1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
initname(struct filename * name,const char __user * uptr)128 static inline void initname(struct filename *name, const char __user *uptr)
129 {
130 name->uptr = uptr;
131 name->aname = NULL;
132 atomic_set(&name->refcnt, 1);
133 }
134
135 struct filename *
getname_flags(const char __user * filename,int flags)136 getname_flags(const char __user *filename, int flags)
137 {
138 struct filename *result;
139 char *kname;
140 int len;
141
142 result = audit_reusename(filename);
143 if (result)
144 return result;
145
146 result = __getname();
147 if (unlikely(!result))
148 return ERR_PTR(-ENOMEM);
149
150 /*
151 * First, try to embed the struct filename inside the names_cache
152 * allocation
153 */
154 kname = (char *)result->iname;
155 result->name = kname;
156
157 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 /*
159 * Handle both empty path and copy failure in one go.
160 */
161 if (unlikely(len <= 0)) {
162 if (unlikely(len < 0)) {
163 __putname(result);
164 return ERR_PTR(len);
165 }
166
167 /* The empty path is special. */
168 if (!(flags & LOOKUP_EMPTY)) {
169 __putname(result);
170 return ERR_PTR(-ENOENT);
171 }
172 }
173
174 /*
175 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 * separate struct filename so we can dedicate the entire
177 * names_cache allocation for the pathname, and re-do the copy from
178 * userland.
179 */
180 if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 const size_t size = offsetof(struct filename, iname[1]);
182 kname = (char *)result;
183
184 /*
185 * size is chosen that way we to guarantee that
186 * result->iname[0] is within the same object and that
187 * kname can't be equal to result->iname, no matter what.
188 */
189 result = kzalloc(size, GFP_KERNEL);
190 if (unlikely(!result)) {
191 __putname(kname);
192 return ERR_PTR(-ENOMEM);
193 }
194 result->name = kname;
195 len = strncpy_from_user(kname, filename, PATH_MAX);
196 if (unlikely(len < 0)) {
197 __putname(kname);
198 kfree(result);
199 return ERR_PTR(len);
200 }
201 /* The empty path is special. */
202 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 __putname(kname);
204 kfree(result);
205 return ERR_PTR(-ENOENT);
206 }
207 if (unlikely(len == PATH_MAX)) {
208 __putname(kname);
209 kfree(result);
210 return ERR_PTR(-ENAMETOOLONG);
211 }
212 }
213 initname(result, filename);
214 audit_getname(result);
215 return result;
216 }
217
getname_uflags(const char __user * filename,int uflags)218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221
222 return getname_flags(filename, flags);
223 }
224
__getname_maybe_null(const char __user * pathname)225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 struct filename *name;
228 char c;
229
230 /* try to save on allocations; loss on um, though */
231 if (get_user(c, pathname))
232 return ERR_PTR(-EFAULT);
233 if (!c)
234 return NULL;
235
236 name = getname_flags(pathname, LOOKUP_EMPTY);
237 if (!IS_ERR(name) && !(name->name[0])) {
238 putname(name);
239 name = NULL;
240 }
241 return name;
242 }
243
getname_kernel(const char * filename)244 struct filename *getname_kernel(const char * filename)
245 {
246 struct filename *result;
247 int len = strlen(filename) + 1;
248
249 result = __getname();
250 if (unlikely(!result))
251 return ERR_PTR(-ENOMEM);
252
253 if (len <= EMBEDDED_NAME_MAX) {
254 result->name = (char *)result->iname;
255 } else if (len <= PATH_MAX) {
256 const size_t size = offsetof(struct filename, iname[1]);
257 struct filename *tmp;
258
259 tmp = kmalloc(size, GFP_KERNEL);
260 if (unlikely(!tmp)) {
261 __putname(result);
262 return ERR_PTR(-ENOMEM);
263 }
264 tmp->name = (char *)result;
265 result = tmp;
266 } else {
267 __putname(result);
268 return ERR_PTR(-ENAMETOOLONG);
269 }
270 memcpy((char *)result->name, filename, len);
271 initname(result, NULL);
272 audit_getname(result);
273 return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276
putname(struct filename * name)277 void putname(struct filename *name)
278 {
279 int refcnt;
280
281 if (IS_ERR_OR_NULL(name))
282 return;
283
284 refcnt = atomic_read(&name->refcnt);
285 if (refcnt != 1) {
286 if (WARN_ON_ONCE(!refcnt))
287 return;
288
289 if (!atomic_dec_and_test(&name->refcnt))
290 return;
291 }
292
293 if (name->name != name->iname) {
294 __putname(name->name);
295 kfree(name);
296 } else
297 __putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300
301 /**
302 * check_acl - perform ACL permission checking
303 * @idmap: idmap of the mount the inode was found from
304 * @inode: inode to check permissions on
305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306 *
307 * This function performs the ACL permission checking. Since this function
308 * retrieve POSIX acls it needs to know whether it is called from a blocking or
309 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310 *
311 * If the inode has been found through an idmapped mount the idmap of
312 * the vfsmount must be passed through @idmap. This function will then take
313 * care to map the inode according to @idmap before checking permissions.
314 * On non-idmapped mounts or if permission checking is to be performed on the
315 * raw inode simply pass @nop_mnt_idmap.
316 */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)317 static int check_acl(struct mnt_idmap *idmap,
318 struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 struct posix_acl *acl;
322
323 if (mask & MAY_NOT_BLOCK) {
324 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 if (!acl)
326 return -EAGAIN;
327 /* no ->get_inode_acl() calls in RCU mode... */
328 if (is_uncached_acl(acl))
329 return -ECHILD;
330 return posix_acl_permission(idmap, inode, acl, mask);
331 }
332
333 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 if (IS_ERR(acl))
335 return PTR_ERR(acl);
336 if (acl) {
337 int error = posix_acl_permission(idmap, inode, acl, mask);
338 posix_acl_release(acl);
339 return error;
340 }
341 #endif
342
343 return -EAGAIN;
344 }
345
346 /*
347 * Very quick optimistic "we know we have no ACL's" check.
348 *
349 * Note that this is purely for ACL_TYPE_ACCESS, and purely
350 * for the "we have cached that there are no ACLs" case.
351 *
352 * If this returns true, we know there are no ACLs. But if
353 * it returns false, we might still not have ACLs (it could
354 * be the is_uncached_acl() case).
355 */
no_acl_inode(struct inode * inode)356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 return likely(!READ_ONCE(inode->i_acl));
360 #else
361 return true;
362 #endif
363 }
364
365 /**
366 * acl_permission_check - perform basic UNIX permission checking
367 * @idmap: idmap of the mount the inode was found from
368 * @inode: inode to check permissions on
369 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370 *
371 * This function performs the basic UNIX permission checking. Since this
372 * function may retrieve POSIX acls it needs to know whether it is called from a
373 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374 *
375 * If the inode has been found through an idmapped mount the idmap of
376 * the vfsmount must be passed through @idmap. This function will then take
377 * care to map the inode according to @idmap before checking permissions.
378 * On non-idmapped mounts or if permission checking is to be performed on the
379 * raw inode simply pass @nop_mnt_idmap.
380 */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)381 static int acl_permission_check(struct mnt_idmap *idmap,
382 struct inode *inode, int mask)
383 {
384 unsigned int mode = inode->i_mode;
385 vfsuid_t vfsuid;
386
387 /*
388 * Common cheap case: everybody has the requested
389 * rights, and there are no ACLs to check. No need
390 * to do any owner/group checks in that case.
391 *
392 * - 'mask&7' is the requested permission bit set
393 * - multiplying by 0111 spreads them out to all of ugo
394 * - '& ~mode' looks for missing inode permission bits
395 * - the '!' is for "no missing permissions"
396 *
397 * After that, we just need to check that there are no
398 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 * because it will dereference the ->i_sb pointer and we
400 * want to avoid that if at all possible.
401 */
402 if (!((mask & 7) * 0111 & ~mode)) {
403 if (no_acl_inode(inode))
404 return 0;
405 if (!IS_POSIXACL(inode))
406 return 0;
407 }
408
409 /* Are we the owner? If so, ACL's don't matter */
410 vfsuid = i_uid_into_vfsuid(idmap, inode);
411 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 mask &= 7;
413 mode >>= 6;
414 return (mask & ~mode) ? -EACCES : 0;
415 }
416
417 /* Do we have ACL's? */
418 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 int error = check_acl(idmap, inode, mask);
420 if (error != -EAGAIN)
421 return error;
422 }
423
424 /* Only RWX matters for group/other mode bits */
425 mask &= 7;
426
427 /*
428 * Are the group permissions different from
429 * the other permissions in the bits we care
430 * about? Need to check group ownership if so.
431 */
432 if (mask & (mode ^ (mode >> 3))) {
433 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 if (vfsgid_in_group_p(vfsgid))
435 mode >>= 3;
436 }
437
438 /* Bits in 'mode' clear that we require? */
439 return (mask & ~mode) ? -EACCES : 0;
440 }
441
442 /**
443 * generic_permission - check for access rights on a Posix-like filesystem
444 * @idmap: idmap of the mount the inode was found from
445 * @inode: inode to check access rights for
446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447 * %MAY_NOT_BLOCK ...)
448 *
449 * Used to check for read/write/execute permissions on a file.
450 * We use "fsuid" for this, letting us set arbitrary permissions
451 * for filesystem access without changing the "normal" uids which
452 * are used for other things.
453 *
454 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455 * request cannot be satisfied (eg. requires blocking or too much complexity).
456 * It would then be called again in ref-walk mode.
457 *
458 * If the inode has been found through an idmapped mount the idmap of
459 * the vfsmount must be passed through @idmap. This function will then take
460 * care to map the inode according to @idmap before checking permissions.
461 * On non-idmapped mounts or if permission checking is to be performed on the
462 * raw inode simply pass @nop_mnt_idmap.
463 */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 int mask)
466 {
467 int ret;
468
469 /*
470 * Do the basic permission checks.
471 */
472 ret = acl_permission_check(idmap, inode, mask);
473 if (ret != -EACCES)
474 return ret;
475
476 if (S_ISDIR(inode->i_mode)) {
477 /* DACs are overridable for directories */
478 if (!(mask & MAY_WRITE))
479 if (capable_wrt_inode_uidgid(idmap, inode,
480 CAP_DAC_READ_SEARCH))
481 return 0;
482 if (capable_wrt_inode_uidgid(idmap, inode,
483 CAP_DAC_OVERRIDE))
484 return 0;
485 return -EACCES;
486 }
487
488 /*
489 * Searching includes executable on directories, else just read.
490 */
491 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 if (mask == MAY_READ)
493 if (capable_wrt_inode_uidgid(idmap, inode,
494 CAP_DAC_READ_SEARCH))
495 return 0;
496 /*
497 * Read/write DACs are always overridable.
498 * Executable DACs are overridable when there is
499 * at least one exec bit set.
500 */
501 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 if (capable_wrt_inode_uidgid(idmap, inode,
503 CAP_DAC_OVERRIDE))
504 return 0;
505
506 return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509
510 /**
511 * do_inode_permission - UNIX permission checking
512 * @idmap: idmap of the mount the inode was found from
513 * @inode: inode to check permissions on
514 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515 *
516 * We _really_ want to just do "generic_permission()" without
517 * even looking at the inode->i_op values. So we keep a cache
518 * flag in inode->i_opflags, that says "this has not special
519 * permission function, use the fast case".
520 */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 struct inode *inode, int mask)
523 {
524 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 if (likely(inode->i_op->permission))
526 return inode->i_op->permission(idmap, inode, mask);
527
528 /* This gets set once for the inode lifetime */
529 spin_lock(&inode->i_lock);
530 inode->i_opflags |= IOP_FASTPERM;
531 spin_unlock(&inode->i_lock);
532 }
533 return generic_permission(idmap, inode, mask);
534 }
535
536 /**
537 * sb_permission - Check superblock-level permissions
538 * @sb: Superblock of inode to check permission on
539 * @inode: Inode to check permission on
540 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541 *
542 * Separate out file-system wide checks from inode-specific permission checks.
543 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
545 {
546 if (unlikely(mask & MAY_WRITE)) {
547 umode_t mode = inode->i_mode;
548
549 /* Nobody gets write access to a read-only fs. */
550 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
551 return -EROFS;
552 }
553 return 0;
554 }
555
556 /**
557 * inode_permission - Check for access rights to a given inode
558 * @idmap: idmap of the mount the inode was found from
559 * @inode: Inode to check permission on
560 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561 *
562 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
563 * this, letting us set arbitrary permissions for filesystem access without
564 * changing the "normal" UIDs which are used for other things.
565 *
566 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567 */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)568 int inode_permission(struct mnt_idmap *idmap,
569 struct inode *inode, int mask)
570 {
571 int retval;
572
573 retval = sb_permission(inode->i_sb, inode, mask);
574 if (unlikely(retval))
575 return retval;
576
577 if (unlikely(mask & MAY_WRITE)) {
578 /*
579 * Nobody gets write access to an immutable file.
580 */
581 if (unlikely(IS_IMMUTABLE(inode)))
582 return -EPERM;
583
584 /*
585 * Updating mtime will likely cause i_uid and i_gid to be
586 * written back improperly if their true value is unknown
587 * to the vfs.
588 */
589 if (unlikely(HAS_UNMAPPED_ID(idmap, inode)))
590 return -EACCES;
591 }
592
593 retval = do_inode_permission(idmap, inode, mask);
594 if (unlikely(retval))
595 return retval;
596
597 retval = devcgroup_inode_permission(inode, mask);
598 if (unlikely(retval))
599 return retval;
600
601 return security_inode_permission(inode, mask);
602 }
603 EXPORT_SYMBOL(inode_permission);
604
605 /**
606 * path_get - get a reference to a path
607 * @path: path to get the reference to
608 *
609 * Given a path increment the reference count to the dentry and the vfsmount.
610 */
path_get(const struct path * path)611 void path_get(const struct path *path)
612 {
613 mntget(path->mnt);
614 dget(path->dentry);
615 }
616 EXPORT_SYMBOL(path_get);
617
618 /**
619 * path_put - put a reference to a path
620 * @path: path to put the reference to
621 *
622 * Given a path decrement the reference count to the dentry and the vfsmount.
623 */
path_put(const struct path * path)624 void path_put(const struct path *path)
625 {
626 dput(path->dentry);
627 mntput(path->mnt);
628 }
629 EXPORT_SYMBOL(path_put);
630
631 #define EMBEDDED_LEVELS 2
632 struct nameidata {
633 struct path path;
634 struct qstr last;
635 struct path root;
636 struct inode *inode; /* path.dentry.d_inode */
637 unsigned int flags, state;
638 unsigned seq, next_seq, m_seq, r_seq;
639 int last_type;
640 unsigned depth;
641 int total_link_count;
642 struct saved {
643 struct path link;
644 struct delayed_call done;
645 const char *name;
646 unsigned seq;
647 } *stack, internal[EMBEDDED_LEVELS];
648 struct filename *name;
649 const char *pathname;
650 struct nameidata *saved;
651 unsigned root_seq;
652 int dfd;
653 vfsuid_t dir_vfsuid;
654 umode_t dir_mode;
655 } __randomize_layout;
656
657 #define ND_ROOT_PRESET 1
658 #define ND_ROOT_GRABBED 2
659 #define ND_JUMPED 4
660
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
662 {
663 struct nameidata *old = current->nameidata;
664 p->stack = p->internal;
665 p->depth = 0;
666 p->dfd = dfd;
667 p->name = name;
668 p->pathname = likely(name) ? name->name : "";
669 p->path.mnt = NULL;
670 p->path.dentry = NULL;
671 p->total_link_count = old ? old->total_link_count : 0;
672 p->saved = old;
673 current->nameidata = p;
674 }
675
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
677 const struct path *root)
678 {
679 __set_nameidata(p, dfd, name);
680 p->state = 0;
681 if (unlikely(root)) {
682 p->state = ND_ROOT_PRESET;
683 p->root = *root;
684 }
685 }
686
restore_nameidata(void)687 static void restore_nameidata(void)
688 {
689 struct nameidata *now = current->nameidata, *old = now->saved;
690
691 current->nameidata = old;
692 if (old)
693 old->total_link_count = now->total_link_count;
694 if (now->stack != now->internal)
695 kfree(now->stack);
696 }
697
nd_alloc_stack(struct nameidata * nd)698 static bool nd_alloc_stack(struct nameidata *nd)
699 {
700 struct saved *p;
701
702 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
703 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
704 if (unlikely(!p))
705 return false;
706 memcpy(p, nd->internal, sizeof(nd->internal));
707 nd->stack = p;
708 return true;
709 }
710
711 /**
712 * path_connected - Verify that a dentry is below mnt.mnt_root
713 * @mnt: The mountpoint to check.
714 * @dentry: The dentry to check.
715 *
716 * Rename can sometimes move a file or directory outside of a bind
717 * mount, path_connected allows those cases to be detected.
718 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
720 {
721 struct super_block *sb = mnt->mnt_sb;
722
723 /* Bind mounts can have disconnected paths */
724 if (mnt->mnt_root == sb->s_root)
725 return true;
726
727 return is_subdir(dentry, mnt->mnt_root);
728 }
729
drop_links(struct nameidata * nd)730 static void drop_links(struct nameidata *nd)
731 {
732 int i = nd->depth;
733 while (i--) {
734 struct saved *last = nd->stack + i;
735 do_delayed_call(&last->done);
736 clear_delayed_call(&last->done);
737 }
738 }
739
leave_rcu(struct nameidata * nd)740 static void leave_rcu(struct nameidata *nd)
741 {
742 nd->flags &= ~LOOKUP_RCU;
743 nd->seq = nd->next_seq = 0;
744 rcu_read_unlock();
745 }
746
terminate_walk(struct nameidata * nd)747 static void terminate_walk(struct nameidata *nd)
748 {
749 drop_links(nd);
750 if (!(nd->flags & LOOKUP_RCU)) {
751 int i;
752 path_put(&nd->path);
753 for (i = 0; i < nd->depth; i++)
754 path_put(&nd->stack[i].link);
755 if (nd->state & ND_ROOT_GRABBED) {
756 path_put(&nd->root);
757 nd->state &= ~ND_ROOT_GRABBED;
758 }
759 } else {
760 leave_rcu(nd);
761 }
762 nd->depth = 0;
763 nd->path.mnt = NULL;
764 nd->path.dentry = NULL;
765 }
766
767 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
769 {
770 int res = __legitimize_mnt(path->mnt, mseq);
771 if (unlikely(res)) {
772 if (res > 0)
773 path->mnt = NULL;
774 path->dentry = NULL;
775 return false;
776 }
777 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
778 path->dentry = NULL;
779 return false;
780 }
781 return !read_seqcount_retry(&path->dentry->d_seq, seq);
782 }
783
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)784 static inline bool legitimize_path(struct nameidata *nd,
785 struct path *path, unsigned seq)
786 {
787 return __legitimize_path(path, seq, nd->m_seq);
788 }
789
legitimize_links(struct nameidata * nd)790 static bool legitimize_links(struct nameidata *nd)
791 {
792 int i;
793 if (unlikely(nd->flags & LOOKUP_CACHED)) {
794 drop_links(nd);
795 nd->depth = 0;
796 return false;
797 }
798 for (i = 0; i < nd->depth; i++) {
799 struct saved *last = nd->stack + i;
800 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
801 drop_links(nd);
802 nd->depth = i + 1;
803 return false;
804 }
805 }
806 return true;
807 }
808
legitimize_root(struct nameidata * nd)809 static bool legitimize_root(struct nameidata *nd)
810 {
811 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
812 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
813 return true;
814 nd->state |= ND_ROOT_GRABBED;
815 return legitimize_path(nd, &nd->root, nd->root_seq);
816 }
817
818 /*
819 * Path walking has 2 modes, rcu-walk and ref-walk (see
820 * Documentation/filesystems/path-lookup.txt). In situations when we can't
821 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
822 * normal reference counts on dentries and vfsmounts to transition to ref-walk
823 * mode. Refcounts are grabbed at the last known good point before rcu-walk
824 * got stuck, so ref-walk may continue from there. If this is not successful
825 * (eg. a seqcount has changed), then failure is returned and it's up to caller
826 * to restart the path walk from the beginning in ref-walk mode.
827 */
828
829 /**
830 * try_to_unlazy - try to switch to ref-walk mode.
831 * @nd: nameidata pathwalk data
832 * Returns: true on success, false on failure
833 *
834 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
835 * for ref-walk mode.
836 * Must be called from rcu-walk context.
837 * Nothing should touch nameidata between try_to_unlazy() failure and
838 * terminate_walk().
