == MT_DATA,
2335 	    ("%s: not MT_DATA mbuf %p", __func__, m));
2336 	while (m != NULL && uio->uio_resid > 0) {
2337 		len = uio->uio_resid;
2338 		if (len > m->m_len)
2339 			len = m->m_len;
2340 		error = uiomove(mtod(m, char *), (int)len, uio);
2341 		if (error) {
2342 			SOCK_IO_RECV_UNLOCK(so);
2343 			m_freem(m);
2344 			return (error);
2345 		}
2346 		if (len == m->m_len)
2347 			m = m_free(m);
2348 		else {
2349 			m->m_data += len;
2350 			m->m_len -= len;
2351 		}
2352 	}
2353 	SOCK_IO_RECV_UNLOCK(so);
2354 
2355 	if (m != NULL) {
2356 		if (flagsp != NULL) {
2357 			if (flags & MSG_TRUNC) {
2358 				/* Report real length of the packet */
2359 				uio->uio_resid -= m_length(m, NULL);
2360 			}
2361 			*flagsp |= MSG_TRUNC;
2362 		}
2363 		m_freem(m);
2364 	} else if (flagsp != NULL)
2365 		*flagsp &= ~MSG_TRUNC;
2366 
2367 	return (0);
2368 }
2369 
2370 static int
uipc_sendfile_wait(struct socket * so,off_t need,int * space)2371 uipc_sendfile_wait(struct socket *so, off_t need, int *space)
2372 {
2373 	struct unpcb *unp2;
2374 	struct socket *so2;
2375 	struct sockbuf *sb;
2376 	bool nonblock, sockref;
2377 	int error;
2378 
2379 	MPASS(so->so_type == SOCK_STREAM);
2380 	MPASS(need > 0);
2381 	MPASS(space != NULL);
2382 
2383 	nonblock = so->so_state & SS_NBIO;
2384 	sockref = false;
2385 
2386 	if (__predict_false((so->so_state & SS_ISCONNECTED) == 0))
2387 		return (ENOTCONN);
2388 
2389 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2390 		return (error);
2391 
2392 	so2 = unp2->unp_socket;
2393 	sb = &so2->so_rcv;
2394 	SOCK_RECVBUF_LOCK(so2);
2395 	UNP_PCB_UNLOCK(unp2);
2396 	while ((*space = uipc_stream_sbspace(sb)) < need &&
2397 	    (*space < so->so_snd.sb_hiwat / 2)) {
2398 		UIPC_STREAM_SBCHECK(sb);
2399 		if (nonblock) {
2400 			SOCK_RECVBUF_UNLOCK(so2);
2401 			return (EAGAIN);
2402 		}
2403 		if (!sockref)
2404 			soref(so2);
2405 		error = sbwait(so2, SO_RCV);
2406 		if (error == 0 &&
2407 		    __predict_false(sb->sb_state & SBS_CANTRCVMORE))
2408 			error = EPIPE;
2409 		if (error) {
2410 			SOCK_RECVBUF_UNLOCK(so2);
2411 			sorele(so2);
2412 			return (error);
2413 		}
2414 	}
2415 	UIPC_STREAM_SBCHECK(sb);
2416 	SOCK_RECVBUF_UNLOCK(so2);
2417 	if (sockref)
2418 		sorele(so2);
2419 
2420 	return (0);
2421 }
2422 
2423 /*
2424  * Although this is a pr_send method, for unix(4) it is called only via
2425  * sendfile(2) path.  This means we can be sure that mbufs are clear of
2426  * any extra flags and don't require any conditioning.
2427  */
2428 static int
uipc_sendfile(struct socket * so,int flags,struct mbuf * m,struct sockaddr * from,struct mbuf * control,struct thread * td)2429 uipc_sendfile(struct socket *so, int flags, struct mbuf *m,
2430     struct sockaddr *from, struct mbuf *control, struct thread *td)
2431 {
2432 	struct mchain mc;
2433 	struct unpcb *unp2;
2434 	struct socket *so2;
2435 	struct sockbuf *sb;
2436 	bool notready, wakeup;
2437 	int error;
2438 
2439 	MPASS(so->so_type == SOCK_STREAM);
2440 	MPASS(from == NULL && control == NULL);
2441 	KASSERT(!(m->m_flags & M_EXTPG),
2442 	    ("unix(4): TLS sendfile(2) not supported"));
2443 
2444 	notready = flags & PRUS_NOTREADY;
2445 
2446 	if (__predict_false((so->so_state & SS_ISCONNECTED) == 0)) {
2447 		error = ENOTCONN;
2448 		goto out;
2449 	}
2450 
2451 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2452 		goto out;
2453 
2454 	mc_init_m(&mc, m);
2455 
2456 	so2 = unp2->unp_socket;
2457 	sb = &so2->so_rcv;
2458 	SOCK_RECVBUF_LOCK(so2);
2459 	UNP_PCB_UNLOCK(unp2);
2460 	UIPC_STREAM_SBCHECK(sb);
2461 	sb->sb_ccc += mc.mc_len;
2462 	sb->sb_mbcnt += mc.mc_mlen;
2463 	if (sb->uxst_fnrdy == NULL) {
2464 		if (notready) {
2465 			wakeup = false;
2466 			STAILQ_FOREACH(m, &mc.mc_q, m_stailq) {
2467 				if (m->m_flags & M_NOTREADY) {
2468 					sb->uxst_fnrdy = m;
2469 					break;
2470 				} else {
2471 					sb->sb_acc += m->m_len;
2472 					wakeup = true;
2473 				}
2474 			}
2475 		} else {
2476 			wakeup = true;
2477 			sb->sb_acc += mc.mc_len;
2478 		}
2479 	} else {
2480 		wakeup = false;
2481 	}
2482 	STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
2483 	UIPC_STREAM_SBCHECK(sb);
2484 	if (wakeup)
2485 		sorwakeup_locked(so2);
2486 	else
2487 		SOCK_RECVBUF_UNLOCK(so2);
2488 
2489 	return (0);
2490 out:
2491 	/*
2492 	 * In case of not ready data, uipc_ready() is responsible
2493 	 * for freeing memory.
2494 	 */
2495 	if (m != NULL && !notready)
2496 		m_freem(m);
2497 
2498 	return (error);
2499 }
2500 
2501 static int
uipc_sbready(struct sockbuf * sb,struct mbuf * m,int count)2502 uipc_sbready(struct sockbuf *sb, struct mbuf *m, int count)
2503 {
2504 	bool blocker;
2505 
2506 	/* assert locked */
2507 
2508 	blocker = (sb->uxst_fnrdy == m);
2509 	STAILQ_FOREACH_FROM(m, &sb->uxst_mbq, m_stailq) {
2510 		if (count > 0) {
2511 			MPASS(m->m_flags & M_NOTREADY);
2512 			m->m_flags &= ~M_NOTREADY;
2513 			if (blocker)
2514 				sb->sb_acc += m->m_len;
2515 			count--;
2516 		} else if (m->m_flags & M_NOTREADY)
2517 			break;
2518 		else if (blocker)
2519 			sb->sb_acc += m->m_len;
2520 	}
2521 	if (blocker) {
2522 		sb->uxst_fnrdy = m;
2523 		return (0);
2524 	} else
2525 		return (EINPROGRESS);
2526 }
2527 
2528 static bool
uipc_ready_scan(struct socket * so,struct mbuf * m,int count,int * errorp)2529 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
2530 {
2531 	struct mbuf *mb;
2532 	struct sockbuf *sb;
2533 
2534 	SOCK_LOCK(so);
2535 	if (SOLISTENING(so)) {
2536 		SOCK_UNLOCK(so);
2537 		return (false);
2538 	}
2539 	mb = NULL;
2540 	sb = &so->so_rcv;
2541 	SOCK_RECVBUF_LOCK(so);
2542 	if (sb->uxst_fnrdy != NULL) {
2543 		STAILQ_FOREACH(mb, &sb->uxst_mbq, m_stailq) {
2544 			if (mb == m) {
2545 				*errorp = uipc_sbready(sb, m, count);
2546 				break;
2547 			}
2548 		}
2549 	}
2550 	SOCK_RECVBUF_UNLOCK(so);
2551 	SOCK_UNLOCK(so);
2552 	return (mb != NULL);
2553 }
2554 
2555 static int
uipc_ready(struct socket * so,struct mbuf * m,int count)2556 uipc_ready(struct socket *so, struct mbuf *m, int count)
2557 {
2558 	struct unpcb *unp, *unp2;
2559 	int error;
2560 
2561 	MPASS(so->so_type == SOCK_STREAM);
2562 
2563 	if (__predict_true(uipc_lock_peer(so, &unp2) == 0)) {
2564 		struct socket *so2;
2565 		struct sockbuf *sb;
2566 
2567 		so2 = unp2->unp_socket;
2568 		sb = &so2->so_rcv;
2569 		SOCK_RECVBUF_LOCK(so2);
2570 		UNP_PCB_UNLOCK(unp2);
2571 		UIPC_STREAM_SBCHECK(sb);
2572 		error = uipc_sbready(sb, m, count);
2573 		UIPC_STREAM_SBCHECK(sb);
2574 		if (error == 0)
2575 			sorwakeup_locked(so2);
2576 		else
2577 			SOCK_RECVBUF_UNLOCK(so2);
2578 	} else {
2579 		/*
2580 		 * The receiving socket has been disconnected, but may still
2581 		 * be valid.  In this case, the not-ready mbufs are still
2582 		 * present in its socket buffer, so perform an exhaustive
2583 		 * search before giving up and freeing the mbufs.
