1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 25 * Copyright 2017 RackTop Systems. 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 */ 29 30 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 31 /* All Rights Reserved */ 32 33 /* 34 * University Copyright- Copyright (c) 1982, 1986, 1988 35 * The Regents of the University of California 36 * All Rights Reserved 37 * 38 * University Acknowledgment- Portions of this document are derived from 39 * software developed by the University of California, Berkeley, and its 40 * contributors. 41 */ 42 43 #include <sys/types.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/errno.h> 47 #include <sys/user.h> 48 #include <sys/fstyp.h> 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/vfs.h> 54 #include <sys/vfs_opreg.h> 55 #include <sys/fem.h> 56 #include <sys/mntent.h> 57 #include <sys/stat.h> 58 #include <sys/statvfs.h> 59 #include <sys/statfs.h> 60 #include <sys/cred.h> 61 #include <sys/vnode.h> 62 #include <sys/rwstlock.h> 63 #include <sys/dnlc.h> 64 #include <sys/file.h> 65 #include <sys/time.h> 66 #include <sys/atomic.h> 67 #include <sys/cmn_err.h> 68 #include <sys/buf.h> 69 #include <sys/swap.h> 70 #include <sys/debug.h> 71 #include <sys/vnode.h> 72 #include <sys/modctl.h> 73 #include <sys/ddi.h> 74 #include <sys/pathname.h> 75 #include <sys/bootconf.h> 76 #include <sys/dumphdr.h> 77 #include <sys/dc_ki.h> 78 #include <sys/poll.h> 79 #include <sys/sunddi.h> 80 #include <sys/sysmacros.h> 81 #include <sys/zone.h> 82 #include <sys/policy.h> 83 #include <sys/ctfs.h> 84 #include <sys/objfs.h> 85 #include <sys/console.h> 86 #include <sys/reboot.h> 87 #include <sys/attr.h> 88 #include <sys/zio.h> 89 #include <sys/spa.h> 90 #include <sys/lofi.h> 91 #include <sys/bootprops.h> 92 #include <sys/avl.h> 93 94 #include <vm/page.h> 95 96 #include <fs/fs_subr.h> 97 /* Private interfaces to create vopstats-related data structures */ 98 extern void initialize_vopstats(vopstats_t *); 99 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 100 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 101 102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 103 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 104 const char *, int, int); 105 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 106 static void vfs_freemnttab(struct vfs *); 107 static void vfs_freeopt(mntopt_t *); 108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 111 static void vfs_createopttbl_extend(mntopts_t *, const char *, 112 const mntopts_t *); 113 static char **vfs_copycancelopt_extend(char **const, int); 114 static void vfs_freecancelopt(char **); 115 static void getrootfs(char **, char **); 116 static int getmacpath(dev_info_t *, void *); 117 static void vfs_mnttabvp_setup(void); 118 119 struct ipmnt { 120 struct ipmnt *mip_next; 121 dev_t mip_dev; 122 struct vfs *mip_vfsp; 123 }; 124 125 static kmutex_t vfs_miplist_mutex; 126 static struct ipmnt *vfs_miplist = NULL; 127 static struct ipmnt *vfs_miplist_end = NULL; 128 129 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 130 131 /* 132 * VFS global data. 133 */ 134 vnode_t *rootdir; /* pointer to root inode vnode. */ 135 vnode_t *devicesdir; /* pointer to inode of devices root */ 136 vnode_t *devdir; /* pointer to inode of dev root */ 137 138 char *server_rootpath; /* root path for diskless clients */ 139 char *server_hostname; /* hostname of diskless server */ 140 141 static struct vfs root; 142 static struct vfs devices; 143 static struct vfs dev; 144 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 145 avl_tree_t vfs_by_dev; /* avl tree to index mounted VFSs by dev */ 146 avl_tree_t vfs_by_mntpnt; /* avl tree to index mounted VFSs by mntpnt */ 147 uint64_t vfs_curr_mntix; /* counter to provide a unique mntix for 148 * entries in the above avl trees. 149 * protected by vfslist lock */ 150 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 151 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 152 /* must be power of 2! */ 153 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 154 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 155 char *vfs_dummyfstype = "\0"; 156 struct pollhead vfs_pollhd; /* for mnttab pollers */ 157 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 158 int mntfstype; /* will be set once mnt fs is mounted */ 159 160 /* 161 * Table for generic options recognized in the VFS layer and acted 162 * on at this level before parsing file system specific options. 163 * The nosuid option is stronger than any of the devices and setuid 164 * options, so those are canceled when nosuid is seen. 165 * 166 * All options which are added here need to be added to the 167 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 168 */ 169 /* 170 * VFS Mount options table 171 */ 172 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 173 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 174 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 175 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 176 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 177 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 178 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 179 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 180 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 181 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 182 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 183 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 184 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 185 static char *follow_cancel[] = { MNTOPT_NOFOLLOW, NULL }; 186 static char *nofollow_cancel[] = { MNTOPT_FOLLOW, NULL }; 187 188 static const mntopt_t mntopts[] = { 189 /* 190 * option name cancel options default arg flags 191 */ 192 { MNTOPT_REMOUNT, NULL, NULL, 193 MO_NODISPLAY, (void *)0 }, 194 { MNTOPT_RO, ro_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_RW, rw_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_SUID, suid_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 205 (void *)0 }, 206 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 207 (void *)0 }, 208 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 209 (void *)0 }, 210 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 211 (void *)0 }, 212 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 213 (void *)0 }, 214 { MNTOPT_EXEC, exec_cancel, NULL, 0, 215 (void *)0 }, 216 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 217 (void *)0 }, 218 { MNTOPT_FOLLOW, follow_cancel, NULL, 0, 219 (void *)0 }, 220 { MNTOPT_NOFOLLOW, nofollow_cancel, NULL, 0, 221 (void *)0 }, 222 }; 223 224 const mntopts_t vfs_mntopts = { 225 sizeof (mntopts) / sizeof (mntopt_t), 226 (mntopt_t *)&mntopts[0] 227 }; 228 229 /* 230 * File system operation dispatch functions. 231 */ 232 233 int 234 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 235 { 236 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 237 } 238 239 int 240 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 241 { 242 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 243 } 244 245 int 246 fsop_root(vfs_t *vfsp, vnode_t **vpp) 247 { 248 refstr_t *mntpt; 249 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 250 /* 251 * Make sure this root has a path. With lofs, it is possible to have 252 * a NULL mountpoint. 253 */ 254 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 255 mntpt = vfs_getmntpoint(vfsp); 256 vn_setpath_str(*vpp, refstr_value(mntpt), 257 strlen(refstr_value(mntpt))); 258 refstr_rele(mntpt); 259 } 260 261 return (ret); 262 } 263 264 int 265 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 266 { 267 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 268 } 269 270 int 271 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 272 { 273 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 274 } 275 276 int 277 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 278 { 279 /* 280 * In order to handle system attribute fids in a manner 281 * transparent to the underlying fs, we embed the fid for 282 * the sysattr parent object in the sysattr fid and tack on 283 * some extra bytes that only the sysattr layer knows about. 284 * 285 * This guarantees that sysattr fids are larger than other fids 286 * for this vfs. If the vfs supports the sysattr view interface 287 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 288 * collision with XATTR_FIDSZ. 289 */ 290 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 291 fidp->fid_len == XATTR_FIDSZ) 292 return (xattr_dir_vget(vfsp, vpp, fidp)); 293 294 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 295 } 296 297 int 298 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 299 { 300 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 301 } 302 303 void 304 fsop_freefs(vfs_t *vfsp) 305 { 306 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 307 } 308 309 int 310 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 311 { 312 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 313 } 314 315 int 316 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 317 { 318 ASSERT((fstype >= 0) && (fstype < nfstype)); 319 320 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 321 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 322 else 323 return (ENOTSUP); 324 } 325 326 /* 327 * File system initialization. vfs_setfsops() must be called from a file 328 * system's init routine. 329 */ 330 331 static int 332 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 333 int *unused_ops) 334 { 335 static const fs_operation_trans_def_t vfs_ops_table[] = { 336 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 337 fs_nosys, fs_nosys, 338 339 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 340 fs_nosys, fs_nosys, 341 342 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 343 fs_nosys, fs_nosys, 344 345 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 346 fs_nosys, fs_nosys, 347 348 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 349 (fs_generic_func_p) fs_sync, 350 (fs_generic_func_p) fs_sync, /* No errors allowed */ 351 352 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 353 fs_nosys, fs_nosys, 354 355 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 356 fs_nosys, fs_nosys, 357 358 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 359 (fs_generic_func_p)fs_freevfs, 360 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 361 362 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 363 (fs_generic_func_p)fs_nosys, 364 (fs_generic_func_p)fs_nosys, 365 366 NULL, 0, NULL, NULL 367 }; 368 369 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 370 } 371 372 void 373 zfs_boot_init(void) 374 { 375 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 376 spa_boot_init(); 377 } 378 379 int 380 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 381 { 382 int error; 383 int unused_ops; 384 385 /* 386 * Verify that fstype refers to a valid fs. Note that 387 * 0 is valid since it's used to set "stray" ops. 388 */ 389 if ((fstype < 0) || (fstype >= nfstype)) 390 return (EINVAL); 391 392 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 393 return (EINVAL); 394 395 /* Set up the operations vector. */ 396 397 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 398 399 if (error != 0) 400 return (error); 401 402 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 403 404 if (actual != NULL) 405 *actual = &vfssw[fstype].vsw_vfsops; 406 407 #if DEBUG 408 if (unused_ops != 0) 409 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 410 "but not used", vfssw[fstype].vsw_name, unused_ops); 411 #endif 412 413 return (0); 414 } 415 416 int 417 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 418 { 419 int error; 420 int unused_ops; 421 422 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 423 424 error = fs_copyfsops(template, *actual, &unused_ops); 425 if (error != 0) { 426 kmem_free(*actual, sizeof (vfsops_t)); 427 *actual = NULL; 428 return (error); 429 } 430 431 return (0); 432 } 433 434 /* 435 * Free a vfsops structure created as a result of vfs_makefsops(). 436 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 437 * vfs_freevfsops_by_type(). 438 */ 439 void 440 vfs_freevfsops(vfsops_t *vfsops) 441 { 442 kmem_free(vfsops, sizeof (vfsops_t)); 443 } 444 445 /* 446 * Since the vfsops structure is part of the vfssw table and wasn't 447 * really allocated, we're not really freeing anything. We keep 448 * the name for consistency with vfs_freevfsops(). We do, however, 449 * need to take care of a little bookkeeping. 450 * NOTE: For a vfsops structure created by vfs_setfsops(), use 451 * vfs_freevfsops_by_type(). 452 */ 453 int 454 vfs_freevfsops_by_type(int fstype) 455 { 456 457 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 458 if ((fstype <= 0) || (fstype >= nfstype)) 459 return (EINVAL); 460 461 WLOCK_VFSSW(); 462 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 463 WUNLOCK_VFSSW(); 464 return (EINVAL); 465 } 466 467 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 468 WUNLOCK_VFSSW(); 469 470 return (0); 471 } 472 473 /* Support routines used to reference vfs_op */ 474 475 /* Set the operations vector for a vfs */ 476 void 477 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 478 { 479 vfsops_t *op; 480 481 ASSERT(vfsp != NULL); 482 ASSERT(vfsops != NULL); 483 484 op = vfsp->vfs_op; 485 membar_consumer(); 486 if (vfsp->vfs_femhead == NULL && 487 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 488 return; 489 } 490 fsem_setvfsops(vfsp, vfsops); 491 } 492 493 /* Retrieve the operations vector for a vfs */ 494 vfsops_t * 495 vfs_getops(vfs_t *vfsp) 496 { 497 vfsops_t *op; 498 499 ASSERT(vfsp != NULL); 500 501 op = vfsp->vfs_op; 502 membar_consumer(); 503 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 504 return (op); 505 } else { 506 return (fsem_getvfsops(vfsp)); 507 } 508 } 509 510 /* 511 * Returns non-zero (1) if the vfsops matches that of the vfs. 512 * Returns zero (0) if not. 513 */ 514 int 515 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 516 { 517 return (vfs_getops(vfsp) == vfsops); 518 } 519 520 /* 521 * Returns non-zero (1) if the file system has installed a non-default, 522 * non-error vfs_sync routine. Returns zero (0) otherwise. 523 */ 524 int 525 vfs_can_sync(vfs_t *vfsp) 526 { 527 /* vfs_sync() routine is not the default/error function */ 528 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 529 } 530 531 /* 532 * Initialize a vfs structure. 533 */ 534 void 535 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 536 { 537 /* Other initialization has been moved to vfs_alloc() */ 538 vfsp->vfs_count = 0; 539 vfsp->vfs_next = vfsp; 540 vfsp->vfs_prev = vfsp; 541 vfsp->vfs_zone_next = vfsp; 542 vfsp->vfs_zone_prev = vfsp; 543 vfsp->vfs_lofi_id = 0; 544 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 545 vfsimpl_setup(vfsp); 546 vfsp->vfs_data = (data); 547 vfs_setops((vfsp), (op)); 548 } 549 550 /* 551 * Allocate and initialize the vfs implementation private data 552 * structure, vfs_impl_t. 553 */ 554 void 555 vfsimpl_setup(vfs_t *vfsp) 556 { 557 int i; 558 559 if (vfsp->vfs_implp != NULL) { 560 return; 561 } 562 563 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 564 /* Note that these are #define'd in vfs.h */ 565 vfsp->vfs_vskap = NULL; 566 vfsp->vfs_fstypevsp = NULL; 567 568 /* Set size of counted array, then zero the array */ 569 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 570 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 571 vfsp->vfs_featureset[i] = 0; 572 } 573 } 574 575 /* 576 * Release the vfs_impl_t structure, if it exists. Some unbundled 577 * filesystems may not use the newer version of vfs and thus 578 * would not contain this implementation private data structure. 579 */ 580 void 581 vfsimpl_teardown(vfs_t *vfsp) 582 { 583 vfs_impl_t *vip = vfsp->vfs_implp; 584 585 if (vip == NULL) 586 return; 587 588 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 589 vfsp->vfs_implp = NULL; 590 } 591 592 /* 593 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 594 * fstatvfs, and sysfs moved to common/syscall. 595 */ 596 597 /* 598 * Update every mounted file system. We call the vfs_sync operation of 599 * each file system type, passing it a NULL vfsp to indicate that all 600 * mounted file systems of that type should be updated. 