1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25 * Copyright 2017 RackTop Systems.
26 * Copyright 2016 Nexenta Systems, Inc.
27 */
28
29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
30 /* All Rights Reserved */
31
32 /*
33 * University Copyright- Copyright (c) 1982, 1986, 1988
34 * The Regents of the University of California
35 * All Rights Reserved
36 *
37 * University Acknowledgment- Portions of this document are derived from
38 * software developed by the University of California, Berkeley, and its
39 * contributors.
40 */
41
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/errno.h>
46 #include <sys/user.h>
47 #include <sys/fstyp.h>
48 #include <sys/kmem.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/vfs.h>
53 #include <sys/vfs_opreg.h>
54 #include <sys/fem.h>
55 #include <sys/mntent.h>
56 #include <sys/stat.h>
57 #include <sys/statvfs.h>
58 #include <sys/statfs.h>
59 #include <sys/cred.h>
60 #include <sys/vnode.h>
61 #include <sys/rwstlock.h>
62 #include <sys/dnlc.h>
63 #include <sys/file.h>
64 #include <sys/time.h>
65 #include <sys/atomic.h>
66 #include <sys/cmn_err.h>
67 #include <sys/buf.h>
68 #include <sys/swap.h>
69 #include <sys/debug.h>
70 #include <sys/vnode.h>
71 #include <sys/modctl.h>
72 #include <sys/ddi.h>
73 #include <sys/pathname.h>
74 #include <sys/bootconf.h>
75 #include <sys/dumphdr.h>
76 #include <sys/dc_ki.h>
77 #include <sys/poll.h>
78 #include <sys/sunddi.h>
79 #include <sys/sysmacros.h>
80 #include <sys/zone.h>
81 #include <sys/policy.h>
82 #include <sys/ctfs.h>
83 #include <sys/objfs.h>
84 #include <sys/console.h>
85 #include <sys/reboot.h>
86 #include <sys/attr.h>
87 #include <sys/zio.h>
88 #include <sys/spa.h>
89 #include <sys/lofi.h>
90 #include <sys/bootprops.h>
91 #include <sys/avl.h>
92
93 #include <vm/page.h>
94
95 #include <fs/fs_subr.h>
96 /* Private interfaces to create vopstats-related data structures */
97 extern void initialize_vopstats(vopstats_t *);
98 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *);
99 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *);
100
101 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
102 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
103 const char *, int, int);
104 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
105 static void vfs_freemnttab(struct vfs *);
106 static void vfs_freeopt(mntopt_t *);
107 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
108 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
109 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
110 static void vfs_createopttbl_extend(mntopts_t *, const char *,
111 const mntopts_t *);
112 static char **vfs_copycancelopt_extend(char **const, int);
113 static void vfs_freecancelopt(char **);
114 static void getrootfs(char **, char **);
115 static int getmacpath(dev_info_t *, void *);
116 static void vfs_mnttabvp_setup(void);
117
118 struct ipmnt {
119 struct ipmnt *mip_next;
120 dev_t mip_dev;
121 struct vfs *mip_vfsp;
122 };
123
124 static kmutex_t vfs_miplist_mutex;
125 static struct ipmnt *vfs_miplist = NULL;
126 static struct ipmnt *vfs_miplist_end = NULL;
127
128 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */
129
130 /*
131 * VFS global data.
132 */
133 vnode_t *rootdir; /* pointer to root inode vnode. */
134 vnode_t *devicesdir; /* pointer to inode of devices root */
135 vnode_t *devdir; /* pointer to inode of dev root */
136
137 char *server_rootpath; /* root path for diskless clients */
138 char *server_hostname; /* hostname of diskless server */
139
140 static struct vfs root;
141 static struct vfs devices;
142 static struct vfs dev;
143 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */
144 avl_tree_t vfs_by_dev; /* avl tree to index mounted VFSs by dev */
145 avl_tree_t vfs_by_mntpnt; /* avl tree to index mounted VFSs by mntpnt */
146 uint64_t vfs_curr_mntix; /* counter to provide a unique mntix for
147 * entries in the above avl trees.
148 * protected by vfslist lock */
149 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */
150 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */
151 /* must be power of 2! */
152 timespec_t vfs_mnttab_ctime; /* mnttab created time */
153 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */
154 char *vfs_dummyfstype = "\0";
155 struct pollhead vfs_pollhd; /* for mnttab pollers */
156 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */
157 int mntfstype; /* will be set once mnt fs is mounted */
158
159 /*
160 * Table for generic options recognized in the VFS layer and acted
161 * on at this level before parsing file system specific options.
162 * The nosuid option is stronger than any of the devices and setuid
163 * options, so those are canceled when nosuid is seen.
164 *
165 * All options which are added here need to be added to the
166 * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
167 */
168 /*
169 * VFS Mount options table
170 */
171 static char *ro_cancel[] = { MNTOPT_RW, NULL };
172 static char *rw_cancel[] = { MNTOPT_RO, NULL };
173 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
174 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
175 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
176 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
177 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
178 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
179 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
180 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
181 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
182 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
183 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
184 static char *follow_cancel[] = { MNTOPT_NOFOLLOW, NULL };
185 static char *nofollow_cancel[] = { MNTOPT_FOLLOW, NULL };
186
187 static const mntopt_t mntopts[] = {
188 /*
189 * option name cancel options default arg flags
190 */
191 { MNTOPT_REMOUNT, NULL, NULL,
192 MO_NODISPLAY, (void *)0 },
193 { MNTOPT_RO, ro_cancel, NULL, 0,
194 (void *)0 },
195 { MNTOPT_RW, rw_cancel, NULL, 0,
196 (void *)0 },
197 { MNTOPT_SUID, suid_cancel, NULL, 0,
198 (void *)0 },
199 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0,
200 (void *)0 },
201 { MNTOPT_DEVICES, devices_cancel, NULL, 0,
202 (void *)0 },
203 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0,
204 (void *)0 },
205 { MNTOPT_SETUID, setuid_cancel, NULL, 0,
206 (void *)0 },
207 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0,
208 (void *)0 },
209 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0,
210 (void *)0 },
211 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0,
212 (void *)0 },
213 { MNTOPT_EXEC, exec_cancel, NULL, 0,
214 (void *)0 },
215 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0,
216 (void *)0 },
217 { MNTOPT_FOLLOW, follow_cancel, NULL, 0,
218 (void *)0 },
219 { MNTOPT_NOFOLLOW, nofollow_cancel, NULL, 0,
220 (void *)0 },
221 };
222
223 const mntopts_t vfs_mntopts = {
224 sizeof (mntopts) / sizeof (mntopt_t),
225 (mntopt_t *)&mntopts[0]
226 };
227
228 /*
229 * File system operation dispatch functions.
230 */
231
232 int
fsop_mount(vfs_t * vfsp,vnode_t * mvp,struct mounta * uap,cred_t * cr)233 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
234 {
235 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
236 }
237
238 int
fsop_unmount(vfs_t * vfsp,int flag,cred_t * cr)239 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
240 {
241 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
242 }
243
244 int
fsop_root(vfs_t * vfsp,vnode_t ** vpp)245 fsop_root(vfs_t *vfsp, vnode_t **vpp)
246 {
247 refstr_t *mntpt;
248 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
249 /*
250 * Make sure this root has a path. With lofs, it is possible to have
251 * a NULL mountpoint.
252 */
253 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
254 mntpt = vfs_getmntpoint(vfsp);
255 vn_setpath_str(*vpp, refstr_value(mntpt),
256 strlen(refstr_value(mntpt)));
257 refstr_rele(mntpt);
258 }
259
260 return (ret);
261 }
262
263 int
fsop_statfs(vfs_t * vfsp,statvfs64_t * sp)264 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
265 {
266 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
267 }
268
269 int
fsop_sync(vfs_t * vfsp,short flag,cred_t * cr)270 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
271 {
272 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
273 }
274
275 int
fsop_vget(vfs_t * vfsp,vnode_t ** vpp,fid_t * fidp)276 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
277 {
278 /*
279 * In order to handle system attribute fids in a manner
280 * transparent to the underlying fs, we embed the fid for
281 * the sysattr parent object in the sysattr fid and tack on
282 * some extra bytes that only the sysattr layer knows about.
283 *
284 * This guarantees that sysattr fids are larger than other fids
285 * for this vfs. If the vfs supports the sysattr view interface
286 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
287 * collision with XATTR_FIDSZ.
288 */
289 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
290 fidp->fid_len == XATTR_FIDSZ)
291 return (xattr_dir_vget(vfsp, vpp, fidp));
292
293 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
294 }
295
296 int
fsop_mountroot(vfs_t * vfsp,enum whymountroot reason)297 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
298 {
299 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
300 }
301
302 void
fsop_freefs(vfs_t * vfsp)303 fsop_freefs(vfs_t *vfsp)
304 {
305 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
306 }
307
308 int
fsop_vnstate(vfs_t * vfsp,vnode_t * vp,vntrans_t nstate)309 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
310 {
311 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
312 }
313
314 int
fsop_sync_by_kind(int fstype,short flag,cred_t * cr)315 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
316 {
317 ASSERT((fstype >= 0) && (fstype < nfstype));
318
319 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
320 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
321 else
322 return (ENOTSUP);
323 }
324
325 /*
326 * File system initialization. vfs_setfsops() must be called from a file
327 * system's init routine.
328 */
329
330 static int
fs_copyfsops(const fs_operation_def_t * template,vfsops_t * actual,int * unused_ops)331 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
332 int *unused_ops)
333 {
334 static const fs_operation_trans_def_t vfs_ops_table[] = {
335 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
336 fs_nosys, fs_nosys,
337
338 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
339 fs_nosys, fs_nosys,
340
341 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
342 fs_nosys, fs_nosys,
343
344 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
345 fs_nosys, fs_nosys,
346
347 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
348 (fs_generic_func_p) fs_sync,
349 (fs_generic_func_p) fs_sync, /* No errors allowed */
350
351 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
352 fs_nosys, fs_nosys,
353
354 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
355 fs_nosys, fs_nosys,
356
357 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
358 (fs_generic_func_p)fs_freevfs,
359 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */
360
361 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
362 (fs_generic_func_p)fs_nosys,
363 (fs_generic_func_p)fs_nosys,
364
365 NULL, 0, NULL, NULL
366 };
367
368 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
369 }
370
371 void
zfs_boot_init()372 zfs_boot_init() {
373
374 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
375 spa_boot_init();
376 }
377
378 int
vfs_setfsops(int fstype,const fs_operation_def_t * template,vfsops_t ** actual)379 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
380 {
381 int error;
382 int unused_ops;
383
384 /*
385 * Verify that fstype refers to a valid fs. Note that
386 * 0 is valid since it's used to set "stray" ops.
387 */
388 if ((fstype < 0) || (fstype >= nfstype))
389 return (EINVAL);
390
391 if (!ALLOCATED_VFSSW(&vfssw[fstype]))
392 return (EINVAL);
393
394 /* Set up the operations vector. */
395
396 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
397
398 if (error != 0)
399 return (error);
400
401 vfssw[fstype].vsw_flag |= VSW_INSTALLED;
402
403 if (actual != NULL)
404 *actual = &vfssw[fstype].vsw_vfsops;
405
406 #if DEBUG
407 if (unused_ops != 0)
408 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
409 "but not used", vfssw[fstype].vsw_name, unused_ops);
410 #endif
411
412 return (0);
413 }
414
415 int
vfs_makefsops(const fs_operation_def_t * template,vfsops_t ** actual)416 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
417 {
418 int error;
419 int unused_ops;
420
421 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
422
423 error = fs_copyfsops(template, *actual, &unused_ops);
424 if (error != 0) {
425 kmem_free(*actual, sizeof (vfsops_t));
426 *actual = NULL;
427 return (error);
428 }
429
430 return (0);
431 }
432
433 /*
434 * Free a vfsops structure created as a result of vfs_makefsops().
435 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
436 * vfs_freevfsops_by_type().
437 */
438 void
vfs_freevfsops(vfsops_t * vfsops)439 vfs_freevfsops(vfsops_t *vfsops)
440 {
441 kmem_free(vfsops, sizeof (vfsops_t));
442 }
443
444 /*
445 * Since the vfsops structure is part of the vfssw table and wasn't
446 * really allocated, we're not really freeing anything. We keep
447 * the name for consistency with vfs_freevfsops(). We do, however,
448 * need to take care of a little bookkeeping.
449 * NOTE: For a vfsops structure created by vfs_setfsops(), use
450 * vfs_freevfsops_by_type().
451 */
452 int
vfs_freevfsops_by_type(int fstype)453 vfs_freevfsops_by_type(int fstype)
454 {
455
456 /* Verify that fstype refers to a loaded fs (and not fsid 0). */
457 if ((fstype <= 0) || (fstype >= nfstype))
458 return (EINVAL);
459
460 WLOCK_VFSSW();
461 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
462 WUNLOCK_VFSSW();
463 return (EINVAL);
464 }
465
466 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
467 WUNLOCK_VFSSW();
468
469 return (0);
470 }
471
472 /* Support routines used to reference vfs_op */
473
474 /* Set the operations vector for a vfs */
475 void
vfs_setops(vfs_t * vfsp,vfsops_t * vfsops)476 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
477 {
478 vfsops_t *op;
479
480 ASSERT(vfsp != NULL);
481 ASSERT(vfsops != NULL);
482
483 op = vfsp->vfs_op;
484 membar_consumer();
485 if (vfsp->vfs_femhead == NULL &&
486 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
487 return;
488 }
489 fsem_setvfsops(vfsp, vfsops);
490 }
491
492 /* Retrieve the operations vector for a vfs */
493 vfsops_t *
vfs_getops(vfs_t * vfsp)494 vfs_getops(vfs_t *vfsp)
495 {
496 vfsops_t *op;
497
498 ASSERT(vfsp != NULL);
499
500 op = vfsp->vfs_op;
501 membar_consumer();
502 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
503 return (op);
504 } else {
505 return (fsem_getvfsops(vfsp));
506 }
507 }
508
509 /*
510 * Returns non-zero (1) if the vfsops matches that of the vfs.
511 * Returns zero (0) if not.
512 */
513 int
vfs_matchops(vfs_t * vfsp,vfsops_t * vfsops)514 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
515 {
516 return (vfs_getops(vfsp) == vfsops);
517 }
518
519 /*
520 * Returns non-zero (1) if the file system has installed a non-default,
521 * non-error vfs_sync routine. Returns zero (0) otherwise.
522 */
523 int
vfs_can_sync(vfs_t * vfsp)524 vfs_can_sync(vfs_t *vfsp)
525 {
526 /* vfs_sync() routine is not the default/error function */
527 return (vfs_getops(vfsp)->vfs_sync != fs_sync);
528 }
529
530 /*
531 * Initialize a vfs structure.
532 */
533 void
vfs_init(vfs_t * vfsp,vfsops_t * op,void * data)534 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
535 {
536 /* Other initialization has been moved to vfs_alloc() */
537 vfsp->vfs_count = 0;
538 vfsp->vfs_next = vfsp;
539 vfsp->vfs_prev = vfsp;
540 vfsp->vfs_zone_next = vfsp;
541 vfsp->vfs_zone_prev = vfsp;
542 vfsp->vfs_lofi_minor = 0;
543 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
544 vfsimpl_setup(vfsp);
545 vfsp->vfs_data = (data);
546 vfs_setops((vfsp), (op));
547 }
548
549 /*
550 * Allocate and initialize the vfs implementation private data
551 * structure, vfs_impl_t.
552 */
553 void
vfsimpl_setup(vfs_t * vfsp)554 vfsimpl_setup(vfs_t *vfsp)
555 {
556 int i;
557
558 if (vfsp->vfs_implp != NULL) {
559 return;
560 }
561
562 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
563 /* Note that these are #define'd in vfs.h */
564 vfsp->vfs_vskap = NULL;
565 vfsp->vfs_fstypevsp = NULL;
566
567 /* Set size of counted array, then zero the array */
568 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
569 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) {
570 vfsp->vfs_featureset[i] = 0;
571 }
572 }
573
574 /*
575 * Release the vfs_impl_t structure, if it exists. Some unbundled
576 * filesystems may not use the newer version of vfs and thus
577 * would not contain this implementation private data structure.
578 */
579 void
vfsimpl_teardown(vfs_t * vfsp)580 vfsimpl_teardown(vfs_t *vfsp)
581 {
582 vfs_impl_t *vip = vfsp->vfs_implp;
583
584 if (vip == NULL)
585 return;
586
587 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
588 vfsp->vfs_implp = NULL;
589 }
590
591 /*
592 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
593 * fstatvfs, and sysfs moved to common/syscall.
594 */
595
596 /*
597 * Update every mounted file system. We call the vfs_sync operation of
598 * each file system type, passing it a NULL vfsp to indicate that all
599 * mounted file systems of that type should be updated.
600 */
601 void
vfs_sync(int flag)602 vfs_sync(int flag)
603 {
604 struct vfssw *vswp;
605 RLOCK_VFSSW();
606 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
607 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
608 vfs_refvfssw(vswp);
609 RUNLOCK_VFSSW();
610 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
611 CRED());
612 vfs_unrefvfssw(vswp);
613 RLOCK_VFSSW();
614 }
615 }
616 RUNLOCK_VFSSW();
617 }
618
619 void
sync(void)620 sync(void)
621 {
622 vfs_sync(0);
623 }
624
625 /*
626 * compare function for vfs_by_dev avl tree. compare dev first, then mntix
627 */
628 static int
vfs_cmp_dev(const void * aa,const void * bb)629 vfs_cmp_dev(const void *aa, const void *bb)
630 {
631 const vfs_t *a = aa;
632 const vfs_t *b = bb;
633
634 if (a->vfs_dev < b->vfs_dev)
635 return (-1);
636 if (a->vfs_dev > b->vfs_dev)
637 return (1);
638 if (a->vfs_mntix < b->vfs_mntix)
639 return (-1);
640 if (a->vfs_mntix > b->vfs_mntix)
641 return (1);
642 return (0);
643 }
644
645 /*
646 * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix
647 */
648 static int
vfs_cmp_mntpnt(const void * aa,const void * bb)649 vfs_cmp_mntpnt(const void *aa, const void *bb)
650 {
651 const vfs_t *a = aa;
652 const vfs_t *b = bb;
653 int ret;
654
655 ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt));
656 if (ret < 0)
657 return (-1);
658 if (ret > 0)
659 return (1);
660 if (a->vfs_mntix < b->vfs_mntix)
661 return (-1);
662 if (a->vfs_mntix > b->vfs_mntix)
663 return (1);
664 return (0);
665 }
666
667 /*
668 * External routines.
669 */
670
671 krwlock_t vfssw_lock; /* lock accesses to vfssw */
672
673 /*
674 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(),
675 * but otherwise should be accessed only via vfs_list_lock() and
676 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list.