839 */
try_to_unlazy(struct nameidata * nd)840 static bool try_to_unlazy(struct nameidata *nd)
841 {
842 struct dentry *parent = nd->path.dentry;
843
844 BUG_ON(!(nd->flags & LOOKUP_RCU));
845
846 if (unlikely(!legitimize_links(nd)))
847 goto out1;
848 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
849 goto out;
850 if (unlikely(!legitimize_root(nd)))
851 goto out;
852 leave_rcu(nd);
853 BUG_ON(nd->inode != parent->d_inode);
854 return true;
855
856 out1:
857 nd->path.mnt = NULL;
858 nd->path.dentry = NULL;
859 out:
860 leave_rcu(nd);
861 return false;
862 }
863
864 /**
865 * try_to_unlazy_next - try to switch to ref-walk mode.
866 * @nd: nameidata pathwalk data
867 * @dentry: next dentry to step into
868 * Returns: true on success, false on failure
869 *
870 * Similar to try_to_unlazy(), but here we have the next dentry already
871 * picked by rcu-walk and want to legitimize that in addition to the current
872 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
873 * Nothing should touch nameidata between try_to_unlazy_next() failure and
874 * terminate_walk().
875 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
877 {
878 int res;
879 BUG_ON(!(nd->flags & LOOKUP_RCU));
880
881 if (unlikely(!legitimize_links(nd)))
882 goto out2;
883 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
884 if (unlikely(res)) {
885 if (res > 0)
886 goto out2;
887 goto out1;
888 }
889 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
890 goto out1;
891
892 /*
893 * We need to move both the parent and the dentry from the RCU domain
894 * to be properly refcounted. And the sequence number in the dentry
895 * validates *both* dentry counters, since we checked the sequence
896 * number of the parent after we got the child sequence number. So we
897 * know the parent must still be valid if the child sequence number is
898 */
899 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
900 goto out;
901 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
902 goto out_dput;
903 /*
904 * Sequence counts matched. Now make sure that the root is
905 * still valid and get it if required.
906 */
907 if (unlikely(!legitimize_root(nd)))
908 goto out_dput;
909 leave_rcu(nd);
910 return true;
911
912 out2:
913 nd->path.mnt = NULL;
914 out1:
915 nd->path.dentry = NULL;
916 out:
917 leave_rcu(nd);
918 return false;
919 out_dput:
920 leave_rcu(nd);
921 dput(dentry);
922 return false;
923 }
924
d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)925 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
926 struct dentry *dentry, unsigned int flags)
927 {
928 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
929 return dentry->d_op->d_revalidate(dir, name, dentry, flags);
930 else
931 return 1;
932 }
933
934 /**
935 * complete_walk - successful completion of path walk
936 * @nd: pointer nameidata
937 *
938 * If we had been in RCU mode, drop out of it and legitimize nd->path.
939 * Revalidate the final result, unless we'd already done that during
940 * the path walk or the filesystem doesn't ask for it. Return 0 on
941 * success, -error on failure. In case of failure caller does not
942 * need to drop nd->path.
943 */
complete_walk(struct nameidata * nd)944 static int complete_walk(struct nameidata *nd)
945 {
946 struct dentry *dentry = nd->path.dentry;
947 int status;
948
949 if (nd->flags & LOOKUP_RCU) {
950 /*
951 * We don't want to zero nd->root for scoped-lookups or
952 * externally-managed nd->root.
953 */
954 if (!(nd->state & ND_ROOT_PRESET))
955 if (!(nd->flags & LOOKUP_IS_SCOPED))
956 nd->root.mnt = NULL;
957 nd->flags &= ~LOOKUP_CACHED;
958 if (!try_to_unlazy(nd))
959 return -ECHILD;
960 }
961
962 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
963 /*
964 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
965 * ever step outside the root during lookup" and should already
966 * be guaranteed by the rest of namei, we want to avoid a namei
967 * BUG resulting in userspace being given a path that was not
968 * scoped within the root at some point during the lookup.
969 *
970 * So, do a final sanity-check to make sure that in the
971 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
972 * we won't silently return an fd completely outside of the
973 * requested root to userspace.
974 *
975 * Userspace could move the path outside the root after this
976 * check, but as discussed elsewhere this is not a concern (the
977 * resolved file was inside the root at some point).
978 */
979 if (!path_is_under(&nd->path, &nd->root))
980 return -EXDEV;
981 }
982
983 if (likely(!(nd->state & ND_JUMPED)))
984 return 0;
985
986 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
987 return 0;
988
989 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
990 if (status > 0)
991 return 0;
992
993 if (!status)
994 status = -ESTALE;
995
996 return status;
997 }
998
set_root(struct nameidata * nd)999 static int set_root(struct nameidata *nd)
1000 {
1001 struct fs_struct *fs = current->fs;
1002
1003 /*
1004 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1005 * still have to ensure it doesn't happen because it will cause a breakout
1006 * from the dirfd.
1007 */
1008 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1009 return -ENOTRECOVERABLE;
1010
1011 if (nd->flags & LOOKUP_RCU) {
1012 unsigned seq;
1013
1014 do {
1015 seq = read_seqcount_begin(&fs->seq);
1016 nd->root = fs->root;
1017 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1018 } while (read_seqcount_retry(&fs->seq, seq));
1019 } else {
1020 get_fs_root(fs, &nd->root);
1021 nd->state |= ND_ROOT_GRABBED;
1022 }
1023 return 0;
1024 }
1025
nd_jump_root(struct nameidata * nd)1026 static int nd_jump_root(struct nameidata *nd)
1027 {
1028 if (unlikely(nd->flags & LOOKUP_BENEATH))
1029 return -EXDEV;
1030 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1031 /* Absolute path arguments to path_init() are allowed. */
1032 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1033 return -EXDEV;
1034 }
1035 if (!nd->root.mnt) {
1036 int error = set_root(nd);
1037 if (error)
1038 return error;
1039 }
1040 if (nd->flags & LOOKUP_RCU) {
1041 struct dentry *d;
1042 nd->path = nd->root;
1043 d = nd->path.dentry;
1044 nd->inode = d->d_inode;
1045 nd->seq = nd->root_seq;
1046 if (read_seqcount_retry(&d->d_seq, nd->seq))
1047 return -ECHILD;
1048 } else {
1049 path_put(&nd->path);
1050 nd->path = nd->root;
1051 path_get(&nd->path);
1052 nd->inode = nd->path.dentry->d_inode;
1053 }
1054 nd->state |= ND_JUMPED;
1055 return 0;
1056 }
1057
1058 /*
1059 * Helper to directly jump to a known parsed path from ->get_link,
1060 * caller must have taken a reference to path beforehand.
1061 */
nd_jump_link(const struct path * path)1062 int nd_jump_link(const struct path *path)
1063 {
1064 int error = -ELOOP;
1065 struct nameidata *nd = current->nameidata;
1066
1067 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1068 goto err;
1069
1070 error = -EXDEV;
1071 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1072 if (nd->path.mnt != path->mnt)
1073 goto err;
1074 }
1075 /* Not currently safe for scoped-lookups. */
1076 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1077 goto err;
1078
1079 path_put(&nd->path);
1080 nd->path = *path;
1081 nd->inode = nd->path.dentry->d_inode;
1082 nd->state |= ND_JUMPED;
1083 return 0;
1084
1085 err:
1086 path_put(path);
1087 return error;
1088 }
1089
put_link(struct nameidata * nd)1090 static inline void put_link(struct nameidata *nd)
1091 {
1092 struct saved *last = nd->stack + --nd->depth;
1093 do_delayed_call(&last->done);
1094 if (!(nd->flags & LOOKUP_RCU))
1095 path_put(&last->link);
1096 }
1097
1098 static int sysctl_protected_symlinks __read_mostly;
1099 static int sysctl_protected_hardlinks __read_mostly;
1100 static int sysctl_protected_fifos __read_mostly;
1101 static int sysctl_protected_regular __read_mostly;
1102
1103 #ifdef CONFIG_SYSCTL
1104 static const struct ctl_table namei_sysctls[] = {
1105 {
1106 .procname = "protected_symlinks",
1107 .data = &sysctl_protected_symlinks,
1108 .maxlen = sizeof(int),
1109 .mode = 0644,
1110 .proc_handler = proc_dointvec_minmax,
1111 .extra1 = SYSCTL_ZERO,
1112 .extra2 = SYSCTL_ONE,
1113 },
1114 {
1115 .procname = "protected_hardlinks",
1116 .data = &sysctl_protected_hardlinks,
1117 .maxlen = sizeof(int),
1118 .mode = 0644,
1119 .proc_handler = proc_dointvec_minmax,
1120 .extra1 = SYSCTL_ZERO,
1121 .extra2 = SYSCTL_ONE,
1122 },
1123 {
1124 .procname = "protected_fifos",
1125 .data = &sysctl_protected_fifos,
1126 .maxlen = sizeof(int),
1127 .mode = 0644,
1128 .proc_handler = proc_dointvec_minmax,
1129 .extra1 = SYSCTL_ZERO,
1130 .extra2 = SYSCTL_TWO,
1131 },
1132 {
1133 .procname = "protected_regular",
1134 .data = &sysctl_protected_regular,
1135 .maxlen = sizeof(int),
1136 .mode = 0644,
1137 .proc_handler = proc_dointvec_minmax,
1138 .extra1 = SYSCTL_ZERO,
1139 .extra2 = SYSCTL_TWO,
1140 },
1141 };
1142
init_fs_namei_sysctls(void)1143 static int __init init_fs_namei_sysctls(void)
1144 {
1145 register_sysctl_init("fs", namei_sysctls);
1146 return 0;
1147 }
1148 fs_initcall(init_fs_namei_sysctls);
1149
1150 #endif /* CONFIG_SYSCTL */
1151
1152 /**
1153 * may_follow_link - Check symlink following for unsafe situations
1154 * @nd: nameidata pathwalk data
1155 * @inode: Used for idmapping.
1156 *
1157 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1158 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1159 * in a sticky world-writable directory. This is to protect privileged
1160 * processes from failing races against path names that may change out
1161 * from under them by way of other users creating malicious symlinks.
1162 * It will permit symlinks to be followed only when outside a sticky
1163 * world-writable directory, or when the uid of the symlink and follower
1164 * match, or when the directory owner matches the symlink's owner.
1165 *
1166 * Returns 0 if following the symlink is allowed, -ve on error.
1167 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1169 {
1170 struct mnt_idmap *idmap;
1171 vfsuid_t vfsuid;
1172
1173 if (!sysctl_protected_symlinks)
1174 return 0;
1175
1176 idmap = mnt_idmap(nd->path.mnt);
1177 vfsuid = i_uid_into_vfsuid(idmap, inode);
1178 /* Allowed if owner and follower match. */
1179 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1180 return 0;
1181
1182 /* Allowed if parent directory not sticky and world-writable. */
1183 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1184 return 0;
1185
1186 /* Allowed if parent directory and link owner match. */
1187 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1188 return 0;
1189
1190 if (nd->flags & LOOKUP_RCU)
1191 return -ECHILD;
1192
1193 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1194 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1195 return -EACCES;
1196 }
1197
1198 /**
1199 * safe_hardlink_source - Check for safe hardlink conditions
1200 * @idmap: idmap of the mount the inode was found from
1201 * @inode: the source inode to hardlink from
1202 *
1203 * Return false if at least one of the following conditions:
1204 * - inode is not a regular file
1205 * - inode is setuid
1206 * - inode is setgid and group-exec
1207 * - access failure for read and write
1208 *
1209 * Otherwise returns true.
1210 */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1211 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1212 struct inode *inode)
1213 {
1214 umode_t mode = inode->i_mode;
1215
1216 /* Special files should not get pinned to the filesystem. */
1217 if (!S_ISREG(mode))
1218 return false;
1219
1220 /* Setuid files should not get pinned to the filesystem. */
1221 if (mode & S_ISUID)
1222 return false;
1223
1224 /* Executable setgid files should not get pinned to the filesystem. */
1225 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1226 return false;
1227
1228 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1229 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1230 return false;
1231
1232 return true;
1233 }
1234
1235 /**
1236 * may_linkat - Check permissions for creating a hardlink
1237 * @idmap: idmap of the mount the inode was found from
1238 * @link: the source to hardlink from
1239 *
1240 * Block hardlink when all of:
1241 * - sysctl_protected_hardlinks enabled
1242 * - fsuid does not match inode
1243 * - hardlink source is unsafe (see safe_hardlink_source() above)
1244 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1245 *
1246 * If the inode has been found through an idmapped mount the idmap of
1247 * the vfsmount must be passed through @idmap. This function will then take
1248 * care to map the inode according to @idmap before checking permissions.
1249 * On non-idmapped mounts or if permission checking is to be performed on the
1250 * raw inode simply pass @nop_mnt_idmap.
1251 *
1252 * Returns 0 if successful, -ve on error.
1253 */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1255 {
1256 struct inode *inode = link->dentry->d_inode;
1257
1258 /* Inode writeback is not safe when the uid or gid are invalid. */
1259 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1260 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1261 return -EOVERFLOW;
1262
1263 if (!sysctl_protected_hardlinks)
1264 return 0;
1265
1266 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1267 * otherwise, it must be a safe source.
1268 */
1269 if (safe_hardlink_source(idmap, inode) ||
1270 inode_owner_or_capable(idmap, inode))
1271 return 0;
1272
1273 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1274 return -EPERM;
1275 }
1276
1277 /**
1278 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1279 * should be allowed, or not, on files that already
1280 * exist.
1281 * @idmap: idmap of the mount the inode was found from
1282 * @nd: nameidata pathwalk data
1283 * @inode: the inode of the file to open
1284 *
1285 * Block an O_CREAT open of a FIFO (or a regular file) when:
1286 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1287 * - the file already exists
1288 * - we are in a sticky directory
1289 * - we don't own the file
1290 * - the owner of the directory doesn't own the file
1291 * - the directory is world writable
1292 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1293 * the directory doesn't have to be world writable: being group writable will
1294 * be enough.
1295 *
1296 * If the inode has been found through an idmapped mount the idmap of
1297 * the vfsmount must be passed through @idmap. This function will then take
1298 * care to map the inode according to @idmap before checking permissions.
1299 * On non-idmapped mounts or if permission checking is to be performed on the
1300 * raw inode simply pass @nop_mnt_idmap.
1301 *
1302 * Returns 0 if the open is allowed, -ve on error.
1303 */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1305 struct inode *const inode)
1306 {
1307 umode_t dir_mode = nd->dir_mode;
1308 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1309
1310 if (likely(!(dir_mode & S_ISVTX)))
1311 return 0;
1312
1313 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1314 return 0;
1315
1316 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1317 return 0;
1318
1319 i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1320
1321 if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1322 return 0;
1323
1324 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1325 return 0;
1326
1327 if (likely(dir_mode & 0002)) {
1328 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1329 return -EACCES;
1330 }
1331
1332 if (dir_mode & 0020) {
1333 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1334 audit_log_path_denied(AUDIT_ANOM_CREAT,
1335 "sticky_create_fifo");
1336 return -EACCES;
1337 }
1338
1339 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1340 audit_log_path_denied(AUDIT_ANOM_CREAT,
1341 "sticky_create_regular");
1342 return -EACCES;
1343 }
1344 }
1345
1346 return 0;
1347 }
1348
1349 /*
1350 * follow_up - Find the mountpoint of path's vfsmount
1351 *
1352 * Given a path, find the mountpoint of its source file system.
1353 * Replace @path with the path of the mountpoint in the parent mount.
1354 * Up is towards /.
1355 *
1356 * Return 1 if we went up a level and 0 if we were already at the
1357 * root.
1358 */
follow_up(struct path * path)1359 int follow_up(struct path *path)
1360 {
1361 struct mount *mnt = real_mount(path->mnt);
1362 struct mount *parent;
1363 struct dentry *mountpoint;
1364
1365 read_seqlock_excl(&mount_lock);
1366 parent = mnt->mnt_parent;
1367 if (parent == mnt) {
1368 read_sequnlock_excl(&mount_lock);
1369 return 0;
1370 }
1371 mntget(&parent->mnt);
1372 mountpoint = dget(mnt->mnt_mountpoint);
1373 read_sequnlock_excl(&mount_lock);
1374 dput(path->dentry);
1375 path->dentry = mountpoint;
1376 mntput(path->mnt);
1377 path->mnt = &parent->mnt;
1378 return 1;
1379 }
1380 EXPORT_SYMBOL(follow_up);
1381
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1383 struct path *path, unsigned *seqp)
1384 {
1385 while (mnt_has_parent(m)) {
1386 struct dentry *mountpoint = m->mnt_mountpoint;
1387
1388 m = m->mnt_parent;
1389 if (unlikely(root->dentry == mountpoint &&
1390 root->mnt == &m->mnt))
1391 break;
1392 if (mountpoint != m->mnt.mnt_root) {
1393 path->mnt = &m->mnt;
1394 path->dentry = mountpoint;
1395 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1396 return true;
1397 }
1398 }
1399 return false;
1400 }
1401
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1402 static bool choose_mountpoint(struct mount *m, const struct path *root,
1403 struct path *path)
1404 {
1405 bool found;
1406
1407 rcu_read_lock();
1408 while (1) {
1409 unsigned seq, mseq = read_seqbegin(&mount_lock);
1410
1411 found = choose_mountpoint_rcu(m, root, path, &seq);
1412 if (unlikely(!found)) {
1413 if (!read_seqretry(&mount_lock, mseq))
1414 break;
1415 } else {
1416 if (likely(__legitimize_path(path, seq, mseq)))
1417 break;
1418 rcu_read_unlock();
1419 path_put(path);
1420 rcu_read_lock();
1421 }
1422 }
1423 rcu_read_unlock();
1424 return found;
1425 }
1426
1427 /*
1428 * Perform an automount
1429 * - return -EISDIR to tell follow_managed() to stop and return the path we
1430 * were called with.
1431 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1433 {
1434 struct dentry *dentry = path->dentry;
1435
1436 /* We don't want to mount if someone's just doing a stat -
1437 * unless they're stat'ing a directory and appended a '/' to
1438 * the name.
1439 *
1440 * We do, however, want to mount if someone wants to open or
1441 * create a file of any type under the mountpoint, wants to
1442 * traverse through the mountpoint or wants to open the
1443 * mounted directory. Also, autofs may mark negative dentries
1444 * as being automount points. These will need the attentions
1445 * of the daemon to instantiate them before they can be used.
1446 */
1447 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1448 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1449 dentry->d_inode)
1450 return -EISDIR;
1451
1452 if (count && (*count)++ >= MAXSYMLINKS)
1453 return -ELOOP;
1454
1455 return finish_automount(dentry->d_op->d_automount(path), path);
1456 }
1457
1458 /*
1459 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1460 * dentries are pinned but not locked here, so negative dentry can go
1461 * positive right under us. Use of smp_load_acquire() provides a barrier
1462 * sufficient for ->d_inode and ->d_flags consistency.
1463 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1464 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1465 int *count, unsigned lookup_flags)
1466 {
1467 struct vfsmount *mnt = path->mnt;
1468 bool need_mntput = false;
1469 int ret = 0;
1470
1471 while (flags & DCACHE_MANAGED_DENTRY) {
1472 /* Allow the filesystem to manage the transit without i_mutex
1473 * being held. */
1474 if (flags & DCACHE_MANAGE_TRANSIT) {
1475 ret = path->dentry->d_op->d_manage(path, false);
1476 flags = smp_load_acquire(&path->dentry->d_flags);
1477 if (ret < 0)
1478 break;
1479 }
1480
1481 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1482 struct vfsmount *mounted = lookup_mnt(path);
1483 if (mounted) { // ... in our namespace
1484 dput(path->dentry);
1485 if (need_mntput)
1486 mntput(path->mnt);
1487 path->mnt = mounted;
1488 path->dentry = dget(mounted->mnt_root);
1489 // here we know it's positive
1490 flags = path->dentry->d_flags;
1491 need_mntput = true;
1492 continue;
1493 }
1494 }
1495
1496 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1497 break;
1498
1499 // uncovered automount point
1500 ret = follow_automount(path, count, lookup_flags);
1501 flags = smp_load_acquire(&path->dentry->d_flags);
1502 if (ret < 0)
1503 break;
1504 }
1505
1506 if (ret == -EISDIR)
1507 ret = 0;
1508 // possible if you race with several mount --move
1509 if (need_mntput && path->mnt == mnt)
1510 mntput(path->mnt);
1511 if (!ret && unlikely(d_flags_negative(flags)))
1512 ret = -ENOENT;
1513 *jumped = need_mntput;
1514 return ret;
1515 }
1516
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1517 static inline int traverse_mounts(struct path *path, bool *jumped,
1518 int *count, unsigned lookup_flags)
1519 {
1520 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1521
1522 /* fastpath */
1523 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1524 *jumped = false;
1525 if (unlikely(d_flags_negative(flags)))
1526 return -ENOENT;
1527 return 0;
1528 }
1529 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1530 }
1531
follow_down_one(struct path * path)1532 int follow_down_one(struct path *path)
1533 {
1534 struct vfsmount *mounted;
1535
1536 mounted = lookup_mnt(path);
1537 if (mounted) {
1538 dput(path->dentry);
1539 mntput(path->mnt);
1540 path->mnt = mounted;
1541 path->dentry = dget(mounted->mnt_root);
1542 return 1;
1543 }
1544 return 0;
1545 }
1546 EXPORT_SYMBOL(follow_down_one);
1547
1548 /*
1549 * Follow down to the covering mount currently visible to userspace. At each
1550 * point, the filesystem owning that dentry may be queried as to whether the
1551 * caller is permitted to proceed or not.