601 */ 602 void 603 vfs_sync(int flag) 604 { 605 struct vfssw *vswp; 606 RLOCK_VFSSW(); 607 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 608 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 609 vfs_refvfssw(vswp); 610 RUNLOCK_VFSSW(); 611 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 612 CRED()); 613 vfs_unrefvfssw(vswp); 614 RLOCK_VFSSW(); 615 } 616 } 617 RUNLOCK_VFSSW(); 618 } 619 620 void 621 sync(void) 622 { 623 vfs_sync(0); 624 } 625 626 /* 627 * compare function for vfs_by_dev avl tree. compare dev first, then mntix 628 */ 629 static int 630 vfs_cmp_dev(const void *aa, const void *bb) 631 { 632 const vfs_t *a = aa; 633 const vfs_t *b = bb; 634 635 if (a->vfs_dev < b->vfs_dev) 636 return (-1); 637 if (a->vfs_dev > b->vfs_dev) 638 return (1); 639 if (a->vfs_mntix < b->vfs_mntix) 640 return (-1); 641 if (a->vfs_mntix > b->vfs_mntix) 642 return (1); 643 return (0); 644 } 645 646 /* 647 * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix 648 */ 649 static int 650 vfs_cmp_mntpnt(const void *aa, const void *bb) 651 { 652 const vfs_t *a = aa; 653 const vfs_t *b = bb; 654 int ret; 655 656 ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt)); 657 if (ret < 0) 658 return (-1); 659 if (ret > 0) 660 return (1); 661 if (a->vfs_mntix < b->vfs_mntix) 662 return (-1); 663 if (a->vfs_mntix > b->vfs_mntix) 664 return (1); 665 return (0); 666 } 667 668 /* 669 * External routines. 670 */ 671 672 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 673 674 /* 675 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 676 * but otherwise should be accessed only via vfs_list_lock() and 677 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 678 */ 679 static krwlock_t vfslist; 680 681 /* 682 * Mount devfs on /devices. This is done right after root is mounted 683 * to provide device access support for the system 684 */ 685 static void 686 vfs_mountdevices(void) 687 { 688 struct vfssw *vsw; 689 struct vnode *mvp; 690 struct mounta mounta = { /* fake mounta for devfs_mount() */ 691 NULL, 692 NULL, 693 MS_SYSSPACE, 694 NULL, 695 NULL, 696 0, 697 NULL, 698 0 699 }; 700 701 /* 702 * _init devfs module to fill in the vfssw 703 */ 704 if (modload("fs", "devfs") == -1) 705 panic("Cannot _init devfs module"); 706 707 /* 708 * Hold vfs 709 */ 710 RLOCK_VFSSW(); 711 vsw = vfs_getvfsswbyname("devfs"); 712 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 713 VFS_HOLD(&devices); 714 715 /* 716 * Locate mount point 717 */ 718 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 719 panic("Cannot find /devices"); 720 721 /* 722 * Perform the mount of /devices 723 */ 724 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 725 panic("Cannot mount /devices"); 726 727 RUNLOCK_VFSSW(); 728 729 /* 730 * Set appropriate members and add to vfs list for mnttab display 731 */ 732 vfs_setresource(&devices, "/devices", 0); 733 vfs_setmntpoint(&devices, "/devices", 0); 734 735 /* 736 * Hold the root of /devices so it won't go away 737 */ 738 if (VFS_ROOT(&devices, &devicesdir)) 739 panic("vfs_mountdevices: not devices root"); 740 741 if (vfs_lock(&devices) != 0) { 742 VN_RELE(devicesdir); 743 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 744 return; 745 } 746 747 if (vn_vfswlock(mvp) != 0) { 748 vfs_unlock(&devices); 749 VN_RELE(devicesdir); 750 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 751 return; 752 } 753 754 vfs_add(mvp, &devices, 0); 755 vn_vfsunlock(mvp); 756 vfs_unlock(&devices); 757 VN_RELE(devicesdir); 758 } 759 760 /* 761 * mount the first instance of /dev to root and remain mounted 762 */ 763 static void 764 vfs_mountdev1(void) 765 { 766 struct vfssw *vsw; 767 struct vnode *mvp; 768 struct mounta mounta = { /* fake mounta for sdev_mount() */ 769 NULL, 770 NULL, 771 MS_SYSSPACE | MS_OVERLAY, 772 NULL, 773 NULL, 774 0, 775 NULL, 776 0 777 }; 778 779 /* 780 * _init dev module to fill in the vfssw 781 */ 782 if (modload("fs", "dev") == -1) 783 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 784 785 /* 786 * Hold vfs 787 */ 788 RLOCK_VFSSW(); 789 vsw = vfs_getvfsswbyname("dev"); 790 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 791 VFS_HOLD(&dev); 792 793 /* 794 * Locate mount point 795 */ 796 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 797 cmn_err(CE_PANIC, "Cannot find /dev\n"); 798 799 /* 800 * Perform the mount of /dev 801 */ 802 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 803 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 804 805 RUNLOCK_VFSSW(); 806 807 /* 808 * Set appropriate members and add to vfs list for mnttab display 809 */ 810 vfs_setresource(&dev, "/dev", 0); 811 vfs_setmntpoint(&dev, "/dev", 0); 812 813 /* 814 * Hold the root of /dev so it won't go away 815 */ 816 if (VFS_ROOT(&dev, &devdir)) 817 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 818 819 if (vfs_lock(&dev) != 0) { 820 VN_RELE(devdir); 821 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 822 return; 823 } 824 825 if (vn_vfswlock(mvp) != 0) { 826 vfs_unlock(&dev); 827 VN_RELE(devdir); 828 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 829 return; 830 } 831 832 vfs_add(mvp, &dev, 0); 833 vn_vfsunlock(mvp); 834 vfs_unlock(&dev); 835 VN_RELE(devdir); 836 } 837 838 /* 839 * Mount required filesystem. This is done right after root is mounted. 840 */ 841 static void 842 vfs_mountfs(char *module, char *spec, char *path) 843 { 844 struct vnode *mvp; 845 struct mounta mounta; 846 vfs_t *vfsp; 847 848 bzero(&mounta, sizeof (mounta)); 849 mounta.flags = MS_SYSSPACE | MS_DATA; 850 mounta.fstype = module; 851 mounta.spec = spec; 852 mounta.dir = path; 853 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 854 cmn_err(CE_WARN, "Cannot find %s", path); 855 return; 856 } 857 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 858 cmn_err(CE_WARN, "Cannot mount %s", path); 859 else 860 VFS_RELE(vfsp); 861 VN_RELE(mvp); 862 } 863 864 /* 865 * vfs_mountroot is called by main() to mount the root filesystem. 866 */ 867 void 868 vfs_mountroot(void) 869 { 870 struct vnode *rvp = NULL; 871 char *path; 872 size_t plen; 873 struct vfssw *vswp; 874 proc_t *p; 875 876 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 877 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 878 879 /* 880 * Alloc the avl trees for quick indexing via dev and mountpoint 881 */ 882 avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t), 883 offsetof(vfs_t, vfs_avldev)); 884 avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t), 885 offsetof(vfs_t, vfs_avlmntpnt)); 886 887 /* 888 * Alloc the vfs hash bucket array and locks 889 */ 890 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 891 892 /* 893 * Call machine-dependent routine "rootconf" to choose a root 894 * file system type. 895 */ 896 if (rootconf()) 897 panic("vfs_mountroot: cannot mount root"); 898 /* 899 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 900 * to point to it. These are used by lookuppn() so that it 901 * knows where to start from ('/' or '.'). 902 */ 903 vfs_setmntpoint(rootvfs, "/", 0); 904 if (VFS_ROOT(rootvfs, &rootdir)) 905 panic("vfs_mountroot: no root vnode"); 906 907 /* 908 * At this point, the process tree consists of p0 and possibly some 909 * direct children of p0. (i.e. there are no grandchildren) 910 * 911 * Walk through them all, setting their current directory. 912 */ 913 mutex_enter(&pidlock); 914 for (p = practive; p != NULL; p = p->p_next) { 915 ASSERT(p == &p0 || p->p_parent == &p0); 916 917 PTOU(p)->u_cdir = rootdir; 918 VN_HOLD(PTOU(p)->u_cdir); 919 PTOU(p)->u_rdir = NULL; 920 } 921 mutex_exit(&pidlock); 922 923 /* 924 * Setup the global zone's rootvp, now that it exists. 925 */ 926 global_zone->zone_rootvp = rootdir; 927 VN_HOLD(global_zone->zone_rootvp); 928 929 /* 930 * Notify the module code that it can begin using the 931 * root filesystem instead of the boot program's services. 932 */ 933 modrootloaded = 1; 934 935 /* 936 * Special handling for a ZFS root file system. 937 */ 938 zfs_boot_init(); 939 940 /* 941 * Set up mnttab information for root 942 */ 943 vfs_setresource(rootvfs, rootfs.bo_name, 0); 944 945 /* 946 * Notify cluster software that the root filesystem is available. 947 */ 948 clboot_mountroot(); 949 950 /* Now that we're all done with the root FS, set up its vopstats */ 951 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 952 /* Set flag for statistics collection */ 953 if (vswp->vsw_flag & VSW_STATS) { 954 initialize_vopstats(&rootvfs->vfs_vopstats); 955 rootvfs->vfs_flag |= VFS_STATS; 956 rootvfs->vfs_fstypevsp = 957 get_fstype_vopstats(rootvfs, vswp); 958 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 959 } 960 vfs_unrefvfssw(vswp); 961 } 962 963 /* 964 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 965 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 966 */ 967 vfs_mountdevices(); 968 vfs_mountdev1(); 969 970 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 971 vfs_mountfs("proc", "/proc", "/proc"); 972 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 973 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 974 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 975 vfs_mountfs("bootfs", "bootfs", "/system/boot"); 976 977 if (getzoneid() == GLOBAL_ZONEID) { 978 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 979 } 980 981 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 982 /* 983 * Look up the root device via devfs so that a dv_node is 984 * created for it. The vnode is never VN_RELE()ed. 985 * We allocate more than MAXPATHLEN so that the 986 * buffer passed to i_ddi_prompath_to_devfspath() is 987 * exactly MAXPATHLEN (the function expects a buffer 988 * of that length). 989 */ 990 plen = strlen("/devices"); 991 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 992 (void) strcpy(path, "/devices"); 993 994 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 995 != DDI_SUCCESS || 996 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 997 998 /* NUL terminate in case "path" has garbage */ 999 path[plen + MAXPATHLEN - 1] = '\0'; 1000 #ifdef DEBUG 1001 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 1002 path); 1003 #endif 1004 } 1005 kmem_free(path, plen + MAXPATHLEN); 1006 } 1007 1008 vfs_mnttabvp_setup(); 1009 } 1010 1011 /* 1012 * Check to see if our "block device" is actually a file. If so, 1013 * automatically add a lofi device, and keep track of this fact. 1014 */ 1015 static int 1016 lofi_add(const char *fsname, struct vfs *vfsp, 1017 mntopts_t *mntopts, struct mounta *uap) 1018 { 1019 int fromspace = (uap->flags & MS_SYSSPACE) ? 1020 UIO_SYSSPACE : UIO_USERSPACE; 1021 struct lofi_ioctl *li = NULL; 1022 struct vnode *vp = NULL; 1023 struct pathname pn = { NULL }; 1024 ldi_ident_t ldi_id; 1025 ldi_handle_t ldi_hdl; 1026 vfssw_t *vfssw; 1027 int id; 1028 int err = 0; 1029 1030 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 1031 return (0); 1032 1033 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 1034 vfs_unrefvfssw(vfssw); 1035 return (0); 1036 } 1037 1038 vfs_unrefvfssw(vfssw); 1039 vfssw = NULL; 1040 1041 if (pn_get(uap->spec, fromspace, &pn) != 0) 1042 return (0); 1043 1044 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1045 goto out; 1046 1047 if (vp->v_type != VREG) 1048 goto out; 1049 1050 /* OK, this is a lofi mount. */ 1051 1052 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1053 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1054 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1055 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1056 err = EINVAL; 1057 goto out; 1058 } 1059 1060 ldi_id = ldi_ident_from_anon(); 1061 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1062 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1063 1064 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1065 &ldi_hdl, ldi_id); 1066 1067 if (err) 1068 goto out2; 1069 1070 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1071 FREAD | FWRITE | FKIOCTL, kcred, &id); 1072 1073 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1074 1075 if (!err) 1076 vfsp->vfs_lofi_id = id; 1077 1078 out2: 1079 ldi_ident_release(ldi_id); 1080 out: 1081 if (li != NULL) 1082 kmem_free(li, sizeof (*li)); 1083 if (vp != NULL) 1084 VN_RELE(vp); 1085 pn_free(&pn); 1086 return (err); 1087 } 1088 1089 static void 1090 lofi_remove(struct vfs *vfsp) 1091 { 1092 struct lofi_ioctl *li = NULL; 1093 ldi_ident_t ldi_id; 1094 ldi_handle_t ldi_hdl; 1095 int err; 1096 1097 if (vfsp->vfs_lofi_id == 0) 1098 return; 1099 1100 ldi_id = ldi_ident_from_anon(); 1101 1102 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1103 li->li_id = vfsp->vfs_lofi_id; 1104 li->li_cleanup = B_TRUE; 1105 1106 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1107 &ldi_hdl, ldi_id); 1108 1109 if (err) 1110 goto out; 1111 1112 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1113 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1114 1115 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1116 1117 if (!err) 1118 vfsp->vfs_lofi_id = 0; 1119 1120 out: 1121 ldi_ident_release(ldi_id); 1122 if (li != NULL) 1123 kmem_free(li, sizeof (*li)); 1124 } 1125 1126 /* 1127 * Common mount code. Called from the system call entry point, from autofs, 1128 * nfsv4 trigger mounts, and from pxfs. 1129 * 1130 * Takes the effective file system type, mount arguments, the mount point 1131 * vnode, flags specifying whether the mount is a remount and whether it 1132 * should be entered into the vfs list, and credentials. Fills in its vfspp 1133 * parameter with the mounted file system instance's vfs. 1134 * 1135 * Note that the effective file system type is specified as a string. It may 1136 * be null, in which case it's determined from the mount arguments, and may 1137 * differ from the type specified in the mount arguments; this is a hook to 1138 * allow interposition when instantiating file system instances. 1139 * 1140 * The caller is responsible for releasing its own hold on the mount point 1141 * vp (this routine does its own hold when necessary). 1142 * Also note that for remounts, the mount point vp should be the vnode for 1143 * the root of the file system rather than the vnode that the file system 1144 * is mounted on top of. 1145 */ 1146 int 1147 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1148 struct vfs **vfspp) 1149 { 1150 struct vfssw *vswp; 1151 vfsops_t *vfsops; 1152 struct vfs *vfsp; 1153 struct vnode *bvp; 1154 dev_t bdev = 0; 1155 mntopts_t mnt_mntopts; 1156 int error = 0; 1157 int copyout_error = 0; 1158 int ovflags; 1159 char *opts = uap->optptr; 1160 char *inargs = opts; 1161 int optlen = uap->optlen; 1162 int remount; 1163 int rdonly; 1164 int nbmand = 0; 1165 int delmip = 0; 1166 int addmip = 0; 1167 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1168 int fromspace = (uap->flags & MS_SYSSPACE) ? 1169 UIO_SYSSPACE : UIO_USERSPACE; 1170 char *resource = NULL, *mountpt = NULL; 1171 refstr_t *oldresource, *oldmntpt; 1172 struct pathname pn, rpn; 1173 vsk_anchor_t *vskap; 1174 char fstname[FSTYPSZ]; 1175 zone_t *zone; 1176 1177 /* 1178 * The v_flag value for the mount point vp is permanently set 1179 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1180 * for mount point locking. 1181 */ 1182 mutex_enter(&vp->v_lock); 1183 vp->v_flag |= VVFSLOCK; 1184 mutex_exit(&vp->v_lock); 1185 1186 mnt_mntopts.mo_count = 0; 1187 /* 1188 * Find the ops vector to use to invoke the file system-specific mount 1189 * method. If the fsname argument is non-NULL, use it directly. 1190 * Otherwise, dig the file system type information out of the mount 1191 * arguments. 1192 * 1193 * A side effect is to hold the vfssw entry. 1194 * 1195 * Mount arguments can be specified in several ways, which are 1196 * distinguished by flag bit settings. The preferred way is to set 1197 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1198 * type supplied as a character string and the last two arguments 1199 * being a pointer to a character buffer and the size of the buffer. 1200 * On entry, the buffer holds a null terminated list of options; on 1201 * return, the string is the list of options the file system 1202 * recognized. If MS_DATA is set arguments five and six point to a 1203 * block of binary data which the file system interprets. 1204 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1205 * consistently with these conventions. To handle them, we check to 1206 * see whether the pointer to the file system name has a numeric value 1207 * less than 256. If so, we treat it as an index. 1208 */ 1209 if (fsname != NULL) { 1210 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1211 return (EINVAL); 1212 } 1213 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1214 size_t n; 1215 uint_t fstype; 1216 1217 fsname = fstname; 1218 1219 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1220 RLOCK_VFSSW(); 1221 if (fstype == 0 || fstype >= nfstype || 1222 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1223 RUNLOCK_VFSSW(); 1224 return (EINVAL); 1225 } 1226 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1227 RUNLOCK_VFSSW(); 1228 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1229 return (EINVAL); 1230 } else { 1231 /* 1232 * Handle either kernel or user address space. 