677 */
678 static krwlock_t vfslist;
679
680 /*
681 * Mount devfs on /devices. This is done right after root is mounted
682 * to provide device access support for the system
683 */
684 static void
vfs_mountdevices(void)685 vfs_mountdevices(void)
686 {
687 struct vfssw *vsw;
688 struct vnode *mvp;
689 struct mounta mounta = { /* fake mounta for devfs_mount() */
690 NULL,
691 NULL,
692 MS_SYSSPACE,
693 NULL,
694 NULL,
695 0,
696 NULL,
697 0
698 };
699
700 /*
701 * _init devfs module to fill in the vfssw
702 */
703 if (modload("fs", "devfs") == -1)
704 panic("Cannot _init devfs module");
705
706 /*
707 * Hold vfs
708 */
709 RLOCK_VFSSW();
710 vsw = vfs_getvfsswbyname("devfs");
711 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
712 VFS_HOLD(&devices);
713
714 /*
715 * Locate mount point
716 */
717 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
718 panic("Cannot find /devices");
719
720 /*
721 * Perform the mount of /devices
722 */
723 if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
724 panic("Cannot mount /devices");
725
726 RUNLOCK_VFSSW();
727
728 /*
729 * Set appropriate members and add to vfs list for mnttab display
730 */
731 vfs_setresource(&devices, "/devices", 0);
732 vfs_setmntpoint(&devices, "/devices", 0);
733
734 /*
735 * Hold the root of /devices so it won't go away
736 */
737 if (VFS_ROOT(&devices, &devicesdir))
738 panic("vfs_mountdevices: not devices root");
739
740 if (vfs_lock(&devices) != 0) {
741 VN_RELE(devicesdir);
742 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
743 return;
744 }
745
746 if (vn_vfswlock(mvp) != 0) {
747 vfs_unlock(&devices);
748 VN_RELE(devicesdir);
749 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
750 return;
751 }
752
753 vfs_add(mvp, &devices, 0);
754 vn_vfsunlock(mvp);
755 vfs_unlock(&devices);
756 VN_RELE(devicesdir);
757 }
758
759 /*
760 * mount the first instance of /dev to root and remain mounted
761 */
762 static void
vfs_mountdev1(void)763 vfs_mountdev1(void)
764 {
765 struct vfssw *vsw;
766 struct vnode *mvp;
767 struct mounta mounta = { /* fake mounta for sdev_mount() */
768 NULL,
769 NULL,
770 MS_SYSSPACE | MS_OVERLAY,
771 NULL,
772 NULL,
773 0,
774 NULL,
775 0
776 };
777
778 /*
779 * _init dev module to fill in the vfssw
780 */
781 if (modload("fs", "dev") == -1)
782 cmn_err(CE_PANIC, "Cannot _init dev module\n");
783
784 /*
785 * Hold vfs
786 */
787 RLOCK_VFSSW();
788 vsw = vfs_getvfsswbyname("dev");
789 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
790 VFS_HOLD(&dev);
791
792 /*
793 * Locate mount point
794 */
795 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
796 cmn_err(CE_PANIC, "Cannot find /dev\n");
797
798 /*
799 * Perform the mount of /dev
800 */
801 if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
802 cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
803
804 RUNLOCK_VFSSW();
805
806 /*
807 * Set appropriate members and add to vfs list for mnttab display
808 */
809 vfs_setresource(&dev, "/dev", 0);
810 vfs_setmntpoint(&dev, "/dev", 0);
811
812 /*
813 * Hold the root of /dev so it won't go away
814 */
815 if (VFS_ROOT(&dev, &devdir))
816 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
817
818 if (vfs_lock(&dev) != 0) {
819 VN_RELE(devdir);
820 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
821 return;
822 }
823
824 if (vn_vfswlock(mvp) != 0) {
825 vfs_unlock(&dev);
826 VN_RELE(devdir);
827 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
828 return;
829 }
830
831 vfs_add(mvp, &dev, 0);
832 vn_vfsunlock(mvp);
833 vfs_unlock(&dev);
834 VN_RELE(devdir);
835 }
836
837 /*
838 * Mount required filesystem. This is done right after root is mounted.
839 */
840 static void
vfs_mountfs(char * module,char * spec,char * path)841 vfs_mountfs(char *module, char *spec, char *path)
842 {
843 struct vnode *mvp;
844 struct mounta mounta;
845 vfs_t *vfsp;
846
847 bzero(&mounta, sizeof (mounta));
848 mounta.flags = MS_SYSSPACE | MS_DATA;
849 mounta.fstype = module;
850 mounta.spec = spec;
851 mounta.dir = path;
852 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
853 cmn_err(CE_WARN, "Cannot find %s", path);
854 return;
855 }
856 if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
857 cmn_err(CE_WARN, "Cannot mount %s", path);
858 else
859 VFS_RELE(vfsp);
860 VN_RELE(mvp);
861 }
862
863 /*
864 * vfs_mountroot is called by main() to mount the root filesystem.
865 */
866 void
vfs_mountroot(void)867 vfs_mountroot(void)
868 {
869 struct vnode *rvp = NULL;
870 char *path;
871 size_t plen;
872 struct vfssw *vswp;
873 proc_t *p;
874
875 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
876 rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
877
878 /*
879 * Alloc the avl trees for quick indexing via dev and mountpoint
880 */
881 avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t),
882 offsetof(vfs_t, vfs_avldev));
883 avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t),
884 offsetof(vfs_t, vfs_avlmntpnt));
885
886 /*
887 * Alloc the vfs hash bucket array and locks
888 */
889 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
890
891 /*
892 * Call machine-dependent routine "rootconf" to choose a root
893 * file system type.
894 */
895 if (rootconf())
896 panic("vfs_mountroot: cannot mount root");
897 /*
898 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir
899 * to point to it. These are used by lookuppn() so that it
900 * knows where to start from ('/' or '.').
901 */
902 vfs_setmntpoint(rootvfs, "/", 0);
903 if (VFS_ROOT(rootvfs, &rootdir))
904 panic("vfs_mountroot: no root vnode");
905
906 /*
907 * At this point, the process tree consists of p0 and possibly some
908 * direct children of p0. (i.e. there are no grandchildren)
909 *
910 * Walk through them all, setting their current directory.
911 */
912 mutex_enter(&pidlock);
913 for (p = practive; p != NULL; p = p->p_next) {
914 ASSERT(p == &p0 || p->p_parent == &p0);
915
916 PTOU(p)->u_cdir = rootdir;
917 VN_HOLD(PTOU(p)->u_cdir);
918 PTOU(p)->u_rdir = NULL;
919 }
920 mutex_exit(&pidlock);
921
922 /*
923 * Setup the global zone's rootvp, now that it exists.
924 */
925 global_zone->zone_rootvp = rootdir;
926 VN_HOLD(global_zone->zone_rootvp);
927
928 /*
929 * Notify the module code that it can begin using the
930 * root filesystem instead of the boot program's services.
931 */
932 modrootloaded = 1;
933
934 /*
935 * Special handling for a ZFS root file system.
936 */
937 zfs_boot_init();
938
939 /*
940 * Set up mnttab information for root
941 */
942 vfs_setresource(rootvfs, rootfs.bo_name, 0);
943
944 /*
945 * Notify cluster software that the root filesystem is available.
946 */
947 clboot_mountroot();
948
949 /* Now that we're all done with the root FS, set up its vopstats */
950 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
951 /* Set flag for statistics collection */
952 if (vswp->vsw_flag & VSW_STATS) {
953 initialize_vopstats(&rootvfs->vfs_vopstats);
954 rootvfs->vfs_flag |= VFS_STATS;
955 rootvfs->vfs_fstypevsp =
956 get_fstype_vopstats(rootvfs, vswp);
957 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
958 }
959 vfs_unrefvfssw(vswp);
960 }
961
962 /*
963 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
964 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
965 */
966 vfs_mountdevices();
967 vfs_mountdev1();
968
969 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
970 vfs_mountfs("proc", "/proc", "/proc");
971 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
972 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
973 vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
974 vfs_mountfs("bootfs", "bootfs", "/system/boot");
975
976 if (getzoneid() == GLOBAL_ZONEID) {
977 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
978 }
979
980 if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
981 /*
982 * Look up the root device via devfs so that a dv_node is
983 * created for it. The vnode is never VN_RELE()ed.
984 * We allocate more than MAXPATHLEN so that the
985 * buffer passed to i_ddi_prompath_to_devfspath() is
986 * exactly MAXPATHLEN (the function expects a buffer
987 * of that length).
988 */
989 plen = strlen("/devices");
990 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
991 (void) strcpy(path, "/devices");
992
993 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
994 != DDI_SUCCESS ||
995 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
996
997 /* NUL terminate in case "path" has garbage */
998 path[plen + MAXPATHLEN - 1] = '\0';
999 #ifdef DEBUG
1000 cmn_err(CE_WARN, "!Cannot lookup root device: %s",
1001 path);
1002 #endif
1003 }
1004 kmem_free(path, plen + MAXPATHLEN);
1005 }
1006
1007 vfs_mnttabvp_setup();
1008 }
1009
1010 /*
1011 * Check to see if our "block device" is actually a file. If so,
1012 * automatically add a lofi device, and keep track of this fact.
1013 */
1014 static int
lofi_add(const char * fsname,struct vfs * vfsp,mntopts_t * mntopts,struct mounta * uap)1015 lofi_add(const char *fsname, struct vfs *vfsp,
1016 mntopts_t *mntopts, struct mounta *uap)
1017 {
1018 int fromspace = (uap->flags & MS_SYSSPACE) ?
1019 UIO_SYSSPACE : UIO_USERSPACE;
1020 struct lofi_ioctl *li = NULL;
1021 struct vnode *vp = NULL;
1022 struct pathname pn = { NULL };
1023 ldi_ident_t ldi_id;
1024 ldi_handle_t ldi_hdl;
1025 vfssw_t *vfssw;
1026 int minor;
1027 int err = 0;
1028
1029 if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1030 return (0);
1031
1032 if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1033 vfs_unrefvfssw(vfssw);
1034 return (0);
1035 }
1036
1037 vfs_unrefvfssw(vfssw);
1038 vfssw = NULL;
1039
1040 if (pn_get(uap->spec, fromspace, &pn) != 0)
1041 return (0);
1042
1043 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1044 goto out;
1045
1046 if (vp->v_type != VREG)
1047 goto out;
1048
1049 /* OK, this is a lofi mount. */
1050
1051 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1052 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1053 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1054 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1055 err = EINVAL;
1056 goto out;
1057 }
1058
1059 ldi_id = ldi_ident_from_anon();
1060 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1061 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1062
1063 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1064 &ldi_hdl, ldi_id);
1065
1066 if (err)
1067 goto out2;
1068
1069 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1070 FREAD | FWRITE | FKIOCTL, kcred, &minor);
1071
1072 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1073
1074 if (!err)
1075 vfsp->vfs_lofi_minor = minor;
1076
1077 out2:
1078 ldi_ident_release(ldi_id);
1079 out:
1080 if (li != NULL)
1081 kmem_free(li, sizeof (*li));
1082 if (vp != NULL)
1083 VN_RELE(vp);
1084 pn_free(&pn);
1085 return (err);
1086 }
1087
1088 static void
lofi_remove(struct vfs * vfsp)1089 lofi_remove(struct vfs *vfsp)
1090 {
1091 struct lofi_ioctl *li = NULL;
1092 ldi_ident_t ldi_id;
1093 ldi_handle_t ldi_hdl;
1094 int err;
1095
1096 if (vfsp->vfs_lofi_minor == 0)
1097 return;
1098
1099 ldi_id = ldi_ident_from_anon();
1100
1101 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1102 li->li_minor = vfsp->vfs_lofi_minor;
1103 li->li_cleanup = B_TRUE;
1104
1105 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1106 &ldi_hdl, ldi_id);
1107
1108 if (err)
1109 goto out;
1110
1111 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1112 FREAD | FWRITE | FKIOCTL, kcred, NULL);
1113
1114 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1115
1116 if (!err)
1117 vfsp->vfs_lofi_minor = 0;
1118
1119 out:
1120 ldi_ident_release(ldi_id);
1121 if (li != NULL)
1122 kmem_free(li, sizeof (*li));
1123 }
1124
1125 /*
1126 * Common mount code. Called from the system call entry point, from autofs,
1127 * nfsv4 trigger mounts, and from pxfs.
1128 *
1129 * Takes the effective file system type, mount arguments, the mount point
1130 * vnode, flags specifying whether the mount is a remount and whether it
1131 * should be entered into the vfs list, and credentials. Fills in its vfspp
1132 * parameter with the mounted file system instance's vfs.
1133 *
1134 * Note that the effective file system type is specified as a string. It may
1135 * be null, in which case it's determined from the mount arguments, and may
1136 * differ from the type specified in the mount arguments; this is a hook to
1137 * allow interposition when instantiating file system instances.
1138 *
1139 * The caller is responsible for releasing its own hold on the mount point
1140 * vp (this routine does its own hold when necessary).
1141 * Also note that for remounts, the mount point vp should be the vnode for
1142 * the root of the file system rather than the vnode that the file system
1143 * is mounted on top of.
1144 */
1145 int
domount(char * fsname,struct mounta * uap,vnode_t * vp,struct cred * credp,struct vfs ** vfspp)1146 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1147 struct vfs **vfspp)
1148 {
1149 struct vfssw *vswp;
1150 vfsops_t *vfsops;
1151 struct vfs *vfsp;
1152 struct vnode *bvp;
1153 dev_t bdev = 0;
1154 mntopts_t mnt_mntopts;
1155 int error = 0;
1156 int copyout_error = 0;
1157 int ovflags;
1158 char *opts = uap->optptr;
1159 char *inargs = opts;
1160 int optlen = uap->optlen;
1161 int remount;
1162 int rdonly;
1163 int nbmand = 0;
1164 int delmip = 0;
1165 int addmip = 0;
1166 int splice = ((uap->flags & MS_NOSPLICE) == 0);
1167 int fromspace = (uap->flags & MS_SYSSPACE) ?
1168 UIO_SYSSPACE : UIO_USERSPACE;
1169 char *resource = NULL, *mountpt = NULL;
1170 refstr_t *oldresource, *oldmntpt;
1171 struct pathname pn, rpn;
1172 vsk_anchor_t *vskap;
1173 char fstname[FSTYPSZ];
1174 zone_t *zone;
1175
1176 /*
1177 * The v_flag value for the mount point vp is permanently set
1178 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1179 * for mount point locking.
1180 */
1181 mutex_enter(&vp->v_lock);
1182 vp->v_flag |= VVFSLOCK;
1183 mutex_exit(&vp->v_lock);
1184
1185 mnt_mntopts.mo_count = 0;
1186 /*
1187 * Find the ops vector to use to invoke the file system-specific mount
1188 * method. If the fsname argument is non-NULL, use it directly.
1189 * Otherwise, dig the file system type information out of the mount
1190 * arguments.
1191 *
1192 * A side effect is to hold the vfssw entry.
1193 *
1194 * Mount arguments can be specified in several ways, which are
1195 * distinguished by flag bit settings. The preferred way is to set
1196 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1197 * type supplied as a character string and the last two arguments
1198 * being a pointer to a character buffer and the size of the buffer.
1199 * On entry, the buffer holds a null terminated list of options; on
1200 * return, the string is the list of options the file system
1201 * recognized. If MS_DATA is set arguments five and six point to a
1202 * block of binary data which the file system interprets.
1203 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1204 * consistently with these conventions. To handle them, we check to
1205 * see whether the pointer to the file system name has a numeric value
1206 * less than 256. If so, we treat it as an index.
1207 */
1208 if (fsname != NULL) {
1209 if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1210 return (EINVAL);
1211 }
1212 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1213 size_t n;
1214 uint_t fstype;
1215
1216 fsname = fstname;
1217
1218 if ((fstype = (uintptr_t)uap->fstype) < 256) {
1219 RLOCK_VFSSW();
1220 if (fstype == 0 || fstype >= nfstype ||
1221 !ALLOCATED_VFSSW(&vfssw[fstype])) {
1222 RUNLOCK_VFSSW();
1223 return (EINVAL);
1224 }
1225 (void) strcpy(fsname, vfssw[fstype].vsw_name);
1226 RUNLOCK_VFSSW();
1227 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1228 return (EINVAL);
1229 } else {
1230 /*
1231 * Handle either kernel or user address space.
1232 */
1233 if (uap->flags & MS_SYSSPACE) {
1234 error = copystr(uap->fstype, fsname,
1235 FSTYPSZ, &n);
1236 } else {
1237 error = copyinstr(uap->fstype, fsname,
1238 FSTYPSZ, &n);
1239 }
1240 if (error) {
1241 if (error == ENAMETOOLONG)
1242 return (EINVAL);
1243 return (error);
1244 }
1245 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1246 return (EINVAL);
1247 }
1248 } else {
1249 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1250 return (EINVAL);
1251 fsname = vswp->vsw_name;
1252 }
1253 if (!VFS_INSTALLED(vswp))
1254 return (EINVAL);
1255
1256 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) {
1257 vfs_unrefvfssw(vswp);
1258 return (error);
1259 }
1260
1261 vfsops = &vswp->vsw_vfsops;
1262
1263 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1264 /*
1265 * Fetch mount options and parse them for generic vfs options
1266 */
1267 if (uap->flags & MS_OPTIONSTR) {
1268 /*
1269 * Limit the buffer size
1270 */
1271 if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1272 error = EINVAL;
1273 goto errout;
1274 }
1275 if ((uap->flags & MS_SYSSPACE) == 0) {
1276 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1277 inargs[0] = '\0';
1278 if (optlen) {
1279 error = copyinstr(opts, inargs, (size_t)optlen,
1280 NULL);
1281 if (error) {
1282 goto errout;
1283 }
1284 }
1285 }
1286 vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1287 }
1288 /*
1289 * Flag bits override the options string.
1290 */
1291 if (uap->flags & MS_REMOUNT)
1292 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1293 if (uap->flags & MS_RDONLY)
1294 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1295 if (uap->flags & MS_NOSUID)
1296 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1297
1298 /*
1299 * Check if this is a remount; must be set in the option string and
1300 * the file system must support a remount option.
1301 */
1302 if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1303 MNTOPT_REMOUNT, NULL)) {
1304 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1305 error = ENOTSUP;
1306 goto errout;
1307 }
1308 uap->flags |= MS_REMOUNT;
1309 }
1310
1311 /*
1312 * uap->flags and vfs_optionisset() should agree.
1313 */
1314 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1315 uap->flags |= MS_RDONLY;
1316 }
1317 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1318 uap->flags |= MS_NOSUID;
1319 }
1320 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1321 ASSERT(splice || !remount);
1322 /*
1323 * If we are splicing the fs into the namespace,
1324 * perform mount point checks.
1325 *
1326 * We want to resolve the path for the mount point to eliminate
1327 * '.' and ".." and symlinks in mount points; we can't do the
1328 * same for the resource string, since it would turn
1329 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do
1330 * this before grabbing vn_vfswlock(), because otherwise we
1331 * would deadlock with lookuppn().
