1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright 2017 RackTop Systems.
26 * Copyright 2016 Nexenta Systems, Inc.
27 */
28
29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
30 /* All Rights Reserved */
31
32 /*
33 * University Copyright- Copyright (c) 1982, 1986, 1988
34 * The Regents of the University of California
35 * All Rights Reserved
36 *
37 * University Acknowledgment- Portions of this document are derived from
38 * software developed by the University of California, Berkeley, and its
39 * contributors.
40 */
41
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/errno.h>
46 #include <sys/user.h>
47 #include <sys/fstyp.h>
48 #include <sys/kmem.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/vfs.h>
53 #include <sys/vfs_opreg.h>
54 #include <sys/fem.h>
55 #include <sys/mntent.h>
56 #include <sys/stat.h>
57 #include <sys/statvfs.h>
58 #include <sys/statfs.h>
59 #include <sys/cred.h>
60 #include <sys/vnode.h>
61 #include <sys/rwstlock.h>
62 #include <sys/dnlc.h>
63 #include <sys/file.h>
64 #include <sys/time.h>
65 #include <sys/atomic.h>
66 #include <sys/cmn_err.h>
67 #include <sys/buf.h>
68 #include <sys/swap.h>
69 #include <sys/debug.h>
70 #include <sys/vnode.h>
71 #include <sys/modctl.h>
72 #include <sys/ddi.h>
73 #include <sys/pathname.h>
74 #include <sys/bootconf.h>
75 #include <sys/dumphdr.h>
76 #include <sys/dc_ki.h>
77 #include <sys/poll.h>
78 #include <sys/sunddi.h>
79 #include <sys/sysmacros.h>
80 #include <sys/zone.h>
81 #include <sys/policy.h>
82 #include <sys/ctfs.h>
83 #include <sys/objfs.h>
84 #include <sys/console.h>
85 #include <sys/reboot.h>
86 #include <sys/attr.h>
87 #include <sys/zio.h>
88 #include <sys/spa.h>
89 #include <sys/lofi.h>
90 #include <sys/bootprops.h>
91 #include <sys/avl.h>
92
93 #include <vm/page.h>
94
95 #include <fs/fs_subr.h>
96 /* Private interfaces to create vopstats-related data structures */
97 extern void initialize_vopstats(vopstats_t *);
98 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *);
99 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *);
100
101 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
102 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
103 const char *, int, int);
104 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
105 static void vfs_freemnttab(struct vfs *);
106 static void vfs_freeopt(mntopt_t *);
107 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
108 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
109 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
110 static void vfs_createopttbl_extend(mntopts_t *, const char *,
111 const mntopts_t *);
112 static char **vfs_copycancelopt_extend(char **const, int);
113 static void vfs_freecancelopt(char **);
114 static void getrootfs(char **, char **);
115 static int getmacpath(dev_info_t *, void *);
116 static void vfs_mnttabvp_setup(void);
117
118 struct ipmnt {
119 struct ipmnt *mip_next;
120 dev_t mip_dev;
121 struct vfs *mip_vfsp;
122 };
123
124 static kmutex_t vfs_miplist_mutex;
125 static struct ipmnt *vfs_miplist = NULL;
126 static struct ipmnt *vfs_miplist_end = NULL;
127
128 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */
129
130 /*
131 * VFS global data.
132 */
133 vnode_t *rootdir; /* pointer to root inode vnode. */
134 vnode_t *devicesdir; /* pointer to inode of devices root */
135 vnode_t *devdir; /* pointer to inode of dev root */
136
137 char *server_rootpath; /* root path for diskless clients */
138 char *server_hostname; /* hostname of diskless server */
139
140 static struct vfs root;
141 static struct vfs devices;
142 static struct vfs dev;
143 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */
144 avl_tree_t vfs_by_dev; /* avl tree to index mounted VFSs by dev */
145 avl_tree_t vfs_by_mntpnt; /* avl tree to index mounted VFSs by mntpnt */
146 uint64_t vfs_curr_mntix; /* counter to provide a unique mntix for
147 * entries in the above avl trees.
148 * protected by vfslist lock */
149 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */
150 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */
151 /* must be power of 2! */
152 timespec_t vfs_mnttab_ctime; /* mnttab created time */
153 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */
154 char *vfs_dummyfstype = "\0";
155 struct pollhead vfs_pollhd; /* for mnttab pollers */
156 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */
157 int mntfstype; /* will be set once mnt fs is mounted */
158
159 /*
160 * Table for generic options recognized in the VFS layer and acted
161 * on at this level before parsing file system specific options.
162 * The nosuid option is stronger than any of the devices and setuid
163 * options, so those are canceled when nosuid is seen.
164 *
165 * All options which are added here need to be added to the
166 * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
167 */
168 /*
169 * VFS Mount options table
170 */
171 static char *ro_cancel[] = { MNTOPT_RW, NULL };
172 static char *rw_cancel[] = { MNTOPT_RO, NULL };
173 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
174 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
175 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
176 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
177 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
178 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
179 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
180 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
181 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
182 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
183 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
184
185 static const mntopt_t mntopts[] = {
186 /*
187 * option name cancel options default arg flags
188 */
189 { MNTOPT_REMOUNT, NULL, NULL,
190 MO_NODISPLAY, (void *)0 },
191 { MNTOPT_RO, ro_cancel, NULL, 0,
192 (void *)0 },
193 { MNTOPT_RW, rw_cancel, NULL, 0,
194 (void *)0 },
195 { MNTOPT_SUID, suid_cancel, NULL, 0,
196 (void *)0 },
197 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0,
198 (void *)0 },
199 { MNTOPT_DEVICES, devices_cancel, NULL, 0,
200 (void *)0 },
201 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0,
202 (void *)0 },
203 { MNTOPT_SETUID, setuid_cancel, NULL, 0,
204 (void *)0 },
205 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0,
206 (void *)0 },
207 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0,
208 (void *)0 },
209 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0,
210 (void *)0 },
211 { MNTOPT_EXEC, exec_cancel, NULL, 0,
212 (void *)0 },
213 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0,
214 (void *)0 },
215 };
216
217 const mntopts_t vfs_mntopts = {
218 sizeof (mntopts) / sizeof (mntopt_t),
219 (mntopt_t *)&mntopts[0]
220 };
221
222 /*
223 * File system operation dispatch functions.
224 */
225
226 int
fsop_mount(vfs_t * vfsp,vnode_t * mvp,struct mounta * uap,cred_t * cr)227 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
228 {
229 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
230 }
231
232 int
fsop_unmount(vfs_t * vfsp,int flag,cred_t * cr)233 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
234 {
235 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
236 }
237
238 int
fsop_root(vfs_t * vfsp,vnode_t ** vpp)239 fsop_root(vfs_t *vfsp, vnode_t **vpp)
240 {
241 refstr_t *mntpt;
242 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
243 /*
244 * Make sure this root has a path. With lofs, it is possible to have
245 * a NULL mountpoint.
246 */
247 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
248 mntpt = vfs_getmntpoint(vfsp);
249 vn_setpath_str(*vpp, refstr_value(mntpt),
250 strlen(refstr_value(mntpt)));
251 refstr_rele(mntpt);
252 }
253
254 return (ret);
255 }
256
257 int
fsop_statfs(vfs_t * vfsp,statvfs64_t * sp)258 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
259 {
260 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
261 }
262
263 int
fsop_sync(vfs_t * vfsp,short flag,cred_t * cr)264 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
265 {
266 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
267 }
268
269 int
fsop_vget(vfs_t * vfsp,vnode_t ** vpp,fid_t * fidp)270 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
271 {
272 /*
273 * In order to handle system attribute fids in a manner
274 * transparent to the underlying fs, we embed the fid for
275 * the sysattr parent object in the sysattr fid and tack on
276 * some extra bytes that only the sysattr layer knows about.
277 *
278 * This guarantees that sysattr fids are larger than other fids
279 * for this vfs. If the vfs supports the sysattr view interface
280 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
281 * collision with XATTR_FIDSZ.
282 */
283 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
284 fidp->fid_len == XATTR_FIDSZ)
285 return (xattr_dir_vget(vfsp, vpp, fidp));
286
287 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
288 }
289
290 int
fsop_mountroot(vfs_t * vfsp,enum whymountroot reason)291 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
292 {
293 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
294 }
295
296 void
fsop_freefs(vfs_t * vfsp)297 fsop_freefs(vfs_t *vfsp)
298 {
299 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
300 }
301
302 int
fsop_vnstate(vfs_t * vfsp,vnode_t * vp,vntrans_t nstate)303 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
304 {
305 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
306 }
307
308 int
fsop_sync_by_kind(int fstype,short flag,cred_t * cr)309 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
310 {
311 ASSERT((fstype >= 0) && (fstype < nfstype));
312
313 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
314 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
315 else
316 return (ENOTSUP);
317 }
318
319 /*
320 * File system initialization. vfs_setfsops() must be called from a file
321 * system's init routine.
322 */
323
324 static int
fs_copyfsops(const fs_operation_def_t * template,vfsops_t * actual,int * unused_ops)325 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
326 int *unused_ops)
327 {
328 static const fs_operation_trans_def_t vfs_ops_table[] = {
329 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
330 fs_nosys, fs_nosys,
331
332 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
333 fs_nosys, fs_nosys,
334
335 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
336 fs_nosys, fs_nosys,
337
338 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
339 fs_nosys, fs_nosys,
340
341 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
342 (fs_generic_func_p) fs_sync,
343 (fs_generic_func_p) fs_sync, /* No errors allowed */
344
345 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
346 fs_nosys, fs_nosys,
347
348 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
349 fs_nosys, fs_nosys,
350
351 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
352 (fs_generic_func_p)fs_freevfs,
353 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */
354
355 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
356 (fs_generic_func_p)fs_nosys,
357 (fs_generic_func_p)fs_nosys,
358
359 NULL, 0, NULL, NULL
360 };
361
362 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
363 }
364
365 void
zfs_boot_init()366 zfs_boot_init() {
367
368 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
369 spa_boot_init();
370 }
371
372 int
vfs_setfsops(int fstype,const fs_operation_def_t * template,vfsops_t ** actual)373 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
374 {
375 int error;
376 int unused_ops;
377
378 /*
379 * Verify that fstype refers to a valid fs. Note that
380 * 0 is valid since it's used to set "stray" ops.
381 */
382 if ((fstype < 0) || (fstype >= nfstype))
383 return (EINVAL);
384
385 if (!ALLOCATED_VFSSW(&vfssw[fstype]))
386 return (EINVAL);
387
388 /* Set up the operations vector. */
389
390 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
391
392 if (error != 0)
393 return (error);
394
395 vfssw[fstype].vsw_flag |= VSW_INSTALLED;
396
397 if (actual != NULL)
398 *actual = &vfssw[fstype].vsw_vfsops;
399
400 #if DEBUG
401 if (unused_ops != 0)
402 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
403 "but not used", vfssw[fstype].vsw_name, unused_ops);
404 #endif
405
406 return (0);
407 }
408
409 int
vfs_makefsops(const fs_operation_def_t * template,vfsops_t ** actual)410 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
411 {
412 int error;
413 int unused_ops;
414
415 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
416
417 error = fs_copyfsops(template, *actual, &unused_ops);
418 if (error != 0) {
419 kmem_free(*actual, sizeof (vfsops_t));
420 *actual = NULL;
421 return (error);
422 }
423
424 return (0);
425 }
426
427 /*
428 * Free a vfsops structure created as a result of vfs_makefsops().
429 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
430 * vfs_freevfsops_by_type().
431 */
432 void
vfs_freevfsops(vfsops_t * vfsops)433 vfs_freevfsops(vfsops_t *vfsops)
434 {
435 kmem_free(vfsops, sizeof (vfsops_t));
436 }
437
438 /*
439 * Since the vfsops structure is part of the vfssw table and wasn't
440 * really allocated, we're not really freeing anything. We keep
441 * the name for consistency with vfs_freevfsops(). We do, however,
442 * need to take care of a little bookkeeping.
443 * NOTE: For a vfsops structure created by vfs_setfsops(), use
444 * vfs_freevfsops_by_type().
445 */
446 int
vfs_freevfsops_by_type(int fstype)447 vfs_freevfsops_by_type(int fstype)
448 {
449
450 /* Verify that fstype refers to a loaded fs (and not fsid 0). */
451 if ((fstype <= 0) || (fstype >= nfstype))
452 return (EINVAL);
453
454 WLOCK_VFSSW();
455 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
456 WUNLOCK_VFSSW();
457 return (EINVAL);
458 }
459
460 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
461 WUNLOCK_VFSSW();
462
463 return (0);
464 }
465
466 /* Support routines used to reference vfs_op */
467
468 /* Set the operations vector for a vfs */
469 void
vfs_setops(vfs_t * vfsp,vfsops_t * vfsops)470 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
471 {
472 vfsops_t *op;
473
474 ASSERT(vfsp != NULL);
475 ASSERT(vfsops != NULL);
476
477 op = vfsp->vfs_op;
478 membar_consumer();
479 if (vfsp->vfs_femhead == NULL &&
480 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
481 return;
482 }
483 fsem_setvfsops(vfsp, vfsops);
484 }
485
486 /* Retrieve the operations vector for a vfs */
487 vfsops_t *
vfs_getops(vfs_t * vfsp)488 vfs_getops(vfs_t *vfsp)
489 {
490 vfsops_t *op;
491
492 ASSERT(vfsp != NULL);
493
494 op = vfsp->vfs_op;
495 membar_consumer();
496 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
497 return (op);
498 } else {
499 return (fsem_getvfsops(vfsp));
500 }
501 }
502
503 /*
504 * Returns non-zero (1) if the vfsops matches that of the vfs.
505 * Returns zero (0) if not.
506 */
507 int
vfs_matchops(vfs_t * vfsp,vfsops_t * vfsops)508 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
509 {
510 return (vfs_getops(vfsp) == vfsops);
511 }
512
513 /*
514 * Returns non-zero (1) if the file system has installed a non-default,
515 * non-error vfs_sync routine. Returns zero (0) otherwise.
516 */
517 int
vfs_can_sync(vfs_t * vfsp)518 vfs_can_sync(vfs_t *vfsp)
519 {
520 /* vfs_sync() routine is not the default/error function */
521 return (vfs_getops(vfsp)->vfs_sync != fs_sync);
522 }
523
524 /*
525 * Initialize a vfs structure.
526 */
527 void
vfs_init(vfs_t * vfsp,vfsops_t * op,void * data)528 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
529 {
530 /* Other initialization has been moved to vfs_alloc() */
531 vfsp->vfs_count = 0;
532 vfsp->vfs_next = vfsp;
533 vfsp->vfs_prev = vfsp;
534 vfsp->vfs_zone_next = vfsp;
535 vfsp->vfs_zone_prev = vfsp;
536 vfsp->vfs_lofi_minor = 0;
537 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
538 vfsimpl_setup(vfsp);
539 vfsp->vfs_data = (data);
540 vfs_setops((vfsp), (op));
541 }
542
543 /*
544 * Allocate and initialize the vfs implementation private data
545 * structure, vfs_impl_t.
546 */
547 void
vfsimpl_setup(vfs_t * vfsp)548 vfsimpl_setup(vfs_t *vfsp)
549 {
550 int i;
551
552 if (vfsp->vfs_implp != NULL) {
553 return;
554 }
555
556 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
557 /* Note that these are #define'd in vfs.h */
558 vfsp->vfs_vskap = NULL;
559 vfsp->vfs_fstypevsp = NULL;
560
561 /* Set size of counted array, then zero the array */
562 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
563 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) {
564 vfsp->vfs_featureset[i] = 0;
565 }
566 }
567
568 /*
569 * Release the vfs_impl_t structure, if it exists. Some unbundled
570 * filesystems may not use the newer version of vfs and thus
571 * would not contain this implementation private data structure.
572 */
573 void
vfsimpl_teardown(vfs_t * vfsp)574 vfsimpl_teardown(vfs_t *vfsp)
575 {
576 vfs_impl_t *vip = vfsp->vfs_implp;
577
578 if (vip == NULL)
579 return;
580
581 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
582 vfsp->vfs_implp = NULL;
583 }
584
585 /*
586 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
587 * fstatvfs, and sysfs moved to common/syscall.
588 */
589
590 /*
591 * Update every mounted file system. We call the vfs_sync operation of
592 * each file system type, passing it a NULL vfsp to indicate that all
593 * mounted file systems of that type should be updated.
594 */
595 void
vfs_sync(int flag)596 vfs_sync(int flag)
597 {
598 struct vfssw *vswp;
599 RLOCK_VFSSW();
600 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
601 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
602 vfs_refvfssw(vswp);
603 RUNLOCK_VFSSW();
604 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
605 CRED());
606 vfs_unrefvfssw(vswp);
607 RLOCK_VFSSW();
608 }
609 }
610 RUNLOCK_VFSSW();
611 }
612
613 void
sync(void)614 sync(void)
615 {
616 vfs_sync(0);
617 }
618
619 /*
620 * compare function for vfs_by_dev avl tree. compare dev first, then mntix
621 */
622 static int
vfs_cmp_dev(const void * aa,const void * bb)623 vfs_cmp_dev(const void *aa, const void *bb)
624 {
625 const vfs_t *a = aa;
626 const vfs_t *b = bb;
627
628 if (a->vfs_dev < b->vfs_dev)
629 return (-1);
630 if (a->vfs_dev > b->vfs_dev)
631 return (1);
632 if (a->vfs_mntix < b->vfs_mntix)
633 return (-1);
634 if (a->vfs_mntix > b->vfs_mntix)
635 return (1);
636 return (0);
637 }
638
639 /*
640 * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix
641 */
642 static int
vfs_cmp_mntpnt(const void * aa,const void * bb)643 vfs_cmp_mntpnt(const void *aa, const void *bb)
644 {
645 const vfs_t *a = aa;
646 const vfs_t *b = bb;
647 int ret;
648
649 ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt));
650 if (ret < 0)
651 return (-1);
652 if (ret > 0)
653 return (1);
654 if (a->vfs_mntix < b->vfs_mntix)
655 return (-1);
656 if (a->vfs_mntix > b->vfs_mntix)
657 return (1);
658 return (0);
659 }
660
661 /*
662 * External routines.
663 */
664
665 krwlock_t vfssw_lock; /* lock accesses to vfssw */
666
667 /*
668 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(),
669 * but otherwise should be accessed only via vfs_list_lock() and
670 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list.
