1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 /*
38 * External virtual filesystem routines
39 */
40
41 #include "opt_ddb.h"
42 #include "opt_watchdog.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/asan.h>
47 #include <sys/bio.h>
48 #include <sys/buf.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/counter.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/inotify.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/stdarg.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/user.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87
88 #include <security/mac/mac_framework.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103
104 static void delmntque(struct vnode *vp);
105 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 int slpflag, int slptimeo);
107 static void syncer_shutdown(void *arg, int howto);
108 static int vtryrecycle(struct vnode *vp, bool isvnlru);
109 static void v_init_counters(struct vnode *);
110 static void vn_seqc_init(struct vnode *);
111 static void vn_seqc_write_end_free(struct vnode *vp);
112 static void vgonel(struct vnode *);
113 static bool vhold_recycle_free(struct vnode *);
114 static void vdropl_recycle(struct vnode *vp);
115 static void vdrop_recycle(struct vnode *vp);
116 static void vfs_knllock(void *arg);
117 static void vfs_knlunlock(void *arg);
118 static void vfs_knl_assert_lock(void *arg, int what);
119 static void destroy_vpollinfo(struct vpollinfo *vi);
120 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 daddr_t startlbn, daddr_t endlbn);
122 static void vnlru_recalc(void);
123
124 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
125 "vnode configuration and statistics");
126 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
127 "vnode configuration");
128 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129 "vnode statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131 "vnode recycling");
132
133 /*
134 * Number of vnodes in existence. Increased whenever getnewvnode()
135 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
136 */
137 static u_long __exclusive_cache_line numvnodes;
138
139 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
140 "Number of vnodes in existence (legacy)");
141 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
142 "Number of vnodes in existence");
143
144 static counter_u64_t vnodes_created;
145 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
146 "Number of vnodes created by getnewvnode (legacy)");
147 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
148 "Number of vnodes created by getnewvnode");
149
150 /*
151 * Conversion tables for conversion from vnode types to inode formats
152 * and back.
153 */
154 __enum_uint8(vtype) iftovt_tab[16] = {
155 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
156 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
157 };
158 int vttoif_tab[10] = {
159 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
160 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
161 };
162
163 /*
164 * List of allocates vnodes in the system.
165 */
166 static TAILQ_HEAD(freelst, vnode) vnode_list;
167 static struct vnode *vnode_list_free_marker;
168 static struct vnode *vnode_list_reclaim_marker;
169
170 /*
171 * "Free" vnode target. Free vnodes are rarely completely free, but are
172 * just ones that are cheap to recycle. Usually they are for files which
173 * have been stat'd but not read; these usually have inode and namecache
174 * data attached to them. This target is the preferred minimum size of a
175 * sub-cache consisting mostly of such files. The system balances the size
176 * of this sub-cache with its complement to try to prevent either from
177 * thrashing while the other is relatively inactive. The targets express
178 * a preference for the best balance.
179 *
180 * "Above" this target there are 2 further targets (watermarks) related
181 * to recyling of free vnodes. In the best-operating case, the cache is
182 * exactly full, the free list has size between vlowat and vhiwat above the
183 * free target, and recycling from it and normal use maintains this state.
184 * Sometimes the free list is below vlowat or even empty, but this state
185 * is even better for immediate use provided the cache is not full.
186 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
187 * ones) to reach one of these states. The watermarks are currently hard-
188 * coded as 4% and 9% of the available space higher. These and the default
189 * of 25% for wantfreevnodes are too large if the memory size is large.
190 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
191 * whenever vnlru_proc() becomes active.
192 */
193 static long wantfreevnodes;
194 static long __exclusive_cache_line freevnodes;
195 static long freevnodes_old;
196
197 static u_long recycles_count;
198 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
199 "Number of vnodes recycled to meet vnode cache targets (legacy)");
200 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
201 &recycles_count, 0,
202 "Number of vnodes recycled to meet vnode cache targets");
203
204 static u_long recycles_free_count;
205 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
206 &recycles_free_count, 0,
207 "Number of free vnodes recycled to meet vnode cache targets (legacy)");
208 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
209 &recycles_free_count, 0,
210 "Number of free vnodes recycled to meet vnode cache targets");
211
212 static counter_u64_t direct_recycles_free_count;
213 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
214 &direct_recycles_free_count,
215 "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
216
217 static counter_u64_t vnode_skipped_requeues;
218 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
219 "Number of times LRU requeue was skipped due to lock contention");
220
221 static __read_mostly bool vnode_can_skip_requeue;
222 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
223 &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
224
225 static u_long deferred_inact;
226 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
227 &deferred_inact, 0, "Number of times inactive processing was deferred");
228
229 /* To keep more than one thread at a time from running vfs_getnewfsid */
230 static struct mtx mntid_mtx;
231
232 /*
233 * Lock for any access to the following:
234 * vnode_list
235 * numvnodes
236 * freevnodes
237 */
238 static struct mtx __exclusive_cache_line vnode_list_mtx;
239
240 /* Publicly exported FS */
241 struct nfs_public nfs_pub;
242
243 static uma_zone_t buf_trie_zone;
244 static smr_t buf_trie_smr;
245
246 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
247 static uma_zone_t vnode_zone;
248 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
249
250 __read_frequently smr_t vfs_smr;
251
252 /*
253 * The workitem queue.
254 *
255 * It is useful to delay writes of file data and filesystem metadata
256 * for tens of seconds so that quickly created and deleted files need
257 * not waste disk bandwidth being created and removed. To realize this,
258 * we append vnodes to a "workitem" queue. When running with a soft
259 * updates implementation, most pending metadata dependencies should
260 * not wait for more than a few seconds. Thus, mounted on block devices
261 * are delayed only about a half the time that file data is delayed.
262 * Similarly, directory updates are more critical, so are only delayed
263 * about a third the time that file data is delayed. Thus, there are
264 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
265 * one each second (driven off the filesystem syncer process). The
266 * syncer_delayno variable indicates the next queue that is to be processed.
267 * Items that need to be processed soon are placed in this queue:
268 *
269 * syncer_workitem_pending[syncer_delayno]
270 *
271 * A delay of fifteen seconds is done by placing the request fifteen
272 * entries later in the queue:
273 *
274 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
275 *
276 */
277 static int syncer_delayno;
278 static long syncer_mask;
279 LIST_HEAD(synclist, bufobj);
280 static struct synclist *syncer_workitem_pending;
281 /*
282 * The sync_mtx protects:
283 * bo->bo_synclist
284 * sync_vnode_count
285 * syncer_delayno
286 * syncer_state
287 * syncer_workitem_pending
288 * syncer_worklist_len
289 * rushjob
290 */
291 static struct mtx sync_mtx;
292 static struct cv sync_wakeup;
293
294 #define SYNCER_MAXDELAY 32
295 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
296 static int syncdelay = 30; /* max time to delay syncing data */
297 static int filedelay = 30; /* time to delay syncing files */
298 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
299 "Time to delay syncing files (in seconds)");
300 static int dirdelay = 29; /* time to delay syncing directories */
301 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
302 "Time to delay syncing directories (in seconds)");
303 static int metadelay = 28; /* time to delay syncing metadata */
304 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
305 "Time to delay syncing metadata (in seconds)");
306 static int rushjob; /* number of slots to run ASAP */
307 static int stat_rush_requests; /* number of times I/O speeded up */
308 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
309 "Number of times I/O speeded up (rush requests)");
310
311 #define VDBATCH_SIZE 8
312 struct vdbatch {
313 u_int index;
314 struct mtx lock;
315 struct vnode *tab[VDBATCH_SIZE];
316 };
317 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
318
319 static void vdbatch_dequeue(struct vnode *vp);
320
321 /*
322 * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
323 * we probably don't want to pause for the whole second each time.
324 */
325 #define SYNCER_SHUTDOWN_SPEEDUP 32
326 static int sync_vnode_count;
327 static int syncer_worklist_len;
328 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
329 syncer_state;
330
331 /* Target for maximum number of vnodes. */
332 u_long desiredvnodes;
333 static u_long gapvnodes; /* gap between wanted and desired */
334 static u_long vhiwat; /* enough extras after expansion */
335 static u_long vlowat; /* minimal extras before expansion */
336 static bool vstir; /* nonzero to stir non-free vnodes */
337 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */
338
339 static u_long vnlru_read_freevnodes(void);
340
341 /*
342 * Note that no attempt is made to sanitize these parameters.
343 */
344 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)345 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
346 {
347 u_long val;
348 int error;
349
350 val = desiredvnodes;
351 error = sysctl_handle_long(oidp, &val, 0, req);
352 if (error != 0 || req->newptr == NULL)
353 return (error);
354
355 if (val == desiredvnodes)
356 return (0);
357 mtx_lock(&vnode_list_mtx);
358 desiredvnodes = val;
359 wantfreevnodes = desiredvnodes / 4;
360 vnlru_recalc();
361 mtx_unlock(&vnode_list_mtx);
362 /*
363 * XXX There is no protection against multiple threads changing
364 * desiredvnodes at the same time. Locking above only helps vnlru and
365 * getnewvnode.
366 */
367 vfs_hash_changesize(desiredvnodes);
368 cache_changesize(desiredvnodes);
369 return (0);
370 }
371
372 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
373 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
374 "LU", "Target for maximum number of vnodes (legacy)");
375 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
376 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377 "LU", "Target for maximum number of vnodes");
378
379 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)380 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
381 {
382 u_long rfreevnodes;
383
384 rfreevnodes = vnlru_read_freevnodes();
385 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
386 }
387
388 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
389 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
390 "LU", "Number of \"free\" vnodes (legacy)");
391 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
392 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393 "LU", "Number of \"free\" vnodes");
394
395 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)396 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
397 {
398 u_long val;
399 int error;
400
401 val = wantfreevnodes;
402 error = sysctl_handle_long(oidp, &val, 0, req);
403 if (error != 0 || req->newptr == NULL)
404 return (error);
405
406 if (val == wantfreevnodes)
407 return (0);
408 mtx_lock(&vnode_list_mtx);
409 wantfreevnodes = val;
410 vnlru_recalc();
411 mtx_unlock(&vnode_list_mtx);
412 return (0);
413 }
414
415 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
416 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
417 "LU", "Target for minimum number of \"free\" vnodes (legacy)");
418 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
419 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420 "LU", "Target for minimum number of \"free\" vnodes");
421
422 static int vnlru_nowhere;
423 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
424 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
425
426 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)427 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
428 {
429 struct vnode *vp;
430 struct nameidata nd;
431 char *buf;
432 unsigned long ndflags;
433 int error;
434
435 if (req->newptr == NULL)
436 return (EINVAL);
437 if (req->newlen >= PATH_MAX)
438 return (E2BIG);
439
440 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
441 error = SYSCTL_IN(req, buf, req->newlen);
442 if (error != 0)
443 goto out;
444
445 buf[req->newlen] = '\0';
446
447 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
448 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
449 if ((error = namei(&nd)) != 0)
450 goto out;
451 vp = nd.ni_vp;
452
453 if (VN_IS_DOOMED(vp)) {
454 /*
455 * This vnode is being recycled. Return != 0 to let the caller
456 * know that the sysctl had no effect. Return EAGAIN because a
457 * subsequent call will likely succeed (since namei will create
458 * a new vnode if necessary)
459 */
460 error = EAGAIN;
461 goto putvnode;
462 }
463
464 vgone(vp);
465 putvnode:
466 vput(vp);
467 NDFREE_PNBUF(&nd);
468 out:
469 free(buf, M_TEMP);
470 return (error);
471 }
472
473 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)474 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
475 {
476 struct thread *td = curthread;
477 struct vnode *vp;
478 struct file *fp;
479 int error;
480 int fd;
481
482 if (req->newptr == NULL)
483 return (EBADF);
484
485 error = sysctl_handle_int(oidp, &fd, 0, req);
486 if (error != 0)
487 return (error);
488 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
489 if (error != 0)
490 return (error);
491 vp = fp->f_vnode;
492
493 error = vn_lock(vp, LK_EXCLUSIVE);
494 if (error != 0)
495 goto drop;
496
497 vgone(vp);
498 VOP_UNLOCK(vp);
499 drop:
500 fdrop(fp, td);
501 return (error);
502 }
503
504 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
505 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
506 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
507 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
508 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509 sysctl_ftry_reclaim_vnode, "I",
510 "Try to reclaim a vnode by its file descriptor");
511
512 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
513 #define vnsz2log 8
514 #ifndef DEBUG_LOCKS
515 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
516 sizeof(struct vnode) < 1UL << (vnsz2log + 1),
517 "vnsz2log needs to be updated");
518 #endif
519
520 /*
521 * Support for the bufobj clean & dirty pctrie.
522 */
523 static void *
buf_trie_alloc(struct pctrie * ptree)524 buf_trie_alloc(struct pctrie *ptree)
525 {
526 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
527 }
528
529 static void
buf_trie_free(struct pctrie * ptree,void * node)530 buf_trie_free(struct pctrie *ptree, void *node)
531 {
532 uma_zfree_smr(buf_trie_zone, node);
533 }
534 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
535 buf_trie_smr);
536
537 /*
538 * Lookup the next element greater than or equal to lblkno, accounting for the
539 * fact that, for pctries, negative values are greater than nonnegative ones.
540 */
541 static struct buf *
buf_lookup_ge(struct bufv * bv,daddr_t lblkno)542 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
543 {
544 struct buf *bp;
545
546 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
547 if (bp == NULL && lblkno < 0)
548 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
549 if (bp != NULL && bp->b_lblkno < lblkno)
550 bp = NULL;
551 return (bp);
552 }
553
554 /*
555 * Insert bp, and find the next element smaller than bp, accounting for the fact
556 * that, for pctries, negative values are greater than nonnegative ones.
557 */
558 static int
buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)559 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
560 {
561 int error;
562
563 error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
564 if (error != EEXIST) {
565 if (*n == NULL && bp->b_lblkno >= 0)
566 *n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
567 if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
568 *n = NULL;
569 }
570 return (error);
571 }
572
573 /*
574 * Initialize the vnode management data structures.
575 *
576 * Reevaluate the following cap on the number of vnodes after the physical
577 * memory size exceeds 512GB. In the limit, as the physical memory size
578 * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
579 */
580 #ifndef MAXVNODES_MAX
581 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */
582 #endif
583
584 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
585
586 static struct vnode *
vn_alloc_marker(struct mount * mp)587 vn_alloc_marker(struct mount *mp)
588 {
589 struct vnode *vp;
590
591 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
592 vp->v_type = VMARKER;
593 vp->v_mount = mp;
594
595 return (vp);
596 }
597
598 static void
vn_free_marker(struct vnode * vp)599 vn_free_marker(struct vnode *vp)
600 {
601
602 MPASS(vp->v_type == VMARKER);
603 free(vp, M_VNODE_MARKER);
604 }
605
606 #ifdef KASAN
607 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)608 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
609 {
610 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
611 return (0);
612 }
613
614 static void
vnode_dtor(void * mem,int size,void * arg __unused)615 vnode_dtor(void *mem, int size, void *arg __unused)
616 {
617 size_t end1, end2, off1, off2;
618
619 _Static_assert(offsetof(struct vnode, v_vnodelist) <
620 offsetof(struct vnode, v_dbatchcpu),
621 "KASAN marks require updating");
622
623 off1 = offsetof(struct vnode, v_vnodelist);
624 off2 = offsetof(struct vnode, v_dbatchcpu);
625 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
626 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
627
628 /*
629 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
630 * after the vnode has been freed. Try to get some KASAN coverage by
631 * marking everything except those two fields as invalid. Because
632 * KASAN's tracking is not byte-granular, any preceding fields sharing
633 * the same 8-byte aligned word must also be marked valid.
634 */
635
636 /* Handle the area from the start until v_vnodelist... */
637 off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
638 kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
639
640 /* ... then the area between v_vnodelist and v_dbatchcpu ... */
641 off1 = roundup2(end1, KASAN_SHADOW_SCALE);
642 off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
643 if (off2 > off1)
644 kasan_mark((void *)((char *)mem + off1), off2 - off1,
645 off2 - off1, KASAN_UMA_FREED);
646
647 /* ... and finally the area from v_dbatchcpu to the end. */
648 off2 = roundup2(end2, KASAN_SHADOW_SCALE);
649 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
650 KASAN_UMA_FREED);
651 }
652 #endif /* KASAN */
653
654 /*
655 * Initialize a vnode as it first enters the zone.
656 */
657 static int
vnode_init(void * mem,int size,int flags)658 vnode_init(void *mem, int size, int flags)
659 {
660 struct vnode *vp;
661
662 vp = mem;
663 bzero(vp, size);
664 /*
665 * Setup locks.
666 */
667 vp->v_vnlock = &vp->v_lock;
668 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
669 /*
670 * By default, don't allow shared locks unless filesystems opt-in.
671 */
672 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
673 LK_NOSHARE | LK_IS_VNODE);
674 /*
675 * Initialize bufobj.
676 */
677 bufobj_init(&vp->v_bufobj, vp);
678 /*
679 * Initialize namecache.
680 */
681 cache_vnode_init(vp);
682 /*
683 * Initialize rangelocks.
684 */
685 rangelock_init(&vp->v_rl);
686
687 vp->v_dbatchcpu = NOCPU;
688
689 vp->v_state = VSTATE_DEAD;
690
691 /*
692 * Check vhold_recycle_free for an explanation.
693 */
694 vp->v_holdcnt = VHOLD_NO_SMR;
695 vp->v_type = VNON;
696 mtx_lock(&vnode_list_mtx);
697 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
698 mtx_unlock(&vnode_list_mtx);
699 return (0);
700 }
701
702 /*
703 * Free a vnode when it is cleared from the zone.
704 */
705 static void
vnode_fini(void * mem,int size)706 vnode_fini(void *mem, int size)
707 {
708 struct vnode *vp;
709 struct bufobj *bo;
710
711 vp = mem;
712 vdbatch_dequeue(vp);
713 mtx_lock(&vnode_list_mtx);
714 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
715 mtx_unlock(&vnode_list_mtx);
716 rangelock_destroy(&vp->v_rl);
717 lockdestroy(vp->v_vnlock);
718 mtx_destroy(&vp->v_interlock);
719 bo = &vp->v_bufobj;
720 rw_destroy(BO_LOCKPTR(bo));
721
722 kasan_mark(mem, size, size, 0);
723 }
724
725 /*
726 * Provide the size of NFS nclnode and NFS fh for calculation of the
727 * vnode memory consumption. The size is specified directly to
728 * eliminate dependency on NFS-private header.
729 *
730 * Other filesystems may use bigger or smaller (like UFS and ZFS)
731 * private inode data, but the NFS-based estimation is ample enough.
732 * Still, we care about differences in the size between 64- and 32-bit
733 * platforms.
734 *
735 * Namecache structure size is heuristically
736 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
737 */
738 #ifdef _LP64
739 #define NFS_NCLNODE_SZ (528 + 64)
740 #define NC_SZ 148
741 #else
742 #define NFS_NCLNODE_SZ (360 + 32)
743 #define NC_SZ 92
744 #endif
745
746 static void
vntblinit(void * dummy __unused)747 vntblinit(void *dummy __unused)
748 {
749 struct vdbatch *vd;
750 uma_ctor ctor;
751 uma_dtor dtor;
752 int cpu, physvnodes, virtvnodes;
753
754 /*
755 * 'desiredvnodes' is the minimum of a function of the physical memory
756 * size and another of the kernel heap size (UMA limit, a portion of the
757 * KVA).
758 *
759 * Currently, on 64-bit platforms, 'desiredvnodes' is set to
760 * 'virtvnodes' up to a physical memory cutoff of ~1722MB, after which
761 * 'physvnodes' applies instead. With the current automatic tuning for
762 * 'maxfiles' (32 files/MB), 'desiredvnodes' is always greater than it.
763 */
764 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 32 +
765 min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 32;
766 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
767 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
768 desiredvnodes = min(physvnodes, virtvnodes);
769 if (desiredvnodes > MAXVNODES_MAX) {
770 if (bootverbose)
771 printf("Reducing kern.maxvnodes %lu -> %lu\n",
772 desiredvnodes, MAXVNODES_MAX);
773 desiredvnodes = MAXVNODES_MAX;
774 }
775 wantfreevnodes = desiredvnodes / 4;
776 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
777 TAILQ_INIT(&vnode_list);
778 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
779 /*
780 * The lock is taken to appease WITNESS.
781 */
782 mtx_lock(&vnode_list_mtx);
783 vnlru_recalc();
784 mtx_unlock(&vnode_list_mtx);
785 vnode_list_free_marker = vn_alloc_marker(NULL);
786 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
787 vnode_list_reclaim_marker = vn_alloc_marker(NULL);
788 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
789
790 #ifdef KASAN
791 ctor = vnode_ctor;
792 dtor = vnode_dtor;
793 #else
794 ctor = NULL;
795 dtor = NULL;
796 #endif
797 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
798 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
799 uma_zone_set_smr(vnode_zone, vfs_smr);
800
801 /*
802 * Preallocate enough nodes to support one-per buf so that
803 * we can not fail an insert. reassignbuf() callers can not
804 * tolerate the insertion failure.
805 */
806 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
807 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
808 UMA_ZONE_NOFREE | UMA_ZONE_SMR);
809 buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
810 uma_prealloc(buf_trie_zone, nbuf);
811
812 vnodes_created = counter_u64_alloc(M_WAITOK);
813 direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
814 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
815
816 /*
817 * Initialize the filesystem syncer.
818 */
819 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
820 &syncer_mask);
821 syncer_maxdelay = syncer_mask + 1;
822 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
823 cv_init(&sync_wakeup, "syncer");
824
825 CPU_FOREACH(cpu) {
826 vd = DPCPU_ID_PTR((cpu), vd);
827 bzero(vd, sizeof(*vd));
828 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
829 }
830 }
831 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
832
833 /*
834 * Mark a mount point as busy. Used to synchronize access and to delay
835 * unmounting. Eventually, mountlist_mtx is not released on failure.
836 *
837 * vfs_busy() is a custom lock, it can block the caller.
838 * vfs_busy() only sleeps if the unmount is active on the mount point.
839 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
840 * vnode belonging to mp.
841 *
842 * Lookup uses vfs_busy() to traverse mount points.
843 * root fs var fs
844 * / vnode lock A / vnode lock (/var) D
845 * /var vnode lock B /log vnode lock(/var/log) E
846 * vfs_busy lock C vfs_busy lock F
847 *
848 * Within each file system, the lock order is C->A->B and F->D->E.
849 *
850 * When traversing across mounts, the system follows that lock order:
851 *
852 * C->A->B
853 * |
854 * +->F->D->E
855 *
856 * The lookup() process for namei("/var") illustrates the process:
857 * 1. VOP_LOOKUP() obtains B while A is held
858 * 2. vfs_busy() obtains a shared lock on F while A and B are held
859 * 3. vput() releases lock on B
860 * 4. vput() releases lock on A
861 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held
862 * 6. vfs_unbusy() releases shared lock on F
863 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
864 * Attempt to lock A (instead of vp_crossmp) while D is held would
865 * violate the global order, causing deadlocks.
866 *
867 * dounmount() locks B while F is drained. Note that for stacked
868 * filesystems, D and B in the example above may be the same lock,
869 * which introdues potential lock order reversal deadlock between
870 * dounmount() and step 5 above. These filesystems may avoid the LOR
871 * by setting VV_CROSSLOCK on the covered vnode so that lock B will
872 * remain held until after step 5.
873 */
874 int
vfs_busy(struct mount * mp,int flags)875 vfs_busy(struct mount *mp, int flags)
876 {
877 struct mount_pcpu *mpcpu;
878
879 MPASS((flags & ~MBF_MASK) == 0);
880 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
881
882 if (vfs_op_thread_enter(mp, mpcpu)) {
883 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
884 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
885 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
886 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
887 vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
888 vfs_op_thread_exit(mp, mpcpu);
889 if (flags & MBF_MNTLSTLOCK)
890 mtx_unlock(&mountlist_mtx);
891 return (0);
892 }
893
894 MNT_ILOCK(mp);
895 vfs_assert_mount_counters(mp);
896 MNT_REF(mp);
897 /*
898 * If mount point is currently being unmounted, sleep until the
899 * mount point fate is decided. If thread doing the unmounting fails,
900 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
901 * that this mount point has survived the unmount attempt and vfs_busy
902 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
903 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
904 * about to be really destroyed. vfs_busy needs to release its
905 * reference on the mount point in this case and return with ENOENT,
906 * telling the caller the mount it tried to busy is no longer valid.
907 */
908 while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
909 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
910 ("%s: non-empty upper mount list with pending unmount",
911 __func__));
912 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
913 MNT_REL(mp);
914 MNT_IUNLOCK(mp);
915 CTR1(KTR_VFS, "%s: failed busying before sleeping",
916 __func__);
917 return (ENOENT);
918 }
919 if (flags & MBF_MNTLSTLOCK)
920 mtx_unlock(&mountlist_mtx);
921 mp->mnt_kern_flag |= MNTK_MWAIT;
922 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
923 if (flags & MBF_MNTLSTLOCK)
924 mtx_lock(&mountlist_mtx);
925 MNT_ILOCK(mp);
926 }
927 if (flags & MBF_MNTLSTLOCK)
928 mtx_unlock(&mountlist_mtx);
929 mp->mnt_lockref++;
930 MNT_IUNLOCK(mp);
931 return (0);
932 }
933
934 /*
935 * Free a busy filesystem.
936 */
937 void
vfs_unbusy(struct mount * mp)938 vfs_unbusy(struct mount *mp)
939 {
940 struct mount_pcpu *mpcpu;
941 int c;
942
943 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
944
945 if (vfs_op_thread_enter(mp, mpcpu)) {
946 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
947 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
948 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
949 vfs_op_thread_exit(mp, mpcpu);
950 return;
951 }
952
953 MNT_ILOCK(mp);
954 vfs_assert_mount_counters(mp);
955 MNT_REL(mp);
956 c = --mp->mnt_lockref;
957 if (mp->mnt_vfs_ops == 0) {
958 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
959 MNT_IUNLOCK(mp);
960 return;
961 }
962 if (c < 0)
963 vfs_dump_mount_counters(mp);
964 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
965 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
966 CTR1(KTR_VFS, "%s: waking up waiters", __func__);
967 mp->mnt_kern_flag &= ~MNTK_DRAINING;
968 wakeup(&mp->mnt_lockref);
969 }
970 MNT_IUNLOCK(mp);
971 }
972
973 /*
974 * Lookup a mount point by filesystem identifier.
975 */
976 struct mount *
vfs_getvfs(fsid_t * fsid)977 vfs_getvfs(fsid_t *fsid)
978 {
979 struct mount *mp;
980
981 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
982 mtx_lock(&mountlist_mtx);
983 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
984 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
985 vfs_ref(mp);
986 mtx_unlock(&mountlist_mtx);
987 return (mp);
988 }
989 }
990 mtx_unlock(&mountlist_mtx);
991 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
992 return ((struct mount *) 0);
993 }
994
995 /*
996 * Lookup a mount point by filesystem identifier, busying it before
997 * returning.
998 *
999 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1000 * cache for popular filesystem identifiers. The cache is lockess, using
1001 * the fact that struct mount's are never freed. In worst case we may
1002 * get pointer to unmounted or even different filesystem, so we have to
1003 * check what we got, and go slow way if so.
1004 */
1005 struct mount *
vfs_busyfs(fsid_t * fsid)1006 vfs_busyfs(fsid_t *fsid)
1007 {
1008 #define FSID_CACHE_SIZE 256
1009 typedef struct mount * volatile vmp_t;
1010 static vmp_t cache[FSID_CACHE_SIZE];
1011 struct mount *mp;
1012 int error;
1013 uint32_t hash;
1014
1015 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1016 hash = fsid->val[0] ^ fsid->val[1];
1017 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1018 mp = cache[hash];
1019 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1020 goto slow;
1021 if (vfs_busy(mp, 0) != 0) {
1022 cache[hash] = NULL;
1023 goto slow;
1024 }
1025 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1026 return (mp);
1027 else
1028 vfs_unbusy(mp);
1029
1030 slow:
1031 mtx_lock(&mountlist_mtx);
1032 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1033 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1034 error = vfs_busy(mp, MBF_MNTLSTLOCK);
1035 if (error) {
1036 cache[hash] = NULL;
1037 mtx_unlock(&mountlist_mtx);
1038 return (NULL);
1039 }
1040 cache[hash] = mp;
1041 return (mp);
1042 }
1043 }
1044 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1045 mtx_unlock(&mountlist_mtx);
1046 return ((struct mount *) 0);
1047 }
1048
1049 /*
1050 * Check if a user can access privileged mount options.