1332 */
1333 if (splice) {
1334 ASSERT(vp->v_count > 0);
1335
1336 /*
1337 * Pick up mount point and device from appropriate space.
1338 */
1339 if (pn_get(uap->spec, fromspace, &pn) == 0) {
1340 resource = kmem_alloc(pn.pn_pathlen + 1,
1341 KM_SLEEP);
1342 (void) strcpy(resource, pn.pn_path);
1343 pn_free(&pn);
1344 }
1345 /*
1346 * Do a lookupname prior to taking the
1347 * writelock. Mark this as completed if
1348 * successful for later cleanup and addition to
1349 * the mount in progress table.
1350 */
1351 if ((uap->flags & MS_GLOBAL) == 0 &&
1352 lookupname(uap->spec, fromspace,
1353 FOLLOW, NULL, &bvp) == 0) {
1354 addmip = 1;
1355 }
1356
1357 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1358 pathname_t *pnp;
1359
1360 if (*pn.pn_path != '/') {
1361 error = EINVAL;
1362 pn_free(&pn);
1363 goto errout;
1364 }
1365 pn_alloc(&rpn);
1366 /*
1367 * Kludge to prevent autofs from deadlocking with
1368 * itself when it calls domount().
1369 *
1370 * If autofs is calling, it is because it is doing
1371 * (autofs) mounts in the process of an NFS mount. A
1372 * lookuppn() here would cause us to block waiting for
1373 * said NFS mount to complete, which can't since this
1374 * is the thread that was supposed to doing it.
1375 */
1376 if (fromspace == UIO_USERSPACE) {
1377 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1378 NULL)) == 0) {
1379 pnp = &rpn;
1380 } else {
1381 /*
1382 * The file disappeared or otherwise
1383 * became inaccessible since we opened
1384 * it; might as well fail the mount
1385 * since the mount point is no longer
1386 * accessible.
1387 */
1388 pn_free(&rpn);
1389 pn_free(&pn);
1390 goto errout;
1391 }
1392 } else {
1393 pnp = &pn;
1394 }
1395 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1396 (void) strcpy(mountpt, pnp->pn_path);
1397
1398 /*
1399 * If the addition of the zone's rootpath
1400 * would push us over a total path length
1401 * of MAXPATHLEN, we fail the mount with
1402 * ENAMETOOLONG, which is what we would have
1403 * gotten if we were trying to perform the same
1404 * mount in the global zone.
1405 *
1406 * strlen() doesn't count the trailing
1407 * '\0', but zone_rootpathlen counts both a
1408 * trailing '/' and the terminating '\0'.
1409 */
1410 if ((curproc->p_zone->zone_rootpathlen - 1 +
1411 strlen(mountpt)) > MAXPATHLEN ||
1412 (resource != NULL &&
1413 (curproc->p_zone->zone_rootpathlen - 1 +
1414 strlen(resource)) > MAXPATHLEN)) {
1415 error = ENAMETOOLONG;
1416 }
1417
1418 pn_free(&rpn);
1419 pn_free(&pn);
1420 }
1421
1422 if (error)
1423 goto errout;
1424
1425 /*
1426 * Prevent path name resolution from proceeding past
1427 * the mount point.
1428 */
1429 if (vn_vfswlock(vp) != 0) {
1430 error = EBUSY;
1431 goto errout;
1432 }
1433
1434 /*
1435 * Verify that it's legitimate to establish a mount on
1436 * the prospective mount point.
1437 */
1438 if (vn_mountedvfs(vp) != NULL) {
1439 /*
1440 * The mount point lock was obtained after some
1441 * other thread raced through and established a mount.
1442 */
1443 vn_vfsunlock(vp);
1444 error = EBUSY;
1445 goto errout;
1446 }
1447 if (vp->v_flag & VNOMOUNT) {
1448 vn_vfsunlock(vp);
1449 error = EINVAL;
1450 goto errout;
1451 }
1452 }
1453 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1454 uap->dataptr = NULL;
1455 uap->datalen = 0;
1456 }
1457
1458 /*
1459 * If this is a remount, we don't want to create a new VFS.
1460 * Instead, we pass the existing one with a remount flag.
1461 */
1462 if (remount) {
1463 /*
1464 * Confirm that the mount point is the root vnode of the
1465 * file system that is being remounted.
1466 * This can happen if the user specifies a different
1467 * mount point directory pathname in the (re)mount command.
1468 *
1469 * Code below can only be reached if splice is true, so it's
1470 * safe to do vn_vfsunlock() here.
1471 */
1472 if ((vp->v_flag & VROOT) == 0) {
1473 vn_vfsunlock(vp);
1474 error = ENOENT;
1475 goto errout;
1476 }
1477 /*
1478 * Disallow making file systems read-only unless file system
1479 * explicitly allows it in its vfssw. Ignore other flags.
1480 */
1481 if (rdonly && vn_is_readonly(vp) == 0 &&
1482 (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1483 vn_vfsunlock(vp);
1484 error = EINVAL;
1485 goto errout;
1486 }
1487 /*
1488 * Disallow changing the NBMAND disposition of the file
1489 * system on remounts.
1490 */
1491 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1492 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1493 vn_vfsunlock(vp);
1494 error = EINVAL;
1495 goto errout;
1496 }
1497 vfsp = vp->v_vfsp;
1498 ovflags = vfsp->vfs_flag;
1499 vfsp->vfs_flag |= VFS_REMOUNT;
1500 vfsp->vfs_flag &= ~VFS_RDONLY;
1501 } else {
1502 vfsp = vfs_alloc(KM_SLEEP);
1503 VFS_INIT(vfsp, vfsops, NULL);
1504 }
1505
1506 VFS_HOLD(vfsp);
1507
1508 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1509 if (!remount) {
1510 if (splice)
1511 vn_vfsunlock(vp);
1512 vfs_free(vfsp);
1513 } else {
1514 vn_vfsunlock(vp);
1515 VFS_RELE(vfsp);
1516 }
1517 goto errout;
1518 }
1519
1520 /*
1521 * PRIV_SYS_MOUNT doesn't mean you can become root.
1522 */
1523 if (vfsp->vfs_lofi_minor != 0) {
1524 uap->flags |= MS_NOSUID;
1525 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1526 }
1527
1528 /*
1529 * The vfs_reflock is not used anymore the code below explicitly
1530 * holds it preventing others accesing it directly.
1531 */
1532 if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1533 !(vfsp->vfs_flag & VFS_REMOUNT))
1534 cmn_err(CE_WARN,
1535 "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1536
1537 /*
1538 * Lock the vfs. If this is a remount we want to avoid spurious umount
1539 * failures that happen as a side-effect of fsflush() and other mount
1540 * and unmount operations that might be going on simultaneously and
1541 * may have locked the vfs currently. To not return EBUSY immediately
1542 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1543 */
1544 if (!remount) {
1545 if (error = vfs_lock(vfsp)) {
1546 vfsp->vfs_flag = ovflags;
1547
1548 lofi_remove(vfsp);
1549
1550 if (splice)
1551 vn_vfsunlock(vp);
1552 vfs_free(vfsp);
1553 goto errout;
1554 }
1555 } else {
1556 vfs_lock_wait(vfsp);
1557 }
1558
1559 /*
1560 * Add device to mount in progress table, global mounts require special
1561 * handling. It is possible that we have already done the lookupname
1562 * on a spliced, non-global fs. If so, we don't want to do it again
1563 * since we cannot do a lookupname after taking the
1564 * wlock above. This case is for a non-spliced, non-global filesystem.
1565 */
1566 if (!addmip) {
1567 if ((uap->flags & MS_GLOBAL) == 0 &&
1568 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1569 addmip = 1;
1570 }
1571 }
1572
1573 if (addmip) {
1574 vnode_t *lvp = NULL;
1575
1576 error = vfs_get_lofi(vfsp, &lvp);
1577 if (error > 0) {
1578 lofi_remove(vfsp);
1579
1580 if (splice)
1581 vn_vfsunlock(vp);
1582 vfs_unlock(vfsp);
1583
1584 if (remount) {
1585 VFS_RELE(vfsp);
1586 } else {
1587 vfs_free(vfsp);
1588 }
1589
1590 goto errout;
1591 } else if (error == -1) {
1592 bdev = bvp->v_rdev;
1593 VN_RELE(bvp);
1594 } else {
1595 bdev = lvp->v_rdev;
1596 VN_RELE(lvp);
1597 VN_RELE(bvp);
1598 }
1599
1600 vfs_addmip(bdev, vfsp);
1601 addmip = 0;
1602 delmip = 1;
1603 }
1604 /*
1605 * Invalidate cached entry for the mount point.
1606 */
1607 if (splice)
1608 dnlc_purge_vp(vp);
1609
1610 /*
1611 * If have an option string but the filesystem doesn't supply a
1612 * prototype options table, create a table with the global
1613 * options and sufficient room to accept all the options in the
1614 * string. Then parse the passed in option string
1615 * accepting all the options in the string. This gives us an
1616 * option table with all the proper cancel properties for the
1617 * global options.
1618 *
1619 * Filesystems that supply a prototype options table are handled
1620 * earlier in this function.
1621 */
1622 if (uap->flags & MS_OPTIONSTR) {
1623 if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1624 mntopts_t tmp_mntopts;
1625
1626 tmp_mntopts.mo_count = 0;
1627 vfs_createopttbl_extend(&tmp_mntopts, inargs,
1628 &mnt_mntopts);
1629 vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1630 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1631 vfs_freeopttbl(&tmp_mntopts);
1632 }
1633 }
1634
1635 /*
1636 * Serialize with zone state transitions.
1637 * See vfs_list_add; zone mounted into is:
1638 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1639 * not the zone doing the mount (curproc->p_zone), but if we're already
1640 * inside a NGZ, then we know what zone we are.
1641 */
1642 if (INGLOBALZONE(curproc)) {
1643 zone = zone_find_by_path(mountpt);
1644 ASSERT(zone != NULL);
1645 } else {
1646 zone = curproc->p_zone;
1647 /*
1648 * zone_find_by_path does a hold, so do one here too so that
1649 * we can do a zone_rele after mount_completed.
1650 */
1651 zone_hold(zone);
1652 }
1653 mount_in_progress(zone);
1654 /*
1655 * Instantiate (or reinstantiate) the file system. If appropriate,
1656 * splice it into the file system name space.
1657 *
1658 * We want VFS_MOUNT() to be able to override the vfs_resource
1659 * string if necessary (ie, mntfs), and also for a remount to
1660 * change the same (necessary when remounting '/' during boot).
1661 * So we set up vfs_mntpt and vfs_resource to what we think they
1662 * should be, then hand off control to VFS_MOUNT() which can
1663 * override this.
1664 *
1665 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1666 * a vfs which is on the vfs list (i.e. during a remount), we must
1667 * never set those fields to NULL. Several bits of code make
1668 * assumptions that the fields are always valid.
1669 */
1670 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1671 if (remount) {
1672 if ((oldresource = vfsp->vfs_resource) != NULL)
1673 refstr_hold(oldresource);
1674 if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1675 refstr_hold(oldmntpt);
1676 }
1677 vfs_setresource(vfsp, resource, 0);
1678 vfs_setmntpoint(vfsp, mountpt, 0);
1679
1680 /*
1681 * going to mount on this vnode, so notify.
1682 */
1683 vnevent_mountedover(vp, NULL);
1684 error = VFS_MOUNT(vfsp, vp, uap, credp);
1685
1686 if (uap->flags & MS_RDONLY)
1687 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1688 if (uap->flags & MS_NOSUID)
1689 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1690 if (uap->flags & MS_GLOBAL)
1691 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1692
1693 if (error) {
1694 lofi_remove(vfsp);
1695
1696 if (remount) {
1697 /* put back pre-remount options */
1698 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1699 vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1700 VFSSP_VERBATIM);
1701 if (oldmntpt)
1702 refstr_rele(oldmntpt);
1703 vfs_setresource(vfsp, refstr_value(oldresource),
1704 VFSSP_VERBATIM);
1705 if (oldresource)
1706 refstr_rele(oldresource);
1707 vfsp->vfs_flag = ovflags;
1708 vfs_unlock(vfsp);
1709 VFS_RELE(vfsp);
1710 } else {
1711 vfs_unlock(vfsp);
1712 vfs_freemnttab(vfsp);
1713 vfs_free(vfsp);
1714 }
1715 } else {
1716 /*
1717 * Set the mount time to now
1718 */
1719 vfsp->vfs_mtime = ddi_get_time();
1720 if (remount) {
1721 vfsp->vfs_flag &= ~VFS_REMOUNT;
1722 if (oldresource)
1723 refstr_rele(oldresource);
1724 if (oldmntpt)
1725 refstr_rele(oldmntpt);
1726 } else if (splice) {
1727 /*
1728 * Link vfsp into the name space at the mount
1729 * point. Vfs_add() is responsible for
1730 * holding the mount point which will be
1731 * released when vfs_remove() is called.
1732 */
1733 vfs_add(vp, vfsp, uap->flags);
1734 } else {
1735 /*
1736 * Hold the reference to file system which is
1737 * not linked into the name space.
1738 */
1739 vfsp->vfs_zone = NULL;
1740 VFS_HOLD(vfsp);
1741 vfsp->vfs_vnodecovered = NULL;
1742 }
1743 /*
1744 * Set flags for global options encountered
1745 */
1746 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1747 vfsp->vfs_flag |= VFS_RDONLY;
1748 else
1749 vfsp->vfs_flag &= ~VFS_RDONLY;
1750 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1751 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1752 } else {
1753 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1754 vfsp->vfs_flag |= VFS_NODEVICES;
1755 else
1756 vfsp->vfs_flag &= ~VFS_NODEVICES;
1757 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1758 vfsp->vfs_flag |= VFS_NOSETUID;
1759 else
1760 vfsp->vfs_flag &= ~VFS_NOSETUID;
1761 }
1762 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1763 vfsp->vfs_flag |= VFS_NBMAND;
1764 else
1765 vfsp->vfs_flag &= ~VFS_NBMAND;
1766
1767 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1768 vfsp->vfs_flag |= VFS_XATTR;
1769 else
1770 vfsp->vfs_flag &= ~VFS_XATTR;
1771
1772 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1773 vfsp->vfs_flag |= VFS_NOEXEC;
1774 else
1775 vfsp->vfs_flag &= ~VFS_NOEXEC;
1776
1777 if (vfs_optionisset(vfsp, MNTOPT_NOFOLLOW, NULL))
1778 vfsp->vfs_flag |= VFS_NOFOLLOW;
1779 else
1780 vfsp->vfs_flag &= ~VFS_NOFOLLOW;
1781
1782 /*
1783 * Now construct the output option string of options
1784 * we recognized.
1785 */
1786 if (uap->flags & MS_OPTIONSTR) {
1787 vfs_list_read_lock();
1788 copyout_error = vfs_buildoptionstr(
1789 &vfsp->vfs_mntopts, inargs, optlen);
1790 vfs_list_unlock();
1791 if (copyout_error == 0 &&
1792 (uap->flags & MS_SYSSPACE) == 0) {
1793 copyout_error = copyoutstr(inargs, opts,
1794 optlen, NULL);
1795 }
1796 }
1797
1798 /*
1799 * If this isn't a remount, set up the vopstats before
1800 * anyone can touch this. We only allow spliced file
1801 * systems (file systems which are in the namespace) to
1802 * have the VFS_STATS flag set.
1803 * NOTE: PxFS mounts the underlying file system with
1804 * MS_NOSPLICE set and copies those vfs_flags to its private
1805 * vfs structure. As a result, PxFS should never have
1806 * the VFS_STATS flag or else we might access the vfs
1807 * statistics-related fields prior to them being
1808 * properly initialized.
1809 */
1810 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1811 initialize_vopstats(&vfsp->vfs_vopstats);
1812 /*
1813 * We need to set vfs_vskap to NULL because there's
1814 * a chance it won't be set below. This is checked
1815 * in teardown_vopstats() so we can't have garbage.
1816 */
1817 vfsp->vfs_vskap = NULL;
1818 vfsp->vfs_flag |= VFS_STATS;
1819 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1820 }
1821
1822 if (vswp->vsw_flag & VSW_XID)
1823 vfsp->vfs_flag |= VFS_XID;
1824
1825 vfs_unlock(vfsp);
1826 }
1827 mount_completed(zone);
1828 zone_rele(zone);
1829 if (splice)
1830 vn_vfsunlock(vp);
1831
1832 if ((error == 0) && (copyout_error == 0)) {
1833 if (!remount) {
1834 /*
1835 * Don't call get_vskstat_anchor() while holding
1836 * locks since it allocates memory and calls
1837 * VFS_STATVFS(). For NFS, the latter can generate
1838 * an over-the-wire call.
1839 */
1840 vskap = get_vskstat_anchor(vfsp);
1841 /* Only take the lock if we have something to do */
1842 if (vskap != NULL) {
1843 vfs_lock_wait(vfsp);
1844 if (vfsp->vfs_flag & VFS_STATS) {
1845 vfsp->vfs_vskap = vskap;
1846 }
1847 vfs_unlock(vfsp);
1848 }
1849 }
1850 /* Return vfsp to caller. */
1851 *vfspp = vfsp;
1852 }
1853 errout:
1854 vfs_freeopttbl(&mnt_mntopts);
1855 if (resource != NULL)
1856 kmem_free(resource, strlen(resource) + 1);
1857 if (mountpt != NULL)
1858 kmem_free(mountpt, strlen(mountpt) + 1);
1859 /*
1860 * It is possible we errored prior to adding to mount in progress
1861 * table. Must free vnode we acquired with successful lookupname.
1862 */
1863 if (addmip)
1864 VN_RELE(bvp);
1865 if (delmip)
1866 vfs_delmip(vfsp);
1867 ASSERT(vswp != NULL);
1868 vfs_unrefvfssw(vswp);
1869 if (inargs != opts)
1870 kmem_free(inargs, MAX_MNTOPT_STR);
1871 if (copyout_error) {
1872 lofi_remove(vfsp);
1873 VFS_RELE(vfsp);
1874 error = copyout_error;
1875 }
1876 return (error);
1877 }
1878
1879 static void
vfs_setpath(struct vfs * vfsp,refstr_t ** refp,const char * newpath,uint32_t flag)1880 vfs_setpath(
1881 struct vfs *vfsp, /* vfs being updated */
1882 refstr_t **refp, /* Ref-count string to contain the new path */
1883 const char *newpath, /* Path to add to refp (above) */
1884 uint32_t flag) /* flag */
1885 {
1886 size_t len;
1887 refstr_t *ref;
1888 zone_t *zone = curproc->p_zone;
1889 char *sp;
1890 int have_list_lock = 0;
1891
1892 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1893
1894 /*
1895 * New path must be less than MAXPATHLEN because mntfs
1896 * will only display up to MAXPATHLEN bytes. This is currently
1897 * safe, because domount() uses pn_get(), and other callers
1898 * similarly cap the size to fewer than MAXPATHLEN bytes.