671 */
672 static krwlock_t vfslist;
673
674 /*
675 * Mount devfs on /devices. This is done right after root is mounted
676 * to provide device access support for the system
677 */
678 static void
vfs_mountdevices(void)679 vfs_mountdevices(void)
680 {
681 struct vfssw *vsw;
682 struct vnode *mvp;
683 struct mounta mounta = { /* fake mounta for devfs_mount() */
684 NULL,
685 NULL,
686 MS_SYSSPACE,
687 NULL,
688 NULL,
689 0,
690 NULL,
691 0
692 };
693
694 /*
695 * _init devfs module to fill in the vfssw
696 */
697 if (modload("fs", "devfs") == -1)
698 panic("Cannot _init devfs module");
699
700 /*
701 * Hold vfs
702 */
703 RLOCK_VFSSW();
704 vsw = vfs_getvfsswbyname("devfs");
705 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
706 VFS_HOLD(&devices);
707
708 /*
709 * Locate mount point
710 */
711 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
712 panic("Cannot find /devices");
713
714 /*
715 * Perform the mount of /devices
716 */
717 if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
718 panic("Cannot mount /devices");
719
720 RUNLOCK_VFSSW();
721
722 /*
723 * Set appropriate members and add to vfs list for mnttab display
724 */
725 vfs_setresource(&devices, "/devices", 0);
726 vfs_setmntpoint(&devices, "/devices", 0);
727
728 /*
729 * Hold the root of /devices so it won't go away
730 */
731 if (VFS_ROOT(&devices, &devicesdir))
732 panic("vfs_mountdevices: not devices root");
733
734 if (vfs_lock(&devices) != 0) {
735 VN_RELE(devicesdir);
736 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
737 return;
738 }
739
740 if (vn_vfswlock(mvp) != 0) {
741 vfs_unlock(&devices);
742 VN_RELE(devicesdir);
743 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
744 return;
745 }
746
747 vfs_add(mvp, &devices, 0);
748 vn_vfsunlock(mvp);
749 vfs_unlock(&devices);
750 VN_RELE(devicesdir);
751 }
752
753 /*
754 * mount the first instance of /dev to root and remain mounted
755 */
756 static void
vfs_mountdev1(void)757 vfs_mountdev1(void)
758 {
759 struct vfssw *vsw;
760 struct vnode *mvp;
761 struct mounta mounta = { /* fake mounta for sdev_mount() */
762 NULL,
763 NULL,
764 MS_SYSSPACE | MS_OVERLAY,
765 NULL,
766 NULL,
767 0,
768 NULL,
769 0
770 };
771
772 /*
773 * _init dev module to fill in the vfssw
774 */
775 if (modload("fs", "dev") == -1)
776 cmn_err(CE_PANIC, "Cannot _init dev module\n");
777
778 /*
779 * Hold vfs
780 */
781 RLOCK_VFSSW();
782 vsw = vfs_getvfsswbyname("dev");
783 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
784 VFS_HOLD(&dev);
785
786 /*
787 * Locate mount point
788 */
789 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
790 cmn_err(CE_PANIC, "Cannot find /dev\n");
791
792 /*
793 * Perform the mount of /dev
794 */
795 if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
796 cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
797
798 RUNLOCK_VFSSW();
799
800 /*
801 * Set appropriate members and add to vfs list for mnttab display
802 */
803 vfs_setresource(&dev, "/dev", 0);
804 vfs_setmntpoint(&dev, "/dev", 0);
805
806 /*
807 * Hold the root of /dev so it won't go away
808 */
809 if (VFS_ROOT(&dev, &devdir))
810 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
811
812 if (vfs_lock(&dev) != 0) {
813 VN_RELE(devdir);
814 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
815 return;
816 }
817
818 if (vn_vfswlock(mvp) != 0) {
819 vfs_unlock(&dev);
820 VN_RELE(devdir);
821 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
822 return;
823 }
824
825 vfs_add(mvp, &dev, 0);
826 vn_vfsunlock(mvp);
827 vfs_unlock(&dev);
828 VN_RELE(devdir);
829 }
830
831 /*
832 * Mount required filesystem. This is done right after root is mounted.
833 */
834 static void
vfs_mountfs(char * module,char * spec,char * path)835 vfs_mountfs(char *module, char *spec, char *path)
836 {
837 struct vnode *mvp;
838 struct mounta mounta;
839 vfs_t *vfsp;
840
841 bzero(&mounta, sizeof (mounta));
842 mounta.flags = MS_SYSSPACE | MS_DATA;
843 mounta.fstype = module;
844 mounta.spec = spec;
845 mounta.dir = path;
846 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
847 cmn_err(CE_WARN, "Cannot find %s", path);
848 return;
849 }
850 if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
851 cmn_err(CE_WARN, "Cannot mount %s", path);
852 else
853 VFS_RELE(vfsp);
854 VN_RELE(mvp);
855 }
856
857 /*
858 * vfs_mountroot is called by main() to mount the root filesystem.
859 */
860 void
vfs_mountroot(void)861 vfs_mountroot(void)
862 {
863 struct vnode *rvp = NULL;
864 char *path;
865 size_t plen;
866 struct vfssw *vswp;
867 proc_t *p;
868
869 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
870 rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
871
872 /*
873 * Alloc the avl trees for quick indexing via dev and mountpoint
874 */
875 avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t),
876 offsetof(vfs_t, vfs_avldev));
877 avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t),
878 offsetof(vfs_t, vfs_avlmntpnt));
879
880 /*
881 * Alloc the vfs hash bucket array and locks
882 */
883 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
884
885 /*
886 * Call machine-dependent routine "rootconf" to choose a root
887 * file system type.
888 */
889 if (rootconf())
890 panic("vfs_mountroot: cannot mount root");
891 /*
892 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir
893 * to point to it. These are used by lookuppn() so that it
894 * knows where to start from ('/' or '.').
895 */
896 vfs_setmntpoint(rootvfs, "/", 0);
897 if (VFS_ROOT(rootvfs, &rootdir))
898 panic("vfs_mountroot: no root vnode");
899
900 /*
901 * At this point, the process tree consists of p0 and possibly some
902 * direct children of p0. (i.e. there are no grandchildren)
903 *
904 * Walk through them all, setting their current directory.
905 */
906 mutex_enter(&pidlock);
907 for (p = practive; p != NULL; p = p->p_next) {
908 ASSERT(p == &p0 || p->p_parent == &p0);
909
910 PTOU(p)->u_cdir = rootdir;
911 VN_HOLD(PTOU(p)->u_cdir);
912 PTOU(p)->u_rdir = NULL;
913 }
914 mutex_exit(&pidlock);
915
916 /*
917 * Setup the global zone's rootvp, now that it exists.
918 */
919 global_zone->zone_rootvp = rootdir;
920 VN_HOLD(global_zone->zone_rootvp);
921
922 /*
923 * Notify the module code that it can begin using the
924 * root filesystem instead of the boot program's services.
925 */
926 modrootloaded = 1;
927
928 /*
929 * Special handling for a ZFS root file system.
930 */
931 zfs_boot_init();
932
933 /*
934 * Set up mnttab information for root
935 */
936 vfs_setresource(rootvfs, rootfs.bo_name, 0);
937
938 /*
939 * Notify cluster software that the root filesystem is available.
940 */
941 clboot_mountroot();
942
943 /* Now that we're all done with the root FS, set up its vopstats */
944 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
945 /* Set flag for statistics collection */
946 if (vswp->vsw_flag & VSW_STATS) {
947 initialize_vopstats(&rootvfs->vfs_vopstats);
948 rootvfs->vfs_flag |= VFS_STATS;
949 rootvfs->vfs_fstypevsp =
950 get_fstype_vopstats(rootvfs, vswp);
951 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
952 }
953 vfs_unrefvfssw(vswp);
954 }
955
956 /*
957 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
958 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
959 */
960 vfs_mountdevices();
961 vfs_mountdev1();
962
963 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
964 vfs_mountfs("proc", "/proc", "/proc");
965 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
966 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
967 vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
968
969 if (getzoneid() == GLOBAL_ZONEID) {
970 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
971 }
972
973 if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
974 /*
975 * Look up the root device via devfs so that a dv_node is
976 * created for it. The vnode is never VN_RELE()ed.
977 * We allocate more than MAXPATHLEN so that the
978 * buffer passed to i_ddi_prompath_to_devfspath() is
979 * exactly MAXPATHLEN (the function expects a buffer
980 * of that length).
981 */
982 plen = strlen("/devices");
983 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
984 (void) strcpy(path, "/devices");
985
986 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
987 != DDI_SUCCESS ||
988 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
989
990 /* NUL terminate in case "path" has garbage */
991 path[plen + MAXPATHLEN - 1] = '\0';
992 #ifdef DEBUG
993 cmn_err(CE_WARN, "!Cannot lookup root device: %s",
994 path);
995 #endif
996 }
997 kmem_free(path, plen + MAXPATHLEN);
998 }
999
1000 vfs_mnttabvp_setup();
1001 }
1002
1003 /*
1004 * Check to see if our "block device" is actually a file. If so,
1005 * automatically add a lofi device, and keep track of this fact.
1006 */
1007 static int
lofi_add(const char * fsname,struct vfs * vfsp,mntopts_t * mntopts,struct mounta * uap)1008 lofi_add(const char *fsname, struct vfs *vfsp,
1009 mntopts_t *mntopts, struct mounta *uap)
1010 {
1011 int fromspace = (uap->flags & MS_SYSSPACE) ?
1012 UIO_SYSSPACE : UIO_USERSPACE;
1013 struct lofi_ioctl *li = NULL;
1014 struct vnode *vp = NULL;
1015 struct pathname pn = { NULL };
1016 ldi_ident_t ldi_id;
1017 ldi_handle_t ldi_hdl;
1018 vfssw_t *vfssw;
1019 int minor;
1020 int err = 0;
1021
1022 if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1023 return (0);
1024
1025 if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1026 vfs_unrefvfssw(vfssw);
1027 return (0);
1028 }
1029
1030 vfs_unrefvfssw(vfssw);
1031 vfssw = NULL;
1032
1033 if (pn_get(uap->spec, fromspace, &pn) != 0)
1034 return (0);
1035
1036 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1037 goto out;
1038
1039 if (vp->v_type != VREG)
1040 goto out;
1041
1042 /* OK, this is a lofi mount. */
1043
1044 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1045 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1046 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1047 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1048 err = EINVAL;
1049 goto out;
1050 }
1051
1052 ldi_id = ldi_ident_from_anon();
1053 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1054 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1055
1056 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1057 &ldi_hdl, ldi_id);
1058
1059 if (err)
1060 goto out2;
1061
1062 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1063 FREAD | FWRITE | FKIOCTL, kcred, &minor);
1064
1065 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1066
1067 if (!err)
1068 vfsp->vfs_lofi_minor = minor;
1069
1070 out2:
1071 ldi_ident_release(ldi_id);
1072 out:
1073 if (li != NULL)
1074 kmem_free(li, sizeof (*li));
1075 if (vp != NULL)
1076 VN_RELE(vp);
1077 pn_free(&pn);
1078 return (err);
1079 }
1080
1081 static void
lofi_remove(struct vfs * vfsp)1082 lofi_remove(struct vfs *vfsp)
1083 {
1084 struct lofi_ioctl *li = NULL;
1085 ldi_ident_t ldi_id;
1086 ldi_handle_t ldi_hdl;
1087 int err;
1088
1089 if (vfsp->vfs_lofi_minor == 0)
1090 return;
1091
1092 ldi_id = ldi_ident_from_anon();
1093
1094 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1095 li->li_minor = vfsp->vfs_lofi_minor;
1096 li->li_cleanup = B_TRUE;
1097
1098 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1099 &ldi_hdl, ldi_id);
1100
1101 if (err)
1102 goto out;
1103
1104 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1105 FREAD | FWRITE | FKIOCTL, kcred, NULL);
1106
1107 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1108
1109 if (!err)
1110 vfsp->vfs_lofi_minor = 0;
1111
1112 out:
1113 ldi_ident_release(ldi_id);
1114 if (li != NULL)
1115 kmem_free(li, sizeof (*li));
1116 }
1117
1118 /*
1119 * Common mount code. Called from the system call entry point, from autofs,
1120 * nfsv4 trigger mounts, and from pxfs.
1121 *
1122 * Takes the effective file system type, mount arguments, the mount point
1123 * vnode, flags specifying whether the mount is a remount and whether it
1124 * should be entered into the vfs list, and credentials. Fills in its vfspp
1125 * parameter with the mounted file system instance's vfs.
1126 *
1127 * Note that the effective file system type is specified as a string. It may
1128 * be null, in which case it's determined from the mount arguments, and may
1129 * differ from the type specified in the mount arguments; this is a hook to
1130 * allow interposition when instantiating file system instances.
1131 *
1132 * The caller is responsible for releasing its own hold on the mount point
1133 * vp (this routine does its own hold when necessary).
1134 * Also note that for remounts, the mount point vp should be the vnode for
1135 * the root of the file system rather than the vnode that the file system
1136 * is mounted on top of.
1137 */
1138 int
domount(char * fsname,struct mounta * uap,vnode_t * vp,struct cred * credp,struct vfs ** vfspp)1139 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1140 struct vfs **vfspp)
1141 {
1142 struct vfssw *vswp;
1143 vfsops_t *vfsops;
1144 struct vfs *vfsp;
1145 struct vnode *bvp;
1146 dev_t bdev = 0;
1147 mntopts_t mnt_mntopts;
1148 int error = 0;
1149 int copyout_error = 0;
1150 int ovflags;
1151 char *opts = uap->optptr;
1152 char *inargs = opts;
1153 int optlen = uap->optlen;
1154 int remount;
1155 int rdonly;
1156 int nbmand = 0;
1157 int delmip = 0;
1158 int addmip = 0;
1159 int splice = ((uap->flags & MS_NOSPLICE) == 0);
1160 int fromspace = (uap->flags & MS_SYSSPACE) ?
1161 UIO_SYSSPACE : UIO_USERSPACE;
1162 char *resource = NULL, *mountpt = NULL;
1163 refstr_t *oldresource, *oldmntpt;
1164 struct pathname pn, rpn;
1165 vsk_anchor_t *vskap;
1166 char fstname[FSTYPSZ];
1167 zone_t *zone;
1168
1169 /*
1170 * The v_flag value for the mount point vp is permanently set
1171 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1172 * for mount point locking.
1173 */
1174 mutex_enter(&vp->v_lock);
1175 vp->v_flag |= VVFSLOCK;
1176 mutex_exit(&vp->v_lock);
1177
1178 mnt_mntopts.mo_count = 0;
1179 /*
1180 * Find the ops vector to use to invoke the file system-specific mount
1181 * method. If the fsname argument is non-NULL, use it directly.
1182 * Otherwise, dig the file system type information out of the mount
1183 * arguments.
1184 *
1185 * A side effect is to hold the vfssw entry.
1186 *
1187 * Mount arguments can be specified in several ways, which are
1188 * distinguished by flag bit settings. The preferred way is to set
1189 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1190 * type supplied as a character string and the last two arguments
1191 * being a pointer to a character buffer and the size of the buffer.
1192 * On entry, the buffer holds a null terminated list of options; on
1193 * return, the string is the list of options the file system
1194 * recognized. If MS_DATA is set arguments five and six point to a
1195 * block of binary data which the file system interprets.
1196 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1197 * consistently with these conventions. To handle them, we check to
1198 * see whether the pointer to the file system name has a numeric value
1199 * less than 256. If so, we treat it as an index.
1200 */
1201 if (fsname != NULL) {
1202 if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1203 return (EINVAL);
1204 }
1205 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1206 size_t n;
1207 uint_t fstype;
1208
1209 fsname = fstname;
1210
1211 if ((fstype = (uintptr_t)uap->fstype) < 256) {
1212 RLOCK_VFSSW();
1213 if (fstype == 0 || fstype >= nfstype ||
1214 !ALLOCATED_VFSSW(&vfssw[fstype])) {
1215 RUNLOCK_VFSSW();
1216 return (EINVAL);
1217 }
1218 (void) strcpy(fsname, vfssw[fstype].vsw_name);
1219 RUNLOCK_VFSSW();
1220 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1221 return (EINVAL);
1222 } else {
1223 /*
1224 * Handle either kernel or user address space.
1225 */
1226 if (uap->flags & MS_SYSSPACE) {
1227 error = copystr(uap->fstype, fsname,
1228 FSTYPSZ, &n);
1229 } else {
1230 error = copyinstr(uap->fstype, fsname,
1231 FSTYPSZ, &n);
1232 }
1233 if (error) {
1234 if (error == ENAMETOOLONG)
1235 return (EINVAL);
1236 return (error);
1237 }
1238 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1239 return (EINVAL);
1240 }
1241 } else {
1242 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1243 return (EINVAL);
1244 fsname = vswp->vsw_name;
1245 }
1246 if (!VFS_INSTALLED(vswp))
1247 return (EINVAL);
1248
1249 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) {
1250 vfs_unrefvfssw(vswp);
1251 return (error);
1252 }
1253
1254 vfsops = &vswp->vsw_vfsops;
1255
1256 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1257 /*
1258 * Fetch mount options and parse them for generic vfs options
1259 */
1260 if (uap->flags & MS_OPTIONSTR) {
1261 /*
1262 * Limit the buffer size
1263 */
1264 if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1265 error = EINVAL;
1266 goto errout;
1267 }
1268 if ((uap->flags & MS_SYSSPACE) == 0) {
1269 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1270 inargs[0] = '\0';
1271 if (optlen) {
1272 error = copyinstr(opts, inargs, (size_t)optlen,
1273 NULL);
1274 if (error) {
1275 goto errout;
1276 }
1277 }
1278 }
1279 vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1280 }
1281 /*
1282 * Flag bits override the options string.
1283 */
1284 if (uap->flags & MS_REMOUNT)
1285 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1286 if (uap->flags & MS_RDONLY)
1287 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1288 if (uap->flags & MS_NOSUID)
1289 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1290
1291 /*
1292 * Check if this is a remount; must be set in the option string and
1293 * the file system must support a remount option.
1294 */
1295 if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1296 MNTOPT_REMOUNT, NULL)) {
1297 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1298 error = ENOTSUP;
1299 goto errout;
1300 }
1301 uap->flags |= MS_REMOUNT;
1302 }
1303
1304 /*
1305 * uap->flags and vfs_optionisset() should agree.
1306 */
1307 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1308 uap->flags |= MS_RDONLY;
1309 }
1310 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1311 uap->flags |= MS_NOSUID;
1312 }
1313 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1314 ASSERT(splice || !remount);
1315 /*
1316 * If we are splicing the fs into the namespace,
1317 * perform mount point checks.
1318 *
1319 * We want to resolve the path for the mount point to eliminate
1320 * '.' and ".." and symlinks in mount points; we can't do the
1321 * same for the resource string, since it would turn
1322 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do
1323 * this before grabbing vn_vfswlock(), because otherwise we
1324 * would deadlock with lookuppn().
1325 */
1326 if (splice) {
1327 ASSERT(vp->v_count > 0);
1328
1329 /*
1330 * Pick up mount point and device from appropriate space.