1552 */
follow_down(struct path * path,unsigned int flags)1553 int follow_down(struct path *path, unsigned int flags)
1554 {
1555 struct vfsmount *mnt = path->mnt;
1556 bool jumped;
1557 int ret = traverse_mounts(path, &jumped, NULL, flags);
1558
1559 if (path->mnt != mnt)
1560 mntput(mnt);
1561 return ret;
1562 }
1563 EXPORT_SYMBOL(follow_down);
1564
1565 /*
1566 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1567 * we meet a managed dentry that would need blocking.
1568 */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1569 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1570 {
1571 struct dentry *dentry = path->dentry;
1572 unsigned int flags = dentry->d_flags;
1573
1574 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1575 return true;
1576
1577 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1578 return false;
1579
1580 for (;;) {
1581 /*
1582 * Don't forget we might have a non-mountpoint managed dentry
1583 * that wants to block transit.
1584 */
1585 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1586 int res = dentry->d_op->d_manage(path, true);
1587 if (res)
1588 return res == -EISDIR;
1589 flags = dentry->d_flags;
1590 }
1591
1592 if (flags & DCACHE_MOUNTED) {
1593 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1594 if (mounted) {
1595 path->mnt = &mounted->mnt;
1596 dentry = path->dentry = mounted->mnt.mnt_root;
1597 nd->state |= ND_JUMPED;
1598 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1599 flags = dentry->d_flags;
1600 // makes sure that non-RCU pathwalk could reach
1601 // this state.
1602 if (read_seqretry(&mount_lock, nd->m_seq))
1603 return false;
1604 continue;
1605 }
1606 if (read_seqretry(&mount_lock, nd->m_seq))
1607 return false;
1608 }
1609 return !(flags & DCACHE_NEED_AUTOMOUNT);
1610 }
1611 }
1612
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1613 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1614 struct path *path)
1615 {
1616 bool jumped;
1617 int ret;
1618
1619 path->mnt = nd->path.mnt;
1620 path->dentry = dentry;
1621 if (nd->flags & LOOKUP_RCU) {
1622 unsigned int seq = nd->next_seq;
1623 if (likely(__follow_mount_rcu(nd, path)))
1624 return 0;
1625 // *path and nd->next_seq might've been clobbered
1626 path->mnt = nd->path.mnt;
1627 path->dentry = dentry;
1628 nd->next_seq = seq;
1629 if (!try_to_unlazy_next(nd, dentry))
1630 return -ECHILD;
1631 }
1632 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1633 if (jumped) {
1634 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1635 ret = -EXDEV;
1636 else
1637 nd->state |= ND_JUMPED;
1638 }
1639 if (unlikely(ret)) {
1640 dput(path->dentry);
1641 if (path->mnt != nd->path.mnt)
1642 mntput(path->mnt);
1643 }
1644 return ret;
1645 }
1646
1647 /*
1648 * This looks up the name in dcache and possibly revalidates the found dentry.
1649 * NULL is returned if the dentry does not exist in the cache.
1650 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1651 static struct dentry *lookup_dcache(const struct qstr *name,
1652 struct dentry *dir,
1653 unsigned int flags)
1654 {
1655 struct dentry *dentry = d_lookup(dir, name);
1656 if (dentry) {
1657 int error = d_revalidate(dir->d_inode, name, dentry, flags);
1658 if (unlikely(error <= 0)) {
1659 if (!error)
1660 d_invalidate(dentry);
1661 dput(dentry);
1662 return ERR_PTR(error);
1663 }
1664 }
1665 return dentry;
1666 }
1667
lookup_one_qstr_excl_raw(const struct qstr * name,struct dentry * base,unsigned int flags)1668 static struct dentry *lookup_one_qstr_excl_raw(const struct qstr *name,
1669 struct dentry *base,
1670 unsigned int flags)
1671 {
1672 struct dentry *dentry;
1673 struct dentry *old;
1674 struct inode *dir;
1675
1676 dentry = lookup_dcache(name, base, flags);
1677 if (dentry)
1678 return dentry;
1679
1680 /* Don't create child dentry for a dead directory. */
1681 dir = base->d_inode;
1682 if (unlikely(IS_DEADDIR(dir)))
1683 return ERR_PTR(-ENOENT);
1684
1685 dentry = d_alloc(base, name);
1686 if (unlikely(!dentry))
1687 return ERR_PTR(-ENOMEM);
1688
1689 old = dir->i_op->lookup(dir, dentry, flags);
1690 if (unlikely(old)) {
1691 dput(dentry);
1692 dentry = old;
1693 }
1694 return dentry;
1695 }
1696
1697 /*
1698 * Parent directory has inode locked exclusive. This is one
1699 * and only case when ->lookup() gets called on non in-lookup
1700 * dentries - as the matter of fact, this only gets called
1701 * when directory is guaranteed to have no in-lookup children
1702 * at all.
1703 * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1704 * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1705 */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1706 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1707 struct dentry *base, unsigned int flags)
1708 {
1709 struct dentry *dentry;
1710
1711 dentry = lookup_one_qstr_excl_raw(name, base, flags);
1712 if (IS_ERR(dentry))
1713 return dentry;
1714 if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1715 dput(dentry);
1716 return ERR_PTR(-ENOENT);
1717 }
1718 if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1719 dput(dentry);
1720 return ERR_PTR(-EEXIST);
1721 }
1722 return dentry;
1723 }
1724 EXPORT_SYMBOL(lookup_one_qstr_excl);
1725
1726 /**
1727 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1728 * @nd: current nameidata
1729 *
1730 * Do a fast, but racy lookup in the dcache for the given dentry, and
1731 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1732 * found. On error, an ERR_PTR will be returned.
1733 *
1734 * If this function returns a valid dentry and the walk is no longer
1735 * lazy, the dentry will carry a reference that must later be put. If
1736 * RCU mode is still in force, then this is not the case and the dentry
1737 * must be legitimized before use. If this returns NULL, then the walk
1738 * will no longer be in RCU mode.
1739 */
lookup_fast(struct nameidata * nd)1740 static struct dentry *lookup_fast(struct nameidata *nd)
1741 {
1742 struct dentry *dentry, *parent = nd->path.dentry;
1743 int status = 1;
1744
1745 /*
1746 * Rename seqlock is not required here because in the off chance
1747 * of a false negative due to a concurrent rename, the caller is
1748 * going to fall back to non-racy lookup.
1749 */
1750 if (nd->flags & LOOKUP_RCU) {
1751 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1752 if (unlikely(!dentry)) {
1753 if (!try_to_unlazy(nd))
1754 return ERR_PTR(-ECHILD);
1755 return NULL;
1756 }
1757
1758 /*
1759 * This sequence count validates that the parent had no
1760 * changes while we did the lookup of the dentry above.
1761 */
1762 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1763 return ERR_PTR(-ECHILD);
1764
1765 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1766 if (likely(status > 0))
1767 return dentry;
1768 if (!try_to_unlazy_next(nd, dentry))
1769 return ERR_PTR(-ECHILD);
1770 if (status == -ECHILD)
1771 /* we'd been told to redo it in non-rcu mode */
1772 status = d_revalidate(nd->inode, &nd->last,
1773 dentry, nd->flags);
1774 } else {
1775 dentry = __d_lookup(parent, &nd->last);
1776 if (unlikely(!dentry))
1777 return NULL;
1778 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1779 }
1780 if (unlikely(status <= 0)) {
1781 if (!status)
1782 d_invalidate(dentry);
1783 dput(dentry);
1784 return ERR_PTR(status);
1785 }
1786 return dentry;
1787 }
1788
1789 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1790 static struct dentry *__lookup_slow(const struct qstr *name,
1791 struct dentry *dir,
1792 unsigned int flags)
1793 {
1794 struct dentry *dentry, *old;
1795 struct inode *inode = dir->d_inode;
1796 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1797
1798 /* Don't go there if it's already dead */
1799 if (unlikely(IS_DEADDIR(inode)))
1800 return ERR_PTR(-ENOENT);
1801 again:
1802 dentry = d_alloc_parallel(dir, name, &wq);
1803 if (IS_ERR(dentry))
1804 return dentry;
1805 if (unlikely(!d_in_lookup(dentry))) {
1806 int error = d_revalidate(inode, name, dentry, flags);
1807 if (unlikely(error <= 0)) {
1808 if (!error) {
1809 d_invalidate(dentry);
1810 dput(dentry);
1811 goto again;
1812 }
1813 dput(dentry);
1814 dentry = ERR_PTR(error);
1815 }
1816 } else {
1817 old = inode->i_op->lookup(inode, dentry, flags);
1818 d_lookup_done(dentry);
1819 if (unlikely(old)) {
1820 dput(dentry);
1821 dentry = old;
1822 }
1823 }
1824 return dentry;
1825 }
1826
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1827 static struct dentry *lookup_slow(const struct qstr *name,
1828 struct dentry *dir,
1829 unsigned int flags)
1830 {
1831 struct inode *inode = dir->d_inode;
1832 struct dentry *res;
1833 inode_lock_shared(inode);
1834 res = __lookup_slow(name, dir, flags);
1835 inode_unlock_shared(inode);
1836 return res;
1837 }
1838
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1839 static inline int may_lookup(struct mnt_idmap *idmap,
1840 struct nameidata *restrict nd)
1841 {
1842 int err, mask;
1843
1844 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1845 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1846 if (likely(!err))
1847 return 0;
1848
1849 // If we failed, and we weren't in LOOKUP_RCU, it's final
1850 if (!(nd->flags & LOOKUP_RCU))
1851 return err;
1852
1853 // Drop out of RCU mode to make sure it wasn't transient
1854 if (!try_to_unlazy(nd))
1855 return -ECHILD; // redo it all non-lazy
1856
1857 if (err != -ECHILD) // hard error
1858 return err;
1859
1860 return inode_permission(idmap, nd->inode, MAY_EXEC);
1861 }
1862
reserve_stack(struct nameidata * nd,struct path * link)1863 static int reserve_stack(struct nameidata *nd, struct path *link)
1864 {
1865 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1866 return -ELOOP;
1867
1868 if (likely(nd->depth != EMBEDDED_LEVELS))
1869 return 0;
1870 if (likely(nd->stack != nd->internal))
1871 return 0;
1872 if (likely(nd_alloc_stack(nd)))
1873 return 0;
1874
1875 if (nd->flags & LOOKUP_RCU) {
1876 // we need to grab link before we do unlazy. And we can't skip
1877 // unlazy even if we fail to grab the link - cleanup needs it
1878 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1879
1880 if (!try_to_unlazy(nd) || !grabbed_link)
1881 return -ECHILD;
1882
1883 if (nd_alloc_stack(nd))
1884 return 0;
1885 }
1886 return -ENOMEM;
1887 }
1888
1889 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1890
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1891 static const char *pick_link(struct nameidata *nd, struct path *link,
1892 struct inode *inode, int flags)
1893 {
1894 struct saved *last;
1895 const char *res;
1896 int error = reserve_stack(nd, link);
1897
1898 if (unlikely(error)) {
1899 if (!(nd->flags & LOOKUP_RCU))
1900 path_put(link);
1901 return ERR_PTR(error);
1902 }
1903 last = nd->stack + nd->depth++;
1904 last->link = *link;
1905 clear_delayed_call(&last->done);
1906 last->seq = nd->next_seq;
1907
1908 if (flags & WALK_TRAILING) {
1909 error = may_follow_link(nd, inode);
1910 if (unlikely(error))
1911 return ERR_PTR(error);
1912 }
1913
1914 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1915 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1916 return ERR_PTR(-ELOOP);
1917
1918 if (unlikely(atime_needs_update(&last->link, inode))) {
1919 if (nd->flags & LOOKUP_RCU) {
1920 if (!try_to_unlazy(nd))
1921 return ERR_PTR(-ECHILD);
1922 }
1923 touch_atime(&last->link);
1924 cond_resched();
1925 }
1926
1927 error = security_inode_follow_link(link->dentry, inode,
1928 nd->flags & LOOKUP_RCU);
1929 if (unlikely(error))
1930 return ERR_PTR(error);
1931
1932 res = READ_ONCE(inode->i_link);
1933 if (!res) {
1934 const char * (*get)(struct dentry *, struct inode *,
1935 struct delayed_call *);
1936 get = inode->i_op->get_link;
1937 if (nd->flags & LOOKUP_RCU) {
1938 res = get(NULL, inode, &last->done);
1939 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1940 res = get(link->dentry, inode, &last->done);
1941 } else {
1942 res = get(link->dentry, inode, &last->done);
1943 }
1944 if (!res)
1945 goto all_done;
1946 if (IS_ERR(res))
1947 return res;
1948 }
1949 if (*res == '/') {
1950 error = nd_jump_root(nd);
1951 if (unlikely(error))
1952 return ERR_PTR(error);
1953 while (unlikely(*++res == '/'))
1954 ;
1955 }
1956 if (*res)
1957 return res;
1958 all_done: // pure jump
1959 put_link(nd);
1960 return NULL;
1961 }
1962
1963 /*
1964 * Do we need to follow links? We _really_ want to be able
1965 * to do this check without having to look at inode->i_op,
1966 * so we keep a cache of "no, this doesn't need follow_link"
1967 * for the common case.
1968 *
1969 * NOTE: dentry must be what nd->next_seq had been sampled from.
1970 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1971 static const char *step_into(struct nameidata *nd, int flags,
1972 struct dentry *dentry)
1973 {
1974 struct path path;
1975 struct inode *inode;
1976 int err = handle_mounts(nd, dentry, &path);
1977
1978 if (err < 0)
1979 return ERR_PTR(err);
1980 inode = path.dentry->d_inode;
1981 if (likely(!d_is_symlink(path.dentry)) ||
1982 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1983 (flags & WALK_NOFOLLOW)) {
1984 /* not a symlink or should not follow */
1985 if (nd->flags & LOOKUP_RCU) {
1986 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1987 return ERR_PTR(-ECHILD);
1988 if (unlikely(!inode))
1989 return ERR_PTR(-ENOENT);
1990 } else {
1991 dput(nd->path.dentry);
1992 if (nd->path.mnt != path.mnt)
1993 mntput(nd->path.mnt);
1994 }
1995 nd->path = path;
1996 nd->inode = inode;
1997 nd->seq = nd->next_seq;
1998 return NULL;
1999 }
2000 if (nd->flags & LOOKUP_RCU) {
2001 /* make sure that d_is_symlink above matches inode */
2002 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2003 return ERR_PTR(-ECHILD);
2004 } else {
2005 if (path.mnt == nd->path.mnt)
2006 mntget(path.mnt);
2007 }
2008 return pick_link(nd, &path, inode, flags);
2009 }
2010
follow_dotdot_rcu(struct nameidata * nd)2011 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2012 {
2013 struct dentry *parent, *old;
2014
2015 if (path_equal(&nd->path, &nd->root))
2016 goto in_root;
2017 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2018 struct path path;
2019 unsigned seq;
2020 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2021 &nd->root, &path, &seq))
2022 goto in_root;
2023 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2024 return ERR_PTR(-ECHILD);
2025 nd->path = path;
2026 nd->inode = path.dentry->d_inode;
2027 nd->seq = seq;
2028 // makes sure that non-RCU pathwalk could reach this state
2029 if (read_seqretry(&mount_lock, nd->m_seq))
2030 return ERR_PTR(-ECHILD);
2031 /* we know that mountpoint was pinned */
2032 }
2033 old = nd->path.dentry;
2034 parent = old->d_parent;
2035 nd->next_seq = read_seqcount_begin(&parent->d_seq);
2036 // makes sure that non-RCU pathwalk could reach this state
2037 if (read_seqcount_retry(&old->d_seq, nd->seq))
2038 return ERR_PTR(-ECHILD);
2039 if (unlikely(!path_connected(nd->path.mnt, parent)))
2040 return ERR_PTR(-ECHILD);
2041 return parent;
2042 in_root:
2043 if (read_seqretry(&mount_lock, nd->m_seq))
2044 return ERR_PTR(-ECHILD);
2045 if (unlikely(nd->flags & LOOKUP_BENEATH))
2046 return ERR_PTR(-ECHILD);
2047 nd->next_seq = nd->seq;
2048 return nd->path.dentry;
2049 }
2050
follow_dotdot(struct nameidata * nd)2051 static struct dentry *follow_dotdot(struct nameidata *nd)
2052 {
2053 struct dentry *parent;
2054
2055 if (path_equal(&nd->path, &nd->root))
2056 goto in_root;
2057 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2058 struct path path;
2059
2060 if (!choose_mountpoint(real_mount(nd->path.mnt),
2061 &nd->root, &path))
2062 goto in_root;
2063 path_put(&nd->path);
2064 nd->path = path;
2065 nd->inode = path.dentry->d_inode;
2066 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2067 return ERR_PTR(-EXDEV);
2068 }
2069 /* rare case of legitimate dget_parent()... */
2070 parent = dget_parent(nd->path.dentry);
2071 if (unlikely(!path_connected(nd->path.mnt, parent))) {
2072 dput(parent);
2073 return ERR_PTR(-ENOENT);
2074 }
2075 return parent;
2076
2077 in_root:
2078 if (unlikely(nd->flags & LOOKUP_BENEATH))
2079 return ERR_PTR(-EXDEV);
2080 return dget(nd->path.dentry);
2081 }
2082
handle_dots(struct nameidata * nd,int type)2083 static const char *handle_dots(struct nameidata *nd, int type)
2084 {
2085 if (type == LAST_DOTDOT) {
2086 const char *error = NULL;
2087 struct dentry *parent;
2088
2089 if (!nd->root.mnt) {
2090 error = ERR_PTR(set_root(nd));
2091 if (error)
2092 return error;
2093 }
2094 if (nd->flags & LOOKUP_RCU)
2095 parent = follow_dotdot_rcu(nd);
2096 else
2097 parent = follow_dotdot(nd);
2098 if (IS_ERR(parent))
2099 return ERR_CAST(parent);
2100 error = step_into(nd, WALK_NOFOLLOW, parent);
2101 if (unlikely(error))
2102 return error;
2103
2104 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2105 /*
2106 * If there was a racing rename or mount along our
2107 * path, then we can't be sure that ".." hasn't jumped
2108 * above nd->root (and so userspace should retry or use
2109 * some fallback).
2110 */
2111 smp_rmb();
2112 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2113 return ERR_PTR(-EAGAIN);
2114 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2115 return ERR_PTR(-EAGAIN);
2116 }
2117 }
2118 return NULL;
2119 }
2120
walk_component(struct nameidata * nd,int flags)2121 static const char *walk_component(struct nameidata *nd, int flags)
2122 {
2123 struct dentry *dentry;
2124 /*
2125 * "." and ".." are special - ".." especially so because it has
2126 * to be able to know about the current root directory and
2127 * parent relationships.
2128 */
2129 if (unlikely(nd->last_type != LAST_NORM)) {
2130 if (!(flags & WALK_MORE) && nd->depth)
2131 put_link(nd);
2132 return handle_dots(nd, nd->last_type);
2133 }
2134 dentry = lookup_fast(nd);
2135 if (IS_ERR(dentry))
2136 return ERR_CAST(dentry);
2137 if (unlikely(!dentry)) {
2138 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2139 if (IS_ERR(dentry))
2140 return ERR_CAST(dentry);
2141 }
2142 if (!(flags & WALK_MORE) && nd->depth)
2143 put_link(nd);
2144 return step_into(nd, flags, dentry);
2145 }
2146
2147 /*
2148 * We can do the critical dentry name comparison and hashing
2149 * operations one word at a time, but we are limited to:
2150 *
2151 * - Architectures with fast unaligned word accesses. We could
2152 * do a "get_unaligned()" if this helps and is sufficiently
2153 * fast.
2154 *
2155 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2156 * do not trap on the (extremely unlikely) case of a page
2157 * crossing operation.
2158 *
2159 * - Furthermore, we need an efficient 64-bit compile for the
2160 * 64-bit case in order to generate the "number of bytes in
2161 * the final mask". Again, that could be replaced with a
2162 * efficient population count instruction or similar.
2163 */
2164 #ifdef CONFIG_DCACHE_WORD_ACCESS
2165
2166 #include <asm/word-at-a-time.h>
2167
2168 #ifdef HASH_MIX
2169
2170 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2171
2172 #elif defined(CONFIG_64BIT)
2173 /*
2174 * Register pressure in the mixing function is an issue, particularly
2175 * on 32-bit x86, but almost any function requires one state value and
2176 * one temporary. Instead, use a function designed for two state values
2177 * and no temporaries.
2178 *
2179 * This function cannot create a collision in only two iterations, so
2180 * we have two iterations to achieve avalanche. In those two iterations,
2181 * we have six layers of mixing, which is enough to spread one bit's
2182 * influence out to 2^6 = 64 state bits.