1899 */
1900
1901 ASSERT(strlen(newpath) < MAXPATHLEN);
1902
1903 /* mntfs requires consistency while vfs list lock is held */
1904
1905 if (VFS_ON_LIST(vfsp)) {
1906 have_list_lock = 1;
1907 vfs_list_lock();
1908 }
1909
1910 if (*refp != NULL)
1911 refstr_rele(*refp);
1912
1913 /*
1914 * If we are in a non-global zone then we prefix the supplied path,
1915 * newpath, with the zone's root path, with two exceptions. The first
1916 * is where we have been explicitly directed to avoid doing so; this
1917 * will be the case following a failed remount, where the path supplied
1918 * will be a saved version which must now be restored. The second
1919 * exception is where newpath is not a pathname but a descriptive name,
1920 * e.g. "procfs".
1921 */
1922 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1923 ref = refstr_alloc(newpath);
1924 goto out;
1925 }
1926
1927 /*
1928 * Truncate the trailing '/' in the zoneroot, and merge
1929 * in the zone's rootpath with the "newpath" (resource
1930 * or mountpoint) passed in.
1931 *
1932 * The size of the required buffer is thus the size of
1933 * the buffer required for the passed-in newpath
1934 * (strlen(newpath) + 1), plus the size of the buffer
1935 * required to hold zone_rootpath (zone_rootpathlen)
1936 * minus one for one of the now-superfluous NUL
1937 * terminations, minus one for the trailing '/'.
1938 *
1939 * That gives us:
1940 *
1941 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1942 *
1943 * Which is what we have below.
1944 */
1945
1946 len = strlen(newpath) + zone->zone_rootpathlen - 1;
1947 sp = kmem_alloc(len, KM_SLEEP);
1948
1949 /*
1950 * Copy everything including the trailing slash, which
1951 * we then overwrite with the NUL character.
1952 */
1953
1954 (void) strcpy(sp, zone->zone_rootpath);
1955 sp[zone->zone_rootpathlen - 2] = '\0';
1956 (void) strcat(sp, newpath);
1957
1958 ref = refstr_alloc(sp);
1959 kmem_free(sp, len);
1960 out:
1961 *refp = ref;
1962
1963 if (have_list_lock) {
1964 vfs_mnttab_modtimeupd();
1965 vfs_list_unlock();
1966 }
1967 }
1968
1969 /*
1970 * Record a mounted resource name in a vfs structure.
1971 * If vfsp is already mounted, caller must hold the vfs lock.
1972 */
1973 void
vfs_setresource(struct vfs * vfsp,const char * resource,uint32_t flag)1974 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1975 {
1976 if (resource == NULL || resource[0] == '\0')
1977 resource = VFS_NORESOURCE;
1978 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1979 }
1980
1981 /*
1982 * Record a mount point name in a vfs structure.
1983 * If vfsp is already mounted, caller must hold the vfs lock.
1984 */
1985 void
vfs_setmntpoint(struct vfs * vfsp,const char * mntpt,uint32_t flag)1986 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1987 {
1988 if (mntpt == NULL || mntpt[0] == '\0')
1989 mntpt = VFS_NOMNTPT;
1990 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1991 }
1992
1993 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1994
1995 refstr_t *
vfs_getresource(const struct vfs * vfsp)1996 vfs_getresource(const struct vfs *vfsp)
1997 {
1998 refstr_t *resource;
1999
2000 vfs_list_read_lock();
2001 resource = vfsp->vfs_resource;
2002 refstr_hold(resource);
2003 vfs_list_unlock();
2004
2005 return (resource);
2006 }
2007
2008 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
2009
2010 refstr_t *
vfs_getmntpoint(const struct vfs * vfsp)2011 vfs_getmntpoint(const struct vfs *vfsp)
2012 {
2013 refstr_t *mntpt;
2014
2015 vfs_list_read_lock();
2016 mntpt = vfsp->vfs_mntpt;
2017 refstr_hold(mntpt);
2018 vfs_list_unlock();
2019
2020 return (mntpt);
2021 }
2022
2023 /*
2024 * Create an empty options table with enough empty slots to hold all
2025 * The options in the options string passed as an argument.
2026 * Potentially prepend another options table.
2027 *
2028 * Note: caller is responsible for locking the vfs list, if needed,
2029 * to protect mops.
2030 */
2031 static void
vfs_createopttbl_extend(mntopts_t * mops,const char * opts,const mntopts_t * mtmpl)2032 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
2033 const mntopts_t *mtmpl)
2034 {
2035 const char *s = opts;
2036 uint_t count;
2037
2038 if (opts == NULL || *opts == '\0') {
2039 count = 0;
2040 } else {
2041 count = 1;
2042
2043 /*
2044 * Count number of options in the string
2045 */
2046 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2047 count++;
2048 s++;
2049 }
2050 }
2051 vfs_copyopttbl_extend(mtmpl, mops, count);
2052 }
2053
2054 /*
2055 * Create an empty options table with enough empty slots to hold all
2056 * The options in the options string passed as an argument.
2057 *
2058 * This function is *not* for general use by filesystems.
2059 *
2060 * Note: caller is responsible for locking the vfs list, if needed,
2061 * to protect mops.
2062 */
2063 void
vfs_createopttbl(mntopts_t * mops,const char * opts)2064 vfs_createopttbl(mntopts_t *mops, const char *opts)
2065 {
2066 vfs_createopttbl_extend(mops, opts, NULL);
2067 }
2068
2069
2070 /*
2071 * Swap two mount options tables
2072 */
2073 static void
vfs_swapopttbl_nolock(mntopts_t * optbl1,mntopts_t * optbl2)2074 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2075 {
2076 uint_t tmpcnt;
2077 mntopt_t *tmplist;
2078
2079 tmpcnt = optbl2->mo_count;
2080 tmplist = optbl2->mo_list;
2081 optbl2->mo_count = optbl1->mo_count;
2082 optbl2->mo_list = optbl1->mo_list;
2083 optbl1->mo_count = tmpcnt;
2084 optbl1->mo_list = tmplist;
2085 }
2086
2087 static void
vfs_swapopttbl(mntopts_t * optbl1,mntopts_t * optbl2)2088 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2089 {
2090 vfs_list_lock();
2091 vfs_swapopttbl_nolock(optbl1, optbl2);
2092 vfs_mnttab_modtimeupd();
2093 vfs_list_unlock();
2094 }
2095
2096 static char **
vfs_copycancelopt_extend(char ** const moc,int extend)2097 vfs_copycancelopt_extend(char **const moc, int extend)
2098 {
2099 int i = 0;
2100 int j;
2101 char **result;
2102
2103 if (moc != NULL) {
2104 for (; moc[i] != NULL; i++)
2105 /* count number of options to cancel */;
2106 }
2107
2108 if (i + extend == 0)
2109 return (NULL);
2110
2111 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2112
2113 for (j = 0; j < i; j++) {
2114 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2115 (void) strcpy(result[j], moc[j]);
2116 }
2117 for (; j <= i + extend; j++)
2118 result[j] = NULL;
2119
2120 return (result);
2121 }
2122
2123 static void
vfs_copyopt(const mntopt_t * s,mntopt_t * d)2124 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2125 {
2126 char *sp, *dp;
2127
2128 d->mo_flags = s->mo_flags;
2129 d->mo_data = s->mo_data;
2130 sp = s->mo_name;
2131 if (sp != NULL) {
2132 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2133 (void) strcpy(dp, sp);
2134 d->mo_name = dp;
2135 } else {
2136 d->mo_name = NULL; /* should never happen */
2137 }
2138
2139 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2140
2141 sp = s->mo_arg;
2142 if (sp != NULL) {
2143 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2144 (void) strcpy(dp, sp);
2145 d->mo_arg = dp;
2146 } else {
2147 d->mo_arg = NULL;
2148 }
2149 }
2150
2151 /*
2152 * Copy a mount options table, possibly allocating some spare
2153 * slots at the end. It is permissible to copy_extend the NULL table.
2154 */
2155 static void
vfs_copyopttbl_extend(const mntopts_t * smo,mntopts_t * dmo,int extra)2156 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2157 {
2158 uint_t i, count;
2159 mntopt_t *motbl;
2160
2161 /*
2162 * Clear out any existing stuff in the options table being initialized
2163 */
2164 vfs_freeopttbl(dmo);
2165 count = (smo == NULL) ? 0 : smo->mo_count;
2166 if ((count + extra) == 0) /* nothing to do */
2167 return;
2168 dmo->mo_count = count + extra;
2169 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2170 dmo->mo_list = motbl;
2171 for (i = 0; i < count; i++) {
2172 vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2173 }
2174 for (i = count; i < count + extra; i++) {
2175 motbl[i].mo_flags = MO_EMPTY;
2176 }
2177 }
2178
2179 /*
2180 * Copy a mount options table.
2181 *
2182 * This function is *not* for general use by filesystems.
2183 *
2184 * Note: caller is responsible for locking the vfs list, if needed,
2185 * to protect smo and dmo.
2186 */
2187 void
vfs_copyopttbl(const mntopts_t * smo,mntopts_t * dmo)2188 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2189 {
2190 vfs_copyopttbl_extend(smo, dmo, 0);
2191 }
2192
2193 static char **
vfs_mergecancelopts(const mntopt_t * mop1,const mntopt_t * mop2)2194 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2195 {
2196 int c1 = 0;
2197 int c2 = 0;
2198 char **result;
2199 char **sp1, **sp2, **dp;
2200
2201 /*
2202 * First we count both lists of cancel options.
2203 * If either is NULL or has no elements, we return a copy of
2204 * the other.
2205 */
2206 if (mop1->mo_cancel != NULL) {
2207 for (; mop1->mo_cancel[c1] != NULL; c1++)
2208 /* count cancel options in mop1 */;
2209 }
2210
2211 if (c1 == 0)
2212 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2213
2214 if (mop2->mo_cancel != NULL) {
2215 for (; mop2->mo_cancel[c2] != NULL; c2++)
2216 /* count cancel options in mop2 */;
2217 }
2218
2219 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2220
2221 if (c2 == 0)
2222 return (result);
2223
2224 /*
2225 * When we get here, we've got two sets of cancel options;
2226 * we need to merge the two sets. We know that the result
2227 * array has "c1+c2+1" entries and in the end we might shrink
2228 * it.
2229 * Result now has a copy of the c1 entries from mop1; we'll
2230 * now lookup all the entries of mop2 in mop1 and copy it if
2231 * it is unique.
2232 * This operation is O(n^2) but it's only called once per
2233 * filesystem per duplicate option. This is a situation
2234 * which doesn't arise with the filesystems in ON and
2235 * n is generally 1.
2236 */
2237
2238 dp = &result[c1];
2239 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2240 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2241 if (strcmp(*sp1, *sp2) == 0)
2242 break;
2243 }
2244 if (*sp1 == NULL) {
2245 /*
2246 * Option *sp2 not found in mop1, so copy it.
2247 * The calls to vfs_copycancelopt_extend()
2248 * guarantee that there's enough room.
2249 */
2250 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2251 (void) strcpy(*dp++, *sp2);
2252 }
2253 }
2254 if (dp != &result[c1+c2]) {
2255 size_t bytes = (dp - result + 1) * sizeof (char *);
2256 char **nres = kmem_alloc(bytes, KM_SLEEP);
2257
2258 bcopy(result, nres, bytes);
2259 kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2260 result = nres;
2261 }
2262 return (result);
2263 }
2264
2265 /*
2266 * Merge two mount option tables (outer and inner) into one. This is very
2267 * similar to "merging" global variables and automatic variables in C.
2268 *
2269 * This isn't (and doesn't have to be) fast.
2270 *
2271 * This function is *not* for general use by filesystems.
2272 *
2273 * Note: caller is responsible for locking the vfs list, if needed,
2274 * to protect omo, imo & dmo.
2275 */
2276 void
vfs_mergeopttbl(const mntopts_t * omo,const mntopts_t * imo,mntopts_t * dmo)2277 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2278 {
2279 uint_t i, count;
2280 mntopt_t *mop, *motbl;
2281 uint_t freeidx;
2282
2283 /*
2284 * First determine how much space we need to allocate.
2285 */
2286 count = omo->mo_count;
2287 for (i = 0; i < imo->mo_count; i++) {
2288 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2289 continue;
2290 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2291 count++;
2292 }
2293 ASSERT(count >= omo->mo_count &&
2294 count <= omo->mo_count + imo->mo_count);
2295 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2296 for (i = 0; i < omo->mo_count; i++)
2297 vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2298 freeidx = omo->mo_count;
2299 for (i = 0; i < imo->mo_count; i++) {
2300 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2301 continue;
2302 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2303 char **newcanp;
2304 uint_t index = mop - omo->mo_list;
2305
2306 newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2307
2308 vfs_freeopt(&motbl[index]);
2309 vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2310
2311 vfs_freecancelopt(motbl[index].mo_cancel);
2312 motbl[index].mo_cancel = newcanp;
2313 } else {
2314 /*
2315 * If it's a new option, just copy it over to the first
2316 * free location.
2317 */
2318 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2319 }
2320 }
2321 dmo->mo_count = count;
2322 dmo->mo_list = motbl;
2323 }
2324
2325 /*
2326 * Functions to set and clear mount options in a mount options table.
2327 */
2328
2329 /*
2330 * Clear a mount option, if it exists.
2331 *
2332 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2333 * the vfs list.
2334 */
2335 static void
vfs_clearmntopt_nolock(mntopts_t * mops,const char * opt,int update_mnttab)2336 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2337 {
2338 struct mntopt *mop;
2339 uint_t i, count;
2340
2341 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2342
2343 count = mops->mo_count;
2344 for (i = 0; i < count; i++) {
2345 mop = &mops->mo_list[i];
2346
2347 if (mop->mo_flags & MO_EMPTY)
2348 continue;
2349 if (strcmp(opt, mop->mo_name))
2350 continue;
2351 mop->mo_flags &= ~MO_SET;
2352 if (mop->mo_arg != NULL) {
2353 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2354 }
2355 mop->mo_arg = NULL;
2356 if (update_mnttab)
2357 vfs_mnttab_modtimeupd();
2358 break;
2359 }
2360 }
2361
2362 void
vfs_clearmntopt(struct vfs * vfsp,const char * opt)2363 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2364 {
2365 int gotlock = 0;
2366
2367 if (VFS_ON_LIST(vfsp)) {
2368 gotlock = 1;
2369 vfs_list_lock();
2370 }
2371 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2372 if (gotlock)
2373 vfs_list_unlock();
2374 }
2375
2376
2377 /*
2378 * Set a mount option on. If it's not found in the table, it's silently
2379 * ignored. If the option has MO_IGNORE set, it is still set unless the
2380 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag
2381 * bits can be used to toggle the MO_NODISPLAY bit for the option.
2382 * If the VFS_CREATEOPT flag bit is set then the first option slot with
2383 * MO_EMPTY set is created as the option passed in.
2384 *
2385 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2386 * the vfs list.
2387 */
2388 static void
vfs_setmntopt_nolock(mntopts_t * mops,const char * opt,const char * arg,int flags,int update_mnttab)2389 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2390 const char *arg, int flags, int update_mnttab)
2391 {
2392 mntopt_t *mop;
2393 uint_t i, count;
2394 char *sp;
2395
2396 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2397
2398 if (flags & VFS_CREATEOPT) {
2399 if (vfs_hasopt(mops, opt) != NULL) {
2400 flags &= ~VFS_CREATEOPT;
2401 }
2402 }
2403 count = mops->mo_count;
2404 for (i = 0; i < count; i++) {
2405 mop = &mops->mo_list[i];
2406
2407 if (mop->mo_flags & MO_EMPTY) {
2408 if ((flags & VFS_CREATEOPT) == 0)
2409 continue;
2410 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2411 (void) strcpy(sp, opt);
2412 mop->mo_name = sp;
2413 if (arg != NULL)
2414 mop->mo_flags = MO_HASVALUE;
2415 else
2416 mop->mo_flags = 0;
2417 } else if (strcmp(opt, mop->mo_name)) {
2418 continue;
2419 }
2420 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2421 break;
2422 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2423 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2424 (void) strcpy(sp, arg);
2425 } else {
2426 sp = NULL;
2427 }
2428 if (mop->mo_arg != NULL)
2429 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2430 mop->mo_arg = sp;
2431 if (flags & VFS_DISPLAY)
2432 mop->mo_flags &= ~MO_NODISPLAY;
2433 if (flags & VFS_NODISPLAY)
2434 mop->mo_flags |= MO_NODISPLAY;
2435 mop->mo_flags |= MO_SET;
2436 if (mop->mo_cancel != NULL) {
2437 char **cp;
2438
2439 for (cp = mop->mo_cancel; *cp != NULL; cp++)
2440 vfs_clearmntopt_nolock(mops, *cp, 0);
2441 }
2442 if (update_mnttab)
2443 vfs_mnttab_modtimeupd();
2444 break;
2445 }
2446 }
2447
2448 void
vfs_setmntopt(struct vfs * vfsp,const char * opt,const char * arg,int flags)2449 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2450 {
2451 int gotlock = 0;
2452
2453 if (VFS_ON_LIST(vfsp)) {
2454 gotlock = 1;
2455 vfs_list_lock();
2456 }
2457 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2458 if (gotlock)
2459 vfs_list_unlock();
2460 }
2461
2462
2463 /*
2464 * Add a "tag" option to a mounted file system's options list.
2465 *
2466 * Note: caller is responsible for locking the vfs list, if needed,
2467 * to protect mops.
2468 */
2469 static mntopt_t *
vfs_addtag(mntopts_t * mops,const char * tag)2470 vfs_addtag(mntopts_t *mops, const char *tag)
2471 {
2472 uint_t count;
2473 mntopt_t *mop, *motbl;
2474
2475 count = mops->mo_count + 1;
2476 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2477 if (mops->mo_count) {
2478 size_t len = (count - 1) * sizeof (mntopt_t);
2479
2480 bcopy(mops->mo_list, motbl, len);
2481 kmem_free(mops->mo_list, len);
2482 }
2483 mops->mo_count = count;
2484 mops->mo_list = motbl;
2485 mop = &motbl[count - 1];
2486 mop->mo_flags = MO_TAG;
2487 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2488 (void) strcpy(mop->mo_name, tag);
2489 return (mop);
2490 }
2491
2492 /*
2493 * Allow users to set arbitrary "tags" in a vfs's mount options.
2494 * Broader use within the kernel is discouraged.