2584 		 */
2585 		UNP_LINK_RLOCK();
2586 		LIST_FOREACH(unp, &unp_shead, unp_link) {
2587 			if (uipc_ready_scan(unp->unp_socket, m, count, &error))
2588 				break;
2589 		}
2590 		UNP_LINK_RUNLOCK();
2591 
2592 		if (unp == NULL) {
2593 			for (int i = 0; i < count; i++)
2594 				m = m_free(m);
2595 			return (ECONNRESET);
2596 		}
2597 	}
2598 	return (error);
2599 }
2600 
2601 static int
uipc_sense(struct socket * so,struct stat * sb)2602 uipc_sense(struct socket *so, struct stat *sb)
2603 {
2604 	struct unpcb *unp;
2605 
2606 	unp = sotounpcb(so);
2607 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
2608 
2609 	sb->st_blksize = so->so_snd.sb_hiwat;
2610 	sb->st_dev = NODEV;
2611 	sb->st_ino = unp->unp_ino;
2612 	return (0);
2613 }
2614 
2615 static int
uipc_shutdown(struct socket * so,enum shutdown_how how)2616 uipc_shutdown(struct socket *so, enum shutdown_how how)
2617 {
2618 	struct unpcb *unp = sotounpcb(so);
2619 	int error;
2620 
2621 	SOCK_LOCK(so);
2622 	if (SOLISTENING(so)) {
2623 		if (how != SHUT_WR) {
2624 			so->so_error = ECONNABORTED;
2625 			solisten_wakeup(so);    /* unlocks so */
2626 		} else
2627 			SOCK_UNLOCK(so);
2628 		return (ENOTCONN);
2629 	} else if ((so->so_state &
2630 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2631 		/*
2632 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
2633 		 * invoked on a datagram sockets, however historically we would
2634 		 * actually tear socket down.  This is known to be leveraged by
2635 		 * some applications to unblock process waiting in recv(2) by
2636 		 * other process that it shares that socket with.  Try to meet
2637 		 * both backward-compatibility and POSIX requirements by forcing
2638 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
2639 		 *
2640 		 * XXXGL: it remains unknown what applications expect this
2641 		 * behavior and is this isolated to unix/dgram or inet/dgram or
2642 		 * both.  See: D10351, D3039.
2643 		 */
2644 		error = ENOTCONN;
2645 		if (so->so_type != SOCK_DGRAM) {
2646 			SOCK_UNLOCK(so);
2647 			return (error);
2648 		}
2649 	} else
2650 		error = 0;
2651 	SOCK_UNLOCK(so);
2652 
2653 	switch (how) {
2654 	case SHUT_RD:
2655 		if (so->so_type == SOCK_DGRAM)
2656 			socantrcvmore(so);
2657 		else
2658 			uipc_cantrcvmore(so);
2659 		unp_dispose(so);
2660 		break;
2661 	case SHUT_RDWR:
2662 		if (so->so_type == SOCK_DGRAM)
2663 			socantrcvmore(so);
2664 		else
2665 			uipc_cantrcvmore(so);
2666 		unp_dispose(so);
2667 		/* FALLTHROUGH */
2668 	case SHUT_WR:
2669 		if (so->so_type == SOCK_DGRAM) {
2670 			socantsendmore(so);
2671 		} else {
2672 			UNP_PCB_LOCK(unp);
2673 			if (unp->unp_conn != NULL)
2674 				uipc_cantrcvmore(unp->unp_conn->unp_socket);
2675 			UNP_PCB_UNLOCK(unp);
2676 		}
2677 	}
2678 	wakeup(&so->so_timeo);
2679 
2680 	return (error);
2681 }
2682 
2683 static int
uipc_sockaddr(struct socket * so,struct sockaddr * ret)2684 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
2685 {
2686 	struct unpcb *unp;
2687 	const struct sockaddr *sa;
2688 
2689 	unp = sotounpcb(so);
2690 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
2691 
2692 	UNP_PCB_LOCK(unp);
2693 	if (unp->unp_addr != NULL)
2694 		sa = (struct sockaddr *) unp->unp_addr;
2695 	else
2696 		sa = &sun_noname;
2697 	bcopy(sa, ret, sa->sa_len);
2698 	UNP_PCB_UNLOCK(unp);
2699 	return (0);
2700 }
2701 
2702 static int
uipc_ctloutput(struct socket * so,struct sockopt * sopt)2703 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
2704 {
2705 	struct unpcb *unp;
2706 	struct xucred xu;
2707 	int error, optval;
2708 
2709 	if (sopt->sopt_level != SOL_LOCAL)
2710 		return (EINVAL);
2711 
2712 	unp = sotounpcb(so);
2713 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
2714 	error = 0;
2715 	switch (sopt->sopt_dir) {
2716 	case SOPT_GET:
2717 		switch (sopt->sopt_name) {
2718 		case LOCAL_PEERCRED:
2719 			UNP_PCB_LOCK(unp);
2720 			if (unp->unp_flags & UNP_HAVEPC)
2721 				xu = unp->unp_peercred;
2722 			else {
2723 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2724 					error = ENOTCONN;
2725 				else
2726 					error = EINVAL;
2727 			}
2728 			UNP_PCB_UNLOCK(unp);
2729 			if (error == 0)
2730 				error = sooptcopyout(sopt, &xu, sizeof(xu));
2731 			break;
2732 
2733 		case LOCAL_CREDS:
2734 			/* Unlocked read. */
2735 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
2736 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2737 			break;
2738 
2739 		case LOCAL_CREDS_PERSISTENT:
2740 			/* Unlocked read. */
2741 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
2742 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2743 			break;
2744 
2745 		default:
2746 			error = EOPNOTSUPP;
2747 			break;
2748 		}
2749 		break;
2750 
2751 	case SOPT_SET:
2752 		switch (sopt->sopt_name) {
2753 		case LOCAL_CREDS:
2754 		case LOCAL_CREDS_PERSISTENT:
2755 			error = sooptcopyin(sopt, &optval, sizeof(optval),
2756 					    sizeof(optval));
2757 			if (error)
2758 				break;
2759 
2760 #define	OPTSET(bit, exclusive) do {					\
2761 	UNP_PCB_LOCK(unp);						\
2762 	if (optval) {							\
2763 		if ((unp->unp_flags & (exclusive)) != 0) {		\
2764 			UNP_PCB_UNLOCK(unp);				\
2765 			error = EINVAL;					\
2766 			break;						\
2767 		}							\
2768 		unp->unp_flags |= (bit);				\
2769 	} else								\
2770 		unp->unp_flags &= ~(bit);				\
2771 	UNP_PCB_UNLOCK(unp);						\
2772 } while (0)
2773 
2774 			switch (sopt->sopt_name) {
2775 			case LOCAL_CREDS:
2776 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
2777 				break;
2778 
2779 			case LOCAL_CREDS_PERSISTENT:
2780 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
2781 				break;
2782 
2783 			default:
2784 				break;
2785 			}
2786 			break;
2787 #undef	OPTSET
2788 		default:
2789 			error = ENOPROTOOPT;
2790 			break;
2791 		}
2792 		break;
2793 
2794 	default:
2795 		error = EOPNOTSUPP;
2796 		break;
2797 	}
2798 	return (error);
2799 }
2800 
2801 static int
unp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)2802 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
2803 {
2804 
2805 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
2806 }
2807 
2808 static int
unp_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td,bool return_locked)2809 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
2810     struct thread *td, bool return_locked)
2811 {
2812 	struct mtx *vplock;
2813 	struct sockaddr_un *soun;
2814 	struct vnode *vp;
2815 	struct socket *so2;
2816 	struct unpcb *unp, *unp2, *unp3;
2817 	struct nameidata nd;
2818 	char buf[SOCK_MAXADDRLEN];
2819 	struct sockaddr *sa;
2820 	cap_rights_t rights;
2821 	int error, len;
2822 	bool connreq;
2823 
2824 	CURVNET_ASSERT_SET();
2825 
2826 	if (nam->sa_family != AF_UNIX)
2827 		return (EAFNOSUPPORT);
2828 	if (nam->sa_len > sizeof(struct sockaddr_un))
2829 		return (EINVAL);
2830 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
2831 	if (len <= 0)
2832 		return (EINVAL);
2833 	soun = (struct sockaddr_un *)nam;
2834 	bcopy(soun->sun_path, buf, len);
2835 	buf[len] = 0;
2836 
2837 	error = 0;
2838 	unp = sotounpcb(so);
2839 	UNP_PCB_LOCK(unp);
2840 	for (;;) {
2841 		/*
2842 		 * Wait for connection state to stabilize.  If a connection
2843 		 * already exists, give up.  For datagram sockets, which permit
2844 		 * multiple consecutive connect(2) calls, upper layers are
2845 		 * responsible for disconnecting in advance of a subsequent
2846 		 * connect(2), but this is not synchronized with PCB connection
2847 		 * state.
2848 		 *
2849 		 * Also make sure that no threads are currently attempting to
2850 		 * lock the peer socket, to ensure that unp_conn cannot
2851 		 * transition between two valid sockets while locks are dropped.
2852 		 */
2853 		if (SOLISTENING(so))
2854 			error = EOPNOTSUPP;
2855 		else if (unp->unp_conn != NULL)
2856 			error = EISCONN;
2857 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
2858 			error = EALREADY;
2859 		}
2860 		if (error != 0) {
2861 			UNP_PCB_UNLOCK(unp);
2862 			return (error);
2863 		}
2864 		if (unp->unp_pairbusy > 0) {
2865 			unp->unp_flags |= UNP_WAITING;
2866 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
2867 			continue;
2868 		}
2869 		break;
2870 	}
2871 	unp->unp_flags |= UNP_CONNECTING;
2872 	UNP_PCB_UNLOCK(unp);
2873 
2874 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
2875 	if (connreq)
2876 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
2877 	else
2878 		sa = NULL;
2879 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
2880 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
2881 	error = namei(&nd);
2882 	if (error)
2883 		vp = NULL;
2884 	else
2885 		vp = nd.ni_vp;
2886 	ASSERT_VOP_LOCKED(vp, "unp_connect");
2887 	if (error)
2888 		goto bad;
2889 	NDFREE_PNBUF(&nd);
2890 
2891 	if (vp->v_type != VSOCK) {
2892 		error = ENOTSOCK;
2893 		goto bad;
2894 	}
2895 #ifdef MAC
2896 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
2897 	if (error)
2898 		goto bad;
2899 #endif
2900 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
2901 	if (error)
2902 		goto bad;
2903 
2904 	unp = sotounpcb(so);
2905 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
2906 
2907 	vplock = mtx_pool_find(unp_vp_mtxpool, vp);
2908 	mtx_lock(vplock);
2909 	VOP_UNP_CONNECT(vp, &unp2);
2910 	if (unp2 == NULL) {
2911 		error = ECONNREFUSED;
2912 		goto bad2;
2913 	}
2914 	so2 = unp2->unp_socket;
2915 	if (so->so_type != so2->so_type) {
2916 		error = EPROTOTYPE;
2917 		goto bad2;
2918 	}
2919 	if (connreq) {
2920 		if (SOLISTENING(so2))
2921 			so2 = solisten_clone(so2);
2922 		else
2923 			so2 = NULL;
2924 		if (so2 == NULL) {
2925 			error = ECONNREFUSED;
2926 			goto bad2;
2927 		}
2928 		if ((error = uipc_attach(so2, 0, NULL)) != 0) {
2929 			sodealloc(so2);
2930 			goto bad2;
2931 		}
2932 		unp3 = sotounpcb(so2);
2933 		unp_pcb_lock_pair(unp2, unp3);
2934 		if (unp2->unp_addr != NULL) {
2935 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
2936 			unp3->unp_addr = (struct sockaddr_un *) sa;
2937 			sa = NULL;
2938 		}
2939 
2940 		unp_copy_peercred(td, unp3, unp, unp2);
2941 
2942 		UNP_PCB_UNLOCK(unp2);
2943 		unp2 = unp3;
2944 
2945 		/*
2946 		 * It is safe to block on the PCB lock here since unp2 is
2947 		 * nascent and cannot be connected to any other sockets.