1051 */
1052 int
vfs_suser(struct mount * mp,struct thread * td)1053 vfs_suser(struct mount *mp, struct thread *td)
1054 {
1055 int error;
1056
1057 if (jailed(td->td_ucred)) {
1058 /*
1059 * If the jail of the calling thread lacks permission for
1060 * this type of file system, deny immediately.
1061 */
1062 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1063 return (EPERM);
1064
1065 /*
1066 * If the file system was mounted outside the jail of the
1067 * calling thread, deny immediately.
1068 */
1069 if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1070 return (EPERM);
1071 }
1072
1073 /*
1074 * If file system supports delegated administration, we don't check
1075 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1076 * by the file system itself.
1077 * If this is not the user that did original mount, we check for
1078 * the PRIV_VFS_MOUNT_OWNER privilege.
1079 */
1080 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1081 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1082 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1083 return (error);
1084 }
1085 return (0);
1086 }
1087
1088 /*
1089 * Get a new unique fsid. Try to make its val[0] unique, since this value
1090 * will be used to create fake device numbers for stat(). Also try (but
1091 * not so hard) make its val[0] unique mod 2^16, since some emulators only
1092 * support 16-bit device numbers. We end up with unique val[0]'s for the
1093 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1094 *
1095 * Keep in mind that several mounts may be running in parallel. Starting
1096 * the search one past where the previous search terminated is both a
1097 * micro-optimization and a defense against returning the same fsid to
1098 * different mounts.
1099 */
1100 void
vfs_getnewfsid(struct mount * mp)1101 vfs_getnewfsid(struct mount *mp)
1102 {
1103 static uint16_t mntid_base;
1104 struct mount *nmp;
1105 fsid_t tfsid;
1106 int mtype;
1107
1108 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1109 mtx_lock(&mntid_mtx);
1110 mtype = mp->mnt_vfc->vfc_typenum;
1111 tfsid.val[1] = mtype;
1112 mtype = (mtype & 0xFF) << 24;
1113 for (;;) {
1114 tfsid.val[0] = makedev(255,
1115 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1116 mntid_base++;
1117 if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1118 break;
1119 vfs_rel(nmp);
1120 }
1121 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1122 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1123 mtx_unlock(&mntid_mtx);
1124 }
1125
1126 /*
1127 * Knob to control the precision of file timestamps:
1128 *
1129 * 0 = seconds only; nanoseconds zeroed.
1130 * 1 = seconds and nanoseconds, accurate within 1/HZ.
1131 * 2 = seconds and nanoseconds, truncated to microseconds.
1132 * >=3 = seconds and nanoseconds, maximum precision.
1133 */
1134 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1135
1136 static int timestamp_precision = TSP_USEC;
1137 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1138 ×tamp_precision, 0, "File timestamp precision (0: seconds, "
1139 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1140 "3+: sec + ns (max. precision))");
1141
1142 /*
1143 * Get a current timestamp.
1144 */
1145 void
vfs_timestamp(struct timespec * tsp)1146 vfs_timestamp(struct timespec *tsp)
1147 {
1148 struct timeval tv;
1149
1150 switch (timestamp_precision) {
1151 case TSP_SEC:
1152 tsp->tv_sec = time_second;
1153 tsp->tv_nsec = 0;
1154 break;
1155 case TSP_HZ:
1156 getnanotime(tsp);
1157 break;
1158 case TSP_USEC:
1159 microtime(&tv);
1160 TIMEVAL_TO_TIMESPEC(&tv, tsp);
1161 break;
1162 case TSP_NSEC:
1163 default:
1164 nanotime(tsp);
1165 break;
1166 }
1167 }
1168
1169 /*
1170 * Set vnode attributes to VNOVAL
1171 */
1172 void
vattr_null(struct vattr * vap)1173 vattr_null(struct vattr *vap)
1174 {
1175
1176 vap->va_type = VNON;
1177 vap->va_size = VNOVAL;
1178 vap->va_bytes = VNOVAL;
1179 vap->va_mode = VNOVAL;
1180 vap->va_nlink = VNOVAL;
1181 vap->va_uid = VNOVAL;
1182 vap->va_gid = VNOVAL;
1183 vap->va_fsid = VNOVAL;
1184 vap->va_fileid = VNOVAL;
1185 vap->va_blocksize = VNOVAL;
1186 vap->va_rdev = VNOVAL;
1187 vap->va_atime.tv_sec = VNOVAL;
1188 vap->va_atime.tv_nsec = VNOVAL;
1189 vap->va_mtime.tv_sec = VNOVAL;
1190 vap->va_mtime.tv_nsec = VNOVAL;
1191 vap->va_ctime.tv_sec = VNOVAL;
1192 vap->va_ctime.tv_nsec = VNOVAL;
1193 vap->va_birthtime.tv_sec = VNOVAL;
1194 vap->va_birthtime.tv_nsec = VNOVAL;
1195 vap->va_flags = VNOVAL;
1196 vap->va_gen = VNOVAL;
1197 vap->va_vaflags = 0;
1198 vap->va_filerev = VNOVAL;
1199 vap->va_bsdflags = 0;
1200 }
1201
1202 /*
1203 * Try to reduce the total number of vnodes.
1204 *
1205 * This routine (and its user) are buggy in at least the following ways:
1206 * - all parameters were picked years ago when RAM sizes were significantly
1207 * smaller
1208 * - it can pick vnodes based on pages used by the vm object, but filesystems
1209 * like ZFS don't use it making the pick broken
1210 * - since ZFS has its own aging policy it gets partially combated by this one
1211 * - a dedicated method should be provided for filesystems to let them decide
1212 * whether the vnode should be recycled
1213 *
1214 * This routine is called when we have too many vnodes. It attempts
1215 * to free <count> vnodes and will potentially free vnodes that still
1216 * have VM backing store (VM backing store is typically the cause
1217 * of a vnode blowout so we want to do this). Therefore, this operation
1218 * is not considered cheap.
1219 *
1220 * A number of conditions may prevent a vnode from being reclaimed.
1221 * the buffer cache may have references on the vnode, a directory
1222 * vnode may still have references due to the namei cache representing
1223 * underlying files, or the vnode may be in active use. It is not
1224 * desirable to reuse such vnodes. These conditions may cause the
1225 * number of vnodes to reach some minimum value regardless of what
1226 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
1227 *
1228 * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1229 * entries if this argument is strue
1230 * @param trigger Only reclaim vnodes with fewer than this many resident
1231 * pages.
1232 * @param target How many vnodes to reclaim.
1233 * @return The number of vnodes that were reclaimed.
1234 */
1235 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1236 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1237 {
1238 struct vnode *vp, *mvp;
1239 struct mount *mp;
1240 struct vm_object *object;
1241 u_long done;
1242 bool retried;
1243
1244 mtx_assert(&vnode_list_mtx, MA_OWNED);
1245
1246 retried = false;
1247 done = 0;
1248
1249 mvp = vnode_list_reclaim_marker;
1250 restart:
1251 vp = mvp;
1252 while (done < target) {
1253 vp = TAILQ_NEXT(vp, v_vnodelist);
1254 if (__predict_false(vp == NULL))
1255 break;
1256
1257 if (__predict_false(vp->v_type == VMARKER))
1258 continue;
1259
1260 /*
1261 * If it's been deconstructed already, it's still
1262 * referenced, or it exceeds the trigger, skip it.
1263 * Also skip free vnodes. We are trying to make space
1264 * for more free vnodes, not reduce their count.
1265 */
1266 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1267 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1268 goto next_iter;
1269
1270 if (vp->v_type == VBAD || vp->v_type == VNON)
1271 goto next_iter;
1272
1273 object = atomic_load_ptr(&vp->v_object);
1274 if (object == NULL || object->resident_page_count > trigger) {
1275 goto next_iter;
1276 }
1277
1278 /*
1279 * Handle races against vnode allocation. Filesystems lock the
1280 * vnode some time after it gets returned from getnewvnode,
1281 * despite type and hold count being manipulated earlier.
1282 * Resorting to checking v_mount restores guarantees present
1283 * before the global list was reworked to contain all vnodes.
1284 */
1285 if (!VI_TRYLOCK(vp))
1286 goto next_iter;
1287 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1288 VI_UNLOCK(vp);
1289 goto next_iter;
1290 }
1291 if (vp->v_mount == NULL) {
1292 VI_UNLOCK(vp);
1293 goto next_iter;
1294 }
1295 vholdl(vp);
1296 VI_UNLOCK(vp);
1297 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1299 mtx_unlock(&vnode_list_mtx);
1300
1301 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1302 vdrop_recycle(vp);
1303 goto next_iter_unlocked;
1304 }
1305 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1306 vdrop_recycle(vp);
1307 vn_finished_write(mp);
1308 goto next_iter_unlocked;
1309 }
1310
1311 VI_LOCK(vp);
1312 if (vp->v_usecount > 0 ||
1313 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1314 (vp->v_object != NULL && vp->v_object->handle == vp &&
1315 vp->v_object->resident_page_count > trigger)) {
1316 VOP_UNLOCK(vp);
1317 vdropl_recycle(vp);
1318 vn_finished_write(mp);
1319 goto next_iter_unlocked;
1320 }
1321 recycles_count++;
1322 vgonel(vp);
1323 VOP_UNLOCK(vp);
1324 vdropl_recycle(vp);
1325 vn_finished_write(mp);
1326 done++;
1327 next_iter_unlocked:
1328 maybe_yield();
1329 mtx_lock(&vnode_list_mtx);
1330 goto restart;
1331 next_iter:
1332 MPASS(vp->v_type != VMARKER);
1333 if (!should_yield())
1334 continue;
1335 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1336 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1337 mtx_unlock(&vnode_list_mtx);
1338 kern_yield(PRI_USER);
1339 mtx_lock(&vnode_list_mtx);
1340 goto restart;
1341 }
1342 if (done == 0 && !retried) {
1343 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1344 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1345 retried = true;
1346 goto restart;
1347 }
1348 return (done);
1349 }
1350
1351 static int max_free_per_call = 10000;
1352 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1353 "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1354 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1355 &max_free_per_call, 0,
1356 "limit on vnode free requests per call to the vnlru_free routine");
1357
1358 /*
1359 * Attempt to recycle requested amount of free vnodes.
1360 */
1361 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1362 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1363 {
1364 struct vnode *vp;
1365 struct mount *mp;
1366 int ocount;
1367 bool retried;
1368
1369 mtx_assert(&vnode_list_mtx, MA_OWNED);
1370 if (count > max_free_per_call)
1371 count = max_free_per_call;
1372 if (count == 0) {
1373 mtx_unlock(&vnode_list_mtx);
1374 return (0);
1375 }
1376 ocount = count;
1377 retried = false;
1378 vp = mvp;
1379 for (;;) {
1380 vp = TAILQ_NEXT(vp, v_vnodelist);
1381 if (__predict_false(vp == NULL)) {
1382 /*
1383 * The free vnode marker can be past eligible vnodes:
1384 * 1. if vdbatch_process trylock failed
1385 * 2. if vtryrecycle failed
1386 *
1387 * If so, start the scan from scratch.
1388 */
1389 if (!retried && vnlru_read_freevnodes() > 0) {
1390 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1392 vp = mvp;
1393 retried = true;
1394 continue;
1395 }
1396
1397 /*
1398 * Give up
1399 */
1400 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1401 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1402 mtx_unlock(&vnode_list_mtx);
1403 break;
1404 }
1405 if (__predict_false(vp->v_type == VMARKER))
1406 continue;
1407 if (vp->v_holdcnt > 0)
1408 continue;
1409 /*
1410 * Don't recycle if our vnode is from different type
1411 * of mount point. Note that mp is type-safe, the
1412 * check does not reach unmapped address even if
1413 * vnode is reclaimed.
1414 */
1415 if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1416 mp->mnt_op != mnt_op) {
1417 continue;
1418 }
1419 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1420 continue;
1421 }
1422 if (!vhold_recycle_free(vp))
1423 continue;
1424 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1425 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1426 mtx_unlock(&vnode_list_mtx);
1427 /*
1428 * FIXME: ignores the return value, meaning it may be nothing
1429 * got recycled but it claims otherwise to the caller.
1430 *
1431 * Originally the value started being ignored in 2005 with
1432 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1433 *
1434 * Respecting the value can run into significant stalls if most
1435 * vnodes belong to one file system and it has writes
1436 * suspended. In presence of many threads and millions of
1437 * vnodes they keep contending on the vnode_list_mtx lock only
1438 * to find vnodes they can't recycle.
1439 *
1440 * The solution would be to pre-check if the vnode is likely to
1441 * be recycle-able, but it needs to happen with the
1442 * vnode_list_mtx lock held. This runs into a problem where
1443 * VOP_GETWRITEMOUNT (currently needed to find out about if
1444 * writes are frozen) can take locks which LOR against it.
1445 *
1446 * Check nullfs for one example (null_getwritemount).
1447 */
1448 vtryrecycle(vp, isvnlru);
1449 count--;
1450 if (count == 0) {
1451 break;
1452 }
1453 mtx_lock(&vnode_list_mtx);
1454 vp = mvp;
1455 }
1456 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1457 return (ocount - count);
1458 }
1459
1460 /*
1461 * XXX: returns without vnode_list_mtx locked!
1462 */
1463 static int
vnlru_free_locked_direct(int count)1464 vnlru_free_locked_direct(int count)
1465 {
1466 int ret;
1467
1468 mtx_assert(&vnode_list_mtx, MA_OWNED);
1469 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1470 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1471 return (ret);
1472 }
1473
1474 static int
vnlru_free_locked_vnlru(int count)1475 vnlru_free_locked_vnlru(int count)
1476 {
1477 int ret;
1478
1479 mtx_assert(&vnode_list_mtx, MA_OWNED);
1480 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1481 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1482 return (ret);
1483 }
1484
1485 static int
vnlru_free_vnlru(int count)1486 vnlru_free_vnlru(int count)
1487 {
1488
1489 mtx_lock(&vnode_list_mtx);
1490 return (vnlru_free_locked_vnlru(count));
1491 }
1492
1493 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1494 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1495 {
1496
1497 MPASS(mnt_op != NULL);
1498 MPASS(mvp != NULL);
1499 VNPASS(mvp->v_type == VMARKER, mvp);
1500 mtx_lock(&vnode_list_mtx);
1501 vnlru_free_impl(count, mnt_op, mvp, true);
1502 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1503 }
1504
1505 struct vnode *
vnlru_alloc_marker(void)1506 vnlru_alloc_marker(void)
1507 {
1508 struct vnode *mvp;
1509
1510 mvp = vn_alloc_marker(NULL);
1511 mtx_lock(&vnode_list_mtx);
1512 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1513 mtx_unlock(&vnode_list_mtx);
1514 return (mvp);
1515 }
1516
1517 void
vnlru_free_marker(struct vnode * mvp)1518 vnlru_free_marker(struct vnode *mvp)
1519 {
1520 mtx_lock(&vnode_list_mtx);
1521 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1522 mtx_unlock(&vnode_list_mtx);
1523 vn_free_marker(mvp);
1524 }
1525
1526 static void
vnlru_recalc(void)1527 vnlru_recalc(void)
1528 {
1529
1530 mtx_assert(&vnode_list_mtx, MA_OWNED);
1531 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1532 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1533 vlowat = vhiwat / 2;
1534 }
1535
1536 /*
1537 * Attempt to recycle vnodes in a context that is always safe to block.
1538 * Calling vlrurecycle() from the bowels of filesystem code has some
1539 * interesting deadlock problems.
1540 */
1541 static struct proc *vnlruproc;
1542 static int vnlruproc_sig;
1543 static u_long vnlruproc_kicks;
1544
1545 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1546 "Number of times vnlru awakened due to vnode shortage");
1547
1548 #define VNLRU_COUNT_SLOP 100
1549
1550 /*
1551 * The main freevnodes counter is only updated when a counter local to CPU
1552 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1553 * walked to compute a more accurate total.
1554 *
1555 * Note: the actual value at any given moment can still exceed slop, but it
1556 * should not be by significant margin in practice.
1557 */
1558 #define VNLRU_FREEVNODES_SLOP 126
1559
1560 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1561 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1562 {
1563
1564 atomic_add_long(&freevnodes, *lfreevnodes);
1565 *lfreevnodes = 0;
1566 critical_exit();
1567 }
1568
1569 static __inline void
vfs_freevnodes_inc(void)1570 vfs_freevnodes_inc(void)
1571 {
1572 int8_t *lfreevnodes;
1573
1574 critical_enter();
1575 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1576 (*lfreevnodes)++;
1577 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1578 vfs_freevnodes_rollup(lfreevnodes);
1579 else
1580 critical_exit();
1581 }
1582
1583 static __inline void
vfs_freevnodes_dec(void)1584 vfs_freevnodes_dec(void)
1585 {
1586 int8_t *lfreevnodes;
1587
1588 critical_enter();
1589 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1590 (*lfreevnodes)--;
1591 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1592 vfs_freevnodes_rollup(lfreevnodes);
1593 else
1594 critical_exit();
1595 }
1596
1597 static u_long
vnlru_read_freevnodes(void)1598 vnlru_read_freevnodes(void)
1599 {
1600 long slop, rfreevnodes, rfreevnodes_old;
1601 int cpu;
1602
1603 rfreevnodes = atomic_load_long(&freevnodes);
1604 rfreevnodes_old = atomic_load_long(&freevnodes_old);
1605
1606 if (rfreevnodes > rfreevnodes_old)
1607 slop = rfreevnodes - rfreevnodes_old;
1608 else
1609 slop = rfreevnodes_old - rfreevnodes;
1610 if (slop < VNLRU_FREEVNODES_SLOP)
1611 return (rfreevnodes >= 0 ? rfreevnodes : 0);
1612 CPU_FOREACH(cpu) {
1613 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1614 }
1615 atomic_store_long(&freevnodes_old, rfreevnodes);
1616 return (freevnodes_old >= 0 ? freevnodes_old : 0);
1617 }
1618
1619 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1620 vnlru_under(u_long rnumvnodes, u_long limit)
1621 {
1622 u_long rfreevnodes, space;
1623
1624 if (__predict_false(rnumvnodes > desiredvnodes))
1625 return (true);
1626
1627 space = desiredvnodes - rnumvnodes;
1628 if (space < limit) {
1629 rfreevnodes = vnlru_read_freevnodes();
1630 if (rfreevnodes > wantfreevnodes)
1631 space += rfreevnodes - wantfreevnodes;
1632 }
1633 return (space < limit);
1634 }
1635
1636 static void
vnlru_kick_locked(void)1637 vnlru_kick_locked(void)
1638 {
1639
1640 mtx_assert(&vnode_list_mtx, MA_OWNED);
1641 if (vnlruproc_sig == 0) {
1642 vnlruproc_sig = 1;
1643 vnlruproc_kicks++;
1644 wakeup(vnlruproc);
1645 }
1646 }
1647
1648 static void
vnlru_kick_cond(void)1649 vnlru_kick_cond(void)
1650 {
1651
1652 if (vnlru_read_freevnodes() > wantfreevnodes)
1653 return;
1654
1655 if (vnlruproc_sig)
1656 return;
1657 mtx_lock(&vnode_list_mtx);
1658 vnlru_kick_locked();
1659 mtx_unlock(&vnode_list_mtx);
1660 }
1661
1662 static void
vnlru_proc_sleep(void)1663 vnlru_proc_sleep(void)
1664 {
1665
1666 if (vnlruproc_sig) {
1667 vnlruproc_sig = 0;
1668 wakeup(&vnlruproc_sig);
1669 }
1670 msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1671 }
1672
1673 /*
1674 * A lighter version of the machinery below.
1675 *
1676 * Tries to reach goals only by recycling free vnodes and does not invoke
1677 * uma_reclaim(UMA_RECLAIM_DRAIN).
1678 *
1679 * This works around pathological behavior in vnlru in presence of tons of free
1680 * vnodes, but without having to rewrite the machinery at this time. Said
1681 * behavior boils down to continuously trying to reclaim all kinds of vnodes
1682 * (cycling through all levels of "force") when the count is transiently above
1683 * limit. This happens a lot when all vnodes are used up and vn_alloc
1684 * speculatively increments the counter.
1685 *
1686 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1687 * 1 million files in total and 20 find(1) processes stating them in parallel
1688 * (one per each tree).
1689 *
1690 * On a kernel with only stock machinery this needs anywhere between 60 and 120
1691 * seconds to execute (time varies *wildly* between runs). With the workaround
1692 * it consistently stays around 20 seconds [it got further down with later
1693 * changes].
1694 *
1695 * That is to say the entire thing needs a fundamental redesign (most notably
1696 * to accommodate faster recycling), the above only tries to get it ouf the way.
1697 *
1698 * Return values are:
1699 * -1 -- fallback to regular vnlru loop
1700 * 0 -- do nothing, go to sleep
1701 * >0 -- recycle this many vnodes
1702 */
1703 static long
vnlru_proc_light_pick(void)1704 vnlru_proc_light_pick(void)
1705 {
1706 u_long rnumvnodes, rfreevnodes;
1707
1708 if (vstir || vnlruproc_sig == 1)
1709 return (-1);
1710
1711 rnumvnodes = atomic_load_long(&numvnodes);
1712 rfreevnodes = vnlru_read_freevnodes();
1713
1714 /*
1715 * vnode limit might have changed and now we may be at a significant
1716 * excess. Bail if we can't sort it out with free vnodes.
1717 *
1718 * Due to atomic updates the count can legitimately go above
1719 * the limit for a short period, don't bother doing anything in
1720 * that case.
1721 */
1722 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1723 if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1724 rfreevnodes <= wantfreevnodes) {
1725 return (-1);
1726 }
1727
1728 return (rnumvnodes - desiredvnodes);
1729 }
1730
1731 /*
1732 * Don't try to reach wantfreevnodes target if there are too few vnodes
1733 * to begin with.
1734 */
1735 if (rnumvnodes < wantfreevnodes) {
1736 return (0);
1737 }
1738
1739 if (rfreevnodes < wantfreevnodes) {
1740 return (-1);
1741 }
1742
1743 return (0);
1744 }
1745
1746 static bool
vnlru_proc_light(void)1747 vnlru_proc_light(void)
1748 {
1749 long freecount;
1750
1751 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1752
1753 freecount = vnlru_proc_light_pick();
1754 if (freecount == -1)
1755 return (false);
1756
1757 if (freecount != 0) {
1758 vnlru_free_vnlru(freecount);
1759 }
1760
1761 mtx_lock(&vnode_list_mtx);
1762 vnlru_proc_sleep();
1763 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1764 return (true);
1765 }
1766
1767 static u_long uma_reclaim_calls;
1768 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1769 &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1770
1771 static void
vnlru_proc(void)1772 vnlru_proc(void)
1773 {
1774 u_long rnumvnodes, rfreevnodes, target;
1775 unsigned long onumvnodes;
1776 int done, force, trigger, usevnodes;
1777 bool reclaim_nc_src, want_reread;
1778
1779 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1780 SHUTDOWN_PRI_FIRST);
1781
1782 force = 0;
1783 want_reread = false;
1784 for (;;) {
1785 kproc_suspend_check(vnlruproc);
1786
1787 if (force == 0 && vnlru_proc_light())
1788 continue;
1789
1790 mtx_lock(&vnode_list_mtx);
1791 rnumvnodes = atomic_load_long(&numvnodes);
1792
1793 if (want_reread) {
1794 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1795 want_reread = false;
1796 }
1797
1798 /*
1799 * If numvnodes is too large (due to desiredvnodes being
1800 * adjusted using its sysctl, or emergency growth), first
1801 * try to reduce it by discarding free vnodes.
1802 */
1803 if (rnumvnodes > desiredvnodes + 10) {
1804 vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1805 mtx_lock(&vnode_list_mtx);
1806 rnumvnodes = atomic_load_long(&numvnodes);
1807 }
1808 /*
1809 * Sleep if the vnode cache is in a good state. This is
1810 * when it is not over-full and has space for about a 4%
1811 * or 9% expansion (by growing its size or inexcessively
1812 * reducing free vnode count). Otherwise, try to reclaim
1813 * space for a 10% expansion.
1814 */
1815 if (vstir && force == 0) {
1816 force = 1;
1817 vstir = false;
1818 }
1819 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1820 vnlru_proc_sleep();
1821 continue;
1822 }
1823 rfreevnodes = vnlru_read_freevnodes();
1824
1825 onumvnodes = rnumvnodes;
1826 /*
1827 * Calculate parameters for recycling. These are the same
1828 * throughout the loop to give some semblance of fairness.
1829 * The trigger point is to avoid recycling vnodes with lots
1830 * of resident pages. We aren't trying to free memory; we
1831 * are trying to recycle or at least free vnodes.
1832 */
1833 if (rnumvnodes <= desiredvnodes)
1834 usevnodes = rnumvnodes - rfreevnodes;
1835 else
1836 usevnodes = rnumvnodes;
1837 if (usevnodes <= 0)
1838 usevnodes = 1;
1839 /*
1840 * The trigger value is chosen to give a conservatively
1841 * large value to ensure that it alone doesn't prevent
1842 * making progress. The value can easily be so large that
1843 * it is effectively infinite in some congested and
1844 * misconfigured cases, and this is necessary. Normally
1845 * it is about 8 to 100 (pages), which is quite large.
1846 */
1847 trigger = vm_cnt.v_page_count * 2 / usevnodes;
1848 if (force < 2)
1849 trigger = vsmalltrigger;
1850 reclaim_nc_src = force >= 3;
1851 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1852 target = target / 10 + 1;
1853 done = vlrureclaim(reclaim_nc_src, trigger, target);
1854 mtx_unlock(&vnode_list_mtx);
1855 /*
1856 * Total number of vnodes can transiently go slightly above the
1857 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1858 * this happens.
1859 */
1860 if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1861 numvnodes <= desiredvnodes) {
1862 uma_reclaim_calls++;
1863 uma_reclaim(UMA_RECLAIM_DRAIN);
1864 }
1865 if (done == 0) {
1866 if (force == 0 || force == 1) {
1867 force = 2;
1868 continue;
1869 }
1870 if (force == 2) {
1871 force = 3;
1872 continue;
1873 }
1874 want_reread = true;
1875 force = 0;
1876 vnlru_nowhere++;
1877 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1878 } else {
1879 want_reread = true;
1880 kern_yield(PRI_USER);
1881 }
1882 }
1883 }
1884
1885 static struct kproc_desc vnlru_kp = {
1886 "vnlru",
1887 vnlru_proc,
1888 &vnlruproc
1889 };
1890 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1891 &vnlru_kp);
1892
1893 /*
1894 * Routines having to do with the management of the vnode table.
1895 */
1896
1897 /*
1898 * Try to recycle a freed vnode.
1899 */
1900 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1901 vtryrecycle(struct vnode *vp, bool isvnlru)
1902 {
1903 struct mount *vnmp;
1904
1905 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1906 VNPASS(vp->v_holdcnt > 0, vp);
1907 /*
1908 * This vnode may found and locked via some other list, if so we
1909 * can't recycle it yet.
1910 */
1911 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1912 CTR2(KTR_VFS,
1913 "%s: impossible to recycle, vp %p lock is already held",
1914 __func__, vp);
1915 vdrop_recycle(vp);
1916 return (EWOULDBLOCK);
1917 }
1918 /*
1919 * Don't recycle if its filesystem is being suspended.
1920 */
1921 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1922 VOP_UNLOCK(vp);
1923 CTR2(KTR_VFS,
1924 "%s: impossible to recycle, cannot start the write for %p",
1925 __func__, vp);
1926 vdrop_recycle(vp);
1927 return (EBUSY);
1928 }
1929 /*
1930 * If we got this far, we need to acquire the interlock and see if
1931 * anyone picked up this vnode from another list. If not, we will
1932 * mark it with DOOMED via vgonel() so that anyone who does find it
1933 * will skip over it.