2495 */
2496 int
vfs_settag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2497 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2498 cred_t *cr)
2499 {
2500 vfs_t *vfsp;
2501 mntopts_t *mops;
2502 mntopt_t *mop;
2503 int found = 0;
2504 dev_t dev = makedevice(major, minor);
2505 int err = 0;
2506 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2507
2508 /*
2509 * Find the desired mounted file system
2510 */
2511 vfs_list_lock();
2512 vfsp = rootvfs;
2513 do {
2514 if (vfsp->vfs_dev == dev &&
2515 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2516 found = 1;
2517 break;
2518 }
2519 vfsp = vfsp->vfs_next;
2520 } while (vfsp != rootvfs);
2521
2522 if (!found) {
2523 err = EINVAL;
2524 goto out;
2525 }
2526 err = secpolicy_fs_config(cr, vfsp);
2527 if (err != 0)
2528 goto out;
2529
2530 mops = &vfsp->vfs_mntopts;
2531 /*
2532 * Add tag if it doesn't already exist
2533 */
2534 if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2535 int len;
2536
2537 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2538 len = strlen(buf);
2539 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2540 err = ENAMETOOLONG;
2541 goto out;
2542 }
2543 mop = vfs_addtag(mops, tag);
2544 }
2545 if ((mop->mo_flags & MO_TAG) == 0) {
2546 err = EINVAL;
2547 goto out;
2548 }
2549 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2550 out:
2551 vfs_list_unlock();
2552 kmem_free(buf, MAX_MNTOPT_STR);
2553 return (err);
2554 }
2555
2556 /*
2557 * Allow users to remove arbitrary "tags" in a vfs's mount options.
2558 * Broader use within the kernel is discouraged.
2559 */
2560 int
vfs_clrtag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2561 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2562 cred_t *cr)
2563 {
2564 vfs_t *vfsp;
2565 mntopt_t *mop;
2566 int found = 0;
2567 dev_t dev = makedevice(major, minor);
2568 int err = 0;
2569
2570 /*
2571 * Find the desired mounted file system
2572 */
2573 vfs_list_lock();
2574 vfsp = rootvfs;
2575 do {
2576 if (vfsp->vfs_dev == dev &&
2577 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2578 found = 1;
2579 break;
2580 }
2581 vfsp = vfsp->vfs_next;
2582 } while (vfsp != rootvfs);
2583
2584 if (!found) {
2585 err = EINVAL;
2586 goto out;
2587 }
2588 err = secpolicy_fs_config(cr, vfsp);
2589 if (err != 0)
2590 goto out;
2591
2592 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2593 err = EINVAL;
2594 goto out;
2595 }
2596 if ((mop->mo_flags & MO_TAG) == 0) {
2597 err = EINVAL;
2598 goto out;
2599 }
2600 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2601 out:
2602 vfs_list_unlock();
2603 return (err);
2604 }
2605
2606 /*
2607 * Function to parse an option string and fill in a mount options table.
2608 * Unknown options are silently ignored. The input option string is modified
2609 * by replacing separators with nulls. If the create flag is set, options
2610 * not found in the table are just added on the fly. The table must have
2611 * an option slot marked MO_EMPTY to add an option on the fly.
2612 *
2613 * This function is *not* for general use by filesystems.
2614 *
2615 * Note: caller is responsible for locking the vfs list, if needed,
2616 * to protect mops..
2617 */
2618 void
vfs_parsemntopts(mntopts_t * mops,char * osp,int create)2619 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2620 {
2621 char *s = osp, *p, *nextop, *valp, *cp, *ep;
2622 int setflg = VFS_NOFORCEOPT;
2623
2624 if (osp == NULL)
2625 return;
2626 while (*s != '\0') {
2627 p = strchr(s, ','); /* find next option */
2628 if (p == NULL) {
2629 cp = NULL;
2630 p = s + strlen(s);
2631 } else {
2632 cp = p; /* save location of comma */
2633 *p++ = '\0'; /* mark end and point to next option */
2634 }
2635 nextop = p;
2636 p = strchr(s, '='); /* look for value */
2637 if (p == NULL) {
2638 valp = NULL; /* no value supplied */
2639 } else {
2640 ep = p; /* save location of equals */
2641 *p++ = '\0'; /* end option and point to value */
2642 valp = p;
2643 }
2644 /*
2645 * set option into options table
2646 */
2647 if (create)
2648 setflg |= VFS_CREATEOPT;
2649 vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2650 if (cp != NULL)
2651 *cp = ','; /* restore the comma */
2652 if (valp != NULL)
2653 *ep = '='; /* restore the equals */
2654 s = nextop;
2655 }
2656 }
2657
2658 /*
2659 * Function to inquire if an option exists in a mount options table.
2660 * Returns a pointer to the option if it exists, else NULL.
2661 *
2662 * This function is *not* for general use by filesystems.
2663 *
2664 * Note: caller is responsible for locking the vfs list, if needed,
2665 * to protect mops.
2666 */
2667 struct mntopt *
vfs_hasopt(const mntopts_t * mops,const char * opt)2668 vfs_hasopt(const mntopts_t *mops, const char *opt)
2669 {
2670 struct mntopt *mop;
2671 uint_t i, count;
2672
2673 count = mops->mo_count;
2674 for (i = 0; i < count; i++) {
2675 mop = &mops->mo_list[i];
2676
2677 if (mop->mo_flags & MO_EMPTY)
2678 continue;
2679 if (strcmp(opt, mop->mo_name) == 0)
2680 return (mop);
2681 }
2682 return (NULL);
2683 }
2684
2685 /*
2686 * Function to inquire if an option is set in a mount options table.
2687 * Returns non-zero if set and fills in the arg pointer with a pointer to
2688 * the argument string or NULL if there is no argument string.
2689 */
2690 static int
vfs_optionisset_nolock(const mntopts_t * mops,const char * opt,char ** argp)2691 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2692 {
2693 struct mntopt *mop;
2694 uint_t i, count;
2695
2696 count = mops->mo_count;
2697 for (i = 0; i < count; i++) {
2698 mop = &mops->mo_list[i];
2699
2700 if (mop->mo_flags & MO_EMPTY)
2701 continue;
2702 if (strcmp(opt, mop->mo_name))
2703 continue;
2704 if ((mop->mo_flags & MO_SET) == 0)
2705 return (0);
2706 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2707 *argp = mop->mo_arg;
2708 return (1);
2709 }
2710 return (0);
2711 }
2712
2713
2714 int
vfs_optionisset(const struct vfs * vfsp,const char * opt,char ** argp)2715 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2716 {
2717 int ret;
2718
2719 vfs_list_read_lock();
2720 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2721 vfs_list_unlock();
2722 return (ret);
2723 }
2724
2725
2726 /*
2727 * Construct a comma separated string of the options set in the given
2728 * mount table, return the string in the given buffer. Return non-zero if
2729 * the buffer would overflow.
2730 *
2731 * This function is *not* for general use by filesystems.
2732 *
2733 * Note: caller is responsible for locking the vfs list, if needed,
2734 * to protect mp.
2735 */
2736 int
vfs_buildoptionstr(const mntopts_t * mp,char * buf,int len)2737 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2738 {
2739 char *cp;
2740 uint_t i;
2741
2742 buf[0] = '\0';
2743 cp = buf;
2744 for (i = 0; i < mp->mo_count; i++) {
2745 struct mntopt *mop;
2746
2747 mop = &mp->mo_list[i];
2748 if (mop->mo_flags & MO_SET) {
2749 int optlen, comma = 0;
2750
2751 if (buf[0] != '\0')
2752 comma = 1;
2753 optlen = strlen(mop->mo_name);
2754 if (strlen(buf) + comma + optlen + 1 > len)
2755 goto err;
2756 if (comma)
2757 *cp++ = ',';
2758 (void) strcpy(cp, mop->mo_name);
2759 cp += optlen;
2760 /*
2761 * Append option value if there is one
2762 */
2763 if (mop->mo_arg != NULL) {
2764 int arglen;
2765
2766 arglen = strlen(mop->mo_arg);
2767 if (strlen(buf) + arglen + 2 > len)
2768 goto err;
2769 *cp++ = '=';
2770 (void) strcpy(cp, mop->mo_arg);
2771 cp += arglen;
2772 }
2773 }
2774 }
2775 return (0);
2776 err:
2777 return (EOVERFLOW);
2778 }
2779
2780 static void
vfs_freecancelopt(char ** moc)2781 vfs_freecancelopt(char **moc)
2782 {
2783 if (moc != NULL) {
2784 int ccnt = 0;
2785 char **cp;
2786
2787 for (cp = moc; *cp != NULL; cp++) {
2788 kmem_free(*cp, strlen(*cp) + 1);
2789 ccnt++;
2790 }
2791 kmem_free(moc, (ccnt + 1) * sizeof (char *));
2792 }
2793 }
2794
2795 static void
vfs_freeopt(mntopt_t * mop)2796 vfs_freeopt(mntopt_t *mop)
2797 {
2798 if (mop->mo_name != NULL)
2799 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2800
2801 vfs_freecancelopt(mop->mo_cancel);
2802
2803 if (mop->mo_arg != NULL)
2804 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2805 }
2806
2807 /*
2808 * Free a mount options table
2809 *
2810 * This function is *not* for general use by filesystems.
2811 *
2812 * Note: caller is responsible for locking the vfs list, if needed,
2813 * to protect mp.
2814 */
2815 void
vfs_freeopttbl(mntopts_t * mp)2816 vfs_freeopttbl(mntopts_t *mp)
2817 {
2818 uint_t i, count;
2819
2820 count = mp->mo_count;
2821 for (i = 0; i < count; i++) {
2822 vfs_freeopt(&mp->mo_list[i]);
2823 }
2824 if (count) {
2825 kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2826 mp->mo_count = 0;
2827 mp->mo_list = NULL;
2828 }
2829 }
2830
2831
2832 /* ARGSUSED */
2833 static int
vfs_mntdummyread(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2834 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2835 caller_context_t *ct)
2836 {
2837 return (0);
2838 }
2839
2840 /* ARGSUSED */
2841 static int
vfs_mntdummywrite(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2842 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2843 caller_context_t *ct)
2844 {
2845 return (0);
2846 }
2847
2848 /*
2849 * The dummy vnode is currently used only by file events notification
2850 * module which is just interested in the timestamps.
2851 */
2852 /* ARGSUSED */
2853 static int
vfs_mntdummygetattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2854 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2855 caller_context_t *ct)
2856 {
2857 bzero(vap, sizeof (vattr_t));
2858 vap->va_type = VREG;
2859 vap->va_nlink = 1;
2860 vap->va_ctime = vfs_mnttab_ctime;
2861 /*
2862 * it is ok to just copy mtime as the time will be monotonically
2863 * increasing.
2864 */
2865 vap->va_mtime = vfs_mnttab_mtime;
2866 vap->va_atime = vap->va_mtime;
2867 return (0);
2868 }
2869
2870 static void
vfs_mnttabvp_setup(void)2871 vfs_mnttabvp_setup(void)
2872 {
2873 vnode_t *tvp;
2874 vnodeops_t *vfs_mntdummyvnops;
2875 const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2876 VOPNAME_READ, { .vop_read = vfs_mntdummyread },
2877 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite },
2878 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr },
2879 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
2880 NULL, NULL
2881 };
2882
2883 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2884 &vfs_mntdummyvnops) != 0) {
2885 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2886 /* Shouldn't happen, but not bad enough to panic */
2887 return;
2888 }
2889
2890 /*
2891 * A global dummy vnode is allocated to represent mntfs files.
2892 * The mntfs file (/etc/mnttab) can be monitored for file events
2893 * and receive an event when mnttab changes. Dummy VOP calls
2894 * will be made on this vnode. The file events notification module
2895 * intercepts this vnode and delivers relevant events.
2896 */
2897 tvp = vn_alloc(KM_SLEEP);
2898 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2899 vn_setops(tvp, vfs_mntdummyvnops);
2900 tvp->v_type = VREG;
2901 /*
2902 * The mnt dummy ops do not reference v_data.
2903 * No other module intercepting this vnode should either.
2904 * Just set it to point to itself.
2905 */
2906 tvp->v_data = (caddr_t)tvp;
2907 tvp->v_vfsp = rootvfs;
2908 vfs_mntdummyvp = tvp;
2909 }
2910
2911 /*
2912 * performs fake read/write ops
2913 */
2914 static void
vfs_mnttab_rwop(int rw)2915 vfs_mnttab_rwop(int rw)
2916 {
2917 struct uio uio;
2918 struct iovec iov;
2919 char buf[1];
2920
2921 if (vfs_mntdummyvp == NULL)
2922 return;
2923
2924 bzero(&uio, sizeof (uio));
2925 bzero(&iov, sizeof (iov));
2926 iov.iov_base = buf;
2927 iov.iov_len = 0;
2928 uio.uio_iov = &iov;
2929 uio.uio_iovcnt = 1;
2930 uio.uio_loffset = 0;
2931 uio.uio_segflg = UIO_SYSSPACE;
2932 uio.uio_resid = 0;
2933 if (rw) {
2934 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2935 } else {
2936 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2937 }
2938 }
2939
2940 /*
2941 * Generate a write operation.
2942 */
2943 void
vfs_mnttab_writeop(void)2944 vfs_mnttab_writeop(void)
2945 {
2946 vfs_mnttab_rwop(1);
2947 }
2948
2949 /*
2950 * Generate a read operation.
2951 */
2952 void
vfs_mnttab_readop(void)2953 vfs_mnttab_readop(void)
2954 {
2955 vfs_mnttab_rwop(0);
2956 }
2957
2958 /*
2959 * Free any mnttab information recorded in the vfs struct.
2960 * The vfs must not be on the vfs list.
2961 */
2962 static void
vfs_freemnttab(struct vfs * vfsp)2963 vfs_freemnttab(struct vfs *vfsp)
2964 {
2965 ASSERT(!VFS_ON_LIST(vfsp));
2966
2967 /*
2968 * Free device and mount point information
2969 */
2970 if (vfsp->vfs_mntpt != NULL) {
2971 refstr_rele(vfsp->vfs_mntpt);
2972 vfsp->vfs_mntpt = NULL;
2973 }
2974 if (vfsp->vfs_resource != NULL) {
2975 refstr_rele(vfsp->vfs_resource);
2976 vfsp->vfs_resource = NULL;
2977 }
2978 /*
2979 * Now free mount options information
2980 */
2981 vfs_freeopttbl(&vfsp->vfs_mntopts);
2982 }
2983
2984 /*
2985 * Return the last mnttab modification time
2986 */
2987 void
vfs_mnttab_modtime(timespec_t * ts)2988 vfs_mnttab_modtime(timespec_t *ts)
2989 {
2990 ASSERT(RW_LOCK_HELD(&vfslist));
2991 *ts = vfs_mnttab_mtime;
2992 }
2993
2994 /*
2995 * See if mnttab is changed
2996 */
2997 void
vfs_mnttab_poll(timespec_t * old,struct pollhead ** phpp)2998 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2999 {
3000 int changed;
3001
3002 *phpp = (struct pollhead *)NULL;
3003
3004 /*
3005 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
3006 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
3007 * to not grab the vfs list lock because tv_sec is monotonically
3008 * increasing.
3009 */
3010
3011 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
3012 (old->tv_sec != vfs_mnttab_mtime.tv_sec);
3013 if (!changed) {
3014 *phpp = &vfs_pollhd;
3015 }
3016 }
3017
3018 /* Provide a unique and monotonically-increasing timestamp. */
3019 void
vfs_mono_time(timespec_t * ts)3020 vfs_mono_time(timespec_t *ts)
3021 {
3022 static volatile hrtime_t hrt; /* The saved time. */
3023 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */
3024 timespec_t newts;
3025
3026 /*
3027 * Try gethrestime() first, but be prepared to fabricate a sensible
3028 * answer at the first sign of any trouble.
3029 */
3030 gethrestime(&newts);
3031 newhrt = ts2hrt(&newts);
3032 for (;;) {
3033 oldhrt = hrt;
3034 if (newhrt <= hrt)
3035 newhrt = hrt + 1;
3036 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3037 break;
3038 }
3039 hrt2ts(newhrt, ts);
3040 }
3041
3042 /*
3043 * Update the mnttab modification time and wake up any waiters for
3044 * mnttab changes
3045 */
3046 void
vfs_mnttab_modtimeupd()3047 vfs_mnttab_modtimeupd()
3048 {
3049 hrtime_t oldhrt, newhrt;
3050
3051 ASSERT(RW_WRITE_HELD(&vfslist));
3052 oldhrt = ts2hrt(&vfs_mnttab_mtime);
3053 gethrestime(&vfs_mnttab_mtime);
3054 newhrt = ts2hrt(&vfs_mnttab_mtime);
3055 if (oldhrt == (hrtime_t)0)
3056 vfs_mnttab_ctime = vfs_mnttab_mtime;
3057 /*
3058 * Attempt to provide unique mtime (like uniqtime but not).
3059 */
3060 if (newhrt == oldhrt) {
3061 newhrt++;
3062 hrt2ts(newhrt, &vfs_mnttab_mtime);
3063 }
3064 pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3065 vfs_mnttab_writeop();
3066 }
3067
3068 int
dounmount(struct vfs * vfsp,int flag,cred_t * cr)3069 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3070 {
3071 vnode_t *coveredvp;
3072 int error;
3073 extern void teardown_vopstats(vfs_t *);
3074
3075 /*
3076 * Get covered vnode. This will be NULL if the vfs is not linked
3077 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3078 */
3079 coveredvp = vfsp->vfs_vnodecovered;
3080 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3081
3082 /*
3083 * Purge all dnlc entries for this vfs.
3084 */
3085 (void) dnlc_purge_vfsp(vfsp, 0);
3086
3087 /* For forcible umount, skip VFS_SYNC() since it may hang */
3088 if ((flag & MS_FORCE) == 0)
3089 (void) VFS_SYNC(vfsp, 0, cr);
3090
3091 /*
3092 * Lock the vfs to maintain fs status quo during unmount. This
3093 * has to be done after the sync because ufs_update tries to acquire
3094 * the vfs_reflock.
3095 */
3096 vfs_lock_wait(vfsp);
3097
3098 if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3099 vfs_unlock(vfsp);
3100 if (coveredvp != NULL)
3101 vn_vfsunlock(coveredvp);
3102 } else if (coveredvp != NULL) {
3103 teardown_vopstats(vfsp);
3104 /*
3105 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3106 * when it frees vfsp so we do a VN_HOLD() so we can
3107 * continue to use coveredvp afterwards.
3108 */
3109 VN_HOLD(coveredvp);
3110 vfs_remove(vfsp);
3111 vn_vfsunlock(coveredvp);
3112 VN_RELE(coveredvp);
3113 } else {
3114 teardown_vopstats(vfsp);
3115 /*
3116 * Release the reference to vfs that is not linked
3117 * into the name space.
3118 */
3119 vfs_unlock(vfsp);
3120 VFS_RELE(vfsp);
3121 }
3122 return (error);
3123 }
3124
3125
3126 /*
3127 * Vfs_unmountall() is called by uadmin() to unmount all
3128 * mounted file systems (except the root file system) during shutdown.
3129 * It follows the existing locking protocol when traversing the vfs list
3130 * to sync and unmount vfses. Even though there should be no
3131 * other thread running while the system is shutting down, it is prudent
3132 * to still follow the locking protocol.
3133 */
3134 void
vfs_unmountall(void)3135 vfs_unmountall(void)
3136 {
3137 struct vfs *vfsp;
3138 struct vfs *prev_vfsp = NULL;
3139 int error;
3140
3141 /*
3142 * Toss all dnlc entries now so that the per-vfs sync
3143 * and unmount operations don't have to slog through
3144 * a bunch of uninteresting vnodes over and over again.