2948 		 */
2949 		UNP_PCB_LOCK(unp);
2950 #ifdef MAC
2951 		mac_socketpeer_set_from_socket(so, so2);
2952 		mac_socketpeer_set_from_socket(so2, so);
2953 #endif
2954 	} else {
2955 		unp_pcb_lock_pair(unp, unp2);
2956 	}
2957 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
2958 	    sotounpcb(so2) == unp2,
2959 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
2960 	unp_connect2(so, so2, connreq);
2961 	if (connreq)
2962 		(void)solisten_enqueue(so2, SS_ISCONNECTED);
2963 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2964 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2965 	unp->unp_flags &= ~UNP_CONNECTING;
2966 	if (!return_locked)
2967 		unp_pcb_unlock_pair(unp, unp2);
2968 bad2:
2969 	mtx_unlock(vplock);
2970 bad:
2971 	if (vp != NULL) {
2972 		/*
2973 		 * If we are returning locked (called via uipc_sosend_dgram()),
2974 		 * we need to be sure that vput() won't sleep.  This is
2975 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2976 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2977 		 */
2978 		MPASS(!(return_locked && connreq));
2979 		vput(vp);
2980 	}
2981 	free(sa, M_SONAME);
2982 	if (__predict_false(error)) {
2983 		UNP_PCB_LOCK(unp);
2984 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2985 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2986 		unp->unp_flags &= ~UNP_CONNECTING;
2987 		UNP_PCB_UNLOCK(unp);
2988 	}
2989 	return (error);
2990 }
2991 
2992 /*
2993  * Set socket peer credentials at connection time.
2994  *
2995  * The client's PCB credentials are copied from its process structure.  The
2996  * server's PCB credentials are copied from the socket on which it called
2997  * listen(2).  uipc_listen cached that process's credentials at the time.
2998  */
2999 void
unp_copy_peercred(struct thread * td,struct unpcb * client_unp,struct unpcb * server_unp,struct unpcb * listen_unp)3000 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
3001     struct unpcb *server_unp, struct unpcb *listen_unp)
3002 {
3003 	cru2xt(td, &client_unp->unp_peercred);
3004 	client_unp->unp_flags |= UNP_HAVEPC;
3005 
3006 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
3007 	    sizeof(server_unp->unp_peercred));
3008 	server_unp->unp_flags |= UNP_HAVEPC;
3009 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
3010 }
3011 
3012 /*
3013  * unix/stream & unix/seqpacket version of soisconnected().
3014  *
3015  * The crucial thing we are doing here is setting up the uxst_peer linkage,
3016  * holding unp and receive buffer locks of the both sockets.  The disconnect
3017  * procedure does the same.  This gives as a safe way to access the peer in the
3018  * send(2) and recv(2) during the socket lifetime.
3019  *
3020  * The less important thing is event notification of the fact that a socket is
3021  * now connected.  It is unusual for a software to put a socket into event
3022  * mechanism before connect(2), but is supposed to be supported.  Note that
3023  * there can not be any sleeping I/O on the socket, yet, only presence in the
3024  * select/poll/kevent.
3025  *
3026  * This function can be called via two call paths:
3027  * 1) socketpair(2) - in this case socket has not been yet reported to userland
3028  *    and just can't have any event notifications mechanisms set up.  The
3029  *    'wakeup' boolean is always false.
3030  * 2) connect(2) of existing socket to a recent clone of a listener:
3031  *   2.1) Socket that connect(2)s will have 'wakeup' true.  An application
3032  *        could have already put it into event mechanism, is it shall be
3033  *        reported as readable and as writable.
3034  *   2.2) Socket that was just cloned with solisten_clone().  Same as 1).
3035  */
3036 static void
unp_soisconnected(struct socket * so,bool wakeup)3037 unp_soisconnected(struct socket *so, bool wakeup)
3038 {
3039 	struct socket *so2 = sotounpcb(so)->unp_conn->unp_socket;
3040 	struct sockbuf *sb;
3041 
3042 	SOCK_LOCK_ASSERT(so);
3043 	UNP_PCB_LOCK_ASSERT(sotounpcb(so));
3044 	UNP_PCB_LOCK_ASSERT(sotounpcb(so2));
3045 	SOCK_RECVBUF_LOCK_ASSERT(so);
3046 	SOCK_RECVBUF_LOCK_ASSERT(so2);
3047 
3048 	MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3049 	MPASS((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
3050 	    SS_ISDISCONNECTING)) == 0);
3051 	MPASS(so->so_qstate == SQ_NONE);
3052 
3053 	so->so_state &= ~SS_ISDISCONNECTED;
3054 	so->so_state |= SS_ISCONNECTED;
3055 
3056 	sb = &so2->so_rcv;
3057 	sb->uxst_peer = so;
3058 
3059 	if (wakeup) {
3060 		KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
3061 		sb = &so->so_rcv;
3062 		selwakeuppri(sb->sb_sel, PSOCK);
3063 		SOCK_SENDBUF_LOCK_ASSERT(so);
3064 		sb = &so->so_snd;
3065 		selwakeuppri(sb->sb_sel, PSOCK);
3066 		SOCK_SENDBUF_UNLOCK(so);
3067 	}
3068 }
3069 
3070 static void
unp_connect2(struct socket * so,struct socket * so2,bool wakeup)3071 unp_connect2(struct socket *so, struct socket *so2, bool wakeup)
3072 {
3073 	struct unpcb *unp;
3074 	struct unpcb *unp2;
3075 
3076 	MPASS(so2->so_type == so->so_type);
3077 	unp = sotounpcb(so);
3078 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
3079 	unp2 = sotounpcb(so2);
3080 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
3081 
3082 	UNP_PCB_LOCK_ASSERT(unp);
3083 	UNP_PCB_LOCK_ASSERT(unp2);
3084 	KASSERT(unp->unp_conn == NULL,
3085 	    ("%s: socket %p is already connected", __func__, unp));
3086 
3087 	unp->unp_conn = unp2;
3088 	unp_pcb_hold(unp2);
3089 	unp_pcb_hold(unp);
3090 	switch (so->so_type) {
3091 	case SOCK_DGRAM:
3092 		UNP_REF_LIST_LOCK();
3093 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
3094 		UNP_REF_LIST_UNLOCK();
3095 		soisconnected(so);
3096 		break;
3097 
3098 	case SOCK_STREAM:
3099 	case SOCK_SEQPACKET:
3100 		KASSERT(unp2->unp_conn == NULL,
3101 		    ("%s: socket %p is already connected", __func__, unp2));
3102 		unp2->unp_conn = unp;
3103 		SOCK_LOCK(so);
3104 		SOCK_LOCK(so2);
3105 		if (wakeup)	/* Avoid LOR with receive buffer lock. */
3106 			SOCK_SENDBUF_LOCK(so);
3107 		SOCK_RECVBUF_LOCK(so);
3108 		SOCK_RECVBUF_LOCK(so2);
3109 		unp_soisconnected(so, wakeup);	/* Will unlock send buffer. */
3110 		unp_soisconnected(so2, false);
3111 		SOCK_RECVBUF_UNLOCK(so);
3112 		SOCK_RECVBUF_UNLOCK(so2);
3113 		SOCK_UNLOCK(so);
3114 		SOCK_UNLOCK(so2);
3115 		break;
3116 
3117 	default:
3118 		panic("unp_connect2");
3119 	}
3120 }
3121 
3122 static void
unp_soisdisconnected(struct socket * so)3123 unp_soisdisconnected(struct socket *so)
3124 {
3125 	SOCK_LOCK_ASSERT(so);
3126 	SOCK_RECVBUF_LOCK_ASSERT(so);
3127 	MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3128 	MPASS(!SOLISTENING(so));
3129 	MPASS((so->so_state & (SS_ISCONNECTING | SS_ISDISCONNECTING |
3130 	    SS_ISDISCONNECTED)) == 0);
3131 	MPASS(so->so_state & SS_ISCONNECTED);
3132 
3133 	so->so_state |= SS_ISDISCONNECTED;
3134 	so->so_state &= ~SS_ISCONNECTED;
3135 	so->so_rcv.uxst_peer = NULL;
3136 	socantrcvmore_locked(so);
3137 }
3138 
3139 static void
unp_disconnect(struct unpcb * unp,struct unpcb * unp2)3140 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
3141 {
3142 	struct socket *so, *so2;
3143 	struct mbuf *m = NULL;
3144 #ifdef INVARIANTS
3145 	struct unpcb *unptmp;
3146 #endif
3147 
3148 	UNP_PCB_LOCK_ASSERT(unp);
3149 	UNP_PCB_LOCK_ASSERT(unp2);
3150 	KASSERT(unp->unp_conn == unp2,
3151 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
3152 
3153 	unp->unp_conn = NULL;
3154 	so = unp->unp_socket;
3155 	so2 = unp2->unp_socket;
3156 	switch (unp->unp_socket->so_type) {
3157 	case SOCK_DGRAM:
3158 		/*
3159 		 * Remove our send socket buffer from the peer's receive buffer.
3160 		 * Move the data to the receive buffer only if it is empty.
3161 		 * This is a protection against a scenario where a peer
3162 		 * connects, floods and disconnects, effectively blocking
3163 		 * sendto() from unconnected sockets.