1934 */
1935 VI_LOCK(vp);
1936 if (vp->v_usecount) {
1937 VOP_UNLOCK(vp);
1938 vdropl_recycle(vp);
1939 vn_finished_write(vnmp);
1940 CTR2(KTR_VFS,
1941 "%s: impossible to recycle, %p is already referenced",
1942 __func__, vp);
1943 return (EBUSY);
1944 }
1945 if (!VN_IS_DOOMED(vp)) {
1946 if (isvnlru)
1947 recycles_free_count++;
1948 else
1949 counter_u64_add(direct_recycles_free_count, 1);
1950 vgonel(vp);
1951 }
1952 VOP_UNLOCK(vp);
1953 vdropl_recycle(vp);
1954 vn_finished_write(vnmp);
1955 return (0);
1956 }
1957
1958 /*
1959 * Allocate a new vnode.
1960 *
1961 * The operation never returns an error. Returning an error was disabled
1962 * in r145385 (dated 2005) with the following comment:
1963 *
1964 * XXX Not all VFS_VGET/ffs_vget callers check returns.
1965 *
1966 * Given the age of this commit (almost 15 years at the time of writing this
1967 * comment) restoring the ability to fail requires a significant audit of
1968 * all codepaths.
1969 *
1970 * The routine can try to free a vnode or stall for up to 1 second waiting for
1971 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1972 */
1973 static u_long vn_alloc_cyclecount;
1974 static u_long vn_alloc_sleeps;
1975
1976 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1977 "Number of times vnode allocation blocked waiting on vnlru");
1978
1979 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1980 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1981 {
1982 u_long rfreevnodes;
1983
1984 if (bumped) {
1985 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1986 atomic_subtract_long(&numvnodes, 1);
1987 bumped = false;
1988 }
1989 }
1990
1991 mtx_lock(&vnode_list_mtx);
1992
1993 /*
1994 * Reload 'numvnodes', as since we acquired the lock, it may have
1995 * changed significantly if we waited, and 'rnumvnodes' above was only
1996 * actually passed if 'bumped' is true (else it is 0).
1997 */
1998 rnumvnodes = atomic_load_long(&numvnodes);
1999 if (rnumvnodes + !bumped < desiredvnodes) {
2000 vn_alloc_cyclecount = 0;
2001 mtx_unlock(&vnode_list_mtx);
2002 goto alloc;
2003 }
2004
2005 rfreevnodes = vnlru_read_freevnodes();
2006 if (vn_alloc_cyclecount++ >= rfreevnodes) {
2007 vn_alloc_cyclecount = 0;
2008 vstir = true;
2009 }
2010
2011 /*
2012 * Grow the vnode cache if it will not be above its target max after
2013 * growing. Otherwise, if there is at least one free vnode, try to
2014 * reclaim 1 item from it before growing the cache (possibly above its
2015 * target max if the reclamation failed or is delayed).
2016 */
2017 if (vnlru_free_locked_direct(1) > 0)
2018 goto alloc;
2019 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2020 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2021 /*
2022 * Wait for space for a new vnode.
2023 */
2024 if (bumped) {
2025 atomic_subtract_long(&numvnodes, 1);
2026 bumped = false;
2027 }
2028 mtx_lock(&vnode_list_mtx);
2029 vnlru_kick_locked();
2030 vn_alloc_sleeps++;
2031 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2032 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2033 vnlru_read_freevnodes() > 1)
2034 vnlru_free_locked_direct(1);
2035 else
2036 mtx_unlock(&vnode_list_mtx);
2037 }
2038 alloc:
2039 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2040 if (!bumped)
2041 atomic_add_long(&numvnodes, 1);
2042 vnlru_kick_cond();
2043 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2044 }
2045
2046 static struct vnode *
vn_alloc(struct mount * mp)2047 vn_alloc(struct mount *mp)
2048 {
2049 u_long rnumvnodes;
2050
2051 if (__predict_false(vn_alloc_cyclecount != 0))
2052 return (vn_alloc_hard(mp, 0, false));
2053 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2054 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2055 return (vn_alloc_hard(mp, rnumvnodes, true));
2056 }
2057
2058 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2059 }
2060
2061 static void
vn_free(struct vnode * vp)2062 vn_free(struct vnode *vp)
2063 {
2064
2065 atomic_subtract_long(&numvnodes, 1);
2066 uma_zfree_smr(vnode_zone, vp);
2067 }
2068
2069 /*
2070 * Allocate a new vnode.
2071 */
2072 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2073 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2074 struct vnode **vpp)
2075 {
2076 struct vnode *vp;
2077 struct thread *td;
2078 struct lock_object *lo;
2079
2080 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2081
2082 KASSERT(vops->registered,
2083 ("%s: not registered vector op %p\n", __func__, vops));
2084 cache_validate_vop_vector(mp, vops);
2085
2086 td = curthread;
2087 if (td->td_vp_reserved != NULL) {
2088 vp = td->td_vp_reserved;
2089 td->td_vp_reserved = NULL;
2090 } else {
2091 vp = vn_alloc(mp);
2092 }
2093 counter_u64_add(vnodes_created, 1);
2094
2095 vn_set_state(vp, VSTATE_UNINITIALIZED);
2096
2097 /*
2098 * Locks are given the generic name "vnode" when created.
2099 * Follow the historic practice of using the filesystem
2100 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2101 *
2102 * Locks live in a witness group keyed on their name. Thus,
2103 * when a lock is renamed, it must also move from the witness
2104 * group of its old name to the witness group of its new name.
2105 *
2106 * The change only needs to be made when the vnode moves
2107 * from one filesystem type to another. We ensure that each
2108 * filesystem use a single static name pointer for its tag so
2109 * that we can compare pointers rather than doing a strcmp().
2110 */
2111 lo = &vp->v_vnlock->lock_object;
2112 #ifdef WITNESS
2113 if (lo->lo_name != tag) {
2114 #endif
2115 lo->lo_name = tag;
2116 #ifdef WITNESS
2117 WITNESS_DESTROY(lo);
2118 WITNESS_INIT(lo, tag);
2119 }
2120 #endif
2121 /*
2122 * By default, don't allow shared locks unless filesystems opt-in.
2123 */
2124 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2125 /*
2126 * Finalize various vnode identity bits.
2127 */
2128 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2129 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2130 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2131 vp->v_type = VNON;
2132 vp->v_op = vops;
2133 vp->v_irflag = 0;
2134 v_init_counters(vp);
2135 vn_seqc_init(vp);
2136 vp->v_bufobj.bo_ops = &buf_ops_bio;
2137 #ifdef DIAGNOSTIC
2138 if (mp == NULL && vops != &dead_vnodeops)
2139 printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2140 #endif
2141 #ifdef MAC
2142 mac_vnode_init(vp);
2143 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2144 mac_vnode_associate_singlelabel(mp, vp);
2145 #endif
2146 if (mp != NULL) {
2147 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2148 }
2149
2150 /*
2151 * For the filesystems which do not use vfs_hash_insert(),
2152 * still initialize v_hash to have vfs_hash_index() useful.
2153 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2154 * its own hashing.
2155 */
2156 vp->v_hash = (uintptr_t)vp >> vnsz2log;
2157
2158 *vpp = vp;
2159 return (0);
2160 }
2161
2162 void
getnewvnode_reserve(void)2163 getnewvnode_reserve(void)
2164 {
2165 struct thread *td;
2166
2167 td = curthread;
2168 MPASS(td->td_vp_reserved == NULL);
2169 td->td_vp_reserved = vn_alloc(NULL);
2170 }
2171
2172 void
getnewvnode_drop_reserve(void)2173 getnewvnode_drop_reserve(void)
2174 {
2175 struct thread *td;
2176
2177 td = curthread;
2178 if (td->td_vp_reserved != NULL) {
2179 vn_free(td->td_vp_reserved);
2180 td->td_vp_reserved = NULL;
2181 }
2182 }
2183
2184 static void __noinline
freevnode(struct vnode * vp)2185 freevnode(struct vnode *vp)
2186 {
2187 struct bufobj *bo;
2188
2189 /*
2190 * The vnode has been marked for destruction, so free it.
2191 *
2192 * The vnode will be returned to the zone where it will
2193 * normally remain until it is needed for another vnode. We
2194 * need to cleanup (or verify that the cleanup has already
2195 * been done) any residual data left from its current use
2196 * so as not to contaminate the freshly allocated vnode.
2197 */
2198 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2199 /*
2200 * Paired with vgone.
2201 */
2202 vn_seqc_write_end_free(vp);
2203
2204 bo = &vp->v_bufobj;
2205 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2206 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2207 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2208 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2209 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2210 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2211 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2212 ("clean blk trie not empty"));
2213 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2214 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2215 ("dirty blk trie not empty"));
2216 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2217 ("Leaked inactivation"));
2218 VI_UNLOCK(vp);
2219 cache_assert_no_entries(vp);
2220
2221 #ifdef MAC
2222 mac_vnode_destroy(vp);
2223 #endif
2224 if (vp->v_pollinfo != NULL) {
2225 /*
2226 * Use LK_NOWAIT to shut up witness about the lock. We may get
2227 * here while having another vnode locked when trying to
2228 * satisfy a lookup and needing to recycle.
2229 */
2230 VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2231 destroy_vpollinfo(vp->v_pollinfo);
2232 VOP_UNLOCK(vp);
2233 vp->v_pollinfo = NULL;
2234 }
2235 vp->v_mountedhere = NULL;
2236 vp->v_unpcb = NULL;
2237 vp->v_rdev = NULL;
2238 vp->v_fifoinfo = NULL;
2239 vp->v_iflag = 0;
2240 vp->v_vflag = 0;
2241 bo->bo_flag = 0;
2242 vn_free(vp);
2243 }
2244
2245 /*
2246 * Delete from old mount point vnode list, if on one.
2247 */
2248 static void
delmntque(struct vnode * vp)2249 delmntque(struct vnode *vp)
2250 {
2251 struct mount *mp;
2252
2253 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2254
2255 mp = vp->v_mount;
2256 MNT_ILOCK(mp);
2257 VI_LOCK(vp);
2258 vp->v_mount = NULL;
2259 VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2260 ("bad mount point vnode list size"));
2261 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2262 mp->mnt_nvnodelistsize--;
2263 MNT_REL(mp);
2264 MNT_IUNLOCK(mp);
2265 /*
2266 * The caller expects the interlock to be still held.
2267 */
2268 ASSERT_VI_LOCKED(vp, __func__);
2269 }
2270
2271 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2272 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2273 {
2274
2275 KASSERT(vp->v_mount == NULL,
2276 ("insmntque: vnode already on per mount vnode list"));
2277 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2278 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2279 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2280 } else {
2281 KASSERT(!dtr,
2282 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2283 __func__));
2284 }
2285
2286 /*
2287 * We acquire the vnode interlock early to ensure that the
2288 * vnode cannot be recycled by another process releasing a
2289 * holdcnt on it before we get it on both the vnode list
2290 * and the active vnode list. The mount mutex protects only
2291 * manipulation of the vnode list and the vnode freelist
2292 * mutex protects only manipulation of the active vnode list.
2293 * Hence the need to hold the vnode interlock throughout.
2294 */
2295 MNT_ILOCK(mp);
2296 VI_LOCK(vp);
2297 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2298 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2299 mp->mnt_nvnodelistsize == 0)) &&
2300 (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2301 VI_UNLOCK(vp);
2302 MNT_IUNLOCK(mp);
2303 if (dtr) {
2304 vp->v_data = NULL;
2305 vp->v_op = &dead_vnodeops;
2306 vgone(vp);
2307 vput(vp);
2308 }
2309 return (EBUSY);
2310 }
2311 vp->v_mount = mp;
2312 MNT_REF(mp);
2313 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2314 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2315 ("neg mount point vnode list size"));
2316 mp->mnt_nvnodelistsize++;
2317 VI_UNLOCK(vp);
2318 MNT_IUNLOCK(mp);
2319 return (0);
2320 }
2321
2322 /*
2323 * Insert into list of vnodes for the new mount point, if available.
2324 * insmntque() reclaims the vnode on insertion failure, insmntque1()
2325 * leaves handling of the vnode to the caller.
2326 */
2327 int
insmntque(struct vnode * vp,struct mount * mp)2328 insmntque(struct vnode *vp, struct mount *mp)
2329 {
2330 return (insmntque1_int(vp, mp, true));
2331 }
2332
2333 int
insmntque1(struct vnode * vp,struct mount * mp)2334 insmntque1(struct vnode *vp, struct mount *mp)
2335 {
2336 return (insmntque1_int(vp, mp, false));
2337 }
2338
2339 /*
2340 * Flush out and invalidate all buffers associated with a bufobj
2341 * Called with the underlying object locked.
2342 */
2343 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2344 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2345 {
2346 int error;
2347
2348 BO_LOCK(bo);
2349 if (flags & V_SAVE) {
2350 error = bufobj_wwait(bo, slpflag, slptimeo);
2351 if (error) {
2352 BO_UNLOCK(bo);
2353 return (error);
2354 }
2355 if (bo->bo_dirty.bv_cnt > 0) {
2356 BO_UNLOCK(bo);
2357 do {
2358 error = BO_SYNC(bo, MNT_WAIT);
2359 } while (error == ERELOOKUP);
2360 if (error != 0)
2361 return (error);
2362 BO_LOCK(bo);
2363 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2364 BO_UNLOCK(bo);
2365 return (EBUSY);
2366 }
2367 }
2368 }
2369 /*
2370 * If you alter this loop please notice that interlock is dropped and
2371 * reacquired in flushbuflist. Special care is needed to ensure that
2372 * no race conditions occur from this.
2373 */
2374 do {
2375 error = flushbuflist(&bo->bo_clean,
2376 flags, bo, slpflag, slptimeo);
2377 if (error == 0 && !(flags & V_CLEANONLY))
2378 error = flushbuflist(&bo->bo_dirty,
2379 flags, bo, slpflag, slptimeo);
2380 if (error != 0 && error != EAGAIN) {
2381 BO_UNLOCK(bo);
2382 return (error);
2383 }
2384 } while (error != 0);
2385
2386 /*
2387 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
2388 * have write I/O in-progress but if there is a VM object then the
2389 * VM object can also have read-I/O in-progress.
2390 */
2391 do {
2392 bufobj_wwait(bo, 0, 0);
2393 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2394 BO_UNLOCK(bo);
2395 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2396 BO_LOCK(bo);
2397 }
2398 } while (bo->bo_numoutput > 0);
2399 BO_UNLOCK(bo);
2400
2401 /*
2402 * Destroy the copy in the VM cache, too.
2403 */
2404 if (bo->bo_object != NULL &&
2405 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2406 VM_OBJECT_WLOCK(bo->bo_object);
2407 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2408 OBJPR_CLEANONLY : 0);
2409 VM_OBJECT_WUNLOCK(bo->bo_object);
2410 }
2411
2412 #ifdef INVARIANTS
2413 BO_LOCK(bo);
2414 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2415 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2416 bo->bo_clean.bv_cnt > 0))
2417 panic("vinvalbuf: flush failed");
2418 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2419 bo->bo_dirty.bv_cnt > 0)
2420 panic("vinvalbuf: flush dirty failed");
2421 BO_UNLOCK(bo);
2422 #endif
2423 return (0);
2424 }
2425
2426 /*
2427 * Flush out and invalidate all buffers associated with a vnode.
2428 * Called with the underlying object locked.
2429 */
2430 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2431 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2432 {
2433
2434 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2435 ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2436 if (vp->v_object != NULL && vp->v_object->handle != vp)
2437 return (0);
2438 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2439 }
2440
2441 /*
2442 * Flush out buffers on the specified list.
2443 *
2444 */
2445 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2446 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2447 int slptimeo)
2448 {
2449 struct buf *bp, *nbp;
2450 int retval, error;
2451 daddr_t lblkno;
2452 b_xflags_t xflags;
2453
2454 ASSERT_BO_WLOCKED(bo);
2455
2456 retval = 0;
2457 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2458 /*
2459 * If we are flushing both V_NORMAL and V_ALT buffers then
2460 * do not skip any buffers. If we are flushing only V_NORMAL
2461 * buffers then skip buffers marked as BX_ALTDATA. If we are
2462 * flushing only V_ALT buffers then skip buffers not marked
2463 * as BX_ALTDATA.
2464 */
2465 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2466 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2467 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2468 continue;
2469 }
2470 if (nbp != NULL) {
2471 lblkno = nbp->b_lblkno;
2472 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2473 }
2474 retval = EAGAIN;
2475 error = BUF_TIMELOCK(bp,
2476 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2477 "flushbuf", slpflag, slptimeo);
2478 if (error) {
2479 BO_LOCK(bo);
2480 return (error != ENOLCK ? error : EAGAIN);
2481 }
2482 KASSERT(bp->b_bufobj == bo,
2483 ("bp %p wrong b_bufobj %p should be %p",
2484 bp, bp->b_bufobj, bo));
2485 /*
2486 * XXX Since there are no node locks for NFS, I
2487 * believe there is a slight chance that a delayed
2488 * write will occur while sleeping just above, so
2489 * check for it.
2490 */
2491 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2492 (flags & V_SAVE)) {
2493 bremfree(bp);
2494 bp->b_flags |= B_ASYNC;
2495 bwrite(bp);
2496 BO_LOCK(bo);
2497 return (EAGAIN); /* XXX: why not loop ? */
2498 }
2499 bremfree(bp);
2500 bp->b_flags |= (B_INVAL | B_RELBUF);
2501 bp->b_flags &= ~B_ASYNC;
2502 brelse(bp);
2503 BO_LOCK(bo);
2504 if (nbp == NULL)
2505 break;
2506 nbp = gbincore(bo, lblkno);
2507 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2508 != xflags)
2509 break; /* nbp invalid */
2510 }
2511 return (retval);
2512 }
2513
2514 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2515 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2516 {
2517 struct buf *bp;
2518 int error;
2519 daddr_t lblkno;
2520
2521 ASSERT_BO_LOCKED(bo);
2522
2523 for (lblkno = startn;;) {
2524 again:
2525 bp = buf_lookup_ge(bufv, lblkno);
2526 if (bp == NULL || bp->b_lblkno >= endn)
2527 break;
2528 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2529 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2530 if (error != 0) {
2531 BO_RLOCK(bo);
2532 if (error == ENOLCK)
2533 goto again;
2534 return (error);
2535 }
2536 KASSERT(bp->b_bufobj == bo,
2537 ("bp %p wrong b_bufobj %p should be %p",
2538 bp, bp->b_bufobj, bo));
2539 lblkno = bp->b_lblkno + 1;
2540 if ((bp->b_flags & B_MANAGED) == 0)
2541 bremfree(bp);
2542 bp->b_flags |= B_RELBUF;
2543 /*
2544 * In the VMIO case, use the B_NOREUSE flag to hint that the
2545 * pages backing each buffer in the range are unlikely to be
2546 * reused. Dirty buffers will have the hint applied once
2547 * they've been written.
2548 */
2549 if ((bp->b_flags & B_VMIO) != 0)
2550 bp->b_flags |= B_NOREUSE;
2551 brelse(bp);
2552 BO_RLOCK(bo);
2553 }
2554 return (0);
2555 }
2556
2557 /*
2558 * Truncate a file's buffer and pages to a specified length. This
2559 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2560 * sync activity.
2561 */
2562 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2563 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2564 {
2565 struct buf *bp, *nbp;
2566 struct bufobj *bo;
2567 daddr_t startlbn;
2568
2569 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2570 vp, blksize, (uintmax_t)length);
2571
2572 /*
2573 * Round up to the *next* lbn.
2574 */
2575 startlbn = howmany(length, blksize);
2576
2577 ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2578
2579 bo = &vp->v_bufobj;
2580 restart_unlocked:
2581 BO_LOCK(bo);
2582
2583 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2584 ;
2585
2586 if (length > 0) {
2587 /*
2588 * Write out vnode metadata, e.g. indirect blocks.
2589 */
2590 restartsync:
2591 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2592 if (bp->b_lblkno >= 0)
2593 continue;
2594 /*
2595 * Since we hold the vnode lock this should only
2596 * fail if we're racing with the buf daemon.
2597 */
2598 if (BUF_LOCK(bp,
2599 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2600 BO_LOCKPTR(bo)) == ENOLCK)
2601 goto restart_unlocked;
2602
2603 VNASSERT((bp->b_flags & B_DELWRI), vp,
2604 ("buf(%p) on dirty queue without DELWRI", bp));
2605
2606 bremfree(bp);
2607 bawrite(bp);
2608 BO_LOCK(bo);
2609 goto restartsync;
2610 }
2611 }
2612
2613 bufobj_wwait(bo, 0, 0);
2614 BO_UNLOCK(bo);
2615 vnode_pager_setsize(vp, length);
2616
2617 return (0);
2618 }
2619
2620 /*
2621 * Invalidate the cached pages of a file's buffer within the range of block
2622 * numbers [startlbn, endlbn).
2623 */
2624 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2625 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2626 int blksize)
2627 {
2628 struct bufobj *bo;
2629 off_t start, end;
2630
2631 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2632
2633 start = blksize * startlbn;
2634 end = blksize * endlbn;
2635
2636 bo = &vp->v_bufobj;
2637 BO_LOCK(bo);
2638 MPASS(blksize == bo->bo_bsize);
2639
2640 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2641 ;
2642
2643 BO_UNLOCK(bo);
2644 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2645 }
2646
2647 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2648 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2649 daddr_t startlbn, daddr_t endlbn)
2650 {
2651 struct bufv *bv;
2652 struct buf *bp, *nbp;
2653 uint8_t anyfreed;
2654 bool clean;
2655
2656 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2657 ASSERT_BO_LOCKED(bo);
2658
2659 anyfreed = 1;
2660 clean = true;
2661 do {
2662 bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2663 bp = buf_lookup_ge(bv, startlbn);
2664 if (bp == NULL)
2665 continue;
2666 TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2667 if (bp->b_lblkno >= endlbn)
2668 break;
2669 if (BUF_LOCK(bp,
2670 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2671 BO_LOCKPTR(bo)) == ENOLCK) {
2672 BO_LOCK(bo);
2673 return (EAGAIN);
2674 }
2675
2676 bremfree(bp);
2677 bp->b_flags |= B_INVAL | B_RELBUF;
2678 bp->b_flags &= ~B_ASYNC;
2679 brelse(bp);
2680 anyfreed = 2;
2681
2682 BO_LOCK(bo);
2683 if (nbp != NULL &&
2684 (((nbp->b_xflags &
2685 (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2686 nbp->b_vp != vp ||
2687 (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2688 return (EAGAIN);
2689 }
2690 } while (clean = !clean, anyfreed-- > 0);
2691 return (0);
2692 }
2693
2694 static void
buf_vlist_remove(struct buf * bp)2695 buf_vlist_remove(struct buf *bp)
2696 {
2697 struct bufv *bv;
2698 b_xflags_t flags;
2699
2700 flags = bp->b_xflags;
2701
2702 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2703 ASSERT_BO_WLOCKED(bp->b_bufobj);
2704 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2705 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2706 ("%s: buffer %p has invalid queue state", __func__, bp));
2707
2708 if ((flags & BX_VNDIRTY) != 0)
2709 bv = &bp->b_bufobj->bo_dirty;
2710 else
2711 bv = &bp->b_bufobj->bo_clean;
2712 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2713 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2714 bv->bv_cnt--;
2715 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2716 }
2717
2718 /*
2719 * Add the buffer to the sorted clean or dirty block list. Return zero on
2720 * success, EEXIST if a buffer with this identity already exists, or another
2721 * error on allocation failure.
2722 */
2723 static inline int
buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2724 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2725 {
2726 struct bufv *bv;
2727 struct buf *n;
2728 int error;
2729
2730 ASSERT_BO_WLOCKED(bo);
2731 KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2732 ("buf_vlist_add: bo %p does not allow bufs", bo));
2733 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2734 ("dead bo %p", bo));
2735 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2736 ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2737
2738 if (xflags & BX_VNDIRTY)
2739 bv = &bo->bo_dirty;
2740 else
2741 bv = &bo->bo_clean;
2742
2743 error = buf_insert_lookup_le(bv, bp, &n);
2744 if (n == NULL) {
2745 KASSERT(error != EEXIST,
2746 ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2747 bp));
2748 } else {
2749 KASSERT(n->b_lblkno <= bp->b_lblkno,
2750 ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2751 bp, n));
2752 KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2753 ("buf_vlist_add: inconsistent result for existing buf: "
2754 "error %d bp %p n %p", error, bp, n));
2755 }
2756 if (error != 0)
2757 return (error);
2758
2759 /* Keep the list ordered. */
2760 if (n == NULL) {
2761 KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2762 bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2763 ("buf_vlist_add: queue order: "
2764 "%p should be before first %p",
2765 bp, TAILQ_FIRST(&bv->bv_hd)));
2766 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2767 } else {
2768 KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2769 bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2770 ("buf_vlist_add: queue order: "
2771 "%p should be before next %p",
2772 bp, TAILQ_NEXT(n, b_bobufs)));
2773 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2774 }
2775
2776 bv->bv_cnt++;
2777 return (0);
2778 }
2779
2780 /*
2781 * Add the buffer to the sorted clean or dirty block list.
2782 *
2783 * NOTE: xflags is passed as a constant, optimizing this inline function!
2784 */
2785 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2786 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2787 {
2788 int error;
2789
2790 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2791 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2792 bp->b_xflags |= xflags;
2793 error = buf_vlist_find_or_add(bp, bo, xflags);
2794 if (error)
2795 panic("buf_vlist_add: error=%d", error);
2796 }
2797
2798 /*
2799 * Look up a buffer using the buffer tries.
2800 */
2801 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2802 gbincore(struct bufobj *bo, daddr_t lblkno)
2803 {
2804 struct buf *bp;
2805
2806 ASSERT_BO_LOCKED(bo);
2807 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2808 if (bp != NULL)
2809 return (bp);
2810 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2811 }
2812
2813 /*
2814 * Look up a buf using the buffer tries, without the bufobj lock. This relies
2815 * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2816 * stability of the result. Like other lockless lookups, the found buf may
2817 * already be invalid by the time this function returns.
2818 */
2819 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2820 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2821 {
2822 struct buf *bp;
2823
2824 ASSERT_BO_UNLOCKED(bo);
2825 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2826 if (bp != NULL)
2827 return (bp);
2828 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2829 }
2830
2831 /*
2832 * Associate a buffer with a vnode.
2833 */
2834 int
bgetvp(struct vnode * vp,struct buf * bp)2835 bgetvp(struct vnode *vp, struct buf *bp)
2836 {
2837 struct bufobj *bo;
2838 int error;
2839
2840 bo = &vp->v_bufobj;
2841 ASSERT_BO_UNLOCKED(bo);
2842 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2843
2844 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2845 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2846 ("bgetvp: bp already attached! %p", bp));
2847
2848 /*
2849 * Add the buf to the vnode's clean list unless we lost a race and find
2850 * an existing buf in either dirty or clean.
2851 */
2852 bp->b_vp = vp;
2853 bp->b_bufobj = bo;
2854 bp->b_xflags |= BX_VNCLEAN;
2855 error = EEXIST;
2856 BO_LOCK(bo);
2857 if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2858 error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2859 BO_UNLOCK(bo);
2860 if (__predict_true(error == 0)) {
2861 vhold(vp);
2862 return (0);
2863 }
2864 if (error != EEXIST)
2865 panic("bgetvp: buf_vlist_add error: %d", error);
2866 bp->b_vp = NULL;
2867 bp->b_bufobj = NULL;
2868 bp->b_xflags &= ~BX_VNCLEAN;
2869 return (error);
2870 }
2871
2872 /*
2873 * Disassociate a buffer from a vnode.
2874 */
2875 void
brelvp(struct buf * bp)2876 brelvp(struct buf *bp)
2877 {
2878 struct bufobj *bo;
2879 struct vnode *vp;
2880
2881 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2882 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2883
2884 /*
2885 * Delete from old vnode list, if on one.
2886 */
2887 vp = bp->b_vp; /* XXX */
2888 bo = bp->b_bufobj;
2889 BO_LOCK(bo);
2890 buf_vlist_remove(bp);
2891 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2892 bo->bo_flag &= ~BO_ONWORKLST;
2893 mtx_lock(&sync_mtx);
2894 LIST_REMOVE(bo, bo_synclist);
2895 syncer_worklist_len--;
2896 mtx_unlock(&sync_mtx);
2897 }
2898 bp->b_vp = NULL;
2899 bp->b_bufobj = NULL;
2900 BO_UNLOCK(bo);
2901 vdrop(vp);
2902 }
2903
2904 /*
2905 * Add an item to the syncer work queue.