3145 */
3146 dnlc_purge();
3147
3148 vfs_list_lock();
3149 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3150 prev_vfsp = vfsp->vfs_prev;
3151
3152 if (vfs_lock(vfsp) != 0)
3153 continue;
3154 error = vn_vfswlock(vfsp->vfs_vnodecovered);
3155 vfs_unlock(vfsp);
3156 if (error)
3157 continue;
3158
3159 vfs_list_unlock();
3160
3161 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3162 (void) dounmount(vfsp, 0, CRED());
3163
3164 /*
3165 * Since we dropped the vfslist lock above we must
3166 * verify that next_vfsp still exists, else start over.
3167 */
3168 vfs_list_lock();
3169 for (vfsp = rootvfs->vfs_prev;
3170 vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3171 if (vfsp == prev_vfsp)
3172 break;
3173 if (vfsp == rootvfs && prev_vfsp != rootvfs)
3174 prev_vfsp = rootvfs->vfs_prev;
3175 }
3176 vfs_list_unlock();
3177 }
3178
3179 /*
3180 * Called to add an entry to the end of the vfs mount in progress list
3181 */
3182 void
vfs_addmip(dev_t dev,struct vfs * vfsp)3183 vfs_addmip(dev_t dev, struct vfs *vfsp)
3184 {
3185 struct ipmnt *mipp;
3186
3187 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3188 mipp->mip_next = NULL;
3189 mipp->mip_dev = dev;
3190 mipp->mip_vfsp = vfsp;
3191 mutex_enter(&vfs_miplist_mutex);
3192 if (vfs_miplist_end != NULL)
3193 vfs_miplist_end->mip_next = mipp;
3194 else
3195 vfs_miplist = mipp;
3196 vfs_miplist_end = mipp;
3197 mutex_exit(&vfs_miplist_mutex);
3198 }
3199
3200 /*
3201 * Called to remove an entry from the mount in progress list
3202 * Either because the mount completed or it failed.
3203 */
3204 void
vfs_delmip(struct vfs * vfsp)3205 vfs_delmip(struct vfs *vfsp)
3206 {
3207 struct ipmnt *mipp, *mipprev;
3208
3209 mutex_enter(&vfs_miplist_mutex);
3210 mipprev = NULL;
3211 for (mipp = vfs_miplist;
3212 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3213 mipprev = mipp;
3214 }
3215 if (mipp == NULL)
3216 return; /* shouldn't happen */
3217 if (mipp == vfs_miplist_end)
3218 vfs_miplist_end = mipprev;
3219 if (mipprev == NULL)
3220 vfs_miplist = mipp->mip_next;
3221 else
3222 mipprev->mip_next = mipp->mip_next;
3223 mutex_exit(&vfs_miplist_mutex);
3224 kmem_free(mipp, sizeof (struct ipmnt));
3225 }
3226
3227 /*
3228 * vfs_add is called by a specific filesystem's mount routine to add
3229 * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3230 * The vfs should already have been locked by the caller.
3231 *
3232 * coveredvp is NULL if this is the root.
3233 */
3234 void
vfs_add(vnode_t * coveredvp,struct vfs * vfsp,int mflag)3235 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3236 {
3237 int newflag;
3238
3239 ASSERT(vfs_lock_held(vfsp));
3240 VFS_HOLD(vfsp);
3241 newflag = vfsp->vfs_flag;
3242 if (mflag & MS_RDONLY)
3243 newflag |= VFS_RDONLY;
3244 else
3245 newflag &= ~VFS_RDONLY;
3246 if (mflag & MS_NOSUID)
3247 newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3248 else
3249 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3250 if (mflag & MS_NOMNTTAB)
3251 newflag |= VFS_NOMNTTAB;
3252 else
3253 newflag &= ~VFS_NOMNTTAB;
3254
3255 if (coveredvp != NULL) {
3256 ASSERT(vn_vfswlock_held(coveredvp));
3257 coveredvp->v_vfsmountedhere = vfsp;
3258 VN_HOLD(coveredvp);
3259 }
3260 vfsp->vfs_vnodecovered = coveredvp;
3261 vfsp->vfs_flag = newflag;
3262
3263 vfs_list_add(vfsp);
3264 }
3265
3266 /*
3267 * Remove a vfs from the vfs list, null out the pointer from the
3268 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3269 * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3270 * reference to the vfs and to the covered vnode.
3271 *
3272 * Called from dounmount after it's confirmed with the file system
3273 * that the unmount is legal.
3274 */
3275 void
vfs_remove(struct vfs * vfsp)3276 vfs_remove(struct vfs *vfsp)
3277 {
3278 vnode_t *vp;
3279
3280 ASSERT(vfs_lock_held(vfsp));
3281
3282 /*
3283 * Can't unmount root. Should never happen because fs will
3284 * be busy.
3285 */
3286 if (vfsp == rootvfs)
3287 panic("vfs_remove: unmounting root");
3288
3289 vfs_list_remove(vfsp);
3290
3291 /*
3292 * Unhook from the file system name space.
3293 */
3294 vp = vfsp->vfs_vnodecovered;
3295 ASSERT(vn_vfswlock_held(vp));
3296 vp->v_vfsmountedhere = NULL;
3297 vfsp->vfs_vnodecovered = NULL;
3298 VN_RELE(vp);
3299
3300 /*
3301 * Release lock and wakeup anybody waiting.
3302 */
3303 vfs_unlock(vfsp);
3304 VFS_RELE(vfsp);
3305 }
3306
3307 /*
3308 * Lock a filesystem to prevent access to it while mounting,
3309 * unmounting and syncing. Return EBUSY immediately if lock
3310 * can't be acquired.
3311 */
3312 int
vfs_lock(vfs_t * vfsp)3313 vfs_lock(vfs_t *vfsp)
3314 {
3315 vn_vfslocks_entry_t *vpvfsentry;
3316
3317 vpvfsentry = vn_vfslocks_getlock(vfsp);
3318 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3319 return (0);
3320
3321 vn_vfslocks_rele(vpvfsentry);
3322 return (EBUSY);
3323 }
3324
3325 int
vfs_rlock(vfs_t * vfsp)3326 vfs_rlock(vfs_t *vfsp)
3327 {
3328 vn_vfslocks_entry_t *vpvfsentry;
3329
3330 vpvfsentry = vn_vfslocks_getlock(vfsp);
3331
3332 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3333 return (0);
3334
3335 vn_vfslocks_rele(vpvfsentry);
3336 return (EBUSY);
3337 }
3338
3339 void
vfs_lock_wait(vfs_t * vfsp)3340 vfs_lock_wait(vfs_t *vfsp)
3341 {
3342 vn_vfslocks_entry_t *vpvfsentry;
3343
3344 vpvfsentry = vn_vfslocks_getlock(vfsp);
3345 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3346 }
3347
3348 void
vfs_rlock_wait(vfs_t * vfsp)3349 vfs_rlock_wait(vfs_t *vfsp)
3350 {
3351 vn_vfslocks_entry_t *vpvfsentry;
3352
3353 vpvfsentry = vn_vfslocks_getlock(vfsp);
3354 rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3355 }
3356
3357 /*
3358 * Unlock a locked filesystem.
3359 */
3360 void
vfs_unlock(vfs_t * vfsp)3361 vfs_unlock(vfs_t *vfsp)
3362 {
3363 vn_vfslocks_entry_t *vpvfsentry;
3364
3365 /*
3366 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3367 * And these changes should remain for the patch changes as it is.
3368 */
3369 if (panicstr)
3370 return;
3371
3372 /*
3373 * ve_refcount needs to be dropped twice here.
3374 * 1. To release refernce after a call to vfs_locks_getlock()
3375 * 2. To release the reference from the locking routines like
3376 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3377 */
3378
3379 vpvfsentry = vn_vfslocks_getlock(vfsp);
3380 vn_vfslocks_rele(vpvfsentry);
3381
3382 rwst_exit(&vpvfsentry->ve_lock);
3383 vn_vfslocks_rele(vpvfsentry);
3384 }
3385
3386 /*
3387 * Utility routine that allows a filesystem to construct its
3388 * fsid in "the usual way" - by munging some underlying dev_t and
3389 * the filesystem type number into the 64-bit fsid. Note that
3390 * this implicitly relies on dev_t persistence to make filesystem
3391 * id's persistent.
3392 *
3393 * There's nothing to prevent an individual fs from constructing its
3394 * fsid in a different way, and indeed they should.
3395 *
3396 * Since we want fsids to be 32-bit quantities (so that they can be
3397 * exported identically by either 32-bit or 64-bit APIs, as well as
3398 * the fact that fsid's are "known" to NFS), we compress the device
3399 * number given down to 32-bits, and panic if that isn't possible.
3400 */
3401 void
vfs_make_fsid(fsid_t * fsi,dev_t dev,int val)3402 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3403 {
3404 if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3405 panic("device number too big for fsid!");
3406 fsi->val[1] = val;
3407 }
3408
3409 int
vfs_lock_held(vfs_t * vfsp)3410 vfs_lock_held(vfs_t *vfsp)
3411 {
3412 int held;
3413 vn_vfslocks_entry_t *vpvfsentry;
3414
3415 /*
3416 * vfs_lock_held will mimic sema_held behaviour
3417 * if panicstr is set. And these changes should remain
3418 * for the patch changes as it is.
3419 */
3420 if (panicstr)
3421 return (1);
3422
3423 vpvfsentry = vn_vfslocks_getlock(vfsp);
3424 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3425
3426 vn_vfslocks_rele(vpvfsentry);
3427 return (held);
3428 }
3429
3430 struct _kthread *
vfs_lock_owner(vfs_t * vfsp)3431 vfs_lock_owner(vfs_t *vfsp)
3432 {
3433 struct _kthread *owner;
3434 vn_vfslocks_entry_t *vpvfsentry;
3435
3436 /*
3437 * vfs_wlock_held will mimic sema_held behaviour
3438 * if panicstr is set. And these changes should remain
3439 * for the patch changes as it is.
3440 */
3441 if (panicstr)
3442 return (NULL);
3443
3444 vpvfsentry = vn_vfslocks_getlock(vfsp);
3445 owner = rwst_owner(&vpvfsentry->ve_lock);
3446
3447 vn_vfslocks_rele(vpvfsentry);
3448 return (owner);
3449 }
3450
3451 /*
3452 * vfs list locking.
3453 *
3454 * Rather than manipulate the vfslist lock directly, we abstract into lock
3455 * and unlock routines to allow the locking implementation to be changed for
3456 * clustering.
3457 *
3458 * Whenever the vfs list is modified through its hash links, the overall list
3459 * lock must be obtained before locking the relevant hash bucket. But to see
3460 * whether a given vfs is on the list, it suffices to obtain the lock for the
3461 * hash bucket without getting the overall list lock. (See getvfs() below.)
3462 */
3463
3464 void
vfs_list_lock()3465 vfs_list_lock()
3466 {
3467 rw_enter(&vfslist, RW_WRITER);
3468 }
3469
3470 void
vfs_list_read_lock()3471 vfs_list_read_lock()
3472 {
3473 rw_enter(&vfslist, RW_READER);
3474 }
3475
3476 void
vfs_list_unlock()3477 vfs_list_unlock()
3478 {
3479 rw_exit(&vfslist);
3480 }
3481
3482 /*
3483 * Low level worker routines for adding entries to and removing entries from
3484 * the vfs list.
3485 */
3486
3487 static void
vfs_hash_add(struct vfs * vfsp,int insert_at_head)3488 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3489 {
3490 int vhno;
3491 struct vfs **hp;
3492 dev_t dev;
3493
3494 ASSERT(RW_WRITE_HELD(&vfslist));
3495
3496 dev = expldev(vfsp->vfs_fsid.val[0]);
3497 vhno = VFSHASH(getmajor(dev), getminor(dev));
3498
3499 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3500
3501 /*
3502 * Link into the hash table, inserting it at the end, so that LOFS
3503 * with the same fsid as UFS (or other) file systems will not hide the
3504 * UFS.
3505 */
3506 if (insert_at_head) {
3507 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3508 rvfs_list[vhno].rvfs_head = vfsp;
3509 } else {
3510 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3511 hp = &(*hp)->vfs_hash)
3512 continue;
3513 /*
3514 * hp now contains the address of the pointer to update
3515 * to effect the insertion.
3516 */
3517 vfsp->vfs_hash = NULL;
3518 *hp = vfsp;
3519 }
3520
3521 rvfs_list[vhno].rvfs_len++;
3522 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3523 }
3524
3525
3526 static void
vfs_hash_remove(struct vfs * vfsp)3527 vfs_hash_remove(struct vfs *vfsp)
3528 {
3529 int vhno;
3530 struct vfs *tvfsp;
3531 dev_t dev;
3532
3533 ASSERT(RW_WRITE_HELD(&vfslist));
3534
3535 dev = expldev(vfsp->vfs_fsid.val[0]);
3536 vhno = VFSHASH(getmajor(dev), getminor(dev));
3537
3538 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3539
3540 /*
3541 * Remove from hash.
3542 */
3543 if (rvfs_list[vhno].rvfs_head == vfsp) {
3544 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3545 rvfs_list[vhno].rvfs_len--;
3546 goto foundit;
3547 }
3548 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3549 tvfsp = tvfsp->vfs_hash) {
3550 if (tvfsp->vfs_hash == vfsp) {
3551 tvfsp->vfs_hash = vfsp->vfs_hash;
3552 rvfs_list[vhno].rvfs_len--;
3553 goto foundit;
3554 }
3555 }
3556 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3557
3558 foundit:
3559
3560 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3561 }
3562
3563
3564 void
vfs_list_add(struct vfs * vfsp)3565 vfs_list_add(struct vfs *vfsp)
3566 {
3567 zone_t *zone;
3568
3569 /*
3570 * Typically, the vfs_t will have been created on behalf of the file
3571 * system in vfs_init, where it will have been provided with a
3572 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3573 * by an unbundled file system. We therefore check for such an example
3574 * before stamping the vfs_t with its creation time for the benefit of
3575 * mntfs.
3576 */
3577 if (vfsp->vfs_implp == NULL)
3578 vfsimpl_setup(vfsp);
3579 vfs_mono_time(&vfsp->vfs_hrctime);
3580
3581 /*
3582 * The zone that owns the mount is the one that performed the mount.
3583 * Note that this isn't necessarily the same as the zone mounted into.
3584 * The corresponding zone_rele_ref() will be done when the vfs_t
3585 * is being free'd.
3586 */
3587 vfsp->vfs_zone = curproc->p_zone;
3588 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3589 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3590 ZONE_REF_VFS);
3591
3592 /*
3593 * Find the zone mounted into, and put this mount on its vfs list.
3594 */
3595 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3596 ASSERT(zone != NULL);
3597 /*
3598 * Special casing for the root vfs. This structure is allocated
3599 * statically and hooked onto rootvfs at link time. During the
3600 * vfs_mountroot call at system startup time, the root file system's
3601 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3602 * as argument. The code below must detect and handle this special
3603 * case. The only apparent justification for this special casing is
3604 * to ensure that the root file system appears at the head of the
3605 * list.
3606 *
3607 * XXX: I'm assuming that it's ok to do normal list locking when
3608 * adding the entry for the root file system (this used to be
3609 * done with no locks held).
3610 */
3611 vfs_list_lock();
3612 /*
3613 * Link into the vfs list proper.
3614 */
3615 if (vfsp == &root) {
3616 /*
3617 * Assert: This vfs is already on the list as its first entry.
3618 * Thus, there's nothing to do.
3619 */
3620 ASSERT(rootvfs == vfsp);
3621 /*
3622 * Add it to the head of the global zone's vfslist.
3623 */
3624 ASSERT(zone == global_zone);
3625 ASSERT(zone->zone_vfslist == NULL);
3626 zone->zone_vfslist = vfsp;
3627 } else {
3628 /*
3629 * Link to end of list using vfs_prev (as rootvfs is now a
3630 * doubly linked circular list) so list is in mount order for
3631 * mnttab use.
3632 */
3633 rootvfs->vfs_prev->vfs_next = vfsp;
3634 vfsp->vfs_prev = rootvfs->vfs_prev;
3635 rootvfs->vfs_prev = vfsp;
3636 vfsp->vfs_next = rootvfs;
3637
3638 /*
3639 * Do it again for the zone-private list (which may be NULL).
3640 */
3641 if (zone->zone_vfslist == NULL) {
3642 ASSERT(zone != global_zone);
3643 zone->zone_vfslist = vfsp;
3644 } else {
3645 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3646 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3647 zone->zone_vfslist->vfs_zone_prev = vfsp;
3648 vfsp->vfs_zone_next = zone->zone_vfslist;
3649 }
3650 }
3651
3652 /*
3653 * Link into the hash table, inserting it at the end, so that LOFS
3654 * with the same fsid as UFS (or other) file systems will not hide
3655 * the UFS.
3656 */
3657 vfs_hash_add(vfsp, 0);
3658
3659 /*
3660 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp
3661 * mntix discerns entries with the same key
3662 */
3663 vfsp->vfs_mntix = ++vfs_curr_mntix;
3664 avl_add(&vfs_by_dev, vfsp);
3665
3666 /*
3667 * Link into tree indexed by dev, for vfs_devismounted
3668 */
3669 avl_add(&vfs_by_mntpnt, vfsp);
3670
3671 /*
3672 * update the mnttab modification time
3673 */
3674 vfs_mnttab_modtimeupd();
3675 vfs_list_unlock();
3676 zone_rele(zone);
3677 }
3678
3679 void
vfs_list_remove(struct vfs * vfsp)3680 vfs_list_remove(struct vfs *vfsp)
3681 {
3682 zone_t *zone;
3683
3684 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3685 ASSERT(zone != NULL);
3686 /*
3687 * Callers are responsible for preventing attempts to unmount the
3688 * root.
3689 */
3690 ASSERT(vfsp != rootvfs);
3691
3692 vfs_list_lock();
3693
3694 /*
3695 * Remove from avl trees
3696 */
3697 avl_remove(&vfs_by_mntpnt, vfsp);
3698 avl_remove(&vfs_by_dev, vfsp);
3699
3700 /*
3701 * Remove from hash.
3702 */
3703 vfs_hash_remove(vfsp);
3704
3705 /*
3706 * Remove from vfs list.
3707 */
3708 vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3709 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3710 vfsp->vfs_next = vfsp->vfs_prev = NULL;
3711
3712 /*
3713 * Remove from zone-specific vfs list.