3164 		 */
3165 		SOCK_RECVBUF_LOCK(so2);
3166 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
3167 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
3168 			    uxdg_clist);
3169 			if (__predict_true((so2->so_rcv.sb_state &
3170 			    SBS_CANTRCVMORE) == 0) &&
3171 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
3172 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
3173 				    &so->so_snd.uxdg_mb);
3174 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
3175 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
3176 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
3177 			} else {
3178 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
3179 				STAILQ_INIT(&so->so_snd.uxdg_mb);
3180 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
3181 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
3182 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
3183 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
3184 			}
3185 			/* Note: so may reconnect. */
3186 			so->so_snd.uxdg_cc = 0;
3187 			so->so_snd.uxdg_ctl = 0;
3188 			so->so_snd.uxdg_mbcnt = 0;
3189 		}
3190 		SOCK_RECVBUF_UNLOCK(so2);
3191 		UNP_REF_LIST_LOCK();
3192 #ifdef INVARIANTS
3193 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
3194 			if (unptmp == unp)
3195 				break;
3196 		}
3197 		KASSERT(unptmp != NULL,
3198 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
3199 #endif
3200 		LIST_REMOVE(unp, unp_reflink);
3201 		UNP_REF_LIST_UNLOCK();
3202 		if (so) {
3203 			SOCK_LOCK(so);
3204 			so->so_state &= ~SS_ISCONNECTED;
3205 			SOCK_UNLOCK(so);
3206 		}
3207 		break;
3208 
3209 	case SOCK_STREAM:
3210 	case SOCK_SEQPACKET:
3211 		SOCK_LOCK(so);
3212 		SOCK_LOCK(so2);
3213 		SOCK_RECVBUF_LOCK(so);
3214 		SOCK_RECVBUF_LOCK(so2);
3215 		unp_soisdisconnected(so);
3216 		MPASS(unp2->unp_conn == unp);
3217 		unp2->unp_conn = NULL;
3218 		unp_soisdisconnected(so2);
3219 		SOCK_UNLOCK(so);
3220 		SOCK_UNLOCK(so2);
3221 		break;
3222 	}
3223 
3224 	if (unp == unp2) {
3225 		unp_pcb_rele_notlast(unp);
3226 		if (!unp_pcb_rele(unp))
3227 			UNP_PCB_UNLOCK(unp);
3228 	} else {
3229 		if (!unp_pcb_rele(unp))
3230 			UNP_PCB_UNLOCK(unp);
3231 		if (!unp_pcb_rele(unp2))
3232 			UNP_PCB_UNLOCK(unp2);
3233 	}
3234 
3235 	if (m != NULL) {
3236 		unp_scan(m, unp_freerights);
3237 		m_freemp(m);
3238 	}
3239 }
3240 
3241 /*
3242  * unp_pcblist() walks the global list of struct unpcb's to generate a
3243  * pointer list, bumping the refcount on each unpcb.  It then copies them out
3244  * sequentially, validating the generation number on each to see if it has
3245  * been detached.  All of this is necessary because copyout() may sleep on
3246  * disk I/O.
3247  */
3248 static int
unp_pcblist(SYSCTL_HANDLER_ARGS)3249 unp_pcblist(SYSCTL_HANDLER_ARGS)
3250 {
3251 	struct unpcb *unp, **unp_list;
3252 	unp_gen_t gencnt;
3253 	struct xunpgen *xug;
3254 	struct unp_head *head;
3255 	struct xunpcb *xu;
3256 	u_int i;
3257 	int error, n;
3258 
3259 	switch ((intptr_t)arg1) {
3260 	case SOCK_STREAM:
3261 		head = &unp_shead;
3262 		break;
3263 
3264 	case SOCK_DGRAM:
3265 		head = &unp_dhead;
3266 		break;
3267 
3268 	case SOCK_SEQPACKET:
3269 		head = &unp_sphead;
3270 		break;
3271 
3272 	default:
3273 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
3274 	}
3275 
3276 	/*
3277 	 * The process of preparing the PCB list is too time-consuming and
3278 	 * resource-intensive to repeat twice on every request.
3279 	 */
3280 	if (req->oldptr == NULL) {
3281 		n = unp_count;
3282 		req->oldidx = 2 * (sizeof *xug)
3283 			+ (n + n/8) * sizeof(struct xunpcb);
3284 		return (0);
3285 	}
3286 
3287 	if (req->newptr != NULL)
3288 		return (EPERM);
3289 
3290 	/*
3291 	 * OK, now we're committed to doing something.
3292 	 */
3293 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
3294 	UNP_LINK_RLOCK();
3295 	gencnt = unp_gencnt;
3296 	n = unp_count;
3297 	UNP_LINK_RUNLOCK();
3298 
3299 	xug->xug_len = sizeof *xug;
3300 	xug->xug_count = n;
3301 	xug->xug_gen = gencnt;
3302 	xug->xug_sogen = so_gencnt;
3303 	error = SYSCTL_OUT(req, xug, sizeof *xug);
3304 	if (error) {
3305 		free(xug, M_TEMP);
3306 		return (error);
3307 	}
3308 
3309 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
3310 
3311 	UNP_LINK_RLOCK();
3312 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
3313 	     unp = LIST_NEXT(unp, unp_link)) {
3314 		UNP_PCB_LOCK(unp);
3315 		if (unp->unp_gencnt <= gencnt) {
3316 			if (cr_cansee(req->td->td_ucred,
3317 			    unp->unp_socket->so_cred)) {
3318 				UNP_PCB_UNLOCK(unp);
3319 				continue;
3320 			}
3321 			unp_list[i++] = unp;
3322 			unp_pcb_hold(unp);
3323 		}
3324 		UNP_PCB_UNLOCK(unp);
3325 	}
3326 	UNP_LINK_RUNLOCK();
3327 	n = i;			/* In case we lost some during malloc. */
3328 
3329 	error = 0;
3330 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
3331 	for (i = 0; i < n; i++) {
3332 		unp = unp_list[i];
3333 		UNP_PCB_LOCK(unp);
3334 		if (unp_pcb_rele(unp))
3335 			continue;
3336 
3337 		if (unp->unp_gencnt <= gencnt) {
3338 			xu->xu_len = sizeof *xu;
3339 			xu->xu_unpp = (uintptr_t)unp;
3340 			/*
3341 			 * XXX - need more locking here to protect against
3342 			 * connect/disconnect races for SMP.
3343 			 */
3344 			if (unp->unp_addr != NULL)
3345 				bcopy(unp->unp_addr, &xu->xu_addr,
3346 				      unp->unp_addr->sun_len);
3347 			else
3348 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
3349 			if (unp->unp_conn != NULL &&
3350 			    unp->unp_conn->unp_addr != NULL)
3351 				bcopy(unp->unp_conn->unp_addr,
3352 				      &xu->xu_caddr,
3353 				      unp->unp_conn->unp_addr->sun_len);
3354 			else
3355 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
3356 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
3357 			xu->unp_conn = (uintptr_t)unp->unp_conn;
3358 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
3359 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
3360 			xu->unp_gencnt = unp->unp_gencnt;
3361 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
3362 			UNP_PCB_UNLOCK(unp);
3363 			error = SYSCTL_OUT(req, xu, sizeof *xu);
3364 		} else {
3365 			UNP_PCB_UNLOCK(unp);
3366 		}
3367 	}
3368 	free(xu, M_TEMP);
3369 	if (!error) {
3370 		/*
3371 		 * Give the user an updated idea of our state.  If the
3372 		 * generation differs from what we told her before, she knows
3373 		 * that something happened while we were processing this
3374 		 * request, and it might be necessary to retry.
3375 		 */
3376 		xug->xug_gen = unp_gencnt;
3377 		xug->xug_sogen = so_gencnt;
3378 		xug->xug_count = unp_count;
3379 		error = SYSCTL_OUT(req, xug, sizeof *xug);
3380 	}
3381 	free(unp_list, M_TEMP);
3382 	free(xug, M_TEMP);
3383 	return (error);
3384 }
3385 
3386 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
3387     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3388     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
3389     "List of active local datagram sockets");
3390 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
3391     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3392     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
3393     "List of active local stream sockets");
3394 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
3395     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3396     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
3397     "List of active local seqpacket sockets");
3398 
3399 static void
unp_drop(struct unpcb * unp)3400 unp_drop(struct unpcb *unp)
3401 {
3402 	struct socket *so;
3403 	struct unpcb *unp2;
3404 
3405 	/*
3406 	 * Regardless of whether the socket's peer dropped the connection
3407 	 * with this socket by aborting or disconnecting, POSIX requires
3408 	 * that ECONNRESET is returned on next connected send(2) in case of
3409 	 * a SOCK_DGRAM socket and EPIPE for SOCK_STREAM.
3410 	 */
3411 	UNP_PCB_LOCK(unp);
3412 	if ((so = unp->unp_socket) != NULL)
3413 		so->so_error =
3414 		    so->so_proto->pr_type == SOCK_DGRAM ? ECONNRESET : EPIPE;
3415 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
3416 		/* Last reference dropped in unp_disconnect(). */
3417 		unp_pcb_rele_notlast(unp);
3418 		unp_disconnect(unp, unp2);
3419 	} else if (!unp_pcb_rele(unp)) {
3420 		UNP_PCB_UNLOCK(unp);
3421 	}
3422 }
3423 
3424 static void
unp_freerights(struct filedescent ** fdep,int fdcount)3425 unp_freerights(struct filedescent **fdep, int fdcount)
3426 {
3427 	struct file *fp;
3428 	int i;
3429 
3430 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
3431 
3432 	for (i = 0; i < fdcount; i++) {
3433 		fp = fdep[i]->fde_file;
3434 		filecaps_free(&fdep[i]->fde_caps);
3435 		unp_discard(fp);
3436 	}
3437 	free(fdep[0], M_FILECAPS);
3438 }
3439 
3440 static bool
restrict_rights(struct file * fp,struct thread * td)3441 restrict_rights(struct file *fp, struct thread *td)
3442 {
3443 	struct prison *prison1, *prison2;
3444 
3445 	prison1 = fp->f_cred->cr_prison;
3446 	prison2 = td->td_ucred->cr_prison;
3447 	return (prison1 != prison2 && prison1->pr_root != prison2->pr_root &&
3448 	    prison2 != &prison0);
3449 }
3450 
3451 static int
unp_externalize(struct mbuf * control,struct mbuf ** controlp,int flags)3452 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
3453 {
3454 	struct thread *td = curthread;		/* XXX */
3455 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
3456 	int *fdp;
3457 	struct filedesc *fdesc = td->td_proc->p_fd;
3458 	struct filedescent **fdep;
3459 	void *data;
3460 	socklen_t clen = control->m_len, datalen;
3461 	int error, fdflags, newfds;
3462 	u_int newlen;
3463 
3464 	UNP_LINK_UNLOCK_ASSERT();
3465 
3466 	fdflags = (flags & MSG_CMSG_CLOEXEC) ? O_CLOEXEC : 0;
3467 
3468 	error = 0;
3469 	if (controlp != NULL) /* controlp == NULL => free control messages */
3470 		*controlp = NULL;
3471 	while (cm != NULL) {
3472 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
3473 
3474 		data = CMSG_DATA(cm);
3475 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
3476 		if (cm->cmsg_level == SOL_SOCKET
3477 		    && cm->cmsg_type == SCM_RIGHTS) {
3478 			newfds = datalen / sizeof(*fdep);
3479 			if (newfds == 0)
3480 				goto next;
3481 			fdep = data;
3482 
3483 			/* If we're not outputting the descriptors free them. */
3484 			if (error || controlp == NULL) {
3485 				unp_freerights(fdep, newfds);
3486 				goto next;
3487 			}
3488 			FILEDESC_XLOCK(fdesc);
3489 
3490 			/*
3491 			 * Now change each pointer to an fd in the global
3492 			 * table to an integer that is the index to the local
3493 			 * fd table entry that we set up to point to the
3494 			 * global one we are transferring.