2906 */
2907 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2908 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2909 {
2910 int slot;
2911
2912 ASSERT_BO_WLOCKED(bo);
2913
2914 mtx_lock(&sync_mtx);
2915 if (bo->bo_flag & BO_ONWORKLST)
2916 LIST_REMOVE(bo, bo_synclist);
2917 else {
2918 bo->bo_flag |= BO_ONWORKLST;
2919 syncer_worklist_len++;
2920 }
2921
2922 if (delay > syncer_maxdelay - 2)
2923 delay = syncer_maxdelay - 2;
2924 slot = (syncer_delayno + delay) & syncer_mask;
2925
2926 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2927 mtx_unlock(&sync_mtx);
2928 }
2929
2930 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2931 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2932 {
2933 int error, len;
2934
2935 mtx_lock(&sync_mtx);
2936 len = syncer_worklist_len - sync_vnode_count;
2937 mtx_unlock(&sync_mtx);
2938 error = SYSCTL_OUT(req, &len, sizeof(len));
2939 return (error);
2940 }
2941
2942 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2943 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2944 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2945
2946 static struct proc *updateproc;
2947 static void sched_sync(void);
2948 static struct kproc_desc up_kp = {
2949 "syncer",
2950 sched_sync,
2951 &updateproc
2952 };
2953 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2954
2955 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2956 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2957 {
2958 struct vnode *vp;
2959 struct mount *mp;
2960
2961 *bo = LIST_FIRST(slp);
2962 if (*bo == NULL)
2963 return (0);
2964 vp = bo2vnode(*bo);
2965 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2966 return (1);
2967 /*
2968 * We use vhold in case the vnode does not
2969 * successfully sync. vhold prevents the vnode from
2970 * going away when we unlock the sync_mtx so that
2971 * we can acquire the vnode interlock.
2972 */
2973 vholdl(vp);
2974 mtx_unlock(&sync_mtx);
2975 VI_UNLOCK(vp);
2976 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2977 vdrop(vp);
2978 mtx_lock(&sync_mtx);
2979 return (*bo == LIST_FIRST(slp));
2980 }
2981 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2982 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2983 ("suspended mp syncing vp %p", vp));
2984 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2985 (void) VOP_FSYNC(vp, MNT_LAZY, td);
2986 VOP_UNLOCK(vp);
2987 vn_finished_write(mp);
2988 BO_LOCK(*bo);
2989 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2990 /*
2991 * Put us back on the worklist. The worklist
2992 * routine will remove us from our current
2993 * position and then add us back in at a later
2994 * position.
2995 */
2996 vn_syncer_add_to_worklist(*bo, syncdelay);
2997 }
2998 BO_UNLOCK(*bo);
2999 vdrop(vp);
3000 mtx_lock(&sync_mtx);
3001 return (0);
3002 }
3003
3004 static int first_printf = 1;
3005
3006 /*
3007 * System filesystem synchronizer daemon.
3008 */
3009 static void
sched_sync(void)3010 sched_sync(void)
3011 {
3012 struct synclist *next, *slp;
3013 struct bufobj *bo;
3014 long starttime;
3015 struct thread *td = curthread;
3016 int last_work_seen;
3017 int net_worklist_len;
3018 int syncer_final_iter;
3019 int error;
3020
3021 last_work_seen = 0;
3022 syncer_final_iter = 0;
3023 syncer_state = SYNCER_RUNNING;
3024 starttime = time_uptime;
3025 td->td_pflags |= TDP_NORUNNINGBUF;
3026
3027 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3028 SHUTDOWN_PRI_LAST);
3029
3030 mtx_lock(&sync_mtx);
3031 for (;;) {
3032 if (syncer_state == SYNCER_FINAL_DELAY &&
3033 syncer_final_iter == 0) {
3034 mtx_unlock(&sync_mtx);
3035 kproc_suspend_check(td->td_proc);
3036 mtx_lock(&sync_mtx);
3037 }
3038 net_worklist_len = syncer_worklist_len - sync_vnode_count;
3039 if (syncer_state != SYNCER_RUNNING &&
3040 starttime != time_uptime) {
3041 if (first_printf) {
3042 printf("\nSyncing disks, vnodes remaining... ");
3043 first_printf = 0;
3044 }
3045 printf("%d ", net_worklist_len);
3046 }
3047 starttime = time_uptime;
3048
3049 /*
3050 * Push files whose dirty time has expired. Be careful
3051 * of interrupt race on slp queue.
3052 *
3053 * Skip over empty worklist slots when shutting down.
3054 */
3055 do {
3056 slp = &syncer_workitem_pending[syncer_delayno];
3057 syncer_delayno += 1;
3058 if (syncer_delayno == syncer_maxdelay)
3059 syncer_delayno = 0;
3060 next = &syncer_workitem_pending[syncer_delayno];
3061 /*
3062 * If the worklist has wrapped since the
3063 * it was emptied of all but syncer vnodes,
3064 * switch to the FINAL_DELAY state and run
3065 * for one more second.
3066 */
3067 if (syncer_state == SYNCER_SHUTTING_DOWN &&
3068 net_worklist_len == 0 &&
3069 last_work_seen == syncer_delayno) {
3070 syncer_state = SYNCER_FINAL_DELAY;
3071 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3072 }
3073 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3074 syncer_worklist_len > 0);
3075
3076 /*
3077 * Keep track of the last time there was anything
3078 * on the worklist other than syncer vnodes.
3079 * Return to the SHUTTING_DOWN state if any
3080 * new work appears.
3081 */
3082 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3083 last_work_seen = syncer_delayno;
3084 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3085 syncer_state = SYNCER_SHUTTING_DOWN;
3086 while (!LIST_EMPTY(slp)) {
3087 error = sync_vnode(slp, &bo, td);
3088 if (error == 1) {
3089 LIST_REMOVE(bo, bo_synclist);
3090 LIST_INSERT_HEAD(next, bo, bo_synclist);
3091 continue;
3092 }
3093
3094 if (first_printf == 0) {
3095 /*
3096 * Drop the sync mutex, because some watchdog
3097 * drivers need to sleep while patting
3098 */
3099 mtx_unlock(&sync_mtx);
3100 wdog_kern_pat(WD_LASTVAL);
3101 mtx_lock(&sync_mtx);
3102 }
3103 }
3104 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3105 syncer_final_iter--;
3106 /*
3107 * The variable rushjob allows the kernel to speed up the
3108 * processing of the filesystem syncer process. A rushjob
3109 * value of N tells the filesystem syncer to process the next
3110 * N seconds worth of work on its queue ASAP. Currently rushjob
3111 * is used by the soft update code to speed up the filesystem
3112 * syncer process when the incore state is getting so far
3113 * ahead of the disk that the kernel memory pool is being
3114 * threatened with exhaustion.
3115 */
3116 if (rushjob > 0) {
3117 rushjob -= 1;
3118 continue;
3119 }
3120 /*
3121 * Just sleep for a short period of time between
3122 * iterations when shutting down to allow some I/O
3123 * to happen.
3124 *
3125 * If it has taken us less than a second to process the
3126 * current work, then wait. Otherwise start right over
3127 * again. We can still lose time if any single round
3128 * takes more than two seconds, but it does not really
3129 * matter as we are just trying to generally pace the
3130 * filesystem activity.
3131 */
3132 if (syncer_state != SYNCER_RUNNING ||
3133 time_uptime == starttime) {
3134 thread_lock(td);
3135 sched_prio(td, PPAUSE);
3136 thread_unlock(td);
3137 }
3138 if (syncer_state != SYNCER_RUNNING)
3139 cv_timedwait(&sync_wakeup, &sync_mtx,
3140 hz / SYNCER_SHUTDOWN_SPEEDUP);
3141 else if (time_uptime == starttime)
3142 cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3143 }
3144 }
3145
3146 /*
3147 * Request the syncer daemon to speed up its work.
3148 * We never push it to speed up more than half of its
3149 * normal turn time, otherwise it could take over the cpu.
3150 */
3151 int
speedup_syncer(void)3152 speedup_syncer(void)
3153 {
3154 int ret = 0;
3155
3156 mtx_lock(&sync_mtx);
3157 if (rushjob < syncdelay / 2) {
3158 rushjob += 1;
3159 stat_rush_requests += 1;
3160 ret = 1;
3161 }
3162 mtx_unlock(&sync_mtx);
3163 cv_broadcast(&sync_wakeup);
3164 return (ret);
3165 }
3166
3167 /*
3168 * Tell the syncer to speed up its work and run though its work
3169 * list several times, then tell it to shut down.
3170 */
3171 static void
syncer_shutdown(void * arg,int howto)3172 syncer_shutdown(void *arg, int howto)
3173 {
3174
3175 if (howto & RB_NOSYNC)
3176 return;
3177 mtx_lock(&sync_mtx);
3178 syncer_state = SYNCER_SHUTTING_DOWN;
3179 rushjob = 0;
3180 mtx_unlock(&sync_mtx);
3181 cv_broadcast(&sync_wakeup);
3182 kproc_shutdown(arg, howto);
3183 }
3184
3185 void
syncer_suspend(void)3186 syncer_suspend(void)
3187 {
3188
3189 syncer_shutdown(updateproc, 0);
3190 }
3191
3192 void
syncer_resume(void)3193 syncer_resume(void)
3194 {
3195
3196 mtx_lock(&sync_mtx);
3197 first_printf = 1;
3198 syncer_state = SYNCER_RUNNING;
3199 mtx_unlock(&sync_mtx);
3200 cv_broadcast(&sync_wakeup);
3201 kproc_resume(updateproc);
3202 }
3203
3204 /*
3205 * Move the buffer between the clean and dirty lists of its vnode.
3206 */
3207 void
reassignbuf(struct buf * bp)3208 reassignbuf(struct buf *bp)
3209 {
3210 struct vnode *vp;
3211 struct bufobj *bo;
3212 int delay;
3213 #ifdef INVARIANTS
3214 struct bufv *bv;
3215 #endif
3216
3217 vp = bp->b_vp;
3218 bo = bp->b_bufobj;
3219
3220 KASSERT((bp->b_flags & B_PAGING) == 0,
3221 ("%s: cannot reassign paging buffer %p", __func__, bp));
3222
3223 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3224 bp, bp->b_vp, bp->b_flags);
3225
3226 BO_LOCK(bo);
3227 if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3228 /*
3229 * Coordinate with getblk's unlocked lookup. Make
3230 * BO_NONSTERILE visible before the first reassignbuf produces
3231 * any side effect. This could be outside the bo lock if we
3232 * used a separate atomic flag field.
3233 */
3234 bo->bo_flag |= BO_NONSTERILE;
3235 atomic_thread_fence_rel();
3236 }
3237 buf_vlist_remove(bp);
3238
3239 /*
3240 * If dirty, put on list of dirty buffers; otherwise insert onto list
3241 * of clean buffers.
3242 */
3243 if (bp->b_flags & B_DELWRI) {
3244 if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3245 switch (vp->v_type) {
3246 case VDIR:
3247 delay = dirdelay;
3248 break;
3249 case VCHR:
3250 delay = metadelay;
3251 break;
3252 default:
3253 delay = filedelay;
3254 }
3255 vn_syncer_add_to_worklist(bo, delay);
3256 }
3257 buf_vlist_add(bp, bo, BX_VNDIRTY);
3258 } else {
3259 buf_vlist_add(bp, bo, BX_VNCLEAN);
3260
3261 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3262 mtx_lock(&sync_mtx);
3263 LIST_REMOVE(bo, bo_synclist);
3264 syncer_worklist_len--;
3265 mtx_unlock(&sync_mtx);
3266 bo->bo_flag &= ~BO_ONWORKLST;
3267 }
3268 }
3269 #ifdef INVARIANTS
3270 bv = &bo->bo_clean;
3271 bp = TAILQ_FIRST(&bv->bv_hd);
3272 KASSERT(bp == NULL || bp->b_bufobj == bo,
3273 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3274 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3275 KASSERT(bp == NULL || bp->b_bufobj == bo,
3276 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3277 bv = &bo->bo_dirty;
3278 bp = TAILQ_FIRST(&bv->bv_hd);
3279 KASSERT(bp == NULL || bp->b_bufobj == bo,
3280 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3281 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3282 KASSERT(bp == NULL || bp->b_bufobj == bo,
3283 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3284 #endif
3285 BO_UNLOCK(bo);
3286 }
3287
3288 static void
v_init_counters(struct vnode * vp)3289 v_init_counters(struct vnode *vp)
3290 {
3291
3292 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3293 vp, ("%s called for an initialized vnode", __FUNCTION__));
3294 ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3295
3296 refcount_init(&vp->v_holdcnt, 1);
3297 refcount_init(&vp->v_usecount, 1);
3298 }
3299
3300 /*
3301 * Get a usecount on a vnode.
3302 *
3303 * vget and vget_finish may fail to lock the vnode if they lose a race against
3304 * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3305 *
3306 * Consumers which don't guarantee liveness of the vnode can use SMR to
3307 * try to get a reference. Note this operation can fail since the vnode
3308 * may be awaiting getting freed by the time they get to it.
3309 */
3310 enum vgetstate
vget_prep_smr(struct vnode * vp)3311 vget_prep_smr(struct vnode *vp)
3312 {
3313 enum vgetstate vs;
3314
3315 VFS_SMR_ASSERT_ENTERED();
3316
3317 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3318 vs = VGET_USECOUNT;
3319 } else {
3320 if (vhold_smr(vp))
3321 vs = VGET_HOLDCNT;
3322 else
3323 vs = VGET_NONE;
3324 }
3325 return (vs);
3326 }
3327
3328 enum vgetstate
vget_prep(struct vnode * vp)3329 vget_prep(struct vnode *vp)
3330 {
3331 enum vgetstate vs;
3332
3333 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3334 vs = VGET_USECOUNT;
3335 } else {
3336 vhold(vp);
3337 vs = VGET_HOLDCNT;
3338 }
3339 return (vs);
3340 }
3341
3342 void
vget_abort(struct vnode * vp,enum vgetstate vs)3343 vget_abort(struct vnode *vp, enum vgetstate vs)
3344 {
3345
3346 switch (vs) {
3347 case VGET_USECOUNT:
3348 vrele(vp);
3349 break;
3350 case VGET_HOLDCNT:
3351 vdrop(vp);
3352 break;
3353 default:
3354 __assert_unreachable();
3355 }
3356 }
3357
3358 int
vget(struct vnode * vp,int flags)3359 vget(struct vnode *vp, int flags)
3360 {
3361 enum vgetstate vs;
3362
3363 vs = vget_prep(vp);
3364 return (vget_finish(vp, flags, vs));
3365 }
3366
3367 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3368 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3369 {
3370 int error;
3371
3372 if ((flags & LK_INTERLOCK) != 0)
3373 ASSERT_VI_LOCKED(vp, __func__);
3374 else
3375 ASSERT_VI_UNLOCKED(vp, __func__);
3376 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3377 VNPASS(vp->v_holdcnt > 0, vp);
3378 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3379
3380 error = vn_lock(vp, flags);
3381 if (__predict_false(error != 0)) {
3382 vget_abort(vp, vs);
3383 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3384 vp);
3385 return (error);
3386 }
3387
3388 vget_finish_ref(vp, vs);
3389 return (0);
3390 }
3391
3392 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3393 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3394 {
3395 int old;
3396
3397 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3398 VNPASS(vp->v_holdcnt > 0, vp);
3399 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3400
3401 if (vs == VGET_USECOUNT)
3402 return;
3403
3404 /*
3405 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3406 * the vnode around. Otherwise someone else lended their hold count and
3407 * we have to drop ours.
3408 */
3409 old = atomic_fetchadd_int(&vp->v_usecount, 1);
3410 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3411 if (old != 0) {
3412 #ifdef INVARIANTS
3413 old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3414 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3415 #else
3416 refcount_release(&vp->v_holdcnt);
3417 #endif
3418 }
3419 }
3420
3421 void
vref(struct vnode * vp)3422 vref(struct vnode *vp)
3423 {
3424 enum vgetstate vs;
3425
3426 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3427 vs = vget_prep(vp);
3428 vget_finish_ref(vp, vs);
3429 }
3430
3431 void
vrefact(struct vnode * vp)3432 vrefact(struct vnode *vp)
3433 {
3434 int old __diagused;
3435
3436 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3437 old = refcount_acquire(&vp->v_usecount);
3438 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3439 }
3440
3441 void
vlazy(struct vnode * vp)3442 vlazy(struct vnode *vp)
3443 {
3444 struct mount *mp;
3445
3446 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3447
3448 if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3449 return;
3450 /*
3451 * We may get here for inactive routines after the vnode got doomed.
3452 */
3453 if (VN_IS_DOOMED(vp))
3454 return;
3455 mp = vp->v_mount;
3456 mtx_lock(&mp->mnt_listmtx);
3457 if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3458 vp->v_mflag |= VMP_LAZYLIST;
3459 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3460 mp->mnt_lazyvnodelistsize++;
3461 }
3462 mtx_unlock(&mp->mnt_listmtx);
3463 }
3464
3465 static void
vunlazy(struct vnode * vp)3466 vunlazy(struct vnode *vp)
3467 {
3468 struct mount *mp;
3469
3470 ASSERT_VI_LOCKED(vp, __func__);
3471 VNPASS(!VN_IS_DOOMED(vp), vp);
3472
3473 mp = vp->v_mount;
3474 mtx_lock(&mp->mnt_listmtx);
3475 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3476 /*
3477 * Don't remove the vnode from the lazy list if another thread
3478 * has increased the hold count. It may have re-enqueued the
3479 * vnode to the lazy list and is now responsible for its
3480 * removal.
3481 */
3482 if (vp->v_holdcnt == 0) {
3483 vp->v_mflag &= ~VMP_LAZYLIST;
3484 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3485 mp->mnt_lazyvnodelistsize--;
3486 }
3487 mtx_unlock(&mp->mnt_listmtx);
3488 }
3489
3490 /*
3491 * This routine is only meant to be called from vgonel prior to dooming
3492 * the vnode.
3493 */
3494 static void
vunlazy_gone(struct vnode * vp)3495 vunlazy_gone(struct vnode *vp)
3496 {
3497 struct mount *mp;
3498
3499 ASSERT_VOP_ELOCKED(vp, __func__);
3500 ASSERT_VI_LOCKED(vp, __func__);
3501 VNPASS(!VN_IS_DOOMED(vp), vp);
3502
3503 if (vp->v_mflag & VMP_LAZYLIST) {
3504 mp = vp->v_mount;
3505 mtx_lock(&mp->mnt_listmtx);
3506 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3507 vp->v_mflag &= ~VMP_LAZYLIST;
3508 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3509 mp->mnt_lazyvnodelistsize--;
3510 mtx_unlock(&mp->mnt_listmtx);
3511 }
3512 }
3513
3514 static void
vdefer_inactive(struct vnode * vp)3515 vdefer_inactive(struct vnode *vp)
3516 {
3517
3518 ASSERT_VI_LOCKED(vp, __func__);
3519 VNPASS(vp->v_holdcnt > 0, vp);
3520 if (VN_IS_DOOMED(vp)) {
3521 vdropl(vp);
3522 return;
3523 }
3524 if (vp->v_iflag & VI_DEFINACT) {
3525 VNPASS(vp->v_holdcnt > 1, vp);
3526 vdropl(vp);
3527 return;
3528 }
3529 if (vp->v_usecount > 0) {
3530 vp->v_iflag &= ~VI_OWEINACT;
3531 vdropl(vp);
3532 return;
3533 }
3534 vlazy(vp);
3535 vp->v_iflag |= VI_DEFINACT;
3536 VI_UNLOCK(vp);
3537 atomic_add_long(&deferred_inact, 1);
3538 }
3539
3540 static void
vdefer_inactive_unlocked(struct vnode * vp)3541 vdefer_inactive_unlocked(struct vnode *vp)
3542 {
3543
3544 VI_LOCK(vp);
3545 if ((vp->v_iflag & VI_OWEINACT) == 0) {
3546 vdropl(vp);
3547 return;
3548 }
3549 vdefer_inactive(vp);
3550 }
3551
3552 enum vput_op { VRELE, VPUT, VUNREF };
3553
3554 /*
3555 * Handle ->v_usecount transitioning to 0.
3556 *
3557 * By releasing the last usecount we take ownership of the hold count which
3558 * provides liveness of the vnode, meaning we have to vdrop.
3559 *
3560 * For all vnodes we may need to perform inactive processing. It requires an
3561 * exclusive lock on the vnode, while it is legal to call here with only a
3562 * shared lock (or no locks). If locking the vnode in an expected manner fails,
3563 * inactive processing gets deferred to the syncer.
3564 *
3565 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3566 * on the lock being held all the way until VOP_INACTIVE. This in particular
3567 * happens with UFS which adds half-constructed vnodes to the hash, where they
3568 * can be found by other code.
3569 */
3570 static void
vput_final(struct vnode * vp,enum vput_op func)3571 vput_final(struct vnode *vp, enum vput_op func)
3572 {
3573 int error;
3574 bool want_unlock;
3575
3576 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3577 VNPASS(vp->v_holdcnt > 0, vp);
3578
3579 VI_LOCK(vp);
3580
3581 /*
3582 * By the time we got here someone else might have transitioned
3583 * the count back to > 0.
3584 */
3585 if (vp->v_usecount > 0)
3586 goto out;
3587
3588 /*
3589 * If the vnode is doomed vgone already performed inactive processing
3590 * (if needed).
3591 */
3592 if (VN_IS_DOOMED(vp))
3593 goto out;
3594
3595 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3596 goto out;
3597
3598 if (vp->v_iflag & VI_DOINGINACT)
3599 goto out;
3600
3601 /*
3602 * Locking operations here will drop the interlock and possibly the
3603 * vnode lock, opening a window where the vnode can get doomed all the
3604 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3605 * perform inactive.
3606 */
3607 vp->v_iflag |= VI_OWEINACT;
3608 want_unlock = false;
3609 error = 0;
3610 switch (func) {
3611 case VRELE:
3612 switch (VOP_ISLOCKED(vp)) {
3613 case LK_EXCLUSIVE:
3614 break;
3615 case LK_EXCLOTHER:
3616 case 0:
3617 want_unlock = true;
3618 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3619 VI_LOCK(vp);
3620 break;
3621 default:
3622 /*
3623 * The lock has at least one sharer, but we have no way
3624 * to conclude whether this is us. Play it safe and
3625 * defer processing.
3626 */
3627 error = EAGAIN;
3628 break;
3629 }
3630 break;
3631 case VPUT:
3632 want_unlock = true;
3633 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3634 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3635 LK_NOWAIT);
3636 VI_LOCK(vp);
3637 }
3638 break;
3639 case VUNREF:
3640 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3641 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3642 VI_LOCK(vp);
3643 }
3644 break;
3645 }
3646 if (error == 0) {
3647 if (func == VUNREF) {
3648 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3649 ("recursive vunref"));
3650 vp->v_vflag |= VV_UNREF;
3651 }
3652 for (;;) {
3653 error = vinactive(vp);
3654 if (want_unlock)
3655 VOP_UNLOCK(vp);
3656 if (error != ERELOOKUP || !want_unlock)
3657 break;
3658 VOP_LOCK(vp, LK_EXCLUSIVE);
3659 }
3660 if (func == VUNREF)
3661 vp->v_vflag &= ~VV_UNREF;
3662 vdropl(vp);
3663 } else {
3664 vdefer_inactive(vp);
3665 }
3666 return;
3667 out:
3668 if (func == VPUT)
3669 VOP_UNLOCK(vp);
3670 vdropl(vp);
3671 }
3672
3673 /*
3674 * Decrement ->v_usecount for a vnode.
3675 *
3676 * Releasing the last use count requires additional processing, see vput_final
3677 * above for details.
3678 *
3679 * Comment above each variant denotes lock state on entry and exit.
3680 */
3681
3682 /*
3683 * in: any
3684 * out: same as passed in
3685 */
3686 void
vrele(struct vnode * vp)3687 vrele(struct vnode *vp)
3688 {
3689
3690 ASSERT_VI_UNLOCKED(vp, __func__);
3691 if (!refcount_release(&vp->v_usecount))
3692 return;
3693 vput_final(vp, VRELE);
3694 }
3695
3696 /*
3697 * in: locked
3698 * out: unlocked
3699 */
3700 void
vput(struct vnode * vp)3701 vput(struct vnode *vp)
3702 {
3703
3704 ASSERT_VOP_LOCKED(vp, __func__);
3705 ASSERT_VI_UNLOCKED(vp, __func__);
3706 if (!refcount_release(&vp->v_usecount)) {
3707 VOP_UNLOCK(vp);
3708 return;
3709 }
3710 vput_final(vp, VPUT);
3711 }
3712
3713 /*
3714 * in: locked
3715 * out: locked
3716 */
3717 void
vunref(struct vnode * vp)3718 vunref(struct vnode *vp)
3719 {
3720
3721 ASSERT_VOP_LOCKED(vp, __func__);
3722 ASSERT_VI_UNLOCKED(vp, __func__);
3723 if (!refcount_release(&vp->v_usecount))
3724 return;
3725 vput_final(vp, VUNREF);
3726 }
3727
3728 void
vhold(struct vnode * vp)3729 vhold(struct vnode *vp)
3730 {
3731 int old;
3732
3733 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3734 old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3735 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3736 ("%s: wrong hold count %d", __func__, old));
3737 if (old == 0)
3738 vfs_freevnodes_dec();
3739 }
3740
3741 void
vholdnz(struct vnode * vp)3742 vholdnz(struct vnode *vp)
3743 {
3744
3745 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3746 #ifdef INVARIANTS
3747 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3748 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3749 ("%s: wrong hold count %d", __func__, old));
3750 #else
3751 atomic_add_int(&vp->v_holdcnt, 1);
3752 #endif
3753 }
3754
3755 /*
3756 * Grab a hold count unless the vnode is freed.
3757 *
3758 * Only use this routine if vfs smr is the only protection you have against
3759 * freeing the vnode.
3760 *
3761 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3762 * is not set. After the flag is set the vnode becomes immutable to anyone but
3763 * the thread which managed to set the flag.
3764 *
3765 * It may be tempting to replace the loop with:
3766 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3767 * if (count & VHOLD_NO_SMR) {
3768 * backpedal and error out;
3769 * }
3770 *
3771 * However, while this is more performant, it hinders debugging by eliminating
3772 * the previously mentioned invariant.
3773 */
3774 bool
vhold_smr(struct vnode * vp)3775 vhold_smr(struct vnode *vp)
3776 {
3777 int count;
3778
3779 VFS_SMR_ASSERT_ENTERED();
3780
3781 count = atomic_load_int(&vp->v_holdcnt);
3782 for (;;) {
3783 if (count & VHOLD_NO_SMR) {
3784 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3785 ("non-zero hold count with flags %d\n", count));
3786 return (false);
3787 }
3788 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3789 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3790 if (count == 0)
3791 vfs_freevnodes_dec();
3792 return (true);
3793 }
3794 }
3795 }
3796
3797 /*
3798 * Hold a free vnode for recycling.
3799 *
3800 * Note: vnode_init references this comment.
3801 *
3802 * Attempts to recycle only need the global vnode list lock and have no use for
3803 * SMR.
3804 *
3805 * However, vnodes get inserted into the global list before they get fully
3806 * initialized and stay there until UMA decides to free the memory. This in
3807 * particular means the target can be found before it becomes usable and after
3808 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3809 * VHOLD_NO_SMR.
3810 *
3811 * Note: the vnode may gain more references after we transition the count 0->1.
3812 */
3813 static bool
vhold_recycle_free(struct vnode * vp)3814 vhold_recycle_free(struct vnode *vp)
3815 {
3816 int count;
3817
3818 mtx_assert(&vnode_list_mtx, MA_OWNED);
3819
3820 count = atomic_load_int(&vp->v_holdcnt);
3821 for (;;) {
3822 if (count & VHOLD_NO_SMR) {
3823 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3824 ("non-zero hold count with flags %d\n", count));
3825 return (false);
3826 }
3827 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3828 if (count > 0) {
3829 return (false);
3830 }
3831 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3832 vfs_freevnodes_dec();
3833 return (true);
3834 }
3835 }
3836 }
3837
3838 static void __noinline
vdbatch_process(struct vdbatch * vd)3839 vdbatch_process(struct vdbatch *vd)
3840 {
3841 struct vnode *vp;
3842 int i;
3843
3844 mtx_assert(&vd->lock, MA_OWNED);
3845 MPASS(curthread->td_pinned > 0);
3846 MPASS(vd->index == VDBATCH_SIZE);
3847
3848 /*
3849 * Attempt to requeue the passed batch, but give up easily.
