xref: /freebsd/sys/kern/vfs_mount.c (revision ef6ea91593ebff73e2fc201efd9f848b71c5a125)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2004 Poul-Henning Kamp
5  * Copyright (c) 1999 Michael Smith
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/smp.h>
42 #include <sys/devctl.h>
43 #include <sys/eventhandler.h>
44 #include <sys/fcntl.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/libkern.h>
49 #include <sys/limits.h>
50 #include <sys/malloc.h>
51 #include <sys/mount.h>
52 #include <sys/mutex.h>
53 #include <sys/namei.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/filedesc.h>
57 #include <sys/reboot.h>
58 #include <sys/sbuf.h>
59 #include <sys/stdarg.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/sysproto.h>
62 #include <sys/sx.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/taskqueue.h>
66 #include <sys/vnode.h>
67 #include <vm/uma.h>
68 
69 #include <geom/geom.h>
70 
71 #include <security/audit/audit.h>
72 #include <security/mac/mac_framework.h>
73 
74 #define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
75 
76 static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
77 		    uint64_t fsflags, bool jail_export,
78 		    struct vfsoptlist **optlist);
79 static void	free_mntarg(struct mntarg *ma);
80 
81 static int	usermount = 0;
82 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
83     "Unprivileged users may mount and unmount file systems");
84 
85 static bool	default_autoro = false;
86 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
87     "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
88 
89 static bool	recursive_forced_unmount = false;
90 SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
91     &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
92     " when a file system is forcibly unmounted");
93 
94 static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
95     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
96 
97 static unsigned int	deferred_unmount_retry_limit = 10;
98 SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
99     &deferred_unmount_retry_limit, 0,
100     "Maximum number of retries for deferred unmount failure");
101 
102 static int	deferred_unmount_retry_delay_hz;
103 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
104     &deferred_unmount_retry_delay_hz, 0,
105     "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
106 
107 static int	deferred_unmount_total_retries = 0;
108 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
109     &deferred_unmount_total_retries, 0,
110     "Total number of retried deferred unmounts");
111 
112 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
113 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
114 static uma_zone_t mount_zone;
115 
116 /* List of mounted filesystems. */
117 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
118 
119 /* For any iteration/modification of mountlist */
120 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
121 
122 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
123 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
124 
125 static void vfs_deferred_unmount(void *arg, int pending);
126 static struct timeout_task deferred_unmount_task;
127 static struct mtx deferred_unmount_lock;
128 MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
129     MTX_DEF);
130 static STAILQ_HEAD(, mount) deferred_unmount_list =
131     STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
132 TASKQUEUE_DEFINE_THREAD(deferred_unmount);
133 
134 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
135 
136 /*
137  * Global opts, taken by all filesystems
138  */
139 static const char *global_opts[] = {
140 	"errmsg",
141 	"fstype",
142 	"fspath",
143 	"ro",
144 	"rw",
145 	"nosuid",
146 	"noexec",
147 	NULL
148 };
149 
150 static int
mount_init(void * mem,int size,int flags)151 mount_init(void *mem, int size, int flags)
152 {
153 	struct mount *mp;
154 
155 	mp = (struct mount *)mem;
156 	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
157 	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
158 	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
159 	lockinit(&mp->mnt_renamelock, PVFS, "rename", 0, 0);
160 	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
161 	mp->mnt_ref = 0;
162 	mp->mnt_vfs_ops = 1;
163 	mp->mnt_rootvnode = NULL;
164 	return (0);
165 }
166 
167 static void
mount_fini(void * mem,int size)168 mount_fini(void *mem, int size)
169 {
170 	struct mount *mp;
171 
172 	mp = (struct mount *)mem;
173 	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
174 	lockdestroy(&mp->mnt_renamelock);
175 	lockdestroy(&mp->mnt_explock);
176 	mtx_destroy(&mp->mnt_listmtx);
177 	mtx_destroy(&mp->mnt_mtx);
178 }
179 
180 static void
vfs_mount_init(void * dummy __unused)181 vfs_mount_init(void *dummy __unused)
182 {
183 	TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
184 	    0, vfs_deferred_unmount, NULL);
185 	deferred_unmount_retry_delay_hz = hz;
186 	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
187 	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
188 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
189 }
190 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
191 
192 /*
193  * ---------------------------------------------------------------------
194  * Functions for building and sanitizing the mount options
195  */
196 
197 /* Remove one mount option. */
198 static void
vfs_freeopt(struct vfsoptlist * opts,struct vfsopt * opt)199 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
200 {
201 
202 	TAILQ_REMOVE(opts, opt, link);
203 	free(opt->name, M_MOUNT);
204 	if (opt->value != NULL)
205 		free(opt->value, M_MOUNT);
206 	free(opt, M_MOUNT);
207 }
208 
209 /* Release all resources related to the mount options. */
210 void
vfs_freeopts(struct vfsoptlist * opts)211 vfs_freeopts(struct vfsoptlist *opts)
212 {
213 	struct vfsopt *opt;
214 
215 	while (!TAILQ_EMPTY(opts)) {
216 		opt = TAILQ_FIRST(opts);
217 		vfs_freeopt(opts, opt);
218 	}
219 	free(opts, M_MOUNT);
220 }
221 
222 void
vfs_deleteopt(struct vfsoptlist * opts,const char * name)223 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
224 {
225 	struct vfsopt *opt, *temp;
226 
227 	if (opts == NULL)
228 		return;
229 	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
230 		if (strcmp(opt->name, name) == 0)
231 			vfs_freeopt(opts, opt);
232 	}
233 }
234 
235 static int
vfs_isopt_ro(const char * opt)236 vfs_isopt_ro(const char *opt)
237 {
238 
239 	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
240 	    strcmp(opt, "norw") == 0)
241 		return (1);
242 	return (0);
243 }
244 
245 static int
vfs_isopt_rw(const char * opt)246 vfs_isopt_rw(const char *opt)
247 {
248 
249 	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
250 		return (1);
251 	return (0);
252 }
253 
254 /*
255  * Check if options are equal (with or without the "no" prefix).
256  */
257 static int
vfs_equalopts(const char * opt1,const char * opt2)258 vfs_equalopts(const char *opt1, const char *opt2)
259 {
260 	char *p;
261 
262 	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
263 	if (strcmp(opt1, opt2) == 0)
264 		return (1);
265 	/* "noopt" vs. "opt" */
266 	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
267 		return (1);
268 	/* "opt" vs. "noopt" */
269 	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
270 		return (1);
271 	while ((p = strchr(opt1, '.')) != NULL &&
272 	    !strncmp(opt1, opt2, ++p - opt1)) {
273 		opt2 += p - opt1;
274 		opt1 = p;
275 		/* "foo.noopt" vs. "foo.opt" */
276 		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
277 			return (1);
278 		/* "foo.opt" vs. "foo.noopt" */
279 		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
280 			return (1);
281 	}
282 	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
283 	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
284 	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
285 		return (1);
286 	return (0);
287 }
288 
289 /*
290  * If a mount option is specified several times,
291  * (with or without the "no" prefix) only keep
292  * the last occurrence of it.
293  */
294 static void
vfs_sanitizeopts(struct vfsoptlist * opts)295 vfs_sanitizeopts(struct vfsoptlist *opts)
296 {
297 	struct vfsopt *opt, *opt2, *tmp;
298 
299 	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
300 		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
301 		while (opt2 != NULL) {
302 			if (vfs_equalopts(opt->name, opt2->name)) {
303 				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
304 				vfs_freeopt(opts, opt2);
305 				opt2 = tmp;
306 			} else {
307 				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
308 			}
309 		}
310 	}
311 }
312 
313 /*
314  * Build a linked list of mount options from a struct uio.
315  */
316 int
vfs_buildopts(struct uio * auio,struct vfsoptlist ** options)317 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
318 {
319 	struct vfsoptlist *opts;
320 	struct vfsopt *opt;
321 	size_t memused, namelen, optlen;
322 	unsigned int i, iovcnt;
323 	int error;
324 
325 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
326 	TAILQ_INIT(opts);
327 	memused = 0;
328 	iovcnt = auio->uio_iovcnt;
329 	for (i = 0; i < iovcnt; i += 2) {
330 		namelen = auio->uio_iov[i].iov_len;
331 		optlen = auio->uio_iov[i + 1].iov_len;
332 		memused += sizeof(struct vfsopt) + optlen + namelen;
333 		/*
334 		 * Avoid consuming too much memory, and attempts to overflow
335 		 * memused.
336 		 */
337 		if (memused > VFS_MOUNTARG_SIZE_MAX ||
338 		    optlen > VFS_MOUNTARG_SIZE_MAX ||
339 		    namelen > VFS_MOUNTARG_SIZE_MAX) {
340 			error = EINVAL;
341 			goto bad;
342 		}
343 
344 		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
345 		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
346 		opt->value = NULL;
347 		opt->len = 0;
348 		opt->pos = i / 2;
349 		opt->seen = 0;
350 
351 		/*
352 		 * Do this early, so jumps to "bad" will free the current
353 		 * option.
354 		 */
355 		TAILQ_INSERT_TAIL(opts, opt, link);
356 
357 		if (auio->uio_segflg == UIO_SYSSPACE) {
358 			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
359 		} else {
360 			error = copyin(auio->uio_iov[i].iov_base, opt->name,
361 			    namelen);
362 			if (error)
363 				goto bad;
364 		}
365 		/* Ensure names are null-terminated strings. */
366 		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
367 			error = EINVAL;
368 			goto bad;
369 		}
370 		if (optlen != 0) {
371 			opt->len = optlen;
372 			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
373 			if (auio->uio_segflg == UIO_SYSSPACE) {
374 				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
375 				    optlen);
376 			} else {
377 				error = copyin(auio->uio_iov[i + 1].iov_base,
378 				    opt->value, optlen);
379 				if (error)
380 					goto bad;
381 			}
382 		}
383 	}
384 	vfs_sanitizeopts(opts);
385 	*options = opts;
386 	return (0);
387 bad:
388 	vfs_freeopts(opts);
389 	return (error);
390 }
391 
392 /*
393  * Merge the old mount options with the new ones passed
394  * in the MNT_UPDATE case.
395  *
396  * XXX: This function will keep a "nofoo" option in the new
397  * options.  E.g, if the option's canonical name is "foo",
398  * "nofoo" ends up in the mount point's active options.
399  */
400 static void
vfs_mergeopts(struct vfsoptlist * toopts,struct vfsoptlist * oldopts)401 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
402 {
403 	struct vfsopt *opt, *new;
404 
405 	TAILQ_FOREACH(opt, oldopts, link) {
406 		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
407 		new->name = strdup(opt->name, M_MOUNT);
408 		if (opt->len != 0) {
409 			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
410 			bcopy(opt->value, new->value, opt->len);
411 		} else
412 			new->value = NULL;
413 		new->len = opt->len;
414 		new->seen = opt->seen;
415 		TAILQ_INSERT_HEAD(toopts, new, link);
416 	}
417 	vfs_sanitizeopts(toopts);
418 }
419 
420 /*
421  * Mount a filesystem.
422  */
423 #ifndef _SYS_SYSPROTO_H_
424 struct nmount_args {
425 	struct iovec *iovp;
426 	unsigned int iovcnt;
427 	int flags;
428 };
429 #endif
430 int
sys_nmount(struct thread * td,struct nmount_args * uap)431 sys_nmount(struct thread *td, struct nmount_args *uap)
432 {
433 	struct uio *auio;
434 	int error;
435 	u_int iovcnt;
436 	uint64_t flags;
437 
438 	/*
439 	 * Mount flags are now 64-bits. On 32-bit archtectures only
440 	 * 32-bits are passed in, but from here on everything handles
441 	 * 64-bit flags correctly.
442 	 */
443 	flags = uap->flags;
444 
445 	AUDIT_ARG_FFLAGS(flags);
446 	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
447 	    uap->iovp, uap->iovcnt, flags);
448 
449 	/*
450 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
451 	 * userspace to set this flag, but we must filter it out if we want
452 	 * MNT_UPDATE on the root file system to work.
453 	 * MNT_ROOTFS should only be set by the kernel when mounting its
454 	 * root file system.
455 	 */
456 	flags &= ~MNT_ROOTFS;
457 
458 	iovcnt = uap->iovcnt;
459 	/*
460 	 * Check that we have an even number of iovec's
461 	 * and that we have at least two options.
462 	 */
463 	if ((iovcnt & 1) || (iovcnt < 4)) {
464 		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
465 		    uap->iovcnt);
466 		return (EINVAL);
467 	}
468 
469 	error = copyinuio(uap->iovp, iovcnt, &auio);
470 	if (error) {
471 		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
472 		    __func__, error);
473 		return (error);
474 	}
475 	error = vfs_donmount(td, flags, auio);
476 
477 	freeuio(auio);
478 	return (error);
479 }
480 
481 /*
482  * ---------------------------------------------------------------------
483  * Various utility functions
484  */
485 
486 /*
487  * Get a reference on a mount point from a vnode.
488  *
489  * The vnode is allowed to be passed unlocked and race against dooming. Note in
490  * such case there are no guarantees the referenced mount point will still be
491  * associated with it after the function returns.