1331 */
1332 if (pn_get(uap->spec, fromspace, &pn) == 0) {
1333 resource = kmem_alloc(pn.pn_pathlen + 1,
1334 KM_SLEEP);
1335 (void) strcpy(resource, pn.pn_path);
1336 pn_free(&pn);
1337 }
1338 /*
1339 * Do a lookupname prior to taking the
1340 * writelock. Mark this as completed if
1341 * successful for later cleanup and addition to
1342 * the mount in progress table.
1343 */
1344 if ((uap->flags & MS_GLOBAL) == 0 &&
1345 lookupname(uap->spec, fromspace,
1346 FOLLOW, NULL, &bvp) == 0) {
1347 addmip = 1;
1348 }
1349
1350 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1351 pathname_t *pnp;
1352
1353 if (*pn.pn_path != '/') {
1354 error = EINVAL;
1355 pn_free(&pn);
1356 goto errout;
1357 }
1358 pn_alloc(&rpn);
1359 /*
1360 * Kludge to prevent autofs from deadlocking with
1361 * itself when it calls domount().
1362 *
1363 * If autofs is calling, it is because it is doing
1364 * (autofs) mounts in the process of an NFS mount. A
1365 * lookuppn() here would cause us to block waiting for
1366 * said NFS mount to complete, which can't since this
1367 * is the thread that was supposed to doing it.
1368 */
1369 if (fromspace == UIO_USERSPACE) {
1370 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1371 NULL)) == 0) {
1372 pnp = &rpn;
1373 } else {
1374 /*
1375 * The file disappeared or otherwise
1376 * became inaccessible since we opened
1377 * it; might as well fail the mount
1378 * since the mount point is no longer
1379 * accessible.
1380 */
1381 pn_free(&rpn);
1382 pn_free(&pn);
1383 goto errout;
1384 }
1385 } else {
1386 pnp = &pn;
1387 }
1388 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1389 (void) strcpy(mountpt, pnp->pn_path);
1390
1391 /*
1392 * If the addition of the zone's rootpath
1393 * would push us over a total path length
1394 * of MAXPATHLEN, we fail the mount with
1395 * ENAMETOOLONG, which is what we would have
1396 * gotten if we were trying to perform the same
1397 * mount in the global zone.
1398 *
1399 * strlen() doesn't count the trailing
1400 * '\0', but zone_rootpathlen counts both a
1401 * trailing '/' and the terminating '\0'.
1402 */
1403 if ((curproc->p_zone->zone_rootpathlen - 1 +
1404 strlen(mountpt)) > MAXPATHLEN ||
1405 (resource != NULL &&
1406 (curproc->p_zone->zone_rootpathlen - 1 +
1407 strlen(resource)) > MAXPATHLEN)) {
1408 error = ENAMETOOLONG;
1409 }
1410
1411 pn_free(&rpn);
1412 pn_free(&pn);
1413 }
1414
1415 if (error)
1416 goto errout;
1417
1418 /*
1419 * Prevent path name resolution from proceeding past
1420 * the mount point.
1421 */
1422 if (vn_vfswlock(vp) != 0) {
1423 error = EBUSY;
1424 goto errout;
1425 }
1426
1427 /*
1428 * Verify that it's legitimate to establish a mount on
1429 * the prospective mount point.
1430 */
1431 if (vn_mountedvfs(vp) != NULL) {
1432 /*
1433 * The mount point lock was obtained after some
1434 * other thread raced through and established a mount.
1435 */
1436 vn_vfsunlock(vp);
1437 error = EBUSY;
1438 goto errout;
1439 }
1440 if (vp->v_flag & VNOMOUNT) {
1441 vn_vfsunlock(vp);
1442 error = EINVAL;
1443 goto errout;
1444 }
1445 }
1446 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1447 uap->dataptr = NULL;
1448 uap->datalen = 0;
1449 }
1450
1451 /*
1452 * If this is a remount, we don't want to create a new VFS.
1453 * Instead, we pass the existing one with a remount flag.
1454 */
1455 if (remount) {
1456 /*
1457 * Confirm that the mount point is the root vnode of the
1458 * file system that is being remounted.
1459 * This can happen if the user specifies a different
1460 * mount point directory pathname in the (re)mount command.
1461 *
1462 * Code below can only be reached if splice is true, so it's
1463 * safe to do vn_vfsunlock() here.
1464 */
1465 if ((vp->v_flag & VROOT) == 0) {
1466 vn_vfsunlock(vp);
1467 error = ENOENT;
1468 goto errout;
1469 }
1470 /*
1471 * Disallow making file systems read-only unless file system
1472 * explicitly allows it in its vfssw. Ignore other flags.
1473 */
1474 if (rdonly && vn_is_readonly(vp) == 0 &&
1475 (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1476 vn_vfsunlock(vp);
1477 error = EINVAL;
1478 goto errout;
1479 }
1480 /*
1481 * Disallow changing the NBMAND disposition of the file
1482 * system on remounts.
1483 */
1484 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1485 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1486 vn_vfsunlock(vp);
1487 error = EINVAL;
1488 goto errout;
1489 }
1490 vfsp = vp->v_vfsp;
1491 ovflags = vfsp->vfs_flag;
1492 vfsp->vfs_flag |= VFS_REMOUNT;
1493 vfsp->vfs_flag &= ~VFS_RDONLY;
1494 } else {
1495 vfsp = vfs_alloc(KM_SLEEP);
1496 VFS_INIT(vfsp, vfsops, NULL);
1497 }
1498
1499 VFS_HOLD(vfsp);
1500
1501 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1502 if (!remount) {
1503 if (splice)
1504 vn_vfsunlock(vp);
1505 vfs_free(vfsp);
1506 } else {
1507 vn_vfsunlock(vp);
1508 VFS_RELE(vfsp);
1509 }
1510 goto errout;
1511 }
1512
1513 /*
1514 * PRIV_SYS_MOUNT doesn't mean you can become root.
1515 */
1516 if (vfsp->vfs_lofi_minor != 0) {
1517 uap->flags |= MS_NOSUID;
1518 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1519 }
1520
1521 /*
1522 * The vfs_reflock is not used anymore the code below explicitly
1523 * holds it preventing others accesing it directly.
1524 */
1525 if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1526 !(vfsp->vfs_flag & VFS_REMOUNT))
1527 cmn_err(CE_WARN,
1528 "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1529
1530 /*
1531 * Lock the vfs. If this is a remount we want to avoid spurious umount
1532 * failures that happen as a side-effect of fsflush() and other mount
1533 * and unmount operations that might be going on simultaneously and
1534 * may have locked the vfs currently. To not return EBUSY immediately
1535 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1536 */
1537 if (!remount) {
1538 if (error = vfs_lock(vfsp)) {
1539 vfsp->vfs_flag = ovflags;
1540
1541 lofi_remove(vfsp);
1542
1543 if (splice)
1544 vn_vfsunlock(vp);
1545 vfs_free(vfsp);
1546 goto errout;
1547 }
1548 } else {
1549 vfs_lock_wait(vfsp);
1550 }
1551
1552 /*
1553 * Add device to mount in progress table, global mounts require special
1554 * handling. It is possible that we have already done the lookupname
1555 * on a spliced, non-global fs. If so, we don't want to do it again
1556 * since we cannot do a lookupname after taking the
1557 * wlock above. This case is for a non-spliced, non-global filesystem.
1558 */
1559 if (!addmip) {
1560 if ((uap->flags & MS_GLOBAL) == 0 &&
1561 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1562 addmip = 1;
1563 }
1564 }
1565
1566 if (addmip) {
1567 vnode_t *lvp = NULL;
1568
1569 error = vfs_get_lofi(vfsp, &lvp);
1570 if (error > 0) {
1571 lofi_remove(vfsp);
1572
1573 if (splice)
1574 vn_vfsunlock(vp);
1575 vfs_unlock(vfsp);
1576
1577 if (remount) {
1578 VFS_RELE(vfsp);
1579 } else {
1580 vfs_free(vfsp);
1581 }
1582
1583 goto errout;
1584 } else if (error == -1) {
1585 bdev = bvp->v_rdev;
1586 VN_RELE(bvp);
1587 } else {
1588 bdev = lvp->v_rdev;
1589 VN_RELE(lvp);
1590 VN_RELE(bvp);
1591 }
1592
1593 vfs_addmip(bdev, vfsp);
1594 addmip = 0;
1595 delmip = 1;
1596 }
1597 /*
1598 * Invalidate cached entry for the mount point.
1599 */
1600 if (splice)
1601 dnlc_purge_vp(vp);
1602
1603 /*
1604 * If have an option string but the filesystem doesn't supply a
1605 * prototype options table, create a table with the global
1606 * options and sufficient room to accept all the options in the
1607 * string. Then parse the passed in option string
1608 * accepting all the options in the string. This gives us an
1609 * option table with all the proper cancel properties for the
1610 * global options.
1611 *
1612 * Filesystems that supply a prototype options table are handled
1613 * earlier in this function.
1614 */
1615 if (uap->flags & MS_OPTIONSTR) {
1616 if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1617 mntopts_t tmp_mntopts;
1618
1619 tmp_mntopts.mo_count = 0;
1620 vfs_createopttbl_extend(&tmp_mntopts, inargs,
1621 &mnt_mntopts);
1622 vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1623 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1624 vfs_freeopttbl(&tmp_mntopts);
1625 }
1626 }
1627
1628 /*
1629 * Serialize with zone state transitions.
1630 * See vfs_list_add; zone mounted into is:
1631 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1632 * not the zone doing the mount (curproc->p_zone), but if we're already
1633 * inside a NGZ, then we know what zone we are.
1634 */
1635 if (INGLOBALZONE(curproc)) {
1636 zone = zone_find_by_path(mountpt);
1637 ASSERT(zone != NULL);
1638 } else {
1639 zone = curproc->p_zone;
1640 /*
1641 * zone_find_by_path does a hold, so do one here too so that
1642 * we can do a zone_rele after mount_completed.
1643 */
1644 zone_hold(zone);
1645 }
1646 mount_in_progress(zone);
1647 /*
1648 * Instantiate (or reinstantiate) the file system. If appropriate,
1649 * splice it into the file system name space.
1650 *
1651 * We want VFS_MOUNT() to be able to override the vfs_resource
1652 * string if necessary (ie, mntfs), and also for a remount to
1653 * change the same (necessary when remounting '/' during boot).
1654 * So we set up vfs_mntpt and vfs_resource to what we think they
1655 * should be, then hand off control to VFS_MOUNT() which can
1656 * override this.
1657 *
1658 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1659 * a vfs which is on the vfs list (i.e. during a remount), we must
1660 * never set those fields to NULL. Several bits of code make
1661 * assumptions that the fields are always valid.
1662 */
1663 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1664 if (remount) {
1665 if ((oldresource = vfsp->vfs_resource) != NULL)
1666 refstr_hold(oldresource);
1667 if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1668 refstr_hold(oldmntpt);
1669 }
1670 vfs_setresource(vfsp, resource, 0);
1671 vfs_setmntpoint(vfsp, mountpt, 0);
1672
1673 /*
1674 * going to mount on this vnode, so notify.
1675 */
1676 vnevent_mountedover(vp, NULL);
1677 error = VFS_MOUNT(vfsp, vp, uap, credp);
1678
1679 if (uap->flags & MS_RDONLY)
1680 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1681 if (uap->flags & MS_NOSUID)
1682 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1683 if (uap->flags & MS_GLOBAL)
1684 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1685
1686 if (error) {
1687 lofi_remove(vfsp);
1688
1689 if (remount) {
1690 /* put back pre-remount options */
1691 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1692 vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1693 VFSSP_VERBATIM);
1694 if (oldmntpt)
1695 refstr_rele(oldmntpt);
1696 vfs_setresource(vfsp, refstr_value(oldresource),
1697 VFSSP_VERBATIM);
1698 if (oldresource)
1699 refstr_rele(oldresource);
1700 vfsp->vfs_flag = ovflags;
1701 vfs_unlock(vfsp);
1702 VFS_RELE(vfsp);
1703 } else {
1704 vfs_unlock(vfsp);
1705 vfs_freemnttab(vfsp);
1706 vfs_free(vfsp);
1707 }
1708 } else {
1709 /*
1710 * Set the mount time to now
1711 */
1712 vfsp->vfs_mtime = ddi_get_time();
1713 if (remount) {
1714 vfsp->vfs_flag &= ~VFS_REMOUNT;
1715 if (oldresource)
1716 refstr_rele(oldresource);
1717 if (oldmntpt)
1718 refstr_rele(oldmntpt);
1719 } else if (splice) {
1720 /*
1721 * Link vfsp into the name space at the mount
1722 * point. Vfs_add() is responsible for
1723 * holding the mount point which will be
1724 * released when vfs_remove() is called.
1725 */
1726 vfs_add(vp, vfsp, uap->flags);
1727 } else {
1728 /*
1729 * Hold the reference to file system which is
1730 * not linked into the name space.
1731 */
1732 vfsp->vfs_zone = NULL;
1733 VFS_HOLD(vfsp);
1734 vfsp->vfs_vnodecovered = NULL;
1735 }
1736 /*
1737 * Set flags for global options encountered
1738 */
1739 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1740 vfsp->vfs_flag |= VFS_RDONLY;
1741 else
1742 vfsp->vfs_flag &= ~VFS_RDONLY;
1743 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1744 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1745 } else {
1746 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1747 vfsp->vfs_flag |= VFS_NODEVICES;
1748 else
1749 vfsp->vfs_flag &= ~VFS_NODEVICES;
1750 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1751 vfsp->vfs_flag |= VFS_NOSETUID;
1752 else
1753 vfsp->vfs_flag &= ~VFS_NOSETUID;
1754 }
1755 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1756 vfsp->vfs_flag |= VFS_NBMAND;
1757 else
1758 vfsp->vfs_flag &= ~VFS_NBMAND;
1759
1760 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1761 vfsp->vfs_flag |= VFS_XATTR;
1762 else
1763 vfsp->vfs_flag &= ~VFS_XATTR;
1764
1765 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1766 vfsp->vfs_flag |= VFS_NOEXEC;
1767 else
1768 vfsp->vfs_flag &= ~VFS_NOEXEC;
1769
1770 /*
1771 * Now construct the output option string of options
1772 * we recognized.
1773 */
1774 if (uap->flags & MS_OPTIONSTR) {
1775 vfs_list_read_lock();
1776 copyout_error = vfs_buildoptionstr(
1777 &vfsp->vfs_mntopts, inargs, optlen);
1778 vfs_list_unlock();
1779 if (copyout_error == 0 &&
1780 (uap->flags & MS_SYSSPACE) == 0) {
1781 copyout_error = copyoutstr(inargs, opts,
1782 optlen, NULL);
1783 }
1784 }
1785
1786 /*
1787 * If this isn't a remount, set up the vopstats before
1788 * anyone can touch this. We only allow spliced file
1789 * systems (file systems which are in the namespace) to
1790 * have the VFS_STATS flag set.
1791 * NOTE: PxFS mounts the underlying file system with
1792 * MS_NOSPLICE set and copies those vfs_flags to its private
1793 * vfs structure. As a result, PxFS should never have
1794 * the VFS_STATS flag or else we might access the vfs
1795 * statistics-related fields prior to them being
1796 * properly initialized.
1797 */
1798 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1799 initialize_vopstats(&vfsp->vfs_vopstats);
1800 /*
1801 * We need to set vfs_vskap to NULL because there's
1802 * a chance it won't be set below. This is checked
1803 * in teardown_vopstats() so we can't have garbage.
1804 */
1805 vfsp->vfs_vskap = NULL;
1806 vfsp->vfs_flag |= VFS_STATS;
1807 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1808 }
1809
1810 if (vswp->vsw_flag & VSW_XID)
1811 vfsp->vfs_flag |= VFS_XID;
1812
1813 vfs_unlock(vfsp);
1814 }
1815 mount_completed(zone);
1816 zone_rele(zone);
1817 if (splice)
1818 vn_vfsunlock(vp);
1819
1820 if ((error == 0) && (copyout_error == 0)) {
1821 if (!remount) {
1822 /*
1823 * Don't call get_vskstat_anchor() while holding
1824 * locks since it allocates memory and calls
1825 * VFS_STATVFS(). For NFS, the latter can generate
1826 * an over-the-wire call.
1827 */
1828 vskap = get_vskstat_anchor(vfsp);
1829 /* Only take the lock if we have something to do */
1830 if (vskap != NULL) {
1831 vfs_lock_wait(vfsp);
1832 if (vfsp->vfs_flag & VFS_STATS) {
1833 vfsp->vfs_vskap = vskap;
1834 }
1835 vfs_unlock(vfsp);
1836 }
1837 }
1838 /* Return vfsp to caller. */
1839 *vfspp = vfsp;
1840 }
1841 errout:
1842 vfs_freeopttbl(&mnt_mntopts);
1843 if (resource != NULL)
1844 kmem_free(resource, strlen(resource) + 1);
1845 if (mountpt != NULL)
1846 kmem_free(mountpt, strlen(mountpt) + 1);
1847 /*
1848 * It is possible we errored prior to adding to mount in progress
1849 * table. Must free vnode we acquired with successful lookupname.
1850 */
1851 if (addmip)
1852 VN_RELE(bvp);
1853 if (delmip)
1854 vfs_delmip(vfsp);
1855 ASSERT(vswp != NULL);
1856 vfs_unrefvfssw(vswp);
1857 if (inargs != opts)
1858 kmem_free(inargs, MAX_MNTOPT_STR);
1859 if (copyout_error) {
1860 lofi_remove(vfsp);
1861 VFS_RELE(vfsp);
1862 error = copyout_error;
1863 }
1864 return (error);
1865 }
1866
1867 static void
vfs_setpath(struct vfs * vfsp,refstr_t ** refp,const char * newpath,uint32_t flag)1868 vfs_setpath(
1869 struct vfs *vfsp, /* vfs being updated */
1870 refstr_t **refp, /* Ref-count string to contain the new path */
1871 const char *newpath, /* Path to add to refp (above) */
1872 uint32_t flag) /* flag */
1873 {
1874 size_t len;
1875 refstr_t *ref;
1876 zone_t *zone = curproc->p_zone;
1877 char *sp;
1878 int have_list_lock = 0;
1879
1880 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1881
1882 /*
1883 * New path must be less than MAXPATHLEN because mntfs
1884 * will only display up to MAXPATHLEN bytes. This is currently
1885 * safe, because domount() uses pn_get(), and other callers
1886 * similarly cap the size to fewer than MAXPATHLEN bytes.
1887 */
1888
1889 ASSERT(strlen(newpath) < MAXPATHLEN);
1890
1891 /* mntfs requires consistency while vfs list lock is held */
1892
1893 if (VFS_ON_LIST(vfsp)) {
1894 have_list_lock = 1;
1895 vfs_list_lock();
1896 }
1897
1898 if (*refp != NULL)
1899 refstr_rele(*refp);
1900
1901 /*
1902 * If we are in a non-global zone then we prefix the supplied path,
1903 * newpath, with the zone's root path, with two exceptions. The first
1904 * is where we have been explicitly directed to avoid doing so; this
1905 * will be the case following a failed remount, where the path supplied
1906 * will be a saved version which must now be restored. The second
1907 * exception is where newpath is not a pathname but a descriptive name,
1908 * e.g. "procfs".