3850 *
3851 * Despite batching the mechanism is prone to transient *significant*
3852 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3853 * if multiple CPUs get here (one real-world example is highly parallel
3854 * do-nothing make , which will stat *tons* of vnodes). Since it is
3855 * quasi-LRU (read: not that great even if fully honoured) provide an
3856 * option to just dodge the problem. Parties which don't like it are
3857 * welcome to implement something better.
3858 */
3859 if (vnode_can_skip_requeue) {
3860 if (!mtx_trylock(&vnode_list_mtx)) {
3861 counter_u64_add(vnode_skipped_requeues, 1);
3862 critical_enter();
3863 for (i = 0; i < VDBATCH_SIZE; i++) {
3864 vp = vd->tab[i];
3865 vd->tab[i] = NULL;
3866 MPASS(vp->v_dbatchcpu != NOCPU);
3867 vp->v_dbatchcpu = NOCPU;
3868 }
3869 vd->index = 0;
3870 critical_exit();
3871 return;
3872
3873 }
3874 /* fallthrough to locked processing */
3875 } else {
3876 mtx_lock(&vnode_list_mtx);
3877 }
3878
3879 mtx_assert(&vnode_list_mtx, MA_OWNED);
3880 critical_enter();
3881 for (i = 0; i < VDBATCH_SIZE; i++) {
3882 vp = vd->tab[i];
3883 vd->tab[i] = NULL;
3884 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3885 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3886 MPASS(vp->v_dbatchcpu != NOCPU);
3887 vp->v_dbatchcpu = NOCPU;
3888 }
3889 mtx_unlock(&vnode_list_mtx);
3890 vd->index = 0;
3891 critical_exit();
3892 }
3893
3894 static void
vdbatch_enqueue(struct vnode * vp)3895 vdbatch_enqueue(struct vnode *vp)
3896 {
3897 struct vdbatch *vd;
3898
3899 ASSERT_VI_LOCKED(vp, __func__);
3900 VNPASS(!VN_IS_DOOMED(vp), vp);
3901
3902 if (vp->v_dbatchcpu != NOCPU) {
3903 VI_UNLOCK(vp);
3904 return;
3905 }
3906
3907 sched_pin();
3908 vd = DPCPU_PTR(vd);
3909 mtx_lock(&vd->lock);
3910 MPASS(vd->index < VDBATCH_SIZE);
3911 MPASS(vd->tab[vd->index] == NULL);
3912 /*
3913 * A hack: we depend on being pinned so that we know what to put in
3914 * ->v_dbatchcpu.
3915 */
3916 vp->v_dbatchcpu = curcpu;
3917 vd->tab[vd->index] = vp;
3918 vd->index++;
3919 VI_UNLOCK(vp);
3920 if (vd->index == VDBATCH_SIZE)
3921 vdbatch_process(vd);
3922 mtx_unlock(&vd->lock);
3923 sched_unpin();
3924 }
3925
3926 /*
3927 * This routine must only be called for vnodes which are about to be
3928 * deallocated. Supporting dequeue for arbitrary vndoes would require
3929 * validating that the locked batch matches.
3930 */
3931 static void
vdbatch_dequeue(struct vnode * vp)3932 vdbatch_dequeue(struct vnode *vp)
3933 {
3934 struct vdbatch *vd;
3935 int i;
3936 short cpu;
3937
3938 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3939
3940 cpu = vp->v_dbatchcpu;
3941 if (cpu == NOCPU)
3942 return;
3943
3944 vd = DPCPU_ID_PTR(cpu, vd);
3945 mtx_lock(&vd->lock);
3946 for (i = 0; i < vd->index; i++) {
3947 if (vd->tab[i] != vp)
3948 continue;
3949 vp->v_dbatchcpu = NOCPU;
3950 vd->index--;
3951 vd->tab[i] = vd->tab[vd->index];
3952 vd->tab[vd->index] = NULL;
3953 break;
3954 }
3955 mtx_unlock(&vd->lock);
3956 /*
3957 * Either we dequeued the vnode above or the target CPU beat us to it.
3958 */
3959 MPASS(vp->v_dbatchcpu == NOCPU);
3960 }
3961
3962 /*
3963 * Drop the hold count of the vnode.
3964 *
3965 * It will only get freed if this is the last hold *and* it has been vgone'd.
3966 *
3967 * Because the vnode vm object keeps a hold reference on the vnode if
3968 * there is at least one resident non-cached page, the vnode cannot
3969 * leave the active list without the page cleanup done.
3970 */
3971 static void __noinline
vdropl_final(struct vnode * vp)3972 vdropl_final(struct vnode *vp)
3973 {
3974
3975 ASSERT_VI_LOCKED(vp, __func__);
3976 VNPASS(VN_IS_DOOMED(vp), vp);
3977 /*
3978 * Set the VHOLD_NO_SMR flag.
3979 *
3980 * We may be racing against vhold_smr. If they win we can just pretend
3981 * we never got this far, they will vdrop later.
3982 */
3983 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3984 vfs_freevnodes_inc();
3985 VI_UNLOCK(vp);
3986 /*
3987 * We lost the aforementioned race. Any subsequent access is
3988 * invalid as they might have managed to vdropl on their own.
3989 */
3990 return;
3991 }
3992 /*
3993 * Don't bump freevnodes as this one is going away.
3994 */
3995 freevnode(vp);
3996 }
3997
3998 void
vdrop(struct vnode * vp)3999 vdrop(struct vnode *vp)
4000 {
4001
4002 ASSERT_VI_UNLOCKED(vp, __func__);
4003 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4004 if (refcount_release_if_not_last(&vp->v_holdcnt))
4005 return;
4006 VI_LOCK(vp);
4007 vdropl(vp);
4008 }
4009
4010 static __always_inline void
vdropl_impl(struct vnode * vp,bool enqueue)4011 vdropl_impl(struct vnode *vp, bool enqueue)
4012 {
4013
4014 ASSERT_VI_LOCKED(vp, __func__);
4015 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4016 if (!refcount_release(&vp->v_holdcnt)) {
4017 VI_UNLOCK(vp);
4018 return;
4019 }
4020 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4021 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4022 if (VN_IS_DOOMED(vp)) {
4023 vdropl_final(vp);
4024 return;
4025 }
4026
4027 vfs_freevnodes_inc();
4028 if (vp->v_mflag & VMP_LAZYLIST) {
4029 vunlazy(vp);
4030 }
4031
4032 if (!enqueue) {
4033 VI_UNLOCK(vp);
4034 return;
4035 }
4036
4037 /*
4038 * Also unlocks the interlock. We can't assert on it as we
4039 * released our hold and by now the vnode might have been
4040 * freed.
4041 */
4042 vdbatch_enqueue(vp);
4043 }
4044
4045 void
vdropl(struct vnode * vp)4046 vdropl(struct vnode *vp)
4047 {
4048
4049 vdropl_impl(vp, true);
4050 }
4051
4052 /*
4053 * vdrop a vnode when recycling
4054 *
4055 * This is a special case routine only to be used when recycling, differs from
4056 * regular vdrop by not requeieing the vnode on LRU.
4057 *
4058 * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4059 * e.g., frozen writes on the filesystem), filling the batch and causing it to
4060 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4061 * loop which can last for as long as writes are frozen.
4062 */
4063 static void
vdropl_recycle(struct vnode * vp)4064 vdropl_recycle(struct vnode *vp)
4065 {
4066
4067 vdropl_impl(vp, false);
4068 }
4069
4070 static void
vdrop_recycle(struct vnode * vp)4071 vdrop_recycle(struct vnode *vp)
4072 {
4073
4074 VI_LOCK(vp);
4075 vdropl_recycle(vp);
4076 }
4077
4078 /*
4079 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4080 * flags. DOINGINACT prevents us from recursing in calls to vinactive.
4081 */
4082 static int
vinactivef(struct vnode * vp)4083 vinactivef(struct vnode *vp)
4084 {
4085 int error;
4086
4087 ASSERT_VOP_ELOCKED(vp, "vinactive");
4088 ASSERT_VI_LOCKED(vp, "vinactive");
4089 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4090 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4091 vp->v_iflag |= VI_DOINGINACT;
4092 vp->v_iflag &= ~VI_OWEINACT;
4093 VI_UNLOCK(vp);
4094
4095 /*
4096 * Before moving off the active list, we must be sure that any
4097 * modified pages are converted into the vnode's dirty
4098 * buffers, since these will no longer be checked once the
4099 * vnode is on the inactive list.
4100 *
4101 * The write-out of the dirty pages is asynchronous. At the
4102 * point that VOP_INACTIVE() is called, there could still be
4103 * pending I/O and dirty pages in the object.
4104 */
4105 if ((vp->v_vflag & VV_NOSYNC) == 0)
4106 vnode_pager_clean_async(vp);
4107
4108 error = VOP_INACTIVE(vp);
4109 VI_LOCK(vp);
4110 VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4111 vp->v_iflag &= ~VI_DOINGINACT;
4112 return (error);
4113 }
4114
4115 int
vinactive(struct vnode * vp)4116 vinactive(struct vnode *vp)
4117 {
4118
4119 ASSERT_VOP_ELOCKED(vp, "vinactive");
4120 ASSERT_VI_LOCKED(vp, "vinactive");
4121 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4122
4123 if ((vp->v_iflag & VI_OWEINACT) == 0)
4124 return (0);
4125 if (vp->v_iflag & VI_DOINGINACT)
4126 return (0);
4127 if (vp->v_usecount > 0) {
4128 vp->v_iflag &= ~VI_OWEINACT;
4129 return (0);
4130 }
4131 return (vinactivef(vp));
4132 }
4133
4134 /*
4135 * Remove any vnodes in the vnode table belonging to mount point mp.
4136 *
4137 * If FORCECLOSE is not specified, there should not be any active ones,
4138 * return error if any are found (nb: this is a user error, not a
4139 * system error). If FORCECLOSE is specified, detach any active vnodes
4140 * that are found.
4141 *
4142 * If WRITECLOSE is set, only flush out regular file vnodes open for
4143 * writing.
4144 *
4145 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4146 *
4147 * `rootrefs' specifies the base reference count for the root vnode
4148 * of this filesystem. The root vnode is considered busy if its
4149 * v_usecount exceeds this value. On a successful return, vflush(, td)
4150 * will call vrele() on the root vnode exactly rootrefs times.
4151 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4152 * be zero.
4153 */
4154 #ifdef DIAGNOSTIC
4155 static int busyprt = 0; /* print out busy vnodes */
4156 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4157 #endif
4158
4159 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4160 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4161 {
4162 struct vnode *vp, *mvp, *rootvp = NULL;
4163 struct vattr vattr;
4164 int busy = 0, error;
4165
4166 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4167 rootrefs, flags);
4168 if (rootrefs > 0) {
4169 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4170 ("vflush: bad args"));
4171 /*
4172 * Get the filesystem root vnode. We can vput() it
4173 * immediately, since with rootrefs > 0, it won't go away.
4174 */
4175 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4176 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4177 __func__, error);
4178 return (error);
4179 }
4180 vput(rootvp);
4181 }
4182 loop:
4183 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4184 vholdl(vp);
4185 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4186 if (error) {
4187 vdrop(vp);
4188 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4189 goto loop;
4190 }
4191 /*
4192 * Skip over a vnodes marked VV_SYSTEM.
4193 */
4194 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4195 VOP_UNLOCK(vp);
4196 vdrop(vp);
4197 continue;
4198 }
4199 /*
4200 * If WRITECLOSE is set, flush out unlinked but still open
4201 * files (even if open only for reading) and regular file
4202 * vnodes open for writing.
4203 */
4204 if (flags & WRITECLOSE) {
4205 vnode_pager_clean_async(vp);
4206 do {
4207 error = VOP_FSYNC(vp, MNT_WAIT, td);
4208 } while (error == ERELOOKUP);
4209 if (error != 0) {
4210 VOP_UNLOCK(vp);
4211 vdrop(vp);
4212 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4213 return (error);
4214 }
4215 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4216 VI_LOCK(vp);
4217
4218 if ((vp->v_type == VNON ||
4219 (error == 0 && vattr.va_nlink > 0)) &&
4220 (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4221 VOP_UNLOCK(vp);
4222 vdropl(vp);
4223 continue;
4224 }
4225 } else
4226 VI_LOCK(vp);
4227 /*
4228 * With v_usecount == 0, all we need to do is clear out the
4229 * vnode data structures and we are done.
4230 *
4231 * If FORCECLOSE is set, forcibly close the vnode.
4232 */
4233 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4234 vgonel(vp);
4235 } else {
4236 busy++;
4237 #ifdef DIAGNOSTIC
4238 if (busyprt)
4239 vn_printf(vp, "vflush: busy vnode ");
4240 #endif
4241 }
4242 VOP_UNLOCK(vp);
4243 vdropl(vp);
4244 }
4245 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4246 /*
4247 * If just the root vnode is busy, and if its refcount
4248 * is equal to `rootrefs', then go ahead and kill it.
4249 */
4250 VI_LOCK(rootvp);
4251 KASSERT(busy > 0, ("vflush: not busy"));
4252 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4253 ("vflush: usecount %d < rootrefs %d",
4254 rootvp->v_usecount, rootrefs));
4255 if (busy == 1 && rootvp->v_usecount == rootrefs) {
4256 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4257 vgone(rootvp);
4258 VOP_UNLOCK(rootvp);
4259 busy = 0;
4260 } else
4261 VI_UNLOCK(rootvp);
4262 }
4263 if (busy) {
4264 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4265 busy);
4266 return (EBUSY);
4267 }
4268 for (; rootrefs > 0; rootrefs--)
4269 vrele(rootvp);
4270 return (0);
4271 }
4272
4273 /*
4274 * Recycle an unused vnode.
4275 */
4276 int
vrecycle(struct vnode * vp)4277 vrecycle(struct vnode *vp)
4278 {
4279 int recycled;
4280
4281 VI_LOCK(vp);
4282 recycled = vrecyclel(vp);
4283 VI_UNLOCK(vp);
4284 return (recycled);
4285 }
4286
4287 /*
4288 * vrecycle, with the vp interlock held.
4289 */
4290 int
vrecyclel(struct vnode * vp)4291 vrecyclel(struct vnode *vp)
4292 {
4293 int recycled;
4294
4295 ASSERT_VOP_ELOCKED(vp, __func__);
4296 ASSERT_VI_LOCKED(vp, __func__);
4297 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4298 recycled = 0;
4299 if (vp->v_usecount == 0) {
4300 recycled = 1;
4301 vgonel(vp);
4302 }
4303 return (recycled);
4304 }
4305
4306 /*
4307 * Eliminate all activity associated with a vnode
4308 * in preparation for reuse.
4309 */
4310 void
vgone(struct vnode * vp)4311 vgone(struct vnode *vp)
4312 {
4313 VI_LOCK(vp);
4314 vgonel(vp);
4315 VI_UNLOCK(vp);
4316 }
4317
4318 /*
4319 * Notify upper mounts about reclaimed or unlinked vnode.
4320 */
4321 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4322 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4323 {
4324 struct mount *mp;
4325 struct mount_upper_node *ump;
4326
4327 mp = atomic_load_ptr(&vp->v_mount);
4328 if (mp == NULL)
4329 return;
4330 if (TAILQ_EMPTY(&mp->mnt_notify))
4331 return;
4332
4333 MNT_ILOCK(mp);
4334 mp->mnt_upper_pending++;
4335 KASSERT(mp->mnt_upper_pending > 0,
4336 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4337 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4338 MNT_IUNLOCK(mp);
4339 switch (event) {
4340 case VFS_NOTIFY_UPPER_RECLAIM:
4341 VFS_RECLAIM_LOWERVP(ump->mp, vp);
4342 break;
4343 case VFS_NOTIFY_UPPER_UNLINK:
4344 VFS_UNLINK_LOWERVP(ump->mp, vp);
4345 break;
4346 }
4347 MNT_ILOCK(mp);
4348 }
4349 mp->mnt_upper_pending--;
4350 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4351 mp->mnt_upper_pending == 0) {
4352 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4353 wakeup(&mp->mnt_uppers);
4354 }
4355 MNT_IUNLOCK(mp);
4356 }
4357
4358 /*
4359 * vgone, with the vp interlock held.
4360 */
4361 static void
vgonel(struct vnode * vp)4362 vgonel(struct vnode *vp)
4363 {
4364 struct thread *td;
4365 struct mount *mp;
4366 vm_object_t object;
4367 bool active, doinginact, oweinact;
4368
4369 ASSERT_VOP_ELOCKED(vp, "vgonel");
4370 ASSERT_VI_LOCKED(vp, "vgonel");
4371 VNASSERT(vp->v_holdcnt, vp,
4372 ("vgonel: vp %p has no reference.", vp));
4373 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4374 td = curthread;
4375
4376 /*
4377 * Don't vgonel if we're already doomed.
4378 */
4379 if (VN_IS_DOOMED(vp)) {
4380 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4381 vn_get_state(vp) == VSTATE_DEAD, vp);
4382 return;
4383 }
4384 /*
4385 * Paired with freevnode.
4386 */
4387 vn_seqc_write_begin_locked(vp);
4388 vunlazy_gone(vp);
4389 vn_irflag_set_locked(vp, VIRF_DOOMED);
4390 vn_set_state(vp, VSTATE_DESTROYING);
4391
4392 /*
4393 * Check to see if the vnode is in use. If so, we have to
4394 * call VOP_CLOSE() and VOP_INACTIVE().
4395 *
4396 * It could be that VOP_INACTIVE() requested reclamation, in
4397 * which case we should avoid recursion, so check
4398 * VI_DOINGINACT. This is not precise but good enough.
4399 */
4400 active = vp->v_usecount > 0;
4401 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4402 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4403
4404 /*
4405 * If we need to do inactive VI_OWEINACT will be set.
4406 */
4407 if (vp->v_iflag & VI_DEFINACT) {
4408 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4409 vp->v_iflag &= ~VI_DEFINACT;
4410 vdropl(vp);
4411 } else {
4412 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4413 VI_UNLOCK(vp);
4414 }
4415 cache_purge_vgone(vp);
4416 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4417
4418 /*
4419 * If purging an active vnode, it must be closed and
4420 * deactivated before being reclaimed.
4421 */
4422 if (active)
4423 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4424 if (!doinginact) {
4425 do {
4426 if (oweinact || active) {
4427 VI_LOCK(vp);
4428 vinactivef(vp);
4429 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4430 VI_UNLOCK(vp);
4431 }
4432 } while (oweinact);
4433 }
4434 if (vp->v_type == VSOCK)
4435 vfs_unp_reclaim(vp);
4436
4437 /*
4438 * Clean out any buffers associated with the vnode.
4439 * If the flush fails, just toss the buffers.
4440 */
4441 mp = NULL;
4442 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4443 (void) vn_start_secondary_write(vp, &mp, V_WAIT);
4444 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4445 while (vinvalbuf(vp, 0, 0, 0) != 0)
4446 ;
4447 }
4448
4449 BO_LOCK(&vp->v_bufobj);
4450 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4451 vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4452 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4453 vp->v_bufobj.bo_clean.bv_cnt == 0,
4454 ("vp %p bufobj not invalidated", vp));
4455
4456 /*
4457 * For VMIO bufobj, BO_DEAD is set later, or in
4458 * vm_object_terminate() after the object's page queue is
4459 * flushed.
4460 */
4461 object = vp->v_bufobj.bo_object;
4462 if (object == NULL)
4463 vp->v_bufobj.bo_flag |= BO_DEAD;
4464 BO_UNLOCK(&vp->v_bufobj);
4465
4466 /*
4467 * Handle the VM part. Tmpfs handles v_object on its own (the
4468 * OBJT_VNODE check). Nullfs or other bypassing filesystems
4469 * should not touch the object borrowed from the lower vnode
4470 * (the handle check).
4471 */
4472 if (object != NULL && object->type == OBJT_VNODE &&
4473 object->handle == vp)
4474 vnode_destroy_vobject(vp);
4475
4476 /*
4477 * Reclaim the vnode.
4478 */
4479 if (VOP_RECLAIM(vp))
4480 panic("vgone: cannot reclaim");
4481 if (mp != NULL)
4482 vn_finished_secondary_write(mp);
4483 VNASSERT(vp->v_object == NULL, vp,
4484 ("vop_reclaim left v_object vp=%p", vp));
4485 /*
4486 * Clear the advisory locks and wake up waiting threads.
4487 */
4488 if (vp->v_lockf != NULL) {
4489 (void)VOP_ADVLOCKPURGE(vp);
4490 vp->v_lockf = NULL;
4491 }
4492 /*
4493 * Delete from old mount point vnode list.
4494 */
4495 if (vp->v_mount == NULL) {
4496 VI_LOCK(vp);
4497 } else {
4498 delmntque(vp);
4499 ASSERT_VI_LOCKED(vp, "vgonel 2");
4500 }
4501 /*
4502 * Done with purge, reset to the standard lock and invalidate
4503 * the vnode.
4504 */
4505 vp->v_vnlock = &vp->v_lock;
4506 vp->v_op = &dead_vnodeops;
4507 vp->v_type = VBAD;
4508 vn_set_state(vp, VSTATE_DEAD);
4509 }
4510
4511 /*
4512 * Print out a description of a vnode.
4513 */
4514 static const char *const vtypename[] = {
4515 [VNON] = "VNON",
4516 [VREG] = "VREG",
4517 [VDIR] = "VDIR",
4518 [VBLK] = "VBLK",
4519 [VCHR] = "VCHR",
4520 [VLNK] = "VLNK",
4521 [VSOCK] = "VSOCK",
4522 [VFIFO] = "VFIFO",
4523 [VBAD] = "VBAD",
4524 [VMARKER] = "VMARKER",
4525 };
4526 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4527 "vnode type name not added to vtypename");
4528
4529 static const char *const vstatename[] = {
4530 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4531 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4532 [VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4533 [VSTATE_DEAD] = "VSTATE_DEAD",
4534 };
4535 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4536 "vnode state name not added to vstatename");
4537
4538 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4539 "new hold count flag not added to vn_printf");
4540
4541 void
vn_printf(struct vnode * vp,const char * fmt,...)4542 vn_printf(struct vnode *vp, const char *fmt, ...)
4543 {
4544 va_list ap;
4545 char buf[256], buf2[16];
4546 u_long flags;
4547 u_int holdcnt;
4548 short irflag;
4549
4550 va_start(ap, fmt);
4551 vprintf(fmt, ap);
4552 va_end(ap);
4553 printf("%p: ", (void *)vp);
4554 printf("type %s state %s op %p\n", vtypename[vp->v_type],
4555 vstatename[vp->v_state], vp->v_op);
4556 holdcnt = atomic_load_int(&vp->v_holdcnt);
4557 printf(" usecount %d, writecount %d, refcount %d seqc users %d",
4558 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4559 vp->v_seqc_users);
4560 switch (vp->v_type) {
4561 case VDIR:
4562 printf(" mountedhere %p\n", vp->v_mountedhere);
4563 break;
4564 case VCHR:
4565 printf(" rdev %p\n", vp->v_rdev);
4566 break;
4567 case VSOCK:
4568 printf(" socket %p\n", vp->v_unpcb);
4569 break;
4570 case VFIFO:
4571 printf(" fifoinfo %p\n", vp->v_fifoinfo);
4572 break;
4573 default:
4574 printf("\n");
4575 break;
4576 }
4577 buf[0] = '\0';
4578 buf[1] = '\0';
4579 if (holdcnt & VHOLD_NO_SMR)
4580 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4581 printf(" hold count flags (%s)\n", buf + 1);
4582
4583 buf[0] = '\0';
4584 buf[1] = '\0';
4585 irflag = vn_irflag_read(vp);
4586 if (irflag & VIRF_DOOMED)
4587 strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4588 if (irflag & VIRF_PGREAD)
4589 strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4590 if (irflag & VIRF_MOUNTPOINT)
4591 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4592 if (irflag & VIRF_TEXT_REF)
4593 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4594 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4595 if (flags != 0) {
4596 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4597 strlcat(buf, buf2, sizeof(buf));
4598 }
4599 if (vp->v_vflag & VV_ROOT)
4600 strlcat(buf, "|VV_ROOT", sizeof(buf));
4601 if (vp->v_vflag & VV_ISTTY)
4602 strlcat(buf, "|VV_ISTTY", sizeof(buf));
4603 if (vp->v_vflag & VV_NOSYNC)
4604 strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4605 if (vp->v_vflag & VV_ETERNALDEV)
4606 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4607 if (vp->v_vflag & VV_CACHEDLABEL)
4608 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4609 if (vp->v_vflag & VV_VMSIZEVNLOCK)
4610 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4611 if (vp->v_vflag & VV_COPYONWRITE)
4612 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4613 if (vp->v_vflag & VV_SYSTEM)
4614 strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4615 if (vp->v_vflag & VV_PROCDEP)
4616 strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4617 if (vp->v_vflag & VV_DELETED)
4618 strlcat(buf, "|VV_DELETED", sizeof(buf));
4619 if (vp->v_vflag & VV_MD)
4620 strlcat(buf, "|VV_MD", sizeof(buf));
4621 if (vp->v_vflag & VV_FORCEINSMQ)
4622 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4623 if (vp->v_vflag & VV_READLINK)
4624 strlcat(buf, "|VV_READLINK", sizeof(buf));
4625 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4626 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4627 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4628 if (flags != 0) {
4629 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4630 strlcat(buf, buf2, sizeof(buf));
4631 }
4632 if (vp->v_iflag & VI_MOUNT)
4633 strlcat(buf, "|VI_MOUNT", sizeof(buf));
4634 if (vp->v_iflag & VI_DOINGINACT)
4635 strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4636 if (vp->v_iflag & VI_OWEINACT)
4637 strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4638 if (vp->v_iflag & VI_DEFINACT)
4639 strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4640 if (vp->v_iflag & VI_FOPENING)
4641 strlcat(buf, "|VI_FOPENING", sizeof(buf));
4642 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4643 VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4644 if (flags != 0) {
4645 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4646 strlcat(buf, buf2, sizeof(buf));
4647 }
4648 if (vp->v_mflag & VMP_LAZYLIST)
4649 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4650 flags = vp->v_mflag & ~(VMP_LAZYLIST);
4651 if (flags != 0) {
4652 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4653 strlcat(buf, buf2, sizeof(buf));
4654 }
4655 printf(" flags (%s)", buf + 1);
4656 if (mtx_owned(VI_MTX(vp)))
4657 printf(" VI_LOCKed");
4658 printf("\n");
4659 if (vp->v_object != NULL)
4660 printf(" v_object %p ref %d pages %d "
4661 "cleanbuf %d dirtybuf %d\n",
4662 vp->v_object, vp->v_object->ref_count,
4663 vp->v_object->resident_page_count,
4664 vp->v_bufobj.bo_clean.bv_cnt,
4665 vp->v_bufobj.bo_dirty.bv_cnt);
4666 printf(" ");
4667 lockmgr_printinfo(vp->v_vnlock);
4668 if (vp->v_data != NULL)
4669 VOP_PRINT(vp);
4670 }
4671
4672 #ifdef DDB
4673 /*
4674 * List all of the locked vnodes in the system.
4675 * Called when debugging the kernel.
4676 */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4677 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4678 {
4679 struct mount *mp;
4680 struct vnode *vp;
4681
4682 /*
4683 * Note: because this is DDB, we can't obey the locking semantics
4684 * for these structures, which means we could catch an inconsistent
4685 * state and dereference a nasty pointer. Not much to be done
4686 * about that.
4687 */
4688 db_printf("Locked vnodes\n");
4689 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4690 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4691 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4692 vn_printf(vp, "vnode ");
4693 }
4694 }
4695 }
4696
4697 /*
4698 * Show details about the given vnode.
4699 */
DB_SHOW_COMMAND(vnode,db_show_vnode)4700 DB_SHOW_COMMAND(vnode, db_show_vnode)
4701 {
4702 struct vnode *vp;
4703
4704 if (!have_addr)
4705 return;
4706 vp = (struct vnode *)addr;
4707 vn_printf(vp, "vnode ");
4708 }
4709
4710 /*
4711 * Show details about the given mount point.