492  */
493 struct mount *
vfs_ref_from_vp(struct vnode * vp)494 vfs_ref_from_vp(struct vnode *vp)
495 {
496 	struct mount *mp;
497 	struct mount_pcpu *mpcpu;
498 
499 	mp = atomic_load_ptr(&vp->v_mount);
500 	if (__predict_false(mp == NULL)) {
501 		return (mp);
502 	}
503 	if (vfs_op_thread_enter(mp, mpcpu)) {
504 		if (__predict_true(mp == vp->v_mount)) {
505 			vfs_mp_count_add_pcpu(mpcpu, ref, 1);
506 			vfs_op_thread_exit(mp, mpcpu);
507 		} else {
508 			vfs_op_thread_exit(mp, mpcpu);
509 			mp = NULL;
510 		}
511 	} else {
512 		MNT_ILOCK(mp);
513 		if (mp == vp->v_mount) {
514 			MNT_REF(mp);
515 			MNT_IUNLOCK(mp);
516 		} else {
517 			MNT_IUNLOCK(mp);
518 			mp = NULL;
519 		}
520 	}
521 	return (mp);
522 }
523 
524 void
vfs_ref(struct mount * mp)525 vfs_ref(struct mount *mp)
526 {
527 	struct mount_pcpu *mpcpu;
528 
529 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
530 	if (vfs_op_thread_enter(mp, mpcpu)) {
531 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
532 		vfs_op_thread_exit(mp, mpcpu);
533 		return;
534 	}
535 
536 	MNT_ILOCK(mp);
537 	MNT_REF(mp);
538 	MNT_IUNLOCK(mp);
539 }
540 
541 /*
542  * Register ump as an upper mount of the mount associated with
543  * vnode vp.  This registration will be tracked through
544  * mount_upper_node upper, which should be allocated by the
545  * caller and stored in per-mount data associated with mp.
546  *
547  * If successful, this function will return the mount associated
548  * with vp, and will ensure that it cannot be unmounted until
549  * ump has been unregistered as one of its upper mounts.
550  *
551  * Upon failure this function will return NULL.
552  */
553 struct mount *
vfs_register_upper_from_vp(struct vnode * vp,struct mount * ump,struct mount_upper_node * upper)554 vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
555     struct mount_upper_node *upper)
556 {
557 	struct mount *mp;
558 
559 	mp = atomic_load_ptr(&vp->v_mount);
560 	if (mp == NULL)
561 		return (NULL);
562 	MNT_ILOCK(mp);
563 	if (mp != vp->v_mount ||
564 	    ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
565 		MNT_IUNLOCK(mp);
566 		return (NULL);
567 	}
568 	KASSERT(ump != mp, ("upper and lower mounts are identical"));
569 	upper->mp = ump;
570 	MNT_REF(mp);
571 	TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
572 	MNT_IUNLOCK(mp);
573 	return (mp);
574 }
575 
576 /*
577  * Register upper mount ump to receive vnode unlink/reclaim
578  * notifications from lower mount mp. This registration will
579  * be tracked through mount_upper_node upper, which should be
580  * allocated by the caller and stored in per-mount data
581  * associated with mp.
582  *
583  * ump must already be registered as an upper mount of mp
584  * through a call to vfs_register_upper_from_vp().
585  */
586 void
vfs_register_for_notification(struct mount * mp,struct mount * ump,struct mount_upper_node * upper)587 vfs_register_for_notification(struct mount *mp, struct mount *ump,
588     struct mount_upper_node *upper)
589 {
590 	upper->mp = ump;
591 	MNT_ILOCK(mp);
592 	TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
593 	MNT_IUNLOCK(mp);
594 }
595 
596 static void
vfs_drain_upper_locked(struct mount * mp)597 vfs_drain_upper_locked(struct mount *mp)
598 {
599 	mtx_assert(MNT_MTX(mp), MA_OWNED);
600 	while (mp->mnt_upper_pending != 0) {
601 		mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
602 		msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
603 	}
604 }
605 
606 /*
607  * Undo a previous call to vfs_register_for_notification().
608  * The mount represented by upper must be currently registered
609  * as an upper mount for mp.
610  */
611 void
vfs_unregister_for_notification(struct mount * mp,struct mount_upper_node * upper)612 vfs_unregister_for_notification(struct mount *mp,
613     struct mount_upper_node *upper)
614 {
615 	MNT_ILOCK(mp);
616 	vfs_drain_upper_locked(mp);
617 	TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
618 	MNT_IUNLOCK(mp);
619 }
620 
621 /*
622  * Undo a previous call to vfs_register_upper_from_vp().
623  * This must be done before mp can be unmounted.
624  */
625 void
vfs_unregister_upper(struct mount * mp,struct mount_upper_node * upper)626 vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
627 {
628 	MNT_ILOCK(mp);
629 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
630 	    ("registered upper with pending unmount"));
631 	vfs_drain_upper_locked(mp);
632 	TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
633 	if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
634 	    TAILQ_EMPTY(&mp->mnt_uppers)) {
635 		mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
636 		wakeup(&mp->mnt_taskqueue_link);
637 	}
638 	MNT_REL(mp);
639 	MNT_IUNLOCK(mp);
640 }
641 
642 void
vfs_rel(struct mount * mp)643 vfs_rel(struct mount *mp)
644 {
645 	struct mount_pcpu *mpcpu;
646 
647 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
648 	if (vfs_op_thread_enter(mp, mpcpu)) {
649 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
650 		vfs_op_thread_exit(mp, mpcpu);
651 		return;
652 	}
653 
654 	MNT_ILOCK(mp);
655 	MNT_REL(mp);
656 	MNT_IUNLOCK(mp);
657 }
658 
659 /*
660  * Allocate and initialize the mount point struct.
661  */
662 struct mount *
vfs_mount_alloc(struct vnode * vp,struct vfsconf * vfsp,const char * fspath,struct ucred * cred)663 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
664     struct ucred *cred)
665 {
666 	struct mount *mp;
667 
668 	mp = uma_zalloc(mount_zone, M_WAITOK);
669 	bzero(&mp->mnt_startzero,
670 	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
671 	mp->mnt_kern_flag = 0;
672 	mp->mnt_flag = 0;
673 	mp->mnt_rootvnode = NULL;
674 	mp->mnt_vnodecovered = NULL;
675 	mp->mnt_op = NULL;
676 	mp->mnt_vfc = NULL;
677 	TAILQ_INIT(&mp->mnt_nvnodelist);
678 	mp->mnt_nvnodelistsize = 0;
679 	TAILQ_INIT(&mp->mnt_lazyvnodelist);
680 	mp->mnt_lazyvnodelistsize = 0;
681 	MPPASS(mp->mnt_ref == 0 && mp->mnt_lockref == 0 &&
682 	    mp->mnt_writeopcount == 0, mp);
683 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
684 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
685 	(void) vfs_busy(mp, MBF_NOWAIT);
686 	atomic_add_acq_int(&vfsp->vfc_refcount, 1);
687 	mp->mnt_op = vfsp->vfc_vfsops;
688 	mp->mnt_vfc = vfsp;
689 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
690 	mp->mnt_gen++;
691 	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
692 	mp->mnt_vnodecovered = vp;
693 	mp->mnt_cred = crdup(cred);
694 	mp->mnt_stat.f_owner = cred->cr_uid;
695 	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
696 	mp->mnt_iosize_max = DFLTPHYS;
697 #ifdef MAC
698 	mac_mount_init(mp);
699 	mac_mount_create(cred, mp);
700 #endif
701 	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
702 	mp->mnt_upper_pending = 0;
703 	TAILQ_INIT(&mp->mnt_uppers);
704 	TAILQ_INIT(&mp->mnt_notify);
705 	mp->mnt_taskqueue_flags = 0;
706 	mp->mnt_unmount_retries = 0;
707 	return (mp);
708 }
709 
710 /*
711  * Destroy the mount struct previously allocated by vfs_mount_alloc().
712  */
713 void
vfs_mount_destroy(struct mount * mp)714 vfs_mount_destroy(struct mount *mp)
715 {
716 
717 	MPPASS(mp->mnt_vfs_ops != 0, mp);
718 
719 	vfs_assert_mount_counters(mp);
720 
721 	MNT_ILOCK(mp);
722 	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
723 	if (mp->mnt_kern_flag & MNTK_MWAIT) {
724 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
725 		wakeup(mp);
726 	}
727 	while (mp->mnt_ref)
728 		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
729 	KASSERT(mp->mnt_ref == 0,
730 	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
731 	    __FILE__, __LINE__));
732 	MPPASS(mp->mnt_writeopcount == 0, mp);
733 	MPPASS(mp->mnt_secondary_writes == 0, mp);
734 	atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
735 	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
736 		struct vnode *vp;
737 
738 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
739 			vn_printf(vp, "dangling vnode ");
740 		panic("unmount: dangling vnode");
741 	}
742 	KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
743 	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
744 	KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
745 	MPPASS(mp->mnt_nvnodelistsize == 0, mp);
746 	MPPASS(mp->mnt_lazyvnodelistsize == 0, mp);
747 	MPPASS(mp->mnt_lockref == 0, mp);
748 	MNT_IUNLOCK(mp);
749 
750 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
751 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
752 
753 	MPASSERT(mp->mnt_rootvnode == NULL, mp,
754 	    ("mount point still has a root vnode %p", mp->mnt_rootvnode));
755 
756 	if (mp->mnt_vnodecovered != NULL)
757 		vrele(mp->mnt_vnodecovered);
758 #ifdef MAC
759 	mac_mount_destroy(mp);
760 #endif
761 	if (mp->mnt_opt != NULL)
762 		vfs_freeopts(mp->mnt_opt);
763 	if (mp->mnt_exjail != NULL) {
764 		atomic_subtract_int(&mp->mnt_exjail->cr_prison->pr_exportcnt,
765 		    1);
766 		crfree(mp->mnt_exjail);
767 	}
768 	if (mp->mnt_export != NULL) {
769 		vfs_free_addrlist(mp->mnt_export);
770 		free(mp->mnt_export, M_MOUNT);
771 	}
772 	crfree(mp->mnt_cred);
773 	uma_zfree(mount_zone, mp);
774 }
775 
776 static bool
vfs_should_downgrade_to_ro_mount(uint64_t fsflags,int error)777 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
778 {
779 	/* This is an upgrade of an exisiting mount. */
780 	if ((fsflags & MNT_UPDATE) != 0)
781 		return (false);
782 	/* This is already an R/O mount. */
783 	if ((fsflags & MNT_RDONLY) != 0)
784 		return (false);
785 
786 	switch (error) {
787 	case ENODEV:	/* generic, geom, ... */
788 	case EACCES:	/* cam/scsi, ... */
789 	case EROFS:	/* md, mmcsd, ... */
790 		/*
791 		 * These errors can be returned by the storage layer to signal
792 		 * that the media is read-only.  No harm in the R/O mount
793 		 * attempt if the error was returned for some other reason.
794 		 */
795 		return (true);
796 	default:
797 		return (false);
798 	}
799 }
800 
801 int
vfs_donmount(struct thread * td,uint64_t fsflags,struct uio * fsoptions)802 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
803 {
804 	struct vfsoptlist *optlist;
805 	struct vfsopt *opt, *tmp_opt;
806 	char *fstype, *fspath, *errmsg;
807 	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
808 	bool autoro, has_nonexport, jail_export;
809 
810 	errmsg = fspath = NULL;
811 	errmsg_len = fspathlen = 0;
812 	errmsg_pos = -1;
813 	autoro = default_autoro;
814 
815 	error = vfs_buildopts(fsoptions, &optlist);
816 	if (error)
817 		return (error);
818 
819 	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
820 		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
821 
822 	/*
823 	 * We need these two options before the others,
824 	 * and they are mandatory for any filesystem.
825 	 * Ensure they are NUL terminated as well.
826 	 */
827 	fstypelen = 0;
828 	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
829 	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
830 		error = EINVAL;
831 		if (errmsg != NULL)
832 			strncpy(errmsg, "Invalid fstype", errmsg_len);
833 		goto bail;
834 	}
835 	fspathlen = 0;
836 	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
837 	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
838 		error = EINVAL;
839 		if (errmsg != NULL)
840 			strncpy(errmsg, "Invalid fspath", errmsg_len);
841 		goto bail;
842 	}
843 
844 	/*
845 	 * Check to see that "export" is only used with the "update", "fstype",
846 	 * "fspath", "from" and "errmsg" options when in a vnet jail.
847 	 * These are the ones used to set/update exports by mountd(8).
848 	 * If only the above options are set in a jail that can run mountd(8),
849 	 * then the jail_export argument of vfs_domount() will be true.
850 	 * When jail_export is true, the vfs_suser() check does not cause
851 	 * failure, but limits the update to exports only.
852 	 * This allows mountd(8) running within the vnet jail
853 	 * to export file systems visible within the jail, but
854 	 * mounted outside of the jail.
855 	 */
856 	/*
857 	 * We need to see if we have the "update" option
858 	 * before we call vfs_domount(), since vfs_domount() has special
859 	 * logic based on MNT_UPDATE.  This is very important
860 	 * when we want to update the root filesystem.
