1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13 * Copyright (c) 2013, 2014 The FreeBSD Foundation
14 *
15 * Portions of this software were developed by Konstantin Belousov
16 * under sponsorship from the FreeBSD Foundation.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 */
42
43 #include "opt_hwpmc_hooks.h"
44 #include "opt_hwt_hooks.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/buf.h>
49 #include <sys/disk.h>
50 #include <sys/dirent.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/inotify.h>
56 #include <sys/ktr.h>
57 #include <sys/ktrace.h>
58 #include <sys/limits.h>
59 #include <sys/lock.h>
60 #include <sys/mman.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/priv.h>
65 #include <sys/prng.h>
66 #include <sys/proc.h>
67 #include <sys/rwlock.h>
68 #include <sys/sleepqueue.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/unistd.h>
72 #include <sys/user.h>
73 #include <sys/vnode.h>
74
75 #include <security/audit/audit.h>
76 #include <security/mac/mac_framework.h>
77
78 #include <vm/vm.h>
79 #include <vm/vm_extern.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vnode_pager.h>
86
87 #ifdef HWPMC_HOOKS
88 #include <sys/pmckern.h>
89 #endif
90
91 #ifdef HWT_HOOKS
92 #include <dev/hwt/hwt_hook.h>
93 #endif
94
95 static fo_rdwr_t vn_read;
96 static fo_rdwr_t vn_write;
97 static fo_rdwr_t vn_io_fault;
98 static fo_truncate_t vn_truncate;
99 static fo_ioctl_t vn_ioctl;
100 static fo_poll_t vn_poll;
101 static fo_kqfilter_t vn_kqfilter;
102 static fo_close_t vn_closefile;
103 static fo_mmap_t vn_mmap;
104 static fo_fallocate_t vn_fallocate;
105 static fo_fspacectl_t vn_fspacectl;
106
107 const struct fileops vnops = {
108 .fo_read = vn_io_fault,
109 .fo_write = vn_io_fault,
110 .fo_truncate = vn_truncate,
111 .fo_ioctl = vn_ioctl,
112 .fo_poll = vn_poll,
113 .fo_kqfilter = vn_kqfilter,
114 .fo_stat = vn_statfile,
115 .fo_close = vn_closefile,
116 .fo_chmod = vn_chmod,
117 .fo_chown = vn_chown,
118 .fo_sendfile = vn_sendfile,
119 .fo_seek = vn_seek,
120 .fo_fill_kinfo = vn_fill_kinfo,
121 .fo_mmap = vn_mmap,
122 .fo_fallocate = vn_fallocate,
123 .fo_fspacectl = vn_fspacectl,
124 .fo_cmp = vn_cmp,
125 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
126 };
127
128 const u_int io_hold_cnt = 16;
129 static int vn_io_fault_enable = 1;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
131 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
132 static int vn_io_fault_prefault = 0;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
134 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
135 static int vn_io_pgcache_read_enable = 1;
136 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
137 &vn_io_pgcache_read_enable, 0,
138 "Enable copying from page cache for reads, avoiding fs");
139 static u_long vn_io_faults_cnt;
140 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
141 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
142
143 static int vfs_allow_read_dir = 0;
144 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
145 &vfs_allow_read_dir, 0,
146 "Enable read(2) of directory by root for filesystems that support it");
147
148 /*
149 * Returns true if vn_io_fault mode of handling the i/o request should
150 * be used.
151 */
152 static bool
do_vn_io_fault(struct vnode * vp,struct uio * uio)153 do_vn_io_fault(struct vnode *vp, struct uio *uio)
154 {
155 struct mount *mp;
156
157 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
158 (mp = vp->v_mount) != NULL &&
159 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
160 }
161
162 /*
163 * Structure used to pass arguments to vn_io_fault1(), to do either
164 * file- or vnode-based I/O calls.
165 */
166 struct vn_io_fault_args {
167 enum {
168 VN_IO_FAULT_FOP,
169 VN_IO_FAULT_VOP
170 } kind;
171 struct ucred *cred;
172 int flags;
173 union {
174 struct fop_args_tag {
175 struct file *fp;
176 fo_rdwr_t *doio;
177 } fop_args;
178 struct vop_args_tag {
179 struct vnode *vp;
180 } vop_args;
181 } args;
182 };
183
184 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
185 struct vn_io_fault_args *args, struct thread *td);
186
187 int
vn_open(struct nameidata * ndp,int * flagp,int cmode,struct file * fp)188 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
189 {
190 struct thread *td = curthread;
191
192 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
193 }
194
195 static uint64_t
open2nameif(int fmode,u_int vn_open_flags,uint64_t cn_flags)196 open2nameif(int fmode, u_int vn_open_flags, uint64_t cn_flags)
197 {
198 uint64_t res;
199
200 res = ISOPEN | LOCKLEAF | cn_flags;
201 if ((fmode & O_RESOLVE_BENEATH) != 0)
202 res |= RBENEATH;
203 if ((fmode & O_EMPTY_PATH) != 0)
204 res |= EMPTYPATH;
205 if ((fmode & FREAD) != 0)
206 res |= OPENREAD;
207 if ((fmode & FWRITE) != 0)
208 res |= OPENWRITE;
209 if ((fmode & O_NAMEDATTR) != 0)
210 res |= OPENNAMED | CREATENAMED;
211 if ((fmode & O_NOFOLLOW) != 0)
212 res &= ~FOLLOW;
213 if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
214 res |= AUDITVNODE1;
215 else
216 res &= ~AUDITVNODE1;
217 if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
218 res |= NOCAPCHECK;
219 if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
220 res |= WANTIOCTLCAPS;
221
222 return (res);
223 }
224
225 /*
226 * For the O_NAMEDATTR case, check for a valid use of it.
227 */
228 static int
vfs_check_namedattr(struct vnode * vp)229 vfs_check_namedattr(struct vnode *vp)
230 {
231 int error;
232 short irflag;
233
234 error = 0;
235 irflag = vn_irflag_read(vp);
236 if ((vp->v_mount->mnt_flag & MNT_NAMEDATTR) == 0 ||
237 ((irflag & VIRF_NAMEDATTR) != 0 && vp->v_type != VREG))
238 error = EINVAL;
239 else if ((irflag & (VIRF_NAMEDDIR | VIRF_NAMEDATTR)) == 0)
240 error = ENOATTR;
241 return (error);
242 }
243
244 /*
245 * Common code for vnode open operations via a name lookup.
246 * Lookup the vnode and invoke VOP_CREATE if needed.
247 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
248 *
249 * Note that this does NOT free nameidata for the successful case,
250 * due to the NDINIT being done elsewhere.
251 */
252 int
vn_open_cred(struct nameidata * ndp,int * flagp,int cmode,u_int vn_open_flags,struct ucred * cred,struct file * fp)253 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
254 struct ucred *cred, struct file *fp)
255 {
256 struct vnode *vp;
257 struct mount *mp;
258 struct vattr vat;
259 struct vattr *vap = &vat;
260 int fmode, error;
261 bool first_open;
262
263 restart:
264 first_open = false;
265 fmode = *flagp;
266 if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
267 O_EXCL | O_DIRECTORY) ||
268 (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
269 return (EINVAL);
270 else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
271 ndp->ni_cnd.cn_nameiop = CREATE;
272 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags,
273 ndp->ni_cnd.cn_flags);
274
275 /*
276 * Set NOCACHE to avoid flushing the cache when
277 * rolling in many files at once.
278 *
279 * Set NC_KEEPPOSENTRY to keep positive entries if they already
280 * exist despite NOCACHE.
281 */
282 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
283 if ((fmode & O_EXCL) != 0)
284 ndp->ni_cnd.cn_flags &= ~FOLLOW;
285 if ((vn_open_flags & VN_OPEN_INVFS) == 0)
286 bwillwrite();
287 if ((error = namei(ndp)) != 0)
288 return (error);
289 if (ndp->ni_vp == NULL) {
290 if ((fmode & O_NAMEDATTR) != 0 &&
291 (ndp->ni_dvp->v_mount->mnt_flag & MNT_NAMEDATTR) ==
292 0) {
293 error = EINVAL;
294 vp = ndp->ni_dvp;
295 ndp->ni_dvp = NULL;
296 goto bad;
297 }
298 VATTR_NULL(vap);
299 vap->va_type = VREG;
300 vap->va_mode = cmode;
301 if (fmode & O_EXCL)
302 vap->va_vaflags |= VA_EXCLUSIVE;
303 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
304 NDFREE_PNBUF(ndp);
305 vput(ndp->ni_dvp);
306 if ((error = vn_start_write(NULL, &mp,
307 V_XSLEEP | V_PCATCH)) != 0)
308 return (error);
309 NDREINIT(ndp);
310 goto restart;
311 }
312 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0 ||
313 (vn_irflag_read(ndp->ni_dvp) & VIRF_INOTIFY) != 0)
314 ndp->ni_cnd.cn_flags |= MAKEENTRY;
315 #ifdef MAC
316 error = mac_vnode_check_create(cred, ndp->ni_dvp,
317 &ndp->ni_cnd, vap);
318 if (error == 0)
319 #endif
320 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
321 &ndp->ni_cnd, vap);
322 vp = ndp->ni_vp;
323 if (error == 0 && (fmode & O_EXCL) != 0 &&
324 (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
325 VI_LOCK(vp);
326 vp->v_iflag |= VI_FOPENING;
327 VI_UNLOCK(vp);
328 first_open = true;
329 }
330 VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
331 false);
332 vn_finished_write(mp);
333 if (error) {
334 NDFREE_PNBUF(ndp);
335 if (error == ERELOOKUP) {
336 NDREINIT(ndp);
337 goto restart;
338 }
339 return (error);
340 }
341 fmode &= ~O_TRUNC;
342 } else {
343 if (ndp->ni_dvp == ndp->ni_vp)
344 vrele(ndp->ni_dvp);
345 else
346 vput(ndp->ni_dvp);
347 ndp->ni_dvp = NULL;
348 vp = ndp->ni_vp;
349 if (fmode & O_EXCL) {
350 error = EEXIST;
351 goto bad;
352 }
353 if ((fmode & O_NAMEDATTR) != 0) {
354 error = vfs_check_namedattr(vp);
355 if (error != 0)
356 goto bad;
357 } else if (vp->v_type == VDIR) {
358 error = EISDIR;
359 goto bad;
360 }
361 fmode &= ~O_CREAT;
362 }
363 } else {
364 ndp->ni_cnd.cn_nameiop = LOOKUP;
365 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags,
366 ndp->ni_cnd.cn_flags);
367 if ((fmode & FWRITE) == 0)
368 ndp->ni_cnd.cn_flags |= LOCKSHARED;
369 if ((error = namei(ndp)) != 0)
370 return (error);
371 vp = ndp->ni_vp;
372 if ((fmode & O_NAMEDATTR) != 0) {
373 error = vfs_check_namedattr(vp);
374 if (error != 0)
375 goto bad;
376 }
377 }
378 error = vn_open_vnode(vp, fmode, cred, curthread, fp);
379 if (first_open) {
380 VI_LOCK(vp);
381 vp->v_iflag &= ~VI_FOPENING;
382 wakeup(vp);
383 VI_UNLOCK(vp);
384 }
385 if (error)
386 goto bad;
387 *flagp = fmode;
388 return (0);
389 bad:
390 NDFREE_PNBUF(ndp);
391 vput(vp);
392 *flagp = fmode;
393 ndp->ni_vp = NULL;
394 return (error);
395 }
396
397 static int
vn_open_vnode_advlock(struct vnode * vp,int fmode,struct file * fp)398 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
399 {
400 struct flock lf;
401 int error, lock_flags, type;
402
403 ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
404 if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
405 return (0);
406 KASSERT(fp != NULL, ("open with flock requires fp"));
407 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
408 return (EOPNOTSUPP);
409
410 lock_flags = VOP_ISLOCKED(vp);
411 VOP_UNLOCK(vp);
412
413 lf.l_whence = SEEK_SET;
414 lf.l_start = 0;
415 lf.l_len = 0;
416 lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
417 type = F_FLOCK;
418 if ((fmode & FNONBLOCK) == 0)
419 type |= F_WAIT;
420 if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
421 type |= F_FIRSTOPEN;
422 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
423 if (error == 0)
424 fp->f_flag |= FHASLOCK;
425
426 vn_lock(vp, lock_flags | LK_RETRY);
427 return (error);
428 }
429
430 /*
431 * Common code for vnode open operations once a vnode is located.
432 * Check permissions, and call the VOP_OPEN routine.
433 */
434 int
vn_open_vnode(struct vnode * vp,int fmode,struct ucred * cred,struct thread * td,struct file * fp)435 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
436 struct thread *td, struct file *fp)
437 {
438 accmode_t accmode;
439 int error;
440
441 KASSERT((fmode & O_PATH) == 0 || (fmode & O_ACCMODE) == 0,
442 ("%s: O_PATH and O_ACCMODE are mutually exclusive", __func__));
443
444 if (vp->v_type == VLNK) {
445 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
446 return (EMLINK);
447 }
448 if (vp->v_type != VDIR && fmode & O_DIRECTORY)
449 return (ENOTDIR);
450
451 accmode = 0;
452 if ((fmode & O_PATH) == 0) {
453 if (vp->v_type == VSOCK)
454 return (EOPNOTSUPP);
455 if ((fmode & (FWRITE | O_TRUNC)) != 0) {
456 if (vp->v_type == VDIR)
457 return (EISDIR);
458 accmode |= VWRITE;
459 }
460 if ((fmode & FREAD) != 0)
461 accmode |= VREAD;
462 if ((fmode & O_APPEND) && (fmode & FWRITE))
463 accmode |= VAPPEND;
464 #ifdef MAC
465 if ((fmode & O_CREAT) != 0)
466 accmode |= VCREAT;
467 #endif
468 }
469 if ((fmode & FEXEC) != 0)
470 accmode |= VEXEC;
471 #ifdef MAC
472 if ((fmode & O_VERIFY) != 0)
473 accmode |= VVERIFY;
474 error = mac_vnode_check_open(cred, vp, accmode);
475 if (error != 0)
476 return (error);
477
478 accmode &= ~(VCREAT | VVERIFY);
479 #endif
480 if ((fmode & O_CREAT) == 0 && accmode != 0) {
481 error = VOP_ACCESS(vp, accmode, cred, td);
482 if (error != 0)
483 return (error);
484 }
485 if ((fmode & O_PATH) != 0) {
486 if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
487 VOP_ACCESS(vp, VREAD, cred, td) == 0)
488 fp->f_flag |= FKQALLOWED;
489 INOTIFY(vp, IN_OPEN);
490 return (0);
491 }
492
493 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
494 vn_lock(vp, LK_UPGRADE | LK_RETRY);
495 error = VOP_OPEN(vp, fmode, cred, td, fp);
496 if (error != 0)
497 return (error);
498
499 error = vn_open_vnode_advlock(vp, fmode, fp);
500 if (error == 0 && (fmode & FWRITE) != 0) {
501 error = VOP_ADD_WRITECOUNT(vp, 1);
502 if (error == 0) {
503 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
504 __func__, vp, vp->v_writecount);
505 }
506 }
507
508 /*
509 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
510 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
511 */
512 if (error != 0) {
513 if (fp != NULL) {
514 /*
515 * Arrange the call by having fdrop() to use
516 * vn_closefile(). This is to satisfy
517 * filesystems like devfs or tmpfs, which
518 * override fo_close().
519 */
520 fp->f_flag |= FOPENFAILED;
521 fp->f_vnode = vp;
522 if (fp->f_ops == &badfileops) {
523 fp->f_type = DTYPE_VNODE;
524 fp->f_ops = &vnops;
525 }
526 vref(vp);
527 } else {
528 /*
529 * If there is no fp, due to kernel-mode open,
530 * we can call VOP_CLOSE() now.
531 */
532 if ((vp->v_type == VFIFO ||
533 !MNT_EXTENDED_SHARED(vp->v_mount)) &&
534 VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
535 vn_lock(vp, LK_UPGRADE | LK_RETRY);
536 (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
537 cred, td);
538 }
539 }
540
541 ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
542 return (error);
543
544 }
545
546 /*
547 * Check for write permissions on the specified vnode.
548 * Prototype text segments cannot be written.
549 * It is racy.
550 */
551 int
vn_writechk(struct vnode * vp)552 vn_writechk(struct vnode *vp)
553 {
554
555 ASSERT_VOP_LOCKED(vp, "vn_writechk");
556 /*
557 * If there's shared text associated with
558 * the vnode, try to free it up once. If
559 * we fail, we can't allow writing.
560 */
561 if (VOP_IS_TEXT(vp))
562 return (ETXTBSY);
563
564 return (0);
565 }
566
567 /*
568 * Vnode close call
569 */
570 static int
vn_close1(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td,bool keep_ref)571 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
572 struct thread *td, bool keep_ref)
573 {
574 struct mount *mp;
575 int error, lock_flags;
576
577 lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
578 LK_SHARED : LK_EXCLUSIVE;
579
580 vn_start_write(vp, &mp, V_WAIT);
581 vn_lock(vp, lock_flags | LK_RETRY);
582 AUDIT_ARG_VNODE1(vp);
583 if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
584 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
585 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
586 __func__, vp, vp->v_writecount);
587 }
588 error = VOP_CLOSE(vp, flags, file_cred, td);
589 if (keep_ref)
590 VOP_UNLOCK(vp);
591 else
592 vput(vp);
593 vn_finished_write(mp);
594 return (error);
595 }
596
597 int
vn_close(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td)598 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
599 struct thread *td)
600 {
601
602 return (vn_close1(vp, flags, file_cred, td, false));
603 }
604
605 /*
606 * Heuristic to detect sequential operation.