3495 			 */
3496 			newlen = newfds * sizeof(int);
3497 			*controlp = sbcreatecontrol(NULL, newlen,
3498 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
3499 
3500 			fdp = (int *)
3501 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
3502 			if ((error = fdallocn(td, 0, fdp, newfds))) {
3503 				FILEDESC_XUNLOCK(fdesc);
3504 				unp_freerights(fdep, newfds);
3505 				m_freem(*controlp);
3506 				*controlp = NULL;
3507 				goto next;
3508 			}
3509 			for (int i = 0; i < newfds; i++, fdp++) {
3510 				struct file *fp;
3511 
3512 				fp = fdep[i]->fde_file;
3513 				_finstall(fdesc, fp, *fdp, fdflags |
3514 				    (restrict_rights(fp, td) ?
3515 				    O_RESOLVE_BENEATH : 0), &fdep[i]->fde_caps);
3516 				unp_externalize_fp(fp);
3517 			}
3518 
3519 			/*
3520 			 * The new type indicates that the mbuf data refers to
3521 			 * kernel resources that may need to be released before
3522 			 * the mbuf is freed.
3523 			 */
3524 			m_chtype(*controlp, MT_EXTCONTROL);
3525 			FILEDESC_XUNLOCK(fdesc);
3526 			free(fdep[0], M_FILECAPS);
3527 		} else {
3528 			/* We can just copy anything else across. */
3529 			if (error || controlp == NULL)
3530 				goto next;
3531 			*controlp = sbcreatecontrol(NULL, datalen,
3532 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
3533 			bcopy(data,
3534 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
3535 			    datalen);
3536 		}
3537 		controlp = &(*controlp)->m_next;
3538 
3539 next:
3540 		if (CMSG_SPACE(datalen) < clen) {
3541 			clen -= CMSG_SPACE(datalen);
3542 			cm = (struct cmsghdr *)
3543 			    ((caddr_t)cm + CMSG_SPACE(datalen));
3544 		} else {
3545 			clen = 0;
3546 			cm = NULL;
3547 		}
3548 	}
3549 
3550 	return (error);
3551 }
3552 
3553 static void
unp_zone_change(void * tag)3554 unp_zone_change(void *tag)
3555 {
3556 
3557 	uma_zone_set_max(unp_zone, maxsockets);
3558 }
3559 
3560 #ifdef INVARIANTS
3561 static void
unp_zdtor(void * mem,int size __unused,void * arg __unused)3562 unp_zdtor(void *mem, int size __unused, void *arg __unused)
3563 {
3564 	struct unpcb *unp;
3565 
3566 	unp = mem;
3567 
3568 	KASSERT(LIST_EMPTY(&unp->unp_refs),
3569 	    ("%s: unpcb %p has lingering refs", __func__, unp));
3570 	KASSERT(unp->unp_socket == NULL,
3571 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
3572 	KASSERT(unp->unp_vnode == NULL,
3573 	    ("%s: unpcb %p has vnode references", __func__, unp));
3574 	KASSERT(unp->unp_conn == NULL,
3575 	    ("%s: unpcb %p is still connected", __func__, unp));
3576 	KASSERT(unp->unp_addr == NULL,
3577 	    ("%s: unpcb %p has leaked addr", __func__, unp));
3578 }
3579 #endif
3580 
3581 static void
unp_init(void * arg __unused)3582 unp_init(void *arg __unused)
3583 {
3584 	uma_dtor dtor;
3585 
3586 #ifdef INVARIANTS
3587 	dtor = unp_zdtor;
3588 #else
3589 	dtor = NULL;
3590 #endif
3591 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
3592 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
3593 	uma_zone_set_max(unp_zone, maxsockets);
3594 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
3595 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
3596 	    NULL, EVENTHANDLER_PRI_ANY);
3597 	LIST_INIT(&unp_dhead);
3598 	LIST_INIT(&unp_shead);
3599 	LIST_INIT(&unp_sphead);
3600 	SLIST_INIT(&unp_defers);
3601 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
3602 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
3603 	UNP_LINK_LOCK_INIT();
3604 	UNP_DEFERRED_LOCK_INIT();
3605 	unp_vp_mtxpool = mtx_pool_create("unp vp mtxpool", 32, MTX_DEF);
3606 }
3607 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
3608 
3609 static void
unp_internalize_cleanup_rights(struct mbuf * control)3610 unp_internalize_cleanup_rights(struct mbuf *control)
3611 {
3612 	struct cmsghdr *cp;
3613 	struct mbuf *m;
3614 	void *data;
3615 	socklen_t datalen;
3616 
3617 	for (m = control; m != NULL; m = m->m_next) {
3618 		cp = mtod(m, struct cmsghdr *);
3619 		if (cp->cmsg_level != SOL_SOCKET ||
3620 		    cp->cmsg_type != SCM_RIGHTS)
3621 			continue;
3622 		data = CMSG_DATA(cp);
3623 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
3624 		unp_freerights(data, datalen / sizeof(struct filedesc *));
3625 	}
3626 }
3627 
3628 static int
unp_internalize(struct mbuf * control,struct mchain * mc,struct thread * td)3629 unp_internalize(struct mbuf *control, struct mchain *mc, struct thread *td)
3630 {
3631 	struct proc *p;
3632 	struct filedesc *fdesc;
3633 	struct bintime *bt;
3634 	struct cmsghdr *cm;
3635 	struct cmsgcred *cmcred;
3636 	struct mbuf *m;
3637 	struct filedescent *fde, **fdep, *fdev;
3638 	struct file *fp;
3639 	struct timeval *tv;
3640 	struct timespec *ts;
3641 	void *data;
3642 	socklen_t clen, datalen;
3643 	int i, j, error, *fdp, oldfds;
3644 	u_int newlen;
3645 
3646 	MPASS(control->m_next == NULL); /* COMPAT_OLDSOCK may violate */
3647 	UNP_LINK_UNLOCK_ASSERT();
3648 
3649 	p = td->td_proc;
3650 	fdesc = p->p_fd;
3651 	error = 0;
3652 	*mc = MCHAIN_INITIALIZER(mc);
3653 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
3654 	    data = CMSG_DATA(cm);
3655 
3656 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
3657 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
3658 	    (char *)cm + cm->cmsg_len >= (char *)data;
3659 
3660 	    clen -= min(CMSG_SPACE(datalen), clen),
3661 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
3662 	    data = CMSG_DATA(cm)) {
3663 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
3664 		switch (cm->cmsg_type) {
3665 		case SCM_CREDS:
3666 			m = sbcreatecontrol(NULL, sizeof(*cmcred), SCM_CREDS,
3667 			    SOL_SOCKET, M_WAITOK);
3668 			cmcred = (struct cmsgcred *)
3669 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3670 			cmcred->cmcred_pid = p->p_pid;
3671 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
3672 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
3673 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
3674 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
3675 			    CMGROUP_MAX);
3676 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
3677 				cmcred->cmcred_groups[i] =
3678 				    td->td_ucred->cr_groups[i];
3679 			break;
3680 
3681 		case SCM_RIGHTS:
3682 			oldfds = datalen / sizeof (int);
3683 			if (oldfds == 0)
3684 				continue;
3685 			/* On some machines sizeof pointer is bigger than
3686 			 * sizeof int, so we need to check if data fits into
3687 			 * single mbuf.  We could allocate several mbufs, and
3688 			 * unp_externalize() should even properly handle that.
3689 			 * But it is not worth to complicate the code for an
3690 			 * insane scenario of passing over 200 file descriptors
3691 			 * at once.
3692 			 */
3693 			newlen = oldfds * sizeof(fdep[0]);
3694 			if (CMSG_SPACE(newlen) > MCLBYTES) {
3695 				error = EMSGSIZE;
3696 				goto out;
3697 			}
3698 			/*
3699 			 * Check that all the FDs passed in refer to legal
3700 			 * files.  If not, reject the entire operation.
3701 			 */
3702 			fdp = data;
3703 			FILEDESC_SLOCK(fdesc);
3704 			for (i = 0; i < oldfds; i++, fdp++) {
3705 				fp = fget_noref(fdesc, *fdp);
3706 				if (fp == NULL) {
3707 					FILEDESC_SUNLOCK(fdesc);
3708 					error = EBADF;
3709 					goto out;
3710 				}
3711 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
3712 					FILEDESC_SUNLOCK(fdesc);
3713 					error = EOPNOTSUPP;
3714 					goto out;
3715 				}
3716 			}
3717 
3718 			/*
3719 			 * Now replace the integer FDs with pointers to the
3720 			 * file structure and capability rights.
3721 			 */
3722 			m = sbcreatecontrol(NULL, newlen, SCM_RIGHTS,
3723 			    SOL_SOCKET, M_WAITOK);
3724 			fdp = data;
3725 			for (i = 0; i < oldfds; i++, fdp++) {
3726 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
3727 					fdp = data;
3728 					for (j = 0; j < i; j++, fdp++) {
3729 						fdrop(fdesc->fd_ofiles[*fdp].