2183 *
2184 * Rotate constants are scored by considering either 64 one-bit input
2185 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2186 * probability of that delta causing a change to each of the 128 output
2187 * bits, using a sample of random initial states.
2188 *
2189 * The Shannon entropy of the computed probabilities is then summed
2190 * to produce a score. Ideally, any input change has a 50% chance of
2191 * toggling any given output bit.
2192 *
2193 * Mixing scores (in bits) for (12,45):
2194 * Input delta: 1-bit 2-bit
2195 * 1 round: 713.3 42542.6
2196 * 2 rounds: 2753.7 140389.8
2197 * 3 rounds: 5954.1 233458.2
2198 * 4 rounds: 7862.6 256672.2
2199 * Perfect: 8192 258048
2200 * (64*128) (64*63/2 * 128)
2201 */
2202 #define HASH_MIX(x, y, a) \
2203 ( x ^= (a), \
2204 y ^= x, x = rol64(x,12),\
2205 x += y, y = rol64(y,45),\
2206 y *= 9 )
2207
2208 /*
2209 * Fold two longs into one 32-bit hash value. This must be fast, but
2210 * latency isn't quite as critical, as there is a fair bit of additional
2211 * work done before the hash value is used.
2212 */
fold_hash(unsigned long x,unsigned long y)2213 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2214 {
2215 y ^= x * GOLDEN_RATIO_64;
2216 y *= GOLDEN_RATIO_64;
2217 return y >> 32;
2218 }
2219
2220 #else /* 32-bit case */
2221
2222 /*
2223 * Mixing scores (in bits) for (7,20):
2224 * Input delta: 1-bit 2-bit
2225 * 1 round: 330.3 9201.6
2226 * 2 rounds: 1246.4 25475.4
2227 * 3 rounds: 1907.1 31295.1
2228 * 4 rounds: 2042.3 31718.6
2229 * Perfect: 2048 31744
2230 * (32*64) (32*31/2 * 64)
2231 */
2232 #define HASH_MIX(x, y, a) \
2233 ( x ^= (a), \
2234 y ^= x, x = rol32(x, 7),\
2235 x += y, y = rol32(y,20),\
2236 y *= 9 )
2237
fold_hash(unsigned long x,unsigned long y)2238 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2239 {
2240 /* Use arch-optimized multiply if one exists */
2241 return __hash_32(y ^ __hash_32(x));
2242 }
2243
2244 #endif
2245
2246 /*
2247 * Return the hash of a string of known length. This is carfully
2248 * designed to match hash_name(), which is the more critical function.
2249 * In particular, we must end by hashing a final word containing 0..7
2250 * payload bytes, to match the way that hash_name() iterates until it
2251 * finds the delimiter after the name.
2252 */
full_name_hash(const void * salt,const char * name,unsigned int len)2253 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2254 {
2255 unsigned long a, x = 0, y = (unsigned long)salt;
2256
2257 for (;;) {
2258 if (!len)
2259 goto done;
2260 a = load_unaligned_zeropad(name);
2261 if (len < sizeof(unsigned long))
2262 break;
2263 HASH_MIX(x, y, a);
2264 name += sizeof(unsigned long);
2265 len -= sizeof(unsigned long);
2266 }
2267 x ^= a & bytemask_from_count(len);
2268 done:
2269 return fold_hash(x, y);
2270 }
2271 EXPORT_SYMBOL(full_name_hash);
2272
2273 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2274 u64 hashlen_string(const void *salt, const char *name)
2275 {
2276 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2277 unsigned long adata, mask, len;
2278 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2279
2280 len = 0;
2281 goto inside;
2282
2283 do {
2284 HASH_MIX(x, y, a);
2285 len += sizeof(unsigned long);
2286 inside:
2287 a = load_unaligned_zeropad(name+len);
2288 } while (!has_zero(a, &adata, &constants));
2289
2290 adata = prep_zero_mask(a, adata, &constants);
2291 mask = create_zero_mask(adata);
2292 x ^= a & zero_bytemask(mask);
2293
2294 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2295 }
2296 EXPORT_SYMBOL(hashlen_string);
2297
2298 /*
2299 * Calculate the length and hash of the path component, and
2300 * return the length as the result.
2301 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2302 static inline const char *hash_name(struct nameidata *nd,
2303 const char *name,
2304 unsigned long *lastword)
2305 {
2306 unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2307 unsigned long adata, bdata, mask, len;
2308 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2309
2310 /*
2311 * The first iteration is special, because it can result in
2312 * '.' and '..' and has no mixing other than the final fold.
2313 */
2314 a = load_unaligned_zeropad(name);
2315 b = a ^ REPEAT_BYTE('/');
2316 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2317 adata = prep_zero_mask(a, adata, &constants);
2318 bdata = prep_zero_mask(b, bdata, &constants);
2319 mask = create_zero_mask(adata | bdata);
2320 a &= zero_bytemask(mask);
2321 *lastword = a;
2322 len = find_zero(mask);
2323 nd->last.hash = fold_hash(a, y);
2324 nd->last.len = len;
2325 return name + len;
2326 }
2327
2328 len = 0;
2329 x = 0;
2330 do {
2331 HASH_MIX(x, y, a);
2332 len += sizeof(unsigned long);
2333 a = load_unaligned_zeropad(name+len);
2334 b = a ^ REPEAT_BYTE('/');
2335 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2336
2337 adata = prep_zero_mask(a, adata, &constants);
2338 bdata = prep_zero_mask(b, bdata, &constants);
2339 mask = create_zero_mask(adata | bdata);
2340 a &= zero_bytemask(mask);
2341 x ^= a;
2342 len += find_zero(mask);
2343 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT
2344
2345 nd->last.hash = fold_hash(x, y);
2346 nd->last.len = len;
2347 return name + len;
2348 }
2349
2350 /*
2351 * Note that the 'last' word is always zero-masked, but
2352 * was loaded as a possibly big-endian word.
2353 */
2354 #ifdef __BIG_ENDIAN
2355 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2356 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2357 #endif
2358
2359 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2360
2361 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2362 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2363 {
2364 unsigned long hash = init_name_hash(salt);
2365 while (len--)
2366 hash = partial_name_hash((unsigned char)*name++, hash);
2367 return end_name_hash(hash);
2368 }
2369 EXPORT_SYMBOL(full_name_hash);
2370
2371 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2372 u64 hashlen_string(const void *salt, const char *name)
2373 {
2374 unsigned long hash = init_name_hash(salt);
2375 unsigned long len = 0, c;
2376
2377 c = (unsigned char)*name;
2378 while (c) {
2379 len++;
2380 hash = partial_name_hash(c, hash);
2381 c = (unsigned char)name[len];
2382 }
2383 return hashlen_create(end_name_hash(hash), len);
2384 }
2385 EXPORT_SYMBOL(hashlen_string);
2386
2387 /*
2388 * We know there's a real path component here of at least
2389 * one character.
2390 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2391 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2392 {
2393 unsigned long hash = init_name_hash(nd->path.dentry);
2394 unsigned long len = 0, c, last = 0;
2395
2396 c = (unsigned char)*name;
2397 do {
2398 last = (last << 8) + c;
2399 len++;
2400 hash = partial_name_hash(c, hash);
2401 c = (unsigned char)name[len];
2402 } while (c && c != '/');
2403
2404 // This is reliable for DOT or DOTDOT, since the component
2405 // cannot contain NUL characters - top bits being zero means
2406 // we cannot have had any other pathnames.
2407 *lastword = last;
2408 nd->last.hash = end_name_hash(hash);
2409 nd->last.len = len;
2410 return name + len;
2411 }
2412
2413 #endif
2414
2415 #ifndef LAST_WORD_IS_DOT
2416 #define LAST_WORD_IS_DOT 0x2e
2417 #define LAST_WORD_IS_DOTDOT 0x2e2e
2418 #endif
2419
2420 /*
2421 * Name resolution.
2422 * This is the basic name resolution function, turning a pathname into
2423 * the final dentry. We expect 'base' to be positive and a directory.
2424 *
2425 * Returns 0 and nd will have valid dentry and mnt on success.
2426 * Returns error and drops reference to input namei data on failure.
2427 */
link_path_walk(const char * name,struct nameidata * nd)2428 static int link_path_walk(const char *name, struct nameidata *nd)
2429 {
2430 int depth = 0; // depth <= nd->depth
2431 int err;
2432
2433 nd->last_type = LAST_ROOT;
2434 nd->flags |= LOOKUP_PARENT;
2435 if (IS_ERR(name))
2436 return PTR_ERR(name);
2437 if (*name == '/') {
2438 do {
2439 name++;
2440 } while (unlikely(*name == '/'));
2441 }
2442 if (unlikely(!*name)) {
2443 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2444 return 0;
2445 }
2446
2447 /* At this point we know we have a real path component. */
2448 for(;;) {
2449 struct mnt_idmap *idmap;
2450 const char *link;
2451 unsigned long lastword;
2452
2453 idmap = mnt_idmap(nd->path.mnt);
2454 err = may_lookup(idmap, nd);
2455 if (unlikely(err))
2456 return err;
2457
2458 nd->last.name = name;
2459 name = hash_name(nd, name, &lastword);
2460
2461 switch(lastword) {
2462 case LAST_WORD_IS_DOTDOT:
2463 nd->last_type = LAST_DOTDOT;
2464 nd->state |= ND_JUMPED;
2465 break;
2466
2467 case LAST_WORD_IS_DOT:
2468 nd->last_type = LAST_DOT;
2469 break;
2470
2471 default:
2472 nd->last_type = LAST_NORM;
2473 nd->state &= ~ND_JUMPED;
2474
2475 struct dentry *parent = nd->path.dentry;
2476 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2477 err = parent->d_op->d_hash(parent, &nd->last);
2478 if (err < 0)
2479 return err;
2480 }
2481 }
2482
2483 if (!*name)
2484 goto OK;
2485 /*
2486 * If it wasn't NUL, we know it was '/'. Skip that
2487 * slash, and continue until no more slashes.
2488 */
2489 do {
2490 name++;
2491 } while (unlikely(*name == '/'));
2492 if (unlikely(!*name)) {
2493 OK:
2494 /* pathname or trailing symlink, done */
2495 if (!depth) {
2496 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2497 nd->dir_mode = nd->inode->i_mode;
2498 nd->flags &= ~LOOKUP_PARENT;
2499 return 0;
2500 }
2501 /* last component of nested symlink */
2502 name = nd->stack[--depth].name;
2503 link = walk_component(nd, 0);
2504 } else {
2505 /* not the last component */
2506 link = walk_component(nd, WALK_MORE);
2507 }
2508 if (unlikely(link)) {
2509 if (IS_ERR(link))
2510 return PTR_ERR(link);
2511 /* a symlink to follow */
2512 nd->stack[depth++].name = name;
2513 name = link;
2514 continue;
2515 }
2516 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2517 if (nd->flags & LOOKUP_RCU) {
2518 if (!try_to_unlazy(nd))
2519 return -ECHILD;
2520 }
2521 return -ENOTDIR;
2522 }
2523 }
2524 }
2525
2526 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2527 static const char *path_init(struct nameidata *nd, unsigned flags)
2528 {
2529 int error;
2530 const char *s = nd->pathname;
2531
2532 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2533 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2534 return ERR_PTR(-EAGAIN);
2535
2536 if (!*s)
2537 flags &= ~LOOKUP_RCU;
2538 if (flags & LOOKUP_RCU)
2539 rcu_read_lock();
2540 else
2541 nd->seq = nd->next_seq = 0;
2542
2543 nd->flags = flags;
2544 nd->state |= ND_JUMPED;
2545
2546 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2547 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2548 smp_rmb();
2549
2550 if (nd->state & ND_ROOT_PRESET) {
2551 struct dentry *root = nd->root.dentry;
2552 struct inode *inode = root->d_inode;
2553 if (*s && unlikely(!d_can_lookup(root)))
2554 return ERR_PTR(-ENOTDIR);
2555 nd->path = nd->root;
2556 nd->inode = inode;
2557 if (flags & LOOKUP_RCU) {
2558 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2559 nd->root_seq = nd->seq;
2560 } else {
2561 path_get(&nd->path);
2562 }
2563 return s;
2564 }
2565
2566 nd->root.mnt = NULL;
2567
2568 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2569 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2570 error = nd_jump_root(nd);
2571 if (unlikely(error))
2572 return ERR_PTR(error);
2573 return s;
2574 }
2575
2576 /* Relative pathname -- get the starting-point it is relative to. */
2577 if (nd->dfd == AT_FDCWD) {
2578 if (flags & LOOKUP_RCU) {
2579 struct fs_struct *fs = current->fs;
2580 unsigned seq;
2581
2582 do {
2583 seq = read_seqcount_begin(&fs->seq);
2584 nd->path = fs->pwd;
2585 nd->inode = nd->path.dentry->d_inode;
2586 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2587 } while (read_seqcount_retry(&fs->seq, seq));
2588 } else {
2589 get_fs_pwd(current->fs, &nd->path);
2590 nd->inode = nd->path.dentry->d_inode;
2591 }
2592 } else {
2593 /* Caller must check execute permissions on the starting path component */
2594 CLASS(fd_raw, f)(nd->dfd);
2595 struct dentry *dentry;
2596
2597 if (fd_empty(f))
2598 return ERR_PTR(-EBADF);
2599
2600 if (flags & LOOKUP_LINKAT_EMPTY) {
2601 if (fd_file(f)->f_cred != current_cred() &&
2602 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2603 return ERR_PTR(-ENOENT);
2604 }
2605
2606 dentry = fd_file(f)->f_path.dentry;
2607
2608 if (*s && unlikely(!d_can_lookup(dentry)))
2609 return ERR_PTR(-ENOTDIR);
2610
2611 nd->path = fd_file(f)->f_path;
2612 if (flags & LOOKUP_RCU) {
2613 nd->inode = nd->path.dentry->d_inode;
2614 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2615 } else {
2616 path_get(&nd->path);
2617 nd->inode = nd->path.dentry->d_inode;
2618 }
2619 }
2620
2621 /* For scoped-lookups we need to set the root to the dirfd as well. */
2622 if (flags & LOOKUP_IS_SCOPED) {
2623 nd->root = nd->path;
2624 if (flags & LOOKUP_RCU) {
2625 nd->root_seq = nd->seq;
2626 } else {
2627 path_get(&nd->root);
2628 nd->state |= ND_ROOT_GRABBED;
2629 }
2630 }
2631 return s;
2632 }
2633
lookup_last(struct nameidata * nd)2634 static inline const char *lookup_last(struct nameidata *nd)
2635 {
2636 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2637 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2638
2639 return walk_component(nd, WALK_TRAILING);
2640 }
2641
handle_lookup_down(struct nameidata * nd)2642 static int handle_lookup_down(struct nameidata *nd)
2643 {
2644 if (!(nd->flags & LOOKUP_RCU))
2645 dget(nd->path.dentry);
2646 nd->next_seq = nd->seq;
2647 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2648 }
2649
2650 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2651 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2652 {
2653 const char *s = path_init(nd, flags);
2654 int err;
2655
2656 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2657 err = handle_lookup_down(nd);
2658 if (unlikely(err < 0))
2659 s = ERR_PTR(err);
2660 }
2661
2662 while (!(err = link_path_walk(s, nd)) &&
2663 (s = lookup_last(nd)) != NULL)
2664 ;
2665 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2666 err = handle_lookup_down(nd);
2667 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2668 }
2669 if (!err)
2670 err = complete_walk(nd);
2671
2672 if (!err && nd->flags & LOOKUP_DIRECTORY)
2673 if (!d_can_lookup(nd->path.dentry))
2674 err = -ENOTDIR;
2675 if (!err) {
2676 *path = nd->path;
2677 nd->path.mnt = NULL;
2678 nd->path.dentry = NULL;
2679 }
2680 terminate_walk(nd);
2681 return err;
2682 }
2683
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2684 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2685 struct path *path, struct path *root)
2686 {
2687 int retval;
2688 struct nameidata nd;
2689 if (IS_ERR(name))
2690 return PTR_ERR(name);
2691 set_nameidata(&nd, dfd, name, root);
2692 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2693 if (unlikely(retval == -ECHILD))
2694 retval = path_lookupat(&nd, flags, path);
2695 if (unlikely(retval == -ESTALE))
2696 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2697
2698 if (likely(!retval))
2699 audit_inode(name, path->dentry,
2700 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2701 restore_nameidata();
2702 return retval;
2703 }
2704
2705 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2706 static int path_parentat(struct nameidata *nd, unsigned flags,
2707 struct path *parent)
2708 {
2709 const char *s = path_init(nd, flags);
2710 int err = link_path_walk(s, nd);
2711 if (!err)
2712 err = complete_walk(nd);
2713 if (!err) {
2714 *parent = nd->path;
2715 nd->path.mnt = NULL;
2716 nd->path.dentry = NULL;
2717 }
2718 terminate_walk(nd);
2719 return err;
2720 }
2721
2722 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2723 static int __filename_parentat(int dfd, struct filename *name,
2724 unsigned int flags, struct path *parent,
2725 struct qstr *last, int *type,
2726 const struct path *root)
2727 {
2728 int retval;
2729 struct nameidata nd;
2730
2731 if (IS_ERR(name))
2732 return PTR_ERR(name);
2733 set_nameidata(&nd, dfd, name, root);
2734 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2735 if (unlikely(retval == -ECHILD))
2736 retval = path_parentat(&nd, flags, parent);
2737 if (unlikely(retval == -ESTALE))
2738 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2739 if (likely(!retval)) {
2740 *last = nd.last;
2741 *type = nd.last_type;
2742 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2743 }
2744 restore_nameidata();
2745 return retval;
2746 }
2747
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2748 static int filename_parentat(int dfd, struct filename *name,
2749 unsigned int flags, struct path *parent,
2750 struct qstr *last, int *type)
2751 {
2752 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2753 }
2754
2755 /* does lookup, returns the object with parent locked */
__kern_path_locked(int dfd,struct filename * name,struct path * path)2756 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2757 {
2758 struct path parent_path __free(path_put) = {};
2759 struct dentry *d;
2760 struct qstr last;
2761 int type, error;
2762
2763 error = filename_parentat(dfd, name, 0, &parent_path, &last, &type);
2764 if (error)
2765 return ERR_PTR(error);
2766 if (unlikely(type != LAST_NORM))
2767 return ERR_PTR(-EINVAL);
2768 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT);
2769 d = lookup_one_qstr_excl(&last, parent_path.dentry, 0);
2770 if (IS_ERR(d)) {
2771 inode_unlock(parent_path.dentry->d_inode);
2772 return d;
2773 }
2774 path->dentry = no_free_ptr(parent_path.dentry);
2775 path->mnt = no_free_ptr(parent_path.mnt);
2776 return d;
2777 }
2778
kern_path_locked_negative(const char * name,struct path * path)2779 struct dentry *kern_path_locked_negative(const char *name, struct path *path)
2780 {
2781 struct path parent_path __free(path_put) = {};
2782 struct filename *filename __free(putname) = getname_kernel(name);
2783 struct dentry *d;
2784 struct qstr last;
2785 int type, error;
2786
2787 error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type);
2788 if (error)
2789 return ERR_PTR(error);
2790 if (unlikely(type != LAST_NORM))
2791 return ERR_PTR(-EINVAL);
2792 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT);
2793 d = lookup_one_qstr_excl_raw(&last, parent_path.dentry, 0);
2794 if (IS_ERR(d)) {
2795 inode_unlock(parent_path.dentry->d_inode);
2796 return d;
2797 }
2798 path->dentry = no_free_ptr(parent_path.dentry);
2799 path->mnt = no_free_ptr(parent_path.mnt);
2800 return d;
2801 }
2802
kern_path_locked(const char * name,struct path * path)2803 struct dentry *kern_path_locked(const char *name, struct path *path)
2804 {
2805 struct filename *filename = getname_kernel(name);
2806 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2807
2808 putname(filename);
2809 return res;
2810 }
2811
user_path_locked_at(int dfd,const char __user * name,struct path * path)2812 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2813 {
2814 struct filename *filename = getname(name);
2815 struct dentry *res = __kern_path_locked(dfd, filename, path);
2816
2817 putname(filename);
2818 return res;
2819 }
2820 EXPORT_SYMBOL(user_path_locked_at);
2821
kern_path(const char * name,unsigned int flags,struct path * path)2822 int kern_path(const char *name, unsigned int flags, struct path *path)
2823 {
2824 struct filename *filename = getname_kernel(name);
2825 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2826
2827 putname(filename);
2828 return ret;
2829
2830 }
2831 EXPORT_SYMBOL(kern_path);
2832
2833 /**
2834 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2835 * @filename: filename structure
2836 * @flags: lookup flags
2837 * @parent: pointer to struct path to fill
2838 * @last: last component
2839 * @type: type of the last component
2840 * @root: pointer to struct path of the base directory
2841 */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2842 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2843 struct path *parent, struct qstr *last, int *type,
2844 const struct path *root)
2845 {
2846 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2847 type, root);
2848 }
2849 EXPORT_SYMBOL(vfs_path_parent_lookup);
2850
2851 /**
2852 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2853 * @dentry: pointer to dentry of the base directory
2854 * @mnt: pointer to vfs mount of the base directory
2855 * @name: pointer to file name
2856 * @flags: lookup flags
2857 * @path: pointer to struct path to fill
2858 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2859 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2860 const char *name, unsigned int flags,
2861 struct path *path)
2862 {
2863 struct filename *filename;
2864 struct path root = {.mnt = mnt, .dentry = dentry};
2865 int ret;
2866
2867 filename = getname_kernel(name);
2868 /* the first argument of filename_lookup() is ignored with root */
2869 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2870 putname(filename);
2871 return ret;
2872 }
2873 EXPORT_SYMBOL(vfs_path_lookup);
2874
lookup_noperm_common(struct qstr * qname,struct dentry * base)2875 static int lookup_noperm_common(struct qstr *qname, struct dentry *base)
2876 {
2877 const char *name = qname->name;
2878 u32 len = qname->len;
2879
2880 qname->hash = full_name_hash(base, name, len);
2881 if (!len)
2882 return -EACCES;
2883
2884 if (is_dot_dotdot(name, len))
2885 return -EACCES;
2886
2887 while (len--) {
2888 unsigned int c = *(const unsigned char *)name++;
2889 if (c == '/' || c == '\0')
2890 return -EACCES;
2891 }
2892 /*
2893 * See if the low-level filesystem might want
2894 * to use its own hash..