607 */
608 static int
sequential_heuristic(struct uio * uio,struct file * fp)609 sequential_heuristic(struct uio *uio, struct file *fp)
610 {
611 enum uio_rw rw;
612
613 ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
614
615 rw = uio->uio_rw;
616 if (fp->f_flag & FRDAHEAD)
617 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
618
619 /*
620 * Offset 0 is handled specially. open() sets f_seqcount to 1 so
621 * that the first I/O is normally considered to be slightly
622 * sequential. Seeking to offset 0 doesn't change sequentiality
623 * unless previous seeks have reduced f_seqcount to 0, in which
624 * case offset 0 is not special.
625 */
626 if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
627 uio->uio_offset == fp->f_nextoff[rw]) {
628 /*
629 * f_seqcount is in units of fixed-size blocks so that it
630 * depends mainly on the amount of sequential I/O and not
631 * much on the number of sequential I/O's. The fixed size
632 * of 16384 is hard-coded here since it is (not quite) just
633 * a magic size that works well here. This size is more
634 * closely related to the best I/O size for real disks than
635 * to any block size used by software.
636 */
637 if (uio->uio_resid >= IO_SEQMAX * 16384)
638 fp->f_seqcount[rw] = IO_SEQMAX;
639 else {
640 fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
641 if (fp->f_seqcount[rw] > IO_SEQMAX)
642 fp->f_seqcount[rw] = IO_SEQMAX;
643 }
644 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
645 }
646
647 /* Not sequential. Quickly draw-down sequentiality. */
648 if (fp->f_seqcount[rw] > 1)
649 fp->f_seqcount[rw] = 1;
650 else
651 fp->f_seqcount[rw] = 0;
652 return (0);
653 }
654
655 /*
656 * Package up an I/O request on a vnode into a uio and do it.
657 */
658 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,void * base,int len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,ssize_t * aresid,struct thread * td)659 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
660 enum uio_seg segflg, int ioflg, struct ucred *active_cred,
661 struct ucred *file_cred, ssize_t *aresid, struct thread *td)
662 {
663 struct uio auio;
664 struct iovec aiov;
665 struct mount *mp;
666 struct ucred *cred;
667 void *rl_cookie;
668 struct vn_io_fault_args args;
669 int error, lock_flags;
670
671 if (offset < 0 && vp->v_type != VCHR)
672 return (EINVAL);
673 auio.uio_iov = &aiov;
674 auio.uio_iovcnt = 1;
675 aiov.iov_base = base;
676 aiov.iov_len = len;
677 auio.uio_resid = len;
678 auio.uio_offset = offset;
679 auio.uio_segflg = segflg;
680 auio.uio_rw = rw;
681 auio.uio_td = td;
682 error = 0;
683
684 if ((ioflg & IO_NODELOCKED) == 0) {
685 if ((ioflg & IO_RANGELOCKED) == 0) {
686 if (rw == UIO_READ) {
687 rl_cookie = vn_rangelock_rlock(vp, offset,
688 offset + len);
689 } else if ((ioflg & IO_APPEND) != 0) {
690 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
691 } else {
692 rl_cookie = vn_rangelock_wlock(vp, offset,
693 offset + len);
694 }
695 } else
696 rl_cookie = NULL;
697 mp = NULL;
698 if (rw == UIO_WRITE) {
699 if (vp->v_type != VCHR &&
700 (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
701 != 0)
702 goto out;
703 lock_flags = vn_lktype_write(mp, vp);
704 } else
705 lock_flags = LK_SHARED;
706 vn_lock(vp, lock_flags | LK_RETRY);
707 } else
708 rl_cookie = NULL;
709
710 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
711 #ifdef MAC
712 if ((ioflg & IO_NOMACCHECK) == 0) {
713 if (rw == UIO_READ)
714 error = mac_vnode_check_read(active_cred, file_cred,
715 vp);
716 else
717 error = mac_vnode_check_write(active_cred, file_cred,
718 vp);
719 }
720 #endif
721 if (error == 0) {
722 if (file_cred != NULL)
723 cred = file_cred;
724 else
725 cred = active_cred;
726 if (do_vn_io_fault(vp, &auio)) {
727 args.kind = VN_IO_FAULT_VOP;
728 args.cred = cred;
729 args.flags = ioflg;
730 args.args.vop_args.vp = vp;
731 error = vn_io_fault1(vp, &auio, &args, td);
732 } else if (rw == UIO_READ) {
733 error = VOP_READ(vp, &auio, ioflg, cred);
734 } else /* if (rw == UIO_WRITE) */ {
735 error = VOP_WRITE(vp, &auio, ioflg, cred);
736 }
737 }
738 if (aresid)
739 *aresid = auio.uio_resid;
740 else
741 if (auio.uio_resid && error == 0)
742 error = EIO;
743 if ((ioflg & IO_NODELOCKED) == 0) {
744 VOP_UNLOCK(vp);
745 if (mp != NULL)
746 vn_finished_write(mp);
747 }
748 out:
749 if (rl_cookie != NULL)
750 vn_rangelock_unlock(vp, rl_cookie);
751 return (error);
752 }
753
754 /*
755 * Package up an I/O request on a vnode into a uio and do it. The I/O
756 * request is split up into smaller chunks and we try to avoid saturating
757 * the buffer cache while potentially holding a vnode locked, so we
758 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield()
759 * to give other processes a chance to lock the vnode (either other processes
760 * core'ing the same binary, or unrelated processes scanning the directory).
761 */
762 int
vn_rdwr_inchunks(enum uio_rw rw,struct vnode * vp,void * base,size_t len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,size_t * aresid,struct thread * td)763 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
764 off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
765 struct ucred *file_cred, size_t *aresid, struct thread *td)
766 {
767 int error = 0;
768 ssize_t iaresid;
769
770 do {
771 int chunk;
772
773 /*
774 * Force `offset' to a multiple of MAXBSIZE except possibly
775 * for the first chunk, so that filesystems only need to
776 * write full blocks except possibly for the first and last
777 * chunks.
778 */
779 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
780
781 if (chunk > len)
782 chunk = len;
783 if (rw != UIO_READ && vp->v_type == VREG)
784 bwillwrite();
785 iaresid = 0;
786 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
787 ioflg, active_cred, file_cred, &iaresid, td);
788 len -= chunk; /* aresid calc already includes length */
789 if (error)
790 break;
791 offset += chunk;
792 base = (char *)base + chunk;
793 kern_yield(PRI_USER);
794 } while (len);
795 if (aresid)
796 *aresid = len + iaresid;
797 return (error);
798 }
799
800 #if OFF_MAX <= LONG_MAX
801 off_t
foffset_lock(struct file * fp,int flags)802 foffset_lock(struct file *fp, int flags)
803 {
804 volatile short *flagsp;
805 off_t res;
806 short state;
807
808 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
809
810 if ((flags & FOF_NOLOCK) != 0)
811 return (atomic_load_long(&fp->f_offset));
812
813 /*
814 * According to McKusick the vn lock was protecting f_offset here.
815 * It is now protected by the FOFFSET_LOCKED flag.
816 */
817 flagsp = &fp->f_vnread_flags;
818 if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
819 return (atomic_load_long(&fp->f_offset));
820
821 sleepq_lock(&fp->f_vnread_flags);
822 state = atomic_load_16(flagsp);
823 for (;;) {
824 if ((state & FOFFSET_LOCKED) == 0) {
825 if (!atomic_fcmpset_acq_16(flagsp, &state,
826 FOFFSET_LOCKED))
827 continue;
828 break;
829 }
830 if ((state & FOFFSET_LOCK_WAITING) == 0) {
831 if (!atomic_fcmpset_acq_16(flagsp, &state,
832 state | FOFFSET_LOCK_WAITING))
833 continue;
834 }
835 DROP_GIANT();
836 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
837 sleepq_wait(&fp->f_vnread_flags, PRI_MAX_KERN);
838 PICKUP_GIANT();
839 sleepq_lock(&fp->f_vnread_flags);
840 state = atomic_load_16(flagsp);
841 }
842 res = atomic_load_long(&fp->f_offset);
843 sleepq_release(&fp->f_vnread_flags);
844 return (res);
845 }
846
847 void
foffset_unlock(struct file * fp,off_t val,int flags)848 foffset_unlock(struct file *fp, off_t val, int flags)
849 {
850 volatile short *flagsp;
851 short state;
852
853 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
854
855 if ((flags & FOF_NOUPDATE) == 0)
856 atomic_store_long(&fp->f_offset, val);
857 if ((flags & FOF_NEXTOFF_R) != 0)
858 fp->f_nextoff[UIO_READ] = val;
859 if ((flags & FOF_NEXTOFF_W) != 0)
860 fp->f_nextoff[UIO_WRITE] = val;
861
862 if ((flags & FOF_NOLOCK) != 0)
863 return;
864
865 flagsp = &fp->f_vnread_flags;
866 state = atomic_load_16(flagsp);
867 if ((state & FOFFSET_LOCK_WAITING) == 0 &&
868 atomic_cmpset_rel_16(flagsp, state, 0))
869 return;
870
871 sleepq_lock(&fp->f_vnread_flags);
872 MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
873 MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
874 fp->f_vnread_flags = 0;
875 sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
876 sleepq_release(&fp->f_vnread_flags);
877 }
878
879 static off_t
foffset_read(struct file * fp)880 foffset_read(struct file *fp)
881 {
882
883 return (atomic_load_long(&fp->f_offset));
884 }
885 #else
886 off_t
foffset_lock(struct file * fp,int flags)887 foffset_lock(struct file *fp, int flags)
888 {
889 struct mtx *mtxp;
890 off_t res;
891
892 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
893
894 mtxp = mtx_pool_find(mtxpool_sleep, fp);
895 mtx_lock(mtxp);
896 if ((flags & FOF_NOLOCK) == 0) {
897 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
898 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
899 msleep(&fp->f_vnread_flags, mtxp, PRI_MAX_KERN,
900 "vofflock", 0);
901 }
902 fp->f_vnread_flags |= FOFFSET_LOCKED;
903 }
904 res = fp->f_offset;
905 mtx_unlock(mtxp);
906 return (res);
907 }
908
909 void
foffset_unlock(struct file * fp,off_t val,int flags)910 foffset_unlock(struct file *fp, off_t val, int flags)
911 {
912 struct mtx *mtxp;
913
914 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
915
916 mtxp = mtx_pool_find(mtxpool_sleep, fp);
917 mtx_lock(mtxp);
918 if ((flags & FOF_NOUPDATE) == 0)
919 fp->f_offset = val;
920 if ((flags & FOF_NEXTOFF_R) != 0)
921 fp->f_nextoff[UIO_READ] = val;
922 if ((flags & FOF_NEXTOFF_W) != 0)
923 fp->f_nextoff[UIO_WRITE] = val;
924 if ((flags & FOF_NOLOCK) == 0) {
925 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
926 ("Lost FOFFSET_LOCKED"));
927 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
928 wakeup(&fp->f_vnread_flags);
929 fp->f_vnread_flags = 0;
930 }
931 mtx_unlock(mtxp);
932 }
933
934 static off_t
foffset_read(struct file * fp)935 foffset_read(struct file *fp)
936 {
937
938 return (foffset_lock(fp, FOF_NOLOCK));
939 }
940 #endif
941
942 void
foffset_lock_pair(struct file * fp1,off_t * off1p,struct file * fp2,off_t * off2p,int flags)943 foffset_lock_pair(struct file *fp1, off_t *off1p, struct file *fp2, off_t *off2p,
944 int flags)
945 {
946 KASSERT(fp1 != fp2, ("foffset_lock_pair: fp1 == fp2"));
947
948 /* Lock in a consistent order to avoid deadlock. */
949 if ((uintptr_t)fp1 > (uintptr_t)fp2) {
950 struct file *tmpfp;
951 off_t *tmpoffp;
952
953 tmpfp = fp1, fp1 = fp2, fp2 = tmpfp;
954 tmpoffp = off1p, off1p = off2p, off2p = tmpoffp;
955 }
956 if (fp1 != NULL)
957 *off1p = foffset_lock(fp1, flags);
958 if (fp2 != NULL)
959 *off2p = foffset_lock(fp2, flags);
960 }
961
962 void
foffset_lock_uio(struct file * fp,struct uio * uio,int flags)963 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
964 {
965
966 if ((flags & FOF_OFFSET) == 0)
967 uio->uio_offset = foffset_lock(fp, flags);
968 }
969
970 void
foffset_unlock_uio(struct file * fp,struct uio * uio,int flags)971 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
972 {
973
974 if ((flags & FOF_OFFSET) == 0)
975 foffset_unlock(fp, uio->uio_offset, flags);
976 }
977
978 static int
get_advice(struct file * fp,struct uio * uio)979 get_advice(struct file *fp, struct uio *uio)
980 {
981 struct mtx *mtxp;
982 int ret;
983
984 ret = POSIX_FADV_NORMAL;
985 if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
986 return (ret);
987
988 mtxp = mtx_pool_find(mtxpool_sleep, fp);
989 mtx_lock(mtxp);
990 if (fp->f_advice != NULL &&
991 uio->uio_offset >= fp->f_advice->fa_start &&
992 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
993 ret = fp->f_advice->fa_advice;
994 mtx_unlock(mtxp);
995 return (ret);
996 }
997
998 static int
get_write_ioflag(struct file * fp)999 get_write_ioflag(struct file *fp)
1000 {
1001 int ioflag;
1002 struct mount *mp;
1003 struct vnode *vp;
1004
1005 ioflag = 0;
1006 vp = fp->f_vnode;
1007 mp = atomic_load_ptr(&vp->v_mount);
1008
1009 if ((fp->f_flag & O_DIRECT) != 0)
1010 ioflag |= IO_DIRECT;
1011
1012 if ((fp->f_flag & O_FSYNC) != 0 ||
1013 (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
1014 ioflag |= IO_SYNC;
1015
1016 /*
1017 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
1018 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
1019 * fall back to full O_SYNC behavior.
1020 */
1021 if ((fp->f_flag & O_DSYNC) != 0)
1022 ioflag |= IO_SYNC | IO_DATASYNC;
1023
1024 return (ioflag);
1025 }
1026
1027 int
vn_read_from_obj(struct vnode * vp,struct uio * uio)1028 vn_read_from_obj(struct vnode *vp, struct uio *uio)
1029 {
1030 vm_object_t obj;
1031 vm_page_t ma[io_hold_cnt + 2];
1032 off_t off, vsz;
1033 ssize_t resid;
1034 int error, i, j;
1035
1036 MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
1037 obj = atomic_load_ptr(&vp->v_object);
1038 if (obj == NULL)
1039 return (EJUSTRETURN);
1040
1041 /*
1042 * Depends on type stability of vm_objects.
1043 */
1044 vm_object_pip_add(obj, 1);
1045 if ((obj->flags & OBJ_DEAD) != 0) {
1046 /*
1047 * Note that object might be already reused from the
1048 * vnode, and the OBJ_DEAD flag cleared. This is fine,
1049 * we recheck for DOOMED vnode state after all pages
1050 * are busied, and retract then.
1051 *
1052 * But we check for OBJ_DEAD to ensure that we do not
1053 * busy pages while vm_object_terminate_pages()
1054 * processes the queue.
1055 */
1056 error = EJUSTRETURN;
1057 goto out_pip;
1058 }
1059
1060 resid = uio->uio_resid;
1061 off = uio->uio_offset;
1062 for (i = 0; resid > 0; i++) {
1063 MPASS(i < io_hold_cnt + 2);
1064 ma[i] = vm_page_grab_unlocked(obj, atop(off),
1065 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
1066 VM_ALLOC_NOWAIT);
1067 if (ma[i] == NULL)
1068 break;
1069
1070 /*
1071 * Skip invalid pages. Valid mask can be partial only
1072 * at EOF, and we clip later.
1073 */
1074 if (vm_page_none_valid(ma[i])) {
1075 vm_page_sunbusy(ma[i]);
1076 break;
1077 }
1078
1079 resid -= PAGE_SIZE;
1080 off += PAGE_SIZE;
1081 }
1082 if (i == 0) {
1083 error = EJUSTRETURN;
1084 goto out_pip;
1085 }
1086
1087 /*
1088 * Check VIRF_DOOMED after we busied our pages. Since
1089 * vgonel() terminates the vnode' vm_object, it cannot
1090 * process past pages busied by us.
1091 */
1092 if (VN_IS_DOOMED(vp)) {
1093 error = EJUSTRETURN;
1094 goto out;
1095 }
1096
1097 resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1098 if (resid > uio->uio_resid)
1099 resid = uio->uio_resid;
1100
1101 /*
1102 * Unlocked read of vnp_size is safe because truncation cannot
1103 * pass busied page. But we load vnp_size into a local
1104 * variable so that possible concurrent extension does not
1105 * break calculation.