861 	 */
862 	has_nonexport = false;
863 	jail_export = false;
864 	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
865 		int do_freeopt = 0;
866 
867 		if (jailed(td->td_ucred) &&
868 		    strcmp(opt->name, "export") != 0 &&
869 		    strcmp(opt->name, "update") != 0 &&
870 		    strcmp(opt->name, "fstype") != 0 &&
871 		    strcmp(opt->name, "fspath") != 0 &&
872 		    strcmp(opt->name, "from") != 0 &&
873 		    strcmp(opt->name, "errmsg") != 0)
874 			has_nonexport = true;
875 		if (strcmp(opt->name, "update") == 0) {
876 			fsflags |= MNT_UPDATE;
877 			do_freeopt = 1;
878 		}
879 		else if (strcmp(opt->name, "async") == 0)
880 			fsflags |= MNT_ASYNC;
881 		else if (strcmp(opt->name, "force") == 0) {
882 			fsflags |= MNT_FORCE;
883 			do_freeopt = 1;
884 		}
885 		else if (strcmp(opt->name, "reload") == 0) {
886 			fsflags |= MNT_RELOAD;
887 			do_freeopt = 1;
888 		}
889 		else if (strcmp(opt->name, "multilabel") == 0)
890 			fsflags |= MNT_MULTILABEL;
891 		else if (strcmp(opt->name, "noasync") == 0)
892 			fsflags &= ~MNT_ASYNC;
893 		else if (strcmp(opt->name, "noatime") == 0)
894 			fsflags |= MNT_NOATIME;
895 		else if (strcmp(opt->name, "atime") == 0) {
896 			free(opt->name, M_MOUNT);
897 			opt->name = strdup("nonoatime", M_MOUNT);
898 		}
899 		else if (strcmp(opt->name, "noclusterr") == 0)
900 			fsflags |= MNT_NOCLUSTERR;
901 		else if (strcmp(opt->name, "clusterr") == 0) {
902 			free(opt->name, M_MOUNT);
903 			opt->name = strdup("nonoclusterr", M_MOUNT);
904 		}
905 		else if (strcmp(opt->name, "noclusterw") == 0)
906 			fsflags |= MNT_NOCLUSTERW;
907 		else if (strcmp(opt->name, "clusterw") == 0) {
908 			free(opt->name, M_MOUNT);
909 			opt->name = strdup("nonoclusterw", M_MOUNT);
910 		}
911 		else if (strcmp(opt->name, "noexec") == 0)
912 			fsflags |= MNT_NOEXEC;
913 		else if (strcmp(opt->name, "exec") == 0) {
914 			free(opt->name, M_MOUNT);
915 			opt->name = strdup("nonoexec", M_MOUNT);
916 		}
917 		else if (strcmp(opt->name, "nosuid") == 0)
918 			fsflags |= MNT_NOSUID;
919 		else if (strcmp(opt->name, "suid") == 0) {
920 			free(opt->name, M_MOUNT);
921 			opt->name = strdup("nonosuid", M_MOUNT);
922 		}
923 		else if (strcmp(opt->name, "nosymfollow") == 0)
924 			fsflags |= MNT_NOSYMFOLLOW;
925 		else if (strcmp(opt->name, "symfollow") == 0) {
926 			free(opt->name, M_MOUNT);
927 			opt->name = strdup("nonosymfollow", M_MOUNT);
928 		}
929 		else if (strcmp(opt->name, "noro") == 0) {
930 			fsflags &= ~MNT_RDONLY;
931 			autoro = false;
932 		}
933 		else if (strcmp(opt->name, "rw") == 0) {
934 			fsflags &= ~MNT_RDONLY;
935 			autoro = false;
936 		}
937 		else if (strcmp(opt->name, "ro") == 0) {
938 			fsflags |= MNT_RDONLY;
939 			autoro = false;
940 		}
941 		else if (strcmp(opt->name, "rdonly") == 0) {
942 			free(opt->name, M_MOUNT);
943 			opt->name = strdup("ro", M_MOUNT);
944 			fsflags |= MNT_RDONLY;
945 			autoro = false;
946 		}
947 		else if (strcmp(opt->name, "autoro") == 0) {
948 			do_freeopt = 1;
949 			autoro = true;
950 		}
951 		else if (strcmp(opt->name, "suiddir") == 0)
952 			fsflags |= MNT_SUIDDIR;
953 		else if (strcmp(opt->name, "sync") == 0)
954 			fsflags |= MNT_SYNCHRONOUS;
955 		else if (strcmp(opt->name, "union") == 0)
956 			fsflags |= MNT_UNION;
957 		else if (strcmp(opt->name, "export") == 0) {
958 			fsflags |= MNT_EXPORTED;
959 			jail_export = true;
960 		} else if (strcmp(opt->name, "automounted") == 0) {
961 			fsflags |= MNT_AUTOMOUNTED;
962 			do_freeopt = 1;
963 		} else if (strcmp(opt->name, "nocover") == 0) {
964 			fsflags |= MNT_NOCOVER;
965 			do_freeopt = 1;
966 		} else if (strcmp(opt->name, "cover") == 0) {
967 			fsflags &= ~MNT_NOCOVER;
968 			do_freeopt = 1;
969 		} else if (strcmp(opt->name, "emptydir") == 0) {
970 			fsflags |= MNT_EMPTYDIR;
971 			do_freeopt = 1;
972 		} else if (strcmp(opt->name, "noemptydir") == 0) {
973 			fsflags &= ~MNT_EMPTYDIR;
974 			do_freeopt = 1;
975 		}
976 		if (do_freeopt)
977 			vfs_freeopt(optlist, opt);
978 	}
979 
980 	/*
981 	 * Be ultra-paranoid about making sure the type and fspath
982 	 * variables will fit in our mp buffers, including the
983 	 * terminating NUL.
984 	 */
985 	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
986 		error = ENAMETOOLONG;
987 		goto bail;
988 	}
989 
990 	/*
991 	 * If has_nonexport is true or the caller is not running within a
992 	 * vnet prison that can run mountd(8), set jail_export false.
993 	 */
994 	if (has_nonexport || !jailed(td->td_ucred) ||
995 	    !prison_check_nfsd(td->td_ucred))
996 		jail_export = false;
997 
998 	error = vfs_domount(td, fstype, fspath, fsflags, jail_export, &optlist);
999 	if (error == ENODEV) {
1000 		error = EINVAL;
1001 		if (errmsg != NULL)
1002 			strncpy(errmsg, "Invalid fstype", errmsg_len);
1003 		goto bail;
1004 	}
1005 
1006 	/*
1007 	 * See if we can mount in the read-only mode if the error code suggests
1008 	 * that it could be possible and the mount options allow for that.
1009 	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
1010 	 * overridden by "autoro".
1011 	 */
1012 	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
1013 		printf("%s: R/W mount failed, possibly R/O media,"
1014 		    " trying R/O mount\n", __func__);
1015 		fsflags |= MNT_RDONLY;
1016 		error = vfs_domount(td, fstype, fspath, fsflags, jail_export,
1017 		    &optlist);
1018 	}
1019 bail:
1020 	/* copyout the errmsg */
1021 	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
1022 	    && errmsg_len > 0 && errmsg != NULL) {
1023 		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
1024 			bcopy(errmsg,
1025 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
1026 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1027 		} else {
1028 			(void)copyout(errmsg,
1029 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
1030 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1031 		}
1032 	}
1033 
1034 	if (optlist != NULL)
1035 		vfs_freeopts(optlist);
1036 	return (error);
1037 }
1038 
1039 /*
1040  * Old mount API.
1041  */
1042 #ifndef _SYS_SYSPROTO_H_
1043 struct mount_args {
1044 	char	*type;
1045 	char	*path;
1046 	int	flags;
1047 	caddr_t	data;
1048 };
1049 #endif
1050 /* ARGSUSED */
1051 int
sys_mount(struct thread * td,struct mount_args * uap)1052 sys_mount(struct thread *td, struct mount_args *uap)
1053 {
1054 	char *fstype;
1055 	struct vfsconf *vfsp = NULL;
1056 	struct mntarg *ma = NULL;
1057 	uint64_t flags;
1058 	int error;
1059 
1060 	/*
1061 	 * Mount flags are now 64-bits. On 32-bit architectures only
1062 	 * 32-bits are passed in, but from here on everything handles
1063 	 * 64-bit flags correctly.
1064 	 */
1065 	flags = uap->flags;
1066 
1067 	AUDIT_ARG_FFLAGS(flags);
1068 
1069 	/*
1070 	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
1071 	 * userspace to set this flag, but we must filter it out if we want
1072 	 * MNT_UPDATE on the root file system to work.
1073 	 * MNT_ROOTFS should only be set by the kernel when mounting its
1074 	 * root file system.
1075 	 */
1076 	flags &= ~MNT_ROOTFS;
1077 
1078 	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1079 	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1080 	if (error) {
1081 		free(fstype, M_TEMP);
1082 		return (error);
1083 	}
1084 
1085 	AUDIT_ARG_TEXT(fstype);
1086 	vfsp = vfs_byname_kld(fstype, td, &error);
1087 	free(fstype, M_TEMP);
1088 	if (vfsp == NULL)
1089 		return (EINVAL);
1090 	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1091 	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1092 	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1093 	    vfsp->vfc_vfsops->vfs_cmount == NULL))
1094 		return (EOPNOTSUPP);
1095 
1096 	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1097 	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1098 	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1099 	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1100 	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1101 
1102 	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1103 		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1104 	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1105 }
1106 
1107 /*
1108  * vfs_domount_first(): first file system mount (not update)
1109  */
1110 static int
vfs_domount_first(struct thread * td,struct vfsconf * vfsp,char * fspath,struct vnode * vp,uint64_t fsflags,struct vfsoptlist ** optlist)1111 vfs_domount_first(
1112 	struct thread *td,		/* Calling thread. */
1113 	struct vfsconf *vfsp,		/* File system type. */
1114 	char *fspath,			/* Mount path. */
1115 	struct vnode *vp,		/* Vnode to be covered. */
1116 	uint64_t fsflags,		/* Flags common to all filesystems. */
1117 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1118 	)
1119 {
1120 	struct vattr va;
1121 	struct mount *mp;
1122 	struct vnode *newdp, *rootvp;
1123 	int error, error1;
1124 	bool unmounted;
1125 
1126 	ASSERT_VOP_ELOCKED(vp, __func__);
1127 	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1128 
1129 	/*
1130 	 * If the jail of the calling thread lacks permission for this type of
1131 	 * file system, or is trying to cover its own root, deny immediately.
1132 	 */
1133 	if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1134 	    vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1135 		vput(vp);
1136 		return (EPERM);
1137 	}
1138 
1139 	/*
1140 	 * If the user is not root, ensure that they own the directory
1141 	 * onto which we are attempting to mount.
1142 	 */
1143 	error = VOP_GETATTR(vp, &va, td->td_ucred);
1144 	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1145 		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1146 	if (error == 0)
1147 		error = vinvalbuf(vp, V_SAVE, 0, 0);
1148 	if (vfsp->vfc_flags & VFCF_FILEMOUNT) {
1149 		if (error == 0 && vp->v_type != VDIR && vp->v_type != VREG)
1150 			error = EINVAL;
1151 		/*
1152 		 * For file mounts, ensure that there is only one hardlink to the file.
1153 		 */
1154 		if (error == 0 && vp->v_type == VREG && va.va_nlink != 1)
1155 			error = EINVAL;
1156 	} else {
1157 		if (error == 0 && vp->v_type != VDIR)
1158 			error = ENOTDIR;
1159 	}
1160 	if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1161 		error = vn_dir_check_empty(vp);
1162 	if (error == 0) {
1163 		VI_LOCK(vp);
1164 		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1165 			vp->v_iflag |= VI_MOUNT;
1166 		else
1167 			error = EBUSY;
1168 		VI_UNLOCK(vp);
1169 	}
1170 	if (error != 0) {
1171 		vput(vp);
1172 		return (error);
1173 	}
1174 	vn_seqc_write_begin(vp);
1175 	VOP_UNLOCK(vp);
1176 
1177 	/* Allocate and initialize the filesystem. */
1178 	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1179 	/* XXXMAC: pass to vfs_mount_alloc? */
1180 	mp->mnt_optnew = *optlist;
1181 	/* Set the mount level flags. */
1182 	mp->mnt_flag = (fsflags &
1183 	    (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1184 
1185 	/*
1186 	 * Mount the filesystem.
1187 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1188 	 * get.  No freeing of cn_pnbuf.
1189 	 */
1190 	error1 = 0;
1191 	unmounted = true;
1192 	if ((error = VFS_MOUNT(mp)) != 0 ||
1193 	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1194 	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1195 		rootvp = NULL;
1196 		if (error1 != 0) {
1197 			MPASS(error == 0);
1198 			rootvp = vfs_cache_root_clear(mp);
1199 			if (rootvp != NULL) {
1200 				vhold(rootvp);
1201 				vrele(rootvp);
1202 			}
1203 			(void)vn_start_write(NULL, &mp, V_WAIT);
1204 			MNT_ILOCK(mp);
1205 			mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1206 			MNT_IUNLOCK(mp);
1207 			VFS_PURGE(mp);
1208 			error = VFS_UNMOUNT(mp, 0);
1209 			vn_finished_write(mp);
1210 			if (error != 0) {
1211 				printf(
1212 		    "failed post-mount (%d): rollback unmount returned %d\n",
1213 				    error1, error);
1214 				unmounted = false;
1215 			}
1216 			error = error1;
1217 		}
1218 		vfs_unbusy(mp);
1219 		mp->mnt_vnodecovered = NULL;
1220 		if (unmounted) {
1221 			/* XXXKIB wait for mnt_lockref drain? */
1222 			vfs_mount_destroy(mp);
1223 		}
1224 		VI_LOCK(vp);
1225 		vp->v_iflag &= ~VI_MOUNT;
1226 		VI_UNLOCK(vp);
1227 		if (rootvp != NULL) {
1228 			vn_seqc_write_end(rootvp);
1229 			vdrop(rootvp);
1230 		}
1231 		vn_seqc_write_end(vp);
1232 		vrele(vp);
1233 		return (error);
1234 	}
1235 	vn_seqc_write_begin(newdp);
1236 	VOP_UNLOCK(newdp);
1237 
1238 	if (mp->mnt_opt != NULL)
1239 		vfs_freeopts(mp->mnt_opt);
1240 	mp->mnt_opt = mp->mnt_optnew;
1241 	*optlist = NULL;
1242 
1243 	/*
1244 	 * Prevent external consumers of mount options from reading mnt_optnew.