3714 */
3715 if (zone->zone_vfslist == vfsp)
3716 zone->zone_vfslist = vfsp->vfs_zone_next;
3717
3718 if (vfsp->vfs_zone_next == vfsp) {
3719 ASSERT(vfsp->vfs_zone_prev == vfsp);
3720 ASSERT(zone->zone_vfslist == vfsp);
3721 zone->zone_vfslist = NULL;
3722 }
3723
3724 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3725 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3726 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3727
3728 /*
3729 * update the mnttab modification time
3730 */
3731 vfs_mnttab_modtimeupd();
3732 vfs_list_unlock();
3733 zone_rele(zone);
3734 }
3735
3736 struct vfs *
getvfs(fsid_t * fsid)3737 getvfs(fsid_t *fsid)
3738 {
3739 struct vfs *vfsp;
3740 int val0 = fsid->val[0];
3741 int val1 = fsid->val[1];
3742 dev_t dev = expldev(val0);
3743 int vhno = VFSHASH(getmajor(dev), getminor(dev));
3744 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3745
3746 mutex_enter(hmp);
3747 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3748 if (vfsp->vfs_fsid.val[0] == val0 &&
3749 vfsp->vfs_fsid.val[1] == val1) {
3750 VFS_HOLD(vfsp);
3751 mutex_exit(hmp);
3752 return (vfsp);
3753 }
3754 }
3755 mutex_exit(hmp);
3756 return (NULL);
3757 }
3758
3759 /*
3760 * Search the vfs mount in progress list for a specified device/vfs entry.
3761 * Returns 0 if the first entry in the list that the device matches has the
3762 * given vfs pointer as well. If the device matches but a different vfs
3763 * pointer is encountered in the list before the given vfs pointer then
3764 * a 1 is returned.
3765 */
3766
3767 int
vfs_devmounting(dev_t dev,struct vfs * vfsp)3768 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3769 {
3770 int retval = 0;
3771 struct ipmnt *mipp;
3772
3773 mutex_enter(&vfs_miplist_mutex);
3774 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3775 if (mipp->mip_dev == dev) {
3776 if (mipp->mip_vfsp != vfsp)
3777 retval = 1;
3778 break;
3779 }
3780 }
3781 mutex_exit(&vfs_miplist_mutex);
3782 return (retval);
3783 }
3784
3785 /*
3786 * Search the vfs list for a specified device. Returns 1, if entry is found
3787 * or 0 if no suitable entry is found.
3788 */
3789
3790 int
vfs_devismounted(dev_t dev)3791 vfs_devismounted(dev_t dev)
3792 {
3793 struct vfs *vfsp;
3794 int found = 0;
3795 struct vfs search;
3796 avl_index_t index;
3797
3798 search.vfs_dev = dev;
3799 search.vfs_mntix = 0;
3800
3801 vfs_list_read_lock();
3802
3803 /*
3804 * there might be several entries with the same dev in the tree,
3805 * only discerned by mntix. To find the first, we start with a mntix
3806 * of 0. The search will fail. The following avl_nearest will give
3807 * us the actual first entry.
3808 */
3809 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3810 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3811
3812 if (vfsp != NULL && vfsp->vfs_dev == dev)
3813 found = 1;
3814
3815 vfs_list_unlock();
3816 return (found);
3817 }
3818
3819 /*
3820 * Search the vfs list for a specified device. Returns a pointer to it
3821 * or NULL if no suitable entry is found. The caller of this routine
3822 * is responsible for releasing the returned vfs pointer.
3823 */
3824 struct vfs *
vfs_dev2vfsp(dev_t dev)3825 vfs_dev2vfsp(dev_t dev)
3826 {
3827 struct vfs *vfsp;
3828 int found;
3829 struct vfs search;
3830 avl_index_t index;
3831
3832 search.vfs_dev = dev;
3833 search.vfs_mntix = 0;
3834
3835 vfs_list_read_lock();
3836
3837 /*
3838 * there might be several entries with the same dev in the tree,
3839 * only discerned by mntix. To find the first, we start with a mntix
3840 * of 0. The search will fail. The following avl_nearest will give
3841 * us the actual first entry.
3842 */
3843 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3844 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3845
3846 found = 0;
3847 while (vfsp != NULL && vfsp->vfs_dev == dev) {
3848 /*
3849 * The following could be made more efficient by making
3850 * the entire loop use vfs_zone_next if the call is from
3851 * a zone. The only callers, however, ustat(2) and
3852 * umount2(2), don't seem to justify the added
3853 * complexity at present.
3854 */
3855 if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3856 curproc->p_zone)) {
3857 VFS_HOLD(vfsp);
3858 found = 1;
3859 break;
3860 }
3861 vfsp = AVL_NEXT(&vfs_by_dev, vfsp);
3862 }
3863 vfs_list_unlock();
3864 return (found ? vfsp : NULL);
3865 }
3866
3867 /*
3868 * Search the vfs list for a specified mntpoint. Returns a pointer to it
3869 * or NULL if no suitable entry is found. The caller of this routine
3870 * is responsible for releasing the returned vfs pointer.
3871 *
3872 * Note that if multiple mntpoints match, the last one matching is
3873 * returned in an attempt to return the "top" mount when overlay
3874 * mounts are covering the same mount point. This is accomplished by starting
3875 * at the end of the list and working our way backwards, stopping at the first
3876 * matching mount.
3877 */
3878 struct vfs *
vfs_mntpoint2vfsp(const char * mp)3879 vfs_mntpoint2vfsp(const char *mp)
3880 {
3881 struct vfs *vfsp;
3882 struct vfs *retvfsp = NULL;
3883 zone_t *zone = curproc->p_zone;
3884 struct vfs *list;
3885
3886 vfs_list_read_lock();
3887 if (getzoneid() == GLOBAL_ZONEID) {
3888 /*
3889 * The global zone may see filesystems in any zone.
3890 */
3891 struct vfs search;
3892 search.vfs_mntpt = refstr_alloc(mp);
3893 search.vfs_mntix = UINT64_MAX;
3894 avl_index_t index;
3895
3896 /*
3897 * there might be several entries with the same mntpnt in the
3898 * tree, only discerned by mntix. To find the last, we start
3899 * with a mntix of UINT64_MAX. The search will fail. The
3900 * following avl_nearest will give us the actual last entry
3901 * matching the mntpnt.
3902 */
3903 VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0);
3904 vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE);
3905
3906 refstr_rele(search.vfs_mntpt);
3907
3908 if (vfsp != NULL &&
3909 strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0)
3910 retvfsp = vfsp;
3911 } else if ((list = zone->zone_vfslist) != NULL) {
3912 const char *mntpt;
3913
3914 vfsp = list->vfs_zone_prev;
3915 do {
3916 mntpt = refstr_value(vfsp->vfs_mntpt);
3917 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3918 if (strcmp(mntpt, mp) == 0) {
3919 retvfsp = vfsp;
3920 break;
3921 }
3922 vfsp = vfsp->vfs_zone_prev;
3923 } while (vfsp != list->vfs_zone_prev);
3924 }
3925 if (retvfsp)
3926 VFS_HOLD(retvfsp);
3927 vfs_list_unlock();
3928 return (retvfsp);
3929 }
3930
3931 /*
3932 * Search the vfs list for a specified vfsops.
3933 * if vfs entry is found then return 1, else 0.
3934 */
3935 int
vfs_opsinuse(vfsops_t * ops)3936 vfs_opsinuse(vfsops_t *ops)
3937 {
3938 struct vfs *vfsp;
3939 int found;
3940
3941 vfs_list_read_lock();
3942 vfsp = rootvfs;
3943 found = 0;
3944 do {
3945 if (vfs_getops(vfsp) == ops) {
3946 found = 1;
3947 break;
3948 }
3949 vfsp = vfsp->vfs_next;
3950 } while (vfsp != rootvfs);
3951 vfs_list_unlock();
3952 return (found);
3953 }
3954
3955 /*
3956 * Allocate an entry in vfssw for a file system type
3957 */
3958 struct vfssw *
allocate_vfssw(const char * type)3959 allocate_vfssw(const char *type)
3960 {
3961 struct vfssw *vswp;
3962
3963 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3964 /*
3965 * The vfssw table uses the empty string to identify an
3966 * available entry; we cannot add any type which has
3967 * a leading NUL. The string length is limited to
3968 * the size of the st_fstype array in struct stat.
3969 */
3970 return (NULL);
3971 }
3972
3973 ASSERT(VFSSW_WRITE_LOCKED());
3974 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3975 if (!ALLOCATED_VFSSW(vswp)) {
3976 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3977 (void) strcpy(vswp->vsw_name, type);
3978 ASSERT(vswp->vsw_count == 0);
3979 vswp->vsw_count = 1;
3980 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3981 return (vswp);
3982 }
3983 return (NULL);
3984 }
3985
3986 /*
3987 * Impose additional layer of translation between vfstype names
3988 * and module names in the filesystem.
3989 */
3990 static const char *
vfs_to_modname(const char * vfstype)3991 vfs_to_modname(const char *vfstype)
3992 {
3993 if (strcmp(vfstype, "proc") == 0) {
3994 vfstype = "procfs";
3995 } else if (strcmp(vfstype, "fd") == 0) {
3996 vfstype = "fdfs";
3997 } else if (strncmp(vfstype, "nfs", 3) == 0) {
3998 vfstype = "nfs";
3999 }
4000
4001 return (vfstype);
4002 }
4003
4004 /*
4005 * Find a vfssw entry given a file system type name.
4006 * Try to autoload the filesystem if it's not found.
4007 * If it's installed, return the vfssw locked to prevent unloading.
4008 */
4009 struct vfssw *
vfs_getvfssw(const char * type)4010 vfs_getvfssw(const char *type)
4011 {
4012 struct vfssw *vswp;
4013 const char *modname;
4014
4015 RLOCK_VFSSW();
4016 vswp = vfs_getvfsswbyname(type);
4017 modname = vfs_to_modname(type);
4018
4019 if (rootdir == NULL) {
4020 /*
4021 * If we haven't yet loaded the root file system, then our
4022 * _init won't be called until later. Allocate vfssw entry,
4023 * because mod_installfs won't be called.
4024 */
4025 if (vswp == NULL) {
4026 RUNLOCK_VFSSW();
4027 WLOCK_VFSSW();
4028 if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
4029 if ((vswp = allocate_vfssw(type)) == NULL) {
4030 WUNLOCK_VFSSW();
4031 return (NULL);
4032 }
4033 }
4034 WUNLOCK_VFSSW();
4035 RLOCK_VFSSW();
4036 }
4037 if (!VFS_INSTALLED(vswp)) {
4038 RUNLOCK_VFSSW();
4039 (void) modloadonly("fs", modname);
4040 } else
4041 RUNLOCK_VFSSW();
4042 return (vswp);
4043 }
4044
4045 /*
4046 * Try to load the filesystem. Before calling modload(), we drop
4047 * our lock on the VFS switch table, and pick it up after the
4048 * module is loaded. However, there is a potential race: the
4049 * module could be unloaded after the call to modload() completes
4050 * but before we pick up the lock and drive on. Therefore,
4051 * we keep reloading the module until we've loaded the module
4052 * _and_ we have the lock on the VFS switch table.
4053 */
4054 while (vswp == NULL || !VFS_INSTALLED(vswp)) {
4055 RUNLOCK_VFSSW();
4056 if (modload("fs", modname) == -1)
4057 return (NULL);
4058 RLOCK_VFSSW();
4059 if (vswp == NULL)
4060 if ((vswp = vfs_getvfsswbyname(type)) == NULL)
4061 break;
4062 }
4063 RUNLOCK_VFSSW();
4064
4065 return (vswp);
4066 }
4067
4068 /*
4069 * Find a vfssw entry given a file system type name.
4070 */
4071 struct vfssw *
vfs_getvfsswbyname(const char * type)4072 vfs_getvfsswbyname(const char *type)
4073 {
4074 struct vfssw *vswp;
4075
4076 ASSERT(VFSSW_LOCKED());
4077 if (type == NULL || *type == '\0')
4078 return (NULL);
4079
4080 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4081 if (strcmp(type, vswp->vsw_name) == 0) {
4082 vfs_refvfssw(vswp);
4083 return (vswp);
4084 }
4085 }
4086
4087 return (NULL);
4088 }
4089
4090 /*
4091 * Find a vfssw entry given a set of vfsops.
4092 */
4093 struct vfssw *
vfs_getvfsswbyvfsops(vfsops_t * vfsops)4094 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4095 {
4096 struct vfssw *vswp;
4097
4098 RLOCK_VFSSW();
4099 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4100 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4101 vfs_refvfssw(vswp);
4102 RUNLOCK_VFSSW();
4103 return (vswp);
4104 }
4105 }
4106 RUNLOCK_VFSSW();
4107
4108 return (NULL);
4109 }
4110
4111 /*
4112 * Reference a vfssw entry.
4113 */
4114 void
vfs_refvfssw(struct vfssw * vswp)4115 vfs_refvfssw(struct vfssw *vswp)
4116 {
4117
4118 mutex_enter(&vswp->vsw_lock);
4119 vswp->vsw_count++;
4120 mutex_exit(&vswp->vsw_lock);
4121 }
4122
4123 /*
4124 * Unreference a vfssw entry.
4125 */
4126 void
vfs_unrefvfssw(struct vfssw * vswp)4127 vfs_unrefvfssw(struct vfssw *vswp)
4128 {
4129
4130 mutex_enter(&vswp->vsw_lock);
4131 vswp->vsw_count--;
4132 mutex_exit(&vswp->vsw_lock);
4133 }
4134
4135 int sync_timeout = 30; /* timeout for syncing a page during panic */
4136 int sync_timeleft; /* portion of sync_timeout remaining */
4137
4138 static int sync_retries = 20; /* number of retries when not making progress */
4139 static int sync_triesleft; /* portion of sync_retries remaining */
4140
4141 static pgcnt_t old_pgcnt, new_pgcnt;
4142 static int new_bufcnt, old_bufcnt;
4143
4144 /*
4145 * Sync all of the mounted filesystems, and then wait for the actual i/o to
4146 * complete. We wait by counting the number of dirty pages and buffers,
4147 * pushing them out using bio_busy() and page_busy(), and then counting again.
4148 * This routine is used during both the uadmin A_SHUTDOWN code as well as
4149 * the SYNC phase of the panic code (see comments in panic.c). It should only
4150 * be used after some higher-level mechanism has quiesced the system so that
4151 * new writes are not being initiated while we are waiting for completion.
4152 *
4153 * To ensure finite running time, our algorithm uses two timeout mechanisms:
4154 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4155 * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4156 * Together these ensure that syncing completes if our i/o paths are stuck.
4157 * The counters are declared above so they can be found easily in the debugger.
4158 *
4159 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4160 * vfs_syncprogress() subroutine whenever we make progress through the lists of
4161 * pages and buffers. It is decremented and expired by the deadman() cyclic.
4162 * When vfs_syncall() decides it is done, we disable the deadman() counter by
4163 * setting sync_timeleft to zero. This timer guards against vfs_syncall()
4164 * deadlocking or hanging inside of a broken filesystem or driver routine.
4165 *
4166 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make
4167 * sync_retries consecutive calls to bio_busy() and page_busy() without
4168 * decreasing either the number of dirty buffers or dirty pages below the
4169 * lowest count we have seen so far, we give up and return from vfs_syncall().
4170 *
4171 * Each loop iteration ends with a call to delay() one second to allow time for
4172 * i/o completion and to permit the user time to read our progress messages.
4173 */
4174 void
vfs_syncall(void)4175 vfs_syncall(void)
4176 {
4177 if (rootdir == NULL && !modrootloaded)
4178 return; /* panic during boot - no filesystems yet */
4179
4180 printf("syncing file systems...");
4181 vfs_syncprogress();
4182 sync();
4183
4184 vfs_syncprogress();
4185 sync_triesleft = sync_retries;
4186
4187 old_bufcnt = new_bufcnt = INT_MAX;
4188 old_pgcnt = new_pgcnt = ULONG_MAX;
4189
4190 while (sync_triesleft > 0) {
4191 old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4192 old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4193
4194 new_bufcnt = bio_busy(B_TRUE);
4195 new_pgcnt = page_busy(B_TRUE);
4196 vfs_syncprogress();
4197
4198 if (new_bufcnt == 0 && new_pgcnt == 0)
4199 break;
4200
4201 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4202 sync_triesleft = sync_retries;
4203 else
4204 sync_triesleft--;
4205
4206 if (new_bufcnt)
4207 printf(" [%d]", new_bufcnt);
4208 if (new_pgcnt)
4209 printf(" %lu", new_pgcnt);
4210
4211 delay(hz);
4212 }
4213
4214 if (new_bufcnt != 0 || new_pgcnt != 0)
4215 printf(" done (not all i/o completed)\n");
4216 else
4217 printf(" done\n");
4218
4219 sync_timeleft = 0;
4220 delay(hz);
4221 }
4222
4223 /*
4224 * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4225 * sync_timeout to indicate that we are making progress and the deadman()
4226 * omnipresent cyclic should not yet time us out. Note that it is safe to
4227 * store to sync_timeleft here since the deadman() is firing at high-level
4228 * on top of us. If we are racing with the deadman(), either the deadman()
4229 * will decrement the old value and then we will reset it, or we will
4230 * reset it and then the deadman() will immediately decrement it. In either
4231 * case, correct behavior results.
4232 */
4233 void
vfs_syncprogress(void)4234 vfs_syncprogress(void)
4235 {
4236 if (panicstr)
4237 sync_timeleft = sync_timeout;
4238 }
4239
4240 /*
4241 * Map VFS flags to statvfs flags. These shouldn't really be separate
4242 * flags at all.
4243 */
4244 uint_t
vf_to_stf(uint_t vf)4245 vf_to_stf(uint_t vf)
4246 {
4247 uint_t stf = 0;
4248
4249 if (vf & VFS_RDONLY)
4250 stf |= ST_RDONLY;
4251 if (vf & VFS_NOSETUID)
4252 stf |= ST_NOSUID;
4253 if (vf & VFS_NOTRUNC)
4254 stf |= ST_NOTRUNC;
4255
4256 return (stf);
4257 }
4258
4259 /*
4260 * Entries for (illegal) fstype 0.
4261 */
4262 /* ARGSUSED */
4263 int
vfsstray_sync(struct vfs * vfsp,short arg,struct cred * cr)4264 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4265 {
4266 cmn_err(CE_PANIC, "stray vfs operation");
4267 return (0);
4268 }
4269
4270 /*
4271 * Entries for (illegal) fstype 0.
4272 */
4273 int
vfsstray(void)4274 vfsstray(void)
4275 {
4276 cmn_err(CE_PANIC, "stray vfs operation");
4277 return (0);
4278 }
4279
4280 /*
4281 * Support for dealing with forced UFS unmount and its interaction with
4282 * LOFS. Could be used by any filesystem.
4283 * See bug 1203132.
4284 */
4285 int
vfs_EIO(void)4286 vfs_EIO(void)
4287 {
4288 return (EIO);
4289 }
4290
4291 /*
4292 * We've gotta define the op for sync separately, since the compiler gets
4293 * confused if we mix and match ANSI and normal style prototypes when
4294 * a "short" argument is present and spits out a warning.