1106 */
1107 #if defined(__powerpc__) && !defined(__powerpc64__)
1108 vsz = obj->un_pager.vnp.vnp_size;
1109 #else
1110 vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1111 #endif
1112 if (uio->uio_offset >= vsz) {
1113 error = EJUSTRETURN;
1114 goto out;
1115 }
1116 if (uio->uio_offset + resid > vsz)
1117 resid = vsz - uio->uio_offset;
1118
1119 error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1120
1121 out:
1122 for (j = 0; j < i; j++) {
1123 if (error == 0)
1124 vm_page_reference(ma[j]);
1125 vm_page_sunbusy(ma[j]);
1126 }
1127 out_pip:
1128 vm_object_pip_wakeup(obj);
1129 if (error != 0)
1130 return (error);
1131 return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1132 }
1133
1134 /*
1135 * File table vnode read routine.
1136 */
1137 static int
vn_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1138 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1139 struct thread *td)
1140 {
1141 struct vnode *vp;
1142 off_t orig_offset;
1143 int error, ioflag;
1144 int advice;
1145
1146 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1147 uio->uio_td, td));
1148 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1149 vp = fp->f_vnode;
1150 ioflag = 0;
1151 if (fp->f_flag & FNONBLOCK)
1152 ioflag |= IO_NDELAY;
1153 if (fp->f_flag & O_DIRECT)
1154 ioflag |= IO_DIRECT;
1155
1156 /*
1157 * Try to read from page cache. VIRF_DOOMED check is racy but
1158 * allows us to avoid unneeded work outright.
1159 */
1160 if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1161 (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1162 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1163 if (error == 0) {
1164 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1165 return (0);
1166 }
1167 if (error != EJUSTRETURN)
1168 return (error);
1169 }
1170
1171 advice = get_advice(fp, uio);
1172 vn_lock(vp, LK_SHARED | LK_RETRY);
1173
1174 switch (advice) {
1175 case POSIX_FADV_NORMAL:
1176 case POSIX_FADV_SEQUENTIAL:
1177 case POSIX_FADV_NOREUSE:
1178 ioflag |= sequential_heuristic(uio, fp);
1179 break;
1180 case POSIX_FADV_RANDOM:
1181 /* Disable read-ahead for random I/O. */
1182 break;
1183 }
1184 orig_offset = uio->uio_offset;
1185
1186 #ifdef MAC
1187 error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1188 if (error == 0)
1189 #endif
1190 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1191 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1192 VOP_UNLOCK(vp);
1193 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1194 orig_offset != uio->uio_offset)
1195 /*
1196 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1197 * for the backing file after a POSIX_FADV_NOREUSE
1198 * read(2).
1199 */
1200 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1201 POSIX_FADV_DONTNEED);
1202 return (error);
1203 }
1204
1205 /*
1206 * File table vnode write routine.
1207 */
1208 static int
vn_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1209 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1210 struct thread *td)
1211 {
1212 struct vnode *vp;
1213 struct mount *mp;
1214 off_t orig_offset;
1215 int error, ioflag;
1216 int advice;
1217 bool need_finished_write;
1218
1219 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1220 uio->uio_td, td));
1221 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1222 vp = fp->f_vnode;
1223 if (vp->v_type == VREG)
1224 bwillwrite();
1225 ioflag = IO_UNIT;
1226 if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1227 ioflag |= IO_APPEND;
1228 if ((fp->f_flag & FNONBLOCK) != 0)
1229 ioflag |= IO_NDELAY;
1230 ioflag |= get_write_ioflag(fp);
1231
1232 mp = NULL;
1233 need_finished_write = false;
1234 if (vp->v_type != VCHR) {
1235 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1236 if (error != 0)
1237 goto unlock;
1238 need_finished_write = true;
1239 }
1240
1241 advice = get_advice(fp, uio);
1242
1243 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1244 switch (advice) {
1245 case POSIX_FADV_NORMAL:
1246 case POSIX_FADV_SEQUENTIAL:
1247 case POSIX_FADV_NOREUSE:
1248 ioflag |= sequential_heuristic(uio, fp);
1249 break;
1250 case POSIX_FADV_RANDOM:
1251 /* XXX: Is this correct? */
1252 break;
1253 }
1254 orig_offset = uio->uio_offset;
1255
1256 #ifdef MAC
1257 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1258 if (error == 0)
1259 #endif
1260 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1261 fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1262 VOP_UNLOCK(vp);
1263 if (need_finished_write)
1264 vn_finished_write(mp);
1265 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1266 orig_offset != uio->uio_offset)
1267 /*
1268 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1269 * for the backing file after a POSIX_FADV_NOREUSE
1270 * write(2).
1271 */
1272 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1273 POSIX_FADV_DONTNEED);
1274 unlock:
1275 return (error);
1276 }
1277
1278 /*
1279 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1280 * prevent the following deadlock:
1281 *
1282 * Assume that the thread A reads from the vnode vp1 into userspace
1283 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is
1284 * currently not resident, then system ends up with the call chain
1285 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1286 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1287 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1288 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1289 * backed by the pages of vnode vp1, and some page in buf2 is not
1290 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1291 *
1292 * To prevent the lock order reversal and deadlock, vn_io_fault() does
1293 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1294 * Instead, it first tries to do the whole range i/o with pagefaults
1295 * disabled. If all pages in the i/o buffer are resident and mapped,
1296 * VOP will succeed (ignoring the genuine filesystem errors).
1297 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1298 * i/o in chunks, with all pages in the chunk prefaulted and held
1299 * using vm_fault_quick_hold_pages().
1300 *
1301 * Filesystems using this deadlock avoidance scheme should use the
1302 * array of the held pages from uio, saved in the curthread->td_ma,
1303 * instead of doing uiomove(). A helper function
1304 * vn_io_fault_uiomove() converts uiomove request into
1305 * uiomove_fromphys() over td_ma array.
1306 *
1307 * Since vnode locks do not cover the whole i/o anymore, rangelocks
1308 * make the current i/o request atomic with respect to other i/os and
1309 * truncations.
1310 */
1311
1312 /*
1313 * Decode vn_io_fault_args and perform the corresponding i/o.
1314 */
1315 static int
vn_io_fault_doio(struct vn_io_fault_args * args,struct uio * uio,struct thread * td)1316 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1317 struct thread *td)
1318 {
1319 int error, save;
1320
1321 error = 0;
1322 save = vm_fault_disable_pagefaults();
1323 switch (args->kind) {
1324 case VN_IO_FAULT_FOP:
1325 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1326 uio, args->cred, args->flags, td);
1327 break;
1328 case VN_IO_FAULT_VOP:
1329 switch (uio->uio_rw) {
1330 case UIO_READ:
1331 error = VOP_READ(args->args.vop_args.vp, uio,
1332 args->flags, args->cred);
1333 break;
1334 case UIO_WRITE:
1335 error = VOP_WRITE(args->args.vop_args.vp, uio,
1336 args->flags, args->cred);
1337 break;
1338 }
1339 break;
1340 default:
1341 panic("vn_io_fault_doio: unknown kind of io %d %d",
1342 args->kind, uio->uio_rw);
1343 }
1344 vm_fault_enable_pagefaults(save);
1345 return (error);
1346 }
1347
1348 static int
vn_io_fault_touch(char * base,const struct uio * uio)1349 vn_io_fault_touch(char *base, const struct uio *uio)
1350 {
1351 int r;
1352
1353 r = fubyte(base);
1354 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1355 return (EFAULT);
1356 return (0);
1357 }
1358
1359 static int
vn_io_fault_prefault_user(const struct uio * uio)1360 vn_io_fault_prefault_user(const struct uio *uio)
1361 {
1362 char *base;
1363 const struct iovec *iov;
1364 size_t len;
1365 ssize_t resid;
1366 int error, i;
1367
1368 KASSERT(uio->uio_segflg == UIO_USERSPACE,
1369 ("vn_io_fault_prefault userspace"));
1370
1371 error = i = 0;
1372 iov = uio->uio_iov;
1373 resid = uio->uio_resid;
1374 base = iov->iov_base;
1375 len = iov->iov_len;
1376 while (resid > 0) {
1377 error = vn_io_fault_touch(base, uio);
1378 if (error != 0)
1379 break;
1380 if (len < PAGE_SIZE) {
1381 if (len != 0) {
1382 error = vn_io_fault_touch(base + len - 1, uio);
1383 if (error != 0)
1384 break;
1385 resid -= len;
1386 }
1387 if (++i >= uio->uio_iovcnt)
1388 break;
1389 iov = uio->uio_iov + i;
1390 base = iov->iov_base;
1391 len = iov->iov_len;
1392 } else {
1393 len -= PAGE_SIZE;
1394 base += PAGE_SIZE;
1395 resid -= PAGE_SIZE;
1396 }
1397 }
1398 return (error);
1399 }
1400
1401 /*
1402 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1403 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1404 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1405 * into args and call vn_io_fault1() to handle faults during the user
1406 * mode buffer accesses.
1407 */
1408 static int
vn_io_fault1(struct vnode * vp,struct uio * uio,struct vn_io_fault_args * args,struct thread * td)1409 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1410 struct thread *td)
1411 {
1412 vm_page_t ma[io_hold_cnt + 2];
1413 struct uio *uio_clone, short_uio;
1414 struct iovec short_iovec[1];
1415 vm_page_t *prev_td_ma;
1416 vm_prot_t prot;
1417 vm_offset_t addr, end;
1418 size_t len, resid;
1419 ssize_t adv;
1420 int error, cnt, saveheld, prev_td_ma_cnt;
1421
1422 if (vn_io_fault_prefault) {
1423 error = vn_io_fault_prefault_user(uio);
1424 if (error != 0)
1425 return (error); /* Or ignore ? */
1426 }
1427
1428 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1429
1430 /*
1431 * The UFS follows IO_UNIT directive and replays back both
1432 * uio_offset and uio_resid if an error is encountered during the
1433 * operation. But, since the iovec may be already advanced,
1434 * uio is still in an inconsistent state.
1435 *
1436 * Cache a copy of the original uio, which is advanced to the redo
1437 * point using UIO_NOCOPY below.
1438 */
1439 uio_clone = cloneuio(uio);
1440 resid = uio->uio_resid;
1441
1442 short_uio.uio_segflg = UIO_USERSPACE;
1443 short_uio.uio_rw = uio->uio_rw;
1444 short_uio.uio_td = uio->uio_td;
1445
1446 error = vn_io_fault_doio(args, uio, td);
1447 if (error != EFAULT)
1448 goto out;
1449
1450 atomic_add_long(&vn_io_faults_cnt, 1);
1451 uio_clone->uio_segflg = UIO_NOCOPY;
1452 uiomove(NULL, resid - uio->uio_resid, uio_clone);
1453 uio_clone->uio_segflg = uio->uio_segflg;
1454
1455 saveheld = curthread_pflags_set(TDP_UIOHELD);
1456 prev_td_ma = td->td_ma;
1457 prev_td_ma_cnt = td->td_ma_cnt;
1458
1459 while (uio_clone->uio_resid != 0) {
1460 len = uio_clone->uio_iov->iov_len;
1461 if (len == 0) {
1462 KASSERT(uio_clone->uio_iovcnt >= 1,
1463 ("iovcnt underflow"));
1464 uio_clone->uio_iov++;
1465 uio_clone->uio_iovcnt--;
1466 continue;
1467 }
1468 if (len > ptoa(io_hold_cnt))
1469 len = ptoa(io_hold_cnt);
1470 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1471 end = round_page(addr + len);
1472 if (end < addr) {
1473 error = EFAULT;
1474 break;
1475 }
1476 /*
1477 * A perfectly misaligned address and length could cause
1478 * both the start and the end of the chunk to use partial
1479 * page. +2 accounts for such a situation.
1480 */
1481 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1482 addr, len, prot, ma, io_hold_cnt + 2);
1483 if (cnt == -1) {
1484 error = EFAULT;
1485 break;
1486 }
1487 short_uio.uio_iov = &short_iovec[0];
1488 short_iovec[0].iov_base = (void *)addr;
1489 short_uio.uio_iovcnt = 1;
1490 short_uio.uio_resid = short_iovec[0].iov_len = len;
1491 short_uio.uio_offset = uio_clone->uio_offset;
1492 td->td_ma = ma;
1493 td->td_ma_cnt = cnt;
1494
1495 error = vn_io_fault_doio(args, &short_uio, td);
1496 vm_page_unhold_pages(ma, cnt);
1497 adv = len - short_uio.uio_resid;
1498
1499 uio_clone->uio_iov->iov_base =
1500 (char *)uio_clone->uio_iov->iov_base + adv;
1501 uio_clone->uio_iov->iov_len -= adv;
1502 uio_clone->uio_resid -= adv;
1503 uio_clone->uio_offset += adv;
1504
1505 uio->uio_resid -= adv;
1506 uio->uio_offset += adv;
1507
1508 if (error != 0 || adv == 0)
1509 break;
1510 }
1511 td->td_ma = prev_td_ma;
1512 td->td_ma_cnt = prev_td_ma_cnt;
1513 curthread_pflags_restore(saveheld);
1514 out:
1515 freeuio(uio_clone);
1516 return (error);
1517 }
1518
1519 static int
vn_io_fault(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1520 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1521 int flags, struct thread *td)
1522 {
1523 fo_rdwr_t *doio;
1524 struct vnode *vp;
1525 void *rl_cookie;
1526 struct vn_io_fault_args args;
1527 int error;
1528 bool do_io_fault, do_rangelock;
1529
1530 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1531 vp = fp->f_vnode;
1532
1533 /*
1534 * The ability to read(2) on a directory has historically been
1535 * allowed for all users, but this can and has been the source of
1536 * at least one security issue in the past. As such, it is now hidden
1537 * away behind a sysctl for those that actually need it to use it, and
1538 * restricted to root when it's turned on to make it relatively safe to
1539 * leave on for longer sessions of need.
1540 */
1541 if (vp->v_type == VDIR) {
1542 KASSERT(uio->uio_rw == UIO_READ,
1543 ("illegal write attempted on a directory"));
1544 if (!vfs_allow_read_dir)
1545 return (EISDIR);
1546 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1547 return (EISDIR);
1548 }
1549
1550 do_io_fault = do_vn_io_fault(vp, uio);
1551 do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0;
1552 foffset_lock_uio(fp, uio, flags);
1553 if (do_rangelock) {
1554 if (uio->uio_rw == UIO_READ) {
1555 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1556 uio->uio_offset + uio->uio_resid);
1557 } else if ((fp->f_flag & O_APPEND) != 0 ||
1558 (flags & FOF_OFFSET) == 0) {
1559 /* For appenders, punt and lock the whole range. */
1560 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1561 } else {
1562 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1563 uio->uio_offset + uio->uio_resid);
1564 }
1565 }
1566 if (do_io_fault) {
1567 args.kind = VN_IO_FAULT_FOP;
1568 args.args.fop_args.fp = fp;
1569 args.args.fop_args.doio = doio;
1570 args.cred = active_cred;
1571 args.flags = flags | FOF_OFFSET;
1572 error = vn_io_fault1(vp, uio, &args, td);
1573 } else {
1574 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1575 }
1576 if (do_rangelock)
1577 vn_rangelock_unlock(vp, rl_cookie);
1578 foffset_unlock_uio(fp, uio, flags);
1579 return (error);
1580 }
1581
1582 /*
1583 * Helper function to perform the requested uiomove operation using
1584 * the held pages for io->uio_iov[0].iov_base buffer instead of
1585 * copyin/copyout. Access to the pages with uiomove_fromphys()
1586 * instead of iov_base prevents page faults that could occur due to
1587 * pmap_collect() invalidating the mapping created by
1588 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1589 * object cleanup revoking the write access from page mappings.
1590 *
1591 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1592 * instead of plain uiomove().
1593 */
1594 int
vn_io_fault_uiomove(char * data,int xfersize,struct uio * uio)1595 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1596 {
1597 struct uio transp_uio;
1598 struct iovec transp_iov[1];
1599 struct thread *td;
1600 size_t adv;
1601 int error, pgadv;
1602
1603 td = curthread;
1604 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1605 uio->uio_segflg != UIO_USERSPACE)
1606 return (uiomove(data, xfersize, uio));
1607
1608 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1609 transp_iov[0].iov_base = data;
1610 transp_uio.uio_iov = &transp_iov[0];
1611 transp_uio.uio_iovcnt = 1;
1612 if (xfersize > uio->uio_resid)
1613 xfersize = uio->uio_resid;
1614 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1615 transp_uio.uio_offset = 0;
1616 transp_uio.uio_segflg = UIO_SYSSPACE;
1617 /*
1618 * Since transp_iov points to data, and td_ma page array
1619 * corresponds to original uio->uio_iov, we need to invert the
1620 * direction of the i/o operation as passed to
1621 * uiomove_fromphys().