2895 */
2896 if (base->d_flags & DCACHE_OP_HASH) {
2897 int err = base->d_op->d_hash(base, qname);
2898 if (err < 0)
2899 return err;
2900 }
2901 return 0;
2902 }
2903
lookup_one_common(struct mnt_idmap * idmap,struct qstr * qname,struct dentry * base)2904 static int lookup_one_common(struct mnt_idmap *idmap,
2905 struct qstr *qname, struct dentry *base)
2906 {
2907 int err;
2908 err = lookup_noperm_common(qname, base);
2909 if (err < 0)
2910 return err;
2911 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2912 }
2913
2914 /**
2915 * try_lookup_noperm - filesystem helper to lookup single pathname component
2916 * @name: qstr storing pathname component to lookup
2917 * @base: base directory to lookup from
2918 *
2919 * Look up a dentry by name in the dcache, returning NULL if it does not
2920 * currently exist. The function does not try to create a dentry and if one
2921 * is found it doesn't try to revalidate it.
2922 *
2923 * Note that this routine is purely a helper for filesystem usage and should
2924 * not be called by generic code. It does no permission checking.
2925 *
2926 * No locks need be held - only a counted reference to @base is needed.
2927 *
2928 */
try_lookup_noperm(struct qstr * name,struct dentry * base)2929 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base)
2930 {
2931 int err;
2932
2933 err = lookup_noperm_common(name, base);
2934 if (err)
2935 return ERR_PTR(err);
2936
2937 return d_lookup(base, name);
2938 }
2939 EXPORT_SYMBOL(try_lookup_noperm);
2940
2941 /**
2942 * lookup_noperm - filesystem helper to lookup single pathname component
2943 * @name: qstr storing pathname component to lookup
2944 * @base: base directory to lookup from
2945 *
2946 * Note that this routine is purely a helper for filesystem usage and should
2947 * not be called by generic code. It does no permission checking.
2948 *
2949 * The caller must hold base->i_mutex.
2950 */
lookup_noperm(struct qstr * name,struct dentry * base)2951 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base)
2952 {
2953 struct dentry *dentry;
2954 int err;
2955
2956 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2957
2958 err = lookup_noperm_common(name, base);
2959 if (err)
2960 return ERR_PTR(err);
2961
2962 dentry = lookup_dcache(name, base, 0);
2963 return dentry ? dentry : __lookup_slow(name, base, 0);
2964 }
2965 EXPORT_SYMBOL(lookup_noperm);
2966
2967 /**
2968 * lookup_one - lookup single pathname component
2969 * @idmap: idmap of the mount the lookup is performed from
2970 * @name: qstr holding pathname component to lookup
2971 * @base: base directory to lookup from
2972 *
2973 * This can be used for in-kernel filesystem clients such as file servers.
2974 *
2975 * The caller must hold base->i_mutex.
2976 */
lookup_one(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)2977 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name,
2978 struct dentry *base)
2979 {
2980 struct dentry *dentry;
2981 int err;
2982
2983 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2984
2985 err = lookup_one_common(idmap, name, base);
2986 if (err)
2987 return ERR_PTR(err);
2988
2989 dentry = lookup_dcache(name, base, 0);
2990 return dentry ? dentry : __lookup_slow(name, base, 0);
2991 }
2992 EXPORT_SYMBOL(lookup_one);
2993
2994 /**
2995 * lookup_one_unlocked - lookup single pathname component
2996 * @idmap: idmap of the mount the lookup is performed from
2997 * @name: qstr olding pathname component to lookup
2998 * @base: base directory to lookup from
2999 *
3000 * This can be used for in-kernel filesystem clients such as file servers.
3001 *
3002 * Unlike lookup_one, it should be called without the parent
3003 * i_rwsem held, and will take the i_rwsem itself if necessary.
3004 */
lookup_one_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3005 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name,
3006 struct dentry *base)
3007 {
3008 int err;
3009 struct dentry *ret;
3010
3011 err = lookup_one_common(idmap, name, base);
3012 if (err)
3013 return ERR_PTR(err);
3014
3015 ret = lookup_dcache(name, base, 0);
3016 if (!ret)
3017 ret = lookup_slow(name, base, 0);
3018 return ret;
3019 }
3020 EXPORT_SYMBOL(lookup_one_unlocked);
3021
3022 /**
3023 * lookup_one_positive_unlocked - lookup single pathname component
3024 * @idmap: idmap of the mount the lookup is performed from
3025 * @name: qstr holding pathname component to lookup
3026 * @base: base directory to lookup from
3027 *
3028 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3029 * known positive or ERR_PTR(). This is what most of the users want.
3030 *
3031 * Note that pinned negative with unlocked parent _can_ become positive at any
3032 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3033 * positives have >d_inode stable, so this one avoids such problems.
3034 *
3035 * This can be used for in-kernel filesystem clients such as file servers.
3036 *
3037 * The helper should be called without i_rwsem held.
3038 */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3039 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3040 struct qstr *name,
3041 struct dentry *base)
3042 {
3043 struct dentry *ret = lookup_one_unlocked(idmap, name, base);
3044
3045 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3046 dput(ret);
3047 ret = ERR_PTR(-ENOENT);
3048 }
3049 return ret;
3050 }
3051 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3052
3053 /**
3054 * lookup_noperm_unlocked - filesystem helper to lookup single pathname component
3055 * @name: pathname component to lookup
3056 * @base: base directory to lookup from
3057 *
3058 * Note that this routine is purely a helper for filesystem usage and should
3059 * not be called by generic code. It does no permission checking.
3060 *
3061 * Unlike lookup_noperm(), it should be called without the parent
3062 * i_rwsem held, and will take the i_rwsem itself if necessary.
3063 *
3064 * Unlike try_lookup_noperm() it *does* revalidate the dentry if it already
3065 * existed.
3066 */
lookup_noperm_unlocked(struct qstr * name,struct dentry * base)3067 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base)
3068 {
3069 struct dentry *ret;
3070 int err;
3071
3072 err = lookup_noperm_common(name, base);
3073 if (err)
3074 return ERR_PTR(err);
3075
3076 ret = lookup_dcache(name, base, 0);
3077 if (!ret)
3078 ret = lookup_slow(name, base, 0);
3079 return ret;
3080 }
3081 EXPORT_SYMBOL(lookup_noperm_unlocked);
3082
3083 /*
3084 * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT)
3085 * on negatives. Returns known positive or ERR_PTR(); that's what
3086 * most of the users want. Note that pinned negative with unlocked parent
3087 * _can_ become positive at any time, so callers of lookup_noperm_unlocked()
3088 * need to be very careful; pinned positives have ->d_inode stable, so
3089 * this one avoids such problems.
3090 */
lookup_noperm_positive_unlocked(struct qstr * name,struct dentry * base)3091 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name,
3092 struct dentry *base)
3093 {
3094 struct dentry *ret;
3095
3096 ret = lookup_noperm_unlocked(name, base);
3097 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3098 dput(ret);
3099 ret = ERR_PTR(-ENOENT);
3100 }
3101 return ret;
3102 }
3103 EXPORT_SYMBOL(lookup_noperm_positive_unlocked);
3104
3105 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)3106 int path_pts(struct path *path)
3107 {
3108 /* Find something mounted on "pts" in the same directory as
3109 * the input path.
3110 */
3111 struct dentry *parent = dget_parent(path->dentry);
3112 struct dentry *child;
3113 struct qstr this = QSTR_INIT("pts", 3);
3114
3115 if (unlikely(!path_connected(path->mnt, parent))) {
3116 dput(parent);
3117 return -ENOENT;
3118 }
3119 dput(path->dentry);
3120 path->dentry = parent;
3121 child = d_hash_and_lookup(parent, &this);
3122 if (IS_ERR_OR_NULL(child))
3123 return -ENOENT;
3124
3125 path->dentry = child;
3126 dput(parent);
3127 follow_down(path, 0);
3128 return 0;
3129 }
3130 #endif
3131
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3132 int user_path_at(int dfd, const char __user *name, unsigned flags,
3133 struct path *path)
3134 {
3135 struct filename *filename = getname_flags(name, flags);
3136 int ret = filename_lookup(dfd, filename, flags, path, NULL);
3137
3138 putname(filename);
3139 return ret;
3140 }
3141 EXPORT_SYMBOL(user_path_at);
3142
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3143 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3144 struct inode *inode)
3145 {
3146 kuid_t fsuid = current_fsuid();
3147
3148 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3149 return 0;
3150 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3151 return 0;
3152 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3153 }
3154 EXPORT_SYMBOL(__check_sticky);
3155
3156 /*
3157 * Check whether we can remove a link victim from directory dir, check
3158 * whether the type of victim is right.
3159 * 1. We can't do it if dir is read-only (done in permission())
3160 * 2. We should have write and exec permissions on dir
3161 * 3. We can't remove anything from append-only dir
3162 * 4. We can't do anything with immutable dir (done in permission())
3163 * 5. If the sticky bit on dir is set we should either
3164 * a. be owner of dir, or
3165 * b. be owner of victim, or
3166 * c. have CAP_FOWNER capability
3167 * 6. If the victim is append-only or immutable we can't do antyhing with
3168 * links pointing to it.
3169 * 7. If the victim has an unknown uid or gid we can't change the inode.
3170 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3171 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3172 * 10. We can't remove a root or mountpoint.
3173 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3174 * nfs_async_unlink().
3175 */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3176 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3177 struct dentry *victim, bool isdir)
3178 {
3179 struct inode *inode = d_backing_inode(victim);
3180 int error;
3181
3182 if (d_is_negative(victim))
3183 return -ENOENT;
3184 BUG_ON(!inode);
3185
3186 BUG_ON(victim->d_parent->d_inode != dir);
3187
3188 /* Inode writeback is not safe when the uid or gid are invalid. */
3189 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3190 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3191 return -EOVERFLOW;
3192
3193 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3194
3195 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3196 if (error)
3197 return error;
3198 if (IS_APPEND(dir))
3199 return -EPERM;
3200
3201 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3202 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3203 HAS_UNMAPPED_ID(idmap, inode))
3204 return -EPERM;
3205 if (isdir) {
3206 if (!d_is_dir(victim))
3207 return -ENOTDIR;
3208 if (IS_ROOT(victim))
3209 return -EBUSY;
3210 } else if (d_is_dir(victim))
3211 return -EISDIR;
3212 if (IS_DEADDIR(dir))
3213 return -ENOENT;
3214 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3215 return -EBUSY;
3216 return 0;
3217 }
3218
3219 /* Check whether we can create an object with dentry child in directory
3220 * dir.
3221 * 1. We can't do it if child already exists (open has special treatment for
3222 * this case, but since we are inlined it's OK)
3223 * 2. We can't do it if dir is read-only (done in permission())
3224 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3225 * 4. We should have write and exec permissions on dir
3226 * 5. We can't do it if dir is immutable (done in permission())
3227 */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3228 static inline int may_create(struct mnt_idmap *idmap,
3229 struct inode *dir, struct dentry *child)
3230 {
3231 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3232 if (child->d_inode)
3233 return -EEXIST;
3234 if (IS_DEADDIR(dir))
3235 return -ENOENT;
3236 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3237 return -EOVERFLOW;
3238
3239 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3240 }
3241
3242 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3243 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3244 {
3245 struct dentry *p = p1, *q = p2, *r;
3246
3247 while ((r = p->d_parent) != p2 && r != p)
3248 p = r;
3249 if (r == p2) {
3250 // p is a child of p2 and an ancestor of p1 or p1 itself
3251 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3252 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3253 return p;
3254 }
3255 // p is the root of connected component that contains p1
3256 // p2 does not occur on the path from p to p1
3257 while ((r = q->d_parent) != p1 && r != p && r != q)
3258 q = r;
3259 if (r == p1) {
3260 // q is a child of p1 and an ancestor of p2 or p2 itself
3261 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3262 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3263 return q;
3264 } else if (likely(r == p)) {
3265 // both p2 and p1 are descendents of p
3266 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3267 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3268 return NULL;
3269 } else { // no common ancestor at the time we'd been called
3270 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3271 return ERR_PTR(-EXDEV);
3272 }
3273 }
3274
3275 /*
3276 * p1 and p2 should be directories on the same fs.
3277 */
lock_rename(struct dentry * p1,struct dentry * p2)3278 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3279 {
3280 if (p1 == p2) {
3281 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3282 return NULL;
3283 }
3284
3285 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3286 return lock_two_directories(p1, p2);
3287 }
3288 EXPORT_SYMBOL(lock_rename);
3289
3290 /*
3291 * c1 and p2 should be on the same fs.
3292 */
lock_rename_child(struct dentry * c1,struct dentry * p2)3293 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3294 {
3295 if (READ_ONCE(c1->d_parent) == p2) {
3296 /*
3297 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3298 */
3299 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3300 /*
3301 * now that p2 is locked, nobody can move in or out of it,
3302 * so the test below is safe.
3303 */
3304 if (likely(c1->d_parent == p2))
3305 return NULL;
3306
3307 /*
3308 * c1 got moved out of p2 while we'd been taking locks;
3309 * unlock and fall back to slow case.
3310 */
3311 inode_unlock(p2->d_inode);
3312 }
3313
3314 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3315 /*
3316 * nobody can move out of any directories on this fs.
3317 */
3318 if (likely(c1->d_parent != p2))
3319 return lock_two_directories(c1->d_parent, p2);
3320
3321 /*
3322 * c1 got moved into p2 while we were taking locks;
3323 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3324 * for consistency with lock_rename().
3325 */
3326 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3327 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3328 return NULL;
3329 }
3330 EXPORT_SYMBOL(lock_rename_child);
3331
unlock_rename(struct dentry * p1,struct dentry * p2)3332 void unlock_rename(struct dentry *p1, struct dentry *p2)
3333 {
3334 inode_unlock(p1->d_inode);
3335 if (p1 != p2) {
3336 inode_unlock(p2->d_inode);
3337 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3338 }
3339 }
3340 EXPORT_SYMBOL(unlock_rename);
3341
3342 /**
3343 * vfs_prepare_mode - prepare the mode to be used for a new inode
3344 * @idmap: idmap of the mount the inode was found from
3345 * @dir: parent directory of the new inode
3346 * @mode: mode of the new inode
3347 * @mask_perms: allowed permission by the vfs
3348 * @type: type of file to be created
3349 *
3350 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3351 * object to be created.
3352 *
3353 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3354 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3355 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3356 * POSIX ACL supporting filesystems.
3357 *
3358 * Note that it's currently valid for @type to be 0 if a directory is created.
3359 * Filesystems raise that flag individually and we need to check whether each
3360 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3361 * non-zero type.
3362 *
3363 * Returns: mode to be passed to the filesystem
3364 */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3365 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3366 const struct inode *dir, umode_t mode,
3367 umode_t mask_perms, umode_t type)
3368 {
3369 mode = mode_strip_sgid(idmap, dir, mode);
3370 mode = mode_strip_umask(dir, mode);
3371
3372 /*
3373 * Apply the vfs mandated allowed permission mask and set the type of
3374 * file to be created before we call into the filesystem.
3375 */
3376 mode &= (mask_perms & ~S_IFMT);
3377 mode |= (type & S_IFMT);
3378
3379 return mode;
3380 }
3381
3382 /**
3383 * vfs_create - create new file
3384 * @idmap: idmap of the mount the inode was found from
3385 * @dir: inode of the parent directory
3386 * @dentry: dentry of the child file
3387 * @mode: mode of the child file
3388 * @want_excl: whether the file must not yet exist
3389 *
3390 * Create a new file.
3391 *
3392 * If the inode has been found through an idmapped mount the idmap of
3393 * the vfsmount must be passed through @idmap. This function will then take
3394 * care to map the inode according to @idmap before checking permissions.
3395 * On non-idmapped mounts or if permission checking is to be performed on the
3396 * raw inode simply pass @nop_mnt_idmap.
3397 */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3398 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3399 struct dentry *dentry, umode_t mode, bool want_excl)
3400 {
3401 int error;
3402
3403 error = may_create(idmap, dir, dentry);
3404 if (error)
3405 return error;
3406
3407 if (!dir->i_op->create)
3408 return -EACCES; /* shouldn't it be ENOSYS? */
3409
3410 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3411 error = security_inode_create(dir, dentry, mode);
3412 if (error)
3413 return error;
3414 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3415 if (!error)
3416 fsnotify_create(dir, dentry);
3417 return error;
3418 }
3419 EXPORT_SYMBOL(vfs_create);
3420
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3421 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3422 int (*f)(struct dentry *, umode_t, void *),
3423 void *arg)
3424 {
3425 struct inode *dir = dentry->d_parent->d_inode;
3426 int error = may_create(&nop_mnt_idmap, dir, dentry);
3427 if (error)
3428 return error;
3429
3430 mode &= S_IALLUGO;
3431 mode |= S_IFREG;
3432 error = security_inode_create(dir, dentry, mode);
3433 if (error)
3434 return error;
3435 error = f(dentry, mode, arg);
3436 if (!error)
3437 fsnotify_create(dir, dentry);
3438 return error;
3439 }
3440 EXPORT_SYMBOL(vfs_mkobj);
3441
may_open_dev(const struct path * path)3442 bool may_open_dev(const struct path *path)
3443 {
3444 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3445 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3446 }
3447
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3448 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3449 int acc_mode, int flag)
3450 {
3451 struct dentry *dentry = path->dentry;
3452 struct inode *inode = dentry->d_inode;
3453 int error;
3454
3455 if (!inode)
3456 return -ENOENT;
3457
3458 switch (inode->i_mode & S_IFMT) {
3459 case S_IFLNK:
3460 return -ELOOP;
3461 case S_IFDIR:
3462 if (acc_mode & MAY_WRITE)
3463 return -EISDIR;
3464 if (acc_mode & MAY_EXEC)
3465 return -EACCES;
3466 break;
3467 case S_IFBLK:
3468 case S_IFCHR:
3469 if (!may_open_dev(path))
3470 return -EACCES;
3471 fallthrough;
3472 case S_IFIFO:
3473 case S_IFSOCK:
3474 if (acc_mode & MAY_EXEC)
3475 return -EACCES;
3476 flag &= ~O_TRUNC;
3477 break;
3478 case S_IFREG:
3479 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3480 return -EACCES;
3481 break;
3482 default:
3483 VFS_BUG_ON_INODE(1, inode);
3484 }
3485
3486 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3487 if (error)
3488 return error;
3489
3490 /*
3491 * An append-only file must be opened in append mode for writing.
3492 */
3493 if (IS_APPEND(inode)) {
3494 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3495 return -EPERM;
3496 if (flag & O_TRUNC)
3497 return -EPERM;
3498 }
3499
3500 /* O_NOATIME can only be set by the owner or superuser */
3501 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3502 return -EPERM;
3503
3504 return 0;
3505 }
3506
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3507 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3508 {
3509 const struct path *path = &filp->f_path;
3510 struct inode *inode = path->dentry->d_inode;
3511 int error = get_write_access(inode);
3512 if (error)
3513 return error;
3514
3515 error = security_file_truncate(filp);
3516 if (!error) {
3517 error = do_truncate(idmap, path->dentry, 0,
3518 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3519 filp);
3520 }
3521 put_write_access(inode);
3522 return error;
3523 }
3524
open_to_namei_flags(int flag)3525 static inline int open_to_namei_flags(int flag)
3526 {
3527 if ((flag & O_ACCMODE) == 3)
3528 flag--;
3529 return flag;
3530 }
3531
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3532 static int may_o_create(struct mnt_idmap *idmap,
3533 const struct path *dir, struct dentry *dentry,
3534 umode_t mode)
3535 {
3536 int error = security_path_mknod(dir, dentry, mode, 0);
3537 if (error)
3538 return error;
3539
3540 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3541 return -EOVERFLOW;
3542
3543 error = inode_permission(idmap, dir->dentry->d_inode,
3544 MAY_WRITE | MAY_EXEC);
3545 if (error)
3546 return error;
3547
3548 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3549 }
3550
3551 /*
3552 * Attempt to atomically look up, create and open a file from a negative
3553 * dentry.