1233 */ 1234 if (uap->flags & MS_SYSSPACE) { 1235 error = copystr(uap->fstype, fsname, 1236 FSTYPSZ, &n); 1237 } else { 1238 error = copyinstr(uap->fstype, fsname, 1239 FSTYPSZ, &n); 1240 } 1241 if (error) { 1242 if (error == ENAMETOOLONG) 1243 return (EINVAL); 1244 return (error); 1245 } 1246 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1247 return (EINVAL); 1248 } 1249 } else { 1250 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1251 return (EINVAL); 1252 fsname = vswp->vsw_name; 1253 } 1254 if (!VFS_INSTALLED(vswp)) 1255 return (EINVAL); 1256 1257 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1258 vfs_unrefvfssw(vswp); 1259 return (error); 1260 } 1261 1262 vfsops = &vswp->vsw_vfsops; 1263 1264 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1265 /* 1266 * Fetch mount options and parse them for generic vfs options 1267 */ 1268 if (uap->flags & MS_OPTIONSTR) { 1269 /* 1270 * Limit the buffer size 1271 */ 1272 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1273 error = EINVAL; 1274 goto errout; 1275 } 1276 if ((uap->flags & MS_SYSSPACE) == 0) { 1277 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1278 inargs[0] = '\0'; 1279 if (optlen) { 1280 error = copyinstr(opts, inargs, (size_t)optlen, 1281 NULL); 1282 if (error) { 1283 goto errout; 1284 } 1285 } 1286 } 1287 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1288 } 1289 /* 1290 * Flag bits override the options string. 1291 */ 1292 if (uap->flags & MS_REMOUNT) 1293 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1294 if (uap->flags & MS_RDONLY) 1295 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1296 if (uap->flags & MS_NOSUID) 1297 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1298 1299 /* 1300 * Check if this is a remount; must be set in the option string and 1301 * the file system must support a remount option. 1302 */ 1303 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1304 MNTOPT_REMOUNT, NULL)) { 1305 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1306 error = ENOTSUP; 1307 goto errout; 1308 } 1309 uap->flags |= MS_REMOUNT; 1310 } 1311 1312 /* 1313 * uap->flags and vfs_optionisset() should agree. 1314 */ 1315 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1316 uap->flags |= MS_RDONLY; 1317 } 1318 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1319 uap->flags |= MS_NOSUID; 1320 } 1321 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1322 ASSERT(splice || !remount); 1323 /* 1324 * If we are splicing the fs into the namespace, 1325 * perform mount point checks. 1326 * 1327 * We want to resolve the path for the mount point to eliminate 1328 * '.' and ".." and symlinks in mount points; we can't do the 1329 * same for the resource string, since it would turn 1330 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1331 * this before grabbing vn_vfswlock(), because otherwise we 1332 * would deadlock with lookuppn(). 1333 */ 1334 if (splice) { 1335 ASSERT(vp->v_count > 0); 1336 1337 /* 1338 * Pick up mount point and device from appropriate space. 1339 */ 1340 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1341 resource = kmem_alloc(pn.pn_pathlen + 1, 1342 KM_SLEEP); 1343 (void) strcpy(resource, pn.pn_path); 1344 pn_free(&pn); 1345 } 1346 /* 1347 * Do a lookupname prior to taking the 1348 * writelock. Mark this as completed if 1349 * successful for later cleanup and addition to 1350 * the mount in progress table. 1351 */ 1352 if ((uap->flags & MS_GLOBAL) == 0 && 1353 lookupname(uap->spec, fromspace, 1354 FOLLOW, NULL, &bvp) == 0) { 1355 addmip = 1; 1356 } 1357 1358 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1359 pathname_t *pnp; 1360 1361 if (*pn.pn_path != '/') { 1362 error = EINVAL; 1363 pn_free(&pn); 1364 goto errout; 1365 } 1366 pn_alloc(&rpn); 1367 /* 1368 * Kludge to prevent autofs from deadlocking with 1369 * itself when it calls domount(). 1370 * 1371 * If autofs is calling, it is because it is doing 1372 * (autofs) mounts in the process of an NFS mount. A 1373 * lookuppn() here would cause us to block waiting for 1374 * said NFS mount to complete, which can't since this 1375 * is the thread that was supposed to doing it. 1376 */ 1377 if (fromspace == UIO_USERSPACE) { 1378 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1379 NULL)) == 0) { 1380 pnp = &rpn; 1381 } else { 1382 /* 1383 * The file disappeared or otherwise 1384 * became inaccessible since we opened 1385 * it; might as well fail the mount 1386 * since the mount point is no longer 1387 * accessible. 1388 */ 1389 pn_free(&rpn); 1390 pn_free(&pn); 1391 goto errout; 1392 } 1393 } else { 1394 pnp = &pn; 1395 } 1396 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1397 (void) strcpy(mountpt, pnp->pn_path); 1398 1399 /* 1400 * If the addition of the zone's rootpath 1401 * would push us over a total path length 1402 * of MAXPATHLEN, we fail the mount with 1403 * ENAMETOOLONG, which is what we would have 1404 * gotten if we were trying to perform the same 1405 * mount in the global zone. 1406 * 1407 * strlen() doesn't count the trailing 1408 * '\0', but zone_rootpathlen counts both a 1409 * trailing '/' and the terminating '\0'. 1410 */ 1411 if ((curproc->p_zone->zone_rootpathlen - 1 + 1412 strlen(mountpt)) > MAXPATHLEN || 1413 (resource != NULL && 1414 (curproc->p_zone->zone_rootpathlen - 1 + 1415 strlen(resource)) > MAXPATHLEN)) { 1416 error = ENAMETOOLONG; 1417 } 1418 1419 pn_free(&rpn); 1420 pn_free(&pn); 1421 } 1422 1423 if (error) 1424 goto errout; 1425 1426 /* 1427 * Prevent path name resolution from proceeding past 1428 * the mount point. 1429 */ 1430 if (vn_vfswlock(vp) != 0) { 1431 error = EBUSY; 1432 goto errout; 1433 } 1434 1435 /* 1436 * Verify that it's legitimate to establish a mount on 1437 * the prospective mount point. 1438 */ 1439 if (vn_mountedvfs(vp) != NULL) { 1440 /* 1441 * The mount point lock was obtained after some 1442 * other thread raced through and established a mount. 1443 */ 1444 vn_vfsunlock(vp); 1445 error = EBUSY; 1446 goto errout; 1447 } 1448 if (vp->v_flag & VNOMOUNT) { 1449 vn_vfsunlock(vp); 1450 error = EINVAL; 1451 goto errout; 1452 } 1453 } 1454 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1455 uap->dataptr = NULL; 1456 uap->datalen = 0; 1457 } 1458 1459 /* 1460 * If this is a remount, we don't want to create a new VFS. 1461 * Instead, we pass the existing one with a remount flag. 1462 */ 1463 if (remount) { 1464 /* 1465 * Confirm that the mount point is the root vnode of the 1466 * file system that is being remounted. 1467 * This can happen if the user specifies a different 1468 * mount point directory pathname in the (re)mount command. 1469 * 1470 * Code below can only be reached if splice is true, so it's 1471 * safe to do vn_vfsunlock() here. 1472 */ 1473 if ((vp->v_flag & VROOT) == 0) { 1474 vn_vfsunlock(vp); 1475 error = ENOENT; 1476 goto errout; 1477 } 1478 /* 1479 * Disallow making file systems read-only unless file system 1480 * explicitly allows it in its vfssw. Ignore other flags. 1481 */ 1482 if (rdonly && vn_is_readonly(vp) == 0 && 1483 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1484 vn_vfsunlock(vp); 1485 error = EINVAL; 1486 goto errout; 1487 } 1488 /* 1489 * Disallow changing the NBMAND disposition of the file 1490 * system on remounts. 1491 */ 1492 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1493 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1494 vn_vfsunlock(vp); 1495 error = EINVAL; 1496 goto errout; 1497 } 1498 vfsp = vp->v_vfsp; 1499 ovflags = vfsp->vfs_flag; 1500 vfsp->vfs_flag |= VFS_REMOUNT; 1501 vfsp->vfs_flag &= ~VFS_RDONLY; 1502 } else { 1503 vfsp = vfs_alloc(KM_SLEEP); 1504 VFS_INIT(vfsp, vfsops, NULL); 1505 } 1506 1507 VFS_HOLD(vfsp); 1508 1509 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1510 if (!remount) { 1511 if (splice) 1512 vn_vfsunlock(vp); 1513 vfs_free(vfsp); 1514 } else { 1515 vn_vfsunlock(vp); 1516 VFS_RELE(vfsp); 1517 } 1518 goto errout; 1519 } 1520 1521 /* 1522 * PRIV_SYS_MOUNT doesn't mean you can become root. 1523 */ 1524 if (vfsp->vfs_lofi_id != 0) { 1525 uap->flags |= MS_NOSUID; 1526 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1527 } 1528 1529 /* 1530 * The vfs_reflock is not used anymore the code below explicitly 1531 * holds it preventing others accesing it directly. 1532 */ 1533 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1534 !(vfsp->vfs_flag & VFS_REMOUNT)) 1535 cmn_err(CE_WARN, 1536 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1537 1538 /* 1539 * Lock the vfs. If this is a remount we want to avoid spurious umount 1540 * failures that happen as a side-effect of fsflush() and other mount 1541 * and unmount operations that might be going on simultaneously and 1542 * may have locked the vfs currently. To not return EBUSY immediately 1543 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1544 */ 1545 if (!remount) { 1546 if (error = vfs_lock(vfsp)) { 1547 vfsp->vfs_flag = ovflags; 1548 1549 lofi_remove(vfsp); 1550 1551 if (splice) 1552 vn_vfsunlock(vp); 1553 vfs_free(vfsp); 1554 goto errout; 1555 } 1556 } else { 1557 vfs_lock_wait(vfsp); 1558 } 1559 1560 /* 1561 * Add device to mount in progress table, global mounts require special 1562 * handling. It is possible that we have already done the lookupname 1563 * on a spliced, non-global fs. If so, we don't want to do it again 1564 * since we cannot do a lookupname after taking the 1565 * wlock above. This case is for a non-spliced, non-global filesystem. 1566 */ 1567 if (!addmip) { 1568 if ((uap->flags & MS_GLOBAL) == 0 && 1569 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1570 addmip = 1; 1571 } 1572 } 1573 1574 if (addmip) { 1575 vnode_t *lvp = NULL; 1576 1577 error = vfs_get_lofi(vfsp, &lvp); 1578 if (error > 0) { 1579 lofi_remove(vfsp); 1580 1581 if (splice) 1582 vn_vfsunlock(vp); 1583 vfs_unlock(vfsp); 1584 1585 if (remount) { 1586 VFS_RELE(vfsp); 1587 } else { 1588 vfs_free(vfsp); 1589 } 1590 1591 goto errout; 1592 } else if (error == -1) { 1593 bdev = bvp->v_rdev; 1594 VN_RELE(bvp); 1595 } else { 1596 bdev = lvp->v_rdev; 1597 VN_RELE(lvp); 1598 VN_RELE(bvp); 1599 } 1600 1601 vfs_addmip(bdev, vfsp); 1602 addmip = 0; 1603 delmip = 1; 1604 } 1605 /* 1606 * Invalidate cached entry for the mount point. 1607 */ 1608 if (splice) 1609 dnlc_purge_vp(vp); 1610 1611 /* 1612 * If have an option string but the filesystem doesn't supply a 1613 * prototype options table, create a table with the global 1614 * options and sufficient room to accept all the options in the 1615 * string. Then parse the passed in option string 1616 * accepting all the options in the string. This gives us an 1617 * option table with all the proper cancel properties for the 1618 * global options. 1619 * 1620 * Filesystems that supply a prototype options table are handled 1621 * earlier in this function. 1622 */ 1623 if (uap->flags & MS_OPTIONSTR) { 1624 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1625 mntopts_t tmp_mntopts; 1626 1627 tmp_mntopts.mo_count = 0; 1628 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1629 &mnt_mntopts); 1630 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1631 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1632 vfs_freeopttbl(&tmp_mntopts); 1633 } 1634 } 1635 1636 /* 1637 * Serialize with zone state transitions. 1638 * See vfs_list_add; zone mounted into is: 1639 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1640 * not the zone doing the mount (curproc->p_zone), but if we're already 1641 * inside a NGZ, then we know what zone we are. 1642 */ 1643 if (INGLOBALZONE(curproc)) { 1644 zone = zone_find_by_path(mountpt); 1645 ASSERT(zone != NULL); 1646 } else { 1647 zone = curproc->p_zone; 1648 /* 1649 * zone_find_by_path does a hold, so do one here too so that 1650 * we can do a zone_rele after mount_completed. 1651 */ 1652 zone_hold(zone); 1653 } 1654 mount_in_progress(zone); 1655 /* 1656 * Instantiate (or reinstantiate) the file system. If appropriate, 1657 * splice it into the file system name space. 1658 * 1659 * We want VFS_MOUNT() to be able to override the vfs_resource 1660 * string if necessary (ie, mntfs), and also for a remount to 1661 * change the same (necessary when remounting '/' during boot). 1662 * So we set up vfs_mntpt and vfs_resource to what we think they 1663 * should be, then hand off control to VFS_MOUNT() which can 1664 * override this. 1665 * 1666 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1667 * a vfs which is on the vfs list (i.e. during a remount), we must 1668 * never set those fields to NULL. Several bits of code make 1669 * assumptions that the fields are always valid. 1670 */ 1671 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1672 if (remount) { 1673 if ((oldresource = vfsp->vfs_resource) != NULL) 1674 refstr_hold(oldresource); 1675 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1676 refstr_hold(oldmntpt); 1677 } 1678 vfs_setresource(vfsp, resource, 0); 1679 vfs_setmntpoint(vfsp, mountpt, 0); 1680 1681 /* 1682 * going to mount on this vnode, so notify. 1683 */ 1684 vnevent_mountedover(vp, NULL); 1685 error = VFS_MOUNT(vfsp, vp, uap, credp); 1686 1687 if (uap->flags & MS_RDONLY) 1688 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1689 if (uap->flags & MS_NOSUID) 1690 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1691 if (uap->flags & MS_GLOBAL) 1692 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1693 1694 if (error) { 1695 lofi_remove(vfsp); 1696 1697 if (remount) { 1698 /* put back pre-remount options */ 1699 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1700 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1701 VFSSP_VERBATIM); 1702 if (oldmntpt) 1703 refstr_rele(oldmntpt); 1704 vfs_setresource(vfsp, refstr_value(oldresource), 1705 VFSSP_VERBATIM); 1706 if (oldresource) 1707 refstr_rele(oldresource); 1708 vfsp->vfs_flag = ovflags; 1709 vfs_unlock(vfsp); 1710 VFS_RELE(vfsp); 1711 } else { 1712 vfs_unlock(vfsp); 1713 vfs_freemnttab(vfsp); 1714 vfs_free(vfsp); 1715 } 1716 } else { 1717 /* 1718 * Set the mount time to now 1719 */ 1720 vfsp->vfs_mtime = ddi_get_time(); 1721 if (remount) { 1722 vfsp->vfs_flag &= ~VFS_REMOUNT; 1723 if (oldresource) 1724 refstr_rele(oldresource); 1725 if (oldmntpt) 1726 refstr_rele(oldmntpt); 1727 } else if (splice) { 1728 /* 1729 * Link vfsp into the name space at the mount 1730 * point. Vfs_add() is responsible for 1731 * holding the mount point which will be 1732 * released when vfs_remove() is called. 1733 */ 1734 vfs_add(vp, vfsp, uap->flags); 1735 } else { 1736 /* 1737 * Hold the reference to file system which is 1738 * not linked into the name space. 1739 */ 1740 vfsp->vfs_zone = NULL; 1741 VFS_HOLD(vfsp); 1742 vfsp->vfs_vnodecovered = NULL; 1743 } 1744 /* 1745 * Set flags for global options encountered 1746 */ 1747 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1748 vfsp->vfs_flag |= VFS_RDONLY; 1749 else 1750 vfsp->vfs_flag &= ~VFS_RDONLY; 1751 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1752 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1753 } else { 1754 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1755 vfsp->vfs_flag |= VFS_NODEVICES; 1756 else 1757 vfsp->vfs_flag &= ~VFS_NODEVICES; 1758 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1759 vfsp->vfs_flag |= VFS_NOSETUID; 1760 else 1761 vfsp->vfs_flag &= ~VFS_NOSETUID; 1762 } 1763 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1764 vfsp->vfs_flag |= VFS_NBMAND; 1765 else 1766 vfsp->vfs_flag &= ~VFS_NBMAND; 1767 1768 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1769 vfsp->vfs_flag |= VFS_XATTR; 1770 else 1771 vfsp->vfs_flag &= ~VFS_XATTR; 1772 1773 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1774 vfsp->vfs_flag |= VFS_NOEXEC; 1775 else 1776 vfsp->vfs_flag &= ~VFS_NOEXEC; 1777 1778 if (vfs_optionisset(vfsp, MNTOPT_NOFOLLOW, NULL)) 1779 vfsp->vfs_flag |= VFS_NOFOLLOW; 1780 else 1781 vfsp->vfs_flag &= ~VFS_NOFOLLOW; 1782 1783 /* 1784 * Now construct the output option string of options 1785 * we recognized. 1786 */ 1787 if (uap->flags & MS_OPTIONSTR) { 1788 vfs_list_read_lock(); 1789 copyout_error = vfs_buildoptionstr( 1790 &vfsp->vfs_mntopts, inargs, optlen); 1791 vfs_list_unlock(); 1792 if (copyout_error == 0 && 1793 (uap->flags & MS_SYSSPACE) == 0) { 1794 copyout_error = copyoutstr(inargs, opts, 1795 optlen, NULL); 1796 } 1797 } 1798 1799 /* 1800 * If this isn't a remount, set up the vopstats before 1801 * anyone can touch this. We only allow spliced file 1802 * systems (file systems which are in the namespace) to 1803 * have the VFS_STATS flag set. 1804 * NOTE: PxFS mounts the underlying file system with 1805 * MS_NOSPLICE set and copies those vfs_flags to its private 1806 * vfs structure. As a result, PxFS should never have 1807 * the VFS_STATS flag or else we might access the vfs 1808 * statistics-related fields prior to them being 1809 * properly initialized. 1810 */ 1811 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1812 initialize_vopstats(&vfsp->vfs_vopstats); 1813 /* 1814 * We need to set vfs_vskap to NULL because there's 1815 * a chance it won't be set below. This is checked 1816 * in teardown_vopstats() so we can't have garbage. 