1622 */
1623 switch (uio->uio_rw) {
1624 case UIO_WRITE:
1625 transp_uio.uio_rw = UIO_READ;
1626 break;
1627 case UIO_READ:
1628 transp_uio.uio_rw = UIO_WRITE;
1629 break;
1630 }
1631 transp_uio.uio_td = uio->uio_td;
1632 error = uiomove_fromphys(td->td_ma,
1633 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1634 xfersize, &transp_uio);
1635 adv = xfersize - transp_uio.uio_resid;
1636 pgadv =
1637 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1638 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1639 td->td_ma += pgadv;
1640 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1641 pgadv));
1642 td->td_ma_cnt -= pgadv;
1643 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1644 uio->uio_iov->iov_len -= adv;
1645 uio->uio_resid -= adv;
1646 uio->uio_offset += adv;
1647 return (error);
1648 }
1649
1650 int
vn_io_fault_pgmove(vm_page_t ma[],vm_offset_t offset,int xfersize,struct uio * uio)1651 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1652 struct uio *uio)
1653 {
1654 struct thread *td;
1655 vm_offset_t iov_base;
1656 int cnt, pgadv;
1657
1658 td = curthread;
1659 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1660 uio->uio_segflg != UIO_USERSPACE)
1661 return (uiomove_fromphys(ma, offset, xfersize, uio));
1662
1663 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1664 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1665 iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1666 switch (uio->uio_rw) {
1667 case UIO_WRITE:
1668 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1669 offset, cnt);
1670 break;
1671 case UIO_READ:
1672 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1673 cnt);
1674 break;
1675 }
1676 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1677 td->td_ma += pgadv;
1678 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1679 pgadv));
1680 td->td_ma_cnt -= pgadv;
1681 uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1682 uio->uio_iov->iov_len -= cnt;
1683 uio->uio_resid -= cnt;
1684 uio->uio_offset += cnt;
1685 return (0);
1686 }
1687
1688 /*
1689 * File table truncate routine.
1690 */
1691 static int
vn_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1692 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1693 struct thread *td)
1694 {
1695 struct mount *mp;
1696 struct vnode *vp;
1697 void *rl_cookie;
1698 int error;
1699
1700 vp = fp->f_vnode;
1701
1702 retry:
1703 /*
1704 * Lock the whole range for truncation. Otherwise split i/o
1705 * might happen partly before and partly after the truncation.
1706 */
1707 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1708 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1709 if (error)
1710 goto out1;
1711 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1712 AUDIT_ARG_VNODE1(vp);
1713 if (vp->v_type == VDIR) {
1714 error = EISDIR;
1715 goto out;
1716 }
1717 #ifdef MAC
1718 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1719 if (error)
1720 goto out;
1721 #endif
1722 error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1723 fp->f_cred);
1724 out:
1725 VOP_UNLOCK(vp);
1726 vn_finished_write(mp);
1727 out1:
1728 vn_rangelock_unlock(vp, rl_cookie);
1729 if (error == ERELOOKUP)
1730 goto retry;
1731 return (error);
1732 }
1733
1734 /*
1735 * Truncate a file that is already locked.
1736 */
1737 int
vn_truncate_locked(struct vnode * vp,off_t length,bool sync,struct ucred * cred)1738 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1739 struct ucred *cred)
1740 {
1741 struct vattr vattr;
1742 int error;
1743
1744 error = VOP_ADD_WRITECOUNT(vp, 1);
1745 if (error == 0) {
1746 VATTR_NULL(&vattr);
1747 vattr.va_size = length;
1748 if (sync)
1749 vattr.va_vaflags |= VA_SYNC;
1750 error = VOP_SETATTR(vp, &vattr, cred);
1751 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1752 if (error == 0)
1753 INOTIFY(vp, IN_MODIFY);
1754 }
1755 return (error);
1756 }
1757
1758 /*
1759 * File table vnode stat routine.
1760 */
1761 int
vn_statfile(struct file * fp,struct stat * sb,struct ucred * active_cred)1762 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1763 {
1764 struct vnode *vp = fp->f_vnode;
1765 int error;
1766
1767 vn_lock(vp, LK_SHARED | LK_RETRY);
1768 error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1769 VOP_UNLOCK(vp);
1770
1771 return (error);
1772 }
1773
1774 /*
1775 * File table vnode ioctl routine.
1776 */
1777 static int
vn_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)1778 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1779 struct thread *td)
1780 {
1781 struct vnode *vp;
1782 struct fiobmap2_arg *bmarg;
1783 off_t size;
1784 int error;
1785
1786 vp = fp->f_vnode;
1787 switch (vp->v_type) {
1788 case VDIR:
1789 case VREG:
1790 switch (com) {
1791 case FIONREAD:
1792 error = vn_getsize(vp, &size, active_cred);
1793 if (error == 0)
1794 *(int *)data = size - fp->f_offset;
1795 return (error);
1796 case FIOBMAP2:
1797 bmarg = (struct fiobmap2_arg *)data;
1798 vn_lock(vp, LK_SHARED | LK_RETRY);
1799 #ifdef MAC
1800 error = mac_vnode_check_read(active_cred, fp->f_cred,
1801 vp);
1802 if (error == 0)
1803 #endif
1804 error = VOP_BMAP(vp, bmarg->bn, NULL,
1805 &bmarg->bn, &bmarg->runp, &bmarg->runb);
1806 VOP_UNLOCK(vp);
1807 return (error);
1808 case FIONBIO:
1809 case FIOASYNC:
1810 return (0);
1811 default:
1812 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1813 active_cred, td));
1814 }
1815 break;
1816 case VCHR:
1817 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1818 active_cred, td));
1819 default:
1820 return (ENOTTY);
1821 }
1822 }
1823
1824 /*
1825 * File table vnode poll routine.
1826 */
1827 static int
vn_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1828 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1829 struct thread *td)
1830 {
1831 struct vnode *vp;
1832 int error;
1833
1834 vp = fp->f_vnode;
1835 #if defined(MAC) || defined(AUDIT)
1836 if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1837 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1838 AUDIT_ARG_VNODE1(vp);
1839 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1840 VOP_UNLOCK(vp);
1841 if (error != 0)
1842 return (error);
1843 }
1844 #endif
1845 error = VOP_POLL(vp, events, fp->f_cred, td);
1846 return (error);
1847 }
1848
1849 /*
1850 * Acquire the requested lock and then check for validity. LK_RETRY
1851 * permits vn_lock to return doomed vnodes.
1852 */
1853 static int __noinline
_vn_lock_fallback(struct vnode * vp,int flags,const char * file,int line,int error)1854 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1855 int error)
1856 {
1857
1858 KASSERT((flags & LK_RETRY) == 0 || error == 0,
1859 ("vn_lock: error %d incompatible with flags %#x", error, flags));
1860
1861 if (error == 0)
1862 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1863
1864 if ((flags & LK_RETRY) == 0) {
1865 if (error == 0) {
1866 VOP_UNLOCK(vp);
1867 error = ENOENT;
1868 }
1869 return (error);
1870 }
1871
1872 /*
1873 * LK_RETRY case.
1874 *
1875 * Nothing to do if we got the lock.
1876 */
1877 if (error == 0)
1878 return (0);
1879
1880 /*
1881 * Interlock was dropped by the call in _vn_lock.
1882 */
1883 flags &= ~LK_INTERLOCK;
1884 do {
1885 error = VOP_LOCK1(vp, flags, file, line);
1886 } while (error != 0);
1887 return (0);
1888 }
1889
1890 int
_vn_lock(struct vnode * vp,int flags,const char * file,int line)1891 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1892 {
1893 int error;
1894
1895 VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1896 ("vn_lock: no locktype (%d passed)", flags));
1897 VNPASS(vp->v_holdcnt > 0, vp);
1898 error = VOP_LOCK1(vp, flags, file, line);
1899 if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1900 return (_vn_lock_fallback(vp, flags, file, line, error));
1901 return (0);
1902 }
1903
1904 /*
1905 * File table vnode close routine.
1906 */
1907 static int
vn_closefile(struct file * fp,struct thread * td)1908 vn_closefile(struct file *fp, struct thread *td)
1909 {
1910 struct vnode *vp;
1911 struct flock lf;
1912 int error;
1913 bool ref;
1914
1915 vp = fp->f_vnode;
1916 fp->f_ops = &badfileops;
1917 ref = (fp->f_flag & FHASLOCK) != 0;
1918
1919 error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1920
1921 if (__predict_false(ref)) {
1922 lf.l_whence = SEEK_SET;
1923 lf.l_start = 0;
1924 lf.l_len = 0;
1925 lf.l_type = F_UNLCK;
1926 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1927 vrele(vp);
1928 }
1929 return (error);
1930 }
1931
1932 /*
1933 * Preparing to start a filesystem write operation. If the operation is
1934 * permitted, then we bump the count of operations in progress and
1935 * proceed. If a suspend request is in progress, we wait until the
1936 * suspension is over, and then proceed.
1937 */
1938 static int
vn_start_write_refed(struct mount * mp,int flags,bool mplocked)1939 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1940 {
1941 struct mount_pcpu *mpcpu;
1942 int error, mflags;
1943
1944 if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1945 vfs_op_thread_enter(mp, mpcpu)) {
1946 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1947 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1948 vfs_op_thread_exit(mp, mpcpu);
1949 return (0);
1950 }
1951
1952 if (mplocked)
1953 mtx_assert(MNT_MTX(mp), MA_OWNED);
1954 else
1955 MNT_ILOCK(mp);
1956
1957 error = 0;
1958
1959 /*
1960 * Check on status of suspension.
1961 */
1962 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1963 mp->mnt_susp_owner != curthread) {
1964 mflags = 0;
1965 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
1966 if (flags & V_PCATCH)
1967 mflags |= PCATCH;
1968 }
1969 mflags |= PRI_MAX_KERN;
1970 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1971 if ((flags & V_NOWAIT) != 0) {
1972 error = EWOULDBLOCK;
1973 goto unlock;
1974 }
1975 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1976 "suspfs", 0);
1977 if (error != 0)
1978 goto unlock;
1979 }
1980 }
1981 if ((flags & V_XSLEEP) != 0)
1982 goto unlock;
1983 mp->mnt_writeopcount++;
1984 unlock:
1985 if (error != 0 || (flags & V_XSLEEP) != 0)
1986 MNT_REL(mp);
1987 MNT_IUNLOCK(mp);
1988 return (error);
1989 }
1990
1991 int
vn_start_write(struct vnode * vp,struct mount ** mpp,int flags)1992 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1993 {
1994 struct mount *mp;
1995 int error;
1996
1997 KASSERT((flags & ~V_VALID_FLAGS) == 0,
1998 ("%s: invalid flags passed %d\n", __func__, flags));
1999
2000 error = 0;
2001 /*
2002 * If a vnode is provided, get and return the mount point that
2003 * to which it will write.
2004 */
2005 if (vp != NULL) {
2006 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
2007 *mpp = NULL;
2008 if (error != EOPNOTSUPP)
2009 return (error);
2010 return (0);
2011 }
2012 }
2013 if ((mp = *mpp) == NULL)
2014 return (0);
2015
2016 /*
2017 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
2018 * a vfs_ref().
2019 * As long as a vnode is not provided we need to acquire a
2020 * refcount for the provided mountpoint too, in order to
2021 * emulate a vfs_ref().
2022 */
2023 if (vp == NULL)
2024 vfs_ref(mp);
2025
2026 error = vn_start_write_refed(mp, flags, false);
2027 if (error != 0 && (flags & V_NOWAIT) == 0)
2028 *mpp = NULL;
2029 return (error);
2030 }
2031
2032 /*
2033 * Secondary suspension. Used by operations such as vop_inactive
2034 * routines that are needed by the higher level functions. These
2035 * are allowed to proceed until all the higher level functions have
2036 * completed (indicated by mnt_writeopcount dropping to zero). At that
2037 * time, these operations are halted until the suspension is over.
2038 */
2039 int
vn_start_secondary_write(struct vnode * vp,struct mount ** mpp,int flags)2040 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
2041 {
2042 struct mount *mp;
2043 int error, mflags;
2044
2045 KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
2046 ("%s: invalid flags passed %d\n", __func__, flags));
2047
2048 retry:
2049 if (vp != NULL) {
2050 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
2051 *mpp = NULL;
2052 if (error != EOPNOTSUPP)
2053 return (error);
2054 return (0);
2055 }
2056 }
2057 /*
2058 * If we are not suspended or have not yet reached suspended
2059 * mode, then let the operation proceed.
2060 */
2061 if ((mp = *mpp) == NULL)
2062 return (0);
2063
2064 /*
2065 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
2066 * a vfs_ref().
2067 * As long as a vnode is not provided we need to acquire a
2068 * refcount for the provided mountpoint too, in order to
2069 * emulate a vfs_ref().
2070 */
2071 MNT_ILOCK(mp);
2072 if (vp == NULL)
2073 MNT_REF(mp);
2074 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
2075 mp->mnt_secondary_writes++;
2076 mp->mnt_secondary_accwrites++;
2077 MNT_IUNLOCK(mp);
2078 return (0);
2079 }
2080 if ((flags & V_NOWAIT) != 0) {
2081 MNT_REL(mp);
2082 MNT_IUNLOCK(mp);
2083 *mpp = NULL;
2084 return (EWOULDBLOCK);
2085 }
2086 /*
2087 * Wait for the suspension to finish.
2088 */
2089 mflags = 0;
2090 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2091 if ((flags & V_PCATCH) != 0)
2092 mflags |= PCATCH;
2093 }
2094 mflags |= PRI_MAX_KERN | PDROP;
2095 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
2096 vfs_rel(mp);
2097 if (error == 0)
2098 goto retry;
2099 *mpp = NULL;
2100 return (error);
2101 }
2102
2103 /*
2104 * Filesystem write operation has completed. If we are suspending and this
2105 * operation is the last one, notify the suspender that the suspension is
2106 * now in effect.
2107 */
2108 void
vn_finished_write(struct mount * mp)2109 vn_finished_write(struct mount *mp)
2110 {
2111 struct mount_pcpu *mpcpu;
2112 int c;
2113
2114 if (mp == NULL)
2115 return;
2116
2117 if (vfs_op_thread_enter(mp, mpcpu)) {
2118 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2119 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2120 vfs_op_thread_exit(mp, mpcpu);
2121 return;
2122 }
2123
2124 MNT_ILOCK(mp);
2125 vfs_assert_mount_counters(mp);
2126 MNT_REL(mp);
2127 c = --mp->mnt_writeopcount;
2128 if (mp->mnt_vfs_ops == 0) {
2129 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2130 MNT_IUNLOCK(mp);
2131 return;
2132 }
2133 if (c < 0)
2134 vfs_dump_mount_counters(mp);
2135 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2136 wakeup(&mp->mnt_writeopcount);
2137 MNT_IUNLOCK(mp);
2138 }
2139
2140 /*
2141 * Filesystem secondary write operation has completed. If we are
2142 * suspending and this operation is the last one, notify the suspender
2143 * that the suspension is now in effect.
2144 */
2145 void
vn_finished_secondary_write(struct mount * mp)2146 vn_finished_secondary_write(struct mount *mp)
2147 {
2148 if (mp == NULL)
2149 return;
2150 MNT_ILOCK(mp);
2151 MNT_REL(mp);
2152 mp->mnt_secondary_writes--;
2153 if (mp->mnt_secondary_writes < 0)
2154 panic("vn_finished_secondary_write: neg cnt");
2155 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2156 mp->mnt_secondary_writes <= 0)
2157 wakeup(&mp->mnt_secondary_writes);
2158 MNT_IUNLOCK(mp);
2159 }
2160
2161 /*
2162 * Request a filesystem to suspend write operations.
2163 */
2164 int
vfs_write_suspend(struct mount * mp,int flags)2165 vfs_write_suspend(struct mount *mp, int flags)
2166 {
2167 int error;
2168
2169 vfs_op_enter(mp);
2170
2171 MNT_ILOCK(mp);
2172 vfs_assert_mount_counters(mp);
2173 if (mp->mnt_susp_owner == curthread) {
2174 vfs_op_exit_locked(mp);
2175 MNT_IUNLOCK(mp);
2176 return (EALREADY);
2177 }
2178 while (mp->mnt_kern_flag & MNTK_SUSPEND)
2179 msleep(&mp->mnt_flag, MNT_MTX(mp), PRI_MAX_KERN, "wsuspfs", 0);
2180
2181 /*
2182 * Unmount holds a write reference on the mount point. If we
2183 * own busy reference and drain for writers, we deadlock with
2184 * the reference draining in the unmount path. Callers of
2185 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2186 * vfs_busy() reference is owned and caller is not in the
2187 * unmount context.
2188 */
2189 if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2190 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2191 vfs_op_exit_locked(mp);
2192 MNT_IUNLOCK(mp);
2193 return (EBUSY);
2194 }
2195
2196 mp->mnt_kern_flag |= MNTK_SUSPEND;
2197 mp->mnt_susp_owner = curthread;
2198 if (mp->mnt_writeopcount > 0)
2199 (void) msleep(&mp->mnt_writeopcount,
2200 MNT_MTX(mp), PRI_MAX_KERN | PDROP, "suspwt", 0);
2201 else
2202 MNT_IUNLOCK(mp);
2203 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2204 vfs_write_resume(mp, 0);
2205 /* vfs_write_resume does vfs_op_exit() for us */
2206 }
2207 return (error);
2208 }
2209
2210 /*
2211 * Request a filesystem to resume write operations.