1245 	 */
1246 	mp->mnt_optnew = NULL;
1247 
1248 	MNT_ILOCK(mp);
1249 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1250 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1251 		mp->mnt_kern_flag |= MNTK_ASYNC;
1252 	else
1253 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1254 	MNT_IUNLOCK(mp);
1255 
1256 	/*
1257 	 * VIRF_MOUNTPOINT and v_mountedhere need to be set under the
1258 	 * vp lock to satisfy vfs_lookup() requirements.
1259 	 */
1260 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
1261 	VI_LOCK(vp);
1262 	vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1263 	vp->v_mountedhere = mp;
1264 	VI_UNLOCK(vp);
1265 	VOP_UNLOCK(vp);
1266 	cache_purge(vp);
1267 
1268 	/*
1269 	 * We need to lock both vnodes.
1270 	 *
1271 	 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1272 	 * from different filesystems.
1273 	 */
1274 	vn_lock_pair(vp, false, LK_EXCLUSIVE, newdp, false, LK_EXCLUSIVE);
1275 
1276 	VI_LOCK(vp);
1277 	vp->v_iflag &= ~VI_MOUNT;
1278 	VI_UNLOCK(vp);
1279 	/* Place the new filesystem at the end of the mount list. */
1280 	mtx_lock(&mountlist_mtx);
1281 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1282 	mtx_unlock(&mountlist_mtx);
1283 	vfs_event_signal(NULL, VQ_MOUNT, 0);
1284 	VOP_UNLOCK(vp);
1285 	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1286 	VOP_UNLOCK(newdp);
1287 	mount_devctl_event("MOUNT", mp, false);
1288 	mountcheckdirs(vp, newdp);
1289 	vn_seqc_write_end(vp);
1290 	vn_seqc_write_end(newdp);
1291 	vrele(newdp);
1292 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1293 		vfs_allocate_syncvnode(mp);
1294 	vfs_op_exit(mp);
1295 	vfs_unbusy(mp);
1296 	return (0);
1297 }
1298 
1299 /*
1300  * vfs_domount_update(): update of mounted file system
1301  */
1302 static int
vfs_domount_update(struct thread * td,struct vnode * vp,uint64_t fsflags,bool jail_export,struct vfsoptlist ** optlist)1303 vfs_domount_update(
1304 	struct thread *td,		/* Calling thread. */
1305 	struct vnode *vp,		/* Mount point vnode. */
1306 	uint64_t fsflags,		/* Flags common to all filesystems. */
1307 	bool jail_export,		/* Got export option in vnet prison. */
1308 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1309 	)
1310 {
1311 	struct export_args export;
1312 	struct o2export_args o2export;
1313 	struct vnode *rootvp;
1314 	void *bufp;
1315 	struct mount *mp;
1316 	int error, export_error, i, len, fsid_up_len;
1317 	uint64_t flag, mnt_union;
1318 	gid_t *grps;
1319 	fsid_t *fsid_up;
1320 	bool vfs_suser_failed;
1321 
1322 	ASSERT_VOP_ELOCKED(vp, __func__);
1323 	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1324 	mp = vp->v_mount;
1325 
1326 	if ((vp->v_vflag & VV_ROOT) == 0) {
1327 		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1328 		    == 0)
1329 			error = EXDEV;
1330 		else
1331 			error = EINVAL;
1332 		vput(vp);
1333 		return (error);
1334 	}
1335 
1336 	/*
1337 	 * We only allow the filesystem to be reloaded if it
1338 	 * is currently mounted read-only.
1339 	 */
1340 	flag = mp->mnt_flag;
1341 	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1342 		vput(vp);
1343 		return (EOPNOTSUPP);	/* Needs translation */
1344 	}
1345 	/*
1346 	 * Only privileged root, or (if MNT_USER is set) the user that
1347 	 * did the original mount is permitted to update it.
1348 	 */
1349 	/*
1350 	 * For the case of mountd(8) doing exports in a jail, the vfs_suser()
1351 	 * call does not cause failure.  vfs_domount() has already checked
1352 	 * that "root" is doing this and vfs_suser() will fail when
1353 	 * the file system has been mounted outside the jail.
1354 	 * jail_export set true indicates that "export" is not mixed
1355 	 * with other options that change mount behaviour.
1356 	 */
1357 	vfs_suser_failed = false;
1358 	error = vfs_suser(mp, td);
1359 	if (jail_export && error != 0) {
1360 		error = 0;
1361 		vfs_suser_failed = true;
1362 	}
1363 	if (error != 0) {
1364 		vput(vp);
1365 		return (error);
1366 	}
1367 	if (vfs_busy(mp, MBF_NOWAIT)) {
1368 		vput(vp);
1369 		return (EBUSY);
1370 	}
1371 	VI_LOCK(vp);
1372 	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1373 		VI_UNLOCK(vp);
1374 		vfs_unbusy(mp);
1375 		vput(vp);
1376 		return (EBUSY);
1377 	}
1378 	vp->v_iflag |= VI_MOUNT;
1379 	VI_UNLOCK(vp);
1380 	VOP_UNLOCK(vp);
1381 
1382 	rootvp = NULL;
1383 	vfs_op_enter(mp);
1384 	vn_seqc_write_begin(vp);
1385 
1386 	if (vfs_getopt(*optlist, "fsid", (void **)&fsid_up,
1387 	    &fsid_up_len) == 0) {
1388 		if (fsid_up_len != sizeof(*fsid_up)) {
1389 			error = EINVAL;
1390 			goto end;
1391 		}
1392 		if (fsidcmp(fsid_up, &mp->mnt_stat.f_fsid) != 0) {
1393 			error = ENOENT;
1394 			goto end;
1395 		}
1396 		vfs_deleteopt(*optlist, "fsid");
1397 	}
1398 
1399 	mnt_union = 0;
1400 	MNT_ILOCK(mp);
1401 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1402 		MNT_IUNLOCK(mp);
1403 		error = EBUSY;
1404 		goto end;
1405 	}
1406 	if (vfs_suser_failed) {
1407 		KASSERT((fsflags & (MNT_EXPORTED | MNT_UPDATE)) ==
1408 		    (MNT_EXPORTED | MNT_UPDATE),
1409 		    ("%s: jailed export did not set expected fsflags",
1410 		     __func__));
1411 		/*
1412 		 * For this case, only MNT_UPDATE and
1413 		 * MNT_EXPORTED have been set in fsflags
1414 		 * by the options.  Only set MNT_UPDATE,
1415 		 * since that is the one that would be set
1416 		 * when set in fsflags, below.
1417 		 */
1418 		mp->mnt_flag |= MNT_UPDATE;
1419 	} else {
1420 		mp->mnt_flag &= ~MNT_UPDATEMASK;
1421 		if ((mp->mnt_flag & MNT_UNION) == 0 &&
1422 		    (fsflags & MNT_UNION) != 0) {
1423 			fsflags &= ~MNT_UNION;
1424 			mnt_union = MNT_UNION;
1425 		}
1426 		mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1427 		    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1428 		if ((mp->mnt_flag & MNT_ASYNC) == 0)
1429 			mp->mnt_kern_flag &= ~MNTK_ASYNC;
1430 	}
1431 	rootvp = vfs_cache_root_clear(mp);
1432 	MNT_IUNLOCK(mp);
1433 	mp->mnt_optnew = *optlist;
1434 	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1435 
1436 	/*
1437 	 * Mount the filesystem.
1438 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1439 	 * get.  No freeing of cn_pnbuf.
1440 	 */
1441 	/*
1442 	 * For the case of mountd(8) doing exports from within a vnet jail,
1443 	 * "from" is typically not set correctly such that VFS_MOUNT() will
1444 	 * return ENOENT. It is not obvious that VFS_MOUNT() ever needs to be
1445 	 * called when mountd is doing exports, but this check only applies to
1446 	 * the specific case where it is running inside a vnet jail, to
1447 	 * avoid any POLA violation.
1448 	 */
1449 	error = 0;
1450 	if (!jail_export)
1451 		error = VFS_MOUNT(mp);
1452 
1453 	export_error = 0;
1454 	/* Process the export option. */
1455 	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1456 	    &len) == 0) {
1457 		/* Assume that there is only 1 ABI for each length. */
1458 		switch (len) {
1459 		case (sizeof(struct oexport_args)):
1460 			bzero(&o2export, sizeof(o2export));
1461 			/* FALLTHROUGH */
1462 		case (sizeof(o2export)):
1463 			bcopy(bufp, &o2export, len);
1464 			export.ex_flags = (uint64_t)o2export.ex_flags;
1465 			export.ex_root = o2export.ex_root;
1466 			export.ex_uid = o2export.ex_anon.cr_uid;
1467 			export.ex_groups = NULL;
1468 			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1469 			if (export.ex_ngroups > 0) {
1470 				if (export.ex_ngroups <= XU_NGROUPS) {
1471 					export.ex_groups = malloc(
1472 					    export.ex_ngroups * sizeof(gid_t),
1473 					    M_TEMP, M_WAITOK);
1474 					for (i = 0; i < export.ex_ngroups; i++)
1475 						export.ex_groups[i] =
1476 						  o2export.ex_anon.cr_groups[i];
1477 				} else
1478 					export_error = EINVAL;
1479 			} else if (export.ex_ngroups < 0)
1480 				export_error = EINVAL;
1481 			export.ex_addr = o2export.ex_addr;
1482 			export.ex_addrlen = o2export.ex_addrlen;
1483 			export.ex_mask = o2export.ex_mask;
1484 			export.ex_masklen = o2export.ex_masklen;
1485 			export.ex_indexfile = o2export.ex_indexfile;
1486 			export.ex_numsecflavors = o2export.ex_numsecflavors;
1487 			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1488 				for (i = 0; i < export.ex_numsecflavors; i++)
1489 					export.ex_secflavors[i] =
1490 					    o2export.ex_secflavors[i];
1491 			} else
1492 				export_error = EINVAL;
1493 			if (export_error == 0)
1494 				export_error = vfs_export(mp, &export, true);
1495 			free(export.ex_groups, M_TEMP);
1496 			break;
1497 		case (sizeof(export)):
1498 			bcopy(bufp, &export, len);
1499 			grps = NULL;
1500 			if (export.ex_ngroups > 0) {
1501 				if (export.ex_ngroups <= ngroups_max + 1) {
1502 					grps = malloc(export.ex_ngroups *
1503 					    sizeof(gid_t), M_TEMP, M_WAITOK);
1504 					export_error = copyin(export.ex_groups,
1505 					    grps, export.ex_ngroups *
1506 					    sizeof(gid_t));
1507 					if (export_error == 0)
1508 						export.ex_groups = grps;
1509 				} else
1510 					export_error = EINVAL;
1511 			} else if (export.ex_ngroups == 0)
1512 				export.ex_groups = NULL;
1513 			else
1514 				export_error = EINVAL;
1515 			if (export_error == 0)
1516 				export_error = vfs_export(mp, &export, true);
1517 			free(grps, M_TEMP);
1518 			break;
1519 		default:
1520 			export_error = EINVAL;
1521 			break;
1522 		}
1523 	}
1524 
1525 	MNT_ILOCK(mp);
1526 	if (error == 0) {
1527 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1528 		    MNT_SNAPSHOT);
1529 		mp->mnt_flag |= mnt_union;
1530 	} else {
1531 		/*
1532 		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1533 		 * because it is not part of MNT_UPDATEMASK, but it could have
1534 		 * changed in the meantime if quotactl(2) was called.
1535 		 * All in all we want current value of MNT_QUOTA, not the old
1536 		 * one.
1537 		 */
1538 		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1539 	}
1540 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1541 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1542 		mp->mnt_kern_flag |= MNTK_ASYNC;
1543 	else
1544 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1545 	MNT_IUNLOCK(mp);
1546 
1547 	if (error != 0)
1548 		goto end;
1549 
1550 	mount_devctl_event("REMOUNT", mp, true);
1551 	if (mp->mnt_opt != NULL)
1552 		vfs_freeopts(mp->mnt_opt);
1553 	mp->mnt_opt = mp->mnt_optnew;
1554 	*optlist = NULL;
1555 	(void)VFS_STATFS(mp, &mp->mnt_stat);
1556 	/*
1557 	 * Prevent external consumers of mount options from reading
1558 	 * mnt_optnew.
1559 	 */
1560 	mp->mnt_optnew = NULL;
1561 
1562 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1563 		vfs_allocate_syncvnode(mp);
1564 	else
1565 		vfs_deallocate_syncvnode(mp);
1566 end:
1567 	vfs_op_exit(mp);
1568 	if (rootvp != NULL) {
1569 		vn_seqc_write_end(rootvp);
1570 		vrele(rootvp);
1571 	}
1572 	vn_seqc_write_end(vp);
1573 	vfs_unbusy(mp);
1574 	VI_LOCK(vp);
1575 	vp->v_iflag &= ~VI_MOUNT;
1576 	VI_UNLOCK(vp);
1577 	vrele(vp);
1578 	return (error != 0 ? error : export_error);
1579 }
1580 
1581 /*
1582  * vfs_domount(): actually attempt a filesystem mount.
1583  */
1584 static int
vfs_domount(struct thread * td,const char * fstype,char * fspath,uint64_t fsflags,bool jail_export,struct vfsoptlist ** optlist)1585 vfs_domount(
1586 	struct thread *td,		/* Calling thread. */
1587 	const char *fstype,		/* Filesystem type. */
1588 	char *fspath,			/* Mount path. */
1589 	uint64_t fsflags,		/* Flags common to all filesystems. */
1590 	bool jail_export,		/* Got export option in vnet prison. */
1591 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1592 	)
1593 {
1594 	struct vfsconf *vfsp;
1595 	struct nameidata nd;
1596 	struct vnode *vp;
1597 	char *pathbuf;
1598 	int error;
1599 
1600 	/*
1601 	 * Be ultra-paranoid about making sure the type and fspath
1602 	 * variables will fit in our mp buffers, including the
1603 	 * terminating NUL.