1909 */
1910 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1911 ref = refstr_alloc(newpath);
1912 goto out;
1913 }
1914
1915 /*
1916 * Truncate the trailing '/' in the zoneroot, and merge
1917 * in the zone's rootpath with the "newpath" (resource
1918 * or mountpoint) passed in.
1919 *
1920 * The size of the required buffer is thus the size of
1921 * the buffer required for the passed-in newpath
1922 * (strlen(newpath) + 1), plus the size of the buffer
1923 * required to hold zone_rootpath (zone_rootpathlen)
1924 * minus one for one of the now-superfluous NUL
1925 * terminations, minus one for the trailing '/'.
1926 *
1927 * That gives us:
1928 *
1929 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1930 *
1931 * Which is what we have below.
1932 */
1933
1934 len = strlen(newpath) + zone->zone_rootpathlen - 1;
1935 sp = kmem_alloc(len, KM_SLEEP);
1936
1937 /*
1938 * Copy everything including the trailing slash, which
1939 * we then overwrite with the NUL character.
1940 */
1941
1942 (void) strcpy(sp, zone->zone_rootpath);
1943 sp[zone->zone_rootpathlen - 2] = '\0';
1944 (void) strcat(sp, newpath);
1945
1946 ref = refstr_alloc(sp);
1947 kmem_free(sp, len);
1948 out:
1949 *refp = ref;
1950
1951 if (have_list_lock) {
1952 vfs_mnttab_modtimeupd();
1953 vfs_list_unlock();
1954 }
1955 }
1956
1957 /*
1958 * Record a mounted resource name in a vfs structure.
1959 * If vfsp is already mounted, caller must hold the vfs lock.
1960 */
1961 void
vfs_setresource(struct vfs * vfsp,const char * resource,uint32_t flag)1962 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1963 {
1964 if (resource == NULL || resource[0] == '\0')
1965 resource = VFS_NORESOURCE;
1966 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1967 }
1968
1969 /*
1970 * Record a mount point name in a vfs structure.
1971 * If vfsp is already mounted, caller must hold the vfs lock.
1972 */
1973 void
vfs_setmntpoint(struct vfs * vfsp,const char * mntpt,uint32_t flag)1974 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1975 {
1976 if (mntpt == NULL || mntpt[0] == '\0')
1977 mntpt = VFS_NOMNTPT;
1978 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1979 }
1980
1981 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1982
1983 refstr_t *
vfs_getresource(const struct vfs * vfsp)1984 vfs_getresource(const struct vfs *vfsp)
1985 {
1986 refstr_t *resource;
1987
1988 vfs_list_read_lock();
1989 resource = vfsp->vfs_resource;
1990 refstr_hold(resource);
1991 vfs_list_unlock();
1992
1993 return (resource);
1994 }
1995
1996 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1997
1998 refstr_t *
vfs_getmntpoint(const struct vfs * vfsp)1999 vfs_getmntpoint(const struct vfs *vfsp)
2000 {
2001 refstr_t *mntpt;
2002
2003 vfs_list_read_lock();
2004 mntpt = vfsp->vfs_mntpt;
2005 refstr_hold(mntpt);
2006 vfs_list_unlock();
2007
2008 return (mntpt);
2009 }
2010
2011 /*
2012 * Create an empty options table with enough empty slots to hold all
2013 * The options in the options string passed as an argument.
2014 * Potentially prepend another options table.
2015 *
2016 * Note: caller is responsible for locking the vfs list, if needed,
2017 * to protect mops.
2018 */
2019 static void
vfs_createopttbl_extend(mntopts_t * mops,const char * opts,const mntopts_t * mtmpl)2020 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
2021 const mntopts_t *mtmpl)
2022 {
2023 const char *s = opts;
2024 uint_t count;
2025
2026 if (opts == NULL || *opts == '\0') {
2027 count = 0;
2028 } else {
2029 count = 1;
2030
2031 /*
2032 * Count number of options in the string
2033 */
2034 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2035 count++;
2036 s++;
2037 }
2038 }
2039 vfs_copyopttbl_extend(mtmpl, mops, count);
2040 }
2041
2042 /*
2043 * Create an empty options table with enough empty slots to hold all
2044 * The options in the options string passed as an argument.
2045 *
2046 * This function is *not* for general use by filesystems.
2047 *
2048 * Note: caller is responsible for locking the vfs list, if needed,
2049 * to protect mops.
2050 */
2051 void
vfs_createopttbl(mntopts_t * mops,const char * opts)2052 vfs_createopttbl(mntopts_t *mops, const char *opts)
2053 {
2054 vfs_createopttbl_extend(mops, opts, NULL);
2055 }
2056
2057
2058 /*
2059 * Swap two mount options tables
2060 */
2061 static void
vfs_swapopttbl_nolock(mntopts_t * optbl1,mntopts_t * optbl2)2062 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2063 {
2064 uint_t tmpcnt;
2065 mntopt_t *tmplist;
2066
2067 tmpcnt = optbl2->mo_count;
2068 tmplist = optbl2->mo_list;
2069 optbl2->mo_count = optbl1->mo_count;
2070 optbl2->mo_list = optbl1->mo_list;
2071 optbl1->mo_count = tmpcnt;
2072 optbl1->mo_list = tmplist;
2073 }
2074
2075 static void
vfs_swapopttbl(mntopts_t * optbl1,mntopts_t * optbl2)2076 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2077 {
2078 vfs_list_lock();
2079 vfs_swapopttbl_nolock(optbl1, optbl2);
2080 vfs_mnttab_modtimeupd();
2081 vfs_list_unlock();
2082 }
2083
2084 static char **
vfs_copycancelopt_extend(char ** const moc,int extend)2085 vfs_copycancelopt_extend(char **const moc, int extend)
2086 {
2087 int i = 0;
2088 int j;
2089 char **result;
2090
2091 if (moc != NULL) {
2092 for (; moc[i] != NULL; i++)
2093 /* count number of options to cancel */;
2094 }
2095
2096 if (i + extend == 0)
2097 return (NULL);
2098
2099 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2100
2101 for (j = 0; j < i; j++) {
2102 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2103 (void) strcpy(result[j], moc[j]);
2104 }
2105 for (; j <= i + extend; j++)
2106 result[j] = NULL;
2107
2108 return (result);
2109 }
2110
2111 static void
vfs_copyopt(const mntopt_t * s,mntopt_t * d)2112 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2113 {
2114 char *sp, *dp;
2115
2116 d->mo_flags = s->mo_flags;
2117 d->mo_data = s->mo_data;
2118 sp = s->mo_name;
2119 if (sp != NULL) {
2120 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2121 (void) strcpy(dp, sp);
2122 d->mo_name = dp;
2123 } else {
2124 d->mo_name = NULL; /* should never happen */
2125 }
2126
2127 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2128
2129 sp = s->mo_arg;
2130 if (sp != NULL) {
2131 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2132 (void) strcpy(dp, sp);
2133 d->mo_arg = dp;
2134 } else {
2135 d->mo_arg = NULL;
2136 }
2137 }
2138
2139 /*
2140 * Copy a mount options table, possibly allocating some spare
2141 * slots at the end. It is permissible to copy_extend the NULL table.
2142 */
2143 static void
vfs_copyopttbl_extend(const mntopts_t * smo,mntopts_t * dmo,int extra)2144 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2145 {
2146 uint_t i, count;
2147 mntopt_t *motbl;
2148
2149 /*
2150 * Clear out any existing stuff in the options table being initialized
2151 */
2152 vfs_freeopttbl(dmo);
2153 count = (smo == NULL) ? 0 : smo->mo_count;
2154 if ((count + extra) == 0) /* nothing to do */
2155 return;
2156 dmo->mo_count = count + extra;
2157 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2158 dmo->mo_list = motbl;
2159 for (i = 0; i < count; i++) {
2160 vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2161 }
2162 for (i = count; i < count + extra; i++) {
2163 motbl[i].mo_flags = MO_EMPTY;
2164 }
2165 }
2166
2167 /*
2168 * Copy a mount options table.
2169 *
2170 * This function is *not* for general use by filesystems.
2171 *
2172 * Note: caller is responsible for locking the vfs list, if needed,
2173 * to protect smo and dmo.
2174 */
2175 void
vfs_copyopttbl(const mntopts_t * smo,mntopts_t * dmo)2176 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2177 {
2178 vfs_copyopttbl_extend(smo, dmo, 0);
2179 }
2180
2181 static char **
vfs_mergecancelopts(const mntopt_t * mop1,const mntopt_t * mop2)2182 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2183 {
2184 int c1 = 0;
2185 int c2 = 0;
2186 char **result;
2187 char **sp1, **sp2, **dp;
2188
2189 /*
2190 * First we count both lists of cancel options.
2191 * If either is NULL or has no elements, we return a copy of
2192 * the other.
2193 */
2194 if (mop1->mo_cancel != NULL) {
2195 for (; mop1->mo_cancel[c1] != NULL; c1++)
2196 /* count cancel options in mop1 */;
2197 }
2198
2199 if (c1 == 0)
2200 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2201
2202 if (mop2->mo_cancel != NULL) {
2203 for (; mop2->mo_cancel[c2] != NULL; c2++)
2204 /* count cancel options in mop2 */;
2205 }
2206
2207 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2208
2209 if (c2 == 0)
2210 return (result);
2211
2212 /*
2213 * When we get here, we've got two sets of cancel options;
2214 * we need to merge the two sets. We know that the result
2215 * array has "c1+c2+1" entries and in the end we might shrink
2216 * it.
2217 * Result now has a copy of the c1 entries from mop1; we'll
2218 * now lookup all the entries of mop2 in mop1 and copy it if
2219 * it is unique.
2220 * This operation is O(n^2) but it's only called once per
2221 * filesystem per duplicate option. This is a situation
2222 * which doesn't arise with the filesystems in ON and
2223 * n is generally 1.
2224 */
2225
2226 dp = &result[c1];
2227 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2228 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2229 if (strcmp(*sp1, *sp2) == 0)
2230 break;
2231 }
2232 if (*sp1 == NULL) {
2233 /*
2234 * Option *sp2 not found in mop1, so copy it.
2235 * The calls to vfs_copycancelopt_extend()
2236 * guarantee that there's enough room.
2237 */
2238 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2239 (void) strcpy(*dp++, *sp2);
2240 }
2241 }
2242 if (dp != &result[c1+c2]) {
2243 size_t bytes = (dp - result + 1) * sizeof (char *);
2244 char **nres = kmem_alloc(bytes, KM_SLEEP);
2245
2246 bcopy(result, nres, bytes);
2247 kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2248 result = nres;
2249 }
2250 return (result);
2251 }
2252
2253 /*
2254 * Merge two mount option tables (outer and inner) into one. This is very
2255 * similar to "merging" global variables and automatic variables in C.
2256 *
2257 * This isn't (and doesn't have to be) fast.
2258 *
2259 * This function is *not* for general use by filesystems.
2260 *
2261 * Note: caller is responsible for locking the vfs list, if needed,
2262 * to protect omo, imo & dmo.
2263 */
2264 void
vfs_mergeopttbl(const mntopts_t * omo,const mntopts_t * imo,mntopts_t * dmo)2265 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2266 {
2267 uint_t i, count;
2268 mntopt_t *mop, *motbl;
2269 uint_t freeidx;
2270
2271 /*
2272 * First determine how much space we need to allocate.
2273 */
2274 count = omo->mo_count;
2275 for (i = 0; i < imo->mo_count; i++) {
2276 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2277 continue;
2278 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2279 count++;
2280 }
2281 ASSERT(count >= omo->mo_count &&
2282 count <= omo->mo_count + imo->mo_count);
2283 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2284 for (i = 0; i < omo->mo_count; i++)
2285 vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2286 freeidx = omo->mo_count;
2287 for (i = 0; i < imo->mo_count; i++) {
2288 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2289 continue;
2290 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2291 char **newcanp;
2292 uint_t index = mop - omo->mo_list;
2293
2294 newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2295
2296 vfs_freeopt(&motbl[index]);
2297 vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2298
2299 vfs_freecancelopt(motbl[index].mo_cancel);
2300 motbl[index].mo_cancel = newcanp;
2301 } else {
2302 /*
2303 * If it's a new option, just copy it over to the first
2304 * free location.
2305 */
2306 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2307 }
2308 }
2309 dmo->mo_count = count;
2310 dmo->mo_list = motbl;
2311 }
2312
2313 /*
2314 * Functions to set and clear mount options in a mount options table.
2315 */
2316
2317 /*
2318 * Clear a mount option, if it exists.
2319 *
2320 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2321 * the vfs list.
2322 */
2323 static void
vfs_clearmntopt_nolock(mntopts_t * mops,const char * opt,int update_mnttab)2324 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2325 {
2326 struct mntopt *mop;
2327 uint_t i, count;
2328
2329 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2330
2331 count = mops->mo_count;
2332 for (i = 0; i < count; i++) {
2333 mop = &mops->mo_list[i];
2334
2335 if (mop->mo_flags & MO_EMPTY)
2336 continue;
2337 if (strcmp(opt, mop->mo_name))
2338 continue;
2339 mop->mo_flags &= ~MO_SET;
2340 if (mop->mo_arg != NULL) {
2341 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2342 }
2343 mop->mo_arg = NULL;
2344 if (update_mnttab)
2345 vfs_mnttab_modtimeupd();
2346 break;
2347 }
2348 }
2349
2350 void
vfs_clearmntopt(struct vfs * vfsp,const char * opt)2351 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2352 {
2353 int gotlock = 0;
2354
2355 if (VFS_ON_LIST(vfsp)) {
2356 gotlock = 1;
2357 vfs_list_lock();
2358 }
2359 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2360 if (gotlock)
2361 vfs_list_unlock();
2362 }
2363
2364
2365 /*
2366 * Set a mount option on. If it's not found in the table, it's silently
2367 * ignored. If the option has MO_IGNORE set, it is still set unless the
2368 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag
2369 * bits can be used to toggle the MO_NODISPLAY bit for the option.
2370 * If the VFS_CREATEOPT flag bit is set then the first option slot with
2371 * MO_EMPTY set is created as the option passed in.
2372 *
2373 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2374 * the vfs list.
2375 */
2376 static void
vfs_setmntopt_nolock(mntopts_t * mops,const char * opt,const char * arg,int flags,int update_mnttab)2377 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2378 const char *arg, int flags, int update_mnttab)
2379 {
2380 mntopt_t *mop;
2381 uint_t i, count;
2382 char *sp;
2383
2384 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2385
2386 if (flags & VFS_CREATEOPT) {
2387 if (vfs_hasopt(mops, opt) != NULL) {
2388 flags &= ~VFS_CREATEOPT;
2389 }
2390 }
2391 count = mops->mo_count;
2392 for (i = 0; i < count; i++) {
2393 mop = &mops->mo_list[i];
2394
2395 if (mop->mo_flags & MO_EMPTY) {
2396 if ((flags & VFS_CREATEOPT) == 0)
2397 continue;
2398 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2399 (void) strcpy(sp, opt);
2400 mop->mo_name = sp;
2401 if (arg != NULL)
2402 mop->mo_flags = MO_HASVALUE;
2403 else
2404 mop->mo_flags = 0;
2405 } else if (strcmp(opt, mop->mo_name)) {
2406 continue;
2407 }
2408 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2409 break;
2410 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2411 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2412 (void) strcpy(sp, arg);
2413 } else {
2414 sp = NULL;
2415 }
2416 if (mop->mo_arg != NULL)
2417 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2418 mop->mo_arg = sp;
2419 if (flags & VFS_DISPLAY)
2420 mop->mo_flags &= ~MO_NODISPLAY;
2421 if (flags & VFS_NODISPLAY)
2422 mop->mo_flags |= MO_NODISPLAY;
2423 mop->mo_flags |= MO_SET;
2424 if (mop->mo_cancel != NULL) {
2425 char **cp;
2426
2427 for (cp = mop->mo_cancel; *cp != NULL; cp++)
2428 vfs_clearmntopt_nolock(mops, *cp, 0);
2429 }
2430 if (update_mnttab)
2431 vfs_mnttab_modtimeupd();
2432 break;
2433 }
2434 }
2435
2436 void
vfs_setmntopt(struct vfs * vfsp,const char * opt,const char * arg,int flags)2437 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2438 {
2439 int gotlock = 0;
2440
2441 if (VFS_ON_LIST(vfsp)) {
2442 gotlock = 1;
2443 vfs_list_lock();
2444 }
2445 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2446 if (gotlock)
2447 vfs_list_unlock();
2448 }
2449
2450
2451 /*
2452 * Add a "tag" option to a mounted file system's options list.
2453 *
2454 * Note: caller is responsible for locking the vfs list, if needed,
2455 * to protect mops.
2456 */
2457 static mntopt_t *
vfs_addtag(mntopts_t * mops,const char * tag)2458 vfs_addtag(mntopts_t *mops, const char *tag)
2459 {
2460 uint_t count;
2461 mntopt_t *mop, *motbl;
2462
2463 count = mops->mo_count + 1;
2464 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2465 if (mops->mo_count) {
2466 size_t len = (count - 1) * sizeof (mntopt_t);
2467
2468 bcopy(mops->mo_list, motbl, len);
2469 kmem_free(mops->mo_list, len);
2470 }
2471 mops->mo_count = count;
2472 mops->mo_list = motbl;
2473 mop = &motbl[count - 1];
2474 mop->mo_flags = MO_TAG;
2475 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2476 (void) strcpy(mop->mo_name, tag);
2477 return (mop);
2478 }
2479
2480 /*
2481 * Allow users to set arbitrary "tags" in a vfs's mount options.
2482 * Broader use within the kernel is discouraged.
2483 */
2484 int
vfs_settag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2485 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2486 cred_t *cr)
2487 {
2488 vfs_t *vfsp;
2489 mntopts_t *mops;
2490 mntopt_t *mop;
2491 int found = 0;
2492 dev_t dev = makedevice(major, minor);
2493 int err = 0;
2494 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2495
2496 /*
2497 * Find the desired mounted file system
2498 */
2499 vfs_list_lock();
2500 vfsp = rootvfs;
2501 do {
2502 if (vfsp->vfs_dev == dev &&
2503 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2504 found = 1;
2505 break;
2506 }
2507 vfsp = vfsp->vfs_next;
2508 } while (vfsp != rootvfs);
2509
2510 if (!found) {
2511 err = EINVAL;
2512 goto out;
2513 }
2514 err = secpolicy_fs_config(cr, vfsp);
2515 if (err != 0)
2516 goto out;
2517
2518 mops = &vfsp->vfs_mntopts;
2519 /*
2520 * Add tag if it doesn't already exist
2521 */
2522 if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2523 int len;
2524
2525 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2526 len = strlen(buf);
2527 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2528 err = ENAMETOOLONG;
2529 goto out;
2530 }
2531 mop = vfs_addtag(mops, tag);
2532 }
2533 if ((mop->mo_flags & MO_TAG) == 0) {
2534 err = EINVAL;
2535 goto out;
2536 }
2537 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2538 out:
2539 vfs_list_unlock();
2540 kmem_free(buf, MAX_MNTOPT_STR);
2541 return (err);
2542 }
2543
2544 /*
2545 * Allow users to remove arbitrary "tags" in a vfs's mount options.