2212 */
2213 void
vfs_write_resume(struct mount * mp,int flags)2214 vfs_write_resume(struct mount *mp, int flags)
2215 {
2216
2217 MNT_ILOCK(mp);
2218 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2219 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2220 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2221 MNTK_SUSPENDED);
2222 mp->mnt_susp_owner = NULL;
2223 wakeup(&mp->mnt_writeopcount);
2224 wakeup(&mp->mnt_flag);
2225 curthread->td_pflags &= ~TDP_IGNSUSP;
2226 if ((flags & VR_START_WRITE) != 0) {
2227 MNT_REF(mp);
2228 mp->mnt_writeopcount++;
2229 }
2230 MNT_IUNLOCK(mp);
2231 if ((flags & VR_NO_SUSPCLR) == 0)
2232 VFS_SUSP_CLEAN(mp);
2233 vfs_op_exit(mp);
2234 } else if ((flags & VR_START_WRITE) != 0) {
2235 MNT_REF(mp);
2236 vn_start_write_refed(mp, 0, true);
2237 } else {
2238 MNT_IUNLOCK(mp);
2239 }
2240 }
2241
2242 /*
2243 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2244 * methods.
2245 */
2246 int
vfs_write_suspend_umnt(struct mount * mp)2247 vfs_write_suspend_umnt(struct mount *mp)
2248 {
2249 int error;
2250
2251 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2252 ("vfs_write_suspend_umnt: recursed"));
2253
2254 /* dounmount() already called vn_start_write(). */
2255 for (;;) {
2256 vn_finished_write(mp);
2257 error = vfs_write_suspend(mp, 0);
2258 if (error != 0) {
2259 vn_start_write(NULL, &mp, V_WAIT);
2260 return (error);
2261 }
2262 MNT_ILOCK(mp);
2263 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2264 break;
2265 MNT_IUNLOCK(mp);
2266 vn_start_write(NULL, &mp, V_WAIT);
2267 }
2268 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2269 wakeup(&mp->mnt_flag);
2270 MNT_IUNLOCK(mp);
2271 curthread->td_pflags |= TDP_IGNSUSP;
2272 return (0);
2273 }
2274
2275 /*
2276 * Implement kqueues for files by translating it to vnode operation.
2277 */
2278 static int
vn_kqfilter(struct file * fp,struct knote * kn)2279 vn_kqfilter(struct file *fp, struct knote *kn)
2280 {
2281
2282 return (VOP_KQFILTER(fp->f_vnode, kn));
2283 }
2284
2285 int
vn_kqfilter_opath(struct file * fp,struct knote * kn)2286 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2287 {
2288 if ((fp->f_flag & FKQALLOWED) == 0)
2289 return (EBADF);
2290 return (vn_kqfilter(fp, kn));
2291 }
2292
2293 /*
2294 * Simplified in-kernel wrapper calls for extended attribute access.
2295 * Both calls pass in a NULL credential, authorizing as "kernel" access.
2296 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2297 */
2298 int
vn_extattr_get(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int * buflen,char * buf,struct thread * td)2299 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2300 const char *attrname, int *buflen, char *buf, struct thread *td)
2301 {
2302 struct uio auio;
2303 struct iovec iov;
2304 int error;
2305
2306 iov.iov_len = *buflen;
2307 iov.iov_base = buf;
2308
2309 auio.uio_iov = &iov;
2310 auio.uio_iovcnt = 1;
2311 auio.uio_rw = UIO_READ;
2312 auio.uio_segflg = UIO_SYSSPACE;
2313 auio.uio_td = td;
2314 auio.uio_offset = 0;
2315 auio.uio_resid = *buflen;
2316
2317 if ((ioflg & IO_NODELOCKED) == 0)
2318 vn_lock(vp, LK_SHARED | LK_RETRY);
2319
2320 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2321
2322 /* authorize attribute retrieval as kernel */
2323 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2324 td);
2325
2326 if ((ioflg & IO_NODELOCKED) == 0)
2327 VOP_UNLOCK(vp);
2328
2329 if (error == 0) {
2330 *buflen = *buflen - auio.uio_resid;
2331 }
2332
2333 return (error);
2334 }
2335
2336 /*
2337 * XXX failure mode if partially written?
2338 */
2339 int
vn_extattr_set(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int buflen,char * buf,struct thread * td)2340 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2341 const char *attrname, int buflen, char *buf, struct thread *td)
2342 {
2343 struct uio auio;
2344 struct iovec iov;
2345 struct mount *mp;
2346 int error;
2347
2348 iov.iov_len = buflen;
2349 iov.iov_base = buf;
2350
2351 auio.uio_iov = &iov;
2352 auio.uio_iovcnt = 1;
2353 auio.uio_rw = UIO_WRITE;
2354 auio.uio_segflg = UIO_SYSSPACE;
2355 auio.uio_td = td;
2356 auio.uio_offset = 0;
2357 auio.uio_resid = buflen;
2358
2359 if ((ioflg & IO_NODELOCKED) == 0) {
2360 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2361 return (error);
2362 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2363 }
2364
2365 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2366
2367 /* authorize attribute setting as kernel */
2368 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2369
2370 if ((ioflg & IO_NODELOCKED) == 0) {
2371 vn_finished_write(mp);
2372 VOP_UNLOCK(vp);
2373 }
2374
2375 return (error);
2376 }
2377
2378 int
vn_extattr_rm(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,struct thread * td)2379 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2380 const char *attrname, struct thread *td)
2381 {
2382 struct mount *mp;
2383 int error;
2384
2385 if ((ioflg & IO_NODELOCKED) == 0) {
2386 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2387 return (error);
2388 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2389 }
2390
2391 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2392
2393 /* authorize attribute removal as kernel */
2394 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2395 if (error == EOPNOTSUPP)
2396 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2397 NULL, td);
2398
2399 if ((ioflg & IO_NODELOCKED) == 0) {
2400 vn_finished_write(mp);
2401 VOP_UNLOCK(vp);
2402 }
2403
2404 return (error);
2405 }
2406
2407 static int
vn_get_ino_alloc_vget(struct mount * mp,void * arg,int lkflags,struct vnode ** rvp)2408 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2409 struct vnode **rvp)
2410 {
2411
2412 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2413 }
2414
2415 int
vn_vget_ino(struct vnode * vp,ino_t ino,int lkflags,struct vnode ** rvp)2416 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2417 {
2418
2419 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2420 lkflags, rvp));
2421 }
2422
2423 int
vn_vget_ino_gen(struct vnode * vp,vn_get_ino_t alloc,void * alloc_arg,int lkflags,struct vnode ** rvp)2424 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2425 int lkflags, struct vnode **rvp)
2426 {
2427 struct mount *mp;
2428 int ltype, error;
2429
2430 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2431 mp = vp->v_mount;
2432 ltype = VOP_ISLOCKED(vp);
2433 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2434 ("vn_vget_ino: vp not locked"));
2435 error = vfs_busy(mp, MBF_NOWAIT);
2436 if (error != 0) {
2437 vfs_ref(mp);
2438 VOP_UNLOCK(vp);
2439 error = vfs_busy(mp, 0);
2440 vn_lock(vp, ltype | LK_RETRY);
2441 vfs_rel(mp);
2442 if (error != 0)
2443 return (ENOENT);
2444 if (VN_IS_DOOMED(vp)) {
2445 vfs_unbusy(mp);
2446 return (ENOENT);
2447 }
2448 }
2449 VOP_UNLOCK(vp);
2450 error = alloc(mp, alloc_arg, lkflags, rvp);
2451 vfs_unbusy(mp);
2452 if (error != 0 || *rvp != vp)
2453 vn_lock(vp, ltype | LK_RETRY);
2454 if (VN_IS_DOOMED(vp)) {
2455 if (error == 0) {
2456 if (*rvp == vp)
2457 vunref(vp);
2458 else
2459 vput(*rvp);
2460 }
2461 error = ENOENT;
2462 }
2463 return (error);
2464 }
2465
2466 static void
vn_send_sigxfsz(struct proc * p)2467 vn_send_sigxfsz(struct proc *p)
2468 {
2469 PROC_LOCK(p);
2470 kern_psignal(p, SIGXFSZ);
2471 PROC_UNLOCK(p);
2472 }
2473
2474 int
vn_rlimit_trunc(u_quad_t size,struct thread * td)2475 vn_rlimit_trunc(u_quad_t size, struct thread *td)
2476 {
2477 if (size <= lim_cur(td, RLIMIT_FSIZE))
2478 return (0);
2479 vn_send_sigxfsz(td->td_proc);
2480 return (EFBIG);
2481 }
2482
2483 static int
vn_rlimit_fsizex1(const struct vnode * vp,struct uio * uio,off_t maxfsz,bool adj,struct thread * td)2484 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2485 bool adj, struct thread *td)
2486 {
2487 off_t lim;
2488 bool ktr_write;
2489
2490 if (vp->v_type != VREG)
2491 return (0);
2492
2493 /*
2494 * Handle file system maximum file size.
2495 */
2496 if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
2497 if (!adj || uio->uio_offset >= maxfsz)
2498 return (EFBIG);
2499 uio->uio_resid = maxfsz - uio->uio_offset;
2500 }
2501
2502 /*
2503 * This is kernel write (e.g. vnode_pager) or accounting
2504 * write, ignore limit.
2505 */
2506 if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
2507 return (0);
2508
2509 /*
2510 * Calculate file size limit.
2511 */
2512 ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2513 lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
2514 lim_cur(td, RLIMIT_FSIZE);
2515
2516 /*
2517 * Is the limit reached?
2518 */
2519 if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2520 return (0);
2521
2522 /*
2523 * Prepared filesystems can handle writes truncated to the
2524 * file size limit.
2525 */
2526 if (adj && (uoff_t)uio->uio_offset < lim) {
2527 uio->uio_resid = lim - (uoff_t)uio->uio_offset;
2528 return (0);
2529 }
2530
2531 if (!ktr_write || ktr_filesize_limit_signal)
2532 vn_send_sigxfsz(td->td_proc);
2533 return (EFBIG);
2534 }
2535
2536 /*
2537 * Helper for VOP_WRITE() implementations, the common code to
2538 * handle maximum supported file size on the filesystem, and
2539 * RLIMIT_FSIZE, except for special writes from accounting subsystem
2540 * and ktrace.
2541 *
2542 * For maximum file size (maxfsz argument):
2543 * - return EFBIG if uio_offset is beyond it
2544 * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
2545 *
2546 * For RLIMIT_FSIZE:
2547 * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
2548 * - otherwise, clamp uio_resid if write would extend file beyond limit.
2549 *
2550 * If clamping occured, the adjustment for uio_resid is stored in
2551 * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
2552 * from the VOP.
2553 */
2554 int
vn_rlimit_fsizex(const struct vnode * vp,struct uio * uio,off_t maxfsz,ssize_t * resid_adj,struct thread * td)2555 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2556 ssize_t *resid_adj, struct thread *td)
2557 {
2558 ssize_t resid_orig;
2559 int error;
2560 bool adj;
2561
2562 resid_orig = uio->uio_resid;
2563 adj = resid_adj != NULL;
2564 error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
2565 if (adj)
2566 *resid_adj = resid_orig - uio->uio_resid;
2567 return (error);
2568 }
2569
2570 void
vn_rlimit_fsizex_res(struct uio * uio,ssize_t resid_adj)2571 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
2572 {
2573 uio->uio_resid += resid_adj;
2574 }
2575
2576 int
vn_rlimit_fsize(const struct vnode * vp,const struct uio * uio,struct thread * td)2577 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2578 struct thread *td)
2579 {
2580 return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
2581 td));
2582 }
2583
2584 int
vn_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)2585 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2586 struct thread *td)
2587 {
2588 struct vnode *vp;
2589
2590 vp = fp->f_vnode;
2591 #ifdef AUDIT
2592 vn_lock(vp, LK_SHARED | LK_RETRY);
2593 AUDIT_ARG_VNODE1(vp);
2594 VOP_UNLOCK(vp);
2595 #endif
2596 return (setfmode(td, active_cred, vp, mode));
2597 }
2598
2599 int
vn_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)2600 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2601 struct thread *td)
2602 {
2603 struct vnode *vp;
2604
2605 vp = fp->f_vnode;
2606 #ifdef AUDIT
2607 vn_lock(vp, LK_SHARED | LK_RETRY);
2608 AUDIT_ARG_VNODE1(vp);
2609 VOP_UNLOCK(vp);
2610 #endif
2611 return (setfown(td, active_cred, vp, uid, gid));
2612 }
2613
2614 /*
2615 * Remove pages in the range ["start", "end") from the vnode's VM object. If
2616 * "end" is 0, then the range extends to the end of the object.
2617 */
2618 void
vn_pages_remove(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2619 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2620 {
2621 vm_object_t object;
2622
2623 if ((object = vp->v_object) == NULL)
2624 return;
2625 VM_OBJECT_WLOCK(object);
2626 vm_object_page_remove(object, start, end, 0);
2627 VM_OBJECT_WUNLOCK(object);
2628 }
2629
2630 /*
2631 * Like vn_pages_remove(), but skips invalid pages, which by definition are not
2632 * mapped into any process' address space. Filesystems may use this in
2633 * preference to vn_pages_remove() to avoid blocking on pages busied in
2634 * preparation for a VOP_GETPAGES.
2635 */
2636 void
vn_pages_remove_valid(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2637 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2638 {
2639 vm_object_t object;
2640
2641 if ((object = vp->v_object) == NULL)
2642 return;
2643 VM_OBJECT_WLOCK(object);
2644 vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
2645 VM_OBJECT_WUNLOCK(object);
2646 }
2647
2648 int
vn_bmap_seekhole_locked(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2649 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2650 struct ucred *cred)
2651 {
2652 off_t size;
2653 daddr_t bn, bnp;
2654 uint64_t bsize;
2655 off_t noff;
2656 int error;
2657
2658 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2659 ("%s: Wrong command %lu", __func__, cmd));
2660 ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
2661
2662 if (vp->v_type != VREG) {
2663 error = ENOTTY;
2664 goto out;
2665 }
2666 error = vn_getsize_locked(vp, &size, cred);
2667 if (error != 0)
2668 goto out;
2669 noff = *off;
2670 if (noff < 0 || noff >= size) {
2671 error = ENXIO;
2672 goto out;
2673 }
2674
2675 /* See the comment in ufs_bmap_seekdata(). */
2676 vnode_pager_clean_sync(vp);
2677
2678 bsize = vp->v_mount->mnt_stat.f_iosize;
2679 for (bn = noff / bsize; noff < size; bn++, noff += bsize -
2680 noff % bsize) {
2681 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2682 if (error == EOPNOTSUPP) {
2683 error = ENOTTY;
2684 goto out;
2685 }
2686 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2687 (bnp != -1 && cmd == FIOSEEKDATA)) {
2688 noff = bn * bsize;
2689 if (noff < *off)
2690 noff = *off;
2691 goto out;
2692 }
2693 }
2694 if (noff > size)
2695 noff = size;
2696 /* noff == size. There is an implicit hole at the end of file. */
2697 if (cmd == FIOSEEKDATA)
2698 error = ENXIO;
2699 out:
2700 if (error == 0)
2701 *off = noff;
2702 return (error);
2703 }
2704
2705 int
vn_bmap_seekhole(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2706 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2707 {
2708 int error;
2709
2710 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2711 ("%s: Wrong command %lu", __func__, cmd));
2712
2713 if (vn_lock(vp, LK_EXCLUSIVE) != 0)
2714 return (EBADF);
2715 error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2716 VOP_UNLOCK(vp);
2717 return (error);
2718 }
2719
2720 int
vn_seek(struct file * fp,off_t offset,int whence,struct thread * td)2721 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2722 {
2723 struct ucred *cred;
2724 struct vnode *vp;
2725 off_t foffset, fsize, size;
2726 int error, noneg;
2727
2728 cred = td->td_ucred;
2729 vp = fp->f_vnode;
2730 noneg = (vp->v_type != VCHR);
2731 /*
2732 * Try to dodge locking for common case of querying the offset.
2733 */
2734 if (whence == L_INCR && offset == 0) {
2735 foffset = foffset_read(fp);
2736 if (__predict_false(foffset < 0 && noneg)) {
2737 return (EOVERFLOW);
2738 }
2739 td->td_uretoff.tdu_off = foffset;
2740 return (0);
2741 }
2742 foffset = foffset_lock(fp, 0);
2743 error = 0;
2744 switch (whence) {
2745 case L_INCR:
2746 if (noneg &&
2747 (foffset < 0 ||
2748 (offset > 0 && foffset > OFF_MAX - offset))) {
2749 error = EOVERFLOW;
2750 break;
2751 }
2752 offset += foffset;
2753 break;
2754 case L_XTND:
2755 error = vn_getsize(vp, &fsize, cred);
2756 if (error != 0)
2757 break;
2758
2759 /*
2760 * If the file references a disk device, then fetch
2761 * the media size and use that to determine the ending
2762 * offset.