1604 	 */
1605 	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1606 		return (ENAMETOOLONG);
1607 
1608 	if (jail_export) {
1609 		error = priv_check(td, PRIV_NFS_DAEMON);
1610 		if (error)
1611 			return (error);
1612 	} else if (jailed(td->td_ucred) || usermount == 0) {
1613 		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1614 			return (error);
1615 	}
1616 
1617 	/*
1618 	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1619 	 */
1620 	if (fsflags & MNT_EXPORTED) {
1621 		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1622 		if (error)
1623 			return (error);
1624 	}
1625 	if (fsflags & MNT_SUIDDIR) {
1626 		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1627 		if (error)
1628 			return (error);
1629 	}
1630 	/*
1631 	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1632 	 */
1633 	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1634 		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1635 			fsflags |= MNT_NOSUID | MNT_USER;
1636 	}
1637 
1638 	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1639 	vfsp = NULL;
1640 	if ((fsflags & MNT_UPDATE) == 0) {
1641 		/* Don't try to load KLDs if we're mounting the root. */
1642 		if (fsflags & MNT_ROOTFS) {
1643 			if ((vfsp = vfs_byname(fstype)) == NULL)
1644 				return (ENODEV);
1645 		} else {
1646 			if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1647 				return (error);
1648 		}
1649 	}
1650 
1651 	/*
1652 	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1653 	 */
1654 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1 | WANTPARENT,
1655 	    UIO_SYSSPACE, fspath);
1656 	error = namei(&nd);
1657 	if (error != 0)
1658 		return (error);
1659 	vp = nd.ni_vp;
1660 	/*
1661 	 * Don't allow stacking file mounts to work around problems with the way
1662 	 * that namei sets nd.ni_dvp to vp_crossmp for these.
1663 	 */
1664 	if (vp->v_type == VREG)
1665 		fsflags |= MNT_NOCOVER;
1666 	if ((fsflags & MNT_UPDATE) == 0) {
1667 		if ((vp->v_vflag & VV_ROOT) != 0 &&
1668 		    (fsflags & MNT_NOCOVER) != 0) {
1669 			vput(vp);
1670 			error = EBUSY;
1671 			goto out;
1672 		}
1673 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1674 		strcpy(pathbuf, fspath);
1675 		/*
1676 		 * Note: we allow any vnode type here. If the path sanity check
1677 		 * succeeds, the type will be validated in vfs_domount_first
1678 		 * above.
1679 		 */
1680 		if (vp->v_type == VDIR)
1681 			error = vn_path_to_global_path(td, vp, pathbuf,
1682 			    MNAMELEN);
1683 		else
1684 			error = vn_path_to_global_path_hardlink(td, vp,
1685 			    nd.ni_dvp, pathbuf, MNAMELEN,
1686 			    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
1687 		if (error == 0) {
1688 			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1689 			    fsflags, optlist);
1690 		}
1691 		free(pathbuf, M_TEMP);
1692 	} else
1693 		error = vfs_domount_update(td, vp, fsflags, jail_export,
1694 		    optlist);
1695 
1696 out:
1697 	NDFREE_PNBUF(&nd);
1698 	vrele(nd.ni_dvp);
1699 
1700 	return (error);
1701 }
1702 
1703 /*
1704  * Unmount a filesystem.
1705  *
1706  * Note: unmount takes a path to the vnode mounted on as argument, not
1707  * special file (as before).
1708  */
1709 #ifndef _SYS_SYSPROTO_H_
1710 struct unmount_args {
1711 	char	*path;
1712 	int	flags;
1713 };
1714 #endif
1715 /* ARGSUSED */
1716 int
sys_unmount(struct thread * td,struct unmount_args * uap)1717 sys_unmount(struct thread *td, struct unmount_args *uap)
1718 {
1719 
1720 	return (kern_unmount(td, uap->path, uap->flags));
1721 }
1722 
1723 int
kern_unmount(struct thread * td,const char * path,int flags)1724 kern_unmount(struct thread *td, const char *path, int flags)
1725 {
1726 	struct nameidata nd;
1727 	struct mount *mp;
1728 	char *fsidbuf, *pathbuf;
1729 	fsid_t fsid;
1730 	int error;
1731 
1732 	AUDIT_ARG_VALUE(flags);
1733 	if (jailed(td->td_ucred) || usermount == 0) {
1734 		error = priv_check(td, PRIV_VFS_UNMOUNT);
1735 		if (error)
1736 			return (error);
1737 	}
1738 
1739 	if (flags & MNT_BYFSID) {
1740 		fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1741 		error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1742 		if (error) {
1743 			free(fsidbuf, M_TEMP);
1744 			return (error);
1745 		}
1746 
1747 		AUDIT_ARG_TEXT(fsidbuf);
1748 		/* Decode the filesystem ID. */
1749 		if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1750 			free(fsidbuf, M_TEMP);
1751 			return (EINVAL);
1752 		}
1753 
1754 		mp = vfs_getvfs(&fsid);
1755 		free(fsidbuf, M_TEMP);
1756 		if (mp == NULL) {
1757 			return (ENOENT);
1758 		}
1759 	} else {
1760 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1761 		error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1762 		if (error) {
1763 			free(pathbuf, M_TEMP);
1764 			return (error);
1765 		}
1766 
1767 		/*
1768 		 * Try to find global path for path argument.
1769 		 */
1770 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1771 		    UIO_SYSSPACE, pathbuf);
1772 		if (namei(&nd) == 0) {
1773 			NDFREE_PNBUF(&nd);
1774 			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1775 			    MNAMELEN);
1776 			if (error == 0)
1777 				vput(nd.ni_vp);
1778 		}
1779 		mtx_lock(&mountlist_mtx);
1780 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1781 			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1782 				vfs_ref(mp);
1783 				break;
1784 			}
1785 		}
1786 		mtx_unlock(&mountlist_mtx);
1787 		free(pathbuf, M_TEMP);
1788 		if (mp == NULL) {
1789 			/*
1790 			 * Previously we returned ENOENT for a nonexistent path and
1791 			 * EINVAL for a non-mountpoint.  We cannot tell these apart
1792 			 * now, so in the !MNT_BYFSID case return the more likely
1793 			 * EINVAL for compatibility.
1794 			 */
1795 			return (EINVAL);
1796 		}
1797 	}
1798 
1799 	/*
1800 	 * Don't allow unmounting the root filesystem.
1801 	 */
1802 	if (mp->mnt_flag & MNT_ROOTFS) {
1803 		vfs_rel(mp);
1804 		return (EINVAL);
1805 	}
1806 	error = dounmount(mp, flags, td);
1807 	return (error);
1808 }
1809 
1810 /*
1811  * Return error if any of the vnodes, ignoring the root vnode
1812  * and the syncer vnode, have non-zero usecount.
1813  *
1814  * This function is purely advisory - it can return false positives
1815  * and negatives.
1816  */
1817 static int
vfs_check_usecounts(struct mount * mp)1818 vfs_check_usecounts(struct mount *mp)
1819 {
1820 	struct vnode *vp, *mvp;
1821 
1822 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1823 		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1824 		    vp->v_usecount != 0) {
1825 			VI_UNLOCK(vp);
1826 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1827 			return (EBUSY);
1828 		}
1829 		VI_UNLOCK(vp);
1830 	}
1831 
1832 	return (0);
1833 }
1834 
1835 static void
dounmount_cleanup(struct mount * mp,struct vnode * coveredvp,int mntkflags)1836 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1837 {
1838 
1839 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1840 	mp->mnt_kern_flag &= ~mntkflags;
1841 	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1842 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1843 		wakeup(mp);
1844 	}
1845 	vfs_op_exit_locked(mp);
1846 	MNT_IUNLOCK(mp);
1847 	if (coveredvp != NULL) {
1848 		VOP_UNLOCK(coveredvp);
1849 		vdrop(coveredvp);
1850 	}
1851 	vn_finished_write(mp);
1852 	vfs_rel(mp);
1853 }
1854 
1855 /*
1856  * There are various reference counters associated with the mount point.
1857  * Normally it is permitted to modify them without taking the mnt ilock,
1858  * but this behavior can be temporarily disabled if stable value is needed
1859  * or callers are expected to block (e.g. to not allow new users during
1860  * forced unmount).
1861  */
1862 void
vfs_op_enter(struct mount * mp)1863 vfs_op_enter(struct mount *mp)
1864 {
1865 	struct mount_pcpu *mpcpu;
1866 	int cpu;
1867 
1868 	MNT_ILOCK(mp);
1869 	mp->mnt_vfs_ops++;
1870 	if (mp->mnt_vfs_ops > 1) {
1871 		MNT_IUNLOCK(mp);
1872 		return;
1873 	}
1874 	vfs_op_barrier_wait(mp);
1875 	CPU_FOREACH(cpu) {
1876 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1877 
1878 		mp->mnt_ref += mpcpu->mntp_ref;
1879 		mpcpu->mntp_ref = 0;
1880 
1881 		mp->mnt_lockref += mpcpu->mntp_lockref;
1882 		mpcpu->mntp_lockref = 0;
1883 
1884 		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1885 		mpcpu->mntp_writeopcount = 0;
1886 	}
1887 	MPASSERT(mp->mnt_ref > 0 && mp->mnt_lockref >= 0 &&
1888 	    mp->mnt_writeopcount >= 0, mp,
1889 	    ("invalid count(s): ref %d lockref %d writeopcount %d",
1890 	    mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount));
1891 	MNT_IUNLOCK(mp);
1892 	vfs_assert_mount_counters(mp);
1893 }
1894 
1895 void
vfs_op_exit_locked(struct mount * mp)1896 vfs_op_exit_locked(struct mount *mp)
1897 {
1898 
1899 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1900 
1901 	MPASSERT(mp->mnt_vfs_ops > 0, mp,
1902 	    ("invalid vfs_ops count %d", mp->mnt_vfs_ops));
1903 	MPASSERT(mp->mnt_vfs_ops > 1 ||
1904 	    (mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_SUSPEND)) == 0, mp,
1905 	    ("vfs_ops too low %d in unmount or suspend", mp->mnt_vfs_ops));
1906 	mp->mnt_vfs_ops--;
1907 }
1908 
1909 void
vfs_op_exit(struct mount * mp)1910 vfs_op_exit(struct mount *mp)
1911 {
1912 
1913 	MNT_ILOCK(mp);
1914 	vfs_op_exit_locked(mp);
1915 	MNT_IUNLOCK(mp);
1916 }
1917 
1918 struct vfs_op_barrier_ipi {
1919 	struct mount *mp;
1920 	struct smp_rendezvous_cpus_retry_arg srcra;
1921 };
1922 
1923 static void
vfs_op_action_func(void * arg)1924 vfs_op_action_func(void *arg)
1925 {
1926 	struct vfs_op_barrier_ipi *vfsopipi;
1927 	struct mount *mp;
1928 
1929 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1930 	mp = vfsopipi->mp;
1931 
1932 	if (!vfs_op_thread_entered(mp))
1933 		smp_rendezvous_cpus_done(arg);
1934 }
1935 
1936 static void
vfs_op_wait_func(void * arg,int cpu)1937 vfs_op_wait_func(void *arg, int cpu)
1938 {
1939 	struct vfs_op_barrier_ipi *vfsopipi;
1940 	struct mount *mp;
1941 	struct mount_pcpu *mpcpu;
1942 
1943 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1944 	mp = vfsopipi->mp;
1945 
1946 	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1947 	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1948 		cpu_spinwait();
1949 }
1950 
1951 void
vfs_op_barrier_wait(struct mount * mp)1952 vfs_op_barrier_wait(struct mount *mp)
1953 {
1954 	struct vfs_op_barrier_ipi vfsopipi;
1955 
1956 	vfsopipi.mp = mp;
1957 
1958 	smp_rendezvous_cpus_retry(all_cpus,
1959 	    smp_no_rendezvous_barrier,
1960 	    vfs_op_action_func,
1961 	    smp_no_rendezvous_barrier,
1962 	    vfs_op_wait_func,
1963 	    &vfsopipi.srcra);
1964 }
1965 
1966 #ifdef DIAGNOSTIC
1967 void
vfs_assert_mount_counters(struct mount * mp)1968 vfs_assert_mount_counters(struct mount *mp)
1969 {
1970 	struct mount_pcpu *mpcpu;
1971 	int cpu;
1972 
1973 	if (mp->mnt_vfs_ops == 0)
1974 		return;
1975 
1976 	CPU_FOREACH(cpu) {
1977 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1978 		if (mpcpu->mntp_ref != 0 ||
1979 		    mpcpu->mntp_lockref != 0 ||
1980 		    mpcpu->mntp_writeopcount != 0)
1981 			vfs_dump_mount_counters(mp);
1982 	}
1983 }
1984 
1985 void
vfs_dump_mount_counters(struct mount * mp)1986 vfs_dump_mount_counters(struct mount *mp)
1987 {
1988 	struct mount_pcpu *mpcpu;
1989 	int ref, lockref, writeopcount;
1990 	int cpu;
1991 
1992 	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1993 
1994 	printf("        ref : ");
1995 	ref = mp->mnt_ref;
1996 	CPU_FOREACH(cpu) {
1997 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1998 		printf("%d ", mpcpu->mntp_ref);
1999 		ref += mpcpu->mntp_ref;
2000 	}
2001 	printf("\n");
2002 	printf("    lockref : ");
2003 	lockref = mp->mnt_lockref;
2004 	CPU_FOREACH(cpu) {
2005 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2006 		printf("%d ", mpcpu->mntp_lockref);
2007 		lockref += mpcpu->mntp_lockref;
2008 	}
2009 	printf("\n");
2010 	printf("writeopcount: ");
2011 	writeopcount = mp->mnt_writeopcount;
2012 	CPU_FOREACH(cpu) {
2013 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2014 		printf("%d ", mpcpu->mntp_writeopcount);
2015 		writeopcount += mpcpu->mntp_writeopcount;
2016 	}
2017 	printf("\n");
2018 
2019 	printf("counter       struct total\n");
2020 	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
2021 	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
2022 	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
2023 
2024 	panic("invalid counts on struct mount");
2025 }
2026 #endif
2027 
2028 int
vfs_mount_fetch_counter(struct mount * mp,enum mount_counter which)2029 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
2030 {
2031 	struct mount_pcpu *mpcpu;
2032 	int cpu, sum;
2033 
2034 	switch (which) {
2035 	case MNT_COUNT_REF:
2036 		sum = mp->mnt_ref;
2037 		break;
2038 	case MNT_COUNT_LOCKREF:
2039 		sum = mp->mnt_lockref;
2040 		break;
2041 	case MNT_COUNT_WRITEOPCOUNT:
2042 		sum = mp->mnt_writeopcount;
2043 		break;
2044 	}
2045 
2046 	CPU_FOREACH(cpu) {
2047 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2048 		switch (which) {
2049 		case MNT_COUNT_REF:
2050 			sum += mpcpu->mntp_ref;
2051 			break;
2052 		case MNT_COUNT_LOCKREF:
2053 			sum += mpcpu->mntp_lockref;
2054 			break;
2055 		case MNT_COUNT_WRITEOPCOUNT:
2056 			sum += mpcpu->mntp_writeopcount;
2057 			break;
2058 		}
2059 	}
2060 	return (sum);
2061 }
2062 
2063 static bool
deferred_unmount_enqueue(struct mount * mp,uint64_t flags,bool requeue,int timeout_ticks)2064 deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
2065     int timeout_ticks)
2066 {
2067 	bool enqueued;
2068 
2069 	enqueued = false;
2070 	mtx_lock(&deferred_unmount_lock);
2071 	if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
2072 		mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
2073 		STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
2074 		    mnt_taskqueue_link);
2075 		enqueued = true;
2076 	}
2077 	mtx_unlock(&deferred_unmount_lock);
2078 
2079 	if (enqueued) {
2080 		taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
2081 		    &deferred_unmount_task, timeout_ticks);
2082 	}
2083 
2084 	return (enqueued);
2085 }
2086 
2087 /*
2088  * Taskqueue handler for processing async/recursive unmounts
2089  */
2090 static void
vfs_deferred_unmount(void * argi __unused,int pending __unused)2091 vfs_deferred_unmount(void *argi __unused, int pending __unused)
2092 {
2093 	STAILQ_HEAD(, mount) local_unmounts;
2094 	uint64_t flags;
2095 	struct mount *mp, *tmp;
2096 	int error;
2097 	unsigned int retries;
2098 	bool unmounted;
2099 
2100 	STAILQ_INIT(&local_unmounts);
2101 	mtx_lock(&deferred_unmount_lock);
2102 	STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
2103 	mtx_unlock(&deferred_unmount_lock);
2104 
2105 	STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
2106 		flags = mp->mnt_taskqueue_flags;
2107 		KASSERT((flags & MNT_DEFERRED) != 0,
2108 		    ("taskqueue unmount without MNT_DEFERRED"));
2109 		error = dounmount(mp, flags, curthread);
2110 		if (error != 0) {
2111 			MNT_ILOCK(mp);
2112 			unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
2113 			MNT_IUNLOCK(mp);
2114 
2115 			/*
2116 			 * The deferred unmount thread is the only thread that
2117 			 * modifies the retry counts, so locking/atomics aren't
2118 			 * needed here.