4712 */
DB_SHOW_COMMAND(mount,db_show_mount)4713 DB_SHOW_COMMAND(mount, db_show_mount)
4714 {
4715 struct mount *mp;
4716 struct vfsopt *opt;
4717 struct statfs *sp;
4718 struct vnode *vp;
4719 char buf[512];
4720 uint64_t mflags;
4721 u_int flags;
4722
4723 if (!have_addr) {
4724 /* No address given, print short info about all mount points. */
4725 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4726 db_printf("%p %s on %s (%s)\n", mp,
4727 mp->mnt_stat.f_mntfromname,
4728 mp->mnt_stat.f_mntonname,
4729 mp->mnt_stat.f_fstypename);
4730 if (db_pager_quit)
4731 break;
4732 }
4733 db_printf("\nMore info: show mount <addr>\n");
4734 return;
4735 }
4736
4737 mp = (struct mount *)addr;
4738 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4739 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4740
4741 buf[0] = '\0';
4742 mflags = mp->mnt_flag;
4743 #define MNT_FLAG(flag) do { \
4744 if (mflags & (flag)) { \
4745 if (buf[0] != '\0') \
4746 strlcat(buf, ", ", sizeof(buf)); \
4747 strlcat(buf, (#flag) + 4, sizeof(buf)); \
4748 mflags &= ~(flag); \
4749 } \
4750 } while (0)
4751 MNT_FLAG(MNT_RDONLY);
4752 MNT_FLAG(MNT_SYNCHRONOUS);
4753 MNT_FLAG(MNT_NOEXEC);
4754 MNT_FLAG(MNT_NOSUID);
4755 MNT_FLAG(MNT_NFS4ACLS);
4756 MNT_FLAG(MNT_UNION);
4757 MNT_FLAG(MNT_ASYNC);
4758 MNT_FLAG(MNT_SUIDDIR);
4759 MNT_FLAG(MNT_SOFTDEP);
4760 MNT_FLAG(MNT_NOSYMFOLLOW);
4761 MNT_FLAG(MNT_GJOURNAL);
4762 MNT_FLAG(MNT_MULTILABEL);
4763 MNT_FLAG(MNT_ACLS);
4764 MNT_FLAG(MNT_NOATIME);
4765 MNT_FLAG(MNT_NOCLUSTERR);
4766 MNT_FLAG(MNT_NOCLUSTERW);
4767 MNT_FLAG(MNT_SUJ);
4768 MNT_FLAG(MNT_EXRDONLY);
4769 MNT_FLAG(MNT_EXPORTED);
4770 MNT_FLAG(MNT_DEFEXPORTED);
4771 MNT_FLAG(MNT_EXPORTANON);
4772 MNT_FLAG(MNT_EXKERB);
4773 MNT_FLAG(MNT_EXPUBLIC);
4774 MNT_FLAG(MNT_LOCAL);
4775 MNT_FLAG(MNT_QUOTA);
4776 MNT_FLAG(MNT_ROOTFS);
4777 MNT_FLAG(MNT_USER);
4778 MNT_FLAG(MNT_IGNORE);
4779 MNT_FLAG(MNT_UPDATE);
4780 MNT_FLAG(MNT_DELEXPORT);
4781 MNT_FLAG(MNT_RELOAD);
4782 MNT_FLAG(MNT_FORCE);
4783 MNT_FLAG(MNT_SNAPSHOT);
4784 MNT_FLAG(MNT_BYFSID);
4785 MNT_FLAG(MNT_NAMEDATTR);
4786 #undef MNT_FLAG
4787 if (mflags != 0) {
4788 if (buf[0] != '\0')
4789 strlcat(buf, ", ", sizeof(buf));
4790 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4791 "0x%016jx", mflags);
4792 }
4793 db_printf(" mnt_flag = %s\n", buf);
4794
4795 buf[0] = '\0';
4796 flags = mp->mnt_kern_flag;
4797 #define MNT_KERN_FLAG(flag) do { \
4798 if (flags & (flag)) { \
4799 if (buf[0] != '\0') \
4800 strlcat(buf, ", ", sizeof(buf)); \
4801 strlcat(buf, (#flag) + 5, sizeof(buf)); \
4802 flags &= ~(flag); \
4803 } \
4804 } while (0)
4805 MNT_KERN_FLAG(MNTK_UNMOUNTF);
4806 MNT_KERN_FLAG(MNTK_ASYNC);
4807 MNT_KERN_FLAG(MNTK_SOFTDEP);
4808 MNT_KERN_FLAG(MNTK_NOMSYNC);
4809 MNT_KERN_FLAG(MNTK_DRAINING);
4810 MNT_KERN_FLAG(MNTK_REFEXPIRE);
4811 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4812 MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4813 MNT_KERN_FLAG(MNTK_NO_IOPF);
4814 MNT_KERN_FLAG(MNTK_RECURSE);
4815 MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4816 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4817 MNT_KERN_FLAG(MNTK_USES_BCACHE);
4818 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4819 MNT_KERN_FLAG(MNTK_FPLOOKUP);
4820 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4821 MNT_KERN_FLAG(MNTK_NOASYNC);
4822 MNT_KERN_FLAG(MNTK_UNMOUNT);
4823 MNT_KERN_FLAG(MNTK_MWAIT);
4824 MNT_KERN_FLAG(MNTK_SUSPEND);
4825 MNT_KERN_FLAG(MNTK_SUSPEND2);
4826 MNT_KERN_FLAG(MNTK_SUSPENDED);
4827 MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4828 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4829 #undef MNT_KERN_FLAG
4830 if (flags != 0) {
4831 if (buf[0] != '\0')
4832 strlcat(buf, ", ", sizeof(buf));
4833 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4834 "0x%08x", flags);
4835 }
4836 db_printf(" mnt_kern_flag = %s\n", buf);
4837
4838 db_printf(" mnt_opt = ");
4839 opt = TAILQ_FIRST(mp->mnt_opt);
4840 if (opt != NULL) {
4841 db_printf("%s", opt->name);
4842 opt = TAILQ_NEXT(opt, link);
4843 while (opt != NULL) {
4844 db_printf(", %s", opt->name);
4845 opt = TAILQ_NEXT(opt, link);
4846 }
4847 }
4848 db_printf("\n");
4849
4850 sp = &mp->mnt_stat;
4851 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
4852 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4853 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4854 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4855 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4856 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4857 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4858 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4859 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4860 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4861 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4862 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4863
4864 db_printf(" mnt_cred = { uid=%u ruid=%u",
4865 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4866 if (jailed(mp->mnt_cred))
4867 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4868 db_printf(" }\n");
4869 db_printf(" mnt_ref = %d (with %d in the struct)\n",
4870 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4871 db_printf(" mnt_gen = %d\n", mp->mnt_gen);
4872 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4873 db_printf(" mnt_lazyvnodelistsize = %d\n",
4874 mp->mnt_lazyvnodelistsize);
4875 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n",
4876 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4877 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4878 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
4879 db_printf(" mnt_lockref = %d (with %d in the struct)\n",
4880 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4881 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4882 db_printf(" mnt_secondary_accwrites = %d\n",
4883 mp->mnt_secondary_accwrites);
4884 db_printf(" mnt_gjprovider = %s\n",
4885 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4886 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4887
4888 db_printf("\n\nList of active vnodes\n");
4889 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4890 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4891 vn_printf(vp, "vnode ");
4892 if (db_pager_quit)
4893 break;
4894 }
4895 }
4896 db_printf("\n\nList of inactive vnodes\n");
4897 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4898 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4899 vn_printf(vp, "vnode ");
4900 if (db_pager_quit)
4901 break;
4902 }
4903 }
4904 }
4905 #endif /* DDB */
4906
4907 /*
4908 * Fill in a struct xvfsconf based on a struct vfsconf.
4909 */
4910 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4911 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4912 {
4913 struct xvfsconf xvfsp;
4914
4915 bzero(&xvfsp, sizeof(xvfsp));
4916 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4917 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4918 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4919 xvfsp.vfc_flags = vfsp->vfc_flags;
4920 /*
4921 * These are unused in userland, we keep them
4922 * to not break binary compatibility.
4923 */
4924 xvfsp.vfc_vfsops = NULL;
4925 xvfsp.vfc_next = NULL;
4926 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4927 }
4928
4929 #ifdef COMPAT_FREEBSD32
4930 struct xvfsconf32 {
4931 uint32_t vfc_vfsops;
4932 char vfc_name[MFSNAMELEN];
4933 int32_t vfc_typenum;
4934 int32_t vfc_refcount;
4935 int32_t vfc_flags;
4936 uint32_t vfc_next;
4937 };
4938
4939 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4940 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4941 {
4942 struct xvfsconf32 xvfsp;
4943
4944 bzero(&xvfsp, sizeof(xvfsp));
4945 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4946 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4947 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4948 xvfsp.vfc_flags = vfsp->vfc_flags;
4949 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4950 }
4951 #endif
4952
4953 /*
4954 * Top level filesystem related information gathering.
4955 */
4956 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4957 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4958 {
4959 struct vfsconf *vfsp;
4960 int error;
4961
4962 error = 0;
4963 vfsconf_slock();
4964 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4965 #ifdef COMPAT_FREEBSD32
4966 if (req->flags & SCTL_MASK32)
4967 error = vfsconf2x32(req, vfsp);
4968 else
4969 #endif
4970 error = vfsconf2x(req, vfsp);
4971 if (error)
4972 break;
4973 }
4974 vfsconf_sunlock();
4975 return (error);
4976 }
4977
4978 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4979 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4980 "S,xvfsconf", "List of all configured filesystems");
4981
4982 #ifndef BURN_BRIDGES
4983 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4984
4985 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4986 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4987 {
4988 int *name = (int *)arg1 - 1; /* XXX */
4989 u_int namelen = arg2 + 1; /* XXX */
4990 struct vfsconf *vfsp;
4991
4992 log(LOG_WARNING, "userland calling deprecated sysctl, "
4993 "please rebuild world\n");
4994
4995 #if 1 || defined(COMPAT_PRELITE2)
4996 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4997 if (namelen == 1)
4998 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4999 #endif
5000
5001 switch (name[1]) {
5002 case VFS_MAXTYPENUM:
5003 if (namelen != 2)
5004 return (ENOTDIR);
5005 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
5006 case VFS_CONF:
5007 if (namelen != 3)
5008 return (ENOTDIR); /* overloaded */
5009 vfsconf_slock();
5010 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5011 if (vfsp->vfc_typenum == name[2])
5012 break;
5013 }
5014 vfsconf_sunlock();
5015 if (vfsp == NULL)
5016 return (EOPNOTSUPP);
5017 #ifdef COMPAT_FREEBSD32
5018 if (req->flags & SCTL_MASK32)
5019 return (vfsconf2x32(req, vfsp));
5020 else
5021 #endif
5022 return (vfsconf2x(req, vfsp));
5023 }
5024 return (EOPNOTSUPP);
5025 }
5026
5027 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5028 CTLFLAG_MPSAFE, vfs_sysctl,
5029 "Generic filesystem");
5030
5031 #if 1 || defined(COMPAT_PRELITE2)
5032
5033 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5034 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5035 {
5036 int error;
5037 struct vfsconf *vfsp;
5038 struct ovfsconf ovfs;
5039
5040 vfsconf_slock();
5041 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5042 bzero(&ovfs, sizeof(ovfs));
5043 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
5044 strcpy(ovfs.vfc_name, vfsp->vfc_name);
5045 ovfs.vfc_index = vfsp->vfc_typenum;
5046 ovfs.vfc_refcount = vfsp->vfc_refcount;
5047 ovfs.vfc_flags = vfsp->vfc_flags;
5048 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5049 if (error != 0) {
5050 vfsconf_sunlock();
5051 return (error);
5052 }
5053 }
5054 vfsconf_sunlock();
5055 return (0);
5056 }
5057
5058 #endif /* 1 || COMPAT_PRELITE2 */
5059 #endif /* !BURN_BRIDGES */
5060
5061 static void
unmount_or_warn(struct mount * mp)5062 unmount_or_warn(struct mount *mp)
5063 {
5064 int error;
5065
5066 error = dounmount(mp, MNT_FORCE, curthread);
5067 if (error != 0) {
5068 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5069 if (error == EBUSY)
5070 printf("BUSY)\n");
5071 else
5072 printf("%d)\n", error);
5073 }
5074 }
5075
5076 /*
5077 * Unmount all filesystems. The list is traversed in reverse order
5078 * of mounting to avoid dependencies.
5079 */
5080 void
vfs_unmountall(void)5081 vfs_unmountall(void)
5082 {
5083 struct mount *mp, *tmp;
5084
5085 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5086
5087 /*
5088 * Since this only runs when rebooting, it is not interlocked.
5089 */
5090 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5091 vfs_ref(mp);
5092
5093 /*
5094 * Forcibly unmounting "/dev" before "/" would prevent clean
5095 * unmount of the latter.
5096 */
5097 if (mp == rootdevmp)
5098 continue;
5099
5100 unmount_or_warn(mp);
5101 }
5102
5103 if (rootdevmp != NULL)
5104 unmount_or_warn(rootdevmp);
5105 }
5106
5107 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5108 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5109 {
5110
5111 ASSERT_VI_LOCKED(vp, __func__);
5112 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5113 if ((vp->v_iflag & VI_OWEINACT) == 0) {
5114 vdropl(vp);
5115 return;
5116 }
5117 if (vn_lock(vp, lkflags) == 0) {
5118 VI_LOCK(vp);
5119 vinactive(vp);
5120 VOP_UNLOCK(vp);
5121 vdropl(vp);
5122 return;
5123 }
5124 vdefer_inactive_unlocked(vp);
5125 }
5126
5127 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5128 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5129 {
5130
5131 return (vp->v_iflag & VI_DEFINACT);
5132 }
5133
5134 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5135 vfs_periodic_inactive(struct mount *mp, int flags)
5136 {
5137 struct vnode *vp, *mvp;
5138 int lkflags;
5139
5140 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5141 if (flags != MNT_WAIT)
5142 lkflags |= LK_NOWAIT;
5143
5144 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5145 if ((vp->v_iflag & VI_DEFINACT) == 0) {
5146 VI_UNLOCK(vp);
5147 continue;
5148 }
5149 vp->v_iflag &= ~VI_DEFINACT;
5150 vfs_deferred_inactive(vp, lkflags);
5151 }
5152 }
5153
5154 static inline bool
vfs_want_msync(struct vnode * vp)5155 vfs_want_msync(struct vnode *vp)
5156 {
5157 struct vm_object *obj;
5158
5159 /*
5160 * This test may be performed without any locks held.
5161 * We rely on vm_object's type stability.
5162 */
5163 if (vp->v_vflag & VV_NOSYNC)
5164 return (false);
5165 obj = vp->v_object;
5166 return (obj != NULL && vm_object_mightbedirty(obj));
5167 }
5168
5169 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5170 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5171 {
5172
5173 if (vp->v_vflag & VV_NOSYNC)
5174 return (false);
5175 if (vp->v_iflag & VI_DEFINACT)
5176 return (true);
5177 return (vfs_want_msync(vp));
5178 }
5179
5180 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5181 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5182 {
5183 struct vnode *vp, *mvp;
5184 int lkflags;
5185 bool seen_defer;
5186
5187 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5188 if (flags != MNT_WAIT)
5189 lkflags |= LK_NOWAIT;
5190
5191 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5192 seen_defer = false;
5193 if (vp->v_iflag & VI_DEFINACT) {
5194 vp->v_iflag &= ~VI_DEFINACT;
5195 seen_defer = true;
5196 }
5197 if (!vfs_want_msync(vp)) {
5198 if (seen_defer)
5199 vfs_deferred_inactive(vp, lkflags);
5200 else
5201 VI_UNLOCK(vp);
5202 continue;
5203 }
5204 if (vget(vp, lkflags) == 0) {
5205 if ((vp->v_vflag & VV_NOSYNC) == 0) {
5206 if (flags == MNT_WAIT)
5207 vnode_pager_clean_sync(vp);
5208 else
5209 vnode_pager_clean_async(vp);
5210 }
5211 vput(vp);
5212 if (seen_defer)
5213 vdrop(vp);
5214 } else {
5215 if (seen_defer)
5216 vdefer_inactive_unlocked(vp);
5217 }
5218 }
5219 }
5220
5221 void
vfs_periodic(struct mount * mp,int flags)5222 vfs_periodic(struct mount *mp, int flags)
5223 {
5224
5225 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5226
5227 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5228 vfs_periodic_inactive(mp, flags);
5229 else
5230 vfs_periodic_msync_inactive(mp, flags);
5231 }
5232
5233 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5234 destroy_vpollinfo_free(struct vpollinfo *vi)
5235 {
5236
5237 knlist_destroy(&vi->vpi_selinfo.si_note);
5238 mtx_destroy(&vi->vpi_lock);
5239 free(vi, M_VNODEPOLL);
5240 }
5241
5242 static void
destroy_vpollinfo(struct vpollinfo * vi)5243 destroy_vpollinfo(struct vpollinfo *vi)
5244 {
5245 KASSERT(TAILQ_EMPTY(&vi->vpi_inotify),
5246 ("%s: pollinfo %p has lingering watches", __func__, vi));
5247 knlist_clear(&vi->vpi_selinfo.si_note, 1);
5248 seldrain(&vi->vpi_selinfo);
5249 destroy_vpollinfo_free(vi);
5250 }
5251
5252 /*
5253 * Initialize per-vnode helper structure to hold poll-related state.
5254 */
5255 void
v_addpollinfo(struct vnode * vp)5256 v_addpollinfo(struct vnode *vp)
5257 {
5258 struct vpollinfo *vi;
5259
5260 if (atomic_load_ptr(&vp->v_pollinfo) != NULL)
5261 return;
5262 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5263 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5264 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5265 vfs_knlunlock, vfs_knl_assert_lock);
5266 TAILQ_INIT(&vi->vpi_inotify);
5267 VI_LOCK(vp);
5268 if (vp->v_pollinfo != NULL) {
5269 VI_UNLOCK(vp);
5270 destroy_vpollinfo_free(vi);
5271 return;
5272 }
5273 vp->v_pollinfo = vi;
5274 VI_UNLOCK(vp);
5275 }
5276
5277 /*
5278 * Record a process's interest in events which might happen to
5279 * a vnode. Because poll uses the historic select-style interface
5280 * internally, this routine serves as both the ``check for any
5281 * pending events'' and the ``record my interest in future events''
5282 * functions. (These are done together, while the lock is held,
5283 * to avoid race conditions.)
5284 */
5285 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5286 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5287 {
5288
5289 v_addpollinfo(vp);
5290 mtx_lock(&vp->v_pollinfo->vpi_lock);
5291 if (vp->v_pollinfo->vpi_revents & events) {
5292 /*
5293 * This leaves events we are not interested
5294 * in available for the other process which
5295 * which presumably had requested them
5296 * (otherwise they would never have been
5297 * recorded).
5298 */
5299 events &= vp->v_pollinfo->vpi_revents;
5300 vp->v_pollinfo->vpi_revents &= ~events;
5301
5302 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5303 return (events);
5304 }
5305 vp->v_pollinfo->vpi_events |= events;
5306 selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5307 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5308 return (0);
5309 }
5310
5311 /*
5312 * Routine to create and manage a filesystem syncer vnode.
5313 */
5314 #define sync_close ((int (*)(struct vop_close_args *))nullop)
5315 static int sync_fsync(struct vop_fsync_args *);
5316 static int sync_inactive(struct vop_inactive_args *);
5317 static int sync_reclaim(struct vop_reclaim_args *);
5318
5319 static struct vop_vector sync_vnodeops = {
5320 .vop_bypass = VOP_EOPNOTSUPP,
5321 .vop_close = sync_close,
5322 .vop_fsync = sync_fsync,
5323 .vop_getwritemount = vop_stdgetwritemount,
5324 .vop_inactive = sync_inactive,
5325 .vop_need_inactive = vop_stdneed_inactive,
5326 .vop_reclaim = sync_reclaim,
5327 .vop_lock1 = vop_stdlock,
5328 .vop_unlock = vop_stdunlock,
5329 .vop_islocked = vop_stdislocked,
5330 .vop_fplookup_vexec = VOP_EAGAIN,
5331 .vop_fplookup_symlink = VOP_EAGAIN,
5332 };
5333 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5334
5335 /*
5336 * Create a new filesystem syncer vnode for the specified mount point.
5337 */
5338 void
vfs_allocate_syncvnode(struct mount * mp)5339 vfs_allocate_syncvnode(struct mount *mp)
5340 {
5341 struct vnode *vp;
5342 struct bufobj *bo;
5343 static long start, incr, next;
5344 int error;
5345
5346 /* Allocate a new vnode */
5347 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5348 if (error != 0)
5349 panic("vfs_allocate_syncvnode: getnewvnode() failed");
5350 vp->v_type = VNON;
5351 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5352 vp->v_vflag |= VV_FORCEINSMQ;
5353 error = insmntque1(vp, mp);
5354 if (error != 0)
5355 panic("vfs_allocate_syncvnode: insmntque() failed");
5356 vp->v_vflag &= ~VV_FORCEINSMQ;
5357 vn_set_state(vp, VSTATE_CONSTRUCTED);
5358 VOP_UNLOCK(vp);
5359 /*
5360 * Place the vnode onto the syncer worklist. We attempt to
5361 * scatter them about on the list so that they will go off
5362 * at evenly distributed times even if all the filesystems
5363 * are mounted at once.
5364 */
5365 next += incr;
5366 if (next == 0 || next > syncer_maxdelay) {
5367 start /= 2;
5368 incr /= 2;
5369 if (start == 0) {
5370 start = syncer_maxdelay / 2;
5371 incr = syncer_maxdelay;
5372 }
5373 next = start;
5374 }
5375 bo = &vp->v_bufobj;
5376 BO_LOCK(bo);
5377 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5378 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5379 mtx_lock(&sync_mtx);
5380 sync_vnode_count++;
5381 if (mp->mnt_syncer == NULL) {
5382 mp->mnt_syncer = vp;
5383 vp = NULL;
5384 }
5385 mtx_unlock(&sync_mtx);
5386 BO_UNLOCK(bo);
5387 if (vp != NULL) {
5388 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5389 vgone(vp);
5390 vput(vp);
5391 }
5392 }
5393
5394 void
vfs_deallocate_syncvnode(struct mount * mp)5395 vfs_deallocate_syncvnode(struct mount *mp)
5396 {
5397 struct vnode *vp;
5398
5399 mtx_lock(&sync_mtx);
5400 vp = mp->mnt_syncer;
5401 if (vp != NULL)
5402 mp->mnt_syncer = NULL;
5403 mtx_unlock(&sync_mtx);
5404 if (vp != NULL)
5405 vrele(vp);
5406 }
5407
5408 /*
5409 * Do a lazy sync of the filesystem.
5410 */
5411 static int
sync_fsync(struct vop_fsync_args * ap)5412 sync_fsync(struct vop_fsync_args *ap)
5413 {
5414 struct vnode *syncvp = ap->a_vp;
5415 struct mount *mp = syncvp->v_mount;
5416 int error, save;
5417 struct bufobj *bo;
5418
5419 /*
5420 * We only need to do something if this is a lazy evaluation.
5421 */
5422 if (ap->a_waitfor != MNT_LAZY)
5423 return (0);
5424
5425 /*
5426 * Move ourselves to the back of the sync list.
5427 */
5428 bo = &syncvp->v_bufobj;
5429 BO_LOCK(bo);
5430 vn_syncer_add_to_worklist(bo, syncdelay);
5431 BO_UNLOCK(bo);
5432
5433 /*
5434 * Walk the list of vnodes pushing all that are dirty and
5435 * not already on the sync list.
5436 */
5437 if (vfs_busy(mp, MBF_NOWAIT) != 0)
5438 return (0);
5439 VOP_UNLOCK(syncvp);
5440 save = curthread_pflags_set(TDP_SYNCIO);
5441 /*
5442 * The filesystem at hand may be idle with free vnodes stored in the
5443 * batch. Return them instead of letting them stay there indefinitely.
5444 */
5445 vfs_periodic(mp, MNT_NOWAIT);
5446 error = VFS_SYNC(mp, MNT_LAZY);
5447 curthread_pflags_restore(save);
5448 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5449 vfs_unbusy(mp);
5450 return (error);
5451 }
5452
5453 /*
5454 * The syncer vnode is no referenced.
5455 */
5456 static int
sync_inactive(struct vop_inactive_args * ap)5457 sync_inactive(struct vop_inactive_args *ap)
5458 {
5459
5460 vgone(ap->a_vp);
5461 return (0);
5462 }
5463
5464 /*
5465 * The syncer vnode is no longer needed and is being decommissioned.
5466 *
5467 * Modifications to the worklist must be protected by sync_mtx.
5468 */
5469 static int
sync_reclaim(struct vop_reclaim_args * ap)5470 sync_reclaim(struct vop_reclaim_args *ap)
5471 {
5472 struct vnode *vp = ap->a_vp;
5473 struct bufobj *bo;
5474
5475 bo = &vp->v_bufobj;
5476 BO_LOCK(bo);
5477 mtx_lock(&sync_mtx);
5478 if (vp->v_mount->mnt_syncer == vp)
5479 vp->v_mount->mnt_syncer = NULL;
5480 if (bo->bo_flag & BO_ONWORKLST) {
5481 LIST_REMOVE(bo, bo_synclist);
5482 syncer_worklist_len--;
5483 sync_vnode_count--;
5484 bo->bo_flag &= ~BO_ONWORKLST;
5485 }
5486 mtx_unlock(&sync_mtx);
5487 BO_UNLOCK(bo);
5488
5489 return (0);
5490 }
5491
5492 int
vn_need_pageq_flush(struct vnode * vp)5493 vn_need_pageq_flush(struct vnode *vp)
5494 {
5495 struct vm_object *obj;
5496
5497 obj = vp->v_object;
5498 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5499 vm_object_mightbedirty(obj));
5500 }
5501
5502 /*
5503 * Check if vnode represents a disk device
5504 */
5505 bool
vn_isdisk_error(struct vnode * vp,int * errp)5506 vn_isdisk_error(struct vnode *vp, int *errp)
5507 {
5508 int error;
5509
5510 if (vp->v_type != VCHR) {
5511 error = ENOTBLK;
5512 goto out;
5513 }
5514 error = 0;
5515 dev_lock();
5516 if (vp->v_rdev == NULL)
5517 error = ENXIO;
5518 else if (vp->v_rdev->si_devsw == NULL)
5519 error = ENXIO;
5520 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5521 error = ENOTBLK;
5522 dev_unlock();
5523 out:
5524 *errp = error;
5525 return (error == 0);
5526 }
5527
5528 bool
vn_isdisk(struct vnode * vp)5529 vn_isdisk(struct vnode *vp)
5530 {
5531 int error;
5532
5533 return (vn_isdisk_error(vp, &error));
5534 }
5535
5536 /*
5537 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5538 * the comment above cache_fplookup for details.
5539 */
5540 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5541 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5542 {
5543 int error;
5544
5545 VFS_SMR_ASSERT_ENTERED();
5546
5547 /* Check the owner. */
5548 if (cred->cr_uid == file_uid) {
5549 if (file_mode & S_IXUSR)
5550 return (0);
5551 goto out_error;
5552 }
5553
5554 /* Otherwise, check the groups (first match) */
5555 if (groupmember(file_gid, cred)) {
5556 if (file_mode & S_IXGRP)
5557 return (0);
5558 goto out_error;
5559 }
5560
5561 /* Otherwise, check everyone else. */
5562 if (file_mode & S_IXOTH)
5563 return (0);
5564 out_error:
5565 /*
5566 * Permission check failed, but it is possible denial will get overwritten
5567 * (e.g., when root is traversing through a 700 directory owned by someone
5568 * else).
5569 *
5570 * vaccess() calls priv_check_cred which in turn can descent into MAC
5571 * modules overriding this result. It's quite unclear what semantics
5572 * are allowed for them to operate, thus for safety we don't call them
5573 * from within the SMR section. This also means if any such modules
5574 * are present, we have to let the regular lookup decide.
5575 */
5576 error = priv_check_cred_vfs_lookup_nomac(cred);
5577 switch (error) {
5578 case 0:
5579 return (0);
5580 case EAGAIN:
5581 /*
5582 * MAC modules present.
5583 */
5584 return (EAGAIN);
5585 case EPERM:
5586 return (EACCES);
5587 default:
5588 return (error);
5589 }
5590 }
5591
5592 /*
5593 * Common filesystem object access control check routine. Accepts a
5594 * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5595 * Returns 0 on success, or an errno on failure.