1817 */ 1818 vfsp->vfs_vskap = NULL; 1819 vfsp->vfs_flag |= VFS_STATS; 1820 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1821 } 1822 1823 if (vswp->vsw_flag & VSW_XID) 1824 vfsp->vfs_flag |= VFS_XID; 1825 1826 vfs_unlock(vfsp); 1827 } 1828 mount_completed(zone); 1829 zone_rele(zone); 1830 if (splice) 1831 vn_vfsunlock(vp); 1832 1833 if ((error == 0) && (copyout_error == 0)) { 1834 if (!remount) { 1835 /* 1836 * Don't call get_vskstat_anchor() while holding 1837 * locks since it allocates memory and calls 1838 * VFS_STATVFS(). For NFS, the latter can generate 1839 * an over-the-wire call. 1840 */ 1841 vskap = get_vskstat_anchor(vfsp); 1842 /* Only take the lock if we have something to do */ 1843 if (vskap != NULL) { 1844 vfs_lock_wait(vfsp); 1845 if (vfsp->vfs_flag & VFS_STATS) { 1846 vfsp->vfs_vskap = vskap; 1847 } 1848 vfs_unlock(vfsp); 1849 } 1850 } 1851 /* Return vfsp to caller. */ 1852 *vfspp = vfsp; 1853 } 1854 errout: 1855 vfs_freeopttbl(&mnt_mntopts); 1856 if (resource != NULL) 1857 kmem_free(resource, strlen(resource) + 1); 1858 if (mountpt != NULL) 1859 kmem_free(mountpt, strlen(mountpt) + 1); 1860 /* 1861 * It is possible we errored prior to adding to mount in progress 1862 * table. Must free vnode we acquired with successful lookupname. 1863 */ 1864 if (addmip) 1865 VN_RELE(bvp); 1866 if (delmip) 1867 vfs_delmip(vfsp); 1868 ASSERT(vswp != NULL); 1869 vfs_unrefvfssw(vswp); 1870 if (inargs != opts) 1871 kmem_free(inargs, MAX_MNTOPT_STR); 1872 if (copyout_error) { 1873 lofi_remove(vfsp); 1874 VFS_RELE(vfsp); 1875 error = copyout_error; 1876 } 1877 return (error); 1878 } 1879 1880 static void 1881 vfs_setpath( 1882 struct vfs *vfsp, /* vfs being updated */ 1883 refstr_t **refp, /* Ref-count string to contain the new path */ 1884 const char *newpath, /* Path to add to refp (above) */ 1885 uint32_t flag) /* flag */ 1886 { 1887 size_t len; 1888 refstr_t *ref; 1889 zone_t *zone = curproc->p_zone; 1890 char *sp; 1891 int have_list_lock = 0; 1892 1893 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1894 1895 /* 1896 * New path must be less than MAXPATHLEN because mntfs 1897 * will only display up to MAXPATHLEN bytes. This is currently 1898 * safe, because domount() uses pn_get(), and other callers 1899 * similarly cap the size to fewer than MAXPATHLEN bytes. 1900 */ 1901 1902 ASSERT(strlen(newpath) < MAXPATHLEN); 1903 1904 /* mntfs requires consistency while vfs list lock is held */ 1905 1906 if (VFS_ON_LIST(vfsp)) { 1907 have_list_lock = 1; 1908 vfs_list_lock(); 1909 } 1910 1911 if (*refp != NULL) 1912 refstr_rele(*refp); 1913 1914 /* 1915 * If we are in a non-global zone then we prefix the supplied path, 1916 * newpath, with the zone's root path, with two exceptions. The first 1917 * is where we have been explicitly directed to avoid doing so; this 1918 * will be the case following a failed remount, where the path supplied 1919 * will be a saved version which must now be restored. The second 1920 * exception is where newpath is not a pathname but a descriptive name, 1921 * e.g. "procfs". 1922 */ 1923 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1924 ref = refstr_alloc(newpath); 1925 goto out; 1926 } 1927 1928 /* 1929 * Truncate the trailing '/' in the zoneroot, and merge 1930 * in the zone's rootpath with the "newpath" (resource 1931 * or mountpoint) passed in. 1932 * 1933 * The size of the required buffer is thus the size of 1934 * the buffer required for the passed-in newpath 1935 * (strlen(newpath) + 1), plus the size of the buffer 1936 * required to hold zone_rootpath (zone_rootpathlen) 1937 * minus one for one of the now-superfluous NUL 1938 * terminations, minus one for the trailing '/'. 1939 * 1940 * That gives us: 1941 * 1942 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1943 * 1944 * Which is what we have below. 1945 */ 1946 1947 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1948 sp = kmem_alloc(len, KM_SLEEP); 1949 1950 /* 1951 * Copy everything including the trailing slash, which 1952 * we then overwrite with the NUL character. 1953 */ 1954 1955 (void) strcpy(sp, zone->zone_rootpath); 1956 sp[zone->zone_rootpathlen - 2] = '\0'; 1957 (void) strcat(sp, newpath); 1958 1959 ref = refstr_alloc(sp); 1960 kmem_free(sp, len); 1961 out: 1962 *refp = ref; 1963 1964 if (have_list_lock) { 1965 vfs_mnttab_modtimeupd(); 1966 vfs_list_unlock(); 1967 } 1968 } 1969 1970 /* 1971 * Record a mounted resource name in a vfs structure. 1972 * If vfsp is already mounted, caller must hold the vfs lock. 1973 */ 1974 void 1975 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1976 { 1977 if (resource == NULL || resource[0] == '\0') 1978 resource = VFS_NORESOURCE; 1979 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1980 } 1981 1982 /* 1983 * Record a mount point name in a vfs structure. 1984 * If vfsp is already mounted, caller must hold the vfs lock. 1985 */ 1986 void 1987 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1988 { 1989 if (mntpt == NULL || mntpt[0] == '\0') 1990 mntpt = VFS_NOMNTPT; 1991 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1992 } 1993 1994 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1995 1996 refstr_t * 1997 vfs_getresource(const struct vfs *vfsp) 1998 { 1999 refstr_t *resource; 2000 2001 vfs_list_read_lock(); 2002 resource = vfsp->vfs_resource; 2003 refstr_hold(resource); 2004 vfs_list_unlock(); 2005 2006 return (resource); 2007 } 2008 2009 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 2010 2011 refstr_t * 2012 vfs_getmntpoint(const struct vfs *vfsp) 2013 { 2014 refstr_t *mntpt; 2015 2016 vfs_list_read_lock(); 2017 mntpt = vfsp->vfs_mntpt; 2018 refstr_hold(mntpt); 2019 vfs_list_unlock(); 2020 2021 return (mntpt); 2022 } 2023 2024 /* 2025 * Create an empty options table with enough empty slots to hold all 2026 * The options in the options string passed as an argument. 2027 * Potentially prepend another options table. 2028 * 2029 * Note: caller is responsible for locking the vfs list, if needed, 2030 * to protect mops. 2031 */ 2032 static void 2033 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 2034 const mntopts_t *mtmpl) 2035 { 2036 const char *s = opts; 2037 uint_t count; 2038 2039 if (opts == NULL || *opts == '\0') { 2040 count = 0; 2041 } else { 2042 count = 1; 2043 2044 /* 2045 * Count number of options in the string 2046 */ 2047 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 2048 count++; 2049 s++; 2050 } 2051 } 2052 vfs_copyopttbl_extend(mtmpl, mops, count); 2053 } 2054 2055 /* 2056 * Create an empty options table with enough empty slots to hold all 2057 * The options in the options string passed as an argument. 2058 * 2059 * This function is *not* for general use by filesystems. 2060 * 2061 * Note: caller is responsible for locking the vfs list, if needed, 2062 * to protect mops. 2063 */ 2064 void 2065 vfs_createopttbl(mntopts_t *mops, const char *opts) 2066 { 2067 vfs_createopttbl_extend(mops, opts, NULL); 2068 } 2069 2070 2071 /* 2072 * Swap two mount options tables 2073 */ 2074 static void 2075 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2076 { 2077 uint_t tmpcnt; 2078 mntopt_t *tmplist; 2079 2080 tmpcnt = optbl2->mo_count; 2081 tmplist = optbl2->mo_list; 2082 optbl2->mo_count = optbl1->mo_count; 2083 optbl2->mo_list = optbl1->mo_list; 2084 optbl1->mo_count = tmpcnt; 2085 optbl1->mo_list = tmplist; 2086 } 2087 2088 static void 2089 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2090 { 2091 vfs_list_lock(); 2092 vfs_swapopttbl_nolock(optbl1, optbl2); 2093 vfs_mnttab_modtimeupd(); 2094 vfs_list_unlock(); 2095 } 2096 2097 static char ** 2098 vfs_copycancelopt_extend(char **const moc, int extend) 2099 { 2100 int i = 0; 2101 int j; 2102 char **result; 2103 2104 if (moc != NULL) { 2105 for (; moc[i] != NULL; i++) 2106 /* count number of options to cancel */; 2107 } 2108 2109 if (i + extend == 0) 2110 return (NULL); 2111 2112 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2113 2114 for (j = 0; j < i; j++) { 2115 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2116 (void) strcpy(result[j], moc[j]); 2117 } 2118 for (; j <= i + extend; j++) 2119 result[j] = NULL; 2120 2121 return (result); 2122 } 2123 2124 static void 2125 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2126 { 2127 char *sp, *dp; 2128 2129 d->mo_flags = s->mo_flags; 2130 d->mo_data = s->mo_data; 2131 sp = s->mo_name; 2132 if (sp != NULL) { 2133 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2134 (void) strcpy(dp, sp); 2135 d->mo_name = dp; 2136 } else { 2137 d->mo_name = NULL; /* should never happen */ 2138 } 2139 2140 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2141 2142 sp = s->mo_arg; 2143 if (sp != NULL) { 2144 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2145 (void) strcpy(dp, sp); 2146 d->mo_arg = dp; 2147 } else { 2148 d->mo_arg = NULL; 2149 } 2150 } 2151 2152 /* 2153 * Copy a mount options table, possibly allocating some spare 2154 * slots at the end. It is permissible to copy_extend the NULL table. 2155 */ 2156 static void 2157 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2158 { 2159 uint_t i, count; 2160 mntopt_t *motbl; 2161 2162 /* 2163 * Clear out any existing stuff in the options table being initialized 2164 */ 2165 vfs_freeopttbl(dmo); 2166 count = (smo == NULL) ? 0 : smo->mo_count; 2167 if ((count + extra) == 0) /* nothing to do */ 2168 return; 2169 dmo->mo_count = count + extra; 2170 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2171 dmo->mo_list = motbl; 2172 for (i = 0; i < count; i++) { 2173 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2174 } 2175 for (i = count; i < count + extra; i++) { 2176 motbl[i].mo_flags = MO_EMPTY; 2177 } 2178 } 2179 2180 /* 2181 * Copy a mount options table. 2182 * 2183 * This function is *not* for general use by filesystems. 2184 * 2185 * Note: caller is responsible for locking the vfs list, if needed, 2186 * to protect smo and dmo. 2187 */ 2188 void 2189 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2190 { 2191 vfs_copyopttbl_extend(smo, dmo, 0); 2192 } 2193 2194 static char ** 2195 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2196 { 2197 int c1 = 0; 2198 int c2 = 0; 2199 char **result; 2200 char **sp1, **sp2, **dp; 2201 2202 /* 2203 * First we count both lists of cancel options. 2204 * If either is NULL or has no elements, we return a copy of 2205 * the other. 2206 */ 2207 if (mop1->mo_cancel != NULL) { 2208 for (; mop1->mo_cancel[c1] != NULL; c1++) 2209 /* count cancel options in mop1 */; 2210 } 2211 2212 if (c1 == 0) 2213 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2214 2215 if (mop2->mo_cancel != NULL) { 2216 for (; mop2->mo_cancel[c2] != NULL; c2++) 2217 /* count cancel options in mop2 */; 2218 } 2219 2220 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2221 2222 if (c2 == 0) 2223 return (result); 2224 2225 /* 2226 * When we get here, we've got two sets of cancel options; 2227 * we need to merge the two sets. We know that the result 2228 * array has "c1+c2+1" entries and in the end we might shrink 2229 * it. 2230 * Result now has a copy of the c1 entries from mop1; we'll 2231 * now lookup all the entries of mop2 in mop1 and copy it if 2232 * it is unique. 2233 * This operation is O(n^2) but it's only called once per 2234 * filesystem per duplicate option. This is a situation 2235 * which doesn't arise with the filesystems in ON and 2236 * n is generally 1. 2237 */ 2238 2239 dp = &result[c1]; 2240 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2241 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2242 if (strcmp(*sp1, *sp2) == 0) 2243 break; 2244 } 2245 if (*sp1 == NULL) { 2246 /* 2247 * Option *sp2 not found in mop1, so copy it. 2248 * The calls to vfs_copycancelopt_extend() 2249 * guarantee that there's enough room. 2250 */ 2251 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2252 (void) strcpy(*dp++, *sp2); 2253 } 2254 } 2255 if (dp != &result[c1+c2]) { 2256 size_t bytes = (dp - result + 1) * sizeof (char *); 2257 char **nres = kmem_alloc(bytes, KM_SLEEP); 2258 2259 bcopy(result, nres, bytes); 2260 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2261 result = nres; 2262 } 2263 return (result); 2264 } 2265 2266 /* 2267 * Merge two mount option tables (outer and inner) into one. This is very 2268 * similar to "merging" global variables and automatic variables in C. 2269 * 2270 * This isn't (and doesn't have to be) fast. 2271 * 2272 * This function is *not* for general use by filesystems. 2273 * 2274 * Note: caller is responsible for locking the vfs list, if needed, 2275 * to protect omo, imo & dmo. 2276 */ 2277 void 2278 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2279 { 2280 uint_t i, count; 2281 mntopt_t *mop, *motbl; 2282 uint_t freeidx; 2283 2284 /* 2285 * First determine how much space we need to allocate. 2286 */ 2287 count = omo->mo_count; 2288 for (i = 0; i < imo->mo_count; i++) { 2289 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2290 continue; 2291 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2292 count++; 2293 } 2294 ASSERT(count >= omo->mo_count && 2295 count <= omo->mo_count + imo->mo_count); 2296 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2297 for (i = 0; i < omo->mo_count; i++) 2298 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2299 freeidx = omo->mo_count; 2300 for (i = 0; i < imo->mo_count; i++) { 2301 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2302 continue; 2303 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2304 char **newcanp; 2305 uint_t index = mop - omo->mo_list; 2306 2307 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2308 2309 vfs_freeopt(&motbl[index]); 2310 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2311 2312 vfs_freecancelopt(motbl[index].mo_cancel); 2313 motbl[index].mo_cancel = newcanp; 2314 } else { 2315 /* 2316 * If it's a new option, just copy it over to the first 2317 * free location. 2318 */ 2319 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2320 } 2321 } 2322 dmo->mo_count = count; 2323 dmo->mo_list = motbl; 2324 } 2325 2326 /* 2327 * Functions to set and clear mount options in a mount options table. 2328 */ 2329 2330 /* 2331 * Clear a mount option, if it exists. 2332 * 2333 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2334 * the vfs list. 2335 */ 2336 static void 2337 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2338 { 2339 struct mntopt *mop; 2340 uint_t i, count; 2341 2342 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2343 2344 count = mops->mo_count; 2345 for (i = 0; i < count; i++) { 2346 mop = &mops->mo_list[i]; 2347 2348 if (mop->mo_flags & MO_EMPTY) 2349 continue; 2350 if (strcmp(opt, mop->mo_name)) 2351 continue; 2352 mop->mo_flags &= ~MO_SET; 2353 if (mop->mo_arg != NULL) { 2354 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2355 } 2356 mop->mo_arg = NULL; 2357 if (update_mnttab) 2358 vfs_mnttab_modtimeupd(); 2359 break; 2360 } 2361 } 2362 2363 void 2364 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2365 { 2366 int gotlock = 0; 2367 2368 if (VFS_ON_LIST(vfsp)) { 2369 gotlock = 1; 2370 vfs_list_lock(); 2371 } 2372 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2373 if (gotlock) 2374 vfs_list_unlock(); 2375 } 2376 2377 2378 /* 2379 * Set a mount option on. If it's not found in the table, it's silently 2380 * ignored. If the option has MO_IGNORE set, it is still set unless the 2381 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2382 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2383 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2384 * MO_EMPTY set is created as the option passed in. 2385 * 2386 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2387 * the vfs list. 2388 */ 2389 static void 2390 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2391 const char *arg, int flags, int update_mnttab) 2392 { 2393 mntopt_t *mop; 2394 uint_t i, count; 2395 char *sp; 2396 2397 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2398 2399 if (flags & VFS_CREATEOPT) { 2400 if (vfs_hasopt(mops, opt) != NULL) { 2401 flags &= ~VFS_CREATEOPT; 2402 } 2403 } 2404 count = mops->mo_count; 2405 for (i = 0; i < count; i++) { 2406 mop = &mops->mo_list[i]; 2407 2408 if (mop->mo_flags & MO_EMPTY) { 2409 if ((flags & VFS_CREATEOPT) == 0) 2410 continue; 2411 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2412 (void) strcpy(sp, opt); 2413 mop->mo_name = sp; 2414 if (arg != NULL) 2415 mop->mo_flags = MO_HASVALUE; 2416 else 2417 mop->mo_flags = 0; 2418 } else if (strcmp(opt, mop->mo_name)) { 2419 continue; 2420 } 2421 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2422 break; 2423 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2424 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2425 (void) strcpy(sp, arg); 2426 } else { 2427 sp = NULL; 2428 } 2429 if (mop->mo_arg != NULL) 2430 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2431 mop->mo_arg = sp; 2432 if (flags & VFS_DISPLAY) 2433 mop->mo_flags &= ~MO_NODISPLAY; 2434 if (flags & VFS_NODISPLAY) 2435 mop->mo_flags |= MO_NODISPLAY; 2436 mop->mo_flags |= MO_SET; 2437 if (mop->mo_cancel != NULL) { 2438 char **cp; 2439 2440 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2441 vfs_clearmntopt_nolock(mops, *cp, 0); 2442 } 2443 if (update_mnttab) 2444 vfs_mnttab_modtimeupd(); 2445 break; 2446 } 2447 } 2448 2449 void 2450 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2451 { 2452 int gotlock = 0; 2453 2454 if (VFS_ON_LIST(vfsp)) { 2455 gotlock = 1; 2456 vfs_list_lock(); 2457 } 2458 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2459 if (gotlock) 2460 vfs_list_unlock(); 2461 } 2462 2463 2464 /* 2465 * Add a "tag" option to a mounted file system's options list. 2466 * 2467 * Note: caller is responsible for locking the vfs list, if needed, 2468 * to protect mops. 2469 */ 2470 static mntopt_t * 2471 vfs_addtag(mntopts_t *mops, const char *tag) 2472 { 2473 uint_t count; 2474 mntopt_t *mop, *motbl; 2475 2476 count = mops->mo_count + 1; 2477 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2478 if (mops->mo_count) { 2479 size_t len = (count - 1) * sizeof (mntopt_t); 2480 2481 bcopy(mops->mo_list, motbl, len); 2482 kmem_free(mops->mo_list, len); 2483 } 2484 mops->mo_count = count; 2485 mops->mo_list = motbl; 2486 mop = &motbl[count - 1]; 2487 mop->mo_flags = MO_TAG; 2488 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2489 (void) strcpy(mop->mo_name, tag); 2490 return (mop); 2491 } 2492 2493 /* 2494 * Allow users to set arbitrary "tags" in a vfs's mount options. 