2119 			 */
2120 			retries = (mp->mnt_unmount_retries)++;
2121 			deferred_unmount_total_retries++;
2122 			if (!unmounted && retries < deferred_unmount_retry_limit) {
2123 				deferred_unmount_enqueue(mp, flags, true,
2124 				    -deferred_unmount_retry_delay_hz);
2125 			} else {
2126 				if (retries >= deferred_unmount_retry_limit) {
2127 					printf("giving up on deferred unmount "
2128 					    "of %s after %d retries, error %d\n",
2129 					    mp->mnt_stat.f_mntonname, retries, error);
2130 				}
2131 				vfs_rel(mp);
2132 			}
2133 		}
2134 	}
2135 }
2136 
2137 /*
2138  * Do the actual filesystem unmount.
2139  */
2140 int
dounmount(struct mount * mp,uint64_t flags,struct thread * td)2141 dounmount(struct mount *mp, uint64_t flags, struct thread *td)
2142 {
2143 	struct mount_upper_node *upper;
2144 	struct vnode *coveredvp, *rootvp;
2145 	int error;
2146 	uint64_t async_flag;
2147 	int mnt_gen_r;
2148 	unsigned int retries;
2149 
2150 	KASSERT((flags & MNT_DEFERRED) == 0 ||
2151 	    (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2152 	    ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2153 
2154 	/*
2155 	 * If the caller has explicitly requested the unmount to be handled by
2156 	 * the taskqueue and we're not already in taskqueue context, queue
2157 	 * up the unmount request and exit.  This is done prior to any
2158 	 * credential checks; MNT_DEFERRED should be used only for kernel-
2159 	 * initiated unmounts and will therefore be processed with the
2160 	 * (kernel) credentials of the taskqueue thread.  Still, callers
2161 	 * should be sure this is the behavior they want.
2162 	 */
2163 	if ((flags & MNT_DEFERRED) != 0 &&
2164 	    taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2165 		if (!deferred_unmount_enqueue(mp, flags, false, 0))
2166 			vfs_rel(mp);
2167 		return (EINPROGRESS);
2168 	}
2169 
2170 	/*
2171 	 * Only privileged root, or (if MNT_USER is set) the user that did the
2172 	 * original mount is permitted to unmount this filesystem.
2173 	 * This check should be made prior to queueing up any recursive
2174 	 * unmounts of upper filesystems.  Those unmounts will be executed
2175 	 * with kernel thread credentials and are expected to succeed, so
2176 	 * we must at least ensure the originating context has sufficient
2177 	 * privilege to unmount the base filesystem before proceeding with
2178 	 * the uppers.
2179 	 */
2180 	error = vfs_suser(mp, td);
2181 	if (error != 0) {
2182 		KASSERT((flags & MNT_DEFERRED) == 0,
2183 		    ("taskqueue unmount with insufficient privilege"));
2184 		vfs_rel(mp);
2185 		return (error);
2186 	}
2187 
2188 	if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2189 		flags |= MNT_RECURSE;
2190 
2191 	if ((flags & MNT_RECURSE) != 0) {
2192 		KASSERT((flags & MNT_FORCE) != 0,
2193 		    ("MNT_RECURSE requires MNT_FORCE"));
2194 
2195 		MNT_ILOCK(mp);
2196 		/*
2197 		 * Set MNTK_RECURSE to prevent new upper mounts from being
2198 		 * added, and note that an operation on the uppers list is in
2199 		 * progress.  This will ensure that unregistration from the
2200 		 * uppers list, and therefore any pending unmount of the upper
2201 		 * FS, can't complete until after we finish walking the list.
2202 		 */
2203 		mp->mnt_kern_flag |= MNTK_RECURSE;
2204 		mp->mnt_upper_pending++;
2205 		TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2206 			retries = upper->mp->mnt_unmount_retries;
2207 			if (retries > deferred_unmount_retry_limit) {
2208 				error = EBUSY;
2209 				continue;
2210 			}
2211 			MNT_IUNLOCK(mp);
2212 
2213 			vfs_ref(upper->mp);
2214 			if (!deferred_unmount_enqueue(upper->mp, flags,
2215 			    false, 0))
2216 				vfs_rel(upper->mp);
2217 			MNT_ILOCK(mp);
2218 		}
2219 		mp->mnt_upper_pending--;
2220 		if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2221 		    mp->mnt_upper_pending == 0) {
2222 			mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2223 			wakeup(&mp->mnt_uppers);
2224 		}
2225 
2226 		/*
2227 		 * If we're not on the taskqueue, wait until the uppers list
2228 		 * is drained before proceeding with unmount.  Otherwise, if
2229 		 * we are on the taskqueue and there are still pending uppers,
2230 		 * just re-enqueue on the end of the taskqueue.
2231 		 */
2232 		if ((flags & MNT_DEFERRED) == 0) {
2233 			while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2234 				mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2235 				error = msleep(&mp->mnt_taskqueue_link,
2236 				    MNT_MTX(mp), PCATCH, "umntqw", 0);
2237 			}
2238 			if (error != 0) {
2239 				MNT_REL(mp);
2240 				MNT_IUNLOCK(mp);
2241 				return (error);
2242 			}
2243 		} else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2244 			MNT_IUNLOCK(mp);
2245 			if (error == 0)
2246 				deferred_unmount_enqueue(mp, flags, true, 0);
2247 			return (error);
2248 		}
2249 		MNT_IUNLOCK(mp);
2250 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2251 	}
2252 
2253 	/* Allow the taskqueue to safely re-enqueue on failure */
2254 	if ((flags & MNT_DEFERRED) != 0)
2255 		vfs_ref(mp);
2256 
2257 	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2258 		mnt_gen_r = mp->mnt_gen;
2259 		VI_LOCK(coveredvp);
2260 		vholdl(coveredvp);
2261 		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2262 		/*
2263 		 * Check for mp being unmounted while waiting for the
2264 		 * covered vnode lock.
2265 		 */
2266 		if (coveredvp->v_mountedhere != mp ||
2267 		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2268 			VOP_UNLOCK(coveredvp);
2269 			vdrop(coveredvp);
2270 			vfs_rel(mp);
2271 			return (EBUSY);
2272 		}
2273 	}
2274 
2275 	vfs_op_enter(mp);
2276 
2277 	vn_start_write(NULL, &mp, V_WAIT);
2278 	MNT_ILOCK(mp);
2279 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2280 	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
2281 	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
2282 		dounmount_cleanup(mp, coveredvp, 0);
2283 		return (EBUSY);
2284 	}
2285 	mp->mnt_kern_flag |= MNTK_UNMOUNT;
2286 	rootvp = vfs_cache_root_clear(mp);
2287 	if (coveredvp != NULL)
2288 		vn_seqc_write_begin(coveredvp);
2289 	if (flags & MNT_NONBUSY) {
2290 		MNT_IUNLOCK(mp);
2291 		error = vfs_check_usecounts(mp);
2292 		MNT_ILOCK(mp);
2293 		if (error != 0) {
2294 			vn_seqc_write_end(coveredvp);
2295 			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2296 			if (rootvp != NULL) {
2297 				vn_seqc_write_end(rootvp);
2298 				vrele(rootvp);
2299 			}
2300 			return (error);
2301 		}
2302 	}
2303 	/* Allow filesystems to detect that a forced unmount is in progress. */
2304 	if (flags & MNT_FORCE) {
2305 		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2306 		MNT_IUNLOCK(mp);
2307 		/*
2308 		 * Must be done after setting MNTK_UNMOUNTF and before
2309 		 * waiting for mnt_lockref to become 0.
2310 		 */
2311 		VFS_PURGE(mp);
2312 		MNT_ILOCK(mp);
2313 	}
2314 	error = 0;
2315 	if (mp->mnt_lockref) {
2316 		mp->mnt_kern_flag |= MNTK_DRAINING;
2317 		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2318 		    "mount drain", 0);
2319 	}
2320 	MNT_IUNLOCK(mp);
2321 	KASSERT(mp->mnt_lockref == 0,
2322 	    ("%s: invalid lock refcount in the drain path @ %s:%d",
2323 	    __func__, __FILE__, __LINE__));
2324 	KASSERT(error == 0,
2325 	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
2326 	    __func__, __FILE__, __LINE__));
2327 
2328 	/*
2329 	 * We want to keep the vnode around so that we can vn_seqc_write_end
2330 	 * after we are done with unmount. Downgrade our reference to a mere
2331 	 * hold count so that we don't interefere with anything.
2332 	 */
2333 	if (rootvp != NULL) {
2334 		vhold(rootvp);
2335 		vrele(rootvp);
2336 	}
2337 
2338 	if (mp->mnt_flag & MNT_EXPUBLIC)
2339 		vfs_setpublicfs(NULL, NULL, NULL);
2340 
2341 	vfs_periodic(mp, MNT_WAIT);
2342 	MNT_ILOCK(mp);
2343 	async_flag = mp->mnt_flag & MNT_ASYNC;
2344 	mp->mnt_flag &= ~MNT_ASYNC;
2345 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
2346 	MNT_IUNLOCK(mp);
2347 	vfs_deallocate_syncvnode(mp);
2348 	error = VFS_UNMOUNT(mp, flags);
2349 	vn_finished_write(mp);
2350 	vfs_rel(mp);
2351 	/*
2352 	 * If we failed to flush the dirty blocks for this mount point,
2353 	 * undo all the cdir/rdir and rootvnode changes we made above.
2354 	 * Unless we failed to do so because the device is reporting that
2355 	 * it doesn't exist anymore.