5596 */
5597 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5598 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5599 accmode_t accmode, struct ucred *cred)
5600 {
5601 accmode_t dac_granted;
5602 accmode_t priv_granted;
5603
5604 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5605 ("invalid bit in accmode"));
5606 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5607 ("VAPPEND without VWRITE"));
5608
5609 /*
5610 * Look for a normal, non-privileged way to access the file/directory
5611 * as requested. If it exists, go with that.
5612 */
5613
5614 dac_granted = 0;
5615
5616 /* Check the owner. */
5617 if (cred->cr_uid == file_uid) {
5618 dac_granted |= VADMIN;
5619 if (file_mode & S_IXUSR)
5620 dac_granted |= VEXEC;
5621 if (file_mode & S_IRUSR)
5622 dac_granted |= VREAD;
5623 if (file_mode & S_IWUSR)
5624 dac_granted |= (VWRITE | VAPPEND);
5625
5626 if ((accmode & dac_granted) == accmode)
5627 return (0);
5628
5629 goto privcheck;
5630 }
5631
5632 /* Otherwise, check the groups (first match) */
5633 if (groupmember(file_gid, cred)) {
5634 if (file_mode & S_IXGRP)
5635 dac_granted |= VEXEC;
5636 if (file_mode & S_IRGRP)
5637 dac_granted |= VREAD;
5638 if (file_mode & S_IWGRP)
5639 dac_granted |= (VWRITE | VAPPEND);
5640
5641 if ((accmode & dac_granted) == accmode)
5642 return (0);
5643
5644 goto privcheck;
5645 }
5646
5647 /* Otherwise, check everyone else. */
5648 if (file_mode & S_IXOTH)
5649 dac_granted |= VEXEC;
5650 if (file_mode & S_IROTH)
5651 dac_granted |= VREAD;
5652 if (file_mode & S_IWOTH)
5653 dac_granted |= (VWRITE | VAPPEND);
5654 if ((accmode & dac_granted) == accmode)
5655 return (0);
5656
5657 privcheck:
5658 /*
5659 * Build a privilege mask to determine if the set of privileges
5660 * satisfies the requirements when combined with the granted mask
5661 * from above. For each privilege, if the privilege is required,
5662 * bitwise or the request type onto the priv_granted mask.
5663 */
5664 priv_granted = 0;
5665
5666 if (type == VDIR) {
5667 /*
5668 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5669 * requests, instead of PRIV_VFS_EXEC.
5670 */
5671 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5672 !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5673 priv_granted |= VEXEC;
5674 } else {
5675 /*
5676 * Ensure that at least one execute bit is on. Otherwise,
5677 * a privileged user will always succeed, and we don't want
5678 * this to happen unless the file really is executable.
5679 */
5680 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5681 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5682 !priv_check_cred(cred, PRIV_VFS_EXEC))
5683 priv_granted |= VEXEC;
5684 }
5685
5686 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5687 !priv_check_cred(cred, PRIV_VFS_READ))
5688 priv_granted |= VREAD;
5689
5690 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5691 !priv_check_cred(cred, PRIV_VFS_WRITE))
5692 priv_granted |= (VWRITE | VAPPEND);
5693
5694 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5695 !priv_check_cred(cred, PRIV_VFS_ADMIN))
5696 priv_granted |= VADMIN;
5697
5698 if ((accmode & (priv_granted | dac_granted)) == accmode) {
5699 return (0);
5700 }
5701
5702 return ((accmode & VADMIN) ? EPERM : EACCES);
5703 }
5704
5705 /*
5706 * Credential check based on process requesting service, and per-attribute
5707 * permissions.
5708 */
5709 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5710 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5711 struct thread *td, accmode_t accmode)
5712 {
5713
5714 /*
5715 * Kernel-invoked always succeeds.
5716 */
5717 if (cred == NOCRED)
5718 return (0);
5719
5720 /*
5721 * Do not allow privileged processes in jail to directly manipulate
5722 * system attributes.
5723 */
5724 switch (attrnamespace) {
5725 case EXTATTR_NAMESPACE_SYSTEM:
5726 /* Potentially should be: return (EPERM); */
5727 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5728 case EXTATTR_NAMESPACE_USER:
5729 return (VOP_ACCESS(vp, accmode, cred, td));
5730 default:
5731 return (EPERM);
5732 }
5733 }
5734
5735 #ifdef INVARIANTS
5736 void
assert_vi_locked(struct vnode * vp,const char * str)5737 assert_vi_locked(struct vnode *vp, const char *str)
5738 {
5739 VNASSERT(mtx_owned(VI_MTX(vp)), vp,
5740 ("%s: vnode interlock is not locked but should be", str));
5741 }
5742
5743 void
assert_vi_unlocked(struct vnode * vp,const char * str)5744 assert_vi_unlocked(struct vnode *vp, const char *str)
5745 {
5746 VNASSERT(!mtx_owned(VI_MTX(vp)), vp,
5747 ("%s: vnode interlock is locked but should not be", str));
5748 }
5749
5750 void
assert_vop_locked(struct vnode * vp,const char * str)5751 assert_vop_locked(struct vnode *vp, const char *str)
5752 {
5753 bool locked;
5754
5755 if (KERNEL_PANICKED() || vp == NULL)
5756 return;
5757
5758 #ifdef WITNESS
5759 locked = !((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5760 witness_is_owned(&vp->v_vnlock->lock_object) == -1);
5761 #else
5762 int state = VOP_ISLOCKED(vp);
5763 locked = state != 0 && state != LK_EXCLOTHER;
5764 #endif
5765 VNASSERT(locked, vp, ("%s: vnode is not locked but should be", str));
5766 }
5767
5768 void
assert_vop_unlocked(struct vnode * vp,const char * str)5769 assert_vop_unlocked(struct vnode *vp, const char *str)
5770 {
5771 bool locked;
5772
5773 if (KERNEL_PANICKED() || vp == NULL)
5774 return;
5775
5776 #ifdef WITNESS
5777 locked = (vp->v_irflag & VIRF_CROSSMP) == 0 &&
5778 witness_is_owned(&vp->v_vnlock->lock_object) == 1;
5779 #else
5780 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5781 #endif
5782 VNASSERT(!locked, vp, ("%s: vnode is locked but should not be", str));
5783 }
5784
5785 void
assert_vop_elocked(struct vnode * vp,const char * str)5786 assert_vop_elocked(struct vnode *vp, const char *str)
5787 {
5788 bool locked;
5789
5790 if (KERNEL_PANICKED() || vp == NULL)
5791 return;
5792
5793 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5794 VNASSERT(locked, vp,
5795 ("%s: vnode is not exclusive locked but should be", str));
5796 }
5797 #endif /* INVARIANTS */
5798
5799 void
vop_rename_fail(struct vop_rename_args * ap)5800 vop_rename_fail(struct vop_rename_args *ap)
5801 {
5802
5803 if (ap->a_tvp != NULL)
5804 vput(ap->a_tvp);
5805 if (ap->a_tdvp == ap->a_tvp)
5806 vrele(ap->a_tdvp);
5807 else
5808 vput(ap->a_tdvp);
5809 vrele(ap->a_fdvp);
5810 vrele(ap->a_fvp);
5811 }
5812
5813 void
vop_rename_pre(void * ap)5814 vop_rename_pre(void *ap)
5815 {
5816 struct vop_rename_args *a = ap;
5817
5818 #ifdef INVARIANTS
5819 struct mount *tmp;
5820
5821 if (a->a_tvp)
5822 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5823 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5824 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5825 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5826
5827 /* Check the source (from). */
5828 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5829 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5830 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5831 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5832 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5833
5834 /* Check the target. */
5835 if (a->a_tvp)
5836 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5837 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5838
5839 tmp = NULL;
5840 VOP_GETWRITEMOUNT(a->a_tdvp, &tmp);
5841 lockmgr_assert(&tmp->mnt_renamelock, KA_XLOCKED);
5842 vfs_rel(tmp);
5843 #endif
5844 /*
5845 * It may be tempting to add vn_seqc_write_begin/end calls here and
5846 * in vop_rename_post but that's not going to work out since some
5847 * filesystems relookup vnodes mid-rename. This is probably a bug.
5848 *
5849 * For now filesystems are expected to do the relevant calls after they
5850 * decide what vnodes to operate on.
5851 */
5852 if (a->a_tdvp != a->a_fdvp)
5853 vhold(a->a_fdvp);
5854 if (a->a_tvp != a->a_fvp)
5855 vhold(a->a_fvp);
5856 vhold(a->a_tdvp);
5857 if (a->a_tvp)
5858 vhold(a->a_tvp);
5859 }
5860
5861 #ifdef INVARIANTS
5862 void
vop_fplookup_vexec_debugpre(void * ap __unused)5863 vop_fplookup_vexec_debugpre(void *ap __unused)
5864 {
5865
5866 VFS_SMR_ASSERT_ENTERED();
5867 }
5868
5869 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5870 vop_fplookup_vexec_debugpost(void *ap, int rc)
5871 {
5872 struct vop_fplookup_vexec_args *a;
5873 struct vnode *vp;
5874
5875 a = ap;
5876 vp = a->a_vp;
5877
5878 VFS_SMR_ASSERT_ENTERED();
5879 if (rc == EOPNOTSUPP)
5880 VNPASS(VN_IS_DOOMED(vp), vp);
5881 }
5882
5883 void
vop_fplookup_symlink_debugpre(void * ap __unused)5884 vop_fplookup_symlink_debugpre(void *ap __unused)
5885 {
5886
5887 VFS_SMR_ASSERT_ENTERED();
5888 }
5889
5890 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5891 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5892 {
5893
5894 VFS_SMR_ASSERT_ENTERED();
5895 }
5896
5897 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5898 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5899 {
5900 if (vp->v_type == VCHR)
5901 ;
5902 /*
5903 * The shared vs. exclusive locking policy for fsync()
5904 * is actually determined by vp's write mount as indicated
5905 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5906 * may not be the same as vp->v_mount. However, if the
5907 * underlying filesystem which really handles the fsync()
5908 * supports shared locking, the stacked filesystem must also
5909 * be prepared for its VOP_FSYNC() operation to be called
5910 * with only a shared lock. On the other hand, if the
5911 * stacked filesystem claims support for shared write
5912 * locking but the underlying filesystem does not, and the
5913 * caller incorrectly uses a shared lock, this condition
5914 * should still be caught when the stacked filesystem
5915 * invokes VOP_FSYNC() on the underlying filesystem.
5916 */
5917 else if (MNT_SHARED_WRITES(vp->v_mount))
5918 ASSERT_VOP_LOCKED(vp, name);
5919 else
5920 ASSERT_VOP_ELOCKED(vp, name);
5921 }
5922
5923 void
vop_fsync_debugpre(void * a)5924 vop_fsync_debugpre(void *a)
5925 {
5926 struct vop_fsync_args *ap;
5927
5928 ap = a;
5929 vop_fsync_debugprepost(ap->a_vp, "fsync");
5930 }
5931
5932 void
vop_fsync_debugpost(void * a,int rc __unused)5933 vop_fsync_debugpost(void *a, int rc __unused)
5934 {
5935 struct vop_fsync_args *ap;
5936
5937 ap = a;
5938 vop_fsync_debugprepost(ap->a_vp, "fsync");
5939 }
5940
5941 void
vop_fdatasync_debugpre(void * a)5942 vop_fdatasync_debugpre(void *a)
5943 {
5944 struct vop_fdatasync_args *ap;
5945
5946 ap = a;
5947 vop_fsync_debugprepost(ap->a_vp, "fsync");
5948 }
5949
5950 void
vop_fdatasync_debugpost(void * a,int rc __unused)5951 vop_fdatasync_debugpost(void *a, int rc __unused)
5952 {
5953 struct vop_fdatasync_args *ap;
5954
5955 ap = a;
5956 vop_fsync_debugprepost(ap->a_vp, "fsync");
5957 }
5958
5959 void
vop_strategy_debugpre(void * ap)5960 vop_strategy_debugpre(void *ap)
5961 {
5962 struct vop_strategy_args *a;
5963 struct buf *bp;
5964
5965 a = ap;
5966 bp = a->a_bp;
5967
5968 /*
5969 * Cluster ops lock their component buffers but not the IO container.
5970 */
5971 if ((bp->b_flags & B_CLUSTER) != 0)
5972 return;
5973
5974 BUF_ASSERT_LOCKED(bp);
5975 }
5976
5977 void
vop_lock_debugpre(void * ap)5978 vop_lock_debugpre(void *ap)
5979 {
5980 struct vop_lock1_args *a = ap;
5981
5982 if ((a->a_flags & LK_INTERLOCK) == 0)
5983 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5984 else
5985 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5986 }
5987
5988 void
vop_lock_debugpost(void * ap,int rc)5989 vop_lock_debugpost(void *ap, int rc)
5990 {
5991 struct vop_lock1_args *a = ap;
5992
5993 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5994 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5995 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5996 }
5997
5998 void
vop_unlock_debugpre(void * ap)5999 vop_unlock_debugpre(void *ap)
6000 {
6001 struct vop_unlock_args *a = ap;
6002 struct vnode *vp = a->a_vp;
6003
6004 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6005 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6006 }
6007
6008 void
vop_need_inactive_debugpre(void * ap)6009 vop_need_inactive_debugpre(void *ap)
6010 {
6011 struct vop_need_inactive_args *a = ap;
6012
6013 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6014 }
6015
6016 void
vop_need_inactive_debugpost(void * ap,int rc)6017 vop_need_inactive_debugpost(void *ap, int rc)
6018 {
6019 struct vop_need_inactive_args *a = ap;
6020
6021 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6022 }
6023 #endif /* INVARIANTS */
6024
6025 void
vop_allocate_post(void * ap,int rc)6026 vop_allocate_post(void *ap, int rc)
6027 {
6028 struct vop_allocate_args *a;
6029
6030 a = ap;
6031 if (rc == 0)
6032 INOTIFY(a->a_vp, IN_MODIFY);
6033 }
6034
6035 void
vop_copy_file_range_post(void * ap,int rc)6036 vop_copy_file_range_post(void *ap, int rc)
6037 {
6038 struct vop_copy_file_range_args *a;
6039
6040 a = ap;
6041 if (rc == 0) {
6042 INOTIFY(a->a_invp, IN_ACCESS);
6043 INOTIFY(a->a_outvp, IN_MODIFY);
6044 }
6045 }
6046
6047 void
vop_create_pre(void * ap)6048 vop_create_pre(void *ap)
6049 {
6050 struct vop_create_args *a;
6051 struct vnode *dvp;
6052
6053 a = ap;
6054 dvp = a->a_dvp;
6055 vn_seqc_write_begin(dvp);
6056 }
6057
6058 void
vop_create_post(void * ap,int rc)6059 vop_create_post(void *ap, int rc)
6060 {
6061 struct vop_create_args *a;
6062 struct vnode *dvp;
6063
6064 a = ap;
6065 dvp = a->a_dvp;
6066 vn_seqc_write_end(dvp);
6067 if (!rc) {
6068 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6069 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6070 }
6071 }
6072
6073 void
vop_deallocate_post(void * ap,int rc)6074 vop_deallocate_post(void *ap, int rc)
6075 {
6076 struct vop_deallocate_args *a;
6077
6078 a = ap;
6079 if (rc == 0)
6080 INOTIFY(a->a_vp, IN_MODIFY);
6081 }
6082
6083 void
vop_whiteout_pre(void * ap)6084 vop_whiteout_pre(void *ap)
6085 {
6086 struct vop_whiteout_args *a;
6087 struct vnode *dvp;
6088
6089 a = ap;
6090 dvp = a->a_dvp;
6091 vn_seqc_write_begin(dvp);
6092 }
6093
6094 void
vop_whiteout_post(void * ap,int rc)6095 vop_whiteout_post(void *ap, int rc)
6096 {
6097 struct vop_whiteout_args *a;
6098 struct vnode *dvp;
6099
6100 a = ap;
6101 dvp = a->a_dvp;
6102 vn_seqc_write_end(dvp);
6103 }
6104
6105 void
vop_deleteextattr_pre(void * ap)6106 vop_deleteextattr_pre(void *ap)
6107 {
6108 struct vop_deleteextattr_args *a;
6109 struct vnode *vp;
6110
6111 a = ap;
6112 vp = a->a_vp;
6113 vn_seqc_write_begin(vp);
6114 }
6115
6116 void
vop_deleteextattr_post(void * ap,int rc)6117 vop_deleteextattr_post(void *ap, int rc)
6118 {
6119 struct vop_deleteextattr_args *a;
6120 struct vnode *vp;
6121
6122 a = ap;
6123 vp = a->a_vp;
6124 vn_seqc_write_end(vp);
6125 if (!rc) {
6126 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6127 INOTIFY(vp, IN_ATTRIB);
6128 }
6129 }
6130
6131 void
vop_link_pre(void * ap)6132 vop_link_pre(void *ap)
6133 {
6134 struct vop_link_args *a;
6135 struct vnode *vp, *tdvp;
6136
6137 a = ap;
6138 vp = a->a_vp;
6139 tdvp = a->a_tdvp;
6140 vn_seqc_write_begin(vp);
6141 vn_seqc_write_begin(tdvp);
6142 }
6143
6144 void
vop_link_post(void * ap,int rc)6145 vop_link_post(void *ap, int rc)
6146 {
6147 struct vop_link_args *a;
6148 struct vnode *vp, *tdvp;
6149
6150 a = ap;
6151 vp = a->a_vp;
6152 tdvp = a->a_tdvp;
6153 vn_seqc_write_end(vp);
6154 vn_seqc_write_end(tdvp);
6155 if (!rc) {
6156 VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6157 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6158 INOTIFY_NAME(vp, tdvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6159 INOTIFY_NAME(vp, tdvp, a->a_cnp, IN_CREATE);
6160 }
6161 }
6162
6163 void
vop_mkdir_pre(void * ap)6164 vop_mkdir_pre(void *ap)
6165 {
6166 struct vop_mkdir_args *a;
6167 struct vnode *dvp;
6168
6169 a = ap;
6170 dvp = a->a_dvp;
6171 vn_seqc_write_begin(dvp);
6172 }
6173
6174 void
vop_mkdir_post(void * ap,int rc)6175 vop_mkdir_post(void *ap, int rc)
6176 {
6177 struct vop_mkdir_args *a;
6178 struct vnode *dvp;
6179
6180 a = ap;
6181 dvp = a->a_dvp;
6182 vn_seqc_write_end(dvp);
6183 if (!rc) {
6184 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6185 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6186 }
6187 }
6188
6189 #ifdef INVARIANTS
6190 void
vop_mkdir_debugpost(void * ap,int rc)6191 vop_mkdir_debugpost(void *ap, int rc)
6192 {
6193 struct vop_mkdir_args *a;
6194
6195 a = ap;
6196 if (!rc)
6197 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6198 }
6199 #endif
6200
6201 void
vop_mknod_pre(void * ap)6202 vop_mknod_pre(void *ap)
6203 {
6204 struct vop_mknod_args *a;
6205 struct vnode *dvp;
6206
6207 a = ap;
6208 dvp = a->a_dvp;
6209 vn_seqc_write_begin(dvp);
6210 }
6211
6212 void
vop_mknod_post(void * ap,int rc)6213 vop_mknod_post(void *ap, int rc)
6214 {
6215 struct vop_mknod_args *a;
6216 struct vnode *dvp;
6217
6218 a = ap;
6219 dvp = a->a_dvp;
6220 vn_seqc_write_end(dvp);
6221 if (!rc) {
6222 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6223 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6224 }
6225 }
6226
6227 void
vop_reclaim_post(void * ap,int rc)6228 vop_reclaim_post(void *ap, int rc)
6229 {
6230 struct vop_reclaim_args *a;
6231 struct vnode *vp;
6232
6233 a = ap;
6234 vp = a->a_vp;
6235 ASSERT_VOP_IN_SEQC(vp);
6236 if (!rc) {
6237 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6238 INOTIFY_REVOKE(vp);
6239 }
6240 }
6241
6242 void
vop_remove_pre(void * ap)6243 vop_remove_pre(void *ap)
6244 {
6245 struct vop_remove_args *a;
6246 struct vnode *dvp, *vp;
6247
6248 a = ap;
6249 dvp = a->a_dvp;
6250 vp = a->a_vp;
6251 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6252 vn_seqc_write_begin(dvp);
6253 vn_seqc_write_begin(vp);
6254 }
6255
6256 void
vop_remove_post(void * ap,int rc)6257 vop_remove_post(void *ap, int rc)
6258 {
6259 struct vop_remove_args *a;
6260 struct vnode *dvp, *vp;
6261
6262 a = ap;
6263 dvp = a->a_dvp;
6264 vp = a->a_vp;
6265 vn_seqc_write_end(dvp);
6266 vn_seqc_write_end(vp);
6267 if (!rc) {
6268 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6269 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6270 INOTIFY_NAME(vp, dvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6271 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6272 }
6273 }
6274
6275 void
vop_rename_post(void * ap,int rc)6276 vop_rename_post(void *ap, int rc)
6277 {
6278 struct vop_rename_args *a = ap;
6279 long hint;
6280
6281 if (!rc) {
6282 hint = NOTE_WRITE;
6283 if (a->a_fdvp == a->a_tdvp) {
6284 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6285 hint |= NOTE_LINK;
6286 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6287 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6288 } else {
6289 hint |= NOTE_EXTEND;
6290 if (a->a_fvp->v_type == VDIR)
6291 hint |= NOTE_LINK;
6292 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6293
6294 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6295 a->a_tvp->v_type == VDIR)
6296 hint &= ~NOTE_LINK;
6297 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6298 }
6299
6300 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6301 if (a->a_tvp)
6302 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6303 INOTIFY_MOVE(a->a_fvp, a->a_fdvp, a->a_fcnp, a->a_tvp,
6304 a->a_tdvp, a->a_tcnp);
6305 }
6306 if (a->a_tdvp != a->a_fdvp)
6307 vdrop(a->a_fdvp);
6308 if (a->a_tvp != a->a_fvp)
6309 vdrop(a->a_fvp);
6310 vdrop(a->a_tdvp);
6311 if (a->a_tvp)
6312 vdrop(a->a_tvp);
6313 }
6314
6315 void
vop_rmdir_pre(void * ap)6316 vop_rmdir_pre(void *ap)
6317 {
6318 struct vop_rmdir_args *a;
6319 struct vnode *dvp, *vp;
6320
6321 a = ap;
6322 dvp = a->a_dvp;
6323 vp = a->a_vp;
6324 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6325 vn_seqc_write_begin(dvp);
6326 vn_seqc_write_begin(vp);
6327 }
6328
6329 void
vop_rmdir_post(void * ap,int rc)6330 vop_rmdir_post(void *ap, int rc)
6331 {
6332 struct vop_rmdir_args *a;
6333 struct vnode *dvp, *vp;
6334
6335 a = ap;
6336 dvp = a->a_dvp;
6337 vp = a->a_vp;
6338 vn_seqc_write_end(dvp);
6339 vn_seqc_write_end(vp);
6340 if (!rc) {
6341 vp->v_vflag |= VV_UNLINKED;
6342 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6343 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6344 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6345 }
6346 }
6347
6348 void
vop_setattr_pre(void * ap)6349 vop_setattr_pre(void *ap)
6350 {
6351 struct vop_setattr_args *a;
6352 struct vnode *vp;
6353
6354 a = ap;
6355 vp = a->a_vp;
6356 vn_seqc_write_begin(vp);
6357 }
6358
6359 void
vop_setattr_post(void * ap,int rc)6360 vop_setattr_post(void *ap, int rc)
6361 {
6362 struct vop_setattr_args *a;
6363 struct vnode *vp;
6364
6365 a = ap;
6366 vp = a->a_vp;
6367 vn_seqc_write_end(vp);
6368 if (!rc) {
6369 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6370 INOTIFY(vp, IN_ATTRIB);
6371 }
6372 }
6373
6374 void
vop_setacl_pre(void * ap)6375 vop_setacl_pre(void *ap)
6376 {
6377 struct vop_setacl_args *a;
6378 struct vnode *vp;
6379
6380 a = ap;
6381 vp = a->a_vp;
6382 vn_seqc_write_begin(vp);
6383 }
6384
6385 void
vop_setacl_post(void * ap,int rc __unused)6386 vop_setacl_post(void *ap, int rc __unused)
6387 {
6388 struct vop_setacl_args *a;
6389 struct vnode *vp;
6390
6391 a = ap;
6392 vp = a->a_vp;
6393 vn_seqc_write_end(vp);
6394 }
6395
6396 void
vop_setextattr_pre(void * ap)6397 vop_setextattr_pre(void *ap)
6398 {
6399 struct vop_setextattr_args *a;
6400 struct vnode *vp;
6401
6402 a = ap;
6403 vp = a->a_vp;
6404 vn_seqc_write_begin(vp);
6405 }
6406
6407 void
vop_setextattr_post(void * ap,int rc)6408 vop_setextattr_post(void *ap, int rc)
6409 {
6410 struct vop_setextattr_args *a;
6411 struct vnode *vp;
6412
6413 a = ap;
6414 vp = a->a_vp;
6415 vn_seqc_write_end(vp);
6416 if (!rc) {
6417 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6418 INOTIFY(vp, IN_ATTRIB);
6419 }
6420 }
6421
6422 void
vop_symlink_pre(void * ap)6423 vop_symlink_pre(void *ap)
6424 {
6425 struct vop_symlink_args *a;
6426 struct vnode *dvp;
6427
6428 a = ap;
6429 dvp = a->a_dvp;
6430 vn_seqc_write_begin(dvp);
6431 }
6432
6433 void
vop_symlink_post(void * ap,int rc)6434 vop_symlink_post(void *ap, int rc)
6435 {
6436 struct vop_symlink_args *a;
6437 struct vnode *dvp;
6438
6439 a = ap;
6440 dvp = a->a_dvp;
6441 vn_seqc_write_end(dvp);
6442 if (!rc) {
6443 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6444 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6445 }
6446 }
6447
6448 void
vop_open_post(void * ap,int rc)6449 vop_open_post(void *ap, int rc)
6450 {
6451 struct vop_open_args *a = ap;
6452
6453 if (!rc) {
6454 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6455 INOTIFY(a->a_vp, IN_OPEN);
6456 }
6457 }
6458
6459 void
vop_close_post(void * ap,int rc)6460 vop_close_post(void *ap, int rc)
6461 {
6462 struct vop_close_args *a = ap;
6463
6464 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6465 !VN_IS_DOOMED(a->a_vp))) {
6466 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6467 NOTE_CLOSE_WRITE : NOTE_CLOSE);
6468 INOTIFY(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6469 IN_CLOSE_WRITE : IN_CLOSE_NOWRITE);
6470 }
6471 }
6472
6473 void
vop_read_post(void * ap,int rc)6474 vop_read_post(void *ap, int rc)
6475 {
6476 struct vop_read_args *a = ap;
6477
6478 if (!rc) {
6479 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6480 INOTIFY(a->a_vp, IN_ACCESS);
6481 }
6482 }
6483
6484 void
vop_read_pgcache_post(void * ap,int rc)6485 vop_read_pgcache_post(void *ap, int rc)
6486 {
6487 struct vop_read_pgcache_args *a = ap;
6488
6489 if (!rc)
6490 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6491 }
6492
6493 static struct knlist fs_knlist;
6494
6495 static void
vfs_event_init(void * arg)6496 vfs_event_init(void *arg)
6497 {
6498 knlist_init_mtx(&fs_knlist, NULL);
6499 }
6500 /* XXX - correct order? */
6501 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6502
6503 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6504 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6505 {
6506
6507 KNOTE_UNLOCKED(&fs_knlist, event);
6508 }
6509
6510 static int filt_fsattach(struct knote *kn);
6511 static void filt_fsdetach(struct knote *kn);
6512 static int filt_fsevent(struct knote *kn, long hint);
6513
6514 const struct filterops fs_filtops = {
6515 .f_isfd = 0,
6516 .f_attach = filt_fsattach,
6517 .f_detach = filt_fsdetach,
6518 .f_event = filt_fsevent,
6519 };
6520
6521 static int
filt_fsattach(struct knote * kn)6522 filt_fsattach(struct knote *kn)
6523 {
6524
6525 kn->kn_flags |= EV_CLEAR;
6526 knlist_add(&fs_knlist, kn, 0);
6527 return (0);
6528 }
6529
6530 static void
filt_fsdetach(struct knote * kn)6531 filt_fsdetach(struct knote *kn)
6532 {
6533
6534 knlist_remove(&fs_knlist, kn, 0);
6535 }
6536
6537 static int
filt_fsevent(struct knote * kn,long hint)6538 filt_fsevent(struct knote *kn, long hint)
6539 {
6540
6541 kn->kn_fflags |= kn->kn_sfflags & hint;
6542
6543 return (kn->kn_fflags != 0);
6544 }
6545
6546 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6547 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6548 {
6549 struct vfsidctl vc;
6550 int error;
6551 struct mount *mp;
6552
6553 if (req->newptr == NULL)
6554 return (EINVAL);
6555 error = SYSCTL_IN(req, &vc, sizeof(vc));
6556 if (error)
6557 return (error);
6558 if (vc.vc_vers != VFS_CTL_VERS1)
6559 return (EINVAL);
6560 mp = vfs_getvfs(&vc.vc_fsid);
6561 if (mp == NULL)
6562 return (ENOENT);
6563 /* ensure that a specific sysctl goes to the right filesystem. */
6564 if (strcmp(vc.vc_fstypename, "*") != 0 &&
6565 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6566 vfs_rel(mp);
6567 return (EINVAL);
6568 }
6569 VCTLTOREQ(&vc, req);
6570 error = VFS_SYSCTL(mp, vc.vc_op, req);
6571 vfs_rel(mp);
6572 return (error);
6573 }
6574
6575 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6576 NULL, 0, sysctl_vfs_ctl, "",
6577 "Sysctl by fsid");
6578
6579 /*
6580 * Function to initialize a va_filerev field sensibly.