2546 * Broader use within the kernel is discouraged.
2547 */
2548 int
vfs_clrtag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2549 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2550 cred_t *cr)
2551 {
2552 vfs_t *vfsp;
2553 mntopt_t *mop;
2554 int found = 0;
2555 dev_t dev = makedevice(major, minor);
2556 int err = 0;
2557
2558 /*
2559 * Find the desired mounted file system
2560 */
2561 vfs_list_lock();
2562 vfsp = rootvfs;
2563 do {
2564 if (vfsp->vfs_dev == dev &&
2565 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2566 found = 1;
2567 break;
2568 }
2569 vfsp = vfsp->vfs_next;
2570 } while (vfsp != rootvfs);
2571
2572 if (!found) {
2573 err = EINVAL;
2574 goto out;
2575 }
2576 err = secpolicy_fs_config(cr, vfsp);
2577 if (err != 0)
2578 goto out;
2579
2580 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2581 err = EINVAL;
2582 goto out;
2583 }
2584 if ((mop->mo_flags & MO_TAG) == 0) {
2585 err = EINVAL;
2586 goto out;
2587 }
2588 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2589 out:
2590 vfs_list_unlock();
2591 return (err);
2592 }
2593
2594 /*
2595 * Function to parse an option string and fill in a mount options table.
2596 * Unknown options are silently ignored. The input option string is modified
2597 * by replacing separators with nulls. If the create flag is set, options
2598 * not found in the table are just added on the fly. The table must have
2599 * an option slot marked MO_EMPTY to add an option on the fly.
2600 *
2601 * This function is *not* for general use by filesystems.
2602 *
2603 * Note: caller is responsible for locking the vfs list, if needed,
2604 * to protect mops..
2605 */
2606 void
vfs_parsemntopts(mntopts_t * mops,char * osp,int create)2607 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2608 {
2609 char *s = osp, *p, *nextop, *valp, *cp, *ep;
2610 int setflg = VFS_NOFORCEOPT;
2611
2612 if (osp == NULL)
2613 return;
2614 while (*s != '\0') {
2615 p = strchr(s, ','); /* find next option */
2616 if (p == NULL) {
2617 cp = NULL;
2618 p = s + strlen(s);
2619 } else {
2620 cp = p; /* save location of comma */
2621 *p++ = '\0'; /* mark end and point to next option */
2622 }
2623 nextop = p;
2624 p = strchr(s, '='); /* look for value */
2625 if (p == NULL) {
2626 valp = NULL; /* no value supplied */
2627 } else {
2628 ep = p; /* save location of equals */
2629 *p++ = '\0'; /* end option and point to value */
2630 valp = p;
2631 }
2632 /*
2633 * set option into options table
2634 */
2635 if (create)
2636 setflg |= VFS_CREATEOPT;
2637 vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2638 if (cp != NULL)
2639 *cp = ','; /* restore the comma */
2640 if (valp != NULL)
2641 *ep = '='; /* restore the equals */
2642 s = nextop;
2643 }
2644 }
2645
2646 /*
2647 * Function to inquire if an option exists in a mount options table.
2648 * Returns a pointer to the option if it exists, else NULL.
2649 *
2650 * This function is *not* for general use by filesystems.
2651 *
2652 * Note: caller is responsible for locking the vfs list, if needed,
2653 * to protect mops.
2654 */
2655 struct mntopt *
vfs_hasopt(const mntopts_t * mops,const char * opt)2656 vfs_hasopt(const mntopts_t *mops, const char *opt)
2657 {
2658 struct mntopt *mop;
2659 uint_t i, count;
2660
2661 count = mops->mo_count;
2662 for (i = 0; i < count; i++) {
2663 mop = &mops->mo_list[i];
2664
2665 if (mop->mo_flags & MO_EMPTY)
2666 continue;
2667 if (strcmp(opt, mop->mo_name) == 0)
2668 return (mop);
2669 }
2670 return (NULL);
2671 }
2672
2673 /*
2674 * Function to inquire if an option is set in a mount options table.
2675 * Returns non-zero if set and fills in the arg pointer with a pointer to
2676 * the argument string or NULL if there is no argument string.
2677 */
2678 static int
vfs_optionisset_nolock(const mntopts_t * mops,const char * opt,char ** argp)2679 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2680 {
2681 struct mntopt *mop;
2682 uint_t i, count;
2683
2684 count = mops->mo_count;
2685 for (i = 0; i < count; i++) {
2686 mop = &mops->mo_list[i];
2687
2688 if (mop->mo_flags & MO_EMPTY)
2689 continue;
2690 if (strcmp(opt, mop->mo_name))
2691 continue;
2692 if ((mop->mo_flags & MO_SET) == 0)
2693 return (0);
2694 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2695 *argp = mop->mo_arg;
2696 return (1);
2697 }
2698 return (0);
2699 }
2700
2701
2702 int
vfs_optionisset(const struct vfs * vfsp,const char * opt,char ** argp)2703 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2704 {
2705 int ret;
2706
2707 vfs_list_read_lock();
2708 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2709 vfs_list_unlock();
2710 return (ret);
2711 }
2712
2713
2714 /*
2715 * Construct a comma separated string of the options set in the given
2716 * mount table, return the string in the given buffer. Return non-zero if
2717 * the buffer would overflow.
2718 *
2719 * This function is *not* for general use by filesystems.
2720 *
2721 * Note: caller is responsible for locking the vfs list, if needed,
2722 * to protect mp.
2723 */
2724 int
vfs_buildoptionstr(const mntopts_t * mp,char * buf,int len)2725 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2726 {
2727 char *cp;
2728 uint_t i;
2729
2730 buf[0] = '\0';
2731 cp = buf;
2732 for (i = 0; i < mp->mo_count; i++) {
2733 struct mntopt *mop;
2734
2735 mop = &mp->mo_list[i];
2736 if (mop->mo_flags & MO_SET) {
2737 int optlen, comma = 0;
2738
2739 if (buf[0] != '\0')
2740 comma = 1;
2741 optlen = strlen(mop->mo_name);
2742 if (strlen(buf) + comma + optlen + 1 > len)
2743 goto err;
2744 if (comma)
2745 *cp++ = ',';
2746 (void) strcpy(cp, mop->mo_name);
2747 cp += optlen;
2748 /*
2749 * Append option value if there is one
2750 */
2751 if (mop->mo_arg != NULL) {
2752 int arglen;
2753
2754 arglen = strlen(mop->mo_arg);
2755 if (strlen(buf) + arglen + 2 > len)
2756 goto err;
2757 *cp++ = '=';
2758 (void) strcpy(cp, mop->mo_arg);
2759 cp += arglen;
2760 }
2761 }
2762 }
2763 return (0);
2764 err:
2765 return (EOVERFLOW);
2766 }
2767
2768 static void
vfs_freecancelopt(char ** moc)2769 vfs_freecancelopt(char **moc)
2770 {
2771 if (moc != NULL) {
2772 int ccnt = 0;
2773 char **cp;
2774
2775 for (cp = moc; *cp != NULL; cp++) {
2776 kmem_free(*cp, strlen(*cp) + 1);
2777 ccnt++;
2778 }
2779 kmem_free(moc, (ccnt + 1) * sizeof (char *));
2780 }
2781 }
2782
2783 static void
vfs_freeopt(mntopt_t * mop)2784 vfs_freeopt(mntopt_t *mop)
2785 {
2786 if (mop->mo_name != NULL)
2787 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2788
2789 vfs_freecancelopt(mop->mo_cancel);
2790
2791 if (mop->mo_arg != NULL)
2792 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2793 }
2794
2795 /*
2796 * Free a mount options table
2797 *
2798 * This function is *not* for general use by filesystems.
2799 *
2800 * Note: caller is responsible for locking the vfs list, if needed,
2801 * to protect mp.
2802 */
2803 void
vfs_freeopttbl(mntopts_t * mp)2804 vfs_freeopttbl(mntopts_t *mp)
2805 {
2806 uint_t i, count;
2807
2808 count = mp->mo_count;
2809 for (i = 0; i < count; i++) {
2810 vfs_freeopt(&mp->mo_list[i]);
2811 }
2812 if (count) {
2813 kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2814 mp->mo_count = 0;
2815 mp->mo_list = NULL;
2816 }
2817 }
2818
2819
2820 /* ARGSUSED */
2821 static int
vfs_mntdummyread(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2822 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2823 caller_context_t *ct)
2824 {
2825 return (0);
2826 }
2827
2828 /* ARGSUSED */
2829 static int
vfs_mntdummywrite(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2830 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2831 caller_context_t *ct)
2832 {
2833 return (0);
2834 }
2835
2836 /*
2837 * The dummy vnode is currently used only by file events notification
2838 * module which is just interested in the timestamps.
2839 */
2840 /* ARGSUSED */
2841 static int
vfs_mntdummygetattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2842 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2843 caller_context_t *ct)
2844 {
2845 bzero(vap, sizeof (vattr_t));
2846 vap->va_type = VREG;
2847 vap->va_nlink = 1;
2848 vap->va_ctime = vfs_mnttab_ctime;
2849 /*
2850 * it is ok to just copy mtime as the time will be monotonically
2851 * increasing.
2852 */
2853 vap->va_mtime = vfs_mnttab_mtime;
2854 vap->va_atime = vap->va_mtime;
2855 return (0);
2856 }
2857
2858 static void
vfs_mnttabvp_setup(void)2859 vfs_mnttabvp_setup(void)
2860 {
2861 vnode_t *tvp;
2862 vnodeops_t *vfs_mntdummyvnops;
2863 const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2864 VOPNAME_READ, { .vop_read = vfs_mntdummyread },
2865 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite },
2866 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr },
2867 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
2868 NULL, NULL
2869 };
2870
2871 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2872 &vfs_mntdummyvnops) != 0) {
2873 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2874 /* Shouldn't happen, but not bad enough to panic */
2875 return;
2876 }
2877
2878 /*
2879 * A global dummy vnode is allocated to represent mntfs files.
2880 * The mntfs file (/etc/mnttab) can be monitored for file events
2881 * and receive an event when mnttab changes. Dummy VOP calls
2882 * will be made on this vnode. The file events notification module
2883 * intercepts this vnode and delivers relevant events.
2884 */
2885 tvp = vn_alloc(KM_SLEEP);
2886 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2887 vn_setops(tvp, vfs_mntdummyvnops);
2888 tvp->v_type = VREG;
2889 /*
2890 * The mnt dummy ops do not reference v_data.
2891 * No other module intercepting this vnode should either.
2892 * Just set it to point to itself.
2893 */
2894 tvp->v_data = (caddr_t)tvp;
2895 tvp->v_vfsp = rootvfs;
2896 vfs_mntdummyvp = tvp;
2897 }
2898
2899 /*
2900 * performs fake read/write ops
2901 */
2902 static void
vfs_mnttab_rwop(int rw)2903 vfs_mnttab_rwop(int rw)
2904 {
2905 struct uio uio;
2906 struct iovec iov;
2907 char buf[1];
2908
2909 if (vfs_mntdummyvp == NULL)
2910 return;
2911
2912 bzero(&uio, sizeof (uio));
2913 bzero(&iov, sizeof (iov));
2914 iov.iov_base = buf;
2915 iov.iov_len = 0;
2916 uio.uio_iov = &iov;
2917 uio.uio_iovcnt = 1;
2918 uio.uio_loffset = 0;
2919 uio.uio_segflg = UIO_SYSSPACE;
2920 uio.uio_resid = 0;
2921 if (rw) {
2922 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2923 } else {
2924 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2925 }
2926 }
2927
2928 /*
2929 * Generate a write operation.
2930 */
2931 void
vfs_mnttab_writeop(void)2932 vfs_mnttab_writeop(void)
2933 {
2934 vfs_mnttab_rwop(1);
2935 }
2936
2937 /*
2938 * Generate a read operation.
2939 */
2940 void
vfs_mnttab_readop(void)2941 vfs_mnttab_readop(void)
2942 {
2943 vfs_mnttab_rwop(0);
2944 }
2945
2946 /*
2947 * Free any mnttab information recorded in the vfs struct.
2948 * The vfs must not be on the vfs list.
2949 */
2950 static void
vfs_freemnttab(struct vfs * vfsp)2951 vfs_freemnttab(struct vfs *vfsp)
2952 {
2953 ASSERT(!VFS_ON_LIST(vfsp));
2954
2955 /*
2956 * Free device and mount point information
2957 */
2958 if (vfsp->vfs_mntpt != NULL) {
2959 refstr_rele(vfsp->vfs_mntpt);
2960 vfsp->vfs_mntpt = NULL;
2961 }
2962 if (vfsp->vfs_resource != NULL) {
2963 refstr_rele(vfsp->vfs_resource);
2964 vfsp->vfs_resource = NULL;
2965 }
2966 /*
2967 * Now free mount options information
2968 */
2969 vfs_freeopttbl(&vfsp->vfs_mntopts);
2970 }
2971
2972 /*
2973 * Return the last mnttab modification time
2974 */
2975 void
vfs_mnttab_modtime(timespec_t * ts)2976 vfs_mnttab_modtime(timespec_t *ts)
2977 {
2978 ASSERT(RW_LOCK_HELD(&vfslist));
2979 *ts = vfs_mnttab_mtime;
2980 }
2981
2982 /*
2983 * See if mnttab is changed
2984 */
2985 void
vfs_mnttab_poll(timespec_t * old,struct pollhead ** phpp)2986 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2987 {
2988 int changed;
2989
2990 *phpp = (struct pollhead *)NULL;
2991
2992 /*
2993 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2994 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2995 * to not grab the vfs list lock because tv_sec is monotonically
2996 * increasing.
2997 */
2998
2999 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
3000 (old->tv_sec != vfs_mnttab_mtime.tv_sec);
3001 if (!changed) {
3002 *phpp = &vfs_pollhd;
3003 }
3004 }
3005
3006 /* Provide a unique and monotonically-increasing timestamp. */
3007 void
vfs_mono_time(timespec_t * ts)3008 vfs_mono_time(timespec_t *ts)
3009 {
3010 static volatile hrtime_t hrt; /* The saved time. */
3011 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */
3012 timespec_t newts;
3013
3014 /*
3015 * Try gethrestime() first, but be prepared to fabricate a sensible
3016 * answer at the first sign of any trouble.
3017 */
3018 gethrestime(&newts);
3019 newhrt = ts2hrt(&newts);
3020 for (;;) {
3021 oldhrt = hrt;
3022 if (newhrt <= hrt)
3023 newhrt = hrt + 1;
3024 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3025 break;
3026 }
3027 hrt2ts(newhrt, ts);
3028 }
3029
3030 /*
3031 * Update the mnttab modification time and wake up any waiters for
3032 * mnttab changes
3033 */
3034 void
vfs_mnttab_modtimeupd()3035 vfs_mnttab_modtimeupd()
3036 {
3037 hrtime_t oldhrt, newhrt;
3038
3039 ASSERT(RW_WRITE_HELD(&vfslist));
3040 oldhrt = ts2hrt(&vfs_mnttab_mtime);
3041 gethrestime(&vfs_mnttab_mtime);
3042 newhrt = ts2hrt(&vfs_mnttab_mtime);
3043 if (oldhrt == (hrtime_t)0)
3044 vfs_mnttab_ctime = vfs_mnttab_mtime;
3045 /*
3046 * Attempt to provide unique mtime (like uniqtime but not).
3047 */
3048 if (newhrt == oldhrt) {
3049 newhrt++;
3050 hrt2ts(newhrt, &vfs_mnttab_mtime);
3051 }
3052 pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3053 vfs_mnttab_writeop();
3054 }
3055
3056 int
dounmount(struct vfs * vfsp,int flag,cred_t * cr)3057 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3058 {
3059 vnode_t *coveredvp;
3060 int error;
3061 extern void teardown_vopstats(vfs_t *);
3062
3063 /*
3064 * Get covered vnode. This will be NULL if the vfs is not linked
3065 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3066 */
3067 coveredvp = vfsp->vfs_vnodecovered;
3068 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3069
3070 /*
3071 * Purge all dnlc entries for this vfs.
3072 */
3073 (void) dnlc_purge_vfsp(vfsp, 0);
3074
3075 /* For forcible umount, skip VFS_SYNC() since it may hang */
3076 if ((flag & MS_FORCE) == 0)
3077 (void) VFS_SYNC(vfsp, 0, cr);
3078
3079 /*
3080 * Lock the vfs to maintain fs status quo during unmount. This
3081 * has to be done after the sync because ufs_update tries to acquire
3082 * the vfs_reflock.
3083 */
3084 vfs_lock_wait(vfsp);
3085
3086 if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3087 vfs_unlock(vfsp);
3088 if (coveredvp != NULL)
3089 vn_vfsunlock(coveredvp);
3090 } else if (coveredvp != NULL) {
3091 teardown_vopstats(vfsp);
3092 /*
3093 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3094 * when it frees vfsp so we do a VN_HOLD() so we can
3095 * continue to use coveredvp afterwards.
3096 */
3097 VN_HOLD(coveredvp);
3098 vfs_remove(vfsp);
3099 vn_vfsunlock(coveredvp);
3100 VN_RELE(coveredvp);
3101 } else {
3102 teardown_vopstats(vfsp);
3103 /*
3104 * Release the reference to vfs that is not linked
3105 * into the name space.
3106 */
3107 vfs_unlock(vfsp);
3108 VFS_RELE(vfsp);
3109 }
3110 return (error);
3111 }
3112
3113
3114 /*
3115 * Vfs_unmountall() is called by uadmin() to unmount all
3116 * mounted file systems (except the root file system) during shutdown.
3117 * It follows the existing locking protocol when traversing the vfs list
3118 * to sync and unmount vfses. Even though there should be no
3119 * other thread running while the system is shutting down, it is prudent
3120 * to still follow the locking protocol.
3121 */
3122 void
vfs_unmountall(void)3123 vfs_unmountall(void)
3124 {
3125 struct vfs *vfsp;
3126 struct vfs *prev_vfsp = NULL;
3127 int error;
3128
3129 /*
3130 * Toss all dnlc entries now so that the per-vfs sync
3131 * and unmount operations don't have to slog through
3132 * a bunch of uninteresting vnodes over and over again.