2495 * Broader use within the kernel is discouraged. 2496 */ 2497 int 2498 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2499 cred_t *cr) 2500 { 2501 vfs_t *vfsp; 2502 mntopts_t *mops; 2503 mntopt_t *mop; 2504 int found = 0; 2505 dev_t dev = makedevice(major, minor); 2506 int err = 0; 2507 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2508 2509 /* 2510 * Find the desired mounted file system 2511 */ 2512 vfs_list_lock(); 2513 vfsp = rootvfs; 2514 do { 2515 if (vfsp->vfs_dev == dev && 2516 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2517 found = 1; 2518 break; 2519 } 2520 vfsp = vfsp->vfs_next; 2521 } while (vfsp != rootvfs); 2522 2523 if (!found) { 2524 err = EINVAL; 2525 goto out; 2526 } 2527 err = secpolicy_fs_config(cr, vfsp); 2528 if (err != 0) 2529 goto out; 2530 2531 mops = &vfsp->vfs_mntopts; 2532 /* 2533 * Add tag if it doesn't already exist 2534 */ 2535 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2536 int len; 2537 2538 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2539 len = strlen(buf); 2540 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2541 err = ENAMETOOLONG; 2542 goto out; 2543 } 2544 mop = vfs_addtag(mops, tag); 2545 } 2546 if ((mop->mo_flags & MO_TAG) == 0) { 2547 err = EINVAL; 2548 goto out; 2549 } 2550 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2551 out: 2552 vfs_list_unlock(); 2553 kmem_free(buf, MAX_MNTOPT_STR); 2554 return (err); 2555 } 2556 2557 /* 2558 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2559 * Broader use within the kernel is discouraged. 2560 */ 2561 int 2562 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2563 cred_t *cr) 2564 { 2565 vfs_t *vfsp; 2566 mntopt_t *mop; 2567 int found = 0; 2568 dev_t dev = makedevice(major, minor); 2569 int err = 0; 2570 2571 /* 2572 * Find the desired mounted file system 2573 */ 2574 vfs_list_lock(); 2575 vfsp = rootvfs; 2576 do { 2577 if (vfsp->vfs_dev == dev && 2578 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2579 found = 1; 2580 break; 2581 } 2582 vfsp = vfsp->vfs_next; 2583 } while (vfsp != rootvfs); 2584 2585 if (!found) { 2586 err = EINVAL; 2587 goto out; 2588 } 2589 err = secpolicy_fs_config(cr, vfsp); 2590 if (err != 0) 2591 goto out; 2592 2593 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2594 err = EINVAL; 2595 goto out; 2596 } 2597 if ((mop->mo_flags & MO_TAG) == 0) { 2598 err = EINVAL; 2599 goto out; 2600 } 2601 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2602 out: 2603 vfs_list_unlock(); 2604 return (err); 2605 } 2606 2607 /* 2608 * Function to parse an option string and fill in a mount options table. 2609 * Unknown options are silently ignored. The input option string is modified 2610 * by replacing separators with nulls. If the create flag is set, options 2611 * not found in the table are just added on the fly. The table must have 2612 * an option slot marked MO_EMPTY to add an option on the fly. 2613 * 2614 * This function is *not* for general use by filesystems. 2615 * 2616 * Note: caller is responsible for locking the vfs list, if needed, 2617 * to protect mops.. 2618 */ 2619 void 2620 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2621 { 2622 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2623 int setflg = VFS_NOFORCEOPT; 2624 2625 if (osp == NULL) 2626 return; 2627 while (*s != '\0') { 2628 p = strchr(s, ','); /* find next option */ 2629 if (p == NULL) { 2630 cp = NULL; 2631 p = s + strlen(s); 2632 } else { 2633 cp = p; /* save location of comma */ 2634 *p++ = '\0'; /* mark end and point to next option */ 2635 } 2636 nextop = p; 2637 p = strchr(s, '='); /* look for value */ 2638 if (p == NULL) { 2639 valp = NULL; /* no value supplied */ 2640 } else { 2641 ep = p; /* save location of equals */ 2642 *p++ = '\0'; /* end option and point to value */ 2643 valp = p; 2644 } 2645 /* 2646 * set option into options table 2647 */ 2648 if (create) 2649 setflg |= VFS_CREATEOPT; 2650 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2651 if (cp != NULL) 2652 *cp = ','; /* restore the comma */ 2653 if (valp != NULL) 2654 *ep = '='; /* restore the equals */ 2655 s = nextop; 2656 } 2657 } 2658 2659 /* 2660 * Function to inquire if an option exists in a mount options table. 2661 * Returns a pointer to the option if it exists, else NULL. 2662 * 2663 * This function is *not* for general use by filesystems. 2664 * 2665 * Note: caller is responsible for locking the vfs list, if needed, 2666 * to protect mops. 2667 */ 2668 struct mntopt * 2669 vfs_hasopt(const mntopts_t *mops, const char *opt) 2670 { 2671 struct mntopt *mop; 2672 uint_t i, count; 2673 2674 count = mops->mo_count; 2675 for (i = 0; i < count; i++) { 2676 mop = &mops->mo_list[i]; 2677 2678 if (mop->mo_flags & MO_EMPTY) 2679 continue; 2680 if (strcmp(opt, mop->mo_name) == 0) 2681 return (mop); 2682 } 2683 return (NULL); 2684 } 2685 2686 /* 2687 * Function to inquire if an option is set in a mount options table. 2688 * Returns non-zero if set and fills in the arg pointer with a pointer to 2689 * the argument string or NULL if there is no argument string. 2690 */ 2691 static int 2692 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2693 { 2694 struct mntopt *mop; 2695 uint_t i, count; 2696 2697 count = mops->mo_count; 2698 for (i = 0; i < count; i++) { 2699 mop = &mops->mo_list[i]; 2700 2701 if (mop->mo_flags & MO_EMPTY) 2702 continue; 2703 if (strcmp(opt, mop->mo_name)) 2704 continue; 2705 if ((mop->mo_flags & MO_SET) == 0) 2706 return (0); 2707 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2708 *argp = mop->mo_arg; 2709 return (1); 2710 } 2711 return (0); 2712 } 2713 2714 2715 int 2716 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2717 { 2718 int ret; 2719 2720 vfs_list_read_lock(); 2721 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2722 vfs_list_unlock(); 2723 return (ret); 2724 } 2725 2726 2727 /* 2728 * Construct a comma separated string of the options set in the given 2729 * mount table, return the string in the given buffer. Return non-zero if 2730 * the buffer would overflow. 2731 * 2732 * This function is *not* for general use by filesystems. 2733 * 2734 * Note: caller is responsible for locking the vfs list, if needed, 2735 * to protect mp. 2736 */ 2737 int 2738 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2739 { 2740 char *cp; 2741 uint_t i; 2742 2743 buf[0] = '\0'; 2744 cp = buf; 2745 for (i = 0; i < mp->mo_count; i++) { 2746 struct mntopt *mop; 2747 2748 mop = &mp->mo_list[i]; 2749 if (mop->mo_flags & MO_SET) { 2750 int optlen, comma = 0; 2751 2752 if (buf[0] != '\0') 2753 comma = 1; 2754 optlen = strlen(mop->mo_name); 2755 if (strlen(buf) + comma + optlen + 1 > len) 2756 goto err; 2757 if (comma) 2758 *cp++ = ','; 2759 (void) strcpy(cp, mop->mo_name); 2760 cp += optlen; 2761 /* 2762 * Append option value if there is one 2763 */ 2764 if (mop->mo_arg != NULL) { 2765 int arglen; 2766 2767 arglen = strlen(mop->mo_arg); 2768 if (strlen(buf) + arglen + 2 > len) 2769 goto err; 2770 *cp++ = '='; 2771 (void) strcpy(cp, mop->mo_arg); 2772 cp += arglen; 2773 } 2774 } 2775 } 2776 return (0); 2777 err: 2778 return (EOVERFLOW); 2779 } 2780 2781 static void 2782 vfs_freecancelopt(char **moc) 2783 { 2784 if (moc != NULL) { 2785 int ccnt = 0; 2786 char **cp; 2787 2788 for (cp = moc; *cp != NULL; cp++) { 2789 kmem_free(*cp, strlen(*cp) + 1); 2790 ccnt++; 2791 } 2792 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2793 } 2794 } 2795 2796 static void 2797 vfs_freeopt(mntopt_t *mop) 2798 { 2799 if (mop->mo_name != NULL) 2800 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2801 2802 vfs_freecancelopt(mop->mo_cancel); 2803 2804 if (mop->mo_arg != NULL) 2805 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2806 } 2807 2808 /* 2809 * Free a mount options table 2810 * 2811 * This function is *not* for general use by filesystems. 2812 * 2813 * Note: caller is responsible for locking the vfs list, if needed, 2814 * to protect mp. 2815 */ 2816 void 2817 vfs_freeopttbl(mntopts_t *mp) 2818 { 2819 uint_t i, count; 2820 2821 count = mp->mo_count; 2822 for (i = 0; i < count; i++) { 2823 vfs_freeopt(&mp->mo_list[i]); 2824 } 2825 if (count) { 2826 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2827 mp->mo_count = 0; 2828 mp->mo_list = NULL; 2829 } 2830 } 2831 2832 2833 /* ARGSUSED */ 2834 static int 2835 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2836 caller_context_t *ct) 2837 { 2838 return (0); 2839 } 2840 2841 /* ARGSUSED */ 2842 static int 2843 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2844 caller_context_t *ct) 2845 { 2846 return (0); 2847 } 2848 2849 /* 2850 * The dummy vnode is currently used only by file events notification 2851 * module which is just interested in the timestamps. 2852 */ 2853 /* ARGSUSED */ 2854 static int 2855 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2856 caller_context_t *ct) 2857 { 2858 bzero(vap, sizeof (vattr_t)); 2859 vap->va_type = VREG; 2860 vap->va_nlink = 1; 2861 vap->va_ctime = vfs_mnttab_ctime; 2862 /* 2863 * it is ok to just copy mtime as the time will be monotonically 2864 * increasing. 2865 */ 2866 vap->va_mtime = vfs_mnttab_mtime; 2867 vap->va_atime = vap->va_mtime; 2868 return (0); 2869 } 2870 2871 static void 2872 vfs_mnttabvp_setup(void) 2873 { 2874 vnode_t *tvp; 2875 vnodeops_t *vfs_mntdummyvnops; 2876 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2877 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2878 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2879 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2880 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2881 NULL, NULL 2882 }; 2883 2884 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2885 &vfs_mntdummyvnops) != 0) { 2886 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2887 /* Shouldn't happen, but not bad enough to panic */ 2888 return; 2889 } 2890 2891 /* 2892 * A global dummy vnode is allocated to represent mntfs files. 2893 * The mntfs file (/etc/mnttab) can be monitored for file events 2894 * and receive an event when mnttab changes. Dummy VOP calls 2895 * will be made on this vnode. The file events notification module 2896 * intercepts this vnode and delivers relevant events. 2897 */ 2898 tvp = vn_alloc(KM_SLEEP); 2899 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2900 vn_setops(tvp, vfs_mntdummyvnops); 2901 tvp->v_type = VREG; 2902 /* 2903 * The mnt dummy ops do not reference v_data. 2904 * No other module intercepting this vnode should either. 2905 * Just set it to point to itself. 2906 */ 2907 tvp->v_data = (caddr_t)tvp; 2908 tvp->v_vfsp = rootvfs; 2909 vfs_mntdummyvp = tvp; 2910 } 2911 2912 /* 2913 * performs fake read/write ops 2914 */ 2915 static void 2916 vfs_mnttab_rwop(int rw) 2917 { 2918 struct uio uio; 2919 struct iovec iov; 2920 char buf[1]; 2921 2922 if (vfs_mntdummyvp == NULL) 2923 return; 2924 2925 bzero(&uio, sizeof (uio)); 2926 bzero(&iov, sizeof (iov)); 2927 iov.iov_base = buf; 2928 iov.iov_len = 0; 2929 uio.uio_iov = &iov; 2930 uio.uio_iovcnt = 1; 2931 uio.uio_loffset = 0; 2932 uio.uio_segflg = UIO_SYSSPACE; 2933 uio.uio_resid = 0; 2934 if (rw) { 2935 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2936 } else { 2937 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2938 } 2939 } 2940 2941 /* 2942 * Generate a write operation. 2943 */ 2944 void 2945 vfs_mnttab_writeop(void) 2946 { 2947 vfs_mnttab_rwop(1); 2948 } 2949 2950 /* 2951 * Generate a read operation. 2952 */ 2953 void 2954 vfs_mnttab_readop(void) 2955 { 2956 vfs_mnttab_rwop(0); 2957 } 2958 2959 /* 2960 * Free any mnttab information recorded in the vfs struct. 2961 * The vfs must not be on the vfs list. 2962 */ 2963 static void 2964 vfs_freemnttab(struct vfs *vfsp) 2965 { 2966 ASSERT(!VFS_ON_LIST(vfsp)); 2967 2968 /* 2969 * Free device and mount point information 2970 */ 2971 if (vfsp->vfs_mntpt != NULL) { 2972 refstr_rele(vfsp->vfs_mntpt); 2973 vfsp->vfs_mntpt = NULL; 2974 } 2975 if (vfsp->vfs_resource != NULL) { 2976 refstr_rele(vfsp->vfs_resource); 2977 vfsp->vfs_resource = NULL; 2978 } 2979 /* 2980 * Now free mount options information 2981 */ 2982 vfs_freeopttbl(&vfsp->vfs_mntopts); 2983 } 2984 2985 /* 2986 * Return the last mnttab modification time 2987 */ 2988 void 2989 vfs_mnttab_modtime(timespec_t *ts) 2990 { 2991 ASSERT(RW_LOCK_HELD(&vfslist)); 2992 *ts = vfs_mnttab_mtime; 2993 } 2994 2995 /* 2996 * See if mnttab is changed 2997 */ 2998 void 2999 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 3000 { 3001 int changed; 3002 3003 *phpp = (struct pollhead *)NULL; 3004 3005 /* 3006 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 3007 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 3008 * to not grab the vfs list lock because tv_sec is monotonically 3009 * increasing. 3010 */ 3011 3012 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 3013 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 3014 if (!changed) { 3015 *phpp = &vfs_pollhd; 3016 } 3017 } 3018 3019 /* Provide a unique and monotonically-increasing timestamp. */ 3020 void 3021 vfs_mono_time(timespec_t *ts) 3022 { 3023 static volatile hrtime_t hrt; /* The saved time. */ 3024 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 3025 timespec_t newts; 3026 3027 /* 3028 * Try gethrestime() first, but be prepared to fabricate a sensible 3029 * answer at the first sign of any trouble. 3030 */ 3031 gethrestime(&newts); 3032 newhrt = ts2hrt(&newts); 3033 for (;;) { 3034 oldhrt = hrt; 3035 if (newhrt <= hrt) 3036 newhrt = hrt + 1; 3037 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 3038 break; 3039 } 3040 hrt2ts(newhrt, ts); 3041 } 3042 3043 /* 3044 * Update the mnttab modification time and wake up any waiters for 3045 * mnttab changes 3046 */ 3047 void 3048 vfs_mnttab_modtimeupd() 3049 { 3050 hrtime_t oldhrt, newhrt; 3051 3052 ASSERT(RW_WRITE_HELD(&vfslist)); 3053 oldhrt = ts2hrt(&vfs_mnttab_mtime); 3054 gethrestime(&vfs_mnttab_mtime); 3055 newhrt = ts2hrt(&vfs_mnttab_mtime); 3056 if (oldhrt == (hrtime_t)0) 3057 vfs_mnttab_ctime = vfs_mnttab_mtime; 3058 /* 3059 * Attempt to provide unique mtime (like uniqtime but not). 3060 */ 3061 if (newhrt == oldhrt) { 3062 newhrt++; 3063 hrt2ts(newhrt, &vfs_mnttab_mtime); 3064 } 3065 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3066 vfs_mnttab_writeop(); 3067 } 3068 3069 int 3070 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3071 { 3072 vnode_t *coveredvp; 3073 int error; 3074 extern void teardown_vopstats(vfs_t *); 3075 3076 /* 3077 * Get covered vnode. This will be NULL if the vfs is not linked 3078 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3079 */ 3080 coveredvp = vfsp->vfs_vnodecovered; 3081 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3082 3083 /* 3084 * Purge all dnlc entries for this vfs. 3085 */ 3086 (void) dnlc_purge_vfsp(vfsp, 0); 3087 3088 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3089 if ((flag & MS_FORCE) == 0) 3090 (void) VFS_SYNC(vfsp, 0, cr); 3091 3092 /* 3093 * Lock the vfs to maintain fs status quo during unmount. This 3094 * has to be done after the sync because ufs_update tries to acquire 3095 * the vfs_reflock. 3096 */ 3097 vfs_lock_wait(vfsp); 3098 3099 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3100 vfs_unlock(vfsp); 3101 if (coveredvp != NULL) 3102 vn_vfsunlock(coveredvp); 3103 } else if (coveredvp != NULL) { 3104 teardown_vopstats(vfsp); 3105 /* 3106 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3107 * when it frees vfsp so we do a VN_HOLD() so we can 3108 * continue to use coveredvp afterwards. 