4295 */
4296 /*ARGSUSED*/
4297 int
vfs_EIO_sync(struct vfs * vfsp,short arg,struct cred * cr)4298 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4299 {
4300 return (EIO);
4301 }
4302
4303 vfs_t EIO_vfs;
4304 vfsops_t *EIO_vfsops;
4305
4306 /*
4307 * Called from startup() to initialize all loaded vfs's
4308 */
4309 void
vfsinit(void)4310 vfsinit(void)
4311 {
4312 struct vfssw *vswp;
4313 int error;
4314 extern int vopstats_enabled;
4315 extern void vopstats_startup();
4316
4317 static const fs_operation_def_t EIO_vfsops_template[] = {
4318 VFSNAME_MOUNT, { .error = vfs_EIO },
4319 VFSNAME_UNMOUNT, { .error = vfs_EIO },
4320 VFSNAME_ROOT, { .error = vfs_EIO },
4321 VFSNAME_STATVFS, { .error = vfs_EIO },
4322 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync },
4323 VFSNAME_VGET, { .error = vfs_EIO },
4324 VFSNAME_MOUNTROOT, { .error = vfs_EIO },
4325 VFSNAME_FREEVFS, { .error = vfs_EIO },
4326 VFSNAME_VNSTATE, { .error = vfs_EIO },
4327 NULL, NULL
4328 };
4329
4330 static const fs_operation_def_t stray_vfsops_template[] = {
4331 VFSNAME_MOUNT, { .error = vfsstray },
4332 VFSNAME_UNMOUNT, { .error = vfsstray },
4333 VFSNAME_ROOT, { .error = vfsstray },
4334 VFSNAME_STATVFS, { .error = vfsstray },
4335 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync },
4336 VFSNAME_VGET, { .error = vfsstray },
4337 VFSNAME_MOUNTROOT, { .error = vfsstray },
4338 VFSNAME_FREEVFS, { .error = vfsstray },
4339 VFSNAME_VNSTATE, { .error = vfsstray },
4340 NULL, NULL
4341 };
4342
4343 /* Create vfs cache */
4344 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4345 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4346
4347 /* Initialize the vnode cache (file systems may use it during init). */
4348 vn_create_cache();
4349
4350 /* Setup event monitor framework */
4351 fem_init();
4352
4353 /* Initialize the dummy stray file system type. */
4354 error = vfs_setfsops(0, stray_vfsops_template, NULL);
4355
4356 /* Initialize the dummy EIO file system. */
4357 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4358 if (error != 0) {
4359 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4360 /* Shouldn't happen, but not bad enough to panic */
4361 }
4362
4363 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4364
4365 /*
4366 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4367 * on this vfs can immediately notice it's invalid.
4368 */
4369 EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4370
4371 /*
4372 * Call the init routines of non-loadable filesystems only.
4373 * Filesystems which are loaded as separate modules will be
4374 * initialized by the module loading code instead.
4375 */
4376
4377 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4378 RLOCK_VFSSW();
4379 if (vswp->vsw_init != NULL)
4380 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4381 RUNLOCK_VFSSW();
4382 }
4383
4384 vopstats_startup();
4385
4386 if (vopstats_enabled) {
4387 /* EIO_vfs can collect stats, but we don't retrieve them */
4388 initialize_vopstats(&EIO_vfs.vfs_vopstats);
4389 EIO_vfs.vfs_fstypevsp = NULL;
4390 EIO_vfs.vfs_vskap = NULL;
4391 EIO_vfs.vfs_flag |= VFS_STATS;
4392 }
4393
4394 xattr_init();
4395
4396 reparse_point_init();
4397 }
4398
4399 vfs_t *
vfs_alloc(int kmflag)4400 vfs_alloc(int kmflag)
4401 {
4402 vfs_t *vfsp;
4403
4404 vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4405
4406 /*
4407 * Do the simplest initialization here.
4408 * Everything else gets done in vfs_init()
4409 */
4410 bzero(vfsp, sizeof (vfs_t));
4411 return (vfsp);
4412 }
4413
4414 void
vfs_free(vfs_t * vfsp)4415 vfs_free(vfs_t *vfsp)
4416 {
4417 /*
4418 * One would be tempted to assert that "vfsp->vfs_count == 0".
4419 * The problem is that this gets called out of domount() with
4420 * a partially initialized vfs and a vfs_count of 1. This is
4421 * also called from vfs_rele() with a vfs_count of 0. We can't
4422 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4423 * returned. This is because VFS_MOUNT() fully initializes the
4424 * vfs structure and its associated data. VFS_RELE() will call
4425 * VFS_FREEVFS() which may panic the system if the data structures
4426 * aren't fully initialized from a successful VFS_MOUNT()).
4427 */
4428
4429 /* If FEM was in use, make sure everything gets cleaned up */
4430 if (vfsp->vfs_femhead) {
4431 ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4432 mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4433 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4434 vfsp->vfs_femhead = NULL;
4435 }
4436
4437 if (vfsp->vfs_implp)
4438 vfsimpl_teardown(vfsp);
4439 sema_destroy(&vfsp->vfs_reflock);
4440 kmem_cache_free(vfs_cache, vfsp);
4441 }
4442
4443 /*
4444 * Increments the vfs reference count by one atomically.
4445 */
4446 void
vfs_hold(vfs_t * vfsp)4447 vfs_hold(vfs_t *vfsp)
4448 {
4449 atomic_inc_32(&vfsp->vfs_count);
4450 ASSERT(vfsp->vfs_count != 0);
4451 }
4452
4453 /*
4454 * Decrements the vfs reference count by one atomically. When
4455 * vfs reference count becomes zero, it calls the file system
4456 * specific vfs_freevfs() to free up the resources.
4457 */
4458 void
vfs_rele(vfs_t * vfsp)4459 vfs_rele(vfs_t *vfsp)
4460 {
4461 ASSERT(vfsp->vfs_count != 0);
4462 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4463 VFS_FREEVFS(vfsp);
4464 lofi_remove(vfsp);
4465 if (vfsp->vfs_zone)
4466 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4467 ZONE_REF_VFS);
4468 vfs_freemnttab(vfsp);
4469 vfs_free(vfsp);
4470 }
4471 }
4472
4473 /*
4474 * Generic operations vector support.
4475 *
4476 * This is used to build operations vectors for both the vfs and vnode.
4477 * It's normally called only when a file system is loaded.
4478 *
4479 * There are many possible algorithms for this, including the following:
4480 *
4481 * (1) scan the list of known operations; for each, see if the file system
4482 * includes an entry for it, and fill it in as appropriate.
4483 *
4484 * (2) set up defaults for all known operations. scan the list of ops
4485 * supplied by the file system; for each which is both supplied and
4486 * known, fill it in.
4487 *
4488 * (3) sort the lists of known ops & supplied ops; scan the list, filling
4489 * in entries as we go.
4490 *
4491 * we choose (1) for simplicity, and because performance isn't critical here.
4492 * note that (2) could be sped up using a precomputed hash table on known ops.
4493 * (3) could be faster than either, but only if the lists were very large or
4494 * supplied in sorted order.
4495 *
4496 */
4497
4498 int
fs_build_vector(void * vector,int * unused_ops,const fs_operation_trans_def_t * translation,const fs_operation_def_t * operations)4499 fs_build_vector(void *vector, int *unused_ops,
4500 const fs_operation_trans_def_t *translation,
4501 const fs_operation_def_t *operations)
4502 {
4503 int i, num_trans, num_ops, used;
4504
4505 /*
4506 * Count the number of translations and the number of supplied
4507 * operations.
4508 */
4509
4510 {
4511 const fs_operation_trans_def_t *p;
4512
4513 for (num_trans = 0, p = translation;
4514 p->name != NULL;
4515 num_trans++, p++)
4516 ;
4517 }
4518
4519 {
4520 const fs_operation_def_t *p;
4521
4522 for (num_ops = 0, p = operations;
4523 p->name != NULL;
4524 num_ops++, p++)
4525 ;
4526 }
4527
4528 /* Walk through each operation known to our caller. There will be */
4529 /* one entry in the supplied "translation table" for each. */
4530
4531 used = 0;
4532
4533 for (i = 0; i < num_trans; i++) {
4534 int j, found;
4535 char *curname;
4536 fs_generic_func_p result;
4537 fs_generic_func_p *location;
4538
4539 curname = translation[i].name;
4540
4541 /* Look for a matching operation in the list supplied by the */
4542 /* file system. */
4543
4544 found = 0;
4545
4546 for (j = 0; j < num_ops; j++) {
4547 if (strcmp(operations[j].name, curname) == 0) {
4548 used++;
4549 found = 1;
4550 break;
4551 }
4552 }
4553
4554 /*
4555 * If the file system is using a "placeholder" for default
4556 * or error functions, grab the appropriate function out of
4557 * the translation table. If the file system didn't supply
4558 * this operation at all, use the default function.
4559 */
4560
4561 if (found) {
4562 result = operations[j].func.fs_generic;
4563 if (result == fs_default) {
4564 result = translation[i].defaultFunc;
4565 } else if (result == fs_error) {
4566 result = translation[i].errorFunc;
4567 } else if (result == NULL) {
4568 /* Null values are PROHIBITED */
4569 return (EINVAL);
4570 }
4571 } else {
4572 result = translation[i].defaultFunc;
4573 }
4574
4575 /* Now store the function into the operations vector. */
4576
4577 location = (fs_generic_func_p *)
4578 (((char *)vector) + translation[i].offset);
4579
4580 *location = result;
4581 }
4582
4583 *unused_ops = num_ops - used;
4584
4585 return (0);
4586 }
4587
4588 /* Placeholder functions, should never be called. */
4589
4590 int
fs_error(void)4591 fs_error(void)
4592 {
4593 cmn_err(CE_PANIC, "fs_error called");
4594 return (0);
4595 }
4596
4597 int
fs_default(void)4598 fs_default(void)
4599 {
4600 cmn_err(CE_PANIC, "fs_default called");
4601 return (0);
4602 }
4603
4604 #ifdef __sparc
4605
4606 /*
4607 * Part of the implementation of booting off a mirrored root
4608 * involves a change of dev_t for the root device. To
4609 * accomplish this, first remove the existing hash table
4610 * entry for the root device, convert to the new dev_t,
4611 * then re-insert in the hash table at the head of the list.
4612 */
4613 void
vfs_root_redev(vfs_t * vfsp,dev_t ndev,int fstype)4614 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4615 {
4616 vfs_list_lock();
4617
4618 vfs_hash_remove(vfsp);
4619
4620 vfsp->vfs_dev = ndev;
4621 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4622
4623 vfs_hash_add(vfsp, 1);
4624
4625 vfs_list_unlock();
4626 }
4627
4628 #else /* x86 NEWBOOT */
4629
4630 #if defined(__x86)
4631 extern int hvmboot_rootconf();
4632 #endif /* __x86 */
4633
4634 extern ib_boot_prop_t *iscsiboot_prop;
4635
4636 int
rootconf()4637 rootconf()
4638 {
4639 int error;
4640 struct vfssw *vsw;
4641 extern void pm_init();
4642 char *fstyp, *fsmod;
4643 int ret = -1;
4644
4645 getrootfs(&fstyp, &fsmod);
4646
4647 #if defined(__x86)
4648 /*
4649 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4650 * which lives in /platform/i86hvm, and hence is only available when
4651 * booted in an x86 hvm environment. If the hvm_bootstrap misc module
4652 * is not available then the modstub for this function will return 0.
4653 * If the hvm_bootstrap misc module is available it will be loaded
4654 * and hvmboot_rootconf() will be invoked.
4655 */
4656 if (error = hvmboot_rootconf())
4657 return (error);
4658 #endif /* __x86 */
4659
4660 if (error = clboot_rootconf())
4661 return (error);
4662
4663 if (modload("fs", fsmod) == -1)
4664 panic("Cannot _init %s module", fsmod);
4665
4666 RLOCK_VFSSW();
4667 vsw = vfs_getvfsswbyname(fstyp);
4668 RUNLOCK_VFSSW();
4669 if (vsw == NULL) {
4670 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4671 return (ENXIO);
4672 }
4673 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4674 VFS_HOLD(rootvfs);
4675
4676 /* always mount readonly first */
4677 rootvfs->vfs_flag |= VFS_RDONLY;
4678
4679 pm_init();
4680
4681 if (netboot && iscsiboot_prop) {
4682 cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4683 " shouldn't happen in the same time");
4684 return (EINVAL);
4685 }
4686
4687 if (netboot || iscsiboot_prop) {
4688 ret = strplumb();
4689 if (ret != 0) {
4690 cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4691 return (EFAULT);
4692 }
4693 }
4694
4695 if ((ret == 0) && iscsiboot_prop) {
4696 ret = modload("drv", "iscsi");
4697 /* -1 indicates fail */
4698 if (ret == -1) {
4699 cmn_err(CE_WARN, "Failed to load iscsi module");
4700 iscsi_boot_prop_free();
4701 return (EINVAL);
4702 } else {
4703 if (!i_ddi_attach_pseudo_node("iscsi")) {
4704 cmn_err(CE_WARN,
4705 "Failed to attach iscsi driver");
4706 iscsi_boot_prop_free();
4707 return (ENODEV);
4708 }
4709 }
4710 }
4711
4712 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4713 vfs_unrefvfssw(vsw);
4714 rootdev = rootvfs->vfs_dev;
4715
4716 if (error)
4717 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4718 rootfs.bo_name, fstyp);
4719 else
4720 cmn_err(CE_CONT, "?root on %s fstype %s\n",
4721 rootfs.bo_name, fstyp);
4722 return (error);
4723 }
4724
4725 /*
4726 * XXX this is called by nfs only and should probably be removed
4727 * If booted with ASKNAME, prompt on the console for a filesystem
4728 * name and return it.
4729 */
4730 void
getfsname(char * askfor,char * name,size_t namelen)4731 getfsname(char *askfor, char *name, size_t namelen)
4732 {
4733 if (boothowto & RB_ASKNAME) {
4734 printf("%s name: ", askfor);
4735 console_gets(name, namelen);
4736 }
4737 }
4738
4739 /*
4740 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4741 * property.
4742 *
4743 * Filesystem types starting with the prefix "nfs" are diskless clients;
4744 * init the root filename name (rootfs.bo_name), too.
4745 *
4746 * If we are booting via NFS we currently have these options:
4747 * nfs - dynamically choose NFS V2, V3, or V4 (default)
4748 * nfs2 - force NFS V2
4749 * nfs3 - force NFS V3
4750 * nfs4 - force NFS V4
4751 * Because we need to maintain backward compatibility with the naming
4752 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4753 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic
4754 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4755 * This is only for root filesystems, all other uses will expect
4756 * that "nfs" == NFS V2.
4757 */
4758 static void
getrootfs(char ** fstypp,char ** fsmodp)4759 getrootfs(char **fstypp, char **fsmodp)
4760 {
4761 extern char *strplumb_get_netdev_path(void);
4762 char *propstr = NULL;
4763
4764 /*
4765 * Check fstype property; for diskless it should be one of "nfs",
4766 * "nfs2", "nfs3" or "nfs4".
4767 */
4768 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4769 DDI_PROP_DONTPASS, "fstype", &propstr)
4770 == DDI_SUCCESS) {
4771 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4772 ddi_prop_free(propstr);
4773
4774 /*
4775 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4776 * assume the type of this root filesystem is 'zfs'.
4777 */
4778 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4779 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4780 == DDI_SUCCESS) {
4781 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4782 ddi_prop_free(propstr);
4783 }
4784
4785 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4786 *fstypp = *fsmodp = rootfs.bo_fstype;
4787 return;
4788 }
4789
4790 ++netboot;
4791
4792 if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4793 (void) strcpy(rootfs.bo_fstype, "nfs");
4794 else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4795 (void) strcpy(rootfs.bo_fstype, "nfsdyn");
4796
4797 /*
4798 * check if path to network interface is specified in bootpath
4799 * or by a hypervisor domain configuration file.
4800 * XXPV - enable strlumb_get_netdev_path()
4801 */
4802 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4803 "xpv-nfsroot")) {
4804 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4805 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4806 DDI_PROP_DONTPASS, "bootpath", &propstr)
4807 == DDI_SUCCESS) {
4808 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4809 ddi_prop_free(propstr);
4810 } else {
4811 /* attempt to determine netdev_path via boot_mac address */
4812 netdev_path = strplumb_get_netdev_path();
4813 if (netdev_path == NULL)
4814 panic("cannot find boot network interface");
4815 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4816 }
4817 *fstypp = rootfs.bo_fstype;
4818 *fsmodp = "nfs";
4819 }
4820 #endif
4821
4822 /*
4823 * VFS feature routines
4824 */
4825
4826 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF)
4827 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL)
4828
4829 /* Register a feature in the vfs */
4830 void
vfs_set_feature(vfs_t * vfsp,vfs_feature_t feature)4831 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4832 {
4833 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4834 if (vfsp->vfs_implp == NULL)
4835 return;
4836
4837 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4838 }
4839
4840 void
vfs_clear_feature(vfs_t * vfsp,vfs_feature_t feature)4841 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4842 {
4843 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4844 if (vfsp->vfs_implp == NULL)
4845 return;
4846 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4847 }
4848
4849 /*
4850 * Query a vfs for a feature.
4851 * Returns 1 if feature is present, 0 if not
4852 */
4853 int
vfs_has_feature(vfs_t * vfsp,vfs_feature_t feature)4854 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4855 {
4856 int ret = 0;
4857
4858 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4859 if (vfsp->vfs_implp == NULL)
4860 return (ret);
4861
4862 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4863 ret = 1;
4864
4865 return (ret);
4866 }
4867
4868 /*
4869 * Propagate feature set from one vfs to another
4870 */
4871 void
vfs_propagate_features(vfs_t * from,vfs_t * to)4872 vfs_propagate_features(vfs_t *from, vfs_t *to)
4873 {
4874 int i;
4875
4876 if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4877 return;
4878
4879 for (i = 1; i <= to->vfs_featureset[0]; i++) {
4880 to->vfs_featureset[i] = from->vfs_featureset[i];
4881 }
4882 }
4883
4884 #define LOFINODE_PATH "/dev/lofi/%d"
4885
4886 /*
4887 * Return the vnode for the lofi node if there's a lofi mount in place.
4888 * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4889 * failure.
4890 */
4891 int
vfs_get_lofi(vfs_t * vfsp,vnode_t ** vpp)4892 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4893 {
4894 char *path = NULL;
4895 int strsize;
4896 int err;
4897
4898 if (vfsp->vfs_lofi_minor == 0) {
4899 *vpp = NULL;
4900 return (-1);
4901 }
4902
4903 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4904 path = kmem_alloc(strsize + 1, KM_SLEEP);
4905 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4906
4907 /*
4908 * We may be inside a zone, so we need to use the /dev path, but
4909 * it's created asynchronously, so we wait here.
4910 */
4911 for (;;) {
4912 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4913
4914 if (err != ENOENT)
4915 break;
4916
4917 if ((err = delay_sig(hz / 8)) == EINTR)
4918 break;
4919 }
4920
4921 if (err)
4922 *vpp = NULL;
4923
4924 kmem_free(path, strsize + 1);
4925 return (err);
4926 }
4927