2763 */
2764 if (fsize == 0 && vp->v_type == VCHR &&
2765 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2766 fsize = size;
2767 if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
2768 error = EOVERFLOW;
2769 break;
2770 }
2771 offset += fsize;
2772 break;
2773 case L_SET:
2774 break;
2775 case SEEK_DATA:
2776 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2777 if (error == ENOTTY)
2778 error = EINVAL;
2779 break;
2780 case SEEK_HOLE:
2781 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2782 if (error == ENOTTY)
2783 error = EINVAL;
2784 break;
2785 default:
2786 error = EINVAL;
2787 }
2788 if (error == 0 && noneg && offset < 0)
2789 error = EINVAL;
2790 if (error != 0)
2791 goto drop;
2792 VFS_KNOTE_UNLOCKED(vp, 0);
2793 td->td_uretoff.tdu_off = offset;
2794 drop:
2795 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2796 return (error);
2797 }
2798
2799 int
vn_utimes_perm(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2800 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2801 struct thread *td)
2802 {
2803 int error;
2804
2805 /*
2806 * Grant permission if the caller is the owner of the file, or
2807 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2808 * on the file. If the time pointer is null, then write
2809 * permission on the file is also sufficient.
2810 *
2811 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2812 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2813 * will be allowed to set the times [..] to the current
2814 * server time.
2815 */
2816 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2817 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2818 error = VOP_ACCESS(vp, VWRITE, cred, td);
2819 return (error);
2820 }
2821
2822 int
vn_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2823 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2824 {
2825 struct vnode *vp;
2826 int error;
2827
2828 if (fp->f_type == DTYPE_FIFO)
2829 kif->kf_type = KF_TYPE_FIFO;
2830 else
2831 kif->kf_type = KF_TYPE_VNODE;
2832 vp = fp->f_vnode;
2833 vref(vp);
2834 FILEDESC_SUNLOCK(fdp);
2835 error = vn_fill_kinfo_vnode(vp, kif);
2836 vrele(vp);
2837 FILEDESC_SLOCK(fdp);
2838 return (error);
2839 }
2840
2841 static inline void
vn_fill_junk(struct kinfo_file * kif)2842 vn_fill_junk(struct kinfo_file *kif)
2843 {
2844 size_t len, olen;
2845
2846 /*
2847 * Simulate vn_fullpath returning changing values for a given
2848 * vp during e.g. coredump.
2849 */
2850 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2851 olen = strlen(kif->kf_path);
2852 if (len < olen)
2853 strcpy(&kif->kf_path[len - 1], "$");
2854 else
2855 for (; olen < len; olen++)
2856 strcpy(&kif->kf_path[olen], "A");
2857 }
2858
2859 int
vn_fill_kinfo_vnode(struct vnode * vp,struct kinfo_file * kif)2860 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2861 {
2862 struct vattr va;
2863 char *fullpath, *freepath;
2864 int error;
2865
2866 kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2867 freepath = NULL;
2868 fullpath = "-";
2869 error = vn_fullpath(vp, &fullpath, &freepath);
2870 if (error == 0) {
2871 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2872 }
2873 if (freepath != NULL)
2874 free(freepath, M_TEMP);
2875
2876 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2877 vn_fill_junk(kif);
2878 );
2879
2880 /*
2881 * Retrieve vnode attributes.
2882 */
2883 va.va_fsid = VNOVAL;
2884 va.va_rdev = NODEV;
2885 vn_lock(vp, LK_SHARED | LK_RETRY);
2886 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2887 VOP_UNLOCK(vp);
2888 if (error != 0)
2889 return (error);
2890 if (va.va_fsid != VNOVAL)
2891 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2892 else
2893 kif->kf_un.kf_file.kf_file_fsid =
2894 vp->v_mount->mnt_stat.f_fsid.val[0];
2895 kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2896 kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2897 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2898 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2899 kif->kf_un.kf_file.kf_file_size = va.va_size;
2900 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2901 kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2902 kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2903 kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
2904 return (0);
2905 }
2906
2907 int
vn_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)2908 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2909 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2910 struct thread *td)
2911 {
2912 #ifdef HWPMC_HOOKS
2913 struct pmckern_map_in pkm;
2914 #endif
2915 struct mount *mp;
2916 struct vnode *vp;
2917 vm_object_t object;
2918 vm_prot_t maxprot;
2919 boolean_t writecounted;
2920 int error;
2921
2922 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2923 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2924 /*
2925 * POSIX shared-memory objects are defined to have
2926 * kernel persistence, and are not defined to support
2927 * read(2)/write(2) -- or even open(2). Thus, we can
2928 * use MAP_ASYNC to trade on-disk coherence for speed.
2929 * The shm_open(3) library routine turns on the FPOSIXSHM
2930 * flag to request this behavior.
2931 */
2932 if ((fp->f_flag & FPOSIXSHM) != 0)
2933 flags |= MAP_NOSYNC;
2934 #endif
2935 vp = fp->f_vnode;
2936
2937 /*
2938 * Ensure that file and memory protections are
2939 * compatible. Note that we only worry about
2940 * writability if mapping is shared; in this case,
2941 * current and max prot are dictated by the open file.
2942 * XXX use the vnode instead? Problem is: what
2943 * credentials do we use for determination? What if
2944 * proc does a setuid?
2945 */
2946 mp = vp->v_mount;
2947 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2948 maxprot = VM_PROT_NONE;
2949 if ((prot & VM_PROT_EXECUTE) != 0)
2950 return (EACCES);
2951 } else
2952 maxprot = VM_PROT_EXECUTE;
2953 if ((fp->f_flag & FREAD) != 0)
2954 maxprot |= VM_PROT_READ;
2955 else if ((prot & VM_PROT_READ) != 0)
2956 return (EACCES);
2957
2958 /*
2959 * If we are sharing potential changes via MAP_SHARED and we
2960 * are trying to get write permission although we opened it
2961 * without asking for it, bail out.
2962 */
2963 if ((flags & MAP_SHARED) != 0) {
2964 if ((fp->f_flag & FWRITE) != 0)
2965 maxprot |= VM_PROT_WRITE;
2966 else if ((prot & VM_PROT_WRITE) != 0)
2967 return (EACCES);
2968 } else {
2969 maxprot |= VM_PROT_WRITE;
2970 cap_maxprot |= VM_PROT_WRITE;
2971 }
2972 maxprot &= cap_maxprot;
2973
2974 /*
2975 * For regular files and shared memory, POSIX requires that
2976 * the value of foff be a legitimate offset within the data
2977 * object. In particular, negative offsets are invalid.
2978 * Blocking negative offsets and overflows here avoids
2979 * possible wraparound or user-level access into reserved
2980 * ranges of the data object later. In contrast, POSIX does
2981 * not dictate how offsets are used by device drivers, so in
2982 * the case of a device mapping a negative offset is passed
2983 * on.
2984 */
2985 if (
2986 #ifdef _LP64
2987 size > OFF_MAX ||
2988 #endif
2989 foff > OFF_MAX - size)
2990 return (EINVAL);
2991
2992 writecounted = FALSE;
2993 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2994 &foff, &object, &writecounted);
2995 if (error != 0)
2996 return (error);
2997 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2998 foff, writecounted, td);
2999 if (error != 0) {
3000 /*
3001 * If this mapping was accounted for in the vnode's
3002 * writecount, then undo that now.
3003 */
3004 if (writecounted)
3005 vm_pager_release_writecount(object, 0, size);
3006 vm_object_deallocate(object);
3007 }
3008 #ifdef HWPMC_HOOKS
3009 /* Inform hwpmc(4) if an executable is being mapped. */
3010 if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
3011 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
3012 pkm.pm_file = vp;
3013 pkm.pm_address = (uintptr_t) *addr;
3014 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
3015 }
3016 }
3017 #endif
3018
3019 #ifdef HWT_HOOKS
3020 if (HWT_HOOK_INSTALLED && (prot & VM_PROT_EXECUTE) != 0 &&
3021 error == 0) {
3022 struct hwt_record_entry ent;
3023 char *fullpath;
3024 char *freepath;
3025
3026 if (vn_fullpath(vp, &fullpath, &freepath) == 0) {
3027 ent.fullpath = fullpath;
3028 ent.addr = (uintptr_t) *addr;
3029 ent.record_type = HWT_RECORD_MMAP;
3030 HWT_CALL_HOOK(td, HWT_MMAP, &ent);
3031 free(freepath, M_TEMP);
3032 }
3033 }
3034 #endif
3035
3036 return (error);
3037 }
3038
3039 void
vn_fsid(struct vnode * vp,struct vattr * va)3040 vn_fsid(struct vnode *vp, struct vattr *va)
3041 {
3042 fsid_t *f;
3043
3044 f = &vp->v_mount->mnt_stat.f_fsid;
3045 va->va_fsid = (uint32_t)f->val[1];
3046 va->va_fsid <<= sizeof(f->val[1]) * NBBY;
3047 va->va_fsid += (uint32_t)f->val[0];
3048 }
3049
3050 int
vn_fsync_buf(struct vnode * vp,int waitfor)3051 vn_fsync_buf(struct vnode *vp, int waitfor)
3052 {
3053 struct buf *bp, *nbp;
3054 struct bufobj *bo;
3055 struct mount *mp;
3056 int error, maxretry;
3057
3058 error = 0;
3059 maxretry = 10000; /* large, arbitrarily chosen */
3060 mp = NULL;
3061 if (vp->v_type == VCHR) {
3062 VI_LOCK(vp);
3063 mp = vp->v_rdev->si_mountpt;
3064 VI_UNLOCK(vp);
3065 }
3066 bo = &vp->v_bufobj;
3067 BO_LOCK(bo);
3068 loop1:
3069 /*
3070 * MARK/SCAN initialization to avoid infinite loops.
3071 */
3072 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
3073 bp->b_vflags &= ~BV_SCANNED;
3074 bp->b_error = 0;
3075 }
3076
3077 /*
3078 * Flush all dirty buffers associated with a vnode.
3079 */
3080 loop2:
3081 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
3082 if ((bp->b_vflags & BV_SCANNED) != 0)
3083 continue;
3084 bp->b_vflags |= BV_SCANNED;
3085 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
3086 if (waitfor != MNT_WAIT)
3087 continue;
3088 if (BUF_LOCK(bp,
3089 LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
3090 BO_LOCKPTR(bo)) != 0) {
3091 BO_LOCK(bo);
3092 goto loop1;
3093 }
3094 BO_LOCK(bo);
3095 }
3096 BO_UNLOCK(bo);
3097 KASSERT(bp->b_bufobj == bo,
3098 ("bp %p wrong b_bufobj %p should be %p",
3099 bp, bp->b_bufobj, bo));
3100 if ((bp->b_flags & B_DELWRI) == 0)
3101 panic("fsync: not dirty");
3102 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
3103 vfs_bio_awrite(bp);
3104 } else {
3105 bremfree(bp);
3106 bawrite(bp);
3107 }
3108 if (maxretry < 1000)
3109 pause("dirty", hz < 1000 ? 1 : hz / 1000);
3110 BO_LOCK(bo);
3111 goto loop2;
3112 }
3113
3114 /*
3115 * If synchronous the caller expects us to completely resolve all
3116 * dirty buffers in the system. Wait for in-progress I/O to
3117 * complete (which could include background bitmap writes), then
3118 * retry if dirty blocks still exist.
3119 */
3120 if (waitfor == MNT_WAIT) {
3121 bufobj_wwait(bo, 0, 0);
3122 if (bo->bo_dirty.bv_cnt > 0) {
3123 /*
3124 * If we are unable to write any of these buffers
3125 * then we fail now rather than trying endlessly
3126 * to write them out.
3127 */
3128 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
3129 if ((error = bp->b_error) != 0)
3130 break;
3131 if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
3132 (error == 0 && --maxretry >= 0))
3133 goto loop1;
3134 if (error == 0)
3135 error = EAGAIN;
3136 }
3137 }
3138 BO_UNLOCK(bo);
3139 if (error != 0)
3140 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
3141
3142 return (error);
3143 }
3144
3145 /*
3146 * Copies a byte range from invp to outvp. Calls VOP_COPY_FILE_RANGE()
3147 * or vn_generic_copy_file_range() after rangelocking the byte ranges,
3148 * to do the actual copy.
3149 * vn_generic_copy_file_range() is factored out, so it can be called
3150 * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
3151 * different file systems.
3152 */
3153 int
vn_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3154 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
3155 off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
3156 struct ucred *outcred, struct thread *fsize_td)
3157 {
3158 struct mount *inmp, *outmp;
3159 struct vnode *invpl, *outvpl;
3160 int error;
3161 size_t len;
3162 uint64_t uval;
3163
3164 invpl = outvpl = NULL;
3165 len = *lenp;
3166 *lenp = 0; /* For error returns. */
3167 error = 0;
3168
3169 /* Do some sanity checks on the arguments. */
3170 if (invp->v_type == VDIR || outvp->v_type == VDIR)
3171 error = EISDIR;
3172 else if (*inoffp < 0 || *outoffp < 0 ||
3173 invp->v_type != VREG || outvp->v_type != VREG)
3174 error = EINVAL;
3175 if (error != 0)
3176 goto out;
3177
3178 /* Ensure offset + len does not wrap around. */
3179 uval = *inoffp;
3180 uval += len;
3181 if (uval > INT64_MAX)
3182 len = INT64_MAX - *inoffp;
3183 uval = *outoffp;
3184 uval += len;
3185 if (uval > INT64_MAX)
3186 len = INT64_MAX - *outoffp;
3187 if (len == 0)
3188 goto out;
3189
3190 error = VOP_GETLOWVNODE(invp, &invpl, FREAD);
3191 if (error != 0)
3192 goto out;
3193 error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE);
3194 if (error != 0)
3195 goto out1;
3196
3197 inmp = invpl->v_mount;
3198 outmp = outvpl->v_mount;
3199 if (inmp == NULL || outmp == NULL)
3200 goto out2;
3201
3202 for (;;) {
3203 error = vfs_busy(inmp, 0);
3204 if (error != 0)
3205 goto out2;
3206 if (inmp == outmp)
3207 break;
3208 error = vfs_busy(outmp, MBF_NOWAIT);
3209 if (error != 0) {
3210 vfs_unbusy(inmp);
3211 error = vfs_busy(outmp, 0);
3212 if (error == 0) {
3213 vfs_unbusy(outmp);
3214 continue;
3215 }
3216 goto out2;
3217 }
3218 break;
3219 }
3220
3221 /*
3222 * If the two vnodes are for the same file system type, call
3223 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
3224 * which can handle copies across multiple file system types.
3225 */
3226 *lenp = len;
3227 if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc)
3228 error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp,
3229 lenp, flags, incred, outcred, fsize_td);
3230 else
3231 error = ENOSYS;
3232 if (error == ENOSYS)
3233 error = vn_generic_copy_file_range(invpl, inoffp, outvpl,
3234 outoffp, lenp, flags, incred, outcred, fsize_td);
3235 vfs_unbusy(outmp);
3236 if (inmp != outmp)
3237 vfs_unbusy(inmp);
3238 out2:
3239 if (outvpl != NULL)
3240 vrele(outvpl);
3241 out1:
3242 if (invpl != NULL)
3243 vrele(invpl);
3244 out:
3245 return (error);
3246 }
3247
3248 /*
3249 * Test len bytes of data starting at dat for all bytes == 0.
3250 * Return true if all bytes are zero, false otherwise.
3251 * Expects dat to be well aligned.
3252 */
3253 static bool
mem_iszero(void * dat,int len)3254 mem_iszero(void *dat, int len)
3255 {
3256 int i;
3257 const u_int *p;
3258 const char *cp;
3259
3260 for (p = dat; len > 0; len -= sizeof(*p), p++) {
3261 if (len >= sizeof(*p)) {
3262 if (*p != 0)
3263 return (false);
3264 } else {
3265 cp = (const char *)p;
3266 for (i = 0; i < len; i++, cp++)
3267 if (*cp != '\0')
3268 return (false);
3269 }
3270 }
3271 return (true);
3272 }
3273
3274 /*
3275 * Look for a hole in the output file and, if found, adjust *outoffp
3276 * and *xferp to skip past the hole.
3277 * *xferp is the entire hole length to be written and xfer2 is how many bytes
3278 * to be written as 0's upon return.
3279 */
3280 static off_t
vn_skip_hole(struct vnode * outvp,off_t xfer2,off_t * outoffp,off_t * xferp,off_t * dataoffp,off_t * holeoffp,struct ucred * cred)3281 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3282 off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3283 {
3284 int error;
3285 off_t delta;
3286
3287 if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3288 *dataoffp = *outoffp;
3289 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3290 curthread);
3291 if (error == 0) {
3292 *holeoffp = *dataoffp;
3293 error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3294 curthread);
3295 }
3296 if (error != 0 || *holeoffp == *dataoffp) {
3297 /*
3298 * Since outvp is unlocked, it may be possible for
3299 * another thread to do a truncate(), lseek(), write()
3300 * creating a hole at startoff between the above
3301 * VOP_IOCTL() calls, if the other thread does not do
3302 * rangelocking.
3303 * If that happens, *holeoffp == *dataoffp and finding
3304 * the hole has failed, so disable vn_skip_hole().