3109 */ 3110 VN_HOLD(coveredvp); 3111 vfs_remove(vfsp); 3112 vn_vfsunlock(coveredvp); 3113 VN_RELE(coveredvp); 3114 } else { 3115 teardown_vopstats(vfsp); 3116 /* 3117 * Release the reference to vfs that is not linked 3118 * into the name space. 3119 */ 3120 vfs_unlock(vfsp); 3121 VFS_RELE(vfsp); 3122 } 3123 return (error); 3124 } 3125 3126 3127 /* 3128 * Vfs_unmountall() is called by uadmin() to unmount all 3129 * mounted file systems (except the root file system) during shutdown. 3130 * It follows the existing locking protocol when traversing the vfs list 3131 * to sync and unmount vfses. Even though there should be no 3132 * other thread running while the system is shutting down, it is prudent 3133 * to still follow the locking protocol. 3134 */ 3135 void 3136 vfs_unmountall(void) 3137 { 3138 struct vfs *vfsp; 3139 struct vfs *prev_vfsp = NULL; 3140 int error; 3141 3142 /* 3143 * Toss all dnlc entries now so that the per-vfs sync 3144 * and unmount operations don't have to slog through 3145 * a bunch of uninteresting vnodes over and over again. 3146 */ 3147 dnlc_purge(); 3148 3149 vfs_list_lock(); 3150 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3151 prev_vfsp = vfsp->vfs_prev; 3152 3153 if (vfs_lock(vfsp) != 0) 3154 continue; 3155 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3156 vfs_unlock(vfsp); 3157 if (error) 3158 continue; 3159 3160 vfs_list_unlock(); 3161 3162 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3163 (void) dounmount(vfsp, 0, CRED()); 3164 3165 /* 3166 * Since we dropped the vfslist lock above we must 3167 * verify that next_vfsp still exists, else start over. 3168 */ 3169 vfs_list_lock(); 3170 for (vfsp = rootvfs->vfs_prev; 3171 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3172 if (vfsp == prev_vfsp) 3173 break; 3174 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3175 prev_vfsp = rootvfs->vfs_prev; 3176 } 3177 vfs_list_unlock(); 3178 } 3179 3180 /* 3181 * Called to add an entry to the end of the vfs mount in progress list 3182 */ 3183 void 3184 vfs_addmip(dev_t dev, struct vfs *vfsp) 3185 { 3186 struct ipmnt *mipp; 3187 3188 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3189 mipp->mip_next = NULL; 3190 mipp->mip_dev = dev; 3191 mipp->mip_vfsp = vfsp; 3192 mutex_enter(&vfs_miplist_mutex); 3193 if (vfs_miplist_end != NULL) 3194 vfs_miplist_end->mip_next = mipp; 3195 else 3196 vfs_miplist = mipp; 3197 vfs_miplist_end = mipp; 3198 mutex_exit(&vfs_miplist_mutex); 3199 } 3200 3201 /* 3202 * Called to remove an entry from the mount in progress list 3203 * Either because the mount completed or it failed. 3204 */ 3205 void 3206 vfs_delmip(struct vfs *vfsp) 3207 { 3208 struct ipmnt *mipp, *mipprev; 3209 3210 mutex_enter(&vfs_miplist_mutex); 3211 mipprev = NULL; 3212 for (mipp = vfs_miplist; 3213 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3214 mipprev = mipp; 3215 } 3216 if (mipp == NULL) 3217 return; /* shouldn't happen */ 3218 if (mipp == vfs_miplist_end) 3219 vfs_miplist_end = mipprev; 3220 if (mipprev == NULL) 3221 vfs_miplist = mipp->mip_next; 3222 else 3223 mipprev->mip_next = mipp->mip_next; 3224 mutex_exit(&vfs_miplist_mutex); 3225 kmem_free(mipp, sizeof (struct ipmnt)); 3226 } 3227 3228 /* 3229 * vfs_add is called by a specific filesystem's mount routine to add 3230 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3231 * The vfs should already have been locked by the caller. 3232 * 3233 * coveredvp is NULL if this is the root. 3234 */ 3235 void 3236 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3237 { 3238 int newflag; 3239 3240 ASSERT(vfs_lock_held(vfsp)); 3241 VFS_HOLD(vfsp); 3242 newflag = vfsp->vfs_flag; 3243 if (mflag & MS_RDONLY) 3244 newflag |= VFS_RDONLY; 3245 else 3246 newflag &= ~VFS_RDONLY; 3247 if (mflag & MS_NOSUID) 3248 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3249 else 3250 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3251 if (mflag & MS_NOMNTTAB) 3252 newflag |= VFS_NOMNTTAB; 3253 else 3254 newflag &= ~VFS_NOMNTTAB; 3255 3256 if (coveredvp != NULL) { 3257 ASSERT(vn_vfswlock_held(coveredvp)); 3258 coveredvp->v_vfsmountedhere = vfsp; 3259 VN_HOLD(coveredvp); 3260 } 3261 vfsp->vfs_vnodecovered = coveredvp; 3262 vfsp->vfs_flag = newflag; 3263 3264 vfs_list_add(vfsp); 3265 } 3266 3267 /* 3268 * Remove a vfs from the vfs list, null out the pointer from the 3269 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3270 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3271 * reference to the vfs and to the covered vnode. 3272 * 3273 * Called from dounmount after it's confirmed with the file system 3274 * that the unmount is legal. 3275 */ 3276 void 3277 vfs_remove(struct vfs *vfsp) 3278 { 3279 vnode_t *vp; 3280 3281 ASSERT(vfs_lock_held(vfsp)); 3282 3283 /* 3284 * Can't unmount root. Should never happen because fs will 3285 * be busy. 3286 */ 3287 if (vfsp == rootvfs) 3288 panic("vfs_remove: unmounting root"); 3289 3290 vfs_list_remove(vfsp); 3291 3292 /* 3293 * Unhook from the file system name space. 3294 */ 3295 vp = vfsp->vfs_vnodecovered; 3296 ASSERT(vn_vfswlock_held(vp)); 3297 vp->v_vfsmountedhere = NULL; 3298 vfsp->vfs_vnodecovered = NULL; 3299 VN_RELE(vp); 3300 3301 /* 3302 * Release lock and wakeup anybody waiting. 3303 */ 3304 vfs_unlock(vfsp); 3305 VFS_RELE(vfsp); 3306 } 3307 3308 /* 3309 * Lock a filesystem to prevent access to it while mounting, 3310 * unmounting and syncing. Return EBUSY immediately if lock 3311 * can't be acquired. 3312 */ 3313 int 3314 vfs_lock(vfs_t *vfsp) 3315 { 3316 vn_vfslocks_entry_t *vpvfsentry; 3317 3318 vpvfsentry = vn_vfslocks_getlock(vfsp); 3319 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3320 return (0); 3321 3322 vn_vfslocks_rele(vpvfsentry); 3323 return (EBUSY); 3324 } 3325 3326 int 3327 vfs_rlock(vfs_t *vfsp) 3328 { 3329 vn_vfslocks_entry_t *vpvfsentry; 3330 3331 vpvfsentry = vn_vfslocks_getlock(vfsp); 3332 3333 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3334 return (0); 3335 3336 vn_vfslocks_rele(vpvfsentry); 3337 return (EBUSY); 3338 } 3339 3340 void 3341 vfs_lock_wait(vfs_t *vfsp) 3342 { 3343 vn_vfslocks_entry_t *vpvfsentry; 3344 3345 vpvfsentry = vn_vfslocks_getlock(vfsp); 3346 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3347 } 3348 3349 void 3350 vfs_rlock_wait(vfs_t *vfsp) 3351 { 3352 vn_vfslocks_entry_t *vpvfsentry; 3353 3354 vpvfsentry = vn_vfslocks_getlock(vfsp); 3355 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3356 } 3357 3358 /* 3359 * Unlock a locked filesystem. 3360 */ 3361 void 3362 vfs_unlock(vfs_t *vfsp) 3363 { 3364 vn_vfslocks_entry_t *vpvfsentry; 3365 3366 /* 3367 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3368 * And these changes should remain for the patch changes as it is. 3369 */ 3370 if (panicstr) 3371 return; 3372 3373 /* 3374 * ve_refcount needs to be dropped twice here. 3375 * 1. To release refernce after a call to vfs_locks_getlock() 3376 * 2. To release the reference from the locking routines like 3377 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3378 */ 3379 3380 vpvfsentry = vn_vfslocks_getlock(vfsp); 3381 vn_vfslocks_rele(vpvfsentry); 3382 3383 rwst_exit(&vpvfsentry->ve_lock); 3384 vn_vfslocks_rele(vpvfsentry); 3385 } 3386 3387 /* 3388 * Utility routine that allows a filesystem to construct its 3389 * fsid in "the usual way" - by munging some underlying dev_t and 3390 * the filesystem type number into the 64-bit fsid. Note that 3391 * this implicitly relies on dev_t persistence to make filesystem 3392 * id's persistent. 3393 * 3394 * There's nothing to prevent an individual fs from constructing its 3395 * fsid in a different way, and indeed they should. 3396 * 3397 * Since we want fsids to be 32-bit quantities (so that they can be 3398 * exported identically by either 32-bit or 64-bit APIs, as well as 3399 * the fact that fsid's are "known" to NFS), we compress the device 3400 * number given down to 32-bits, and panic if that isn't possible. 3401 */ 3402 void 3403 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3404 { 3405 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3406 panic("device number too big for fsid!"); 3407 fsi->val[1] = val; 3408 } 3409 3410 int 3411 vfs_lock_held(vfs_t *vfsp) 3412 { 3413 int held; 3414 vn_vfslocks_entry_t *vpvfsentry; 3415 3416 /* 3417 * vfs_lock_held will mimic sema_held behaviour 3418 * if panicstr is set. And these changes should remain 3419 * for the patch changes as it is. 3420 */ 3421 if (panicstr) 3422 return (1); 3423 3424 vpvfsentry = vn_vfslocks_getlock(vfsp); 3425 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3426 3427 vn_vfslocks_rele(vpvfsentry); 3428 return (held); 3429 } 3430 3431 struct _kthread * 3432 vfs_lock_owner(vfs_t *vfsp) 3433 { 3434 struct _kthread *owner; 3435 vn_vfslocks_entry_t *vpvfsentry; 3436 3437 /* 3438 * vfs_wlock_held will mimic sema_held behaviour 3439 * if panicstr is set. And these changes should remain 3440 * for the patch changes as it is. 3441 */ 3442 if (panicstr) 3443 return (NULL); 3444 3445 vpvfsentry = vn_vfslocks_getlock(vfsp); 3446 owner = rwst_owner(&vpvfsentry->ve_lock); 3447 3448 vn_vfslocks_rele(vpvfsentry); 3449 return (owner); 3450 } 3451 3452 /* 3453 * vfs list locking. 3454 * 3455 * Rather than manipulate the vfslist lock directly, we abstract into lock 3456 * and unlock routines to allow the locking implementation to be changed for 3457 * clustering. 3458 * 3459 * Whenever the vfs list is modified through its hash links, the overall list 3460 * lock must be obtained before locking the relevant hash bucket. But to see 3461 * whether a given vfs is on the list, it suffices to obtain the lock for the 3462 * hash bucket without getting the overall list lock. (See getvfs() below.) 3463 */ 3464 3465 void 3466 vfs_list_lock() 3467 { 3468 rw_enter(&vfslist, RW_WRITER); 3469 } 3470 3471 void 3472 vfs_list_read_lock() 3473 { 3474 rw_enter(&vfslist, RW_READER); 3475 } 3476 3477 void 3478 vfs_list_unlock() 3479 { 3480 rw_exit(&vfslist); 3481 } 3482 3483 /* 3484 * Low level worker routines for adding entries to and removing entries from 3485 * the vfs list. 3486 */ 3487 3488 static void 3489 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3490 { 3491 int vhno; 3492 struct vfs **hp; 3493 dev_t dev; 3494 3495 ASSERT(RW_WRITE_HELD(&vfslist)); 3496 3497 dev = expldev(vfsp->vfs_fsid.val[0]); 3498 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3499 3500 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3501 3502 /* 3503 * Link into the hash table, inserting it at the end, so that LOFS 3504 * with the same fsid as UFS (or other) file systems will not hide the 3505 * UFS. 3506 */ 3507 if (insert_at_head) { 3508 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3509 rvfs_list[vhno].rvfs_head = vfsp; 3510 } else { 3511 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3512 hp = &(*hp)->vfs_hash) 3513 continue; 3514 /* 3515 * hp now contains the address of the pointer to update 3516 * to effect the insertion. 3517 */ 3518 vfsp->vfs_hash = NULL; 3519 *hp = vfsp; 3520 } 3521 3522 rvfs_list[vhno].rvfs_len++; 3523 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3524 } 3525 3526 3527 static void 3528 vfs_hash_remove(struct vfs *vfsp) 3529 { 3530 int vhno; 3531 struct vfs *tvfsp; 3532 dev_t dev; 3533 3534 ASSERT(RW_WRITE_HELD(&vfslist)); 3535 3536 dev = expldev(vfsp->vfs_fsid.val[0]); 3537 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3538 3539 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3540 3541 /* 3542 * Remove from hash. 3543 */ 3544 if (rvfs_list[vhno].rvfs_head == vfsp) { 3545 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3546 rvfs_list[vhno].rvfs_len--; 3547 goto foundit; 3548 } 3549 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3550 tvfsp = tvfsp->vfs_hash) { 3551 if (tvfsp->vfs_hash == vfsp) { 3552 tvfsp->vfs_hash = vfsp->vfs_hash; 3553 rvfs_list[vhno].rvfs_len--; 3554 goto foundit; 3555 } 3556 } 3557 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3558 3559 foundit: 3560 3561 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3562 } 3563 3564 3565 void 3566 vfs_list_add(struct vfs *vfsp) 3567 { 3568 zone_t *zone; 3569 3570 /* 3571 * Typically, the vfs_t will have been created on behalf of the file 3572 * system in vfs_init, where it will have been provided with a 3573 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3574 * by an unbundled file system. We therefore check for such an example 3575 * before stamping the vfs_t with its creation time for the benefit of 3576 * mntfs. 3577 */ 3578 if (vfsp->vfs_implp == NULL) 3579 vfsimpl_setup(vfsp); 3580 vfs_mono_time(&vfsp->vfs_hrctime); 3581 3582 /* 3583 * The zone that owns the mount is the one that performed the mount. 3584 * Note that this isn't necessarily the same as the zone mounted into. 3585 * The corresponding zone_rele_ref() will be done when the vfs_t 3586 * is being free'd. 3587 */ 3588 vfsp->vfs_zone = curproc->p_zone; 3589 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3590 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3591 ZONE_REF_VFS); 3592 3593 /* 3594 * Find the zone mounted into, and put this mount on its vfs list. 3595 */ 3596 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3597 ASSERT(zone != NULL); 3598 /* 3599 * Special casing for the root vfs. This structure is allocated 3600 * statically and hooked onto rootvfs at link time. During the 3601 * vfs_mountroot call at system startup time, the root file system's 3602 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3603 * as argument. The code below must detect and handle this special 3604 * case. The only apparent justification for this special casing is 3605 * to ensure that the root file system appears at the head of the 3606 * list. 3607 * 3608 * XXX: I'm assuming that it's ok to do normal list locking when 3609 * adding the entry for the root file system (this used to be 3610 * done with no locks held). 3611 */ 3612 vfs_list_lock(); 3613 /* 3614 * Link into the vfs list proper. 3615 */ 3616 if (vfsp == &root) { 3617 /* 3618 * Assert: This vfs is already on the list as its first entry. 3619 * Thus, there's nothing to do. 3620 */ 3621 ASSERT(rootvfs == vfsp); 3622 /* 3623 * Add it to the head of the global zone's vfslist. 3624 */ 3625 ASSERT(zone == global_zone); 3626 ASSERT(zone->zone_vfslist == NULL); 3627 zone->zone_vfslist = vfsp; 3628 } else { 3629 /* 3630 * Link to end of list using vfs_prev (as rootvfs is now a 3631 * doubly linked circular list) so list is in mount order for 3632 * mnttab use. 3633 */ 3634 rootvfs->vfs_prev->vfs_next = vfsp; 3635 vfsp->vfs_prev = rootvfs->vfs_prev; 3636 rootvfs->vfs_prev = vfsp; 3637 vfsp->vfs_next = rootvfs; 3638 3639 /* 3640 * Do it again for the zone-private list (which may be NULL). 3641 */ 3642 if (zone->zone_vfslist == NULL) { 3643 ASSERT(zone != global_zone); 3644 zone->zone_vfslist = vfsp; 3645 } else { 3646 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3647 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3648 zone->zone_vfslist->vfs_zone_prev = vfsp; 3649 vfsp->vfs_zone_next = zone->zone_vfslist; 3650 } 3651 } 3652 3653 /* 3654 * Link into the hash table, inserting it at the end, so that LOFS 3655 * with the same fsid as UFS (or other) file systems will not hide 3656 * the UFS. 3657 */ 3658 vfs_hash_add(vfsp, 0); 3659 3660 /* 3661 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp 3662 * mntix discerns entries with the same key 3663 */ 3664 vfsp->vfs_mntix = ++vfs_curr_mntix; 3665 avl_add(&vfs_by_dev, vfsp); 3666 3667 /* 3668 * Link into tree indexed by dev, for vfs_devismounted 3669 */ 3670 avl_add(&vfs_by_mntpnt, vfsp); 3671 3672 /* 3673 * update the mnttab modification time 3674 */ 3675 vfs_mnttab_modtimeupd(); 3676 vfs_list_unlock(); 3677 zone_rele(zone); 3678 } 3679 3680 void 3681 vfs_list_remove(struct vfs *vfsp) 3682 { 3683 zone_t *zone; 3684 3685 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3686 ASSERT(zone != NULL); 3687 /* 3688 * Callers are responsible for preventing attempts to unmount the 3689 * root. 3690 */ 3691 ASSERT(vfsp != rootvfs); 3692 3693 vfs_list_lock(); 3694 3695 /* 3696 * Remove from avl trees 3697 */ 3698 avl_remove(&vfs_by_mntpnt, vfsp); 3699 avl_remove(&vfs_by_dev, vfsp); 3700 3701 /* 3702 * Remove from hash. 3703 */ 3704 vfs_hash_remove(vfsp); 3705 3706 /* 3707 * Remove from vfs list. 3708 */ 3709 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3710 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3711 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3712 3713 /* 3714 * Remove from zone-specific vfs list. 3715 */ 3716 if (zone->zone_vfslist == vfsp) 3717 zone->zone_vfslist = vfsp->vfs_zone_next; 3718 3719 if (vfsp->vfs_zone_next == vfsp) { 3720 ASSERT(vfsp->vfs_zone_prev == vfsp); 3721 ASSERT(zone->zone_vfslist == vfsp); 3722 zone->zone_vfslist = NULL; 3723 } 3724 3725 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3726 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3727 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3728 3729 /* 3730 * update the mnttab modification time 3731 */ 3732 vfs_mnttab_modtimeupd(); 3733 vfs_list_unlock(); 3734 zone_rele(zone); 3735 } 3736 3737 struct vfs * 3738 getvfs(fsid_t *fsid) 3739 { 3740 struct vfs *vfsp; 3741 int val0 = fsid->val[0]; 3742 int val1 = fsid->val[1]; 3743 dev_t dev = expldev(val0); 3744 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3745 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3746 3747 mutex_enter(hmp); 3748 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3749 if (vfsp->vfs_fsid.val[0] == val0 && 3750 vfsp->vfs_fsid.val[1] == val1) { 3751 VFS_HOLD(vfsp); 3752 mutex_exit(hmp); 3753 return (vfsp); 3754 } 3755 } 3756 mutex_exit(hmp); 3757 return (NULL); 3758 } 3759 3760 /* 3761 * Search the vfs mount in progress list for a specified device/vfs entry. 