3730 						    fde_file, td);
3731 					}
3732 					FILEDESC_SUNLOCK(fdesc);
3733 					error = EBADF;
3734 					goto out;
3735 				}
3736 			}
3737 			fdp = data;
3738 			fdep = (struct filedescent **)
3739 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3740 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
3741 			    M_WAITOK);
3742 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
3743 				fde = &fdesc->fd_ofiles[*fdp];
3744 				fdep[i] = fdev;
3745 				fdep[i]->fde_file = fde->fde_file;
3746 				filecaps_copy(&fde->fde_caps,
3747 				    &fdep[i]->fde_caps, true);
3748 				unp_internalize_fp(fdep[i]->fde_file);
3749 			}
3750 			FILEDESC_SUNLOCK(fdesc);
3751 			break;
3752 
3753 		case SCM_TIMESTAMP:
3754 			m = sbcreatecontrol(NULL, sizeof(*tv), SCM_TIMESTAMP,
3755 			    SOL_SOCKET, M_WAITOK);
3756 			tv = (struct timeval *)
3757 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3758 			microtime(tv);
3759 			break;
3760 
3761 		case SCM_BINTIME:
3762 			m = sbcreatecontrol(NULL, sizeof(*bt), SCM_BINTIME,
3763 			    SOL_SOCKET, M_WAITOK);
3764 			bt = (struct bintime *)
3765 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3766 			bintime(bt);
3767 			break;
3768 
3769 		case SCM_REALTIME:
3770 			m = sbcreatecontrol(NULL, sizeof(*ts), SCM_REALTIME,
3771 			    SOL_SOCKET, M_WAITOK);
3772 			ts = (struct timespec *)
3773 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3774 			nanotime(ts);
3775 			break;
3776 
3777 		case SCM_MONOTONIC:
3778 			m = sbcreatecontrol(NULL, sizeof(*ts), SCM_MONOTONIC,
3779 			    SOL_SOCKET, M_WAITOK);
3780 			ts = (struct timespec *)
3781 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3782 			nanouptime(ts);
3783 			break;
3784 
3785 		default:
3786 			error = EINVAL;
3787 			goto out;
3788 		}
3789 
3790 		mc_append(mc, m);
3791 	}
3792 	if (clen > 0)
3793 		error = EINVAL;
3794 
3795 out:
3796 	if (error != 0)
3797 		unp_internalize_cleanup_rights(mc_first(mc));
3798 	m_freem(control);
3799 	return (error);
3800 }
3801 
3802 static void
unp_addsockcred(struct thread * td,struct mchain * mc,int mode)3803 unp_addsockcred(struct thread *td, struct mchain *mc, int mode)
3804 {
3805 	struct mbuf *m, *n, *n_prev;
3806 	const struct cmsghdr *cm;
3807 	int ngroups, i, cmsgtype;
3808 	size_t ctrlsz;
3809 
3810 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
3811 	if (mode & UNP_WANTCRED_ALWAYS) {
3812 		ctrlsz = SOCKCRED2SIZE(ngroups);
3813 		cmsgtype = SCM_CREDS2;
3814 	} else {
3815 		ctrlsz = SOCKCREDSIZE(ngroups);
3816 		cmsgtype = SCM_CREDS;
3817 	}
3818 
3819 	/* XXXGL: uipc_sosend_*() need to be improved so that we can M_WAITOK */
3820 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
3821 	if (m == NULL)
3822 		return;
3823 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
3824 
3825 	if (mode & UNP_WANTCRED_ALWAYS) {
3826 		struct sockcred2 *sc;
3827 
3828 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3829 		sc->sc_version = 0;
3830 		sc->sc_pid = td->td_proc->p_pid;
3831 		sc->sc_uid = td->td_ucred->cr_ruid;
3832 		sc->sc_euid = td->td_ucred->cr_uid;
3833 		sc->sc_gid = td->td_ucred->cr_rgid;
3834 		sc->sc_egid = td->td_ucred->cr_gid;
3835 		sc->sc_ngroups = ngroups;
3836 		for (i = 0; i < sc->sc_ngroups; i++)
3837 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3838 	} else {
3839 		struct sockcred *sc;
3840 
3841 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3842 		sc->sc_uid = td->td_ucred->cr_ruid;
3843 		sc->sc_euid = td->td_ucred->cr_uid;
3844 		sc->sc_gid = td->td_ucred->cr_rgid;
3845 		sc->sc_egid = td->td_ucred->cr_gid;
3846 		sc->sc_ngroups = ngroups;
3847 		for (i = 0; i < sc->sc_ngroups; i++)
3848 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3849 	}
3850 
3851 	/*
3852 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
3853 	 * created SCM_CREDS control message (struct sockcred) has another
3854 	 * format.
3855 	 */
3856 	if (!STAILQ_EMPTY(&mc->mc_q) && cmsgtype == SCM_CREDS)
3857 		STAILQ_FOREACH_SAFE(n, &mc->mc_q, m_stailq, n_prev) {
3858 			cm = mtod(n, struct cmsghdr *);
3859     			if (cm->cmsg_level == SOL_SOCKET &&
3860 			    cm->cmsg_type == SCM_CREDS) {
3861 				mc_remove(mc, n);
3862 				m_free(n);
3863 			}
3864 		}
3865 
3866 	/* Prepend it to the head. */
3867 	mc_prepend(mc, m);
3868 }
3869 
3870 static struct unpcb *
fptounp(struct file * fp)3871 fptounp(struct file *fp)
3872 {
3873 	struct socket *so;
3874 
3875 	if (fp->f_type != DTYPE_SOCKET)
3876 		return (NULL);
3877 	if ((so = fp->f_data) == NULL)
3878 		return (NULL);
3879 	if (so->so_proto->pr_domain != &localdomain)
3880 		return (NULL);
3881 	return sotounpcb(so);
3882 }
3883 
3884 static void
unp_discard(struct file * fp)3885 unp_discard(struct file *fp)
3886 {
3887 	struct unp_defer *dr;
3888 
3889 	if (unp_externalize_fp(fp)) {
3890 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
3891 		dr->ud_fp = fp;
3892 		UNP_DEFERRED_LOCK();
3893 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
3894 		UNP_DEFERRED_UNLOCK();
3895 		atomic_add_int(&unp_defers_count, 1);
3896 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
3897 	} else
3898 		closef_nothread(fp);
3899 }
3900 
3901 static void
unp_process_defers(void * arg __unused,int pending)3902 unp_process_defers(void *arg __unused, int pending)
3903 {
3904 	struct unp_defer *dr;
3905 	SLIST_HEAD(, unp_defer) drl;
3906 	int count;
3907 
3908 	SLIST_INIT(&drl);
3909 	for (;;) {
3910 		UNP_DEFERRED_LOCK();
3911 		if (SLIST_FIRST(&unp_defers) == NULL) {
3912 			UNP_DEFERRED_UNLOCK();
3913 			break;
3914 		}
3915 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
3916 		UNP_DEFERRED_UNLOCK();
3917 		count = 0;
3918 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
3919 			SLIST_REMOVE_HEAD(&drl, ud_link);
3920 			closef_nothread(dr->ud_fp);
3921 			free(dr, M_TEMP);
3922 			count++;
3923 		}
3924 		atomic_add_int(&unp_defers_count, -count);
3925 	}
3926 }
3927 
3928 static void
unp_internalize_fp(struct file * fp)3929 unp_internalize_fp(struct file *fp)
3930 {
3931 	struct unpcb *unp;
3932 
3933 	UNP_LINK_WLOCK();
3934 	if ((unp = fptounp(fp)) != NULL) {
3935 		unp->unp_file = fp;
3936 		unp->unp_msgcount++;
3937 	}
3938 	unp_rights++;
3939 	UNP_LINK_WUNLOCK();
3940 }
3941 
3942 static int
unp_externalize_fp(struct file * fp)3943 unp_externalize_fp(struct file *fp)
3944 {
3945 	struct unpcb *unp;
3946 	int ret;
3947 
3948 	UNP_LINK_WLOCK();
3949 	if ((unp = fptounp(fp)) != NULL) {
3950 		unp->unp_msgcount--;
3951 		ret = 1;
3952 	} else
3953 		ret = 0;
3954 	unp_rights--;
3955 	UNP_LINK_WUNLOCK();
3956 	return (ret);
3957 }
3958 
3959 /*
3960  * unp_defer indicates whether additional work has been defered for a future
3961  * pass through unp_gc().  It is thread local and does not require explicit
3962  * synchronization.
3963  */
3964 static int	unp_marked;
3965 
3966 static void
unp_remove_dead_ref(struct filedescent ** fdep,int fdcount)3967 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
3968 {
3969 	struct unpcb *unp;
3970 	struct file *fp;
3971 	int i;
3972 
3973 	/*
3974 	 * This function can only be called from the gc task.
3975 	 */
3976 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
3977 	    ("%s: not on gc callout", __func__));
3978 	UNP_LINK_LOCK_ASSERT();
3979 
3980 	for (i = 0; i < fdcount; i++) {
3981 		fp = fdep[i]->fde_file;
3982 		if ((unp = fptounp(fp)) == NULL)
3983 			continue;
3984 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
3985 			continue;
3986 		unp->unp_gcrefs--;
3987 	}
3988 }
3989 
3990 static void
unp_restore_undead_ref(struct filedescent ** fdep,int fdcount)3991 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
3992 {
3993 	struct unpcb *unp;
3994 	struct file *fp;
3995 	int i;
3996 
3997 	/*
3998 	 * This function can only be called from the gc task.
3999 	 */
4000 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
4001 	    ("%s: not on gc callout", __func__));
4002 	UNP_LINK_LOCK_ASSERT();
4003 
4004 	for (i = 0; i < fdcount; i++) {
4005 		fp = fdep[i]->fde_file;
4006 		if ((unp = fptounp(fp)) == NULL)
4007 			continue;
4008 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
4009 			continue;
4010 		unp->unp_gcrefs++;
4011 		unp_marked++;
4012 	}
4013 }
4014 
4015 static void
unp_scan_socket(struct socket * so,void (* op)(struct filedescent **,int))4016 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
4017 {
4018 	struct sockbuf *sb;
4019 
4020 	SOCK_LOCK_ASSERT(so);
4021 
4022 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
4023 		return;
4024 
4025 	SOCK_RECVBUF_LOCK(so);
4026 	switch (so->so_type) {
4027 	case SOCK_DGRAM:
4028 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
4029 		unp_scan(so->so_rcv.uxdg_peeked, op);
4030 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
4031 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
4032 		break;
4033 	case SOCK_STREAM:
4034 	case SOCK_SEQPACKET:
4035 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxst_mbq), op);
4036 		break;
4037 	}
4038 	SOCK_RECVBUF_UNLOCK(so);
4039 }
4040 
4041 static void
unp_gc_scan(struct unpcb * unp,void (* op)(struct filedescent **,int))4042 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
4043 {
4044 	struct socket *so, *soa;
4045 
4046 	so = unp->unp_socket;
4047 	SOCK_LOCK(so);
4048 	if (SOLISTENING(so)) {
4049 		/*
4050 		 * Mark all sockets in our accept queue.