3305 */
3306 *holeoffp = -1; /* Disable use of vn_skip_hole(). */
3307 return (xfer2);
3308 }
3309 KASSERT(*dataoffp >= *outoffp,
3310 ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3311 (intmax_t)*dataoffp, (intmax_t)*outoffp));
3312 KASSERT(*holeoffp > *dataoffp,
3313 ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3314 (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3315 }
3316
3317 /*
3318 * If there is a hole before the data starts, advance *outoffp and
3319 * *xferp past the hole.
3320 */
3321 if (*dataoffp > *outoffp) {
3322 delta = *dataoffp - *outoffp;
3323 if (delta >= *xferp) {
3324 /* Entire *xferp is a hole. */
3325 *outoffp += *xferp;
3326 *xferp = 0;
3327 return (0);
3328 }
3329 *xferp -= delta;
3330 *outoffp += delta;
3331 xfer2 = MIN(xfer2, *xferp);
3332 }
3333
3334 /*
3335 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3336 * that the write ends at the start of the hole.
3337 * *holeoffp should always be greater than *outoffp, but for the
3338 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3339 * value.
3340 */
3341 if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3342 xfer2 = *holeoffp - *outoffp;
3343 return (xfer2);
3344 }
3345
3346 /*
3347 * Write an xfer sized chunk to outvp in blksize blocks from dat.
3348 * dat is a maximum of blksize in length and can be written repeatedly in
3349 * the chunk.
3350 * If growfile == true, just grow the file via vn_truncate_locked() instead
3351 * of doing actual writes.
3352 * If checkhole == true, a hole is being punched, so skip over any hole
3353 * already in the output file.
3354 */
3355 static int
vn_write_outvp(struct vnode * outvp,char * dat,off_t outoff,off_t xfer,u_long blksize,bool growfile,bool checkhole,struct ucred * cred)3356 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3357 u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3358 {
3359 struct mount *mp;
3360 off_t dataoff, holeoff, xfer2;
3361 int error;
3362
3363 /*
3364 * Loop around doing writes of blksize until write has been completed.
3365 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3366 * done for each iteration, since the xfer argument can be very
3367 * large if there is a large hole to punch in the output file.
3368 */
3369 error = 0;
3370 holeoff = 0;
3371 do {
3372 xfer2 = MIN(xfer, blksize);
3373 if (checkhole) {
3374 /*
3375 * Punching a hole. Skip writing if there is
3376 * already a hole in the output file.
3377 */
3378 xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3379 &dataoff, &holeoff, cred);
3380 if (xfer == 0)
3381 break;
3382 if (holeoff < 0)
3383 checkhole = false;
3384 KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3385 (intmax_t)xfer2));
3386 }
3387 bwillwrite();
3388 mp = NULL;
3389 error = vn_start_write(outvp, &mp, V_WAIT);
3390 if (error != 0)
3391 break;
3392 if (growfile) {
3393 error = vn_lock(outvp, LK_EXCLUSIVE);
3394 if (error == 0) {
3395 error = vn_truncate_locked(outvp, outoff + xfer,
3396 false, cred);
3397 VOP_UNLOCK(outvp);
3398 }
3399 } else {
3400 error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3401 if (error == 0) {
3402 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3403 outoff, UIO_SYSSPACE, IO_NODELOCKED,
3404 curthread->td_ucred, cred, NULL, curthread);
3405 outoff += xfer2;
3406 xfer -= xfer2;
3407 VOP_UNLOCK(outvp);
3408 }
3409 }
3410 if (mp != NULL)
3411 vn_finished_write(mp);
3412 } while (!growfile && xfer > 0 && error == 0);
3413 return (error);
3414 }
3415
3416 /*
3417 * Copy a byte range of one file to another. This function can handle the
3418 * case where invp and outvp are on different file systems.
3419 * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3420 * is no better file system specific way to do it.
3421 */
3422 int
vn_generic_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3423 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3424 struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3425 struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3426 {
3427 struct vattr inva;
3428 struct mount *mp;
3429 off_t startoff, endoff, xfer, xfer2;
3430 u_long blksize;
3431 int error, interrupted;
3432 bool cantseek, readzeros, eof, first, lastblock, holetoeof, sparse;
3433 ssize_t aresid, r = 0;
3434 size_t copylen, len, savlen;
3435 off_t outsize;
3436 char *dat;
3437 long holein, holeout;
3438 struct timespec curts, endts;
3439
3440 holein = holeout = 0;
3441 savlen = len = *lenp;
3442 error = 0;
3443 interrupted = 0;
3444 dat = NULL;
3445
3446 error = vn_lock(invp, LK_SHARED);
3447 if (error != 0)
3448 goto out;
3449 if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3450 holein = 0;
3451 error = VOP_GETATTR(invp, &inva, incred);
3452 if (error == 0 && inva.va_size > OFF_MAX)
3453 error = EFBIG;
3454 VOP_UNLOCK(invp);
3455 if (error != 0)
3456 goto out;
3457
3458 /*
3459 * Use va_bytes >= va_size as a hint that the file does not have
3460 * sufficient holes to justify the overhead of doing FIOSEEKHOLE.
3461 * This hint does not work well for file systems doing compression
3462 * and may fail when allocations for extended attributes increases
3463 * the value of va_bytes to >= va_size.
3464 */
3465 sparse = true;
3466 if (holein != 0 && inva.va_bytes >= inva.va_size) {
3467 holein = 0;
3468 sparse = false;
3469 }
3470
3471 mp = NULL;
3472 error = vn_start_write(outvp, &mp, V_WAIT);
3473 if (error == 0)
3474 error = vn_lock(outvp, LK_EXCLUSIVE);
3475 if (error == 0) {
3476 /*
3477 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
3478 * now that outvp is locked.
3479 */
3480 if (fsize_td != NULL) {
3481 struct uio io;
3482
3483 io.uio_offset = *outoffp;
3484 io.uio_resid = len;
3485 error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
3486 len = savlen = io.uio_resid;
3487 /*
3488 * No need to call vn_rlimit_fsizex_res before return,
3489 * since the uio is local.
3490 */
3491 }
3492 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3493 holeout = 0;
3494 /*
3495 * Holes that are past EOF do not need to be written as a block
3496 * of zero bytes. So, truncate the output file as far as
3497 * possible and then use size to decide if writing 0
3498 * bytes is necessary in the loop below.
3499 */
3500 if (error == 0)
3501 error = vn_getsize_locked(outvp, &outsize, outcred);
3502 if (error == 0 && outsize > *outoffp &&
3503 *outoffp <= OFF_MAX - len && outsize <= *outoffp + len &&
3504 *inoffp < inva.va_size &&
3505 *outoffp <= OFF_MAX - (inva.va_size - *inoffp) &&
3506 outsize <= *outoffp + (inva.va_size - *inoffp)) {
3507 #ifdef MAC
3508 error = mac_vnode_check_write(curthread->td_ucred,
3509 outcred, outvp);
3510 if (error == 0)
3511 #endif
3512 error = vn_truncate_locked(outvp, *outoffp,
3513 false, outcred);
3514 if (error == 0)
3515 outsize = *outoffp;
3516 }
3517 VOP_UNLOCK(outvp);
3518 }
3519 if (mp != NULL)
3520 vn_finished_write(mp);
3521 if (error != 0)
3522 goto out;
3523
3524 if (sparse && holein == 0 && holeout > 0) {
3525 /*
3526 * For this special case, the input data will be scanned
3527 * for blocks of all 0 bytes. For these blocks, the
3528 * write can be skipped for the output file to create
3529 * an unallocated region.
3530 * Therefore, use the appropriate size for the output file.
3531 */
3532 blksize = holeout;
3533 if (blksize <= 512) {
3534 /*
3535 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
3536 * of 512, although it actually only creates
3537 * unallocated regions for blocks >= f_iosize.
3538 */
3539 blksize = outvp->v_mount->mnt_stat.f_iosize;
3540 }
3541 } else {
3542 /*
3543 * Use the larger of the two f_iosize values. If they are
3544 * not the same size, one will normally be an exact multiple of
3545 * the other, since they are both likely to be a power of 2.
3546 */
3547 blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3548 outvp->v_mount->mnt_stat.f_iosize);
3549 }
3550
3551 /* Clip to sane limits. */
3552 if (blksize < 4096)
3553 blksize = 4096;
3554 else if (blksize > maxphys)
3555 blksize = maxphys;
3556 dat = malloc(blksize, M_TEMP, M_WAITOK);
3557
3558 /*
3559 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3560 * to find holes. Otherwise, just scan the read block for all 0s
3561 * in the inner loop where the data copying is done.
3562 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3563 * support holes on the server, but do not support FIOSEEKHOLE.
3564 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3565 * that this function should return after 1second with a partial
3566 * completion.
3567 */
3568 if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3569 getnanouptime(&endts);
3570 endts.tv_sec++;
3571 } else
3572 timespecclear(&endts);
3573 first = true;
3574 holetoeof = eof = false;
3575 while (len > 0 && error == 0 && !eof && interrupted == 0) {
3576 endoff = 0; /* To shut up compilers. */
3577 cantseek = true;
3578 startoff = *inoffp;
3579 copylen = len;
3580
3581 /*
3582 * Find the next data area. If there is just a hole to EOF,
3583 * FIOSEEKDATA should fail with ENXIO.
3584 * (I do not know if any file system will report a hole to
3585 * EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3586 * will fail for those file systems.)
3587 *
3588 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3589 * the code just falls through to the inner copy loop.
3590 */
3591 error = EINVAL;
3592 if (holein > 0) {
3593 error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3594 incred, curthread);
3595 if (error == ENXIO) {
3596 startoff = endoff = inva.va_size;
3597 eof = holetoeof = true;
3598 error = 0;
3599 }
3600 }
3601 if (error == 0 && !holetoeof) {
3602 endoff = startoff;
3603 error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3604 incred, curthread);
3605 /*
3606 * Since invp is unlocked, it may be possible for
3607 * another thread to do a truncate(), lseek(), write()
3608 * creating a hole at startoff between the above
3609 * VOP_IOCTL() calls, if the other thread does not do
3610 * rangelocking.
3611 * If that happens, startoff == endoff and finding
3612 * the hole has failed, so set an error.
3613 */
3614 if (error == 0 && startoff == endoff)
3615 error = EINVAL; /* Any error. Reset to 0. */
3616 }
3617 if (error == 0) {
3618 if (startoff > *inoffp) {
3619 /* Found hole before data block. */
3620 xfer = MIN(startoff - *inoffp, len);
3621 if (*outoffp < outsize) {
3622 /* Must write 0s to punch hole. */
3623 xfer2 = MIN(outsize - *outoffp,
3624 xfer);
3625 memset(dat, 0, MIN(xfer2, blksize));
3626 error = vn_write_outvp(outvp, dat,
3627 *outoffp, xfer2, blksize, false,
3628 holeout > 0, outcred);
3629 }
3630
3631 if (error == 0 && *outoffp + xfer >
3632 outsize && (xfer == len || holetoeof)) {
3633 /* Grow output file (hole at end). */
3634 error = vn_write_outvp(outvp, dat,
3635 *outoffp, xfer, blksize, true,
3636 false, outcred);
3637 }
3638 if (error == 0) {
3639 *inoffp += xfer;
3640 *outoffp += xfer;
3641 len -= xfer;
3642 if (len < savlen) {
3643 interrupted = sig_intr();
3644 if (timespecisset(&endts) &&
3645 interrupted == 0) {
3646 getnanouptime(&curts);
3647 if (timespeccmp(&curts,
3648 &endts, >=))
3649 interrupted =
3650 EINTR;
3651 }
3652 }
3653 }
3654 }
3655 copylen = MIN(len, endoff - startoff);
3656 cantseek = false;
3657 } else {
3658 cantseek = true;
3659 if (!sparse)
3660 cantseek = false;
3661 startoff = *inoffp;
3662 copylen = len;
3663 error = 0;
3664 }
3665
3666 xfer = blksize;
3667 if (cantseek) {
3668 /*
3669 * Set first xfer to end at a block boundary, so that
3670 * holes are more likely detected in the loop below via
3671 * the for all bytes 0 method.
3672 */
3673 xfer -= (*inoffp % blksize);
3674 }
3675
3676 /*
3677 * Loop copying the data block. If this was our first attempt
3678 * to copy anything, allow a zero-length block so that the VOPs
3679 * get a chance to update metadata, specifically the atime.
3680 */
3681 while (error == 0 && ((copylen > 0 && !eof) || first) &&
3682 interrupted == 0) {
3683 if (copylen < xfer)
3684 xfer = copylen;
3685 first = false;
3686 error = vn_lock(invp, LK_SHARED);
3687 if (error != 0)
3688 goto out;
3689 error = vn_rdwr(UIO_READ, invp, dat, xfer,
3690 startoff, UIO_SYSSPACE, IO_NODELOCKED,
3691 curthread->td_ucred, incred, &aresid,
3692 curthread);
3693 VOP_UNLOCK(invp);
3694 lastblock = false;
3695 if (error == 0 && (xfer == 0 || aresid > 0)) {
3696 /* Stop the copy at EOF on the input file. */
3697 xfer -= aresid;
3698 eof = true;
3699 lastblock = true;
3700 }
3701 if (error == 0) {
3702 /*
3703 * Skip the write for holes past the initial EOF
3704 * of the output file, unless this is the last
3705 * write of the output file at EOF.
3706 */
3707 readzeros = cantseek ? mem_iszero(dat, xfer) :
3708 false;
3709 if (xfer == len)
3710 lastblock = true;
3711 if (!cantseek || *outoffp < outsize ||
3712 lastblock || !readzeros)
3713 error = vn_write_outvp(outvp, dat,
3714 *outoffp, xfer, blksize,
3715 readzeros && lastblock &&
3716 *outoffp >= outsize, false,
3717 outcred);
3718 if (error == 0) {
3719 *inoffp += xfer;
3720 startoff += xfer;
3721 *outoffp += xfer;
3722 copylen -= xfer;
3723 len -= xfer;
3724 if (len < savlen) {
3725 interrupted = sig_intr();
3726 if (timespecisset(&endts) &&
3727 interrupted == 0) {
3728 getnanouptime(&curts);
3729 if (timespeccmp(&curts,
3730 &endts, >=))
3731 interrupted =
3732 EINTR;
3733 }
3734 }
3735 }
3736 }
3737 xfer = blksize;
3738 }
3739 }
3740 out:
3741 *lenp = savlen - len;
3742 free(dat, M_TEMP);
3743 return (error);
3744 }
3745
3746 static int
vn_fallocate(struct file * fp,off_t offset,off_t len,struct thread * td)3747 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3748 {
3749 struct mount *mp;
3750 struct vnode *vp;
3751 off_t olen, ooffset;
3752 int error;
3753 #ifdef AUDIT
3754 int audited_vnode1 = 0;
3755 #endif
3756
3757 vp = fp->f_vnode;
3758 if (vp->v_type != VREG)
3759 return (ENODEV);
3760
3761 /* Allocating blocks may take a long time, so iterate. */
3762 for (;;) {
3763 olen = len;
3764 ooffset = offset;
3765
3766 bwillwrite();
3767 mp = NULL;
3768 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
3769 if (error != 0)
3770 break;
3771 error = vn_lock(vp, LK_EXCLUSIVE);
3772 if (error != 0) {
3773 vn_finished_write(mp);
3774 break;
3775 }
3776 #ifdef AUDIT
3777 if (!audited_vnode1) {
3778 AUDIT_ARG_VNODE1(vp);
3779 audited_vnode1 = 1;
3780 }
3781 #endif
3782 #ifdef MAC
3783 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3784 if (error == 0)
3785 #endif
3786 error = VOP_ALLOCATE(vp, &offset, &len, 0,
3787 td->td_ucred);
3788 VOP_UNLOCK(vp);
3789 vn_finished_write(mp);
3790
3791 if (olen + ooffset != offset + len) {
3792 panic("offset + len changed from %jx/%jx to %jx/%jx",
3793 ooffset, olen, offset, len);
3794 }
3795 if (error != 0 || len == 0)
3796 break;
3797 KASSERT(olen > len, ("Iteration did not make progress?"));
3798 maybe_yield();
3799 }
3800
3801 return (error);
3802 }
3803
3804 static int
vn_deallocate_impl(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * cred,struct ucred * active_cred,struct ucred * file_cred)3805 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3806 int ioflag, struct ucred *cred, struct ucred *active_cred,
3807 struct ucred *file_cred)
3808 {
3809 struct mount *mp;
3810 void *rl_cookie;
3811 off_t off, len;
3812 int error;
3813 #ifdef AUDIT
3814 bool audited_vnode1 = false;
3815 #endif
3816
3817 rl_cookie = NULL;
3818 error = 0;
3819 mp = NULL;
3820 off = *offset;
3821 len = *length;
3822
3823 if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3824 rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3825 while (len > 0 && error == 0) {
3826 /*
3827 * Try to deallocate the longest range in one pass.
3828 * In case a pass takes too long to be executed, it returns
3829 * partial result. The residue will be proceeded in the next
3830 * pass.