3762 * Returns 0 if the first entry in the list that the device matches has the 3763 * given vfs pointer as well. If the device matches but a different vfs 3764 * pointer is encountered in the list before the given vfs pointer then 3765 * a 1 is returned. 3766 */ 3767 3768 int 3769 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3770 { 3771 int retval = 0; 3772 struct ipmnt *mipp; 3773 3774 mutex_enter(&vfs_miplist_mutex); 3775 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3776 if (mipp->mip_dev == dev) { 3777 if (mipp->mip_vfsp != vfsp) 3778 retval = 1; 3779 break; 3780 } 3781 } 3782 mutex_exit(&vfs_miplist_mutex); 3783 return (retval); 3784 } 3785 3786 /* 3787 * Search the vfs list for a specified device. Returns 1, if entry is found 3788 * or 0 if no suitable entry is found. 3789 */ 3790 3791 int 3792 vfs_devismounted(dev_t dev) 3793 { 3794 struct vfs *vfsp; 3795 int found = 0; 3796 struct vfs search; 3797 avl_index_t index; 3798 3799 search.vfs_dev = dev; 3800 search.vfs_mntix = 0; 3801 3802 vfs_list_read_lock(); 3803 3804 /* 3805 * there might be several entries with the same dev in the tree, 3806 * only discerned by mntix. To find the first, we start with a mntix 3807 * of 0. The search will fail. The following avl_nearest will give 3808 * us the actual first entry. 3809 */ 3810 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL); 3811 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER); 3812 3813 if (vfsp != NULL && vfsp->vfs_dev == dev) 3814 found = 1; 3815 3816 vfs_list_unlock(); 3817 return (found); 3818 } 3819 3820 /* 3821 * Search the vfs list for a specified device. Returns a pointer to it 3822 * or NULL if no suitable entry is found. The caller of this routine 3823 * is responsible for releasing the returned vfs pointer. 3824 */ 3825 struct vfs * 3826 vfs_dev2vfsp(dev_t dev) 3827 { 3828 struct vfs *vfsp; 3829 int found; 3830 struct vfs search; 3831 avl_index_t index; 3832 3833 search.vfs_dev = dev; 3834 search.vfs_mntix = 0; 3835 3836 vfs_list_read_lock(); 3837 3838 /* 3839 * there might be several entries with the same dev in the tree, 3840 * only discerned by mntix. To find the first, we start with a mntix 3841 * of 0. The search will fail. The following avl_nearest will give 3842 * us the actual first entry. 3843 */ 3844 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL); 3845 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER); 3846 3847 found = 0; 3848 while (vfsp != NULL && vfsp->vfs_dev == dev) { 3849 /* 3850 * The following could be made more efficient by making 3851 * the entire loop use vfs_zone_next if the call is from 3852 * a zone. The only callers, however, ustat(2) and 3853 * umount2(2), don't seem to justify the added 3854 * complexity at present. 3855 */ 3856 if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3857 curproc->p_zone)) { 3858 VFS_HOLD(vfsp); 3859 found = 1; 3860 break; 3861 } 3862 vfsp = AVL_NEXT(&vfs_by_dev, vfsp); 3863 } 3864 vfs_list_unlock(); 3865 return (found ? vfsp : NULL); 3866 } 3867 3868 /* 3869 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3870 * or NULL if no suitable entry is found. The caller of this routine 3871 * is responsible for releasing the returned vfs pointer. 3872 * 3873 * Note that if multiple mntpoints match, the last one matching is 3874 * returned in an attempt to return the "top" mount when overlay 3875 * mounts are covering the same mount point. This is accomplished by starting 3876 * at the end of the list and working our way backwards, stopping at the first 3877 * matching mount. 3878 */ 3879 struct vfs * 3880 vfs_mntpoint2vfsp(const char *mp) 3881 { 3882 struct vfs *vfsp; 3883 struct vfs *retvfsp = NULL; 3884 zone_t *zone = curproc->p_zone; 3885 struct vfs *list; 3886 3887 vfs_list_read_lock(); 3888 if (getzoneid() == GLOBAL_ZONEID) { 3889 /* 3890 * The global zone may see filesystems in any zone. 3891 */ 3892 struct vfs search; 3893 search.vfs_mntpt = refstr_alloc(mp); 3894 search.vfs_mntix = UINT64_MAX; 3895 avl_index_t index; 3896 3897 /* 3898 * there might be several entries with the same mntpnt in the 3899 * tree, only discerned by mntix. To find the last, we start 3900 * with a mntix of UINT64_MAX. The search will fail. The 3901 * following avl_nearest will give us the actual last entry 3902 * matching the mntpnt. 3903 */ 3904 VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0); 3905 vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE); 3906 3907 refstr_rele(search.vfs_mntpt); 3908 3909 if (vfsp != NULL && 3910 strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) 3911 retvfsp = vfsp; 3912 } else if ((list = zone->zone_vfslist) != NULL) { 3913 const char *mntpt; 3914 3915 vfsp = list->vfs_zone_prev; 3916 do { 3917 mntpt = refstr_value(vfsp->vfs_mntpt); 3918 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3919 if (strcmp(mntpt, mp) == 0) { 3920 retvfsp = vfsp; 3921 break; 3922 } 3923 vfsp = vfsp->vfs_zone_prev; 3924 } while (vfsp != list->vfs_zone_prev); 3925 } 3926 if (retvfsp) 3927 VFS_HOLD(retvfsp); 3928 vfs_list_unlock(); 3929 return (retvfsp); 3930 } 3931 3932 /* 3933 * Search the vfs list for a specified vfsops. 3934 * if vfs entry is found then return 1, else 0. 3935 */ 3936 int 3937 vfs_opsinuse(vfsops_t *ops) 3938 { 3939 struct vfs *vfsp; 3940 int found; 3941 3942 vfs_list_read_lock(); 3943 vfsp = rootvfs; 3944 found = 0; 3945 do { 3946 if (vfs_getops(vfsp) == ops) { 3947 found = 1; 3948 break; 3949 } 3950 vfsp = vfsp->vfs_next; 3951 } while (vfsp != rootvfs); 3952 vfs_list_unlock(); 3953 return (found); 3954 } 3955 3956 /* 3957 * Allocate an entry in vfssw for a file system type 3958 */ 3959 struct vfssw * 3960 allocate_vfssw(const char *type) 3961 { 3962 struct vfssw *vswp; 3963 3964 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3965 /* 3966 * The vfssw table uses the empty string to identify an 3967 * available entry; we cannot add any type which has 3968 * a leading NUL. The string length is limited to 3969 * the size of the st_fstype array in struct stat. 3970 */ 3971 return (NULL); 3972 } 3973 3974 ASSERT(VFSSW_WRITE_LOCKED()); 3975 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3976 if (!ALLOCATED_VFSSW(vswp)) { 3977 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3978 (void) strcpy(vswp->vsw_name, type); 3979 ASSERT(vswp->vsw_count == 0); 3980 vswp->vsw_count = 1; 3981 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3982 return (vswp); 3983 } 3984 return (NULL); 3985 } 3986 3987 /* 3988 * Impose additional layer of translation between vfstype names 3989 * and module names in the filesystem. 3990 */ 3991 static const char * 3992 vfs_to_modname(const char *vfstype) 3993 { 3994 if (strcmp(vfstype, "proc") == 0) { 3995 vfstype = "procfs"; 3996 } else if (strcmp(vfstype, "fd") == 0) { 3997 vfstype = "fdfs"; 3998 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3999 vfstype = "nfs"; 4000 } 4001 4002 return (vfstype); 4003 } 4004 4005 /* 4006 * Find a vfssw entry given a file system type name. 4007 * Try to autoload the filesystem if it's not found. 4008 * If it's installed, return the vfssw locked to prevent unloading. 4009 */ 4010 struct vfssw * 4011 vfs_getvfssw(const char *type) 4012 { 4013 struct vfssw *vswp; 4014 const char *modname; 4015 4016 RLOCK_VFSSW(); 4017 vswp = vfs_getvfsswbyname(type); 4018 modname = vfs_to_modname(type); 4019 4020 if (rootdir == NULL) { 4021 /* 4022 * If we haven't yet loaded the root file system, then our 4023 * _init won't be called until later. Allocate vfssw entry, 4024 * because mod_installfs won't be called. 4025 */ 4026 if (vswp == NULL) { 4027 RUNLOCK_VFSSW(); 4028 WLOCK_VFSSW(); 4029 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 4030 if ((vswp = allocate_vfssw(type)) == NULL) { 4031 WUNLOCK_VFSSW(); 4032 return (NULL); 4033 } 4034 } 4035 WUNLOCK_VFSSW(); 4036 RLOCK_VFSSW(); 4037 } 4038 if (!VFS_INSTALLED(vswp)) { 4039 RUNLOCK_VFSSW(); 4040 (void) modloadonly("fs", modname); 4041 } else 4042 RUNLOCK_VFSSW(); 4043 return (vswp); 4044 } 4045 4046 /* 4047 * Try to load the filesystem. Before calling modload(), we drop 4048 * our lock on the VFS switch table, and pick it up after the 4049 * module is loaded. However, there is a potential race: the 4050 * module could be unloaded after the call to modload() completes 4051 * but before we pick up the lock and drive on. Therefore, 4052 * we keep reloading the module until we've loaded the module 4053 * _and_ we have the lock on the VFS switch table. 4054 */ 4055 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 4056 RUNLOCK_VFSSW(); 4057 if (modload("fs", modname) == -1) 4058 return (NULL); 4059 RLOCK_VFSSW(); 4060 if (vswp == NULL) 4061 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 4062 break; 4063 } 4064 RUNLOCK_VFSSW(); 4065 4066 return (vswp); 4067 } 4068 4069 /* 4070 * Find a vfssw entry given a file system type name. 4071 */ 4072 struct vfssw * 4073 vfs_getvfsswbyname(const char *type) 4074 { 4075 struct vfssw *vswp; 4076 4077 ASSERT(VFSSW_LOCKED()); 4078 if (type == NULL || *type == '\0') 4079 return (NULL); 4080 4081 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4082 if (strcmp(type, vswp->vsw_name) == 0) { 4083 vfs_refvfssw(vswp); 4084 return (vswp); 4085 } 4086 } 4087 4088 return (NULL); 4089 } 4090 4091 /* 4092 * Find a vfssw entry given a set of vfsops. 4093 */ 4094 struct vfssw * 4095 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 4096 { 4097 struct vfssw *vswp; 4098 4099 RLOCK_VFSSW(); 4100 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4101 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 4102 vfs_refvfssw(vswp); 4103 RUNLOCK_VFSSW(); 4104 return (vswp); 4105 } 4106 } 4107 RUNLOCK_VFSSW(); 4108 4109 return (NULL); 4110 } 4111 4112 /* 4113 * Reference a vfssw entry. 4114 */ 4115 void 4116 vfs_refvfssw(struct vfssw *vswp) 4117 { 4118 4119 mutex_enter(&vswp->vsw_lock); 4120 vswp->vsw_count++; 4121 mutex_exit(&vswp->vsw_lock); 4122 } 4123 4124 /* 4125 * Unreference a vfssw entry. 4126 */ 4127 void 4128 vfs_unrefvfssw(struct vfssw *vswp) 4129 { 4130 4131 mutex_enter(&vswp->vsw_lock); 4132 vswp->vsw_count--; 4133 mutex_exit(&vswp->vsw_lock); 4134 } 4135 4136 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4137 int sync_timeleft; /* portion of sync_timeout remaining */ 4138 4139 static int sync_retries = 20; /* number of retries when not making progress */ 4140 static int sync_triesleft; /* portion of sync_retries remaining */ 4141 4142 static pgcnt_t old_pgcnt, new_pgcnt; 4143 static int new_bufcnt, old_bufcnt; 4144 4145 /* 4146 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4147 * complete. We wait by counting the number of dirty pages and buffers, 4148 * pushing them out using bio_busy() and page_busy(), and then counting again. 4149 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4150 * the SYNC phase of the panic code (see comments in panic.c). It should only 4151 * be used after some higher-level mechanism has quiesced the system so that 4152 * new writes are not being initiated while we are waiting for completion. 4153 * 4154 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4155 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4156 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4157 * Together these ensure that syncing completes if our i/o paths are stuck. 4158 * The counters are declared above so they can be found easily in the debugger. 4159 * 4160 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4161 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4162 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4163 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4164 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4165 * deadlocking or hanging inside of a broken filesystem or driver routine. 4166 * 4167 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4168 * sync_retries consecutive calls to bio_busy() and page_busy() without 4169 * decreasing either the number of dirty buffers or dirty pages below the 4170 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4171 * 4172 * Each loop iteration ends with a call to delay() one second to allow time for 4173 * i/o completion and to permit the user time to read our progress messages. 4174 */ 4175 void 4176 vfs_syncall(void) 4177 { 4178 if (rootdir == NULL && !modrootloaded) 4179 return; /* panic during boot - no filesystems yet */ 4180 4181 printf("syncing file systems..."); 4182 vfs_syncprogress(); 4183 sync(); 4184 4185 vfs_syncprogress(); 4186 sync_triesleft = sync_retries; 4187 4188 old_bufcnt = new_bufcnt = INT_MAX; 4189 old_pgcnt = new_pgcnt = ULONG_MAX; 4190 4191 while (sync_triesleft > 0) { 4192 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4193 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4194 4195 new_bufcnt = bio_busy(B_TRUE); 4196 new_pgcnt = page_busy(B_TRUE); 4197 vfs_syncprogress(); 4198 4199 if (new_bufcnt == 0 && new_pgcnt == 0) 4200 break; 4201 4202 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4203 sync_triesleft = sync_retries; 4204 else 4205 sync_triesleft--; 4206 4207 if (new_bufcnt) 4208 printf(" [%d]", new_bufcnt); 4209 if (new_pgcnt) 4210 printf(" %lu", new_pgcnt); 4211 4212 delay(hz); 4213 } 4214 4215 if (new_bufcnt != 0 || new_pgcnt != 0) 4216 printf(" done (not all i/o completed)\n"); 4217 else 4218 printf(" done\n"); 4219 4220 sync_timeleft = 0; 4221 delay(hz); 4222 } 4223 4224 /* 4225 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4226 * sync_timeout to indicate that we are making progress and the deadman() 4227 * omnipresent cyclic should not yet time us out. Note that it is safe to 4228 * store to sync_timeleft here since the deadman() is firing at high-level 4229 * on top of us. If we are racing with the deadman(), either the deadman() 4230 * will decrement the old value and then we will reset it, or we will 4231 * reset it and then the deadman() will immediately decrement it. In either 4232 * case, correct behavior results. 4233 */ 4234 void 4235 vfs_syncprogress(void) 4236 { 4237 if (panicstr) 4238 sync_timeleft = sync_timeout; 4239 } 4240 4241 /* 4242 * Map VFS flags to statvfs flags. These shouldn't really be separate 4243 * flags at all. 4244 */ 4245 uint_t 4246 vf_to_stf(uint_t vf) 4247 { 4248 uint_t stf = 0; 4249 4250 if (vf & VFS_RDONLY) 4251 stf |= ST_RDONLY; 4252 if (vf & VFS_NOSETUID) 4253 stf |= ST_NOSUID; 4254 if (vf & VFS_NOTRUNC) 4255 stf |= ST_NOTRUNC; 4256 4257 return (stf); 4258 } 4259 4260 /* 4261 * Entries for (illegal) fstype 0. 4262 */ 4263 /* ARGSUSED */ 4264 int 4265 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4266 { 4267 cmn_err(CE_PANIC, "stray vfs operation"); 4268 return (0); 4269 } 4270 4271 /* 4272 * Entries for (illegal) fstype 0. 4273 */ 4274 int 4275 vfsstray(void) 4276 { 4277 cmn_err(CE_PANIC, "stray vfs operation"); 4278 return (0); 4279 } 4280 4281 /* 4282 * Support for dealing with forced UFS unmount and its interaction with 4283 * LOFS. Could be used by any filesystem. 4284 * See bug 1203132. 4285 */ 4286 int 4287 vfs_EIO(void) 4288 { 4289 return (EIO); 4290 } 4291 4292 /* 4293 * We've gotta define the op for sync separately, since the compiler gets 4294 * confused if we mix and match ANSI and normal style prototypes when 4295 * a "short" argument is present and spits out a warning. 