3554 *
3555 * Returns 0 if successful. The file will have been created and attached to
3556 * @file by the filesystem calling finish_open().
3557 *
3558 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3559 * be set. The caller will need to perform the open themselves. @path will
3560 * have been updated to point to the new dentry. This may be negative.
3561 *
3562 * Returns an error code otherwise.
3563 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3564 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3565 struct file *file,
3566 int open_flag, umode_t mode)
3567 {
3568 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3569 struct inode *dir = nd->path.dentry->d_inode;
3570 int error;
3571
3572 if (nd->flags & LOOKUP_DIRECTORY)
3573 open_flag |= O_DIRECTORY;
3574
3575 file->f_path.dentry = DENTRY_NOT_SET;
3576 file->f_path.mnt = nd->path.mnt;
3577 error = dir->i_op->atomic_open(dir, dentry, file,
3578 open_to_namei_flags(open_flag), mode);
3579 d_lookup_done(dentry);
3580 if (!error) {
3581 if (file->f_mode & FMODE_OPENED) {
3582 if (unlikely(dentry != file->f_path.dentry)) {
3583 dput(dentry);
3584 dentry = dget(file->f_path.dentry);
3585 }
3586 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3587 error = -EIO;
3588 } else {
3589 if (file->f_path.dentry) {
3590 dput(dentry);
3591 dentry = file->f_path.dentry;
3592 }
3593 if (unlikely(d_is_negative(dentry)))
3594 error = -ENOENT;
3595 }
3596 }
3597 if (error) {
3598 dput(dentry);
3599 dentry = ERR_PTR(error);
3600 }
3601 return dentry;
3602 }
3603
3604 /*
3605 * Look up and maybe create and open the last component.
3606 *
3607 * Must be called with parent locked (exclusive in O_CREAT case).
3608 *
3609 * Returns 0 on success, that is, if
3610 * the file was successfully atomically created (if necessary) and opened, or
3611 * the file was not completely opened at this time, though lookups and
3612 * creations were performed.
3613 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3614 * In the latter case dentry returned in @path might be negative if O_CREAT
3615 * hadn't been specified.
3616 *
3617 * An error code is returned on failure.
3618 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3619 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3620 const struct open_flags *op,
3621 bool got_write)
3622 {
3623 struct mnt_idmap *idmap;
3624 struct dentry *dir = nd->path.dentry;
3625 struct inode *dir_inode = dir->d_inode;
3626 int open_flag = op->open_flag;
3627 struct dentry *dentry;
3628 int error, create_error = 0;
3629 umode_t mode = op->mode;
3630 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3631
3632 if (unlikely(IS_DEADDIR(dir_inode)))
3633 return ERR_PTR(-ENOENT);
3634
3635 file->f_mode &= ~FMODE_CREATED;
3636 dentry = d_lookup(dir, &nd->last);
3637 for (;;) {
3638 if (!dentry) {
3639 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3640 if (IS_ERR(dentry))
3641 return dentry;
3642 }
3643 if (d_in_lookup(dentry))
3644 break;
3645
3646 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3647 if (likely(error > 0))
3648 break;
3649 if (error)
3650 goto out_dput;
3651 d_invalidate(dentry);
3652 dput(dentry);
3653 dentry = NULL;
3654 }
3655 if (dentry->d_inode) {
3656 /* Cached positive dentry: will open in f_op->open */
3657 return dentry;
3658 }
3659
3660 if (open_flag & O_CREAT)
3661 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3662
3663 /*
3664 * Checking write permission is tricky, bacuse we don't know if we are
3665 * going to actually need it: O_CREAT opens should work as long as the
3666 * file exists. But checking existence breaks atomicity. The trick is
3667 * to check access and if not granted clear O_CREAT from the flags.
3668 *
3669 * Another problem is returing the "right" error value (e.g. for an
3670 * O_EXCL open we want to return EEXIST not EROFS).
3671 */
3672 if (unlikely(!got_write))
3673 open_flag &= ~O_TRUNC;
3674 idmap = mnt_idmap(nd->path.mnt);
3675 if (open_flag & O_CREAT) {
3676 if (open_flag & O_EXCL)
3677 open_flag &= ~O_TRUNC;
3678 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3679 if (likely(got_write))
3680 create_error = may_o_create(idmap, &nd->path,
3681 dentry, mode);
3682 else
3683 create_error = -EROFS;
3684 }
3685 if (create_error)
3686 open_flag &= ~O_CREAT;
3687 if (dir_inode->i_op->atomic_open) {
3688 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3689 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3690 dentry = ERR_PTR(create_error);
3691 return dentry;
3692 }
3693
3694 if (d_in_lookup(dentry)) {
3695 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3696 nd->flags);
3697 d_lookup_done(dentry);
3698 if (unlikely(res)) {
3699 if (IS_ERR(res)) {
3700 error = PTR_ERR(res);
3701 goto out_dput;
3702 }
3703 dput(dentry);
3704 dentry = res;
3705 }
3706 }
3707
3708 /* Negative dentry, just create the file */
3709 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3710 file->f_mode |= FMODE_CREATED;
3711 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3712 if (!dir_inode->i_op->create) {
3713 error = -EACCES;
3714 goto out_dput;
3715 }
3716
3717 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3718 mode, open_flag & O_EXCL);
3719 if (error)
3720 goto out_dput;
3721 }
3722 if (unlikely(create_error) && !dentry->d_inode) {
3723 error = create_error;
3724 goto out_dput;
3725 }
3726 return dentry;
3727
3728 out_dput:
3729 dput(dentry);
3730 return ERR_PTR(error);
3731 }
3732
trailing_slashes(struct nameidata * nd)3733 static inline bool trailing_slashes(struct nameidata *nd)
3734 {
3735 return (bool)nd->last.name[nd->last.len];
3736 }
3737
lookup_fast_for_open(struct nameidata * nd,int open_flag)3738 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3739 {
3740 struct dentry *dentry;
3741
3742 if (open_flag & O_CREAT) {
3743 if (trailing_slashes(nd))
3744 return ERR_PTR(-EISDIR);
3745
3746 /* Don't bother on an O_EXCL create */
3747 if (open_flag & O_EXCL)
3748 return NULL;
3749 }
3750
3751 if (trailing_slashes(nd))
3752 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3753
3754 dentry = lookup_fast(nd);
3755 if (IS_ERR_OR_NULL(dentry))
3756 return dentry;
3757
3758 if (open_flag & O_CREAT) {
3759 /* Discard negative dentries. Need inode_lock to do the create */
3760 if (!dentry->d_inode) {
3761 if (!(nd->flags & LOOKUP_RCU))
3762 dput(dentry);
3763 dentry = NULL;
3764 }
3765 }
3766 return dentry;
3767 }
3768
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3769 static const char *open_last_lookups(struct nameidata *nd,
3770 struct file *file, const struct open_flags *op)
3771 {
3772 struct dentry *dir = nd->path.dentry;
3773 int open_flag = op->open_flag;
3774 bool got_write = false;
3775 struct dentry *dentry;
3776 const char *res;
3777
3778 nd->flags |= op->intent;
3779
3780 if (nd->last_type != LAST_NORM) {
3781 if (nd->depth)
3782 put_link(nd);
3783 return handle_dots(nd, nd->last_type);
3784 }
3785
3786 /* We _can_ be in RCU mode here */
3787 dentry = lookup_fast_for_open(nd, open_flag);
3788 if (IS_ERR(dentry))
3789 return ERR_CAST(dentry);
3790
3791 if (likely(dentry))
3792 goto finish_lookup;
3793
3794 if (!(open_flag & O_CREAT)) {
3795 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3796 return ERR_PTR(-ECHILD);
3797 } else {
3798 if (nd->flags & LOOKUP_RCU) {
3799 if (!try_to_unlazy(nd))
3800 return ERR_PTR(-ECHILD);
3801 }
3802 }
3803
3804 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3805 got_write = !mnt_want_write(nd->path.mnt);
3806 /*
3807 * do _not_ fail yet - we might not need that or fail with
3808 * a different error; let lookup_open() decide; we'll be
3809 * dropping this one anyway.
3810 */
3811 }
3812 if (open_flag & O_CREAT)
3813 inode_lock(dir->d_inode);
3814 else
3815 inode_lock_shared(dir->d_inode);
3816 dentry = lookup_open(nd, file, op, got_write);
3817 if (!IS_ERR(dentry)) {
3818 if (file->f_mode & FMODE_CREATED)
3819 fsnotify_create(dir->d_inode, dentry);
3820 if (file->f_mode & FMODE_OPENED)
3821 fsnotify_open(file);
3822 }
3823 if (open_flag & O_CREAT)
3824 inode_unlock(dir->d_inode);
3825 else
3826 inode_unlock_shared(dir->d_inode);
3827
3828 if (got_write)
3829 mnt_drop_write(nd->path.mnt);
3830
3831 if (IS_ERR(dentry))
3832 return ERR_CAST(dentry);
3833
3834 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3835 dput(nd->path.dentry);
3836 nd->path.dentry = dentry;
3837 return NULL;
3838 }
3839
3840 finish_lookup:
3841 if (nd->depth)
3842 put_link(nd);
3843 res = step_into(nd, WALK_TRAILING, dentry);
3844 if (unlikely(res))
3845 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3846 return res;
3847 }
3848
3849 /*
3850 * Handle the last step of open()
3851 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3852 static int do_open(struct nameidata *nd,
3853 struct file *file, const struct open_flags *op)
3854 {
3855 struct mnt_idmap *idmap;
3856 int open_flag = op->open_flag;
3857 bool do_truncate;
3858 int acc_mode;
3859 int error;
3860
3861 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3862 error = complete_walk(nd);
3863 if (error)
3864 return error;
3865 }
3866 if (!(file->f_mode & FMODE_CREATED))
3867 audit_inode(nd->name, nd->path.dentry, 0);
3868 idmap = mnt_idmap(nd->path.mnt);
3869 if (open_flag & O_CREAT) {
3870 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3871 return -EEXIST;
3872 if (d_is_dir(nd->path.dentry))
3873 return -EISDIR;
3874 error = may_create_in_sticky(idmap, nd,
3875 d_backing_inode(nd->path.dentry));
3876 if (unlikely(error))
3877 return error;
3878 }
3879 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3880 return -ENOTDIR;
3881
3882 do_truncate = false;
3883 acc_mode = op->acc_mode;
3884 if (file->f_mode & FMODE_CREATED) {
3885 /* Don't check for write permission, don't truncate */
3886 open_flag &= ~O_TRUNC;
3887 acc_mode = 0;
3888 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3889 error = mnt_want_write(nd->path.mnt);
3890 if (error)
3891 return error;
3892 do_truncate = true;
3893 }
3894 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3895 if (!error && !(file->f_mode & FMODE_OPENED))
3896 error = vfs_open(&nd->path, file);
3897 if (!error)
3898 error = security_file_post_open(file, op->acc_mode);
3899 if (!error && do_truncate)
3900 error = handle_truncate(idmap, file);
3901 if (unlikely(error > 0)) {
3902 WARN_ON(1);
3903 error = -EINVAL;
3904 }
3905 if (do_truncate)
3906 mnt_drop_write(nd->path.mnt);
3907 return error;
3908 }
3909
3910 /**
3911 * vfs_tmpfile - create tmpfile
3912 * @idmap: idmap of the mount the inode was found from
3913 * @parentpath: pointer to the path of the base directory
3914 * @file: file descriptor of the new tmpfile
3915 * @mode: mode of the new tmpfile
3916 *
3917 * Create a temporary file.
3918 *
3919 * If the inode has been found through an idmapped mount the idmap of
3920 * the vfsmount must be passed through @idmap. This function will then take
3921 * care to map the inode according to @idmap before checking permissions.
3922 * On non-idmapped mounts or if permission checking is to be performed on the
3923 * raw inode simply pass @nop_mnt_idmap.
3924 */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)3925 int vfs_tmpfile(struct mnt_idmap *idmap,
3926 const struct path *parentpath,
3927 struct file *file, umode_t mode)
3928 {
3929 struct dentry *child;
3930 struct inode *dir = d_inode(parentpath->dentry);
3931 struct inode *inode;
3932 int error;
3933 int open_flag = file->f_flags;
3934
3935 /* we want directory to be writable */
3936 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3937 if (error)
3938 return error;
3939 if (!dir->i_op->tmpfile)
3940 return -EOPNOTSUPP;
3941 child = d_alloc(parentpath->dentry, &slash_name);
3942 if (unlikely(!child))
3943 return -ENOMEM;
3944 file->f_path.mnt = parentpath->mnt;
3945 file->f_path.dentry = child;
3946 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3947 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3948 dput(child);
3949 if (file->f_mode & FMODE_OPENED)
3950 fsnotify_open(file);
3951 if (error)
3952 return error;
3953 /* Don't check for other permissions, the inode was just created */
3954 error = may_open(idmap, &file->f_path, 0, file->f_flags);
3955 if (error)
3956 return error;
3957 inode = file_inode(file);
3958 if (!(open_flag & O_EXCL)) {
3959 spin_lock(&inode->i_lock);
3960 inode->i_state |= I_LINKABLE;
3961 spin_unlock(&inode->i_lock);
3962 }
3963 security_inode_post_create_tmpfile(idmap, inode);
3964 return 0;
3965 }
3966
3967 /**
3968 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3969 * @idmap: idmap of the mount the inode was found from
3970 * @parentpath: path of the base directory
3971 * @mode: mode of the new tmpfile
3972 * @open_flag: flags
3973 * @cred: credentials for open
3974 *
3975 * Create and open a temporary file. The file is not accounted in nr_files,
3976 * hence this is only for kernel internal use, and must not be installed into
3977 * file tables or such.
3978 */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)3979 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3980 const struct path *parentpath,
3981 umode_t mode, int open_flag,
3982 const struct cred *cred)
3983 {
3984 struct file *file;
3985 int error;
3986
3987 file = alloc_empty_file_noaccount(open_flag, cred);
3988 if (IS_ERR(file))
3989 return file;
3990
3991 error = vfs_tmpfile(idmap, parentpath, file, mode);
3992 if (error) {
3993 fput(file);
3994 file = ERR_PTR(error);
3995 }
3996 return file;
3997 }
3998 EXPORT_SYMBOL(kernel_tmpfile_open);
3999
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)4000 static int do_tmpfile(struct nameidata *nd, unsigned flags,
4001 const struct open_flags *op,
4002 struct file *file)
4003 {
4004 struct path path;
4005 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
4006
4007 if (unlikely(error))
4008 return error;
4009 error = mnt_want_write(path.mnt);
4010 if (unlikely(error))
4011 goto out;
4012 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
4013 if (error)
4014 goto out2;
4015 audit_inode(nd->name, file->f_path.dentry, 0);
4016 out2:
4017 mnt_drop_write(path.mnt);
4018 out:
4019 path_put(&path);
4020 return error;
4021 }
4022
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)4023 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
4024 {
4025 struct path path;
4026 int error = path_lookupat(nd, flags, &path);
4027 if (!error) {
4028 audit_inode(nd->name, path.dentry, 0);
4029 error = vfs_open(&path, file);
4030 path_put(&path);
4031 }
4032 return error;
4033 }
4034
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)4035 static struct file *path_openat(struct nameidata *nd,
4036 const struct open_flags *op, unsigned flags)
4037 {
4038 struct file *file;
4039 int error;
4040
4041 file = alloc_empty_file(op->open_flag, current_cred());
4042 if (IS_ERR(file))
4043 return file;
4044
4045 if (unlikely(file->f_flags & __O_TMPFILE)) {
4046 error = do_tmpfile(nd, flags, op, file);
4047 } else if (unlikely(file->f_flags & O_PATH)) {
4048 error = do_o_path(nd, flags, file);
4049 } else {
4050 const char *s = path_init(nd, flags);
4051 while (!(error = link_path_walk(s, nd)) &&
4052 (s = open_last_lookups(nd, file, op)) != NULL)
4053 ;
4054 if (!error)
4055 error = do_open(nd, file, op);
4056 terminate_walk(nd);
4057 }
4058 if (likely(!error)) {
4059 if (likely(file->f_mode & FMODE_OPENED))
4060 return file;
4061 WARN_ON(1);
4062 error = -EINVAL;
4063 }
4064 fput_close(file);
4065 if (error == -EOPENSTALE) {
4066 if (flags & LOOKUP_RCU)
4067 error = -ECHILD;
4068 else
4069 error = -ESTALE;
4070 }
4071 return ERR_PTR(error);
4072 }
4073
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)4074 struct file *do_filp_open(int dfd, struct filename *pathname,
4075 const struct open_flags *op)
4076 {
4077 struct nameidata nd;
4078 int flags = op->lookup_flags;
4079 struct file *filp;
4080
4081 set_nameidata(&nd, dfd, pathname, NULL);
4082 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4083 if (unlikely(filp == ERR_PTR(-ECHILD)))
4084 filp = path_openat(&nd, op, flags);
4085 if (unlikely(filp == ERR_PTR(-ESTALE)))
4086 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4087 restore_nameidata();
4088 return filp;
4089 }
4090
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)4091 struct file *do_file_open_root(const struct path *root,
4092 const char *name, const struct open_flags *op)
4093 {
4094 struct nameidata nd;
4095 struct file *file;
4096 struct filename *filename;
4097 int flags = op->lookup_flags;
4098
4099 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4100 return ERR_PTR(-ELOOP);
4101
4102 filename = getname_kernel(name);
4103 if (IS_ERR(filename))
4104 return ERR_CAST(filename);
4105
4106 set_nameidata(&nd, -1, filename, root);
4107 file = path_openat(&nd, op, flags | LOOKUP_RCU);
4108 if (unlikely(file == ERR_PTR(-ECHILD)))
4109 file = path_openat(&nd, op, flags);
4110 if (unlikely(file == ERR_PTR(-ESTALE)))
4111 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4112 restore_nameidata();
4113 putname(filename);
4114 return file;
4115 }
4116
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)4117 static struct dentry *filename_create(int dfd, struct filename *name,
4118 struct path *path, unsigned int lookup_flags)
4119 {
4120 struct dentry *dentry = ERR_PTR(-EEXIST);
4121 struct qstr last;
4122 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4123 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4124 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4125 int type;
4126 int err2;
4127 int error;
4128
4129 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4130 if (error)
4131 return ERR_PTR(error);
4132
4133 /*
4134 * Yucky last component or no last component at all?
4135 * (foo/., foo/.., /////)
4136 */
4137 if (unlikely(type != LAST_NORM))
4138 goto out;
4139
4140 /* don't fail immediately if it's r/o, at least try to report other errors */
4141 err2 = mnt_want_write(path->mnt);
4142 /*
4143 * Do the final lookup. Suppress 'create' if there is a trailing
4144 * '/', and a directory wasn't requested.
4145 */
4146 if (last.name[last.len] && !want_dir)
4147 create_flags &= ~LOOKUP_CREATE;
4148 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4149 dentry = lookup_one_qstr_excl(&last, path->dentry,
4150 reval_flag | create_flags);
4151 if (IS_ERR(dentry))
4152 goto unlock;
4153
4154 if (unlikely(err2)) {
4155 error = err2;
4156 goto fail;
4157 }
4158 return dentry;
4159 fail:
4160 dput(dentry);
4161 dentry = ERR_PTR(error);
4162 unlock:
4163 inode_unlock(path->dentry->d_inode);
4164 if (!err2)
4165 mnt_drop_write(path->mnt);
4166 out:
4167 path_put(path);
4168 return dentry;
4169 }
4170
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4171 struct dentry *kern_path_create(int dfd, const char *pathname,
4172 struct path *path, unsigned int lookup_flags)
4173 {
4174 struct filename *filename = getname_kernel(pathname);
4175 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4176
4177 putname(filename);
4178 return res;
4179 }
4180 EXPORT_SYMBOL(kern_path_create);
4181
done_path_create(struct path * path,struct dentry * dentry)4182 void done_path_create(struct path *path, struct dentry *dentry)
4183 {
4184 if (!IS_ERR(dentry))
4185 dput(dentry);
4186 inode_unlock(path->dentry->d_inode);
4187 mnt_drop_write(path->mnt);
4188 path_put(path);
4189 }
4190 EXPORT_SYMBOL(done_path_create);
4191
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4192 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4193 struct path *path, unsigned int lookup_flags)
4194 {
4195 struct filename *filename = getname(pathname);
4196 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4197
4198 putname(filename);
4199 return res;
4200 }
4201 EXPORT_SYMBOL(user_path_create);
4202
4203 /**
4204 * vfs_mknod - create device node or file
4205 * @idmap: idmap of the mount the inode was found from
4206 * @dir: inode of the parent directory
4207 * @dentry: dentry of the child device node
4208 * @mode: mode of the child device node
4209 * @dev: device number of device to create
4210 *
4211 * Create a device node or file.