4051 		 */
4052 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
4053 			unp_scan_socket(soa, op);
4054 	} else {
4055 		/*
4056 		 * Mark all sockets we reference with RIGHTS.
4057 		 */
4058 		unp_scan_socket(so, op);
4059 	}
4060 	SOCK_UNLOCK(so);
4061 }
4062 
4063 static int unp_recycled;
4064 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
4065     "Number of unreachable sockets claimed by the garbage collector.");
4066 
4067 static int unp_taskcount;
4068 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
4069     "Number of times the garbage collector has run.");
4070 
4071 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
4072     "Number of active local sockets.");
4073 
4074 static void
unp_gc(__unused void * arg,int pending)4075 unp_gc(__unused void *arg, int pending)
4076 {
4077 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
4078 				    NULL };
4079 	struct unp_head **head;
4080 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
4081 	struct file *f, **unref;
4082 	struct unpcb *unp, *unptmp;
4083 	int i, total, unp_unreachable;
4084 
4085 	LIST_INIT(&unp_deadhead);
4086 	unp_taskcount++;
4087 	UNP_LINK_RLOCK();
4088 	/*
4089 	 * First determine which sockets may be in cycles.
4090 	 */
4091 	unp_unreachable = 0;
4092 
4093 	for (head = heads; *head != NULL; head++)
4094 		LIST_FOREACH(unp, *head, unp_link) {
4095 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
4096 			    ("%s: unp %p has unexpected gc flags 0x%x",
4097 			    __func__, unp, (unsigned int)unp->unp_gcflag));
4098 
4099 			f = unp->unp_file;
4100 
4101 			/*
4102 			 * Check for an unreachable socket potentially in a
4103 			 * cycle.  It must be in a queue as indicated by
4104 			 * msgcount, and this must equal the file reference
4105 			 * count.  Note that when msgcount is 0 the file is
4106 			 * NULL.
4107 			 */
4108 			if (f != NULL && unp->unp_msgcount != 0 &&
4109 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
4110 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
4111 				unp->unp_gcflag |= UNPGC_DEAD;
4112 				unp->unp_gcrefs = unp->unp_msgcount;
4113 				unp_unreachable++;
4114 			}
4115 		}
4116 
4117 	/*
4118 	 * Scan all sockets previously marked as potentially being in a cycle
4119 	 * and remove the references each socket holds on any UNPGC_DEAD
4120 	 * sockets in its queue.  After this step, all remaining references on
4121 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
4122 	 */
4123 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
4124 		unp_gc_scan(unp, unp_remove_dead_ref);
4125 
4126 	/*
4127 	 * If a socket still has a non-negative refcount, it cannot be in a
4128 	 * cycle.  In this case increment refcount of all children iteratively.
4129 	 * Stop the scan once we do a complete loop without discovering
4130 	 * a new reachable socket.
4131 	 */
4132 	do {
4133 		unp_marked = 0;
4134 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
4135 			if (unp->unp_gcrefs > 0) {
4136 				unp->unp_gcflag &= ~UNPGC_DEAD;
4137 				LIST_REMOVE(unp, unp_dead);
4138 				KASSERT(unp_unreachable > 0,
4139 				    ("%s: unp_unreachable underflow.",
4140 				    __func__));
4141 				unp_unreachable--;
4142 				unp_gc_scan(unp, unp_restore_undead_ref);
4143 			}
4144 	} while (unp_marked);
4145 
4146 	UNP_LINK_RUNLOCK();
4147 
4148 	if (unp_unreachable == 0)
4149 		return;
4150 
4151 	/*
4152 	 * Allocate space for a local array of dead unpcbs.
4153 	 * TODO: can this path be simplified by instead using the local
4154 	 * dead list at unp_deadhead, after taking out references
4155 	 * on the file object and/or unpcb and dropping the link lock?
4156 	 */
4157 	unref = malloc(unp_unreachable * sizeof(struct file *),
4158 	    M_TEMP, M_WAITOK);
4159 
4160 	/*
4161 	 * Iterate looking for sockets which have been specifically marked
4162 	 * as unreachable and store them locally.
4163 	 */
4164 	UNP_LINK_RLOCK();
4165 	total = 0;
4166 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
4167 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
4168 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
4169 		unp->unp_gcflag &= ~UNPGC_DEAD;
4170 		f = unp->unp_file;
4171 		if (unp->unp_msgcount == 0 || f == NULL ||
4172 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
4173 		    !fhold(f))
4174 			continue;
4175 		unref[total++] = f;
4176 		KASSERT(total <= unp_unreachable,
4177 		    ("%s: incorrect unreachable count.", __func__));
4178 	}
4179 	UNP_LINK_RUNLOCK();
4180 
4181 	/*
4182 	 * Now flush all sockets, free'ing rights.  This will free the
4183 	 * struct files associated with these sockets but leave each socket
4184 	 * with one remaining ref.
4185 	 */
4186 	for (i = 0; i < total; i++) {
4187 		struct socket *so;
4188 
4189 		so = unref[i]->f_data;
4190 		CURVNET_SET(so->so_vnet);
4191 		socantrcvmore(so);
4192 		unp_dispose(so);
4193 		CURVNET_RESTORE();
4194 	}
4195 
4196 	/*
4197 	 * And finally release the sockets so they can be reclaimed.
4198 	 */
4199 	for (i = 0; i < total; i++)
4200 		fdrop(unref[i], NULL);
4201 	unp_recycled += total;
4202 	free(unref, M_TEMP);
4203 }
4204 
4205 /*
4206  * Synchronize against unp_gc, which can trip over data as we are freeing it.
4207  */
4208 static void
unp_dispose(struct socket * so)4209 unp_dispose(struct socket *so)
4210 {
4211 	struct sockbuf *sb;
4212 	struct unpcb *unp;
4213 	struct mbuf *m;
4214 	int error __diagused;
4215 
4216 	MPASS(!SOLISTENING(so));
4217 
4218 	unp = sotounpcb(so);
4219 	UNP_LINK_WLOCK();
4220 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
4221 	UNP_LINK_WUNLOCK();
4222 
4223 	/*
4224 	 * Grab our special mbufs before calling sbrelease().
4225 	 */
4226 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
4227 	MPASS(!error);
4228 	SOCK_RECVBUF_LOCK(so);
4229 	switch (so->so_type) {
4230 	case SOCK_DGRAM:
4231 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
4232 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
4233 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
4234 			/* Note: socket of sb may reconnect. */
4235 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
4236 		}
4237 		sb = &so->so_rcv;
4238 		if (sb->uxdg_peeked != NULL) {
4239 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
4240 			    m_stailqpkt);
4241 			sb->uxdg_peeked = NULL;
4242 		}
4243 		m = STAILQ_FIRST(&sb->uxdg_mb);
4244 		STAILQ_INIT(&sb->uxdg_mb);
4245 		break;
4246 	case SOCK_STREAM:
4247 	case SOCK_SEQPACKET:
4248 		sb = &so->so_rcv;
4249 		m = STAILQ_FIRST(&sb->uxst_mbq);
4250 		STAILQ_INIT(&sb->uxst_mbq);
4251 		sb->sb_acc = sb->sb_ccc = sb->sb_ctl = sb->sb_mbcnt = 0;
4252 		/*
4253 		 * Trim M_NOTREADY buffers from the free list.  They are
4254 		 * referenced by the I/O thread.
4255 		 */
4256 		if (sb->uxst_fnrdy != NULL) {
4257 			struct mbuf *n, *prev;
4258 
4259 			while (m != NULL && m->m_flags & M_NOTREADY)
4260 				m = m->m_next;
4261 			for (prev = n = m; n != NULL; n = n->m_next) {
4262 				if (n->m_flags & M_NOTREADY)
4263 					prev->m_next = n->m_next;
4264 				else
4265 					prev = n;
4266 			}
4267 			sb->uxst_fnrdy = NULL;
4268 		}
4269 		break;
4270 	}
4271 	/*
4272 	 * Mark sb with SBS_CANTRCVMORE.  This is needed to prevent
4273 	 * uipc_sosend_*() or unp_disconnect() adding more data to the socket.
4274 	 * We came here either through shutdown(2) or from the final sofree().
4275 	 * The sofree() case is simple as it guarantees that no more sends will
4276 	 * happen, however we can race with unp_disconnect() from our peer.
4277 	 * The shutdown(2) case is more exotic.  It would call into
4278 	 * unp_dispose() only if socket is SS_ISCONNECTED.  This is possible if
4279 	 * we did connect(2) on this socket and we also had it bound with
4280 	 * bind(2) and receive connections from other sockets.  Because
4281 	 * uipc_shutdown() violates POSIX (see comment there) this applies to
4282 	 * SOCK_DGRAM as well.  For SOCK_DGRAM this SBS_CANTRCVMORE will have
4283 	 * affect not only on the peer we connect(2)ed to, but also on all of
4284 	 * the peers who had connect(2)ed to us.  Their sends would end up
4285 	 * with ENOBUFS.