3133 */
3134 dnlc_purge();
3135
3136 vfs_list_lock();
3137 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3138 prev_vfsp = vfsp->vfs_prev;
3139
3140 if (vfs_lock(vfsp) != 0)
3141 continue;
3142 error = vn_vfswlock(vfsp->vfs_vnodecovered);
3143 vfs_unlock(vfsp);
3144 if (error)
3145 continue;
3146
3147 vfs_list_unlock();
3148
3149 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3150 (void) dounmount(vfsp, 0, CRED());
3151
3152 /*
3153 * Since we dropped the vfslist lock above we must
3154 * verify that next_vfsp still exists, else start over.
3155 */
3156 vfs_list_lock();
3157 for (vfsp = rootvfs->vfs_prev;
3158 vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3159 if (vfsp == prev_vfsp)
3160 break;
3161 if (vfsp == rootvfs && prev_vfsp != rootvfs)
3162 prev_vfsp = rootvfs->vfs_prev;
3163 }
3164 vfs_list_unlock();
3165 }
3166
3167 /*
3168 * Called to add an entry to the end of the vfs mount in progress list
3169 */
3170 void
vfs_addmip(dev_t dev,struct vfs * vfsp)3171 vfs_addmip(dev_t dev, struct vfs *vfsp)
3172 {
3173 struct ipmnt *mipp;
3174
3175 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3176 mipp->mip_next = NULL;
3177 mipp->mip_dev = dev;
3178 mipp->mip_vfsp = vfsp;
3179 mutex_enter(&vfs_miplist_mutex);
3180 if (vfs_miplist_end != NULL)
3181 vfs_miplist_end->mip_next = mipp;
3182 else
3183 vfs_miplist = mipp;
3184 vfs_miplist_end = mipp;
3185 mutex_exit(&vfs_miplist_mutex);
3186 }
3187
3188 /*
3189 * Called to remove an entry from the mount in progress list
3190 * Either because the mount completed or it failed.
3191 */
3192 void
vfs_delmip(struct vfs * vfsp)3193 vfs_delmip(struct vfs *vfsp)
3194 {
3195 struct ipmnt *mipp, *mipprev;
3196
3197 mutex_enter(&vfs_miplist_mutex);
3198 mipprev = NULL;
3199 for (mipp = vfs_miplist;
3200 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3201 mipprev = mipp;
3202 }
3203 if (mipp == NULL)
3204 return; /* shouldn't happen */
3205 if (mipp == vfs_miplist_end)
3206 vfs_miplist_end = mipprev;
3207 if (mipprev == NULL)
3208 vfs_miplist = mipp->mip_next;
3209 else
3210 mipprev->mip_next = mipp->mip_next;
3211 mutex_exit(&vfs_miplist_mutex);
3212 kmem_free(mipp, sizeof (struct ipmnt));
3213 }
3214
3215 /*
3216 * vfs_add is called by a specific filesystem's mount routine to add
3217 * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3218 * The vfs should already have been locked by the caller.
3219 *
3220 * coveredvp is NULL if this is the root.
3221 */
3222 void
vfs_add(vnode_t * coveredvp,struct vfs * vfsp,int mflag)3223 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3224 {
3225 int newflag;
3226
3227 ASSERT(vfs_lock_held(vfsp));
3228 VFS_HOLD(vfsp);
3229 newflag = vfsp->vfs_flag;
3230 if (mflag & MS_RDONLY)
3231 newflag |= VFS_RDONLY;
3232 else
3233 newflag &= ~VFS_RDONLY;
3234 if (mflag & MS_NOSUID)
3235 newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3236 else
3237 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3238 if (mflag & MS_NOMNTTAB)
3239 newflag |= VFS_NOMNTTAB;
3240 else
3241 newflag &= ~VFS_NOMNTTAB;
3242
3243 if (coveredvp != NULL) {
3244 ASSERT(vn_vfswlock_held(coveredvp));
3245 coveredvp->v_vfsmountedhere = vfsp;
3246 VN_HOLD(coveredvp);
3247 }
3248 vfsp->vfs_vnodecovered = coveredvp;
3249 vfsp->vfs_flag = newflag;
3250
3251 vfs_list_add(vfsp);
3252 }
3253
3254 /*
3255 * Remove a vfs from the vfs list, null out the pointer from the
3256 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3257 * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3258 * reference to the vfs and to the covered vnode.
3259 *
3260 * Called from dounmount after it's confirmed with the file system
3261 * that the unmount is legal.
3262 */
3263 void
vfs_remove(struct vfs * vfsp)3264 vfs_remove(struct vfs *vfsp)
3265 {
3266 vnode_t *vp;
3267
3268 ASSERT(vfs_lock_held(vfsp));
3269
3270 /*
3271 * Can't unmount root. Should never happen because fs will
3272 * be busy.
3273 */
3274 if (vfsp == rootvfs)
3275 panic("vfs_remove: unmounting root");
3276
3277 vfs_list_remove(vfsp);
3278
3279 /*
3280 * Unhook from the file system name space.
3281 */
3282 vp = vfsp->vfs_vnodecovered;
3283 ASSERT(vn_vfswlock_held(vp));
3284 vp->v_vfsmountedhere = NULL;
3285 vfsp->vfs_vnodecovered = NULL;
3286 VN_RELE(vp);
3287
3288 /*
3289 * Release lock and wakeup anybody waiting.
3290 */
3291 vfs_unlock(vfsp);
3292 VFS_RELE(vfsp);
3293 }
3294
3295 /*
3296 * Lock a filesystem to prevent access to it while mounting,
3297 * unmounting and syncing. Return EBUSY immediately if lock
3298 * can't be acquired.
3299 */
3300 int
vfs_lock(vfs_t * vfsp)3301 vfs_lock(vfs_t *vfsp)
3302 {
3303 vn_vfslocks_entry_t *vpvfsentry;
3304
3305 vpvfsentry = vn_vfslocks_getlock(vfsp);
3306 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3307 return (0);
3308
3309 vn_vfslocks_rele(vpvfsentry);
3310 return (EBUSY);
3311 }
3312
3313 int
vfs_rlock(vfs_t * vfsp)3314 vfs_rlock(vfs_t *vfsp)
3315 {
3316 vn_vfslocks_entry_t *vpvfsentry;
3317
3318 vpvfsentry = vn_vfslocks_getlock(vfsp);
3319
3320 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3321 return (0);
3322
3323 vn_vfslocks_rele(vpvfsentry);
3324 return (EBUSY);
3325 }
3326
3327 void
vfs_lock_wait(vfs_t * vfsp)3328 vfs_lock_wait(vfs_t *vfsp)
3329 {
3330 vn_vfslocks_entry_t *vpvfsentry;
3331
3332 vpvfsentry = vn_vfslocks_getlock(vfsp);
3333 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3334 }
3335
3336 void
vfs_rlock_wait(vfs_t * vfsp)3337 vfs_rlock_wait(vfs_t *vfsp)
3338 {
3339 vn_vfslocks_entry_t *vpvfsentry;
3340
3341 vpvfsentry = vn_vfslocks_getlock(vfsp);
3342 rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3343 }
3344
3345 /*
3346 * Unlock a locked filesystem.
3347 */
3348 void
vfs_unlock(vfs_t * vfsp)3349 vfs_unlock(vfs_t *vfsp)
3350 {
3351 vn_vfslocks_entry_t *vpvfsentry;
3352
3353 /*
3354 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3355 * And these changes should remain for the patch changes as it is.
3356 */
3357 if (panicstr)
3358 return;
3359
3360 /*
3361 * ve_refcount needs to be dropped twice here.
3362 * 1. To release refernce after a call to vfs_locks_getlock()
3363 * 2. To release the reference from the locking routines like
3364 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3365 */
3366
3367 vpvfsentry = vn_vfslocks_getlock(vfsp);
3368 vn_vfslocks_rele(vpvfsentry);
3369
3370 rwst_exit(&vpvfsentry->ve_lock);
3371 vn_vfslocks_rele(vpvfsentry);
3372 }
3373
3374 /*
3375 * Utility routine that allows a filesystem to construct its
3376 * fsid in "the usual way" - by munging some underlying dev_t and
3377 * the filesystem type number into the 64-bit fsid. Note that
3378 * this implicitly relies on dev_t persistence to make filesystem
3379 * id's persistent.
3380 *
3381 * There's nothing to prevent an individual fs from constructing its
3382 * fsid in a different way, and indeed they should.
3383 *
3384 * Since we want fsids to be 32-bit quantities (so that they can be
3385 * exported identically by either 32-bit or 64-bit APIs, as well as
3386 * the fact that fsid's are "known" to NFS), we compress the device
3387 * number given down to 32-bits, and panic if that isn't possible.
3388 */
3389 void
vfs_make_fsid(fsid_t * fsi,dev_t dev,int val)3390 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3391 {
3392 if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3393 panic("device number too big for fsid!");
3394 fsi->val[1] = val;
3395 }
3396
3397 int
vfs_lock_held(vfs_t * vfsp)3398 vfs_lock_held(vfs_t *vfsp)
3399 {
3400 int held;
3401 vn_vfslocks_entry_t *vpvfsentry;
3402
3403 /*
3404 * vfs_lock_held will mimic sema_held behaviour
3405 * if panicstr is set. And these changes should remain
3406 * for the patch changes as it is.
3407 */
3408 if (panicstr)
3409 return (1);
3410
3411 vpvfsentry = vn_vfslocks_getlock(vfsp);
3412 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3413
3414 vn_vfslocks_rele(vpvfsentry);
3415 return (held);
3416 }
3417
3418 struct _kthread *
vfs_lock_owner(vfs_t * vfsp)3419 vfs_lock_owner(vfs_t *vfsp)
3420 {
3421 struct _kthread *owner;
3422 vn_vfslocks_entry_t *vpvfsentry;
3423
3424 /*
3425 * vfs_wlock_held will mimic sema_held behaviour
3426 * if panicstr is set. And these changes should remain
3427 * for the patch changes as it is.
3428 */
3429 if (panicstr)
3430 return (NULL);
3431
3432 vpvfsentry = vn_vfslocks_getlock(vfsp);
3433 owner = rwst_owner(&vpvfsentry->ve_lock);
3434
3435 vn_vfslocks_rele(vpvfsentry);
3436 return (owner);
3437 }
3438
3439 /*
3440 * vfs list locking.
3441 *
3442 * Rather than manipulate the vfslist lock directly, we abstract into lock
3443 * and unlock routines to allow the locking implementation to be changed for
3444 * clustering.
3445 *
3446 * Whenever the vfs list is modified through its hash links, the overall list
3447 * lock must be obtained before locking the relevant hash bucket. But to see
3448 * whether a given vfs is on the list, it suffices to obtain the lock for the
3449 * hash bucket without getting the overall list lock. (See getvfs() below.)
3450 */
3451
3452 void
vfs_list_lock()3453 vfs_list_lock()
3454 {
3455 rw_enter(&vfslist, RW_WRITER);
3456 }
3457
3458 void
vfs_list_read_lock()3459 vfs_list_read_lock()
3460 {
3461 rw_enter(&vfslist, RW_READER);
3462 }
3463
3464 void
vfs_list_unlock()3465 vfs_list_unlock()
3466 {
3467 rw_exit(&vfslist);
3468 }
3469
3470 /*
3471 * Low level worker routines for adding entries to and removing entries from
3472 * the vfs list.
3473 */
3474
3475 static void
vfs_hash_add(struct vfs * vfsp,int insert_at_head)3476 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3477 {
3478 int vhno;
3479 struct vfs **hp;
3480 dev_t dev;
3481
3482 ASSERT(RW_WRITE_HELD(&vfslist));
3483
3484 dev = expldev(vfsp->vfs_fsid.val[0]);
3485 vhno = VFSHASH(getmajor(dev), getminor(dev));
3486
3487 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3488
3489 /*
3490 * Link into the hash table, inserting it at the end, so that LOFS
3491 * with the same fsid as UFS (or other) file systems will not hide the
3492 * UFS.
3493 */
3494 if (insert_at_head) {
3495 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3496 rvfs_list[vhno].rvfs_head = vfsp;
3497 } else {
3498 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3499 hp = &(*hp)->vfs_hash)
3500 continue;
3501 /*
3502 * hp now contains the address of the pointer to update
3503 * to effect the insertion.
3504 */
3505 vfsp->vfs_hash = NULL;
3506 *hp = vfsp;
3507 }
3508
3509 rvfs_list[vhno].rvfs_len++;
3510 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3511 }
3512
3513
3514 static void
vfs_hash_remove(struct vfs * vfsp)3515 vfs_hash_remove(struct vfs *vfsp)
3516 {
3517 int vhno;
3518 struct vfs *tvfsp;
3519 dev_t dev;
3520
3521 ASSERT(RW_WRITE_HELD(&vfslist));
3522
3523 dev = expldev(vfsp->vfs_fsid.val[0]);
3524 vhno = VFSHASH(getmajor(dev), getminor(dev));
3525
3526 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3527
3528 /*
3529 * Remove from hash.
3530 */
3531 if (rvfs_list[vhno].rvfs_head == vfsp) {
3532 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3533 rvfs_list[vhno].rvfs_len--;
3534 goto foundit;
3535 }
3536 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3537 tvfsp = tvfsp->vfs_hash) {
3538 if (tvfsp->vfs_hash == vfsp) {
3539 tvfsp->vfs_hash = vfsp->vfs_hash;
3540 rvfs_list[vhno].rvfs_len--;
3541 goto foundit;
3542 }
3543 }
3544 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3545
3546 foundit:
3547
3548 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3549 }
3550
3551
3552 void
vfs_list_add(struct vfs * vfsp)3553 vfs_list_add(struct vfs *vfsp)
3554 {
3555 zone_t *zone;
3556
3557 /*
3558 * Typically, the vfs_t will have been created on behalf of the file
3559 * system in vfs_init, where it will have been provided with a
3560 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3561 * by an unbundled file system. We therefore check for such an example
3562 * before stamping the vfs_t with its creation time for the benefit of
3563 * mntfs.
3564 */
3565 if (vfsp->vfs_implp == NULL)
3566 vfsimpl_setup(vfsp);
3567 vfs_mono_time(&vfsp->vfs_hrctime);
3568
3569 /*
3570 * The zone that owns the mount is the one that performed the mount.
3571 * Note that this isn't necessarily the same as the zone mounted into.
3572 * The corresponding zone_rele_ref() will be done when the vfs_t
3573 * is being free'd.
3574 */
3575 vfsp->vfs_zone = curproc->p_zone;
3576 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3577 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3578 ZONE_REF_VFS);
3579
3580 /*
3581 * Find the zone mounted into, and put this mount on its vfs list.
3582 */
3583 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3584 ASSERT(zone != NULL);
3585 /*
3586 * Special casing for the root vfs. This structure is allocated
3587 * statically and hooked onto rootvfs at link time. During the
3588 * vfs_mountroot call at system startup time, the root file system's
3589 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3590 * as argument. The code below must detect and handle this special
3591 * case. The only apparent justification for this special casing is
3592 * to ensure that the root file system appears at the head of the
3593 * list.
3594 *
3595 * XXX: I'm assuming that it's ok to do normal list locking when
3596 * adding the entry for the root file system (this used to be
3597 * done with no locks held).
3598 */
3599 vfs_list_lock();
3600 /*
3601 * Link into the vfs list proper.
3602 */
3603 if (vfsp == &root) {
3604 /*
3605 * Assert: This vfs is already on the list as its first entry.
3606 * Thus, there's nothing to do.
3607 */
3608 ASSERT(rootvfs == vfsp);
3609 /*
3610 * Add it to the head of the global zone's vfslist.
3611 */
3612 ASSERT(zone == global_zone);
3613 ASSERT(zone->zone_vfslist == NULL);
3614 zone->zone_vfslist = vfsp;
3615 } else {
3616 /*
3617 * Link to end of list using vfs_prev (as rootvfs is now a
3618 * doubly linked circular list) so list is in mount order for
3619 * mnttab use.
3620 */
3621 rootvfs->vfs_prev->vfs_next = vfsp;
3622 vfsp->vfs_prev = rootvfs->vfs_prev;
3623 rootvfs->vfs_prev = vfsp;
3624 vfsp->vfs_next = rootvfs;
3625
3626 /*
3627 * Do it again for the zone-private list (which may be NULL).
3628 */
3629 if (zone->zone_vfslist == NULL) {
3630 ASSERT(zone != global_zone);
3631 zone->zone_vfslist = vfsp;
3632 } else {
3633 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3634 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3635 zone->zone_vfslist->vfs_zone_prev = vfsp;
3636 vfsp->vfs_zone_next = zone->zone_vfslist;
3637 }
3638 }
3639
3640 /*
3641 * Link into the hash table, inserting it at the end, so that LOFS
3642 * with the same fsid as UFS (or other) file systems will not hide
3643 * the UFS.
3644 */
3645 vfs_hash_add(vfsp, 0);
3646
3647 /*
3648 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp
3649 * mntix discerns entries with the same key
3650 */
3651 vfsp->vfs_mntix = ++vfs_curr_mntix;
3652 avl_add(&vfs_by_dev, vfsp);
3653
3654 /*
3655 * Link into tree indexed by dev, for vfs_devismounted
3656 */
3657 avl_add(&vfs_by_mntpnt, vfsp);
3658
3659 /*
3660 * update the mnttab modification time
3661 */
3662 vfs_mnttab_modtimeupd();
3663 vfs_list_unlock();
3664 zone_rele(zone);
3665 }
3666
3667 void
vfs_list_remove(struct vfs * vfsp)3668 vfs_list_remove(struct vfs *vfsp)
3669 {
3670 zone_t *zone;
3671
3672 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3673 ASSERT(zone != NULL);
3674 /*
3675 * Callers are responsible for preventing attempts to unmount the
3676 * root.
3677 */
3678 ASSERT(vfsp != rootvfs);
3679
3680 vfs_list_lock();
3681
3682 /*
3683 * Remove from avl trees
3684 */
3685 avl_remove(&vfs_by_mntpnt, vfsp);
3686 avl_remove(&vfs_by_dev, vfsp);
3687
3688 /*
3689 * Remove from hash.
3690 */
3691 vfs_hash_remove(vfsp);
3692
3693 /*
3694 * Remove from vfs list.
3695 */
3696 vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3697 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3698 vfsp->vfs_next = vfsp->vfs_prev = NULL;
3699
3700 /*
3701 * Remove from zone-specific vfs list.