6581 * XXX: Wouldn't a random number make a lot more sense ??
6582 */
6583 u_quad_t
init_va_filerev(void)6584 init_va_filerev(void)
6585 {
6586 struct bintime bt;
6587
6588 getbinuptime(&bt);
6589 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6590 }
6591
6592 static int filt_vfsread(struct knote *kn, long hint);
6593 static int filt_vfswrite(struct knote *kn, long hint);
6594 static int filt_vfsvnode(struct knote *kn, long hint);
6595 static void filt_vfsdetach(struct knote *kn);
6596 static int filt_vfsdump(struct proc *p, struct knote *kn,
6597 struct kinfo_knote *kin);
6598
6599 static const struct filterops vfsread_filtops = {
6600 .f_isfd = 1,
6601 .f_detach = filt_vfsdetach,
6602 .f_event = filt_vfsread,
6603 .f_userdump = filt_vfsdump,
6604 };
6605 static const struct filterops vfswrite_filtops = {
6606 .f_isfd = 1,
6607 .f_detach = filt_vfsdetach,
6608 .f_event = filt_vfswrite,
6609 .f_userdump = filt_vfsdump,
6610 };
6611 static const struct filterops vfsvnode_filtops = {
6612 .f_isfd = 1,
6613 .f_detach = filt_vfsdetach,
6614 .f_event = filt_vfsvnode,
6615 .f_userdump = filt_vfsdump,
6616 };
6617
6618 static void
vfs_knllock(void * arg)6619 vfs_knllock(void *arg)
6620 {
6621 struct vnode *vp = arg;
6622
6623 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6624 }
6625
6626 static void
vfs_knlunlock(void * arg)6627 vfs_knlunlock(void *arg)
6628 {
6629 struct vnode *vp = arg;
6630
6631 VOP_UNLOCK(vp);
6632 }
6633
6634 static void
vfs_knl_assert_lock(void * arg,int what)6635 vfs_knl_assert_lock(void *arg, int what)
6636 {
6637 #ifdef INVARIANTS
6638 struct vnode *vp = arg;
6639
6640 if (what == LA_LOCKED)
6641 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6642 else
6643 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6644 #endif
6645 }
6646
6647 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6648 vfs_kqfilter(struct vop_kqfilter_args *ap)
6649 {
6650 struct vnode *vp = ap->a_vp;
6651 struct knote *kn = ap->a_kn;
6652 struct knlist *knl;
6653
6654 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6655 kn->kn_filter != EVFILT_WRITE),
6656 ("READ/WRITE filter on a FIFO leaked through"));
6657 switch (kn->kn_filter) {
6658 case EVFILT_READ:
6659 kn->kn_fop = &vfsread_filtops;
6660 break;
6661 case EVFILT_WRITE:
6662 kn->kn_fop = &vfswrite_filtops;
6663 break;
6664 case EVFILT_VNODE:
6665 kn->kn_fop = &vfsvnode_filtops;
6666 break;
6667 default:
6668 return (EINVAL);
6669 }
6670
6671 kn->kn_hook = (caddr_t)vp;
6672
6673 v_addpollinfo(vp);
6674 if (vp->v_pollinfo == NULL)
6675 return (ENOMEM);
6676 knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6677 vhold(vp);
6678 knlist_add(knl, kn, 0);
6679
6680 return (0);
6681 }
6682
6683 /*
6684 * Detach knote from vnode
6685 */
6686 static void
filt_vfsdetach(struct knote * kn)6687 filt_vfsdetach(struct knote *kn)
6688 {
6689 struct vnode *vp = (struct vnode *)kn->kn_hook;
6690
6691 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6692 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6693 vdrop(vp);
6694 }
6695
6696 /*ARGSUSED*/
6697 static int
filt_vfsread(struct knote * kn,long hint)6698 filt_vfsread(struct knote *kn, long hint)
6699 {
6700 struct vnode *vp = (struct vnode *)kn->kn_hook;
6701 off_t size;
6702 int res;
6703
6704 /*
6705 * filesystem is gone, so set the EOF flag and schedule
6706 * the knote for deletion.
6707 */
6708 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6709 VI_LOCK(vp);
6710 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6711 VI_UNLOCK(vp);
6712 return (1);
6713 }
6714
6715 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6716 return (0);
6717
6718 VI_LOCK(vp);
6719 kn->kn_data = size - kn->kn_fp->f_offset;
6720 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6721 VI_UNLOCK(vp);
6722 return (res);
6723 }
6724
6725 /*ARGSUSED*/
6726 static int
filt_vfswrite(struct knote * kn,long hint)6727 filt_vfswrite(struct knote *kn, long hint)
6728 {
6729 struct vnode *vp = (struct vnode *)kn->kn_hook;
6730
6731 VI_LOCK(vp);
6732
6733 /*
6734 * filesystem is gone, so set the EOF flag and schedule
6735 * the knote for deletion.
6736 */
6737 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6738 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6739
6740 kn->kn_data = 0;
6741 VI_UNLOCK(vp);
6742 return (1);
6743 }
6744
6745 static int
filt_vfsvnode(struct knote * kn,long hint)6746 filt_vfsvnode(struct knote *kn, long hint)
6747 {
6748 struct vnode *vp = (struct vnode *)kn->kn_hook;
6749 int res;
6750
6751 VI_LOCK(vp);
6752 if (kn->kn_sfflags & hint)
6753 kn->kn_fflags |= hint;
6754 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6755 kn->kn_flags |= EV_EOF;
6756 VI_UNLOCK(vp);
6757 return (1);
6758 }
6759 res = (kn->kn_fflags != 0);
6760 VI_UNLOCK(vp);
6761 return (res);
6762 }
6763
6764 static int
filt_vfsdump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)6765 filt_vfsdump(struct proc *p, struct knote *kn, struct kinfo_knote *kin)
6766 {
6767 struct vattr va;
6768 struct vnode *vp;
6769 char *fullpath, *freepath;
6770 int error;
6771
6772 kin->knt_extdata = KNOTE_EXTDATA_VNODE;
6773
6774 vp = kn->kn_fp->f_vnode;
6775 kin->knt_vnode.knt_vnode_type = vntype_to_kinfo(vp->v_type);
6776
6777 va.va_fsid = VNOVAL;
6778 vn_lock(vp, LK_SHARED | LK_RETRY);
6779 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
6780 VOP_UNLOCK(vp);
6781 if (error != 0)
6782 return (error);
6783 kin->knt_vnode.knt_vnode_fsid = va.va_fsid;
6784 kin->knt_vnode.knt_vnode_fileid = va.va_fileid;
6785
6786 freepath = NULL;
6787 fullpath = "-";
6788 error = vn_fullpath(vp, &fullpath, &freepath);
6789 if (error == 0) {
6790 strlcpy(kin->knt_vnode.knt_vnode_fullpath, fullpath,
6791 sizeof(kin->knt_vnode.knt_vnode_fullpath));
6792 }
6793 if (freepath != NULL)
6794 free(freepath, M_TEMP);
6795
6796 return (0);
6797 }
6798
6799 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6800 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6801 {
6802 int error;
6803
6804 if (dp->d_reclen > ap->a_uio->uio_resid)
6805 return (ENAMETOOLONG);
6806 error = uiomove(dp, dp->d_reclen, ap->a_uio);
6807 if (error) {
6808 if (ap->a_ncookies != NULL) {
6809 if (ap->a_cookies != NULL)
6810 free(ap->a_cookies, M_TEMP);
6811 ap->a_cookies = NULL;
6812 *ap->a_ncookies = 0;
6813 }
6814 return (error);
6815 }
6816 if (ap->a_ncookies == NULL)
6817 return (0);
6818
6819 KASSERT(ap->a_cookies,
6820 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6821
6822 *ap->a_cookies = realloc(*ap->a_cookies,
6823 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6824 (*ap->a_cookies)[*ap->a_ncookies] = off;
6825 *ap->a_ncookies += 1;
6826 return (0);
6827 }
6828
6829 /*
6830 * The purpose of this routine is to remove granularity from accmode_t,
6831 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6832 * VADMIN and VAPPEND.
6833 *
6834 * If it returns 0, the caller is supposed to continue with the usual
6835 * access checks using 'accmode' as modified by this routine. If it
6836 * returns nonzero value, the caller is supposed to return that value
6837 * as errno.
6838 *
6839 * Note that after this routine runs, accmode may be zero.
6840 */
6841 int
vfs_unixify_accmode(accmode_t * accmode)6842 vfs_unixify_accmode(accmode_t *accmode)
6843 {
6844 /*
6845 * There is no way to specify explicit "deny" rule using
6846 * file mode or POSIX.1e ACLs.
6847 */
6848 if (*accmode & VEXPLICIT_DENY) {
6849 *accmode = 0;
6850 return (0);
6851 }
6852
6853 /*
6854 * None of these can be translated into usual access bits.
6855 * Also, the common case for NFSv4 ACLs is to not contain
6856 * either of these bits. Caller should check for VWRITE
6857 * on the containing directory instead.
6858 */
6859 if (*accmode & (VDELETE_CHILD | VDELETE))
6860 return (EPERM);
6861
6862 if (*accmode & VADMIN_PERMS) {
6863 *accmode &= ~VADMIN_PERMS;
6864 *accmode |= VADMIN;
6865 }
6866
6867 /*
6868 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6869 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6870 */
6871 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6872
6873 return (0);
6874 }
6875
6876 /*
6877 * Clear out a doomed vnode (if any) and replace it with a new one as long
6878 * as the fs is not being unmounted. Return the root vnode to the caller.
6879 */
6880 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6881 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6882 {
6883 struct vnode *vp;
6884 int error;
6885
6886 restart:
6887 if (mp->mnt_rootvnode != NULL) {
6888 MNT_ILOCK(mp);
6889 vp = mp->mnt_rootvnode;
6890 if (vp != NULL) {
6891 if (!VN_IS_DOOMED(vp)) {
6892 vrefact(vp);
6893 MNT_IUNLOCK(mp);
6894 error = vn_lock(vp, flags);
6895 if (error == 0) {
6896 *vpp = vp;
6897 return (0);
6898 }
6899 vrele(vp);
6900 goto restart;
6901 }
6902 /*
6903 * Clear the old one.
6904 */
6905 mp->mnt_rootvnode = NULL;
6906 }
6907 MNT_IUNLOCK(mp);
6908 if (vp != NULL) {
6909 vfs_op_barrier_wait(mp);
6910 vrele(vp);
6911 }
6912 }
6913 error = VFS_CACHEDROOT(mp, flags, vpp);
6914 if (error != 0)
6915 return (error);
6916 if (mp->mnt_vfs_ops == 0) {
6917 MNT_ILOCK(mp);
6918 if (mp->mnt_vfs_ops != 0) {
6919 MNT_IUNLOCK(mp);
6920 return (0);
6921 }
6922 if (mp->mnt_rootvnode == NULL) {
6923 vrefact(*vpp);
6924 mp->mnt_rootvnode = *vpp;
6925 } else {
6926 if (mp->mnt_rootvnode != *vpp) {
6927 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6928 panic("%s: mismatch between vnode returned "
6929 " by VFS_CACHEDROOT and the one cached "
6930 " (%p != %p)",
6931 __func__, *vpp, mp->mnt_rootvnode);
6932 }
6933 }
6934 }
6935 MNT_IUNLOCK(mp);
6936 }
6937 return (0);
6938 }
6939
6940 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6941 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6942 {
6943 struct mount_pcpu *mpcpu;
6944 struct vnode *vp;
6945 int error;
6946
6947 if (!vfs_op_thread_enter(mp, mpcpu))
6948 return (vfs_cache_root_fallback(mp, flags, vpp));
6949 vp = atomic_load_ptr(&mp->mnt_rootvnode);
6950 if (vp == NULL || VN_IS_DOOMED(vp)) {
6951 vfs_op_thread_exit(mp, mpcpu);
6952 return (vfs_cache_root_fallback(mp, flags, vpp));
6953 }
6954 vrefact(vp);
6955 vfs_op_thread_exit(mp, mpcpu);
6956 error = vn_lock(vp, flags);
6957 if (error != 0) {
6958 vrele(vp);
6959 return (vfs_cache_root_fallback(mp, flags, vpp));
6960 }
6961 *vpp = vp;
6962 return (0);
6963 }
6964
6965 struct vnode *
vfs_cache_root_clear(struct mount * mp)6966 vfs_cache_root_clear(struct mount *mp)
6967 {
6968 struct vnode *vp;
6969
6970 /*
6971 * ops > 0 guarantees there is nobody who can see this vnode
6972 */
6973 MPASS(mp->mnt_vfs_ops > 0);
6974 vp = mp->mnt_rootvnode;
6975 if (vp != NULL)
6976 vn_seqc_write_begin(vp);
6977 mp->mnt_rootvnode = NULL;
6978 return (vp);
6979 }
6980
6981 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)6982 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6983 {
6984
6985 MPASS(mp->mnt_vfs_ops > 0);
6986 vrefact(vp);
6987 mp->mnt_rootvnode = vp;
6988 }
6989
6990 /*
6991 * These are helper functions for filesystems to traverse all
6992 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6993 *
6994 * This interface replaces MNT_VNODE_FOREACH.
6995 */
6996
6997 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)6998 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6999 {
7000 struct vnode *vp;
7001
7002 maybe_yield();
7003 MNT_ILOCK(mp);
7004 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7005 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
7006 vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
7007 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7008 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7009 continue;
7010 VI_LOCK(vp);
7011 if (VN_IS_DOOMED(vp)) {
7012 VI_UNLOCK(vp);
7013 continue;
7014 }
7015 break;
7016 }
7017 if (vp == NULL) {
7018 __mnt_vnode_markerfree_all(mvp, mp);
7019 /* MNT_IUNLOCK(mp); -- done in above function */
7020 mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
7021 return (NULL);
7022 }
7023 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7024 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7025 MNT_IUNLOCK(mp);
7026 return (vp);
7027 }
7028
7029 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)7030 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
7031 {
7032 struct vnode *vp;
7033
7034 *mvp = vn_alloc_marker(mp);
7035 MNT_ILOCK(mp);
7036 MNT_REF(mp);
7037
7038 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
7039 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7040 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7041 continue;
7042 VI_LOCK(vp);
7043 if (VN_IS_DOOMED(vp)) {
7044 VI_UNLOCK(vp);
7045 continue;
7046 }
7047 break;
7048 }
7049 if (vp == NULL) {
7050 MNT_REL(mp);
7051 MNT_IUNLOCK(mp);
7052 vn_free_marker(*mvp);
7053 *mvp = NULL;
7054 return (NULL);
7055 }
7056 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7057 MNT_IUNLOCK(mp);
7058 return (vp);
7059 }
7060
7061 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)7062 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
7063 {
7064
7065 if (*mvp == NULL) {
7066 MNT_IUNLOCK(mp);
7067 return;
7068 }
7069
7070 mtx_assert(MNT_MTX(mp), MA_OWNED);
7071
7072 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7073 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7074 MNT_REL(mp);
7075 MNT_IUNLOCK(mp);
7076 vn_free_marker(*mvp);
7077 *mvp = NULL;
7078 }
7079
7080 /*
7081 * These are helper functions for filesystems to traverse their
7082 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7083 */
7084 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7085 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7086 {
7087
7088 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7089
7090 MNT_ILOCK(mp);
7091 MNT_REL(mp);
7092 MNT_IUNLOCK(mp);
7093 vn_free_marker(*mvp);
7094 *mvp = NULL;
7095 }
7096
7097 /*
7098 * Relock the mp mount vnode list lock with the vp vnode interlock in the
7099 * conventional lock order during mnt_vnode_next_lazy iteration.
7100 *
7101 * On entry, the mount vnode list lock is held and the vnode interlock is not.
7102 * The list lock is dropped and reacquired. On success, both locks are held.
7103 * On failure, the mount vnode list lock is held but the vnode interlock is
7104 * not, and the procedure may have yielded.
7105 */
7106 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7107 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7108 struct vnode *vp)
7109 {
7110
7111 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7112 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7113 ("%s: bad marker", __func__));
7114 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7115 ("%s: inappropriate vnode", __func__));
7116 ASSERT_VI_UNLOCKED(vp, __func__);
7117 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7118
7119 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7120 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7121
7122 /*
7123 * Note we may be racing against vdrop which transitioned the hold
7124 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7125 * if we are the only user after we get the interlock we will just
7126 * vdrop.
7127 */
7128 vhold(vp);
7129 mtx_unlock(&mp->mnt_listmtx);
7130 VI_LOCK(vp);
7131 if (VN_IS_DOOMED(vp)) {
7132 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7133 goto out_lost;
7134 }
7135 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7136 /*
7137 * There is nothing to do if we are the last user.
7138 */
7139 if (!refcount_release_if_not_last(&vp->v_holdcnt))
7140 goto out_lost;
7141 mtx_lock(&mp->mnt_listmtx);
7142 return (true);
7143 out_lost:
7144 vdropl(vp);
7145 maybe_yield();
7146 mtx_lock(&mp->mnt_listmtx);
7147 return (false);
7148 }
7149
7150 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7151 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7152 void *cbarg)
7153 {
7154 struct vnode *vp;
7155
7156 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7157 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7158 restart:
7159 vp = TAILQ_NEXT(*mvp, v_lazylist);
7160 while (vp != NULL) {
7161 if (vp->v_type == VMARKER) {
7162 vp = TAILQ_NEXT(vp, v_lazylist);
7163 continue;
7164 }
7165 /*
7166 * See if we want to process the vnode. Note we may encounter a
7167 * long string of vnodes we don't care about and hog the list
7168 * as a result. Check for it and requeue the marker.
7169 */
7170 VNPASS(!VN_IS_DOOMED(vp), vp);
7171 if (!cb(vp, cbarg)) {
7172 if (!should_yield()) {
7173 vp = TAILQ_NEXT(vp, v_lazylist);
7174 continue;
7175 }
7176 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7177 v_lazylist);
7178 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7179 v_lazylist);
7180 mtx_unlock(&mp->mnt_listmtx);
7181 kern_yield(PRI_USER);
7182 mtx_lock(&mp->mnt_listmtx);
7183 goto restart;
7184 }
7185 /*
7186 * Try-lock because this is the wrong lock order.
7187 */
7188 if (!VI_TRYLOCK(vp) &&
7189 !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7190 goto restart;
7191 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7192 KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7193 ("alien vnode on the lazy list %p %p", vp, mp));
7194 VNPASS(vp->v_mount == mp, vp);
7195 VNPASS(!VN_IS_DOOMED(vp), vp);
7196 break;
7197 }
7198 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7199
7200 /* Check if we are done */
7201 if (vp == NULL) {
7202 mtx_unlock(&mp->mnt_listmtx);
7203 mnt_vnode_markerfree_lazy(mvp, mp);
7204 return (NULL);
7205 }
7206 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7207 mtx_unlock(&mp->mnt_listmtx);
7208 ASSERT_VI_LOCKED(vp, "lazy iter");
7209 return (vp);
7210 }
7211
7212 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7213 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7214 void *cbarg)
7215 {
7216
7217 maybe_yield();
7218 mtx_lock(&mp->mnt_listmtx);
7219 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7220 }
7221
7222 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7223 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7224 void *cbarg)
7225 {
7226 struct vnode *vp;
7227
7228 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7229 return (NULL);
7230
7231 *mvp = vn_alloc_marker(mp);
7232 MNT_ILOCK(mp);
7233 MNT_REF(mp);
7234 MNT_IUNLOCK(mp);
7235
7236 mtx_lock(&mp->mnt_listmtx);
7237 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7238 if (vp == NULL) {
7239 mtx_unlock(&mp->mnt_listmtx);
7240 mnt_vnode_markerfree_lazy(mvp, mp);
7241 return (NULL);
7242 }
7243 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7244 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7245 }
7246
7247 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7248 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7249 {
7250
7251 if (*mvp == NULL)
7252 return;
7253
7254 mtx_lock(&mp->mnt_listmtx);
7255 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7256 mtx_unlock(&mp->mnt_listmtx);
7257 mnt_vnode_markerfree_lazy(mvp, mp);
7258 }
7259
7260 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7261 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7262 {
7263
7264 if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7265 cnp->cn_flags &= ~NOEXECCHECK;
7266 return (0);
7267 }
7268
7269 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7270 }
7271
7272 /*
7273 * Do not use this variant unless you have means other than the hold count
7274 * to prevent the vnode from getting freed.
7275 */
7276 void
vn_seqc_write_begin_locked(struct vnode * vp)7277 vn_seqc_write_begin_locked(struct vnode *vp)
7278 {
7279
7280 ASSERT_VI_LOCKED(vp, __func__);
7281 VNPASS(vp->v_holdcnt > 0, vp);
7282 VNPASS(vp->v_seqc_users >= 0, vp);
7283 vp->v_seqc_users++;
7284 if (vp->v_seqc_users == 1)
7285 seqc_sleepable_write_begin(&vp->v_seqc);
7286 }
7287
7288 void
vn_seqc_write_begin(struct vnode * vp)7289 vn_seqc_write_begin(struct vnode *vp)
7290 {
7291
7292 VI_LOCK(vp);
7293 vn_seqc_write_begin_locked(vp);
7294 VI_UNLOCK(vp);
7295 }
7296
7297 void
vn_seqc_write_end_locked(struct vnode * vp)7298 vn_seqc_write_end_locked(struct vnode *vp)
7299 {
7300
7301 ASSERT_VI_LOCKED(vp, __func__);
7302 VNPASS(vp->v_seqc_users > 0, vp);
7303 vp->v_seqc_users--;
7304 if (vp->v_seqc_users == 0)
7305 seqc_sleepable_write_end(&vp->v_seqc);
7306 }
7307
7308 void
vn_seqc_write_end(struct vnode * vp)7309 vn_seqc_write_end(struct vnode *vp)
7310 {
7311
7312 VI_LOCK(vp);
7313 vn_seqc_write_end_locked(vp);
7314 VI_UNLOCK(vp);
7315 }
7316
7317 /*
7318 * Special case handling for allocating and freeing vnodes.
7319 *
7320 * The counter remains unchanged on free so that a doomed vnode will
7321 * keep testing as in modify as long as it is accessible with SMR.
7322 */
7323 static void
vn_seqc_init(struct vnode * vp)7324 vn_seqc_init(struct vnode *vp)
7325 {
7326
7327 vp->v_seqc = 0;
7328 vp->v_seqc_users = 0;
7329 }
7330
7331 static void
vn_seqc_write_end_free(struct vnode * vp)7332 vn_seqc_write_end_free(struct vnode *vp)
7333 {
7334
7335 VNPASS(seqc_in_modify(vp->v_seqc), vp);
7336 VNPASS(vp->v_seqc_users == 1, vp);
7337 }
7338
7339 void
vn_irflag_set_locked(struct vnode * vp,short toset)7340 vn_irflag_set_locked(struct vnode *vp, short toset)
7341 {
7342 short flags;
7343
7344 ASSERT_VI_LOCKED(vp, __func__);
7345 flags = vn_irflag_read(vp);
7346 VNASSERT((flags & toset) == 0, vp,
7347 ("%s: some of the passed flags already set (have %d, passed %d)\n",
7348 __func__, flags, toset));
7349 atomic_store_short(&vp->v_irflag, flags | toset);
7350 }
7351
7352 void
vn_irflag_set(struct vnode * vp,short toset)7353 vn_irflag_set(struct vnode *vp, short toset)
7354 {
7355
7356 VI_LOCK(vp);
7357 vn_irflag_set_locked(vp, toset);
7358 VI_UNLOCK(vp);
7359 }
7360
7361 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7362 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7363 {
7364 short flags;
7365
7366 ASSERT_VI_LOCKED(vp, __func__);
7367 flags = vn_irflag_read(vp);
7368 atomic_store_short(&vp->v_irflag, flags | toset);
7369 }
7370
7371 void
vn_irflag_set_cond(struct vnode * vp,short toset)7372 vn_irflag_set_cond(struct vnode *vp, short toset)
7373 {
7374
7375 VI_LOCK(vp);
7376 vn_irflag_set_cond_locked(vp, toset);
7377 VI_UNLOCK(vp);
7378 }
7379
7380 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7381 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7382 {
7383 short flags;
7384
7385 ASSERT_VI_LOCKED(vp, __func__);
7386 flags = vn_irflag_read(vp);
7387 VNASSERT((flags & tounset) == tounset, vp,
7388 ("%s: some of the passed flags not set (have %d, passed %d)\n",
7389 __func__, flags, tounset));
7390 atomic_store_short(&vp->v_irflag, flags & ~tounset);
7391 }
7392
7393 void
vn_irflag_unset(struct vnode * vp,short tounset)7394 vn_irflag_unset(struct vnode *vp, short tounset)
7395 {
7396
7397 VI_LOCK(vp);
7398 vn_irflag_unset_locked(vp, tounset);
7399 VI_UNLOCK(vp);
7400 }
7401
7402 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7403 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7404 {
7405 struct vattr vattr;
7406 int error;
7407
7408 ASSERT_VOP_LOCKED(vp, __func__);
7409 error = VOP_GETATTR(vp, &vattr, cred);
7410 if (__predict_true(error == 0)) {
7411 if (vattr.va_size <= OFF_MAX)
7412 *size = vattr.va_size;
7413 else
7414 error = EFBIG;
7415 }
7416 return (error);
7417 }
7418
7419 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7420 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7421 {
7422 int error;
7423
7424 VOP_LOCK(vp, LK_SHARED);
7425 error = vn_getsize_locked(vp, size, cred);
7426 VOP_UNLOCK(vp);
7427 return (error);
7428 }
7429
7430 #ifdef INVARIANTS
7431 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7432 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7433 {
7434
7435 switch (vp->v_state) {
7436 case VSTATE_UNINITIALIZED:
7437 switch (state) {
7438 case VSTATE_CONSTRUCTED:
7439 case VSTATE_DESTROYING:
7440 return;
7441 default:
7442 break;
7443 }
7444 break;
7445 case VSTATE_CONSTRUCTED:
7446 ASSERT_VOP_ELOCKED(vp, __func__);
7447 switch (state) {
7448 case VSTATE_DESTROYING:
7449 return;
7450 default:
7451 break;
7452 }
7453 break;
7454 case VSTATE_DESTROYING:
7455 ASSERT_VOP_ELOCKED(vp, __func__);
7456 switch (state) {
7457 case VSTATE_DEAD:
7458 return;
7459 default:
7460 break;
7461 }
7462 break;
7463 case VSTATE_DEAD:
7464 switch (state) {
7465 case VSTATE_UNINITIALIZED:
7466 return;
7467 default:
7468 break;
7469 }
7470 break;
7471 }
7472
7473 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7474 panic("invalid state transition %d -> %d\n", vp->v_state, state);
7475 }
7476 #endif
7477