2356 	 */
2357 	if (error && error != ENXIO) {
2358 		MNT_ILOCK(mp);
2359 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2360 			MNT_IUNLOCK(mp);
2361 			vfs_allocate_syncvnode(mp);
2362 			MNT_ILOCK(mp);
2363 		}
2364 		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2365 		mp->mnt_flag |= async_flag;
2366 		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2367 		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2368 			mp->mnt_kern_flag |= MNTK_ASYNC;
2369 		if (mp->mnt_kern_flag & MNTK_MWAIT) {
2370 			mp->mnt_kern_flag &= ~MNTK_MWAIT;
2371 			wakeup(mp);
2372 		}
2373 		vfs_op_exit_locked(mp);
2374 		MNT_IUNLOCK(mp);
2375 		if (coveredvp) {
2376 			vn_seqc_write_end(coveredvp);
2377 			VOP_UNLOCK(coveredvp);
2378 			vdrop(coveredvp);
2379 		}
2380 		if (rootvp != NULL) {
2381 			vn_seqc_write_end(rootvp);
2382 			vdrop(rootvp);
2383 		}
2384 		return (error);
2385 	}
2386 
2387 	mtx_lock(&mountlist_mtx);
2388 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
2389 	mtx_unlock(&mountlist_mtx);
2390 	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2391 	if (coveredvp != NULL) {
2392 		VI_LOCK(coveredvp);
2393 		vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2394 		coveredvp->v_mountedhere = NULL;
2395 		vn_seqc_write_end_locked(coveredvp);
2396 		VI_UNLOCK(coveredvp);
2397 		VOP_UNLOCK(coveredvp);
2398 		vdrop(coveredvp);
2399 	}
2400 	mount_devctl_event("UNMOUNT", mp, false);
2401 	if (rootvp != NULL) {
2402 		vn_seqc_write_end(rootvp);
2403 		vdrop(rootvp);
2404 	}
2405 	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2406 	if (rootvnode != NULL && mp == rootvnode->v_mount) {
2407 		vrele(rootvnode);
2408 		rootvnode = NULL;
2409 	}
2410 	if (mp == rootdevmp)
2411 		rootdevmp = NULL;
2412 	if ((flags & MNT_DEFERRED) != 0)
2413 		vfs_rel(mp);
2414 	vfs_mount_destroy(mp);
2415 	return (0);
2416 }
2417 
2418 /*
2419  * Report errors during filesystem mounting.
2420  */
2421 void
vfs_mount_error(struct mount * mp,const char * fmt,...)2422 vfs_mount_error(struct mount *mp, const char *fmt, ...)
2423 {
2424 	struct vfsoptlist *moptlist = mp->mnt_optnew;
2425 	va_list ap;
2426 	int error, len;
2427 	char *errmsg;
2428 
2429 	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2430 	if (error || errmsg == NULL || len <= 0)
2431 		return;
2432 
2433 	va_start(ap, fmt);
2434 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2435 	va_end(ap);
2436 }
2437 
2438 void
vfs_opterror(struct vfsoptlist * opts,const char * fmt,...)2439 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2440 {
2441 	va_list ap;
2442 	int error, len;
2443 	char *errmsg;
2444 
2445 	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2446 	if (error || errmsg == NULL || len <= 0)
2447 		return;
2448 
2449 	va_start(ap, fmt);
2450 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2451 	va_end(ap);
2452 }
2453 
2454 /*
2455  * ---------------------------------------------------------------------
2456  * Functions for querying mount options/arguments from filesystems.
2457  */
2458 
2459 /*
2460  * Check that no unknown options are given
2461  */
2462 int
vfs_filteropt(struct vfsoptlist * opts,const char ** legal)2463 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2464 {
2465 	struct vfsopt *opt;
2466 	char errmsg[255];
2467 	const char **t, *p, *q;
2468 	int ret = 0;
2469 
2470 	TAILQ_FOREACH(opt, opts, link) {
2471 		p = opt->name;
2472 		q = NULL;
2473 		if (p[0] == 'n' && p[1] == 'o')
2474 			q = p + 2;
2475 		for(t = global_opts; *t != NULL; t++) {
2476 			if (strcmp(*t, p) == 0)
2477 				break;
2478 			if (q != NULL) {
2479 				if (strcmp(*t, q) == 0)
2480 					break;
2481 			}
2482 		}
2483 		if (*t != NULL)
2484 			continue;
2485 		for(t = legal; *t != NULL; t++) {
2486 			if (strcmp(*t, p) == 0)
2487 				break;
2488 			if (q != NULL) {
2489 				if (strcmp(*t, q) == 0)
2490 					break;
2491 			}
2492 		}
2493 		if (*t != NULL)
2494 			continue;
2495 		snprintf(errmsg, sizeof(errmsg),
2496 		    "mount option <%s> is unknown", p);
2497 		ret = EINVAL;
2498 	}
2499 	if (ret != 0) {
2500 		TAILQ_FOREACH(opt, opts, link) {
2501 			if (strcmp(opt->name, "errmsg") == 0) {
2502 				strncpy((char *)opt->value, errmsg, opt->len);
2503 				break;
2504 			}
2505 		}
2506 		if (opt == NULL)
2507 			printf("%s\n", errmsg);
2508 	}
2509 	return (ret);
2510 }
2511 
2512 /*
2513  * Get a mount option by its name.
2514  *
2515  * Return 0 if the option was found, ENOENT otherwise.
2516  * If len is non-NULL it will be filled with the length
2517  * of the option. If buf is non-NULL, it will be filled
2518  * with the address of the option.
2519  */
2520 int
vfs_getopt(struct vfsoptlist * opts,const char * name,void ** buf,int * len)2521 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2522 {
2523 	struct vfsopt *opt;
2524 
2525 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2526 
2527 	TAILQ_FOREACH(opt, opts, link) {
2528 		if (strcmp(name, opt->name) == 0) {
2529 			opt->seen = 1;
2530 			if (len != NULL)
2531 				*len = opt->len;
2532 			if (buf != NULL)
2533 				*buf = opt->value;
2534 			return (0);
2535 		}
2536 	}
2537 	return (ENOENT);
2538 }
2539 
2540 int
vfs_getopt_pos(struct vfsoptlist * opts,const char * name)2541 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2542 {
2543 	struct vfsopt *opt;
2544 
2545 	if (opts == NULL)
2546 		return (-1);
2547 
2548 	TAILQ_FOREACH(opt, opts, link) {
2549 		if (strcmp(name, opt->name) == 0) {
2550 			opt->seen = 1;
2551 			return (opt->pos);
2552 		}
2553 	}
2554 	return (-1);
2555 }
2556 
2557 int
vfs_getopt_size(struct vfsoptlist * opts,const char * name,off_t * value)2558 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2559 {
2560 	char *opt_value, *vtp;
2561 	quad_t iv;
2562 	int error, opt_len;
2563 
2564 	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2565 	if (error != 0)
2566 		return (error);
2567 	if (opt_len == 0 || opt_value == NULL)
2568 		return (EINVAL);
2569 	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2570 		return (EINVAL);
2571 	iv = strtoq(opt_value, &vtp, 0);
2572 	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2573 		return (EINVAL);
2574 	if (iv < 0)
2575 		return (EINVAL);
2576 	switch (vtp[0]) {
2577 	case 't': case 'T':
2578 		iv *= 1024;
2579 		/* FALLTHROUGH */
2580 	case 'g': case 'G':
2581 		iv *= 1024;
2582 		/* FALLTHROUGH */
2583 	case 'm': case 'M':
2584 		iv *= 1024;
2585 		/* FALLTHROUGH */
2586 	case 'k': case 'K':
2587 		iv *= 1024;
2588 	case '\0':
2589 		break;
2590 	default:
2591 		return (EINVAL);
2592 	}
2593 	*value = iv;
2594 
2595 	return (0);
2596 }
2597 
2598 char *
vfs_getopts(struct vfsoptlist * opts,const char * name,int * error)2599 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2600 {
2601 	struct vfsopt *opt;
2602 
2603 	*error = 0;
2604 	TAILQ_FOREACH(opt, opts, link) {
2605 		if (strcmp(name, opt->name) != 0)
2606 			continue;
2607 		opt->seen = 1;
2608 		if (opt->len == 0 ||
2609 		    ((char *)opt->value)[opt->len - 1] != '\0') {
2610 			*error = EINVAL;
2611 			return (NULL);
2612 		}
2613 		return (opt->value);
2614 	}
2615 	*error = ENOENT;
2616 	return (NULL);
2617 }
2618 
2619 int
vfs_flagopt(struct vfsoptlist * opts,const char * name,uint64_t * w,uint64_t val)2620 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2621 	uint64_t val)
2622 {
2623 	struct vfsopt *opt;
2624 
2625 	TAILQ_FOREACH(opt, opts, link) {
2626 		if (strcmp(name, opt->name) == 0) {
2627 			opt->seen = 1;
2628 			if (w != NULL)
2629 				*w |= val;
2630 			return (1);
2631 		}
2632 	}
2633 	if (w != NULL)
2634 		*w &= ~val;
2635 	return (0);
2636 }
2637 
2638 int
vfs_scanopt(struct vfsoptlist * opts,const char * name,const char * fmt,...)2639 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2640 {
2641 	va_list ap;
2642 	struct vfsopt *opt;
2643 	int ret;
2644 
2645 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2646 
2647 	TAILQ_FOREACH(opt, opts, link) {
2648 		if (strcmp(name, opt->name) != 0)
2649 			continue;
2650 		opt->seen = 1;
2651 		if (opt->len == 0 || opt->value == NULL)
2652 			return (0);
2653 		if (((char *)opt->value)[opt->len - 1] != '\0')
2654 			return (0);
2655 		va_start(ap, fmt);
2656 		ret = vsscanf(opt->value, fmt, ap);
2657 		va_end(ap);
2658 		return (ret);
2659 	}
2660 	return (0);
2661 }
2662 
2663 int
vfs_setopt(struct vfsoptlist * opts,const char * name,void * value,int len)2664 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2665 {
2666 	struct vfsopt *opt;
2667 
2668 	TAILQ_FOREACH(opt, opts, link) {
2669 		if (strcmp(name, opt->name) != 0)
2670 			continue;
2671 		opt->seen = 1;
2672 		if (opt->value == NULL)
2673 			opt->len = len;
2674 		else {
2675 			if (opt->len != len)
2676 				return (EINVAL);
2677 			bcopy(value, opt->value, len);
2678 		}
2679 		return (0);
2680 	}
2681 	return (ENOENT);
2682 }
2683 
2684 int
vfs_setopt_part(struct vfsoptlist * opts,const char * name,void * value,int len)2685 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2686 {
2687 	struct vfsopt *opt;
2688 
2689 	TAILQ_FOREACH(opt, opts, link) {
2690 		if (strcmp(name, opt->name) != 0)
2691 			continue;
2692 		opt->seen = 1;
2693 		if (opt->value == NULL)
2694 			opt->len = len;
2695 		else {
2696 			if (opt->len < len)
2697 				return (EINVAL);
2698 			opt->len = len;
2699 			bcopy(value, opt->value, len);
2700 		}
2701 		return (0);
2702 	}
2703 	return (ENOENT);
2704 }
2705 
2706 int
vfs_setopts(struct vfsoptlist * opts,const char * name,const char * value)2707 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2708 {
2709 	struct vfsopt *opt;
2710 
2711 	TAILQ_FOREACH(opt, opts, link) {
2712 		if (strcmp(name, opt->name) != 0)
2713 			continue;
2714 		opt->seen = 1;
2715 		if (opt->value == NULL)
2716 			opt->len = strlen(value) + 1;
2717 		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2718 			return (EINVAL);
2719 		return (0);
2720 	}
2721 	return (ENOENT);
2722 }
2723 
2724 /*
2725  * Find and copy a mount option.
2726  *
2727  * The size of the buffer has to be specified
2728  * in len, if it is not the same length as the
2729  * mount option, EINVAL is returned.
2730  * Returns ENOENT if the option is not found.
2731  */
2732 int
vfs_copyopt(struct vfsoptlist * opts,const char * name,void * dest,int len)2733 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2734 {
2735 	struct vfsopt *opt;
2736 
2737 	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2738 
2739 	TAILQ_FOREACH(opt, opts, link) {
2740 		if (strcmp(name, opt->name) == 0) {
2741 			opt->seen = 1;
2742 			if (len != opt->len)
2743 				return (EINVAL);
2744 			bcopy(opt->value, dest, opt->len);
2745 			return (0);
2746 		}
2747 	}
2748 	return (ENOENT);
2749 }
2750 
2751 int
__vfs_statfs(struct mount * mp,struct statfs * sbp)2752 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2753 {
2754 	/*
2755 	 * Filesystems only fill in part of the structure for updates, we
2756 	 * have to read the entirety first to get all content.
2757 	 */
2758 	if (sbp != &mp->mnt_stat)
2759 		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2760 
2761 	/*
2762 	 * Set these in case the underlying filesystem fails to do so.
2763 	 */
2764 	sbp->f_version = STATFS_VERSION;
2765 	sbp->f_namemax = NAME_MAX;
2766 	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2767 	sbp->f_nvnodelistsize = mp->mnt_nvnodelistsize;
2768 
2769 	return (mp->mnt_op->vfs_statfs(mp, sbp));
2770 }
2771 
2772 void
vfs_mountedfrom(struct mount * mp,const char * from)2773 vfs_mountedfrom(struct mount *mp, const char *from)
2774 {
2775 
2776 	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2777 	strlcpy(mp->mnt_stat.f_mntfromname, from,
2778 	    sizeof mp->mnt_stat.f_mntfromname);
2779 }
2780 
2781 /*
2782  * ---------------------------------------------------------------------
2783  * This is the api for building mount args and mounting filesystems from
2784  * inside the kernel.
2785  *
2786  * The API works by accumulation of individual args.  First error is
2787  * latched.