4212 *
4213 * If the inode has been found through an idmapped mount the idmap of
4214 * the vfsmount must be passed through @idmap. This function will then take
4215 * care to map the inode according to @idmap before checking permissions.
4216 * On non-idmapped mounts or if permission checking is to be performed on the
4217 * raw inode simply pass @nop_mnt_idmap.
4218 */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4219 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4220 struct dentry *dentry, umode_t mode, dev_t dev)
4221 {
4222 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4223 int error = may_create(idmap, dir, dentry);
4224
4225 if (error)
4226 return error;
4227
4228 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4229 !capable(CAP_MKNOD))
4230 return -EPERM;
4231
4232 if (!dir->i_op->mknod)
4233 return -EPERM;
4234
4235 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4236 error = devcgroup_inode_mknod(mode, dev);
4237 if (error)
4238 return error;
4239
4240 error = security_inode_mknod(dir, dentry, mode, dev);
4241 if (error)
4242 return error;
4243
4244 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4245 if (!error)
4246 fsnotify_create(dir, dentry);
4247 return error;
4248 }
4249 EXPORT_SYMBOL(vfs_mknod);
4250
may_mknod(umode_t mode)4251 static int may_mknod(umode_t mode)
4252 {
4253 switch (mode & S_IFMT) {
4254 case S_IFREG:
4255 case S_IFCHR:
4256 case S_IFBLK:
4257 case S_IFIFO:
4258 case S_IFSOCK:
4259 case 0: /* zero mode translates to S_IFREG */
4260 return 0;
4261 case S_IFDIR:
4262 return -EPERM;
4263 default:
4264 return -EINVAL;
4265 }
4266 }
4267
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4268 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4269 unsigned int dev)
4270 {
4271 struct mnt_idmap *idmap;
4272 struct dentry *dentry;
4273 struct path path;
4274 int error;
4275 unsigned int lookup_flags = 0;
4276
4277 error = may_mknod(mode);
4278 if (error)
4279 goto out1;
4280 retry:
4281 dentry = filename_create(dfd, name, &path, lookup_flags);
4282 error = PTR_ERR(dentry);
4283 if (IS_ERR(dentry))
4284 goto out1;
4285
4286 error = security_path_mknod(&path, dentry,
4287 mode_strip_umask(path.dentry->d_inode, mode), dev);
4288 if (error)
4289 goto out2;
4290
4291 idmap = mnt_idmap(path.mnt);
4292 switch (mode & S_IFMT) {
4293 case 0: case S_IFREG:
4294 error = vfs_create(idmap, path.dentry->d_inode,
4295 dentry, mode, true);
4296 if (!error)
4297 security_path_post_mknod(idmap, dentry);
4298 break;
4299 case S_IFCHR: case S_IFBLK:
4300 error = vfs_mknod(idmap, path.dentry->d_inode,
4301 dentry, mode, new_decode_dev(dev));
4302 break;
4303 case S_IFIFO: case S_IFSOCK:
4304 error = vfs_mknod(idmap, path.dentry->d_inode,
4305 dentry, mode, 0);
4306 break;
4307 }
4308 out2:
4309 done_path_create(&path, dentry);
4310 if (retry_estale(error, lookup_flags)) {
4311 lookup_flags |= LOOKUP_REVAL;
4312 goto retry;
4313 }
4314 out1:
4315 putname(name);
4316 return error;
4317 }
4318
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4319 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4320 unsigned int, dev)
4321 {
4322 return do_mknodat(dfd, getname(filename), mode, dev);
4323 }
4324
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4325 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4326 {
4327 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4328 }
4329
4330 /**
4331 * vfs_mkdir - create directory returning correct dentry if possible
4332 * @idmap: idmap of the mount the inode was found from
4333 * @dir: inode of the parent directory
4334 * @dentry: dentry of the child directory
4335 * @mode: mode of the child directory
4336 *
4337 * Create a directory.
4338 *
4339 * If the inode has been found through an idmapped mount the idmap of
4340 * the vfsmount must be passed through @idmap. This function will then take
4341 * care to map the inode according to @idmap before checking permissions.
4342 * On non-idmapped mounts or if permission checking is to be performed on the
4343 * raw inode simply pass @nop_mnt_idmap.
4344 *
4345 * In the event that the filesystem does not use the *@dentry but leaves it
4346 * negative or unhashes it and possibly splices a different one returning it,
4347 * the original dentry is dput() and the alternate is returned.
4348 *
4349 * In case of an error the dentry is dput() and an ERR_PTR() is returned.
4350 */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4351 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4352 struct dentry *dentry, umode_t mode)
4353 {
4354 int error;
4355 unsigned max_links = dir->i_sb->s_max_links;
4356 struct dentry *de;
4357
4358 error = may_create(idmap, dir, dentry);
4359 if (error)
4360 goto err;
4361
4362 error = -EPERM;
4363 if (!dir->i_op->mkdir)
4364 goto err;
4365
4366 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4367 error = security_inode_mkdir(dir, dentry, mode);
4368 if (error)
4369 goto err;
4370
4371 error = -EMLINK;
4372 if (max_links && dir->i_nlink >= max_links)
4373 goto err;
4374
4375 de = dir->i_op->mkdir(idmap, dir, dentry, mode);
4376 error = PTR_ERR(de);
4377 if (IS_ERR(de))
4378 goto err;
4379 if (de) {
4380 dput(dentry);
4381 dentry = de;
4382 }
4383 fsnotify_mkdir(dir, dentry);
4384 return dentry;
4385
4386 err:
4387 dput(dentry);
4388 return ERR_PTR(error);
4389 }
4390 EXPORT_SYMBOL(vfs_mkdir);
4391
do_mkdirat(int dfd,struct filename * name,umode_t mode)4392 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4393 {
4394 struct dentry *dentry;
4395 struct path path;
4396 int error;
4397 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4398
4399 retry:
4400 dentry = filename_create(dfd, name, &path, lookup_flags);
4401 error = PTR_ERR(dentry);
4402 if (IS_ERR(dentry))
4403 goto out_putname;
4404
4405 error = security_path_mkdir(&path, dentry,
4406 mode_strip_umask(path.dentry->d_inode, mode));
4407 if (!error) {
4408 dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4409 dentry, mode);
4410 if (IS_ERR(dentry))
4411 error = PTR_ERR(dentry);
4412 }
4413 done_path_create(&path, dentry);
4414 if (retry_estale(error, lookup_flags)) {
4415 lookup_flags |= LOOKUP_REVAL;
4416 goto retry;
4417 }
4418 out_putname:
4419 putname(name);
4420 return error;
4421 }
4422
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4423 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4424 {
4425 return do_mkdirat(dfd, getname(pathname), mode);
4426 }
4427
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4428 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4429 {
4430 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4431 }
4432
4433 /**
4434 * vfs_rmdir - remove directory
4435 * @idmap: idmap of the mount the inode was found from
4436 * @dir: inode of the parent directory
4437 * @dentry: dentry of the child directory
4438 *
4439 * Remove a directory.
4440 *
4441 * If the inode has been found through an idmapped mount the idmap of
4442 * the vfsmount must be passed through @idmap. This function will then take
4443 * care to map the inode according to @idmap before checking permissions.
4444 * On non-idmapped mounts or if permission checking is to be performed on the
4445 * raw inode simply pass @nop_mnt_idmap.
4446 */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4447 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4448 struct dentry *dentry)
4449 {
4450 int error = may_delete(idmap, dir, dentry, 1);
4451
4452 if (error)
4453 return error;
4454
4455 if (!dir->i_op->rmdir)
4456 return -EPERM;
4457
4458 dget(dentry);
4459 inode_lock(dentry->d_inode);
4460
4461 error = -EBUSY;
4462 if (is_local_mountpoint(dentry) ||
4463 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4464 goto out;
4465
4466 error = security_inode_rmdir(dir, dentry);
4467 if (error)
4468 goto out;
4469
4470 error = dir->i_op->rmdir(dir, dentry);
4471 if (error)
4472 goto out;
4473
4474 shrink_dcache_parent(dentry);
4475 dentry->d_inode->i_flags |= S_DEAD;
4476 dont_mount(dentry);
4477 detach_mounts(dentry);
4478
4479 out:
4480 inode_unlock(dentry->d_inode);
4481 dput(dentry);
4482 if (!error)
4483 d_delete_notify(dir, dentry);
4484 return error;
4485 }
4486 EXPORT_SYMBOL(vfs_rmdir);
4487
do_rmdir(int dfd,struct filename * name)4488 int do_rmdir(int dfd, struct filename *name)
4489 {
4490 int error;
4491 struct dentry *dentry;
4492 struct path path;
4493 struct qstr last;
4494 int type;
4495 unsigned int lookup_flags = 0;
4496 retry:
4497 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4498 if (error)
4499 goto exit1;
4500
4501 switch (type) {
4502 case LAST_DOTDOT:
4503 error = -ENOTEMPTY;
4504 goto exit2;
4505 case LAST_DOT:
4506 error = -EINVAL;
4507 goto exit2;
4508 case LAST_ROOT:
4509 error = -EBUSY;
4510 goto exit2;
4511 }
4512
4513 error = mnt_want_write(path.mnt);
4514 if (error)
4515 goto exit2;
4516
4517 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4518 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4519 error = PTR_ERR(dentry);
4520 if (IS_ERR(dentry))
4521 goto exit3;
4522 error = security_path_rmdir(&path, dentry);
4523 if (error)
4524 goto exit4;
4525 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4526 exit4:
4527 dput(dentry);
4528 exit3:
4529 inode_unlock(path.dentry->d_inode);
4530 mnt_drop_write(path.mnt);
4531 exit2:
4532 path_put(&path);
4533 if (retry_estale(error, lookup_flags)) {
4534 lookup_flags |= LOOKUP_REVAL;
4535 goto retry;
4536 }
4537 exit1:
4538 putname(name);
4539 return error;
4540 }
4541
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4542 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4543 {
4544 return do_rmdir(AT_FDCWD, getname(pathname));
4545 }
4546
4547 /**
4548 * vfs_unlink - unlink a filesystem object
4549 * @idmap: idmap of the mount the inode was found from
4550 * @dir: parent directory
4551 * @dentry: victim
4552 * @delegated_inode: returns victim inode, if the inode is delegated.
4553 *
4554 * The caller must hold dir->i_mutex.
4555 *
4556 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4557 * return a reference to the inode in delegated_inode. The caller
4558 * should then break the delegation on that inode and retry. Because
4559 * breaking a delegation may take a long time, the caller should drop
4560 * dir->i_mutex before doing so.
4561 *
4562 * Alternatively, a caller may pass NULL for delegated_inode. This may
4563 * be appropriate for callers that expect the underlying filesystem not
4564 * to be NFS exported.
4565 *
4566 * If the inode has been found through an idmapped mount the idmap of
4567 * the vfsmount must be passed through @idmap. This function will then take
4568 * care to map the inode according to @idmap before checking permissions.
4569 * On non-idmapped mounts or if permission checking is to be performed on the
4570 * raw inode simply pass @nop_mnt_idmap.
4571 */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4572 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4573 struct dentry *dentry, struct inode **delegated_inode)
4574 {
4575 struct inode *target = dentry->d_inode;
4576 int error = may_delete(idmap, dir, dentry, 0);
4577
4578 if (error)
4579 return error;
4580
4581 if (!dir->i_op->unlink)
4582 return -EPERM;
4583
4584 inode_lock(target);
4585 if (IS_SWAPFILE(target))
4586 error = -EPERM;
4587 else if (is_local_mountpoint(dentry))
4588 error = -EBUSY;
4589 else {
4590 error = security_inode_unlink(dir, dentry);
4591 if (!error) {
4592 error = try_break_deleg(target, delegated_inode);
4593 if (error)
4594 goto out;
4595 error = dir->i_op->unlink(dir, dentry);
4596 if (!error) {
4597 dont_mount(dentry);
4598 detach_mounts(dentry);
4599 }
4600 }
4601 }
4602 out:
4603 inode_unlock(target);
4604
4605 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4606 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4607 fsnotify_unlink(dir, dentry);
4608 } else if (!error) {
4609 fsnotify_link_count(target);
4610 d_delete_notify(dir, dentry);
4611 }
4612
4613 return error;
4614 }
4615 EXPORT_SYMBOL(vfs_unlink);
4616
4617 /*
4618 * Make sure that the actual truncation of the file will occur outside its
4619 * directory's i_mutex. Truncate can take a long time if there is a lot of
4620 * writeout happening, and we don't want to prevent access to the directory
4621 * while waiting on the I/O.
4622 */
do_unlinkat(int dfd,struct filename * name)4623 int do_unlinkat(int dfd, struct filename *name)
4624 {
4625 int error;
4626 struct dentry *dentry;
4627 struct path path;
4628 struct qstr last;
4629 int type;
4630 struct inode *inode = NULL;
4631 struct inode *delegated_inode = NULL;
4632 unsigned int lookup_flags = 0;
4633 retry:
4634 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4635 if (error)
4636 goto exit1;
4637
4638 error = -EISDIR;
4639 if (type != LAST_NORM)
4640 goto exit2;
4641
4642 error = mnt_want_write(path.mnt);
4643 if (error)
4644 goto exit2;
4645 retry_deleg:
4646 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4647 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4648 error = PTR_ERR(dentry);
4649 if (!IS_ERR(dentry)) {
4650
4651 /* Why not before? Because we want correct error value */
4652 if (last.name[last.len])
4653 goto slashes;
4654 inode = dentry->d_inode;
4655 ihold(inode);
4656 error = security_path_unlink(&path, dentry);
4657 if (error)
4658 goto exit3;
4659 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4660 dentry, &delegated_inode);
4661 exit3:
4662 dput(dentry);
4663 }
4664 inode_unlock(path.dentry->d_inode);
4665 if (inode)
4666 iput(inode); /* truncate the inode here */
4667 inode = NULL;
4668 if (delegated_inode) {
4669 error = break_deleg_wait(&delegated_inode);
4670 if (!error)
4671 goto retry_deleg;
4672 }
4673 mnt_drop_write(path.mnt);
4674 exit2:
4675 path_put(&path);
4676 if (retry_estale(error, lookup_flags)) {
4677 lookup_flags |= LOOKUP_REVAL;
4678 inode = NULL;
4679 goto retry;
4680 }
4681 exit1:
4682 putname(name);
4683 return error;
4684
4685 slashes:
4686 if (d_is_dir(dentry))
4687 error = -EISDIR;
4688 else
4689 error = -ENOTDIR;
4690 goto exit3;
4691 }
4692
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4693 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4694 {
4695 if ((flag & ~AT_REMOVEDIR) != 0)
4696 return -EINVAL;
4697
4698 if (flag & AT_REMOVEDIR)
4699 return do_rmdir(dfd, getname(pathname));
4700 return do_unlinkat(dfd, getname(pathname));
4701 }
4702
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4703 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4704 {
4705 return do_unlinkat(AT_FDCWD, getname(pathname));
4706 }
4707
4708 /**
4709 * vfs_symlink - create symlink
4710 * @idmap: idmap of the mount the inode was found from
4711 * @dir: inode of the parent directory
4712 * @dentry: dentry of the child symlink file
4713 * @oldname: name of the file to link to
4714 *
4715 * Create a symlink.
4716 *
4717 * If the inode has been found through an idmapped mount the idmap of
4718 * the vfsmount must be passed through @idmap. This function will then take
4719 * care to map the inode according to @idmap before checking permissions.
4720 * On non-idmapped mounts or if permission checking is to be performed on the
4721 * raw inode simply pass @nop_mnt_idmap.
4722 */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4723 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4724 struct dentry *dentry, const char *oldname)
4725 {
4726 int error;
4727
4728 error = may_create(idmap, dir, dentry);
4729 if (error)
4730 return error;
4731
4732 if (!dir->i_op->symlink)
4733 return -EPERM;
4734
4735 error = security_inode_symlink(dir, dentry, oldname);
4736 if (error)
4737 return error;
4738
4739 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4740 if (!error)
4741 fsnotify_create(dir, dentry);
4742 return error;
4743 }
4744 EXPORT_SYMBOL(vfs_symlink);
4745
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4746 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4747 {
4748 int error;
4749 struct dentry *dentry;
4750 struct path path;
4751 unsigned int lookup_flags = 0;
4752
4753 if (IS_ERR(from)) {
4754 error = PTR_ERR(from);
4755 goto out_putnames;
4756 }
4757 retry:
4758 dentry = filename_create(newdfd, to, &path, lookup_flags);
4759 error = PTR_ERR(dentry);
4760 if (IS_ERR(dentry))
4761 goto out_putnames;
4762
4763 error = security_path_symlink(&path, dentry, from->name);
4764 if (!error)
4765 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4766 dentry, from->name);
4767 done_path_create(&path, dentry);
4768 if (retry_estale(error, lookup_flags)) {
4769 lookup_flags |= LOOKUP_REVAL;
4770 goto retry;
4771 }
4772 out_putnames:
4773 putname(to);
4774 putname(from);
4775 return error;
4776 }
4777
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4778 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4779 int, newdfd, const char __user *, newname)
4780 {
4781 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4782 }
4783
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4784 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4785 {
4786 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4787 }
4788
4789 /**
4790 * vfs_link - create a new link
4791 * @old_dentry: object to be linked
4792 * @idmap: idmap of the mount
4793 * @dir: new parent
4794 * @new_dentry: where to create the new link
4795 * @delegated_inode: returns inode needing a delegation break
4796 *
4797 * The caller must hold dir->i_mutex
4798 *
4799 * If vfs_link discovers a delegation on the to-be-linked file in need
4800 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4801 * inode in delegated_inode. The caller should then break the delegation
4802 * and retry. Because breaking a delegation may take a long time, the
4803 * caller should drop the i_mutex before doing so.
4804 *
4805 * Alternatively, a caller may pass NULL for delegated_inode. This may
4806 * be appropriate for callers that expect the underlying filesystem not
4807 * to be NFS exported.
4808 *
4809 * If the inode has been found through an idmapped mount the idmap of
4810 * the vfsmount must be passed through @idmap. This function will then take
4811 * care to map the inode according to @idmap before checking permissions.
4812 * On non-idmapped mounts or if permission checking is to be performed on the
4813 * raw inode simply pass @nop_mnt_idmap.
4814 */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4815 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4816 struct inode *dir, struct dentry *new_dentry,
4817 struct inode **delegated_inode)
4818 {
4819 struct inode *inode = old_dentry->d_inode;
4820 unsigned max_links = dir->i_sb->s_max_links;
4821 int error;
4822
4823 if (!inode)
4824 return -ENOENT;
4825
4826 error = may_create(idmap, dir, new_dentry);
4827 if (error)
4828 return error;
4829
4830 if (dir->i_sb != inode->i_sb)
4831 return -EXDEV;
4832
4833 /*
4834 * A link to an append-only or immutable file cannot be created.
4835 */
4836 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4837 return -EPERM;
4838 /*
4839 * Updating the link count will likely cause i_uid and i_gid to
4840 * be writen back improperly if their true value is unknown to
4841 * the vfs.
4842 */
4843 if (HAS_UNMAPPED_ID(idmap, inode))
4844 return -EPERM;
4845 if (!dir->i_op->link)
4846 return -EPERM;
4847 if (S_ISDIR(inode->i_mode))
4848 return -EPERM;
4849
4850 error = security_inode_link(old_dentry, dir, new_dentry);
4851 if (error)
4852 return error;
4853
4854 inode_lock(inode);
4855 /* Make sure we don't allow creating hardlink to an unlinked file */
4856 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4857 error = -ENOENT;
4858 else if (max_links && inode->i_nlink >= max_links)
4859 error = -EMLINK;
4860 else {
4861 error = try_break_deleg(inode, delegated_inode);
4862 if (!error)
4863 error = dir->i_op->link(old_dentry, dir, new_dentry);
4864 }
4865
4866 if (!error && (inode->i_state & I_LINKABLE)) {
4867 spin_lock(&inode->i_lock);
4868 inode->i_state &= ~I_LINKABLE;
4869 spin_unlock(&inode->i_lock);
4870 }
4871 inode_unlock(inode);
4872 if (!error)
4873 fsnotify_link(dir, inode, new_dentry);
4874 return error;
4875 }
4876 EXPORT_SYMBOL(vfs_link);
4877
4878 /*
4879 * Hardlinks are often used in delicate situations. We avoid
4880 * security-related surprises by not following symlinks on the
4881 * newname. --KAB
4882 *
4883 * We don't follow them on the oldname either to be compatible
4884 * with linux 2.0, and to avoid hard-linking to directories
4885 * and other special files. --ADM
4886 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4887 int do_linkat(int olddfd, struct filename *old, int newdfd,
4888 struct filename *new, int flags)
4889 {
4890 struct mnt_idmap *idmap;
4891 struct dentry *new_dentry;
4892 struct path old_path, new_path;
4893 struct inode *delegated_inode = NULL;
4894 int how = 0;
4895 int error;
4896
4897 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4898 error = -EINVAL;
4899 goto out_putnames;
4900 }
4901 /*
4902 * To use null names we require CAP_DAC_READ_SEARCH or
4903 * that the open-time creds of the dfd matches current.