4286 	 */
4287 	sb->sb_state |= SBS_CANTRCVMORE;
4288 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
4289 	    RLIM_INFINITY);
4290 	SOCK_RECVBUF_UNLOCK(so);
4291 	SOCK_IO_RECV_UNLOCK(so);
4292 
4293 	if (m != NULL) {
4294 		unp_scan(m, unp_freerights);
4295 		m_freemp(m);
4296 	}
4297 }
4298 
4299 static void
unp_scan(struct mbuf * m0,void (* op)(struct filedescent **,int))4300 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
4301 {
4302 	struct mbuf *m;
4303 	struct cmsghdr *cm;
4304 	void *data;
4305 	socklen_t clen, datalen;
4306 
4307 	while (m0 != NULL) {
4308 		for (m = m0; m; m = m->m_next) {
4309 			if (m->m_type != MT_CONTROL)
4310 				continue;
4311 
4312 			cm = mtod(m, struct cmsghdr *);
4313 			clen = m->m_len;
4314 
4315 			while (cm != NULL) {
4316 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
4317 					break;
4318 
4319 				data = CMSG_DATA(cm);
4320 				datalen = (caddr_t)cm + cm->cmsg_len
4321 				    - (caddr_t)data;
4322 
4323 				if (cm->cmsg_level == SOL_SOCKET &&
4324 				    cm->cmsg_type == SCM_RIGHTS) {
4325 					(*op)(data, datalen /
4326 					    sizeof(struct filedescent *));
4327 				}
4328 
4329 				if (CMSG_SPACE(datalen) < clen) {
4330 					clen -= CMSG_SPACE(datalen);
4331 					cm = (struct cmsghdr *)
4332 					    ((caddr_t)cm + CMSG_SPACE(datalen));
4333 				} else {
4334 					clen = 0;
4335 					cm = NULL;
4336 				}
4337 			}
4338 		}
4339 		m0 = m0->m_nextpkt;
4340 	}
4341 }
4342 
4343 /*
4344  * Definitions of protocols supported in the LOCAL domain.
4345  */
4346 static struct protosw streamproto = {
4347 	.pr_type =		SOCK_STREAM,
4348 	.pr_flags =		PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4349 	.pr_ctloutput =		&uipc_ctloutput,
4350 	.pr_abort = 		uipc_abort,
4351 	.pr_accept =		uipc_peeraddr,
4352 	.pr_attach =		uipc_attach,
4353 	.pr_bind =		uipc_bind,
4354 	.pr_bindat =		uipc_bindat,
4355 	.pr_connect =		uipc_connect,
4356 	.pr_connectat =		uipc_connectat,
4357 	.pr_connect2 =		uipc_connect2,
4358 	.pr_detach =		uipc_detach,
4359 	.pr_disconnect =	uipc_disconnect,
4360 	.pr_listen =		uipc_listen,
4361 	.pr_peeraddr =		uipc_peeraddr,
4362 	.pr_send =		uipc_sendfile,
4363 	.pr_sendfile_wait =	uipc_sendfile_wait,
4364 	.pr_ready =		uipc_ready,
4365 	.pr_sense =		uipc_sense,
4366 	.pr_shutdown =		uipc_shutdown,
4367 	.pr_sockaddr =		uipc_sockaddr,
4368 	.pr_sosend = 		uipc_sosend_stream_or_seqpacket,
4369 	.pr_soreceive =		uipc_soreceive_stream_or_seqpacket,
4370 	.pr_sopoll =		uipc_sopoll_stream_or_seqpacket,
4371 	.pr_kqfilter =		uipc_kqfilter_stream_or_seqpacket,
4372 	.pr_close =		uipc_close,
4373 	.pr_chmod =		uipc_chmod,
4374 };
4375 
4376 static struct protosw dgramproto = {
4377 	.pr_type =		SOCK_DGRAM,
4378 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF,
4379 	.pr_ctloutput =		&uipc_ctloutput,
4380 	.pr_abort = 		uipc_abort,
4381 	.pr_accept =		uipc_peeraddr,
4382 	.pr_attach =		uipc_attach,
4383 	.pr_bind =		uipc_bind,
4384 	.pr_bindat =		uipc_bindat,
4385 	.pr_connect =		uipc_connect,
4386 	.pr_connectat =		uipc_connectat,
4387 	.pr_connect2 =		uipc_connect2,
4388 	.pr_detach =		uipc_detach,
4389 	.pr_disconnect =	uipc_disconnect,
4390 	.pr_peeraddr =		uipc_peeraddr,
4391 	.pr_sosend =		uipc_sosend_dgram,
4392 	.pr_sense =		uipc_sense,
4393 	.pr_shutdown =		uipc_shutdown,
4394 	.pr_sockaddr =		uipc_sockaddr,
4395 	.pr_soreceive =		uipc_soreceive_dgram,
4396 	.pr_close =		uipc_close,
4397 	.pr_chmod =		uipc_chmod,
4398 };
4399 
4400 static struct protosw seqpacketproto = {
4401 	.pr_type =		SOCK_SEQPACKET,
4402 	.pr_flags =		PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4403 	.pr_ctloutput =		&uipc_ctloutput,
4404 	.pr_abort =		uipc_abort,
4405 	.pr_accept =		uipc_peeraddr,
4406 	.pr_attach =		uipc_attach,
4407 	.pr_bind =		uipc_bind,
4408 	.pr_bindat =		uipc_bindat,
4409 	.pr_connect =		uipc_connect,
4410 	.pr_connectat =		uipc_connectat,
4411 	.pr_connect2 =		uipc_connect2,
4412 	.pr_detach =		uipc_detach,
4413 	.pr_disconnect =	uipc_disconnect,
4414 	.pr_listen =		uipc_listen,
4415 	.pr_peeraddr =		uipc_peeraddr,
4416 	.pr_sense =		uipc_sense,
4417 	.pr_shutdown =		uipc_shutdown,
4418 	.pr_sockaddr =		uipc_sockaddr,
4419 	.pr_sosend = 		uipc_sosend_stream_or_seqpacket,
4420 	.pr_soreceive =		uipc_soreceive_stream_or_seqpacket,
4421 	.pr_sopoll =		uipc_sopoll_stream_or_seqpacket,
4422 	.pr_kqfilter =		uipc_kqfilter_stream_or_seqpacket,
4423 	.pr_close =		uipc_close,
4424 	.pr_chmod =		uipc_chmod,
4425 };
4426 
4427 static struct domain localdomain = {
4428 	.dom_family =		AF_LOCAL,
4429 	.dom_name =		"local",
4430 	.dom_nprotosw =		3,
4431 	.dom_protosw =		{
4432 		&streamproto,
4433 		&dgramproto,
4434 		&seqpacketproto,
4435 	}
4436 };
4437 DOMAIN_SET(local);
4438 
4439 /*
4440  * A helper function called by VFS before socket-type vnode reclamation.
4441  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
4442  * use count.
4443  */
4444 void
vfs_unp_reclaim(struct vnode * vp)4445 vfs_unp_reclaim(struct vnode *vp)
4446 {
4447 	struct unpcb *unp;
4448 	int active;
4449 	struct mtx *vplock;
4450 
4451 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
4452 	KASSERT(vp->v_type == VSOCK,
4453 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
4454 
4455 	active = 0;
4456 	vplock = mtx_pool_find(unp_vp_mtxpool, vp);
4457 	mtx_lock(vplock);
4458 	VOP_UNP_CONNECT(vp, &unp);
4459 	if (unp == NULL)
4460 		goto done;
4461 	UNP_PCB_LOCK(unp);
4462 	if (unp->unp_vnode == vp) {
4463 		VOP_UNP_DETACH(vp);
4464 		unp->unp_vnode = NULL;
4465 		active = 1;
4466 	}
4467 	UNP_PCB_UNLOCK(unp);
4468  done:
4469 	mtx_unlock(vplock);
4470 	if (active)
4471 		vunref(vp);
4472 }
4473 
4474 #ifdef DDB
4475 static void
db_print_indent(int indent)4476 db_print_indent(int indent)
4477 {
4478 	int i;
4479 
4480 	for (i = 0; i < indent; i++)
4481 		db_printf(" ");
4482 }
4483 
4484 static void
db_print_unpflags(int unp_flags)4485 db_print_unpflags(int unp_flags)
4486 {
4487 	int comma;
4488 
4489 	comma = 0;
4490 	if (unp_flags & UNP_HAVEPC) {
4491 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
4492 		comma = 1;
4493 	}
4494 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
4495 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
4496 		comma = 1;
4497 	}
4498 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
4499 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
4500 		comma = 1;
4501 	}
4502 	if (unp_flags & UNP_CONNECTING) {
4503 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
4504 		comma = 1;
4505 	}
4506 	if (unp_flags & UNP_BINDING) {
4507 		db_printf("%sUNP_BINDING", comma ? ", " : "");
4508 		comma = 1;
4509 	}
4510 }
4511 
4512 static void
db_print_xucred(int indent,struct xucred * xu)4513 db_print_xucred(int indent, struct xucred *xu)
4514 {
4515 	int comma, i;
4516 
4517 	db_print_indent(indent);
4518 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
4519 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
4520 	db_print_indent(indent);
4521 	db_printf("cr_groups: ");
4522 	comma = 0;
4523 	for (i = 0; i < xu->cr_ngroups; i++) {
4524 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
4525 		comma = 1;
4526 	}
4527 	db_printf("\n");
4528 }
4529 
4530 static void
db_print_unprefs(int indent,struct unp_head * uh)4531 db_print_unprefs(int indent, struct unp_head *uh)
4532 {
4533 	struct unpcb *unp;
4534 	int counter;
4535 
4536 	counter = 0;
4537 	LIST_FOREACH(unp, uh, unp_reflink) {
4538 		if (counter % 4 == 0)
4539 			db_print_indent(indent);
4540 		db_printf("%p  ", unp);
4541 		if (counter % 4 == 3)
4542 			db_printf("\n");
4543 		counter++;
4544 	}
4545 	if (counter != 0 && counter % 4 != 0)
4546 		db_printf("\n");
4547 }
4548 
DB_SHOW_COMMAND(unpcb,db_show_unpcb)4549 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
4550 {
4551 	struct unpcb *unp;
4552 
4553         if (!have_addr) {
4554                 db_printf("usage: show unpcb <addr>\n");
4555                 return;
4556         }
4557         unp = (struct unpcb *)addr;
4558 
4559 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
4560 	    unp->unp_vnode);
4561 
4562 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
4563 	    unp->unp_conn);
4564 
4565 	db_printf("unp_refs:\n");
4566 	db_print_unprefs(2, &unp->unp_refs);
4567 
4568 	/* XXXRW: Would be nice to print the full address, if any. */
4569 	db_printf("unp_addr: %p\n", unp->unp_addr);
4570 
4571 	db_printf("unp_gencnt: %llu\n",
4572 	    (unsigned long long)unp->unp_gencnt);
4573 
4574 	db_printf("unp_flags: %x (", unp->unp_flags);
4575 	db_print_unpflags(unp->unp_flags);
4576 	db_printf(")\n");
4577 
4578 	db_printf("unp_peercred:\n");
4579 	db_print_xucred(2, &unp->unp_peercred);
4580 
4581 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
4582 }
4583 #endif
4584