4296 */ 4297 /*ARGSUSED*/ 4298 int 4299 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4300 { 4301 return (EIO); 4302 } 4303 4304 vfs_t EIO_vfs; 4305 vfsops_t *EIO_vfsops; 4306 4307 /* 4308 * Called from startup() to initialize all loaded vfs's 4309 */ 4310 void 4311 vfsinit(void) 4312 { 4313 struct vfssw *vswp; 4314 int error; 4315 extern int vopstats_enabled; 4316 extern void vopstats_startup(); 4317 4318 static const fs_operation_def_t EIO_vfsops_template[] = { 4319 VFSNAME_MOUNT, { .error = vfs_EIO }, 4320 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4321 VFSNAME_ROOT, { .error = vfs_EIO }, 4322 VFSNAME_STATVFS, { .error = vfs_EIO }, 4323 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4324 VFSNAME_VGET, { .error = vfs_EIO }, 4325 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4326 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4327 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4328 NULL, NULL 4329 }; 4330 4331 static const fs_operation_def_t stray_vfsops_template[] = { 4332 VFSNAME_MOUNT, { .error = vfsstray }, 4333 VFSNAME_UNMOUNT, { .error = vfsstray }, 4334 VFSNAME_ROOT, { .error = vfsstray }, 4335 VFSNAME_STATVFS, { .error = vfsstray }, 4336 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4337 VFSNAME_VGET, { .error = vfsstray }, 4338 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4339 VFSNAME_FREEVFS, { .error = vfsstray }, 4340 VFSNAME_VNSTATE, { .error = vfsstray }, 4341 NULL, NULL 4342 }; 4343 4344 /* Create vfs cache */ 4345 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4346 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4347 4348 /* Initialize the vnode cache (file systems may use it during init). */ 4349 vn_create_cache(); 4350 4351 /* Setup event monitor framework */ 4352 fem_init(); 4353 4354 /* Initialize the dummy stray file system type. */ 4355 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4356 4357 /* Initialize the dummy EIO file system. */ 4358 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4359 if (error != 0) { 4360 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4361 /* Shouldn't happen, but not bad enough to panic */ 4362 } 4363 4364 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4365 4366 /* 4367 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4368 * on this vfs can immediately notice it's invalid. 4369 */ 4370 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4371 4372 /* 4373 * Call the init routines of non-loadable filesystems only. 4374 * Filesystems which are loaded as separate modules will be 4375 * initialized by the module loading code instead. 4376 */ 4377 4378 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4379 RLOCK_VFSSW(); 4380 if (vswp->vsw_init != NULL) 4381 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4382 RUNLOCK_VFSSW(); 4383 } 4384 4385 vopstats_startup(); 4386 4387 if (vopstats_enabled) { 4388 /* EIO_vfs can collect stats, but we don't retrieve them */ 4389 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4390 EIO_vfs.vfs_fstypevsp = NULL; 4391 EIO_vfs.vfs_vskap = NULL; 4392 EIO_vfs.vfs_flag |= VFS_STATS; 4393 } 4394 4395 xattr_init(); 4396 4397 reparse_point_init(); 4398 } 4399 4400 vfs_t * 4401 vfs_alloc(int kmflag) 4402 { 4403 vfs_t *vfsp; 4404 4405 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4406 4407 /* 4408 * Do the simplest initialization here. 4409 * Everything else gets done in vfs_init() 4410 */ 4411 bzero(vfsp, sizeof (vfs_t)); 4412 return (vfsp); 4413 } 4414 4415 void 4416 vfs_free(vfs_t *vfsp) 4417 { 4418 /* 4419 * One would be tempted to assert that "vfsp->vfs_count == 0". 4420 * The problem is that this gets called out of domount() with 4421 * a partially initialized vfs and a vfs_count of 1. This is 4422 * also called from vfs_rele() with a vfs_count of 0. We can't 4423 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4424 * returned. This is because VFS_MOUNT() fully initializes the 4425 * vfs structure and its associated data. VFS_RELE() will call 4426 * VFS_FREEVFS() which may panic the system if the data structures 4427 * aren't fully initialized from a successful VFS_MOUNT()). 4428 */ 4429 4430 /* If FEM was in use, make sure everything gets cleaned up */ 4431 if (vfsp->vfs_femhead) { 4432 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4433 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4434 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4435 vfsp->vfs_femhead = NULL; 4436 } 4437 4438 if (vfsp->vfs_implp) 4439 vfsimpl_teardown(vfsp); 4440 sema_destroy(&vfsp->vfs_reflock); 4441 kmem_cache_free(vfs_cache, vfsp); 4442 } 4443 4444 /* 4445 * Increments the vfs reference count by one atomically. 4446 */ 4447 void 4448 vfs_hold(vfs_t *vfsp) 4449 { 4450 atomic_inc_32(&vfsp->vfs_count); 4451 ASSERT(vfsp->vfs_count != 0); 4452 } 4453 4454 /* 4455 * Decrements the vfs reference count by one atomically. When 4456 * vfs reference count becomes zero, it calls the file system 4457 * specific vfs_freevfs() to free up the resources. 4458 */ 4459 void 4460 vfs_rele(vfs_t *vfsp) 4461 { 4462 ASSERT(vfsp->vfs_count != 0); 4463 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4464 VFS_FREEVFS(vfsp); 4465 lofi_remove(vfsp); 4466 if (vfsp->vfs_zone) 4467 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4468 ZONE_REF_VFS); 4469 vfs_freemnttab(vfsp); 4470 vfs_free(vfsp); 4471 } 4472 } 4473 4474 /* 4475 * Generic operations vector support. 4476 * 4477 * This is used to build operations vectors for both the vfs and vnode. 4478 * It's normally called only when a file system is loaded. 4479 * 4480 * There are many possible algorithms for this, including the following: 4481 * 4482 * (1) scan the list of known operations; for each, see if the file system 4483 * includes an entry for it, and fill it in as appropriate. 4484 * 4485 * (2) set up defaults for all known operations. scan the list of ops 4486 * supplied by the file system; for each which is both supplied and 4487 * known, fill it in. 4488 * 4489 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4490 * in entries as we go. 4491 * 4492 * we choose (1) for simplicity, and because performance isn't critical here. 4493 * note that (2) could be sped up using a precomputed hash table on known ops. 4494 * (3) could be faster than either, but only if the lists were very large or 4495 * supplied in sorted order. 4496 * 4497 */ 4498 4499 int 4500 fs_build_vector(void *vector, int *unused_ops, 4501 const fs_operation_trans_def_t *translation, 4502 const fs_operation_def_t *operations) 4503 { 4504 int i, num_trans, num_ops, used; 4505 4506 /* 4507 * Count the number of translations and the number of supplied 4508 * operations. 4509 */ 4510 4511 { 4512 const fs_operation_trans_def_t *p; 4513 4514 for (num_trans = 0, p = translation; 4515 p->name != NULL; 4516 num_trans++, p++) 4517 ; 4518 } 4519 4520 { 4521 const fs_operation_def_t *p; 4522 4523 for (num_ops = 0, p = operations; 4524 p->name != NULL; 4525 num_ops++, p++) 4526 ; 4527 } 4528 4529 /* Walk through each operation known to our caller. There will be */ 4530 /* one entry in the supplied "translation table" for each. */ 4531 4532 used = 0; 4533 4534 for (i = 0; i < num_trans; i++) { 4535 int j, found; 4536 char *curname; 4537 fs_generic_func_p result; 4538 fs_generic_func_p *location; 4539 4540 curname = translation[i].name; 4541 4542 /* Look for a matching operation in the list supplied by the */ 4543 /* file system. */ 4544 4545 found = 0; 4546 4547 for (j = 0; j < num_ops; j++) { 4548 if (strcmp(operations[j].name, curname) == 0) { 4549 used++; 4550 found = 1; 4551 break; 4552 } 4553 } 4554 4555 /* 4556 * If the file system is using a "placeholder" for default 4557 * or error functions, grab the appropriate function out of 4558 * the translation table. If the file system didn't supply 4559 * this operation at all, use the default function. 4560 */ 4561 4562 if (found) { 4563 result = operations[j].func.fs_generic; 4564 if (result == fs_default) { 4565 result = translation[i].defaultFunc; 4566 } else if (result == fs_error) { 4567 result = translation[i].errorFunc; 4568 } else if (result == NULL) { 4569 /* Null values are PROHIBITED */ 4570 return (EINVAL); 4571 } 4572 } else { 4573 result = translation[i].defaultFunc; 4574 } 4575 4576 /* Now store the function into the operations vector. */ 4577 4578 location = (fs_generic_func_p *) 4579 (((char *)vector) + translation[i].offset); 4580 4581 *location = result; 4582 } 4583 4584 *unused_ops = num_ops - used; 4585 4586 return (0); 4587 } 4588 4589 /* Placeholder functions, should never be called. */ 4590 4591 int 4592 fs_error(void) 4593 { 4594 cmn_err(CE_PANIC, "fs_error called"); 4595 return (0); 4596 } 4597 4598 int 4599 fs_default(void) 4600 { 4601 cmn_err(CE_PANIC, "fs_default called"); 4602 return (0); 4603 } 4604 4605 #ifdef __sparc 4606 4607 /* 4608 * Part of the implementation of booting off a mirrored root 4609 * involves a change of dev_t for the root device. To 4610 * accomplish this, first remove the existing hash table 4611 * entry for the root device, convert to the new dev_t, 4612 * then re-insert in the hash table at the head of the list. 4613 */ 4614 void 4615 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4616 { 4617 vfs_list_lock(); 4618 4619 vfs_hash_remove(vfsp); 4620 4621 vfsp->vfs_dev = ndev; 4622 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4623 4624 vfs_hash_add(vfsp, 1); 4625 4626 vfs_list_unlock(); 4627 } 4628 4629 #else /* x86 NEWBOOT */ 4630 4631 #if defined(__x86) 4632 extern int hvmboot_rootconf(); 4633 #endif /* __x86 */ 4634 4635 extern ib_boot_prop_t *iscsiboot_prop; 4636 4637 int 4638 rootconf() 4639 { 4640 int error; 4641 struct vfssw *vsw; 4642 extern void pm_init(); 4643 char *fstyp, *fsmod; 4644 int ret = -1; 4645 4646 getrootfs(&fstyp, &fsmod); 4647 4648 #if defined(__x86) 4649 /* 4650 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4651 * which lives in /platform/i86hvm, and hence is only available when 4652 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4653 * is not available then the modstub for this function will return 0. 4654 * If the hvm_bootstrap misc module is available it will be loaded 4655 * and hvmboot_rootconf() will be invoked. 4656 */ 4657 if (error = hvmboot_rootconf()) 4658 return (error); 4659 #endif /* __x86 */ 4660 4661 if (error = clboot_rootconf()) 4662 return (error); 4663 4664 if (modload("fs", fsmod) == -1) 4665 panic("Cannot _init %s module", fsmod); 4666 4667 RLOCK_VFSSW(); 4668 vsw = vfs_getvfsswbyname(fstyp); 4669 RUNLOCK_VFSSW(); 4670 if (vsw == NULL) { 4671 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4672 return (ENXIO); 4673 } 4674 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4675 VFS_HOLD(rootvfs); 4676 4677 /* always mount readonly first */ 4678 rootvfs->vfs_flag |= VFS_RDONLY; 4679 4680 pm_init(); 4681 4682 if (netboot && iscsiboot_prop) { 4683 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4684 " shouldn't happen in the same time"); 4685 return (EINVAL); 4686 } 4687 4688 if (netboot || iscsiboot_prop) { 4689 ret = strplumb(); 4690 if (ret != 0) { 4691 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4692 return (EFAULT); 4693 } 4694 } 4695 4696 if ((ret == 0) && iscsiboot_prop) { 4697 ret = modload("drv", "iscsi"); 4698 /* -1 indicates fail */ 4699 if (ret == -1) { 4700 cmn_err(CE_WARN, "Failed to load iscsi module"); 4701 iscsi_boot_prop_free(); 4702 return (EINVAL); 4703 } else { 4704 if (!i_ddi_attach_pseudo_node("iscsi")) { 4705 cmn_err(CE_WARN, 4706 "Failed to attach iscsi driver"); 4707 iscsi_boot_prop_free(); 4708 return (ENODEV); 4709 } 4710 } 4711 } 4712 4713 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4714 vfs_unrefvfssw(vsw); 4715 rootdev = rootvfs->vfs_dev; 4716 4717 if (error) 4718 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4719 rootfs.bo_name, fstyp); 4720 else 4721 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4722 rootfs.bo_name, fstyp); 4723 return (error); 4724 } 4725 4726 /* 4727 * XXX this is called by nfs only and should probably be removed 4728 * If booted with ASKNAME, prompt on the console for a filesystem 4729 * name and return it. 4730 */ 4731 void 4732 getfsname(char *askfor, char *name, size_t namelen) 4733 { 4734 if (boothowto & RB_ASKNAME) { 4735 printf("%s name: ", askfor); 4736 console_gets(name, namelen); 4737 } 4738 } 4739 4740 /* 4741 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4742 * property. 4743 * 4744 * Filesystem types starting with the prefix "nfs" are diskless clients; 4745 * init the root filename name (rootfs.bo_name), too. 4746 * 4747 * If we are booting via NFS we currently have these options: 4748 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4749 * nfs2 - force NFS V2 4750 * nfs3 - force NFS V3 4751 * nfs4 - force NFS V4 4752 * Because we need to maintain backward compatibility with the naming 4753 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4754 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4755 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4756 * This is only for root filesystems, all other uses will expect 4757 * that "nfs" == NFS V2. 4758 */ 4759 static void 4760 getrootfs(char **fstypp, char **fsmodp) 4761 { 4762 extern char *strplumb_get_netdev_path(void); 4763 char *propstr = NULL; 4764 4765 /* 4766 * Check fstype property; for diskless it should be one of "nfs", 4767 * "nfs2", "nfs3" or "nfs4". 4768 */ 4769 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4770 DDI_PROP_DONTPASS, "fstype", &propstr) 4771 == DDI_SUCCESS) { 4772 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4773 ddi_prop_free(propstr); 4774 4775 /* 4776 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4777 * assume the type of this root filesystem is 'zfs'. 4778 */ 4779 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4780 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4781 == DDI_SUCCESS) { 4782 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4783 ddi_prop_free(propstr); 4784 } 4785 4786 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4787 *fstypp = *fsmodp = rootfs.bo_fstype; 4788 return; 4789 } 4790 4791 ++netboot; 4792 4793 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4794 (void) strcpy(rootfs.bo_fstype, "nfs"); 4795 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4796 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4797 4798 /* 4799 * check if path to network interface is specified in bootpath 4800 * or by a hypervisor domain configuration file. 4801 * XXPV - enable strlumb_get_netdev_path() 4802 */ 4803 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4804 "xpv-nfsroot")) { 4805 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4806 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4807 DDI_PROP_DONTPASS, "bootpath", &propstr) 4808 == DDI_SUCCESS) { 4809 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4810 ddi_prop_free(propstr); 4811 } else { 4812 /* attempt to determine netdev_path via boot_mac address */ 4813 netdev_path = strplumb_get_netdev_path(); 4814 if (netdev_path == NULL) 4815 panic("cannot find boot network interface"); 4816 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4817 } 4818 *fstypp = rootfs.bo_fstype; 4819 *fsmodp = "nfs"; 4820 } 4821 #endif 4822 4823 /* 4824 * VFS feature routines 4825 */ 4826 4827 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4828 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4829 4830 /* Register a feature in the vfs */ 4831 void 4832 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4833 { 4834 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4835 if (vfsp->vfs_implp == NULL) 4836 return; 4837 4838 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4839 } 4840 4841 void 4842 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4843 { 4844 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4845 if (vfsp->vfs_implp == NULL) 4846 return; 4847 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4848 } 4849 4850 /* 4851 * Query a vfs for a feature. 4852 * Returns 1 if feature is present, 0 if not 4853 */ 4854 int 4855 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4856 { 4857 int ret = 0; 4858 4859 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4860 if (vfsp->vfs_implp == NULL) 4861 return (ret); 4862 4863 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4864 ret = 1; 4865 4866 return (ret); 4867 } 4868 4869 /* 4870 * Propagate feature set from one vfs to another 4871 */ 4872 void 4873 vfs_propagate_features(vfs_t *from, vfs_t *to) 4874 { 4875 int i; 4876 4877 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4878 return; 4879 4880 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4881 to->vfs_featureset[i] = from->vfs_featureset[i]; 4882 } 4883 } 4884 4885 #define LOFINODE_PATH "/dev/lofi/%d" 4886 4887 /* 4888 * Return the vnode for the lofi node if there's a lofi mount in place. 4889 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4890 * failure. 4891 */ 4892 int 4893 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4894 { 4895 char *path = NULL; 4896 int strsize; 4897 int err; 4898 4899 if (vfsp->vfs_lofi_id == 0) { 4900 *vpp = NULL; 4901 return (-1); 4902 } 4903 4904 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id); 4905 path = kmem_alloc(strsize + 1, KM_SLEEP); 4906 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id); 4907 4908 /* 4909 * We may be inside a zone, so we need to use the /dev path, but 4910 * it's created asynchronously, so we wait here. 4911 */ 4912 for (;;) { 4913 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4914 4915 if (err != ENOENT) 4916 break; 4917 4918 if ((err = delay_sig(hz / 8)) == EINTR) 4919 break; 4920 } 4921 4922 if (err) 4923 *vpp = NULL; 4924 4925 kmem_free(path, strsize + 1); 4926 return (err); 4927 } 4928