2788  *
2789  * XXX: should be documented in new manpage kernel_mount(9)
2790  */
2791 
2792 /* A memory allocation which must be freed when we are done */
2793 struct mntaarg {
2794 	SLIST_ENTRY(mntaarg)	next;
2795 };
2796 
2797 /* The header for the mount arguments */
2798 struct mntarg {
2799 	struct iovec *v;
2800 	int len;
2801 	int error;
2802 	SLIST_HEAD(, mntaarg)	list;
2803 };
2804 
2805 /*
2806  * Add a boolean argument.
2807  *
2808  * flag is the boolean value.
2809  * name must start with "no".
2810  */
2811 struct mntarg *
mount_argb(struct mntarg * ma,int flag,const char * name)2812 mount_argb(struct mntarg *ma, int flag, const char *name)
2813 {
2814 
2815 	KASSERT(name[0] == 'n' && name[1] == 'o',
2816 	    ("mount_argb(...,%s): name must start with 'no'", name));
2817 
2818 	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2819 }
2820 
2821 /*
2822  * Add an argument printf style
2823  */
2824 struct mntarg *
mount_argf(struct mntarg * ma,const char * name,const char * fmt,...)2825 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2826 {
2827 	va_list ap;
2828 	struct mntaarg *maa;
2829 	struct sbuf *sb;
2830 	int len;
2831 
2832 	if (ma == NULL) {
2833 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2834 		SLIST_INIT(&ma->list);
2835 	}
2836 	if (ma->error)
2837 		return (ma);
2838 
2839 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2840 	    M_MOUNT, M_WAITOK);
2841 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2842 	ma->v[ma->len].iov_len = strlen(name) + 1;
2843 	ma->len++;
2844 
2845 	sb = sbuf_new_auto();
2846 	va_start(ap, fmt);
2847 	sbuf_vprintf(sb, fmt, ap);
2848 	va_end(ap);
2849 	sbuf_finish(sb);
2850 	len = sbuf_len(sb) + 1;
2851 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2852 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2853 	bcopy(sbuf_data(sb), maa + 1, len);
2854 	sbuf_delete(sb);
2855 
2856 	ma->v[ma->len].iov_base = maa + 1;
2857 	ma->v[ma->len].iov_len = len;
2858 	ma->len++;
2859 
2860 	return (ma);
2861 }
2862 
2863 /*
2864  * Add an argument which is a userland string.
2865  */
2866 struct mntarg *
mount_argsu(struct mntarg * ma,const char * name,const void * val,int len)2867 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2868 {
2869 	struct mntaarg *maa;
2870 	char *tbuf;
2871 
2872 	if (val == NULL)
2873 		return (ma);
2874 	if (ma == NULL) {
2875 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2876 		SLIST_INIT(&ma->list);
2877 	}
2878 	if (ma->error)
2879 		return (ma);
2880 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2881 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2882 	tbuf = (void *)(maa + 1);
2883 	ma->error = copyinstr(val, tbuf, len, NULL);
2884 	return (mount_arg(ma, name, tbuf, -1));
2885 }
2886 
2887 /*
2888  * Plain argument.
2889  *
2890  * If length is -1, treat value as a C string.
2891  */
2892 struct mntarg *
mount_arg(struct mntarg * ma,const char * name,const void * val,int len)2893 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2894 {
2895 
2896 	if (ma == NULL) {
2897 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2898 		SLIST_INIT(&ma->list);
2899 	}
2900 	if (ma->error)
2901 		return (ma);
2902 
2903 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2904 	    M_MOUNT, M_WAITOK);
2905 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2906 	ma->v[ma->len].iov_len = strlen(name) + 1;
2907 	ma->len++;
2908 
2909 	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2910 	if (len < 0)
2911 		ma->v[ma->len].iov_len = strlen(val) + 1;
2912 	else
2913 		ma->v[ma->len].iov_len = len;
2914 	ma->len++;
2915 	return (ma);
2916 }
2917 
2918 /*
2919  * Free a mntarg structure
2920  */
2921 static void
free_mntarg(struct mntarg * ma)2922 free_mntarg(struct mntarg *ma)
2923 {
2924 	struct mntaarg *maa;
2925 
2926 	while (!SLIST_EMPTY(&ma->list)) {
2927 		maa = SLIST_FIRST(&ma->list);
2928 		SLIST_REMOVE_HEAD(&ma->list, next);
2929 		free(maa, M_MOUNT);
2930 	}
2931 	free(ma->v, M_MOUNT);
2932 	free(ma, M_MOUNT);
2933 }
2934 
2935 /*
2936  * Mount a filesystem
2937  */
2938 int
kernel_mount(struct mntarg * ma,uint64_t flags)2939 kernel_mount(struct mntarg *ma, uint64_t flags)
2940 {
2941 	struct uio auio;
2942 	int error;
2943 
2944 	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2945 	KASSERT(ma->error != 0 || ma->v != NULL, ("kernel_mount NULL ma->v"));
2946 	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2947 
2948 	error = ma->error;
2949 	if (error == 0) {
2950 		auio.uio_iov = ma->v;
2951 		auio.uio_iovcnt = ma->len;
2952 		auio.uio_segflg = UIO_SYSSPACE;
2953 		error = vfs_donmount(curthread, flags, &auio);
2954 	}
2955 	free_mntarg(ma);
2956 	return (error);
2957 }
2958 
2959 /* Map from mount options to printable formats. */
2960 static struct mntoptnames optnames[] = {
2961 	MNTOPT_NAMES
2962 };
2963 
2964 #define DEVCTL_LEN 1024
2965 static void
mount_devctl_event(const char * type,struct mount * mp,bool donew)2966 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2967 {
2968 	const uint8_t *cp;
2969 	struct mntoptnames *fp;
2970 	struct sbuf sb;
2971 	struct statfs *sfp = &mp->mnt_stat;
2972 	char *buf;
2973 
2974 	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2975 	if (buf == NULL)
2976 		return;
2977 	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2978 	sbuf_cpy(&sb, "mount-point=\"");
2979 	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2980 	sbuf_cat(&sb, "\" mount-dev=\"");
2981 	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2982 	sbuf_cat(&sb, "\" mount-type=\"");
2983 	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2984 	sbuf_cat(&sb, "\" fsid=0x");
2985 	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2986 	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2987 		sbuf_printf(&sb, "%02x", cp[i]);
2988 	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2989 	for (fp = optnames; fp->o_opt != 0; fp++) {
2990 		if ((mp->mnt_flag & fp->o_opt) != 0) {
2991 			sbuf_cat(&sb, fp->o_name);
2992 			sbuf_putc(&sb, ';');
2993 		}
2994 	}
2995 	sbuf_putc(&sb, '"');
2996 	sbuf_finish(&sb);
2997 
2998 	/*
2999 	 * Options are not published because the form of the options depends on
3000 	 * the file system and may include binary data. In addition, they don't
3001 	 * necessarily provide enough useful information to be actionable when
3002 	 * devd processes them.
3003 	 */
3004 
3005 	if (sbuf_error(&sb) == 0)
3006 		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
3007 	sbuf_delete(&sb);
3008 	free(buf, M_MOUNT);
3009 }
3010 
3011 /*
3012  * Force remount specified mount point to read-only.  The argument
3013  * must be busied to avoid parallel unmount attempts.
3014  *
3015  * Intended use is to prevent further writes if some metadata
3016  * inconsistency is detected.  Note that the function still flushes
3017  * all cached metadata and data for the mount point, which might be
3018  * not always suitable.
3019  */
3020 int
vfs_remount_ro(struct mount * mp)3021 vfs_remount_ro(struct mount *mp)
3022 {
3023 	struct vfsoptlist *opts;
3024 	struct vfsopt *opt;
3025 	struct vnode *vp_covered, *rootvp;
3026 	int error;
3027 
3028 	vfs_op_enter(mp);
3029 	KASSERT(mp->mnt_lockref > 0,
3030 	    ("vfs_remount_ro: mp %p is not busied", mp));
3031 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
3032 	    ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
3033 
3034 	rootvp = NULL;
3035 	vp_covered = mp->mnt_vnodecovered;
3036 	error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
3037 	if (error != 0) {
3038 		vfs_op_exit(mp);
3039 		return (error);
3040 	}
3041 	VI_LOCK(vp_covered);
3042 	if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
3043 		VI_UNLOCK(vp_covered);
3044 		vput(vp_covered);
3045 		vfs_op_exit(mp);
3046 		return (EBUSY);
3047 	}
3048 	vp_covered->v_iflag |= VI_MOUNT;
3049 	VI_UNLOCK(vp_covered);
3050 	vn_seqc_write_begin(vp_covered);
3051 
3052 	MNT_ILOCK(mp);
3053 	if ((mp->mnt_flag & MNT_RDONLY) != 0) {
3054 		MNT_IUNLOCK(mp);
3055 		error = EBUSY;
3056 		goto out;
3057 	}
3058 	mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
3059 	rootvp = vfs_cache_root_clear(mp);
3060 	MNT_IUNLOCK(mp);
3061 
3062 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
3063 	TAILQ_INIT(opts);
3064 	opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
3065 	opt->name = strdup("ro", M_MOUNT);
3066 	opt->value = NULL;
3067 	TAILQ_INSERT_TAIL(opts, opt, link);
3068 	vfs_mergeopts(opts, mp->mnt_opt);
3069 	mp->mnt_optnew = opts;
3070 
3071 	error = VFS_MOUNT(mp);
3072 
3073 	if (error == 0) {
3074 		MNT_ILOCK(mp);
3075 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
3076 		MNT_IUNLOCK(mp);
3077 		vfs_deallocate_syncvnode(mp);
3078 		if (mp->mnt_opt != NULL)
3079 			vfs_freeopts(mp->mnt_opt);
3080 		mp->mnt_opt = mp->mnt_optnew;
3081 	} else {
3082 		MNT_ILOCK(mp);
3083 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
3084 		MNT_IUNLOCK(mp);
3085 		vfs_freeopts(mp->mnt_optnew);
3086 	}
3087 	mp->mnt_optnew = NULL;
3088 
3089 out:
3090 	vfs_op_exit(mp);
3091 	VI_LOCK(vp_covered);
3092 	vp_covered->v_iflag &= ~VI_MOUNT;
3093 	VI_UNLOCK(vp_covered);
3094 	vput(vp_covered);
3095 	vn_seqc_write_end(vp_covered);
3096 	if (rootvp != NULL) {
3097 		vn_seqc_write_end(rootvp);
3098 		vrele(rootvp);
3099 	}
3100 	return (error);
3101 }
3102 
3103 /*
3104  * Suspend write operations on all local writeable filesystems.  Does
3105  * full sync of them in the process.
3106  *
3107  * Iterate over the mount points in reverse order, suspending most
3108  * recently mounted filesystems first.  It handles a case where a
3109  * filesystem mounted from a md(4) vnode-backed device should be
3110  * suspended before the filesystem that owns the vnode.
3111  */
3112 void
suspend_all_fs(void)3113 suspend_all_fs(void)
3114 {
3115 	struct mount *mp;
3116 	int error;
3117 
3118 	mtx_lock(&mountlist_mtx);
3119 	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
3120 		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
3121 		if (error != 0)
3122 			continue;
3123 		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
3124 		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
3125 			mtx_lock(&mountlist_mtx);
3126 			vfs_unbusy(mp);
3127 			continue;
3128 		}
3129 		error = vfs_write_suspend(mp, 0);
3130 		if (error == 0) {
3131 			MNT_ILOCK(mp);
3132 			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
3133 			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
3134 			MNT_IUNLOCK(mp);
3135 			mtx_lock(&mountlist_mtx);
3136 		} else {
3137 			printf("suspend of %s failed, error %d\n",
3138 			    mp->mnt_stat.f_mntonname, error);
3139 			mtx_lock(&mountlist_mtx);
3140 			vfs_unbusy(mp);
3141 		}
3142 	}
3143 	mtx_unlock(&mountlist_mtx);
3144 }
3145 
3146 /*
3147  * Clone the mnt_exjail field to a new mount point.
3148  */
3149 void
vfs_exjail_clone(struct mount * inmp,struct mount * outmp)3150 vfs_exjail_clone(struct mount *inmp, struct mount *outmp)
3151 {
3152 	struct ucred *cr;
3153 	struct prison *pr;
3154 
3155 	MNT_ILOCK(inmp);
3156 	cr = inmp->mnt_exjail;
3157 	if (cr != NULL) {
3158 		crhold(cr);
3159 		MNT_IUNLOCK(inmp);
3160 		pr = cr->cr_prison;
3161 		sx_slock(&allprison_lock);
3162 		if (!prison_isalive(pr)) {
3163 			sx_sunlock(&allprison_lock);
3164 			crfree(cr);
3165 			return;
3166 		}
3167 		MNT_ILOCK(outmp);
3168 		if (outmp->mnt_exjail == NULL) {
3169 			outmp->mnt_exjail = cr;
3170 			atomic_add_int(&pr->pr_exportcnt, 1);
3171 			cr = NULL;
3172 		}
3173 		MNT_IUNLOCK(outmp);
3174 		sx_sunlock(&allprison_lock);
3175 		if (cr != NULL)
3176 			crfree(cr);
3177 	} else
3178 		MNT_IUNLOCK(inmp);
3179 }
3180 
3181 void
resume_all_fs(void)3182 resume_all_fs(void)
3183 {
3184 	struct mount *mp;
3185 
3186 	mtx_lock(&mountlist_mtx);
3187 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3188 		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3189 			continue;
3190 		mtx_unlock(&mountlist_mtx);
3191 		MNT_ILOCK(mp);
3192 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3193 		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3194 		MNT_IUNLOCK(mp);
3195 		vfs_write_resume(mp, 0);
3196 		mtx_lock(&mountlist_mtx);
3197 		vfs_unbusy(mp);
3198 	}
3199 	mtx_unlock(&mountlist_mtx);
3200 }
3201