3831 */
3832
3833 if ((ioflag & IO_NODELOCKED) == 0) {
3834 bwillwrite();
3835 if ((error = vn_start_write(vp, &mp,
3836 V_WAIT | V_PCATCH)) != 0)
3837 goto out;
3838 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3839 }
3840 #ifdef AUDIT
3841 if (!audited_vnode1) {
3842 AUDIT_ARG_VNODE1(vp);
3843 audited_vnode1 = true;
3844 }
3845 #endif
3846
3847 #ifdef MAC
3848 if ((ioflag & IO_NOMACCHECK) == 0)
3849 error = mac_vnode_check_write(active_cred, file_cred,
3850 vp);
3851 #endif
3852 if (error == 0)
3853 error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3854 cred);
3855
3856 if ((ioflag & IO_NODELOCKED) == 0) {
3857 VOP_UNLOCK(vp);
3858 if (mp != NULL) {
3859 vn_finished_write(mp);
3860 mp = NULL;
3861 }
3862 }
3863 if (error == 0 && len != 0)
3864 maybe_yield();
3865 }
3866 out:
3867 if (rl_cookie != NULL)
3868 vn_rangelock_unlock(vp, rl_cookie);
3869 *offset = off;
3870 *length = len;
3871 return (error);
3872 }
3873
3874 /*
3875 * This function is supposed to be used in the situations where the deallocation
3876 * is not triggered by a user request.
3877 */
3878 int
vn_deallocate(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * active_cred,struct ucred * file_cred)3879 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3880 int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3881 {
3882 struct ucred *cred;
3883
3884 if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3885 flags != 0)
3886 return (EINVAL);
3887 if (vp->v_type != VREG)
3888 return (ENODEV);
3889
3890 cred = file_cred != NOCRED ? file_cred : active_cred;
3891 return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3892 active_cred, file_cred));
3893 }
3894
3895 static int
vn_fspacectl(struct file * fp,int cmd,off_t * offset,off_t * length,int flags,struct ucred * active_cred,struct thread * td)3896 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3897 struct ucred *active_cred, struct thread *td)
3898 {
3899 int error;
3900 struct vnode *vp;
3901 int ioflag;
3902
3903 KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
3904 KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
3905 ("vn_fspacectl: non-zero flags"));
3906 KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
3907 ("vn_fspacectl: offset/length overflow or underflow"));
3908 vp = fp->f_vnode;
3909
3910 if (vp->v_type != VREG)
3911 return (ENODEV);
3912
3913 ioflag = get_write_ioflag(fp);
3914
3915 switch (cmd) {
3916 case SPACECTL_DEALLOC:
3917 error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3918 active_cred, active_cred, fp->f_cred);
3919 break;
3920 default:
3921 panic("vn_fspacectl: unknown cmd %d", cmd);
3922 }
3923
3924 return (error);
3925 }
3926
3927 /*
3928 * Keep this assert as long as sizeof(struct dirent) is used as the maximum
3929 * entry size.
3930 */
3931 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent),
3932 "'struct dirent' size must be a multiple of its alignment "
3933 "(see _GENERIC_DIRLEN())");
3934
3935 /*
3936 * Returns successive directory entries through some caller's provided buffer.
3937 *
3938 * This function automatically refills the provided buffer with calls to
3939 * VOP_READDIR() (after MAC permission checks).
3940 *
3941 * 'td' is used for credentials and passed to uiomove(). 'dirbuf' is the
3942 * caller's buffer to fill and 'dirbuflen' its allocated size. 'dirbuf' must
3943 * be properly aligned to access 'struct dirent' structures and 'dirbuflen'
3944 * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning
3945 * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always
3946 * be returned if this requirement is not verified). '*dpp' points to the
3947 * current directory entry in the buffer and '*len' contains the remaining
3948 * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry).
3949 *
3950 * At first call (or when restarting the read), '*len' must have been set to 0,
3951 * '*off' to 0 (or any valid start offset) and '*eofflag' to 0. There are no
3952 * more entries as soon as '*len' is 0 after a call that returned 0. Calling
3953 * again this function after such a condition is considered an error and EINVAL
3954 * will be returned. Other possible error codes are those of VOP_READDIR(),
3955 * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL
3956 * (bad call). All errors are unrecoverable, i.e., the state ('*len', '*off'
3957 * and '*eofflag') must be re-initialized before a subsequent call. On error
3958 * or at end of directory, '*dpp' is reset to NULL.
3959 *
3960 * '*len', '*off' and '*eofflag' are internal state the caller should not
3961 * tamper with except as explained above. '*off' is the next directory offset
3962 * to read from to refill the buffer. '*eofflag' is set to 0 or 1 by the last
3963 * internal call to VOP_READDIR() that returned without error, indicating
3964 * whether it reached the end of the directory, and to 2 by this function after
3965 * all entries have been read.
3966 */
3967 int
vn_dir_next_dirent(struct vnode * vp,struct thread * td,char * dirbuf,size_t dirbuflen,struct dirent ** dpp,size_t * len,off_t * off,int * eofflag)3968 vn_dir_next_dirent(struct vnode *vp, struct thread *td,
3969 char *dirbuf, size_t dirbuflen,
3970 struct dirent **dpp, size_t *len, off_t *off, int *eofflag)
3971 {
3972 struct dirent *dp = NULL;
3973 int reclen;
3974 int error;
3975 struct uio uio;
3976 struct iovec iov;
3977
3978 ASSERT_VOP_LOCKED(vp, "vnode not locked");
3979 VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory"));
3980 MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen,
3981 "Address space overflow");
3982
3983 if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) {
3984 /* Don't take any chances in this case */
3985 error = EINVAL;
3986 goto out;
3987 }
3988
3989 if (*len != 0) {
3990 dp = *dpp;
3991
3992 /*
3993 * The caller continued to call us after an error (we set dp to
3994 * NULL in a previous iteration). Bail out right now.
3995 */
3996 if (__predict_false(dp == NULL))
3997 return (EINVAL);
3998
3999 MPASS(*len <= dirbuflen);
4000 MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp &&
4001 (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen,
4002 "Filled range not inside buffer");
4003
4004 reclen = dp->d_reclen;
4005 if (reclen >= *len) {
4006 /* End of buffer reached */
4007 *len = 0;
4008 } else {
4009 dp = (struct dirent *)((char *)dp + reclen);
4010 *len -= reclen;
4011 }
4012 }
4013
4014 if (*len == 0) {
4015 dp = NULL;
4016
4017 /* Have to refill. */
4018 switch (*eofflag) {
4019 case 0:
4020 break;
4021
4022 case 1:
4023 /* Nothing more to read. */
4024 *eofflag = 2; /* Remember the caller reached EOF. */
4025 goto success;
4026
4027 default:
4028 /* The caller didn't test for EOF. */
4029 error = EINVAL;
4030 goto out;
4031 }
4032
4033 iov.iov_base = dirbuf;
4034 iov.iov_len = dirbuflen;
4035
4036 uio.uio_iov = &iov;
4037 uio.uio_iovcnt = 1;
4038 uio.uio_offset = *off;
4039 uio.uio_resid = dirbuflen;
4040 uio.uio_segflg = UIO_SYSSPACE;
4041 uio.uio_rw = UIO_READ;
4042 uio.uio_td = td;
4043
4044 #ifdef MAC
4045 error = mac_vnode_check_readdir(td->td_ucred, vp);
4046 if (error == 0)
4047 #endif
4048 error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag,
4049 NULL, NULL);
4050 if (error != 0)
4051 goto out;
4052
4053 *len = dirbuflen - uio.uio_resid;
4054 *off = uio.uio_offset;
4055
4056 if (*len == 0) {
4057 /* Sanity check on INVARIANTS. */
4058 MPASS(*eofflag != 0);
4059 *eofflag = 1;
4060 goto success;
4061 }
4062
4063 /*
4064 * Normalize the flag returned by VOP_READDIR(), since we use 2
4065 * as a sentinel value.
4066 */
4067 if (*eofflag != 0)
4068 *eofflag = 1;
4069
4070 dp = (struct dirent *)dirbuf;
4071 }
4072
4073 if (__predict_false(*len < GENERIC_MINDIRSIZ ||
4074 dp->d_reclen < GENERIC_MINDIRSIZ)) {
4075 error = EINTEGRITY;
4076 dp = NULL;
4077 goto out;
4078 }
4079
4080 success:
4081 error = 0;
4082 out:
4083 *dpp = dp;
4084 return (error);
4085 }
4086
4087 /*
4088 * Checks whether a directory is empty or not.
4089 *
4090 * If the directory is empty, returns 0, and if it is not, ENOTEMPTY. Other
4091 * values are genuine errors preventing the check.
4092 */
4093 int
vn_dir_check_empty(struct vnode * vp)4094 vn_dir_check_empty(struct vnode *vp)
4095 {
4096 struct thread *const td = curthread;
4097 char *dirbuf;
4098 size_t dirbuflen, len;
4099 off_t off;
4100 int eofflag, error;
4101 struct dirent *dp;
4102 struct vattr va;
4103
4104 ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
4105 VNPASS(vp->v_type == VDIR, vp);
4106
4107 error = VOP_GETATTR(vp, &va, td->td_ucred);
4108 if (error != 0)
4109 return (error);
4110
4111 dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
4112 if (dirbuflen < va.va_blocksize)
4113 dirbuflen = va.va_blocksize;
4114 dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
4115
4116 len = 0;
4117 off = 0;
4118 eofflag = 0;
4119
4120 for (;;) {
4121 error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen,
4122 &dp, &len, &off, &eofflag);
4123 if (error != 0)
4124 goto end;
4125
4126 if (len == 0) {
4127 /* EOF */
4128 error = 0;
4129 goto end;
4130 }
4131
4132 /*
4133 * Skip whiteouts. Unionfs operates on filesystems only and
4134 * not on hierarchies, so these whiteouts would be shadowed on
4135 * the system hierarchy but not for a union using the
4136 * filesystem of their directories as the upper layer.
4137 * Additionally, unionfs currently transparently exposes
4138 * union-specific metadata of its upper layer, meaning that
4139 * whiteouts can be seen through the union view in empty
4140 * directories. Taking into account these whiteouts would then
4141 * prevent mounting another filesystem on such effectively
4142 * empty directories.
4143 */
4144 if (dp->d_type == DT_WHT)
4145 continue;
4146
4147 /*
4148 * Any file in the directory which is not '.' or '..' indicates
4149 * the directory is not empty.
4150 */
4151 switch (dp->d_namlen) {
4152 case 2:
4153 if (dp->d_name[1] != '.') {
4154 /* Can't be '..' (nor '.') */
4155 error = ENOTEMPTY;
4156 goto end;
4157 }
4158 /* FALLTHROUGH */
4159 case 1:
4160 if (dp->d_name[0] != '.') {
4161 /* Can't be '..' nor '.' */
4162 error = ENOTEMPTY;
4163 goto end;
4164 }
4165 break;
4166
4167 default:
4168 error = ENOTEMPTY;
4169 goto end;
4170 }
4171 }
4172
4173 end:
4174 free(dirbuf, M_TEMP);
4175 return (error);
4176 }
4177
4178
4179 static u_long vn_lock_pair_pause_cnt;
4180 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
4181 &vn_lock_pair_pause_cnt, 0,
4182 "Count of vn_lock_pair deadlocks");
4183
4184 u_int vn_lock_pair_pause_max;
4185 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
4186 &vn_lock_pair_pause_max, 0,
4187 "Max ticks for vn_lock_pair deadlock avoidance sleep");
4188
4189 static void
vn_lock_pair_pause(const char * wmesg)4190 vn_lock_pair_pause(const char *wmesg)
4191 {
4192 atomic_add_long(&vn_lock_pair_pause_cnt, 1);
4193 pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
4194 }
4195
4196 /*
4197 * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order
4198 * reversal. vp1_locked indicates whether vp1 is locked; if not, vp1
4199 * must be unlocked. Same for vp2 and vp2_locked. One of the vnodes
4200 * can be NULL.
4201 *
4202 * The function returns with both vnodes exclusively or shared locked,
4203 * according to corresponding lkflags, and guarantees that it does not
4204 * create lock order reversal with other threads during its execution.
4205 * Both vnodes could be unlocked temporary (and reclaimed).
4206 *
4207 * If requesting shared locking, locked vnode lock must not be recursed.
4208 *
4209 * Only one of LK_SHARED and LK_EXCLUSIVE must be specified.
4210 * LK_NODDLKTREAT can be optionally passed.
4211 *
4212 * If vp1 == vp2, only one, most exclusive, lock is obtained on it.
4213 */
4214 void
vn_lock_pair(struct vnode * vp1,bool vp1_locked,int lkflags1,struct vnode * vp2,bool vp2_locked,int lkflags2)4215 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
4216 struct vnode *vp2, bool vp2_locked, int lkflags2)
4217 {
4218 int error, locked1;
4219
4220 MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) ||
4221 (vp1 == NULL && lkflags1 == 0));
4222 MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4223 MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) ||
4224 (vp2 == NULL && lkflags2 == 0));
4225 MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4226
4227 if (vp1 == NULL && vp2 == NULL)
4228 return;
4229
4230 if (vp1 == vp2) {
4231 MPASS(vp1_locked == vp2_locked);
4232
4233 /* Select the most exclusive mode for lock. */
4234 if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK))
4235 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4236
4237 if (vp1_locked) {
4238 ASSERT_VOP_LOCKED(vp1, "vp1");
4239
4240 /* No need to relock if any lock is exclusive. */
4241 if ((vp1->v_vnlock->lock_object.lo_flags &
4242 LK_NOSHARE) != 0)
4243 return;
4244
4245 locked1 = VOP_ISLOCKED(vp1);
4246 if (((lkflags1 & LK_SHARED) != 0 &&
4247 locked1 != LK_EXCLUSIVE) ||
4248 ((lkflags1 & LK_EXCLUSIVE) != 0 &&
4249 locked1 == LK_EXCLUSIVE))
4250 return;
4251 VOP_UNLOCK(vp1);
4252 }
4253
4254 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4255 vn_lock(vp1, lkflags1 | LK_RETRY);
4256 return;
4257 }
4258
4259 if (vp1 != NULL) {
4260 if ((lkflags1 & LK_SHARED) != 0 &&
4261 (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4262 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4263 if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
4264 ASSERT_VOP_LOCKED(vp1, "vp1");
4265 if ((lkflags1 & LK_EXCLUSIVE) != 0) {
4266 VOP_UNLOCK(vp1);
4267 ASSERT_VOP_UNLOCKED(vp1,
4268 "vp1 shared recursed");
4269 vp1_locked = false;
4270 }
4271 } else if (!vp1_locked)
4272 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4273 } else {
4274 vp1_locked = true;
4275 }
4276
4277 if (vp2 != NULL) {
4278 if ((lkflags2 & LK_SHARED) != 0 &&
4279 (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4280 lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE;
4281 if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
4282 ASSERT_VOP_LOCKED(vp2, "vp2");
4283 if ((lkflags2 & LK_EXCLUSIVE) != 0) {
4284 VOP_UNLOCK(vp2);
4285 ASSERT_VOP_UNLOCKED(vp2,
4286 "vp2 shared recursed");
4287 vp2_locked = false;
4288 }
4289 } else if (!vp2_locked)
4290 ASSERT_VOP_UNLOCKED(vp2, "vp2");
4291 } else {
4292 vp2_locked = true;
4293 }
4294
4295 if (!vp1_locked && !vp2_locked) {
4296 vn_lock(vp1, lkflags1 | LK_RETRY);
4297 vp1_locked = true;
4298 }
4299
4300 while (!vp1_locked || !vp2_locked) {
4301 if (vp1_locked && vp2 != NULL) {
4302 if (vp1 != NULL) {
4303 error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
4304 __FILE__, __LINE__);
4305 if (error == 0)
4306 break;
4307 VOP_UNLOCK(vp1);
4308 vp1_locked = false;
4309 vn_lock_pair_pause("vlp1");
4310 }
4311 vn_lock(vp2, lkflags2 | LK_RETRY);
4312 vp2_locked = true;
4313 }
4314 if (vp2_locked && vp1 != NULL) {
4315 if (vp2 != NULL) {
4316 error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
4317 __FILE__, __LINE__);
4318 if (error == 0)
4319 break;
4320 VOP_UNLOCK(vp2);
4321 vp2_locked = false;
4322 vn_lock_pair_pause("vlp2");
4323 }
4324 vn_lock(vp1, lkflags1 | LK_RETRY);
4325 vp1_locked = true;
4326 }
4327 }
4328 if (vp1 != NULL) {
4329 if (lkflags1 == LK_EXCLUSIVE)
4330 ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
4331 else
4332 ASSERT_VOP_LOCKED(vp1, "vp1 ret");
4333 }
4334 if (vp2 != NULL) {
4335 if (lkflags2 == LK_EXCLUSIVE)
4336 ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
4337 else
4338 ASSERT_VOP_LOCKED(vp2, "vp2 ret");
4339 }
4340 }
4341
4342 int
vn_lktype_write(struct mount * mp,struct vnode * vp)4343 vn_lktype_write(struct mount *mp, struct vnode *vp)
4344 {
4345 if (MNT_SHARED_WRITES(mp) ||
4346 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
4347 return (LK_SHARED);
4348 return (LK_EXCLUSIVE);
4349 }
4350
4351 int
vn_cmp(struct file * fp1,struct file * fp2,struct thread * td)4352 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td)
4353 {
4354 if (fp2->f_type != DTYPE_VNODE)
4355 return (3);
4356 return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode));
4357 }
4358