3702 */
3703 if (zone->zone_vfslist == vfsp)
3704 zone->zone_vfslist = vfsp->vfs_zone_next;
3705
3706 if (vfsp->vfs_zone_next == vfsp) {
3707 ASSERT(vfsp->vfs_zone_prev == vfsp);
3708 ASSERT(zone->zone_vfslist == vfsp);
3709 zone->zone_vfslist = NULL;
3710 }
3711
3712 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3713 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3714 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3715
3716 /*
3717 * update the mnttab modification time
3718 */
3719 vfs_mnttab_modtimeupd();
3720 vfs_list_unlock();
3721 zone_rele(zone);
3722 }
3723
3724 struct vfs *
getvfs(fsid_t * fsid)3725 getvfs(fsid_t *fsid)
3726 {
3727 struct vfs *vfsp;
3728 int val0 = fsid->val[0];
3729 int val1 = fsid->val[1];
3730 dev_t dev = expldev(val0);
3731 int vhno = VFSHASH(getmajor(dev), getminor(dev));
3732 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3733
3734 mutex_enter(hmp);
3735 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3736 if (vfsp->vfs_fsid.val[0] == val0 &&
3737 vfsp->vfs_fsid.val[1] == val1) {
3738 VFS_HOLD(vfsp);
3739 mutex_exit(hmp);
3740 return (vfsp);
3741 }
3742 }
3743 mutex_exit(hmp);
3744 return (NULL);
3745 }
3746
3747 /*
3748 * Search the vfs mount in progress list for a specified device/vfs entry.
3749 * Returns 0 if the first entry in the list that the device matches has the
3750 * given vfs pointer as well. If the device matches but a different vfs
3751 * pointer is encountered in the list before the given vfs pointer then
3752 * a 1 is returned.
3753 */
3754
3755 int
vfs_devmounting(dev_t dev,struct vfs * vfsp)3756 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3757 {
3758 int retval = 0;
3759 struct ipmnt *mipp;
3760
3761 mutex_enter(&vfs_miplist_mutex);
3762 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3763 if (mipp->mip_dev == dev) {
3764 if (mipp->mip_vfsp != vfsp)
3765 retval = 1;
3766 break;
3767 }
3768 }
3769 mutex_exit(&vfs_miplist_mutex);
3770 return (retval);
3771 }
3772
3773 /*
3774 * Search the vfs list for a specified device. Returns 1, if entry is found
3775 * or 0 if no suitable entry is found.
3776 */
3777
3778 int
vfs_devismounted(dev_t dev)3779 vfs_devismounted(dev_t dev)
3780 {
3781 struct vfs *vfsp;
3782 int found = 0;
3783 struct vfs search;
3784 avl_index_t index;
3785
3786 search.vfs_dev = dev;
3787 search.vfs_mntix = 0;
3788
3789 vfs_list_read_lock();
3790
3791 /*
3792 * there might be several entries with the same dev in the tree,
3793 * only discerned by mntix. To find the first, we start with a mntix
3794 * of 0. The search will fail. The following avl_nearest will give
3795 * us the actual first entry.
3796 */
3797 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3798 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3799
3800 if (vfsp != NULL && vfsp->vfs_dev == dev)
3801 found = 1;
3802
3803 vfs_list_unlock();
3804 return (found);
3805 }
3806
3807 /*
3808 * Search the vfs list for a specified device. Returns a pointer to it
3809 * or NULL if no suitable entry is found. The caller of this routine
3810 * is responsible for releasing the returned vfs pointer.
3811 */
3812 struct vfs *
vfs_dev2vfsp(dev_t dev)3813 vfs_dev2vfsp(dev_t dev)
3814 {
3815 struct vfs *vfsp;
3816 int found;
3817 struct vfs search;
3818 avl_index_t index;
3819
3820 search.vfs_dev = dev;
3821 search.vfs_mntix = 0;
3822
3823 vfs_list_read_lock();
3824
3825 /*
3826 * there might be several entries with the same dev in the tree,
3827 * only discerned by mntix. To find the first, we start with a mntix
3828 * of 0. The search will fail. The following avl_nearest will give
3829 * us the actual first entry.
3830 */
3831 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3832 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3833
3834 found = 0;
3835 while (vfsp != NULL && vfsp->vfs_dev == dev) {
3836 /*
3837 * The following could be made more efficient by making
3838 * the entire loop use vfs_zone_next if the call is from
3839 * a zone. The only callers, however, ustat(2) and
3840 * umount2(2), don't seem to justify the added
3841 * complexity at present.
3842 */
3843 if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3844 curproc->p_zone)) {
3845 VFS_HOLD(vfsp);
3846 found = 1;
3847 break;
3848 }
3849 vfsp = AVL_NEXT(&vfs_by_dev, vfsp);
3850 }
3851 vfs_list_unlock();
3852 return (found ? vfsp : NULL);
3853 }
3854
3855 /*
3856 * Search the vfs list for a specified mntpoint. Returns a pointer to it
3857 * or NULL if no suitable entry is found. The caller of this routine
3858 * is responsible for releasing the returned vfs pointer.
3859 *
3860 * Note that if multiple mntpoints match, the last one matching is
3861 * returned in an attempt to return the "top" mount when overlay
3862 * mounts are covering the same mount point. This is accomplished by starting
3863 * at the end of the list and working our way backwards, stopping at the first
3864 * matching mount.
3865 */
3866 struct vfs *
vfs_mntpoint2vfsp(const char * mp)3867 vfs_mntpoint2vfsp(const char *mp)
3868 {
3869 struct vfs *vfsp;
3870 struct vfs *retvfsp = NULL;
3871 zone_t *zone = curproc->p_zone;
3872 struct vfs *list;
3873
3874 vfs_list_read_lock();
3875 if (getzoneid() == GLOBAL_ZONEID) {
3876 /*
3877 * The global zone may see filesystems in any zone.
3878 */
3879 struct vfs search;
3880 search.vfs_mntpt = refstr_alloc(mp);
3881 search.vfs_mntix = UINT64_MAX;
3882 avl_index_t index;
3883
3884 /*
3885 * there might be several entries with the same mntpnt in the
3886 * tree, only discerned by mntix. To find the last, we start
3887 * with a mntix of UINT64_MAX. The search will fail. The
3888 * following avl_nearest will give us the actual last entry
3889 * matching the mntpnt.
3890 */
3891 VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0);
3892 vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE);
3893
3894 refstr_rele(search.vfs_mntpt);
3895
3896 if (vfsp != NULL &&
3897 strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0)
3898 retvfsp = vfsp;
3899 } else if ((list = zone->zone_vfslist) != NULL) {
3900 const char *mntpt;
3901
3902 vfsp = list->vfs_zone_prev;
3903 do {
3904 mntpt = refstr_value(vfsp->vfs_mntpt);
3905 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3906 if (strcmp(mntpt, mp) == 0) {
3907 retvfsp = vfsp;
3908 break;
3909 }
3910 vfsp = vfsp->vfs_zone_prev;
3911 } while (vfsp != list->vfs_zone_prev);
3912 }
3913 if (retvfsp)
3914 VFS_HOLD(retvfsp);
3915 vfs_list_unlock();
3916 return (retvfsp);
3917 }
3918
3919 /*
3920 * Search the vfs list for a specified vfsops.
3921 * if vfs entry is found then return 1, else 0.
3922 */
3923 int
vfs_opsinuse(vfsops_t * ops)3924 vfs_opsinuse(vfsops_t *ops)
3925 {
3926 struct vfs *vfsp;
3927 int found;
3928
3929 vfs_list_read_lock();
3930 vfsp = rootvfs;
3931 found = 0;
3932 do {
3933 if (vfs_getops(vfsp) == ops) {
3934 found = 1;
3935 break;
3936 }
3937 vfsp = vfsp->vfs_next;
3938 } while (vfsp != rootvfs);
3939 vfs_list_unlock();
3940 return (found);
3941 }
3942
3943 /*
3944 * Allocate an entry in vfssw for a file system type
3945 */
3946 struct vfssw *
allocate_vfssw(const char * type)3947 allocate_vfssw(const char *type)
3948 {
3949 struct vfssw *vswp;
3950
3951 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3952 /*
3953 * The vfssw table uses the empty string to identify an
3954 * available entry; we cannot add any type which has
3955 * a leading NUL. The string length is limited to
3956 * the size of the st_fstype array in struct stat.
3957 */
3958 return (NULL);
3959 }
3960
3961 ASSERT(VFSSW_WRITE_LOCKED());
3962 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3963 if (!ALLOCATED_VFSSW(vswp)) {
3964 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3965 (void) strcpy(vswp->vsw_name, type);
3966 ASSERT(vswp->vsw_count == 0);
3967 vswp->vsw_count = 1;
3968 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3969 return (vswp);
3970 }
3971 return (NULL);
3972 }
3973
3974 /*
3975 * Impose additional layer of translation between vfstype names
3976 * and module names in the filesystem.
3977 */
3978 static const char *
vfs_to_modname(const char * vfstype)3979 vfs_to_modname(const char *vfstype)
3980 {
3981 if (strcmp(vfstype, "proc") == 0) {
3982 vfstype = "procfs";
3983 } else if (strcmp(vfstype, "fd") == 0) {
3984 vfstype = "fdfs";
3985 } else if (strncmp(vfstype, "nfs", 3) == 0) {
3986 vfstype = "nfs";
3987 }
3988
3989 return (vfstype);
3990 }
3991
3992 /*
3993 * Find a vfssw entry given a file system type name.
3994 * Try to autoload the filesystem if it's not found.
3995 * If it's installed, return the vfssw locked to prevent unloading.
3996 */
3997 struct vfssw *
vfs_getvfssw(const char * type)3998 vfs_getvfssw(const char *type)
3999 {
4000 struct vfssw *vswp;
4001 const char *modname;
4002
4003 RLOCK_VFSSW();
4004 vswp = vfs_getvfsswbyname(type);
4005 modname = vfs_to_modname(type);
4006
4007 if (rootdir == NULL) {
4008 /*
4009 * If we haven't yet loaded the root file system, then our
4010 * _init won't be called until later. Allocate vfssw entry,
4011 * because mod_installfs won't be called.
4012 */
4013 if (vswp == NULL) {
4014 RUNLOCK_VFSSW();
4015 WLOCK_VFSSW();
4016 if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
4017 if ((vswp = allocate_vfssw(type)) == NULL) {
4018 WUNLOCK_VFSSW();
4019 return (NULL);
4020 }
4021 }
4022 WUNLOCK_VFSSW();
4023 RLOCK_VFSSW();
4024 }
4025 if (!VFS_INSTALLED(vswp)) {
4026 RUNLOCK_VFSSW();
4027 (void) modloadonly("fs", modname);
4028 } else
4029 RUNLOCK_VFSSW();
4030 return (vswp);
4031 }
4032
4033 /*
4034 * Try to load the filesystem. Before calling modload(), we drop
4035 * our lock on the VFS switch table, and pick it up after the
4036 * module is loaded. However, there is a potential race: the
4037 * module could be unloaded after the call to modload() completes
4038 * but before we pick up the lock and drive on. Therefore,
4039 * we keep reloading the module until we've loaded the module
4040 * _and_ we have the lock on the VFS switch table.
4041 */
4042 while (vswp == NULL || !VFS_INSTALLED(vswp)) {
4043 RUNLOCK_VFSSW();
4044 if (modload("fs", modname) == -1)
4045 return (NULL);
4046 RLOCK_VFSSW();
4047 if (vswp == NULL)
4048 if ((vswp = vfs_getvfsswbyname(type)) == NULL)
4049 break;
4050 }
4051 RUNLOCK_VFSSW();
4052
4053 return (vswp);
4054 }
4055
4056 /*
4057 * Find a vfssw entry given a file system type name.
4058 */
4059 struct vfssw *
vfs_getvfsswbyname(const char * type)4060 vfs_getvfsswbyname(const char *type)
4061 {
4062 struct vfssw *vswp;
4063
4064 ASSERT(VFSSW_LOCKED());
4065 if (type == NULL || *type == '\0')
4066 return (NULL);
4067
4068 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4069 if (strcmp(type, vswp->vsw_name) == 0) {
4070 vfs_refvfssw(vswp);
4071 return (vswp);
4072 }
4073 }
4074
4075 return (NULL);
4076 }
4077
4078 /*
4079 * Find a vfssw entry given a set of vfsops.
4080 */
4081 struct vfssw *
vfs_getvfsswbyvfsops(vfsops_t * vfsops)4082 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4083 {
4084 struct vfssw *vswp;
4085
4086 RLOCK_VFSSW();
4087 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4088 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4089 vfs_refvfssw(vswp);
4090 RUNLOCK_VFSSW();
4091 return (vswp);
4092 }
4093 }
4094 RUNLOCK_VFSSW();
4095
4096 return (NULL);
4097 }
4098
4099 /*
4100 * Reference a vfssw entry.
4101 */
4102 void
vfs_refvfssw(struct vfssw * vswp)4103 vfs_refvfssw(struct vfssw *vswp)
4104 {
4105
4106 mutex_enter(&vswp->vsw_lock);
4107 vswp->vsw_count++;
4108 mutex_exit(&vswp->vsw_lock);
4109 }
4110
4111 /*
4112 * Unreference a vfssw entry.
4113 */
4114 void
vfs_unrefvfssw(struct vfssw * vswp)4115 vfs_unrefvfssw(struct vfssw *vswp)
4116 {
4117
4118 mutex_enter(&vswp->vsw_lock);
4119 vswp->vsw_count--;
4120 mutex_exit(&vswp->vsw_lock);
4121 }
4122
4123 int sync_timeout = 30; /* timeout for syncing a page during panic */
4124 int sync_timeleft; /* portion of sync_timeout remaining */
4125
4126 static int sync_retries = 20; /* number of retries when not making progress */
4127 static int sync_triesleft; /* portion of sync_retries remaining */
4128
4129 static pgcnt_t old_pgcnt, new_pgcnt;
4130 static int new_bufcnt, old_bufcnt;
4131
4132 /*
4133 * Sync all of the mounted filesystems, and then wait for the actual i/o to
4134 * complete. We wait by counting the number of dirty pages and buffers,
4135 * pushing them out using bio_busy() and page_busy(), and then counting again.
4136 * This routine is used during both the uadmin A_SHUTDOWN code as well as
4137 * the SYNC phase of the panic code (see comments in panic.c). It should only
4138 * be used after some higher-level mechanism has quiesced the system so that
4139 * new writes are not being initiated while we are waiting for completion.
4140 *
4141 * To ensure finite running time, our algorithm uses two timeout mechanisms:
4142 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4143 * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4144 * Together these ensure that syncing completes if our i/o paths are stuck.
4145 * The counters are declared above so they can be found easily in the debugger.
4146 *
4147 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4148 * vfs_syncprogress() subroutine whenever we make progress through the lists of
4149 * pages and buffers. It is decremented and expired by the deadman() cyclic.
4150 * When vfs_syncall() decides it is done, we disable the deadman() counter by
4151 * setting sync_timeleft to zero. This timer guards against vfs_syncall()
4152 * deadlocking or hanging inside of a broken filesystem or driver routine.
4153 *
4154 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make
4155 * sync_retries consecutive calls to bio_busy() and page_busy() without
4156 * decreasing either the number of dirty buffers or dirty pages below the
4157 * lowest count we have seen so far, we give up and return from vfs_syncall().
4158 *
4159 * Each loop iteration ends with a call to delay() one second to allow time for
4160 * i/o completion and to permit the user time to read our progress messages.
4161 */
4162 void
vfs_syncall(void)4163 vfs_syncall(void)
4164 {
4165 if (rootdir == NULL && !modrootloaded)
4166 return; /* panic during boot - no filesystems yet */
4167
4168 printf("syncing file systems...");
4169 vfs_syncprogress();
4170 sync();
4171
4172 vfs_syncprogress();
4173 sync_triesleft = sync_retries;
4174
4175 old_bufcnt = new_bufcnt = INT_MAX;
4176 old_pgcnt = new_pgcnt = ULONG_MAX;
4177
4178 while (sync_triesleft > 0) {
4179 old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4180 old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4181
4182 new_bufcnt = bio_busy(B_TRUE);
4183 new_pgcnt = page_busy(B_TRUE);
4184 vfs_syncprogress();
4185
4186 if (new_bufcnt == 0 && new_pgcnt == 0)
4187 break;
4188
4189 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4190 sync_triesleft = sync_retries;
4191 else
4192 sync_triesleft--;
4193
4194 if (new_bufcnt)
4195 printf(" [%d]", new_bufcnt);
4196 if (new_pgcnt)
4197 printf(" %lu", new_pgcnt);
4198
4199 delay(hz);
4200 }
4201
4202 if (new_bufcnt != 0 || new_pgcnt != 0)
4203 printf(" done (not all i/o completed)\n");
4204 else
4205 printf(" done\n");
4206
4207 sync_timeleft = 0;
4208 delay(hz);
4209 }
4210
4211 /*
4212 * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4213 * sync_timeout to indicate that we are making progress and the deadman()
4214 * omnipresent cyclic should not yet time us out. Note that it is safe to
4215 * store to sync_timeleft here since the deadman() is firing at high-level
4216 * on top of us. If we are racing with the deadman(), either the deadman()
4217 * will decrement the old value and then we will reset it, or we will
4218 * reset it and then the deadman() will immediately decrement it. In either
4219 * case, correct behavior results.
4220 */
4221 void
vfs_syncprogress(void)4222 vfs_syncprogress(void)
4223 {
4224 if (panicstr)
4225 sync_timeleft = sync_timeout;
4226 }
4227
4228 /*
4229 * Map VFS flags to statvfs flags. These shouldn't really be separate
4230 * flags at all.
4231 */
4232 uint_t
vf_to_stf(uint_t vf)4233 vf_to_stf(uint_t vf)
4234 {
4235 uint_t stf = 0;
4236
4237 if (vf & VFS_RDONLY)
4238 stf |= ST_RDONLY;
4239 if (vf & VFS_NOSETUID)
4240 stf |= ST_NOSUID;
4241 if (vf & VFS_NOTRUNC)
4242 stf |= ST_NOTRUNC;
4243
4244 return (stf);
4245 }
4246
4247 /*
4248 * Entries for (illegal) fstype 0.
4249 */
4250 /* ARGSUSED */
4251 int
vfsstray_sync(struct vfs * vfsp,short arg,struct cred * cr)4252 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4253 {
4254 cmn_err(CE_PANIC, "stray vfs operation");
4255 return (0);
4256 }
4257
4258 /*
4259 * Entries for (illegal) fstype 0.
4260 */
4261 int
vfsstray(void)4262 vfsstray(void)
4263 {
4264 cmn_err(CE_PANIC, "stray vfs operation");
4265 return (0);
4266 }
4267
4268 /*
4269 * Support for dealing with forced UFS unmount and its interaction with
4270 * LOFS. Could be used by any filesystem.
4271 * See bug 1203132.
4272 */
4273 int
vfs_EIO(void)4274 vfs_EIO(void)
4275 {
4276 return (EIO);
4277 }
4278
4279 /*
4280 * We've gotta define the op for sync separately, since the compiler gets
4281 * confused if we mix and match ANSI and normal style prototypes when
4282 * a "short" argument is present and spits out a warning.