4904 * This ensures that not everyone will be able to create
4905 * a hardlink using the passed file descriptor.
4906 */
4907 if (flags & AT_EMPTY_PATH)
4908 how |= LOOKUP_LINKAT_EMPTY;
4909
4910 if (flags & AT_SYMLINK_FOLLOW)
4911 how |= LOOKUP_FOLLOW;
4912 retry:
4913 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4914 if (error)
4915 goto out_putnames;
4916
4917 new_dentry = filename_create(newdfd, new, &new_path,
4918 (how & LOOKUP_REVAL));
4919 error = PTR_ERR(new_dentry);
4920 if (IS_ERR(new_dentry))
4921 goto out_putpath;
4922
4923 error = -EXDEV;
4924 if (old_path.mnt != new_path.mnt)
4925 goto out_dput;
4926 idmap = mnt_idmap(new_path.mnt);
4927 error = may_linkat(idmap, &old_path);
4928 if (unlikely(error))
4929 goto out_dput;
4930 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4931 if (error)
4932 goto out_dput;
4933 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4934 new_dentry, &delegated_inode);
4935 out_dput:
4936 done_path_create(&new_path, new_dentry);
4937 if (delegated_inode) {
4938 error = break_deleg_wait(&delegated_inode);
4939 if (!error) {
4940 path_put(&old_path);
4941 goto retry;
4942 }
4943 }
4944 if (retry_estale(error, how)) {
4945 path_put(&old_path);
4946 how |= LOOKUP_REVAL;
4947 goto retry;
4948 }
4949 out_putpath:
4950 path_put(&old_path);
4951 out_putnames:
4952 putname(old);
4953 putname(new);
4954
4955 return error;
4956 }
4957
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4958 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4959 int, newdfd, const char __user *, newname, int, flags)
4960 {
4961 return do_linkat(olddfd, getname_uflags(oldname, flags),
4962 newdfd, getname(newname), flags);
4963 }
4964
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4965 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4966 {
4967 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4968 }
4969
4970 /**
4971 * vfs_rename - rename a filesystem object
4972 * @rd: pointer to &struct renamedata info
4973 *
4974 * The caller must hold multiple mutexes--see lock_rename()).
4975 *
4976 * If vfs_rename discovers a delegation in need of breaking at either
4977 * the source or destination, it will return -EWOULDBLOCK and return a
4978 * reference to the inode in delegated_inode. The caller should then
4979 * break the delegation and retry. Because breaking a delegation may
4980 * take a long time, the caller should drop all locks before doing
4981 * so.
4982 *
4983 * Alternatively, a caller may pass NULL for delegated_inode. This may
4984 * be appropriate for callers that expect the underlying filesystem not
4985 * to be NFS exported.
4986 *
4987 * The worst of all namespace operations - renaming directory. "Perverted"
4988 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4989 * Problems:
4990 *
4991 * a) we can get into loop creation.
4992 * b) race potential - two innocent renames can create a loop together.
4993 * That's where 4.4BSD screws up. Current fix: serialization on
4994 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4995 * story.
4996 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4997 * and source (if it's a non-directory or a subdirectory that moves to
4998 * different parent).
4999 * And that - after we got ->i_mutex on parents (until then we don't know
5000 * whether the target exists). Solution: try to be smart with locking
5001 * order for inodes. We rely on the fact that tree topology may change
5002 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
5003 * move will be locked. Thus we can rank directories by the tree
5004 * (ancestors first) and rank all non-directories after them.
5005 * That works since everybody except rename does "lock parent, lookup,
5006 * lock child" and rename is under ->s_vfs_rename_mutex.
5007 * HOWEVER, it relies on the assumption that any object with ->lookup()
5008 * has no more than 1 dentry. If "hybrid" objects will ever appear,
5009 * we'd better make sure that there's no link(2) for them.
5010 * d) conversion from fhandle to dentry may come in the wrong moment - when
5011 * we are removing the target. Solution: we will have to grab ->i_mutex
5012 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
5013 * ->i_mutex on parents, which works but leads to some truly excessive
5014 * locking].
5015 */
vfs_rename(struct renamedata * rd)5016 int vfs_rename(struct renamedata *rd)
5017 {
5018 int error;
5019 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
5020 struct dentry *old_dentry = rd->old_dentry;
5021 struct dentry *new_dentry = rd->new_dentry;
5022 struct inode **delegated_inode = rd->delegated_inode;
5023 unsigned int flags = rd->flags;
5024 bool is_dir = d_is_dir(old_dentry);
5025 struct inode *source = old_dentry->d_inode;
5026 struct inode *target = new_dentry->d_inode;
5027 bool new_is_dir = false;
5028 unsigned max_links = new_dir->i_sb->s_max_links;
5029 struct name_snapshot old_name;
5030 bool lock_old_subdir, lock_new_subdir;
5031
5032 if (source == target)
5033 return 0;
5034
5035 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
5036 if (error)
5037 return error;
5038
5039 if (!target) {
5040 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
5041 } else {
5042 new_is_dir = d_is_dir(new_dentry);
5043
5044 if (!(flags & RENAME_EXCHANGE))
5045 error = may_delete(rd->new_mnt_idmap, new_dir,
5046 new_dentry, is_dir);
5047 else
5048 error = may_delete(rd->new_mnt_idmap, new_dir,
5049 new_dentry, new_is_dir);
5050 }
5051 if (error)
5052 return error;
5053
5054 if (!old_dir->i_op->rename)
5055 return -EPERM;
5056
5057 /*
5058 * If we are going to change the parent - check write permissions,
5059 * we'll need to flip '..'.
5060 */
5061 if (new_dir != old_dir) {
5062 if (is_dir) {
5063 error = inode_permission(rd->old_mnt_idmap, source,
5064 MAY_WRITE);
5065 if (error)
5066 return error;
5067 }
5068 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5069 error = inode_permission(rd->new_mnt_idmap, target,
5070 MAY_WRITE);
5071 if (error)
5072 return error;
5073 }
5074 }
5075
5076 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5077 flags);
5078 if (error)
5079 return error;
5080
5081 take_dentry_name_snapshot(&old_name, old_dentry);
5082 dget(new_dentry);
5083 /*
5084 * Lock children.
5085 * The source subdirectory needs to be locked on cross-directory
5086 * rename or cross-directory exchange since its parent changes.
5087 * The target subdirectory needs to be locked on cross-directory
5088 * exchange due to parent change and on any rename due to becoming
5089 * a victim.
5090 * Non-directories need locking in all cases (for NFS reasons);
5091 * they get locked after any subdirectories (in inode address order).
5092 *
5093 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5094 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5095 */
5096 lock_old_subdir = new_dir != old_dir;
5097 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5098 if (is_dir) {
5099 if (lock_old_subdir)
5100 inode_lock_nested(source, I_MUTEX_CHILD);
5101 if (target && (!new_is_dir || lock_new_subdir))
5102 inode_lock(target);
5103 } else if (new_is_dir) {
5104 if (lock_new_subdir)
5105 inode_lock_nested(target, I_MUTEX_CHILD);
5106 inode_lock(source);
5107 } else {
5108 lock_two_nondirectories(source, target);
5109 }
5110
5111 error = -EPERM;
5112 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5113 goto out;
5114
5115 error = -EBUSY;
5116 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5117 goto out;
5118
5119 if (max_links && new_dir != old_dir) {
5120 error = -EMLINK;
5121 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5122 goto out;
5123 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5124 old_dir->i_nlink >= max_links)
5125 goto out;
5126 }
5127 if (!is_dir) {
5128 error = try_break_deleg(source, delegated_inode);
5129 if (error)
5130 goto out;
5131 }
5132 if (target && !new_is_dir) {
5133 error = try_break_deleg(target, delegated_inode);
5134 if (error)
5135 goto out;
5136 }
5137 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5138 new_dir, new_dentry, flags);
5139 if (error)
5140 goto out;
5141
5142 if (!(flags & RENAME_EXCHANGE) && target) {
5143 if (is_dir) {
5144 shrink_dcache_parent(new_dentry);
5145 target->i_flags |= S_DEAD;
5146 }
5147 dont_mount(new_dentry);
5148 detach_mounts(new_dentry);
5149 }
5150 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5151 if (!(flags & RENAME_EXCHANGE))
5152 d_move(old_dentry, new_dentry);
5153 else
5154 d_exchange(old_dentry, new_dentry);
5155 }
5156 out:
5157 if (!is_dir || lock_old_subdir)
5158 inode_unlock(source);
5159 if (target && (!new_is_dir || lock_new_subdir))
5160 inode_unlock(target);
5161 dput(new_dentry);
5162 if (!error) {
5163 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5164 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5165 if (flags & RENAME_EXCHANGE) {
5166 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5167 new_is_dir, NULL, new_dentry);
5168 }
5169 }
5170 release_dentry_name_snapshot(&old_name);
5171
5172 return error;
5173 }
5174 EXPORT_SYMBOL(vfs_rename);
5175
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5176 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5177 struct filename *to, unsigned int flags)
5178 {
5179 struct renamedata rd;
5180 struct dentry *old_dentry, *new_dentry;
5181 struct dentry *trap;
5182 struct path old_path, new_path;
5183 struct qstr old_last, new_last;
5184 int old_type, new_type;
5185 struct inode *delegated_inode = NULL;
5186 unsigned int lookup_flags = 0, target_flags =
5187 LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
5188 bool should_retry = false;
5189 int error = -EINVAL;
5190
5191 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5192 goto put_names;
5193
5194 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5195 (flags & RENAME_EXCHANGE))
5196 goto put_names;
5197
5198 if (flags & RENAME_EXCHANGE)
5199 target_flags = 0;
5200 if (flags & RENAME_NOREPLACE)
5201 target_flags |= LOOKUP_EXCL;
5202
5203 retry:
5204 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5205 &old_last, &old_type);
5206 if (error)
5207 goto put_names;
5208
5209 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5210 &new_type);
5211 if (error)
5212 goto exit1;
5213
5214 error = -EXDEV;
5215 if (old_path.mnt != new_path.mnt)
5216 goto exit2;
5217
5218 error = -EBUSY;
5219 if (old_type != LAST_NORM)
5220 goto exit2;
5221
5222 if (flags & RENAME_NOREPLACE)
5223 error = -EEXIST;
5224 if (new_type != LAST_NORM)
5225 goto exit2;
5226
5227 error = mnt_want_write(old_path.mnt);
5228 if (error)
5229 goto exit2;
5230
5231 retry_deleg:
5232 trap = lock_rename(new_path.dentry, old_path.dentry);
5233 if (IS_ERR(trap)) {
5234 error = PTR_ERR(trap);
5235 goto exit_lock_rename;
5236 }
5237
5238 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5239 lookup_flags);
5240 error = PTR_ERR(old_dentry);
5241 if (IS_ERR(old_dentry))
5242 goto exit3;
5243 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5244 lookup_flags | target_flags);
5245 error = PTR_ERR(new_dentry);
5246 if (IS_ERR(new_dentry))
5247 goto exit4;
5248 if (flags & RENAME_EXCHANGE) {
5249 if (!d_is_dir(new_dentry)) {
5250 error = -ENOTDIR;
5251 if (new_last.name[new_last.len])
5252 goto exit5;
5253 }
5254 }
5255 /* unless the source is a directory trailing slashes give -ENOTDIR */
5256 if (!d_is_dir(old_dentry)) {
5257 error = -ENOTDIR;
5258 if (old_last.name[old_last.len])
5259 goto exit5;
5260 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5261 goto exit5;
5262 }
5263 /* source should not be ancestor of target */
5264 error = -EINVAL;
5265 if (old_dentry == trap)
5266 goto exit5;
5267 /* target should not be an ancestor of source */
5268 if (!(flags & RENAME_EXCHANGE))
5269 error = -ENOTEMPTY;
5270 if (new_dentry == trap)
5271 goto exit5;
5272
5273 error = security_path_rename(&old_path, old_dentry,
5274 &new_path, new_dentry, flags);
5275 if (error)
5276 goto exit5;
5277
5278 rd.old_dir = old_path.dentry->d_inode;
5279 rd.old_dentry = old_dentry;
5280 rd.old_mnt_idmap = mnt_idmap(old_path.mnt);
5281 rd.new_dir = new_path.dentry->d_inode;
5282 rd.new_dentry = new_dentry;
5283 rd.new_mnt_idmap = mnt_idmap(new_path.mnt);
5284 rd.delegated_inode = &delegated_inode;
5285 rd.flags = flags;
5286 error = vfs_rename(&rd);
5287 exit5:
5288 dput(new_dentry);
5289 exit4:
5290 dput(old_dentry);
5291 exit3:
5292 unlock_rename(new_path.dentry, old_path.dentry);
5293 exit_lock_rename:
5294 if (delegated_inode) {
5295 error = break_deleg_wait(&delegated_inode);
5296 if (!error)
5297 goto retry_deleg;
5298 }
5299 mnt_drop_write(old_path.mnt);
5300 exit2:
5301 if (retry_estale(error, lookup_flags))
5302 should_retry = true;
5303 path_put(&new_path);
5304 exit1:
5305 path_put(&old_path);
5306 if (should_retry) {
5307 should_retry = false;
5308 lookup_flags |= LOOKUP_REVAL;
5309 goto retry;
5310 }
5311 put_names:
5312 putname(from);
5313 putname(to);
5314 return error;
5315 }
5316
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5317 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5318 int, newdfd, const char __user *, newname, unsigned int, flags)
5319 {
5320 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5321 flags);
5322 }
5323
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5324 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5325 int, newdfd, const char __user *, newname)
5326 {
5327 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5328 0);
5329 }
5330
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5331 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5332 {
5333 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5334 getname(newname), 0);
5335 }
5336
readlink_copy(char __user * buffer,int buflen,const char * link,int linklen)5337 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5338 {
5339 int copylen;
5340
5341 copylen = linklen;
5342 if (unlikely(copylen > (unsigned) buflen))
5343 copylen = buflen;
5344 if (copy_to_user(buffer, link, copylen))
5345 copylen = -EFAULT;
5346 return copylen;
5347 }
5348
5349 /**
5350 * vfs_readlink - copy symlink body into userspace buffer
5351 * @dentry: dentry on which to get symbolic link
5352 * @buffer: user memory pointer
5353 * @buflen: size of buffer
5354 *
5355 * Does not touch atime. That's up to the caller if necessary
5356 *
5357 * Does not call security hook.
5358 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5359 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5360 {
5361 struct inode *inode = d_inode(dentry);
5362 DEFINE_DELAYED_CALL(done);
5363 const char *link;
5364 int res;
5365
5366 if (inode->i_opflags & IOP_CACHED_LINK)
5367 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5368
5369 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5370 if (unlikely(inode->i_op->readlink))
5371 return inode->i_op->readlink(dentry, buffer, buflen);
5372
5373 if (!d_is_symlink(dentry))
5374 return -EINVAL;
5375
5376 spin_lock(&inode->i_lock);
5377 inode->i_opflags |= IOP_DEFAULT_READLINK;
5378 spin_unlock(&inode->i_lock);
5379 }
5380
5381 link = READ_ONCE(inode->i_link);
5382 if (!link) {
5383 link = inode->i_op->get_link(dentry, inode, &done);
5384 if (IS_ERR(link))
5385 return PTR_ERR(link);
5386 }
5387 res = readlink_copy(buffer, buflen, link, strlen(link));
5388 do_delayed_call(&done);
5389 return res;
5390 }
5391 EXPORT_SYMBOL(vfs_readlink);
5392
5393 /**
5394 * vfs_get_link - get symlink body
5395 * @dentry: dentry on which to get symbolic link
5396 * @done: caller needs to free returned data with this
5397 *
5398 * Calls security hook and i_op->get_link() on the supplied inode.
5399 *
5400 * It does not touch atime. That's up to the caller if necessary.
5401 *
5402 * Does not work on "special" symlinks like /proc/$$/fd/N
5403 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5404 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5405 {
5406 const char *res = ERR_PTR(-EINVAL);
5407 struct inode *inode = d_inode(dentry);
5408
5409 if (d_is_symlink(dentry)) {
5410 res = ERR_PTR(security_inode_readlink(dentry));
5411 if (!res)
5412 res = inode->i_op->get_link(dentry, inode, done);
5413 }
5414 return res;
5415 }
5416 EXPORT_SYMBOL(vfs_get_link);
5417
5418 /* get the link contents into pagecache */
__page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5419 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
5420 struct delayed_call *callback)
5421 {
5422 struct folio *folio;
5423 struct address_space *mapping = inode->i_mapping;
5424
5425 if (!dentry) {
5426 folio = filemap_get_folio(mapping, 0);
5427 if (IS_ERR(folio))
5428 return ERR_PTR(-ECHILD);
5429 if (!folio_test_uptodate(folio)) {
5430 folio_put(folio);
5431 return ERR_PTR(-ECHILD);
5432 }
5433 } else {
5434 folio = read_mapping_folio(mapping, 0, NULL);
5435 if (IS_ERR(folio))
5436 return ERR_CAST(folio);
5437 }
5438 set_delayed_call(callback, page_put_link, folio);
5439 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5440 return folio_address(folio);
5441 }
5442
page_get_link_raw(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5443 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
5444 struct delayed_call *callback)
5445 {
5446 return __page_get_link(dentry, inode, callback);
5447 }
5448 EXPORT_SYMBOL_GPL(page_get_link_raw);
5449
5450 /**
5451 * page_get_link() - An implementation of the get_link inode_operation.
5452 * @dentry: The directory entry which is the symlink.
5453 * @inode: The inode for the symlink.
5454 * @callback: Used to drop the reference to the symlink.
5455 *
5456 * Filesystems which store their symlinks in the page cache should use
5457 * this to implement the get_link() member of their inode_operations.
5458 *
5459 * Return: A pointer to the NUL-terminated symlink.
5460 */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5461 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5462 struct delayed_call *callback)
5463 {
5464 char *kaddr = __page_get_link(dentry, inode, callback);
5465
5466 if (!IS_ERR(kaddr))
5467 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5468 return kaddr;
5469 }
5470 EXPORT_SYMBOL(page_get_link);
5471
5472 /**
5473 * page_put_link() - Drop the reference to the symlink.
5474 * @arg: The folio which contains the symlink.
5475 *
5476 * This is used internally by page_get_link(). It is exported for use
5477 * by filesystems which need to implement a variant of page_get_link()
5478 * themselves. Despite the apparent symmetry, filesystems which use
5479 * page_get_link() do not need to call page_put_link().
5480 *
5481 * The argument, while it has a void pointer type, must be a pointer to
5482 * the folio which was retrieved from the page cache. The delayed_call
5483 * infrastructure is used to drop the reference count once the caller
5484 * is done with the symlink.
5485 */
page_put_link(void * arg)5486 void page_put_link(void *arg)
5487 {
5488 folio_put(arg);
5489 }
5490 EXPORT_SYMBOL(page_put_link);
5491
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5492 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5493 {
5494 const char *link;
5495 int res;
5496
5497 DEFINE_DELAYED_CALL(done);
5498 link = page_get_link(dentry, d_inode(dentry), &done);
5499 res = PTR_ERR(link);
5500 if (!IS_ERR(link))
5501 res = readlink_copy(buffer, buflen, link, strlen(link));
5502 do_delayed_call(&done);
5503 return res;
5504 }
5505 EXPORT_SYMBOL(page_readlink);
5506
page_symlink(struct inode * inode,const char * symname,int len)5507 int page_symlink(struct inode *inode, const char *symname, int len)
5508 {
5509 struct address_space *mapping = inode->i_mapping;
5510 const struct address_space_operations *aops = mapping->a_ops;
5511 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5512 struct folio *folio;
5513 void *fsdata = NULL;
5514 int err;
5515 unsigned int flags;
5516
5517 retry:
5518 if (nofs)
5519 flags = memalloc_nofs_save();
5520 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5521 if (nofs)
5522 memalloc_nofs_restore(flags);
5523 if (err)
5524 goto fail;
5525
5526 memcpy(folio_address(folio), symname, len - 1);
5527
5528 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5529 folio, fsdata);
5530 if (err < 0)
5531 goto fail;
5532 if (err < len-1)
5533 goto retry;
5534
5535 mark_inode_dirty(inode);
5536 return 0;
5537 fail:
5538 return err;
5539 }
5540 EXPORT_SYMBOL(page_symlink);
5541
5542 const struct inode_operations page_symlink_inode_operations = {
5543 .get_link = page_get_link,
5544 };
5545 EXPORT_SYMBOL(page_symlink_inode_operations);
5546