4283 */
4284 /*ARGSUSED*/
4285 int
vfs_EIO_sync(struct vfs * vfsp,short arg,struct cred * cr)4286 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4287 {
4288 return (EIO);
4289 }
4290
4291 vfs_t EIO_vfs;
4292 vfsops_t *EIO_vfsops;
4293
4294 /*
4295 * Called from startup() to initialize all loaded vfs's
4296 */
4297 void
vfsinit(void)4298 vfsinit(void)
4299 {
4300 struct vfssw *vswp;
4301 int error;
4302 extern int vopstats_enabled;
4303 extern void vopstats_startup();
4304
4305 static const fs_operation_def_t EIO_vfsops_template[] = {
4306 VFSNAME_MOUNT, { .error = vfs_EIO },
4307 VFSNAME_UNMOUNT, { .error = vfs_EIO },
4308 VFSNAME_ROOT, { .error = vfs_EIO },
4309 VFSNAME_STATVFS, { .error = vfs_EIO },
4310 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync },
4311 VFSNAME_VGET, { .error = vfs_EIO },
4312 VFSNAME_MOUNTROOT, { .error = vfs_EIO },
4313 VFSNAME_FREEVFS, { .error = vfs_EIO },
4314 VFSNAME_VNSTATE, { .error = vfs_EIO },
4315 NULL, NULL
4316 };
4317
4318 static const fs_operation_def_t stray_vfsops_template[] = {
4319 VFSNAME_MOUNT, { .error = vfsstray },
4320 VFSNAME_UNMOUNT, { .error = vfsstray },
4321 VFSNAME_ROOT, { .error = vfsstray },
4322 VFSNAME_STATVFS, { .error = vfsstray },
4323 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync },
4324 VFSNAME_VGET, { .error = vfsstray },
4325 VFSNAME_MOUNTROOT, { .error = vfsstray },
4326 VFSNAME_FREEVFS, { .error = vfsstray },
4327 VFSNAME_VNSTATE, { .error = vfsstray },
4328 NULL, NULL
4329 };
4330
4331 /* Create vfs cache */
4332 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4333 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4334
4335 /* Initialize the vnode cache (file systems may use it during init). */
4336 vn_create_cache();
4337
4338 /* Setup event monitor framework */
4339 fem_init();
4340
4341 /* Initialize the dummy stray file system type. */
4342 error = vfs_setfsops(0, stray_vfsops_template, NULL);
4343
4344 /* Initialize the dummy EIO file system. */
4345 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4346 if (error != 0) {
4347 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4348 /* Shouldn't happen, but not bad enough to panic */
4349 }
4350
4351 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4352
4353 /*
4354 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4355 * on this vfs can immediately notice it's invalid.
4356 */
4357 EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4358
4359 /*
4360 * Call the init routines of non-loadable filesystems only.
4361 * Filesystems which are loaded as separate modules will be
4362 * initialized by the module loading code instead.
4363 */
4364
4365 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4366 RLOCK_VFSSW();
4367 if (vswp->vsw_init != NULL)
4368 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4369 RUNLOCK_VFSSW();
4370 }
4371
4372 vopstats_startup();
4373
4374 if (vopstats_enabled) {
4375 /* EIO_vfs can collect stats, but we don't retrieve them */
4376 initialize_vopstats(&EIO_vfs.vfs_vopstats);
4377 EIO_vfs.vfs_fstypevsp = NULL;
4378 EIO_vfs.vfs_vskap = NULL;
4379 EIO_vfs.vfs_flag |= VFS_STATS;
4380 }
4381
4382 xattr_init();
4383
4384 reparse_point_init();
4385 }
4386
4387 vfs_t *
vfs_alloc(int kmflag)4388 vfs_alloc(int kmflag)
4389 {
4390 vfs_t *vfsp;
4391
4392 vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4393
4394 /*
4395 * Do the simplest initialization here.
4396 * Everything else gets done in vfs_init()
4397 */
4398 bzero(vfsp, sizeof (vfs_t));
4399 return (vfsp);
4400 }
4401
4402 void
vfs_free(vfs_t * vfsp)4403 vfs_free(vfs_t *vfsp)
4404 {
4405 /*
4406 * One would be tempted to assert that "vfsp->vfs_count == 0".
4407 * The problem is that this gets called out of domount() with
4408 * a partially initialized vfs and a vfs_count of 1. This is
4409 * also called from vfs_rele() with a vfs_count of 0. We can't
4410 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4411 * returned. This is because VFS_MOUNT() fully initializes the
4412 * vfs structure and its associated data. VFS_RELE() will call
4413 * VFS_FREEVFS() which may panic the system if the data structures
4414 * aren't fully initialized from a successful VFS_MOUNT()).
4415 */
4416
4417 /* If FEM was in use, make sure everything gets cleaned up */
4418 if (vfsp->vfs_femhead) {
4419 ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4420 mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4421 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4422 vfsp->vfs_femhead = NULL;
4423 }
4424
4425 if (vfsp->vfs_implp)
4426 vfsimpl_teardown(vfsp);
4427 sema_destroy(&vfsp->vfs_reflock);
4428 kmem_cache_free(vfs_cache, vfsp);
4429 }
4430
4431 /*
4432 * Increments the vfs reference count by one atomically.
4433 */
4434 void
vfs_hold(vfs_t * vfsp)4435 vfs_hold(vfs_t *vfsp)
4436 {
4437 atomic_inc_32(&vfsp->vfs_count);
4438 ASSERT(vfsp->vfs_count != 0);
4439 }
4440
4441 /*
4442 * Decrements the vfs reference count by one atomically. When
4443 * vfs reference count becomes zero, it calls the file system
4444 * specific vfs_freevfs() to free up the resources.
4445 */
4446 void
vfs_rele(vfs_t * vfsp)4447 vfs_rele(vfs_t *vfsp)
4448 {
4449 ASSERT(vfsp->vfs_count != 0);
4450 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4451 VFS_FREEVFS(vfsp);
4452 lofi_remove(vfsp);
4453 if (vfsp->vfs_zone)
4454 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4455 ZONE_REF_VFS);
4456 vfs_freemnttab(vfsp);
4457 vfs_free(vfsp);
4458 }
4459 }
4460
4461 /*
4462 * Generic operations vector support.
4463 *
4464 * This is used to build operations vectors for both the vfs and vnode.
4465 * It's normally called only when a file system is loaded.
4466 *
4467 * There are many possible algorithms for this, including the following:
4468 *
4469 * (1) scan the list of known operations; for each, see if the file system
4470 * includes an entry for it, and fill it in as appropriate.
4471 *
4472 * (2) set up defaults for all known operations. scan the list of ops
4473 * supplied by the file system; for each which is both supplied and
4474 * known, fill it in.
4475 *
4476 * (3) sort the lists of known ops & supplied ops; scan the list, filling
4477 * in entries as we go.
4478 *
4479 * we choose (1) for simplicity, and because performance isn't critical here.
4480 * note that (2) could be sped up using a precomputed hash table on known ops.
4481 * (3) could be faster than either, but only if the lists were very large or
4482 * supplied in sorted order.
4483 *
4484 */
4485
4486 int
fs_build_vector(void * vector,int * unused_ops,const fs_operation_trans_def_t * translation,const fs_operation_def_t * operations)4487 fs_build_vector(void *vector, int *unused_ops,
4488 const fs_operation_trans_def_t *translation,
4489 const fs_operation_def_t *operations)
4490 {
4491 int i, num_trans, num_ops, used;
4492
4493 /*
4494 * Count the number of translations and the number of supplied
4495 * operations.
4496 */
4497
4498 {
4499 const fs_operation_trans_def_t *p;
4500
4501 for (num_trans = 0, p = translation;
4502 p->name != NULL;
4503 num_trans++, p++)
4504 ;
4505 }
4506
4507 {
4508 const fs_operation_def_t *p;
4509
4510 for (num_ops = 0, p = operations;
4511 p->name != NULL;
4512 num_ops++, p++)
4513 ;
4514 }
4515
4516 /* Walk through each operation known to our caller. There will be */
4517 /* one entry in the supplied "translation table" for each. */
4518
4519 used = 0;
4520
4521 for (i = 0; i < num_trans; i++) {
4522 int j, found;
4523 char *curname;
4524 fs_generic_func_p result;
4525 fs_generic_func_p *location;
4526
4527 curname = translation[i].name;
4528
4529 /* Look for a matching operation in the list supplied by the */
4530 /* file system. */
4531
4532 found = 0;
4533
4534 for (j = 0; j < num_ops; j++) {
4535 if (strcmp(operations[j].name, curname) == 0) {
4536 used++;
4537 found = 1;
4538 break;
4539 }
4540 }
4541
4542 /*
4543 * If the file system is using a "placeholder" for default
4544 * or error functions, grab the appropriate function out of
4545 * the translation table. If the file system didn't supply
4546 * this operation at all, use the default function.
4547 */
4548
4549 if (found) {
4550 result = operations[j].func.fs_generic;
4551 if (result == fs_default) {
4552 result = translation[i].defaultFunc;
4553 } else if (result == fs_error) {
4554 result = translation[i].errorFunc;
4555 } else if (result == NULL) {
4556 /* Null values are PROHIBITED */
4557 return (EINVAL);
4558 }
4559 } else {
4560 result = translation[i].defaultFunc;
4561 }
4562
4563 /* Now store the function into the operations vector. */
4564
4565 location = (fs_generic_func_p *)
4566 (((char *)vector) + translation[i].offset);
4567
4568 *location = result;
4569 }
4570
4571 *unused_ops = num_ops - used;
4572
4573 return (0);
4574 }
4575
4576 /* Placeholder functions, should never be called. */
4577
4578 int
fs_error(void)4579 fs_error(void)
4580 {
4581 cmn_err(CE_PANIC, "fs_error called");
4582 return (0);
4583 }
4584
4585 int
fs_default(void)4586 fs_default(void)
4587 {
4588 cmn_err(CE_PANIC, "fs_default called");
4589 return (0);
4590 }
4591
4592 #ifdef __sparc
4593
4594 /*
4595 * Part of the implementation of booting off a mirrored root
4596 * involves a change of dev_t for the root device. To
4597 * accomplish this, first remove the existing hash table
4598 * entry for the root device, convert to the new dev_t,
4599 * then re-insert in the hash table at the head of the list.
4600 */
4601 void
vfs_root_redev(vfs_t * vfsp,dev_t ndev,int fstype)4602 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4603 {
4604 vfs_list_lock();
4605
4606 vfs_hash_remove(vfsp);
4607
4608 vfsp->vfs_dev = ndev;
4609 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4610
4611 vfs_hash_add(vfsp, 1);
4612
4613 vfs_list_unlock();
4614 }
4615
4616 #else /* x86 NEWBOOT */
4617
4618 #if defined(__x86)
4619 extern int hvmboot_rootconf();
4620 #endif /* __x86 */
4621
4622 extern ib_boot_prop_t *iscsiboot_prop;
4623
4624 int
rootconf()4625 rootconf()
4626 {
4627 int error;
4628 struct vfssw *vsw;
4629 extern void pm_init();
4630 char *fstyp, *fsmod;
4631 int ret = -1;
4632
4633 getrootfs(&fstyp, &fsmod);
4634
4635 #if defined(__x86)
4636 /*
4637 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4638 * which lives in /platform/i86hvm, and hence is only available when
4639 * booted in an x86 hvm environment. If the hvm_bootstrap misc module
4640 * is not available then the modstub for this function will return 0.
4641 * If the hvm_bootstrap misc module is available it will be loaded
4642 * and hvmboot_rootconf() will be invoked.
4643 */
4644 if (error = hvmboot_rootconf())
4645 return (error);
4646 #endif /* __x86 */
4647
4648 if (error = clboot_rootconf())
4649 return (error);
4650
4651 if (modload("fs", fsmod) == -1)
4652 panic("Cannot _init %s module", fsmod);
4653
4654 RLOCK_VFSSW();
4655 vsw = vfs_getvfsswbyname(fstyp);
4656 RUNLOCK_VFSSW();
4657 if (vsw == NULL) {
4658 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4659 return (ENXIO);
4660 }
4661 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4662 VFS_HOLD(rootvfs);
4663
4664 /* always mount readonly first */
4665 rootvfs->vfs_flag |= VFS_RDONLY;
4666
4667 pm_init();
4668
4669 if (netboot && iscsiboot_prop) {
4670 cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4671 " shouldn't happen in the same time");
4672 return (EINVAL);
4673 }
4674
4675 if (netboot || iscsiboot_prop) {
4676 ret = strplumb();
4677 if (ret != 0) {
4678 cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4679 return (EFAULT);
4680 }
4681 }
4682
4683 if ((ret == 0) && iscsiboot_prop) {
4684 ret = modload("drv", "iscsi");
4685 /* -1 indicates fail */
4686 if (ret == -1) {
4687 cmn_err(CE_WARN, "Failed to load iscsi module");
4688 iscsi_boot_prop_free();
4689 return (EINVAL);
4690 } else {
4691 if (!i_ddi_attach_pseudo_node("iscsi")) {
4692 cmn_err(CE_WARN,
4693 "Failed to attach iscsi driver");
4694 iscsi_boot_prop_free();
4695 return (ENODEV);
4696 }
4697 }
4698 }
4699
4700 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4701 vfs_unrefvfssw(vsw);
4702 rootdev = rootvfs->vfs_dev;
4703
4704 if (error)
4705 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4706 rootfs.bo_name, fstyp);
4707 else
4708 cmn_err(CE_CONT, "?root on %s fstype %s\n",
4709 rootfs.bo_name, fstyp);
4710 return (error);
4711 }
4712
4713 /*
4714 * XXX this is called by nfs only and should probably be removed
4715 * If booted with ASKNAME, prompt on the console for a filesystem
4716 * name and return it.
4717 */
4718 void
getfsname(char * askfor,char * name,size_t namelen)4719 getfsname(char *askfor, char *name, size_t namelen)
4720 {
4721 if (boothowto & RB_ASKNAME) {
4722 printf("%s name: ", askfor);
4723 console_gets(name, namelen);
4724 }
4725 }
4726
4727 /*
4728 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4729 * property.
4730 *
4731 * Filesystem types starting with the prefix "nfs" are diskless clients;
4732 * init the root filename name (rootfs.bo_name), too.
4733 *
4734 * If we are booting via NFS we currently have these options:
4735 * nfs - dynamically choose NFS V2, V3, or V4 (default)
4736 * nfs2 - force NFS V2
4737 * nfs3 - force NFS V3
4738 * nfs4 - force NFS V4
4739 * Because we need to maintain backward compatibility with the naming
4740 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4741 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic
4742 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4743 * This is only for root filesystems, all other uses such as cachefs
4744 * will expect that "nfs" == NFS V2.
4745 */
4746 static void
getrootfs(char ** fstypp,char ** fsmodp)4747 getrootfs(char **fstypp, char **fsmodp)
4748 {
4749 extern char *strplumb_get_netdev_path(void);
4750 char *propstr = NULL;
4751
4752 /*
4753 * Check fstype property; for diskless it should be one of "nfs",
4754 * "nfs2", "nfs3" or "nfs4".
4755 */
4756 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4757 DDI_PROP_DONTPASS, "fstype", &propstr)
4758 == DDI_SUCCESS) {
4759 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4760 ddi_prop_free(propstr);
4761
4762 /*
4763 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4764 * assume the type of this root filesystem is 'zfs'.
4765 */
4766 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4767 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4768 == DDI_SUCCESS) {
4769 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4770 ddi_prop_free(propstr);
4771 }
4772
4773 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4774 *fstypp = *fsmodp = rootfs.bo_fstype;
4775 return;
4776 }
4777
4778 ++netboot;
4779
4780 if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4781 (void) strcpy(rootfs.bo_fstype, "nfs");
4782 else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4783 (void) strcpy(rootfs.bo_fstype, "nfsdyn");
4784
4785 /*
4786 * check if path to network interface is specified in bootpath
4787 * or by a hypervisor domain configuration file.
4788 * XXPV - enable strlumb_get_netdev_path()
4789 */
4790 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4791 "xpv-nfsroot")) {
4792 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4793 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4794 DDI_PROP_DONTPASS, "bootpath", &propstr)
4795 == DDI_SUCCESS) {
4796 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4797 ddi_prop_free(propstr);
4798 } else {
4799 /* attempt to determine netdev_path via boot_mac address */
4800 netdev_path = strplumb_get_netdev_path();
4801 if (netdev_path == NULL)
4802 panic("cannot find boot network interface");
4803 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4804 }
4805 *fstypp = rootfs.bo_fstype;
4806 *fsmodp = "nfs";
4807 }
4808 #endif
4809
4810 /*
4811 * VFS feature routines
4812 */
4813
4814 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF)
4815 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL)
4816
4817 /* Register a feature in the vfs */
4818 void
vfs_set_feature(vfs_t * vfsp,vfs_feature_t feature)4819 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4820 {
4821 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4822 if (vfsp->vfs_implp == NULL)
4823 return;
4824
4825 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4826 }
4827
4828 void
vfs_clear_feature(vfs_t * vfsp,vfs_feature_t feature)4829 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4830 {
4831 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4832 if (vfsp->vfs_implp == NULL)
4833 return;
4834 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4835 }
4836
4837 /*
4838 * Query a vfs for a feature.
4839 * Returns 1 if feature is present, 0 if not
4840 */
4841 int
vfs_has_feature(vfs_t * vfsp,vfs_feature_t feature)4842 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4843 {
4844 int ret = 0;
4845
4846 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4847 if (vfsp->vfs_implp == NULL)
4848 return (ret);
4849
4850 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4851 ret = 1;
4852
4853 return (ret);
4854 }
4855
4856 /*
4857 * Propagate feature set from one vfs to another
4858 */
4859 void
vfs_propagate_features(vfs_t * from,vfs_t * to)4860 vfs_propagate_features(vfs_t *from, vfs_t *to)
4861 {
4862 int i;
4863
4864 if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4865 return;
4866
4867 for (i = 1; i <= to->vfs_featureset[0]; i++) {
4868 to->vfs_featureset[i] = from->vfs_featureset[i];
4869 }
4870 }
4871
4872 #define LOFINODE_PATH "/dev/lofi/%d"
4873
4874 /*
4875 * Return the vnode for the lofi node if there's a lofi mount in place.
4876 * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4877 * failure.
4878 */
4879 int
vfs_get_lofi(vfs_t * vfsp,vnode_t ** vpp)4880 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4881 {
4882 char *path = NULL;
4883 int strsize;
4884 int err;
4885
4886 if (vfsp->vfs_lofi_minor == 0) {
4887 *vpp = NULL;
4888 return (-1);
4889 }
4890
4891 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4892 path = kmem_alloc(strsize + 1, KM_SLEEP);
4893 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4894
4895 /*
4896 * We may be inside a zone, so we need to use the /dev path, but
4897 * it's created asynchronously, so we wait here.
4898 */
4899 for (;;) {
4900 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4901
4902 if (err != ENOENT)
4903 break;
4904
4905 if ((err = delay_sig(hz / 8)) == EINTR)
4906 break;
4907 }
4908
4909 if (err)
4910 *vpp = NULL;
4911
4912 kmem_free(path, strsize + 1);
4913 return (err);
4914 }
4915